WorldWideScience

Sample records for dual detector cameras

  1. PAU camera: detectors characterization

    Science.gov (United States)

    Casas, Ricard; Ballester, Otger; Cardiel-Sas, Laia; Castilla, Javier; Jiménez, Jorge; Maiorino, Marino; Pío, Cristóbal; Sevilla, Ignacio; de Vicente, Juan

    2012-07-01

    The PAU Camera (PAUCam) [1,2] is a wide field camera that will be mounted at the corrected prime focus of the William Herschel Telescope (Observatorio del Roque de los Muchachos, Canary Islands, Spain) in the next months. The focal plane of PAUCam is composed by a mosaic of 18 CCD detectors of 2,048 x 4,176 pixels each one with a pixel size of 15 microns, manufactured by Hamamatsu Photonics K. K. This mosaic covers a field of view (FoV) of 60 arcmin (minutes of arc), 40 of them are unvignetted. The behaviour of these 18 devices, plus four spares, and their electronic response should be characterized and optimized for the use in PAUCam. This job is being carried out in the laboratories of the ICE/IFAE and the CIEMAT. The electronic optimization of the CCD detectors is being carried out by means of an OG (Output Gate) scan and maximizing it CTE (Charge Transfer Efficiency) while the read-out noise is minimized. The device characterization itself is obtained with different tests. The photon transfer curve (PTC) that allows to obtain the electronic gain, the linearity vs. light stimulus, the full-well capacity and the cosmetic defects. The read-out noise, the dark current, the stability vs. temperature and the light remanence.

  2. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    Science.gov (United States)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  3. SPECT detectors: the Anger Camera and beyond

    Science.gov (United States)

    Peterson, Todd E.; Furenlid, Lars R.

    2011-09-01

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous sodium iodide scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic.

  4. SPECT detectors: the Anger Camera and beyond.

    Science.gov (United States)

    Peterson, Todd E; Furenlid, Lars R

    2011-09-07

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous sodium iodide scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic.

  5. Positron Emission Mammotomography with Dual Planar Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mark Smith; Raymond Raylman; Stanislaw Majewski

    2003-06-29

    Positron emission mammography (PEM) is usually performed with two stationary planar detectors above and below a compressed breast. There is image blurring normal to the detectors due to the limited angular range of the lines of response. Positron emission mammotomography (PEM-T) with dual planar detectors rotating about the breast can obtain complete angular sampling and has the potential to improve activity estimation.

  6. DUAL-BAND INFRARED DETECTORS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    As the infrared technology continues to advance, there is a growing demand for multispectral detectors for advanced IR systems with better target discrimination and identification. Both HgCdTe detectors and quantum well GaAs/AlGaAs photodetectors offer wavelength flexibility from medium wavelength to very long wavelength and multicolor capability in these regions. The main challenges facing all multicolor devices are more complicated device structtures, thicker and multilayer material growth, and more difficult device fabrication, especially when the array size gets larger and pixel size gets smaller. In the paper recent progress in development of two-color HgCdTe photodiodes and quantum well infrared photodetectors is presented.More attention is devoted to HgCdTe detectors. The two-color detector arrays are based upon an n-P-N (the capital letters mean the materials with larger bandgap energy) HgCdTe triple layer heterojunction design. Vertically stacking the two p-n junctions permits incorporation of both detectros into a single pixel. Both sequential mode and simultaneous mode detectors are fabricated. The mode of detection is determined by the fabrication process of the multilayer materials.Also the performances of stacked multicolor QWIPs detectors are presented. For multicolor arrays, QWIP's narrow band spectrum is an advantage, resulting in low spectral crosstalk. The major challenge for QWIP is developing broadband or multicolor optical coupling structures that permit efficient absorption of all required spectral bands.

  7. Position Reconstruction in a Dual Phase Xenon Scintillation Detector

    CERN Document Server

    Solovov, V N; Akimov, D Yu; Araújo, H M; Barnes, E J; Burenkov, A A; Chepel, V; Currie, A; DeViveiros, L; Edwards, B; Ghag, C; Hollingsworth, A; Horn, M; Kalmus, G E; Kobyakin, A S; Kovalenko, A G; Lebedenko, V N; Lindote, A; Lopes, M I; Lüscher, R; Majewski, P; Murphy, A St J; Neves, F; Paling, S M; da Cunha, J Pinto; Preece, R; Quenby, J J; Reichhart, L; Scovell, P R; Silva, C; Smith, N J T; Smith, P F; Stekhanov, V N; Sumner, T J; Thorne, C; Walker, R J

    2011-01-01

    We studied the application of statistical reconstruction algorithms, namely maximum likelihood and least squares methods, to the problem of event reconstruction in a dual phase liquid xenon detector. An iterative method was developed for in-situ reconstruction of the PMT light response functions from calibration data taken with an uncollimated gamma-ray source. Using the techniques described, the performance of the ZEPLIN-III dark matter detector was studied for 122 keV gamma-rays. For the inner part of the detector (R<100 mm), spatial resolutions of 13 mm and 1.6 mm FWHM were measured in the horizontal plane for primary and secondary scintillation, respectively. An energy resolution of 8.1% FWHM was achieved at that energy. The possibility of using this technique for improving performance and reducing cost of scintillation cameras for medical applications is currently under study.

  8. The camera of the Pierre Auger Observatory Fluorescence Detector

    CERN Document Server

    Ambrosio, M; Bracci, F; Facal, P; Fonte, R; Gallo, G; Kemp, E; Matthiae, Giorgio; Nicotra, D; Privitera, P; Raia, G; Tusi, E; Vitali, G

    2002-01-01

    The Fluorescence Detector of the Pierre Auger Observatory is a set of telescopes which measure the fluorescence light emitted by atmospheric nitrogen stimulated by the cosmic-ray showers. The Camera is an array of photomultipliers positioned on the telescope focal surface. We describe the main features of the camera: the hexagonal pixels geometry on the spherical focal surface; the light collectors which complement the photomultipliers; the photomultipliers test.

  9. Dual-Double Slot Antennas Fabricated with Single Superconducting Film for Millimeter Wave Camera

    Science.gov (United States)

    Naruse, Masato; Nitta, Tom; Karatsu, Kenichi; Sekine, Msakazu; Sekiguchi, Shigeyuki; Sekimoto, Yutaro; Noguchi, Takashi; Taino, Tohru; Myoren, Hiroaki

    2016-02-01

    We propose an entirely plane-structure camera for millimeter wave astronomy, in order to reduce production cost and time. The camera is composed of a silicon lens-let, antennas, feed lines, and detectors made from the same superconducting aluminum film on a silicon substrate. A couple of double-slot antennas are located the same focal plane of a small substrate lens to enhance the packing density of detectors and observation efficiency. To achieve high sensitivity, we adapted a microwave kinetic inductance detector as a photon sensor, which consists of a superconducting microresonator. We examined the optical performance of the camera attached to a silicon lens array at 220 GHz in a 0.3 K cryostat. The measured beams were in good agreement with the calculations within the dynamic range of the setup (20 dB). Polarization misalignments between the dual-double slot antenna were less than 2∘, and cross-polarization level was around -7 dB. The relatively high cross-polarization would be explained by an antenna crosstalk mediated by quasiparticle diffusion.

  10. Silicon detector for a Compton Camera in Nuclear Medical Imaging

    CERN Document Server

    Meier, D; Jalocha, P; Sowicki, B; Kowal, M; Dulinski, W; Maehlum, G; Nygård, E; Yoshioka, K; Fuster, J A; Lacasta, C; Mikuz, M; Roe, S; Weilhammer, Peter; Hua, C H; Park, S J; Wilderman, S J; Zhang, L; Clinthorne, N H; Rogers, W L

    2001-01-01

    Electronically collimated gamma ca\\-me\\-ras based on Com\\-pton scattering in silicon pad sensors may improve imaging in nuclear medicine and bio-medical research. The work described here concentrates on the silicon pad detector developed for a prototype Compton camera. The silicon pad sensors are read out using low noise VLSI CMOS chips and novel fast triggering chips. Depending on the application a light weight and dense packaging of sensors and its readout electronics on a hybrid is required. We describe the silicon pad sensor and their readout with the newly designed hybrid. %The silicon detector of a Compton camera %may contain up to $10^5$~analogue channels requiring %a fast and low cost data acquisition system. We also describe a modular and low-cost data acquisition system (CCDAQ) based on a digital signal processor which is interfaced to the EPP port of personal computers. Using the CCDAQ and the hybrids energy spectra of gamma-ray photons from technetium ($^{\\rm 99m}_{43}$Tc) and americium ($^{241}_{...

  11. A dual-band millimeter-wave kinetic inductance camera for the IRAM 30-meter telescope

    CERN Document Server

    Monfardini, A; Bideaud, A; Swenson, L J; Roesch, M; Desert, F X; Doyle, S; Endo, A; Cruciani, A; Ade, P; Baryshev, A M; Baselmans, J J A; Bourrion, O; Calvo, M; Camus, P; Ferrari, L; Giordano, C; Hoffmann, C; Leclercq, S; Macias-Perez9, J; Mauskopf, P; Schuster, K F; Tucker, C; Vescovi, C; Yates, S J C

    2011-01-01

    Context. The Neel IRAM KIDs Array (NIKA) is a fully-integrated measurement system based on kinetic inductance detectors (KIDs) currently being developed for millimeter wave astronomy. In a first technical run, NIKA was successfully tested in 2009 at the Institute for Millimetric Radio Astronomy (IRAM) 30-meter telescope at Pico Veleta, Spain. This prototype consisted of a 27-42 pixel camera imaging at 150 GHz. Subsequently, an improved system has been developed and tested in October 2010 at the Pico Veleta telescope. The instrument upgrades included dual-band optics allowing simultaneous imaging at 150 GHz and 220 GHz, faster sampling electronics enabling synchronous measurement of up to 112 pixels per measurement band, improved single-pixel sensitivity, and the fabrication of a sky simulator to replicate conditions present at the telescope. Results. The new dual-band NIKA was successfully tested in October 2010, performing in-line with sky simulator predictions. Initially the sources targeted during the 2009...

  12. Development of dual-band barrier detectors

    Science.gov (United States)

    Plis, Elena; Myers, Stephen A.; Ramirez, David A.; Krishna, Sanjay

    2016-05-01

    We report on the development of dual-band InAs/GaSb type-II strained layer superlattices (T2SL) detectors with barrier designs at SK Infrared. Over the past five years, we demonstrated mid-wave/long-wave (MW/LWIR, cut-off wavelengths are 5 μm and 10.0 μm), and LW/LWIR (cut-off wavelengths are 9 μm and 11.0 μm) detectors with nBn and pBp designs. Recent results include a high performance bias-selectable long/long-wavelength infrared photodetector based on T2SL with a pBp barrier architecture. The two channels 50% cut-off wavelengths were ~ 9.2 μm and ~ 12 μm at 77 K. The "blue" and "red" LWIR absorbers demonstrated saturated QE values of 34 % and 28 %, respectively, measured in a backside illuminated configuration with a ~ 35 μm thick layer of residual GaSb substrate. Bulk-limited dark current levels were ~ 2.6 x 10-7 A/cm2 at + 100 mV and ~ 8.3 x 10-4 A/cm2 at - 200 mV for the "blue" and "red" channels, respectively.

  13. Development of Signal Processing Circuit for Side-absorber of Dual-mode Compton Camera

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Jong Hoon; Kim, Young Su; Kim, Chan Hyeong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of); Lee, Ju Hahn; Lee, Chun Sik [Dept. of Physics, Chung-Ang University, Seoul (Korea, Republic of)

    2012-03-15

    In the present study, a gamma-ray detector and associated signal processing circuit was developed for a side-absorber of a dual-mode Compton camera. The gamma-ray detector was made by optically coupling a CsI(Tl) scintillation crystal to a silicon photodiode. The developed signal processing circuit consists of two parts, i.e., the slow part for energy measurement and the fast part for timing measurement. In the fast part, there are three components: (1) fast shaper, (2) leading-edge discriminator, and (3) TTL-to-NIM logic converter. AC coupling configuration between the detector and front-end electronics (FEE) was used. Because the noise properties of FEE can significantly affect the overall performance of the detection system, some design criteria were presented. The performance of the developed system was evaluated in terms of energy and timing resolutions. The evaluated energy resolution was 12.0% and 15.6% FWHM for 662 and 511 keV peaks, respectively. The evaluated timing resolution was 59.0 ns. In the conclusion, the methods to improve the performance were discussed because the developed gamma-ray detection system showed the performance that could be applicable but not satisfactory in Compton camera application.

  14. Gated tomographic radionuclide angiography using cadmium-zinc-telluride detector gamma camera; comparison to traditional gamma cameras

    DEFF Research Database (Denmark)

    Jensen, Maria Maj; Schmidt, Ulla; Huang, Chenxi

    2014-01-01

    PURPOSE: Estimation of left ventricular ejection fraction (LVEF) with equilibrium 99MTc-HSA equilibrium radionuclide angiography (MUGA) is frequently used for assessing cardiac function. The purpose of this study was to compare intra- and interobserver variation between three different gamma...... of agreement between each sequence of analyses for each of the three cameras. RESULTS: The lowest intraobserver variations in LVEF for the two NaI-detector cameras were 3.1% (-4.0% to 3.5%) for the planar and 3.4% (-4.2% to 4.5%) for SPECT (P ≤ 0.001-0.019), the highest result for the CZT SPECT camera was 2.......6% (-2.9% to 3.1%). Similarly, interobserver variation was 4.8% (-4.8% to 6.4%) and 4.9% (-5.4% to 7.5%), respectively, for each of the NaI-detector cameras and 3.3% (-3.4% to 4.3%) for the CZT SPECT camera (P ≤ 0.001-0.008). DISCUSSION: The CZT detector camera was superior to both NaI detector cameras...

  15. A 90GHz Bolometer Camera Detector System for the Green

    Science.gov (United States)

    Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.

    2004-01-01

    We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3 mm) for the 100m Green Bank Telescope (GBT). This system will provide high sensitivity (less than 1mJy in 1s) rapid imaging (15'x15' to 150 micron Jy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close-packed, Nyquist-sampled array of superconducting transition edge sensor (TES) bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approximately 2 x 10(exp -17) W/square root of Hz, the TES bolometers will provide fast, linear, sensitive response for high performance imaging. The detectors are read out by an 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.

  16. Digital camera and smartphone as detectors in paper-based chemiluminometric genotyping of single nucleotide polymorphisms.

    Science.gov (United States)

    Spyrou, Elena M; Kalogianni, Despina P; Tragoulias, Sotirios S; Ioannou, Penelope C; Christopoulos, Theodore K

    2016-10-01

    Chemi(bio)luminometric assays have contributed greatly to various areas of nucleic acid analysis due to their simplicity and detectability. In this work, we present the development of chemiluminometric genotyping methods in which (a) detection is performed by using either a conventional digital camera (at ambient temperature) or a smartphone and (b) a lateral flow assay configuration is employed for even higher simplicity and suitability for point of care or field testing. The genotyping of the C677T single nucleotide polymorphism (SNP) of methylenetetrahydropholate reductase (MTHFR) gene is chosen as a model. The interrogated DNA sequence is amplified by polymerase chain reaction (PCR) followed by a primer extension reaction. The reaction products are captured through hybridization on the sensing areas (spots) of the strip. Streptavidin-horseradish peroxidase conjugate is used as a reporter along with a chemiluminogenic substrate. Detection of the emerging chemiluminescence from the sensing areas of the strip is achieved by digital camera or smartphone. For this purpose, we constructed a 3D-printed smartphone attachment that houses inexpensive lenses and converts the smartphone into a portable chemiluminescence imager. The device enables spatial discrimination of the two alleles of a SNP in a single shot by imaging of the strip, thus avoiding the need of dual labeling. The method was applied successfully to genotyping of real clinical samples. Graphical abstract Paper-based genotyping assays using digital camera and smartphone as detectors.

  17. Single-Band and Dual-Band Infrared Detectors

    Science.gov (United States)

    Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor); Soibel, Alexander (Inventor); Nguyen, Jean (Inventor); Khoshakhlagh, Arezou (Inventor)

    2017-01-01

    Bias-switchable dual-band infrared detectors and methods of manufacturing such detectors are provided. The infrared detectors are based on a back-to-back heterojunction diode design, where the detector structure consists of, sequentially, a top contact layer, a unipolar hole barrier layer, an absorber layer, a unipolar electron barrier, a second absorber, a second unipolar hole barrier, and a bottom contact layer. In addition, by substantially reducing the width of one of the absorber layers, a single-band infrared detector can also be formed.

  18. High resolution measurements with silicon drift detectors for Compton camera applications

    OpenAIRE

    Çonka Nurdan, Tuba

    2006-01-01

    The accurate and rapid location of the radionuclide distribution in radioactively labeled tissue or organs is the goal of nuclear medicine. The Compton camera, in principle, can improve the spatial resolution and effiency with respect to today's PET and SPECT techniques. Since it is necessary to reconstruct a full scattering event in the Compton camera, the detector technology is very demanding. Useful detectors have not been available in the past. However, a new detector type, the Silicon Dr...

  19. A low-cost dual-camera imaging system for aerial applicators

    Science.gov (United States)

    Agricultural aircraft provide a readily available remote sensing platform as low-cost and easy-to-use consumer-grade cameras are being increasingly used for aerial imaging. In this article, we report on a dual-camera imaging system we recently assembled that can capture RGB and near-infrared (NIR) i...

  20. FIR Detectors/Cameras Based on GaN and Si Field-Effect Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SETI proposes to develop GaN and Si based multicolor FIR/THz cameras with detector elements and readout, signal processing electronics integrated on a single chip....

  1. The HERMES dual-radiator RICH detector

    CERN Document Server

    Jackson, H E

    2003-01-01

    The HERMES experiment emphasizes measurements of semi-inclusive deep-inelastic scattering. Most of the hadrons produced lie between 2 and 10 GeV, a region in which it had not previously been feasible to separate pions, kaons, and protons with standard particle identification (PID) techniques. The recent development of new clear, large, homogeneous and hydrophobic silica aerogel material with a low index of refraction offered the means to apply RICH PID techniques to this difficult momentum region. The HERMES instrument uses two radiators, C sub 4 F sub 1 sub 0 , a heavy fluorocarbon gas, and a wall of silica aerogel tiles. A lightweight spherical mirror constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality provides optical focusing on a photon detector consisting of 1934 photomultiplier tubes (PMT) for each detector half. The PMT array is held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet. Ring recon...

  2. The HERMES dual-radiator RICH detector

    Science.gov (United States)

    Jackson, H. E.

    2003-04-01

    The HERMES experiment emphasizes measurements of semi-inclusive deep-inelastic scattering. Most of the hadrons produced lie between 2 and 10 GeV, a region in which it had not previously been feasible to separate pions, kaons, and protons with standard particle identification (PID) techniques. The recent development of new clear, large, homogeneous and hydrophobic silica aerogel material with a low index of refraction offered the means to apply RICH PID techniques to this difficult momentum region. The HERMES instrument uses two radiators, C 4F 10, a heavy fluorocarbon gas, and a wall of silica aerogel tiles. A lightweight spherical mirror constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality provides optical focusing on a photon detector consisting of 1934 photomultiplier tubes (PMT) for each detector half. The PMT array is held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet. Ring reconstruction is accomplished with pattern recognition techniques based on a combination of inverse and direct ray tracing.

  3. Evaluation of Compton gamma camera prototype based on pixelated CdTe detectors

    OpenAIRE

    Y Calderón; Chmeissani, M.; Kolstein, M.; De Lorenzo, G.

    2014-01-01

    A proposed Compton camera prototype based on pixelated CdTe is simulated and evaluated in order to establish its feasibility and expected performance in real laboratory tests. The system is based on module units containing a 2×4 array of square CdTe detectors of 10×10 mm2 area and 2 mm thickness. The detectors are pixelated and stacked forming a 3D detector with voxel sizes of 2 × 1 × 2 mm3. The camera performance is simulated with Geant4-based Architecture for Medicine-Oriented Simulations(G...

  4. The HERMES dual-radiator ring imaging Cerenkov detector

    CERN Document Server

    Akopov, N Z; Bailey, K; Bernreuther, S; Bianchi, N; Capitani, G P; Carter, P; Cisbani, E; De Leo, R; De Sanctis, E; De Schepper, D; Dzhordzhadze, V; Filippone, B W; Frullani, S; Garibaldi, F; Hansen, J O; Hommez, B; Iodice, M; Jackson, H E; Jung, P; Kaiser, R; Kanesaka, J; Kowalczyk, R; Lagamba, L; Maas, A; Muccifora, V; Nappi, E; Negodaeva, K; Nowak, Wolf-Dieter; O'Connor, T; O'Neill, T G; Potterveld, D H; Ryckbosch, D; Sakemi, Y; Sato, F; Schwind, A; Shibata, T A; Suetsugu, K; Thomas, E; Tytgat, M; Urciuoli, G M; Van de Kerckhove, K; Van de Vyver, R; Yoneyama, S; Zohrabyan, H G; Zhang, L F

    2002-01-01

    The construction and use of a dual radiator Ring Imaging Cerenkov(RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasizes measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C4F10, a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.

  5. The HERMES dual-radiator ring imaging Cherenkov detector

    Science.gov (United States)

    Akopov, N.; Aschenauer, E. C.; Bailey, K.; Bernreuther, S.; Bianchi, N.; Capitani, G. P.; Carter, P.; Cisbani, E.; De Leo, R.; De Sanctis, E.; De Schepper, D.; Djordjadze, V.; Filippone, B. W.; Frullani, S.; Garibaldi, F.; Hansen, J.-O.; Hommez, B.; Iodice, M.; Jackson, H. E.; Jung, P.; Kaiser, R.; Kanesaka, J.; Kowalczyk, R.; Lagamba, L.; Maas, A.; Muccifora, V.; Nappi, E.; Negodaeva, K.; Nowak, W.-D.; O'Connor, T.; O'Neill, T. G.; Potterveld, D. H.; Ryckbosch, D.; Sakemi, Y.; Sato, F.; Schwind, A.; Shibata, T.-A.; Suetsugu, K.; Thomas, E.; Tytgat, M.; Urciuoli, G. M.; Van de Kerckhove, K.; Van de Vyver, R.; Yoneyama, S.; Zohrabian, H.; Zhang, L. F.

    2002-03-01

    The construction and use of a dual radiator Ring Imaging Cherenkov (RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasises measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C 4F 10, a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large, homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes (PMT) for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.

  6. The HERMES dual-radiator ring imaging Cherenkov detector

    CERN Document Server

    Akopov, N; Bailey, K; Bernreuther, S; Bianchi, N; Capitani, G P; Carter, P; Cisbani, E; De Leo, R; De Sanctis, E; De Schepper, D; Dzhordzhadze, V; Filippone, B W; Frullani, S; Garibaldi, F; Hansen, J O; Hommez, B; Iodice, M; Jackson, H E; Jung, P; Kaiser, R; Kanesaka, J; Kowalczyk, R; Lagamba, L; Maas, A; Muccifora, V; Nappi, E; Negodaeva, K; Nowak, Wolf-Dieter; O'Connor, T; O'Neill, T G; Potterveld, D H; Ryckbosch, D; Sakemi, Y; Sato, F; Schwind, A; Shibata, T A; Suetsugu, K; Thomas, E; Tytgat, M; Urciuoli, G M; Van De Kerckhove, K; Van De Vyver, R; Yoneyama, S; Zhang, L F; Zohrabyan, H G

    2002-01-01

    The construction and use of a dual radiator Ring Imaging Cherenkov (RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasises measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C sub 4 F sub 1 sub 0 , a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large, homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes (PMT) for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.

  7. Lung function assessment using Xe-133 dynamic SPECT in dual-camera system

    Energy Technology Data Exchange (ETDEWEB)

    Sakaji, Katsuyuki; Akiyama, Masayuki; Nakazawa, Yasuo [Showa Univ., Tokyo (Japan). Hospital; Umeda, Hirotaka; Takenaka, Haruki; Shinozuka, Akira

    2001-09-01

    The purpose of this study was to estimate lung regional function using Xe-133 dynamic SPECT. SPECT equipment with a dual camera was used. Fourteen rotation acquisitions were obtained beginning immediately after Xe-133 gas inhalation. The time activity curve of each pixel was obtained, and T{sub 1/2} of the washout phase was calculated and mapped. Residual radioactivity was evaluated. Adequate images could be obtained at 30 seconds per rotation even with the dual-camera system. Mapping of T{sub 1/2} allowed temporal changes on one image. Three-dimensional evaluation could be made on a SPECT system using our method. (author)

  8. Iterative reconstruction of detector response of an Anger gamma camera

    Science.gov (United States)

    Morozov, A.; Solovov, V.; Alves, F.; Domingos, V.; Martins, R.; Neves, F.; Chepel, V.

    2015-05-01

    Statistical event reconstruction techniques can give better results for gamma cameras than the traditional centroid method. However, implementation of such techniques requires detailed knowledge of the photomultiplier tube light-response functions. Here we describe an iterative method which allows one to obtain the response functions from flood irradiation data without imposing strict requirements on the spatial uniformity of the event distribution. A successful application of the method for medical gamma cameras is demonstrated using both simulated and experimental data. An implementation of the iterative reconstruction technique capable of operating in real time is presented. We show that this technique can also be used for monitoring photomultiplier gain variations.

  9. A dual-detector extended range rem-counter

    CERN Document Server

    Ferrarini, M; Silari, M; Agosteo, S

    2010-01-01

    The design and characterization of a dual-detector spherical rem counter is discussed in this paper. The rem counter is based on a polythene sphere with lead and cadmium insets, designed to host at its centre either an active (He-3 SP9 proportional counter) or a passive (CR39 + B-10 radiator) thermal neutron detector. Its sensitivity ranges from thermal energies up to 1 GeV. A Monte Carlo characterization of this dual-detector rem counter has shown no significant change in the shape of the response curve obtained with the two detectors. The rem counter has been calibrated with a Pu-Be source. An intercomparison in a high-energy neutron field has been carried out at the CERF facility at CERN among the rem counter in the two configurations, two commercial units and the original version of the active LINUS in use at CERN. Both the active and passive versions of the rem counter agree, within the statistical uncertainties, with the CERN LINUS and with the facility reference values. Both versions of the instrument ...

  10. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    Science.gov (United States)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  11. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy.

    Science.gov (United States)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  12. Monte Carlo Simulation and Experimental Characterization of a Dual Head Gamma Camera

    CERN Document Server

    Rodrigues, S; Abreu, M C; Santos, N; Rato-Mendes, P; Peralta, L

    2007-01-01

    The GEANT4 Monte Carlo simulation and experimental characterization of the Siemens E.Cam Dual Head gamma camera hosted in the Particular Hospital of Algarve have been done. Imaging tests of thyroid and other phantoms have been made "in situ" and compared with the results obtained with the Monte Carlo simulation.

  13. Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: first clinical validation

    Energy Technology Data Exchange (ETDEWEB)

    Buechel, Ronny R.; Herzog, Bernhard A.; Husmann, Lars; Burger, Irene A.; Pazhenkottil, Aju P.; Treyer, Valerie; Valenta, Ines; Schulthess, Patrick von; Nkoulou, Rene; Wyss, Christophe A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); University of Zurich, Zurich Center for Integrative Human Physiology (ZIHP), Zurich (Switzerland)

    2010-04-15

    To assess the diagnostic performance of a novel ultrafast cardiac gamma camera with cadmium-zinc-telluride (CZT) solid-state semiconductor detectors for nuclear myocardial perfusion imaging (MPI). The study group comprised 75 consecutive patients (55 men, BMI range 19-45 kg/m{sup 2}) who underwent a 1-day {sup 99m}Tc-tetrofosmin adenosine-stress/rest imaging protocol. Scanning was performed first on a conventional dual-detector SPECT gamma camera (Ventri, GE Healthcare) with a 15-min acquisition time each for stress and rest. All scans were immediately repeated on an ultrafast CZT camera (Discovery 530 NMc, GE Healthcare) with a 3-min scan time for stress and a 2-min scan time for rest. Clinical agreement (normal, ischaemia, scar) between CZT and SPECT was assessed for each patient and for each coronary territory using SPECT MPI as the reference standard. Segmental myocardial tracer uptake values (percent of maximum) using a 20-segment model and left ventricular ejection fraction (EF) values obtained using CZT were compared with those obtained using conventional SPECT by intraclass correlation and by calculating Bland-Altman limits of agreement. There was excellent clinical agreement between CZT and conventional SPECT on a per-patient basis (96.0%) and on a per-vessel territory basis (96.4%) as shown by a highly significant correlation between segmental tracer uptake values (r=0.901, p<0.001). Similarly, EF values for both scanners were highly correlated (r=0.976, p<0.001) with narrow Bland-Altman limits of agreement (-5.5-10.6%). The novel CZT camera allows a more than fivefold reduction in scan time and provides clinical information equivalent to conventional standard SPECT MPI. (orig.)

  14. A dual tech gem for future neutrino detectors

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    Innovative technologies for next-generation neutrino detectors are currently being tested in the CERN Neutrino Platform project WA105.   Installation of the WA105 cryostat. (Image : Maximilien Brice/ CERN) The activities under way in the framework of the CERN Neutrino Platform are multiple and restless. Along with the refurbishment of ICARUS, another project is making great strides towards its completion: WA105. In spite of the not-so-expressive name, the technology being tested in this prototype is unprecedented. WA105, presently at an advanced state of assembly at CERN, is a 3x1x1-metre, 25-tonne “dual-phase” liquid argon time projection chamber (DLAr-TPC) demonstrator. It has been conceived in the quest to solve the technological problems related to the next generation of neutrino detectors, whose dimensions need to be gigantic in order to thoroughly study the phenomenon of neutrino oscillations. Indeed, a major new international project called DUNE (Deep Underground Neutri...

  15. Dual Edge Triggered Phase Detector for DLL and PLL Applications

    Directory of Open Access Journals (Sweden)

    Prasanna Kumar L

    2015-05-01

    Full Text Available An ASIC design of Dual Edge Triggered Phase Detector(DET PD for Delay locked loop(DLL and Phase locked loop(PLL applications is proposed in this paper.The proposed DET PD has high locking speed and less jitter. The designs are based on TSPC flip flop logic, which overcomes the issue of narrow capture range. The Double edge triggered phase detector dissipates less power than conventional designs and can be operated at a frequency range of 250MHz to 1GHz.The proposed DET-PD is designed using 180nm CMOS process technology at a 1.8V supply voltage in cadence virtuoso and circuit simulated in cadence spectre.

  16. Development of a Compton camera for medical applications based on silicon strip and scintillation detectors

    Science.gov (United States)

    Krimmer, J.; Ley, J.-L.; Abellan, C.; Cachemiche, J.-P.; Caponetto, L.; Chen, X.; Dahoumane, M.; Dauvergne, D.; Freud, N.; Joly, B.; Lambert, D.; Lestand, L.; Létang, J. M.; Magne, M.; Mathez, H.; Maxim, V.; Montarou, G.; Morel, C.; Pinto, M.; Ray, C.; Reithinger, V.; Testa, E.; Zoccarato, Y.

    2015-07-01

    A Compton camera is being developed for the purpose of ion-range monitoring during hadrontherapy via the detection of prompt-gamma rays. The system consists of a scintillating fiber beam tagging hodoscope, a stack of double sided silicon strip detectors (90×90×2 mm3, 2×64 strips) as scatter detectors, as well as bismuth germanate (BGO) scintillation detectors (38×35×30 mm3, 100 blocks) as absorbers. The individual components will be described, together with the status of their characterization.

  17. Development of a Compton camera for medical applications based on silicon strip and scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Krimmer, J., E-mail: j.krimmer@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Ley, J.-L. [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Abellan, C.; Cachemiche, J.-P. [Aix-Marseille Université, CNRS/IN2P3, CPPM UMR 7346, 13288 Marseille (France); Caponetto, L.; Chen, X.; Dahoumane, M.; Dauvergne, D. [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Freud, N. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA - Lyon, Université Lyon 1, Centre Léon Bérard (France); Joly, B.; Lambert, D.; Lestand, L. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand (France); Létang, J.M. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA - Lyon, Université Lyon 1, Centre Léon Bérard (France); Magne, M. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand (France); and others

    2015-07-01

    A Compton camera is being developed for the purpose of ion-range monitoring during hadrontherapy via the detection of prompt-gamma rays. The system consists of a scintillating fiber beam tagging hodoscope, a stack of double sided silicon strip detectors (90×90×2 mm{sup 3}, 2×64 strips) as scatter detectors, as well as bismuth germanate (BGO) scintillation detectors (38×35×30 mm{sup 3}, 100 blocks) as absorbers. The individual components will be described, together with the status of their characterization.

  18. A Dual-band Millimeter-wave Kinetic Inductance Camera for the IRAM 30 m Telescope

    NARCIS (Netherlands)

    Monfardini, A.; Benoit, A.; Bideaud, A.; Swenson, L.; Cruciani, A.; Camus, P.; Hoffmann, C.; Désert, F. X.; Doyle, S.; Ade, P.; Mauskopf, P.; Tucker, C.; Roesch, M.; Leclercq, S.; Schuster, K. F.; Endo, A.; Baryshev, A.; Baselmans, J. J. A.; Ferrari, L.; Yates, S. J. C.; Bourrion, O.; Macias-Perez, J.; Vescovi, C.; Calvo, M.; Giordano, C.

    2011-01-01

    The Néel IRAM KIDs Array (NIKA) is a fully integrated measurement system based on kinetic inductance detectors (KIDs) currently being developed for millimeter wave astronomy. The instrument includes dual-band optics allowing simultaneous imaging at 150 GHz and 220 GHz. The imaging sensors consist of

  19. A Dual-band Millimeter-wave Kinetic Inductance Camera for the IRAM 30 m Telescope

    NARCIS (Netherlands)

    Monfardini, A.; Benoit, A.; Bideaud, A.; Swenson, L.; Cruciani, A.; Camus, P.; Hoffmann, C.; Desert, F. X.; Doyle, S.; Ade, P.; Mauskopf, P.; Tucker, C.; Roesch, M.; Leclercq, S.; Schuster, K. F.; Endo, A.; Barychev, Andrei; Baselmans, J. J. A.; Ferrari, L.; Yates, S. J. C.; Bourrion, O.; Macias-Perez, J.; Vescovi, C.; Calvo, M.; Giordano, C.

    2011-01-01

    The Neel IRAM KIDs Array (NIKA) is a fully integrated measurement system based on kinetic inductance detectors KIDs) currently being developed for millimeter wave astronomy. The instrument includes dual-band optics allowing simultaneous imaging at 150 GHz and 220 GHz. The imaging sensors consist of

  20. AUTHENTIC: a very low-cost infrared detector and camera system

    Science.gov (United States)

    Mansi, Mike V.; Brookfield, Martin; Porter, Stephen G.; Edwards, Ivan; Bold, Brendon; Shannon, John; Lambkin, Paul; Mathewson, Alan

    2003-01-01

    An Oxide over Titanium metal resistance bolometer technology developed by NMRC, Ireland) has been transferred to the X-FAB UK CMOS foundry at Plymouth, UK. Prototypes of the bolometers have been manufactured in the X-FAB production facility and tests show performance comparable with the NMRC prototypes. The bolometer design has been integrated with a CMOS read-out chip and the first wafers are currently being packaged for evaluation. The development of a low cost thermal imaging camera using the detector is under way. We present an overview of the detector and camera design, together with preliminary results from the detector test programme. The work is partly funded by the European Union IST programme.

  1. ESO adaptive optics NGSD/LGSD detector and camera controller for the E-ELT

    Science.gov (United States)

    Reyes-Moreno, Javier; Downing, Mark; Di Lieto, Nicola

    2016-07-01

    This paper presents the development of the ESO prototype detector controller for the Adaptive Optics imager on the E-ELT which is based on the e2v Natural Guide Star Detector (NGSD) and Laser Guide Star Detector (LGSD). Both NGSD and LGSD are prototype detectors aiming at proving the CMOS technology in the context of the requirement for a Large Visible AO WFS Detector for the E-ELT. NGSD is a custom design CMOS array detector of 880×840 pixels organized as 44×42 sub-apertures of 20×20 pixel each. NGSD is exactly 1/4 of the LGSD and therefore it is considered a scaled down demonstrator for the LGSD. The detector controller requirements present important challenges in the design of the electronics due to the low-power, low-noise and high parallel data rate of the detectors involved. The general architecture of the controller, the front-end electronics to drive and read-out the detector along with the camera design are described here. This electronics is based on advanced Xilinx FPGAs.

  2. High-resolution Compton cameras based on Si/CdTe double-sided strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Odaka, Hirokazu, E-mail: odaka@astro.isas.jaxa.jp [Department of High Energy Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Ichinohe, Yuto [Department of High Energy Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Department of Physics, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033 (Japan); Takeda, Shin' ichiro [Department of High Energy Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Fukuyama, Taro; Hagino, Koichi; Saito, Shinya; Sato, Tamotsu [Department of High Energy Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Department of Physics, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033 (Japan); Sato, Goro; Watanabe, Shin; Kokubun, Motohide [Department of High Energy Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Takahashi, Tadayuki [Department of High Energy Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Department of Physics, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033 (Japan); Yamaguchi, Mitsutaka [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); and others

    2012-12-11

    We have developed a new Compton camera based on silicon (Si) and cadmium telluride (CdTe) semiconductor double-sided strip detectors (DSDs). The camera consists of a 500-{mu}m-thick Si-DSD and four layers of 750-{mu}m-thick CdTe-DSDs all of which have common electrode configuration segmented into 128 strips on each side with pitches of 250{mu}m. In order to realize high angular resolution and to reduce size of the detector system, a stack of DSDs with short stack pitches of 4 mm is utilized to make the camera. Taking advantage of the excellent energy and position resolutions of the semiconductor devices, the camera achieves high angular resolutions of 4.5 Degree-Sign at 356 keV and 3.5 Degree-Sign at 662 keV. To obtain such high resolutions together with an acceptable detection efficiency, we demonstrate data reduction methods including energy calibration using Compton scattering continuum and depth sensing in the CdTe-DSD. We also discuss imaging capability of the camera and show simultaneous multi-energy imaging.

  3. Dual-sided microstructured semiconductor neutron detectors (DSMSNDs)

    Energy Technology Data Exchange (ETDEWEB)

    Fronk, Ryan G., E-mail: rfronk@ksu.edu [Mechanical and Nuclear Engineering Department, Kansas State University, Manhattan, KS 66506, United States (United States); Bellinger, Steven L.; Henson, Luke C. [Radiation Detection Technologies, Inc., Manhattan, KS 66502 (United States); Ochs, Taylor R.; Smith, Colten T.; Kenneth Shultis, J.; McGregor, Douglas S. [Mechanical and Nuclear Engineering Department, Kansas State University, Manhattan, KS 66506, United States (United States)

    2015-12-21

    Microstructured semiconductor neutron detectors (MSNDs) have in recent years received much interest as high-efficiency replacements for thin-film-coated thermal neutron detectors. The basic device structure of the MSND involves micro-sized trenches that are etched into a vertically-oriented pvn-junction diode that are backfilled with a neutron converting material. Neutrons absorbed within the converting material induce fission of the parent nucleus, producing a pair of energetic charged-particle reaction products that can be counted by the diode. The MSND deep-etched microstructures produce good neutron-absorption and reaction-product counting efficiencies, offering a 10× improvement in intrinsic thermal neutron detection efficiency over thin-film-coated devices. Performance of present-day MSNDs are nearing theoretical limits; streaming paths between the conversion-material backfilled trenches, allow a considerable fraction of neutrons to pass undetected through the device. Dual-sided microstructured semiconductor neutron detectors (DSMSNDs) have been developed that utilize a complementary second set of trenches on the back-side of the device to count streaming neutrons. DSMSND devices are theoretically capable of greater than 80% intrinsic thermal neutron detection efficiency for a 1-mm thick device. The first such prototype DSMSNDs, presented here, have achieved 29.48±0.29% nearly 2× better than MSNDs with similar microstructure dimensions.

  4. Dual-sided microstructured semiconductor neutron detectors (DSMSNDs)

    Science.gov (United States)

    Fronk, Ryan G.; Bellinger, Steven L.; Henson, Luke C.; Ochs, Taylor R.; Smith, Colten T.; Kenneth Shultis, J.; McGregor, Douglas S.

    2015-12-01

    Microstructured semiconductor neutron detectors (MSNDs) have in recent years received much interest as high-efficiency replacements for thin-film-coated thermal neutron detectors. The basic device structure of the MSND involves micro-sized trenches that are etched into a vertically-oriented pvn-junction diode that are backfilled with a neutron converting material. Neutrons absorbed within the converting material induce fission of the parent nucleus, producing a pair of energetic charged-particle reaction products that can be counted by the diode. The MSND deep-etched microstructures produce good neutron-absorption and reaction-product counting efficiencies, offering a 10× improvement in intrinsic thermal neutron detection efficiency over thin-film-coated devices. Performance of present-day MSNDs are nearing theoretical limits; streaming paths between the conversion-material backfilled trenches, allow a considerable fraction of neutrons to pass undetected through the device. Dual-sided microstructured semiconductor neutron detectors (DSMSNDs) have been developed that utilize a complementary second set of trenches on the back-side of the device to count streaming neutrons. DSMSND devices are theoretically capable of greater than 80% intrinsic thermal neutron detection efficiency for a 1-mm thick device. The first such prototype DSMSNDs, presented here, have achieved 29.48±0.29% nearly 2× better than MSNDs with similar microstructure dimensions.

  5. Performance and Calibration of H2RG Detectors and SIDECAR ASICs for the RATIR Camera

    Science.gov (United States)

    Fox, Ori D.; Kutyrev, Alexander S.; Rapchun, David A.; Klein, Christopher R.; Butler, Nathaniel R.; Bloom, Josh; de Diego, Jos A.; Simn Farah, Alejandro D.; Gehrels, Neil A.; Georgiev, Leonid; Gonzlez-Hernandez, J. Jess; Lee, William H.; Loose, Markus; Lotkin, Gennadiy; Moseley, Samuel H.; Prochaska, J. Xavier; Ramirez-Ruiz, Enrico; Richer, Michael G.; Robinson, Frederick D.; Romn-Zuniga, Carols; Samuel, Mathew V.; Sparr, Leroy M.; Watson, Alan M.

    2012-01-01

    The Reionization And Transient Infra,.Red (RATIR) camera has been built for rapid Gamma,.Ray Burst (GRE) followup and will provide simultaneous optical and infrared photometric capabilities. The infrared portion of this camera incorporates two Teledyne HgCdTe HAWAII-2RG detectors, controlled by Teledyne's SIDECAR ASICs. While other ground-based systems have used the SIDECAR before, this system also utilizes Teledyne's JADE2 interface card and IDE development environment. Together, this setup comprises Teledyne's Development Kit, which is a bundled solution that can be efficiently integrated into future ground-based systems. In this presentation, we characterize the system's read noise, dark current, and conversion gain.

  6. Dual Tracking Method for Real Time Object Tracking using Moving Camera

    Directory of Open Access Journals (Sweden)

    Shyam Lal

    2013-04-01

    Full Text Available This study presents dual tracking method for real time object tracking using a moving camera. A real time object tracking using self aligning servo mechanism with webcam, dual tracking and effective localization of object is presented. The proposed dual tracking method works in two phases: In first phase tracking is done by joint color texture histogram with mean shift and in second phase tracking is done by servo setup. The proposed dual tracking method enjoys the benefit of double tracking feature, not only tracking but also to find out the coordinates of the tracking object which is of particular interest. The coordinates of a moving object enable us to estimates the real time location of the object which is helpful in surveillance and shooting purposes of suspected person in security area. The tracking of some specific objects in real life is of particular interest. Due to its enhanced automation the proposed dual tracking method can be applied in public security, surveillance, robotics and traffic control etc. The experimental results demonstrate that the proposed dual tracking method improves greatly the tracking area with accuracy and efficiency and also successfully find the coordinates of moving object.

  7. Monitoring of Heart and Breathing Rates Using Dual Cameras on a Smartphone.

    Science.gov (United States)

    Nam, Yunyoung; Kong, Youngsun; Reyes, Bersain; Reljin, Natasa; Chon, Ki H

    2016-01-01

    Some smartphones have the capability to process video streams from both the front- and rear-facing cameras simultaneously. This paper proposes a new monitoring method for simultaneous estimation of heart and breathing rates using dual cameras of a smartphone. The proposed approach estimates heart rates using a rear-facing camera, while at the same time breathing rates are estimated using a non-contact front-facing camera. For heart rate estimation, a simple application protocol is used to analyze the varying color signals of a fingertip placed in contact with the rear camera. The breathing rate is estimated from non-contact video recordings from both chest and abdominal motions. Reference breathing rates were measured by a respiration belt placed around the chest and abdomen of a subject; reference heart rates (HR) were determined using the standard electrocardiogram. An automated selection of either the chest or abdominal video signal was determined by choosing the signal with a greater autocorrelation value. The breathing rate was then determined by selecting the dominant peak in the power spectrum. To evaluate the performance of the proposed methods, data were collected from 11 healthy subjects. The breathing ranges spanned both low and high frequencies (6-60 breaths/min), and the results show that the average median errors from the reflectance imaging on the chest and the abdominal walls based on choosing the maximum spectral peak were 1.43% and 1.62%, respectively. Similarly, HR estimates were also found to be accurate.

  8. Performance evaluation of a two detector camera for real-time video.

    Science.gov (United States)

    Lochocki, Benjamin; Gambín-Regadera, Adrián; Artal, Pablo

    2016-12-20

    Single pixel imaging can be the preferred method over traditional 2D-array imaging in spectral ranges where conventional cameras are not available. However, when it comes to real-time video imaging, single pixel imaging cannot compete with the framerates of conventional cameras, especially when high-resolution images are desired. Here we evaluate the performance of an imaging approach using two detectors simultaneously. First, we present theoretical results on how low SNR affects final image quality followed by experimentally determined results. Obtained video framerates were doubled compared to state of the art systems, resulting in a framerate from 22 Hz for a 32×32 resolution to 0.75 Hz for a 128×128 resolution image. Additionally, the two detector imaging technique enables the acquisition of images with a resolution of 256×256 in less than 3 s.

  9. Algorithms of Coordinates Scintillations Calculation in the Gamma-Camera Detector

    Directory of Open Access Journals (Sweden)

    G.A. Polyakov

    2010-01-01

    Full Text Available The methods and algorithms of scintillation coordinates calculation in gamma-camera position-sensitive detector are considered in the paper. The results of numerical model experiments, which were carried out for clearing-up of relative operating speed of different coordinate calculation methods, are presented. The analysis of obtained results was carried out for determination of perspective for application algorithms and likelihood methods.

  10. A pixellated γ-camera based on CdTe detectors clinical interests and performances

    Science.gov (United States)

    Chambron, J.; Arntz, Y.; Eclancher, B.; Scheiber, Ch; Siffert, P.; Hage Hali, M.; Regal, R.; Kazandjian, A.; Prat, V.; Thomas, S.; Warren, S.; Matz, R.; Jahnke, A.; Karman, M.; Pszota, A.; Nemeth, L.

    2000-07-01

    A mobile gamma camera dedicated to nuclear cardiology, based on a 15 cm×15 cm detection matrix of 2304 CdTe detector elements, 2.83 mm×2.83 mm×2 mm, has been developed with a European Community support to academic and industrial research centres. The intrinsic properties of the semiconductor crystals - low-ionisation energy, high-energy resolution, high attenuation coefficient - are potentially attractive to improve the γ-camera performances. But their use as γ detectors for medical imaging at high resolution requires production of high-grade materials and large quantities of sophisticated read-out electronics. The decision was taken to use CdTe rather than CdZnTe, because the manufacturer (Eurorad, France) has a large experience for producing high-grade materials, with a good homogeneity and stability and whose transport properties, characterised by the mobility-lifetime product, are at least 5 times greater than that of CdZnTe. The detector matrix is divided in 9 square units, each unit is composed of 256 detectors shared in 16 modules. Each module consists in a thin ceramic plate holding a line of 16 detectors, in four groups of four for an easy replacement, and holding a special 16 channels integrated circuit designed by CLRC (UK). A detection and acquisition logic based on a DSP card and a PC has been programmed by Eurorad for spectral and counting acquisition modes. Collimators LEAP and LEHR from commercial design, mobile gantry and clinical software were provided by Siemens (Germany). The γ-camera head housing, its general mounting and the electric connections were performed by Phase Laboratory (CNRS, France). The compactness of the γ-camera head, thin detectors matrix, electronic readout and collimator, facilitates the detection of close γ sources with the advantage of a high spatial resolution. Such an equipment is intended to bedside explorations. There is a growing clinical requirement in nuclear cardiology to early assess the extent of an

  11. Evaluation of Compton gamma camera prototype based on pixelated CdTe detectors.

    Science.gov (United States)

    Calderón, Y; Chmeissani, M; Kolstein, M; De Lorenzo, G

    2014-06-01

    A proposed Compton camera prototype based on pixelated CdTe is simulated and evaluated in order to establish its feasibility and expected performance in real laboratory tests. The system is based on module units containing a 2×4 array of square CdTe detectors of 10×10 mm(2) area and 2 mm thickness. The detectors are pixelated and stacked forming a 3D detector with voxel sizes of 2 × 1 × 2 mm(3). The camera performance is simulated with Geant4-based Architecture for Medicine-Oriented Simulations(GAMOS) and the Origin Ensemble(OE) algorithm is used for the image reconstruction. The simulation shows that the camera can operate with up to 10(4) Bq source activities with equal efficiency and is completely saturated at 10(9) Bq. The efficiency of the system is evaluated using a simulated (18)F point source phantom in the center of the Field-of-View (FOV) achieving an intrinsic efficiency of 0.4 counts per second per kilobecquerel. The spatial resolution measured from the point spread function (PSF) shows a FWHM of 1.5 mm along the direction perpendicular to the scatterer, making it possible to distinguish two points at 3 mm separation with a peak-to-valley ratio of 8.

  12. Calculation of renal depth by conjugate-view method using dual-head gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Mi; Suh, Tae Suk; Choe, Bo Young; Chung, Yong An; Kim, Sung Hoon; Chung, Soo Kyo; Lee, Hyoung Koo [College of Medicine, The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2001-12-01

    In this study, we developed a new method for the determination of renal depth with anterior and posterior renal scintigrams in a dual-head gamma camera, considering the attenuation factor e{sup -{mu}}{sup x} of the conjugate-view method. We developed abdomen and kidney phantoms to perform experiments using Technetium-99m dimercaptosuccinic acid ({sup 99m}Tc-DMSA). The phantom images were obtained by dual-head gamma camera equipped with low-energy, high-resolution, parallel-hole collimators (ICONf, Siemens). The equation was derived from the linear integration of emission {gamma}-ray considering attenuation from the posterior abdomen to the anterior abdomen phantom surface. The program for measurement was developed by Microsoft Visual C++ 6.0. Renal depths of the phantoms were derived from the derived equations and compared with the exact geometrical values. Differences between the measured and the calculated values were the range of 0.1 to 0.7 cm (0.029{+-} 0.15 cm, mean {+-}S. D.). The present study showed that the use of the derived equations for renal depth measurement, combined with quantitative planar imaging using duel-head gamma camera, could provide more accurate results for individual variation than the conventional method.

  13. ANTS2 package: simulation and experimental data processing for Anger camera type detectors

    CERN Document Server

    Morozov, A; Martins, R; Neves, F; Domingos, V; Chepel, V

    2016-01-01

    ANTS2 is a simulation and data processing package developed for position sensitive detectors with Anger camera type readout. The simulation module of ANTS2 is based on ROOT package from CERN, which is used to store the detector geometry and to perform 3D navigation. The module is capable of simulating particle sources, performing particle tracking, generating photons of primary and secondary scintillation, tracing optical photons and generating photosensor signals. The reconstruction module features several position reconstruction methods based on the statistical reconstruction algorithms (including GPU-based implementations), artificial neural networks and k-NN searches. The module can process simulated as well as imported experimental data containing photosensor signals. A custom library for B-spline parameterization of spatial response of photosensors is implemented which can be used to calculate and parameterize the spatial response of a detector. The package includes a graphical user interface with an ex...

  14. Application of colon capsule endoscopy (CCE to evaluate the whole gastrointestinal tract: a comparative study of single-camera and dual-camera analysis

    Directory of Open Access Journals (Sweden)

    Remes-Troche JM

    2013-09-01

    Full Text Available José María Remes-Troche,1 Victoria Alejandra Jiménez-García,2 Josefa María García-Montes,2 Pedro Hergueta-Delgado,2 Federico Roesch-Dietlen,1 Juan Manuel Herrerías-Gutiérrez2 1Digestive Physiology and Motility Lab, Medical Biological Research Institute, Universidad Veracruzana, Veracruz, México; 2Gastroenterology Service, Virgen Macarena University Hospital, Seville, Spain Background and study aims: Colon capsule endoscopy (CCE was developed for the evaluation of colorectal pathology. In this study, our aim was to assess if a dual-camera analysis using CCE allows better evaluation of the whole gastrointestinal (GI tract compared to a single-camera analysis. Patients and methods: We included 21 patients (12 males, mean age 56.20 years submitted for a CCE examination. After standard colon preparation, the colon capsule endoscope (PillCam Colon™ was swallowed after reinitiation from its “sleep” mode. Four physicians performed the analysis: two reviewed both video streams at the same time (dual-camera analysis; one analyzed images from one side of the device (“camera 1”; and the other reviewed the opposite side (“camera 2”. We compared numbers of findings from different parts of the entire GI tract and level of agreement among reviewers. Results: A complete evaluation of the GI tract was possible in all patients. Dual-camera analysis provided 16% and 5% more findings compared to camera 1 and camera 2 analysis, respectively. Overall agreement was 62.7% (kappa = 0.44, 95% CI: 0.373–0.510. Esophageal (kappa = 0.611 and colorectal (kappa = 0.595 findings had a good level of agreement, while small bowel (kappa = 0.405 showed moderate agreement. Conclusion: The use of dual-camera analysis with CCE for the evaluation of the GI tract is feasible and detects more abnormalities when compared with single-camera analysis. Keywords: capsule endoscopy, colon, gastrointestinal tract, small bowel

  15. A pixellated gamma-camera based on CdTe detectors clinical interests and performances

    CERN Document Server

    Chambron, J; Eclancher, B; Scheiber, C; Siffert, P; Hage-Ali, M; Regal, R; Kazandjian, A; Prat, V; Thomas, S; Warren, S; Matz, R; Jahnke, A; Karman, M; Pszota, A; Németh, L

    2000-01-01

    A mobile gamma camera dedicated to nuclear cardiology, based on a 15 cmx15 cm detection matrix of 2304 CdTe detector elements, 2.83 mmx2.83 mmx2 mm, has been developed with a European Community support to academic and industrial research centres. The intrinsic properties of the semiconductor crystals - low-ionisation energy, high-energy resolution, high attenuation coefficient - are potentially attractive to improve the gamma-camera performances. But their use as gamma detectors for medical imaging at high resolution requires production of high-grade materials and large quantities of sophisticated read-out electronics. The decision was taken to use CdTe rather than CdZnTe, because the manufacturer (Eurorad, France) has a large experience for producing high-grade materials, with a good homogeneity and stability and whose transport properties, characterised by the mobility-lifetime product, are at least 5 times greater than that of CdZnTe. The detector matrix is divided in 9 square units, each unit is composed ...

  16. SWIR Geiger-mode APD detectors and cameras for 3D imaging

    Science.gov (United States)

    Itzler, Mark A.; Entwistle, Mark; Krishnamachari, Uppili; Owens, Mark; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir

    2014-06-01

    The operation of avalanche photodiodes in Geiger mode by arming these detectors above their breakdown voltage provides high-performance single photon detection in a robust solid-state device platform. Moreover, these devices are ideally suited for integration into large format focal plane arrays enabling single photon imaging. We describe the design and performance of short-wave infrared 3D imaging cameras with focal plane arrays (FPAs) based on Geigermode avalanche photodiodes (GmAPDs) with single photon sensitivity for laser radar imaging applications. The FPA pixels incorporate InP/InGaAs(P) GmAPDs for the detection of single photons with high efficiency and low dark count rates. We present results and attributes of fully integrated camera sub-systems with 32 × 32 and 128 × 32 formats, which have 100 μm pitch and 50 μm pitch, respectively. We also address the sensitivity of the fundamental GmAPD detectors to radiation exposure, including recent results that correlate detector active region volume to sustainable radiation tolerance levels.

  17. A passive terahertz video camera based on lumped element kinetic inductance detectors.

    Science.gov (United States)

    Rowe, Sam; Pascale, Enzo; Doyle, Simon; Dunscombe, Chris; Hargrave, Peter; Papageorgio, Andreas; Wood, Ken; Ade, Peter A R; Barry, Peter; Bideaud, Aurélien; Brien, Tom; Dodd, Chris; Grainger, William; House, Julian; Mauskopf, Philip; Moseley, Paul; Spencer, Locke; Sudiwala, Rashmi; Tucker, Carole; Walker, Ian

    2016-03-01

    We have developed a passive 350 GHz (850 μm) video-camera to demonstrate lumped element kinetic inductance detectors (LEKIDs)--designed originally for far-infrared astronomy--as an option for general purpose terrestrial terahertz imaging applications. The camera currently operates at a quasi-video frame rate of 2 Hz with a noise equivalent temperature difference per frame of ∼0.1 K, which is close to the background limit. The 152 element superconducting LEKID array is fabricated from a simple 40 nm aluminum film on a silicon dielectric substrate and is read out through a single microwave feedline with a cryogenic low noise amplifier and room temperature frequency domain multiplexing electronics.

  18. Testing and assembly of the detectors for the Millimeter Bolometer Array Camera on ACT

    Science.gov (United States)

    Marriage, T. A.; Chervenak, J. A.; Doriese, W. B.

    2006-04-01

    The Millimeter Bolometer Array Camera (MBAC) for the Atacama Cosmology Telescope consists of three Transition Edge Sensor (TES) arrays to make simultaneous observations of the Cosmic Microwave Background in three frequency bands. MBAC TESs are NASA Goddard Pop-Up Detectors (PUD) which are read-out by NIST time-domain multiplexers. MBAC is constructed by stacking 1×32 TES columns to form the 32×32 element arrays. The arrays are modular (connectorized) at the 1×32 column level such that array assembly is reversible and camera repair possible. Prior to assembly, each column is tested in a quick (2h) cycling 4He/3He adsorption refrigerator. Tests include measurements of TES current voltage curves and TES complex impedance.

  19. A passive THz video camera based on lumped element kinetic inductance detectors

    CERN Document Server

    Rowe, Sam; Doyle, Simon; Dunscombe, Chris; Hargrave, Peter; Papageorgio, Andreas; Wood, Ken; Ade, Peter A R; Barry, Peter; Bideaud, Aurélien; Brien, Tom; Dodd, Chris; Grainger, William; House, Julian; Mauskopf, Philip; Moseley, Paul; Spencer, Locke; Sudiwala, Rashmi; Tucker, Carole; Walker, Ian

    2015-01-01

    We have developed a passive 350 GHz (850 {\\mu}m) video-camera to demonstrate lumped element kinetic inductance detectors (LEKIDs) -- designed originally for far-infrared astronomy -- as an option for general purpose terrestrial terahertz imaging applications. The camera currently operates at a quasi-video frame rate of 2 Hz with a noise equivalent temperature difference per frame of $\\sim$0.1 K, which is close to the background limit. The 152 element superconducting LEKID array is fabricated from a simple 40 nm aluminum film on a silicon dielectric substrate and is read out through a single microwave feedline with a cryogenic low noise amplifier and room temperature frequency domain multiplexing electronics.

  20. Development of a low noise integrated readout electronic for pixel detectors in CMOS technology for a Compton camera

    OpenAIRE

    Hausmann, Joachim

    2006-01-01

    Semiconductor detectors are very popular, particularly for their good energy resolution and their easy handling. Combined with a two dimensional spatial resolution such a detector is predestined to realise an active collimation in a Compton camera for medical applications. To measure the deposited energy in each channel (pixel), a self-triggering integrated electronic has been developed, which is directly bonded on top of the detector. The design of the low noise readout ele...

  1. Development Of A Multicolor Sub/millimeter Camera Using Microwave Kinetic Inductance Detectors

    Science.gov (United States)

    Schlaerth, James A.; Czakon, N. G.; Day, P. K.; Downes, T. P.; Duan, R.; Glenn, J.; Golwala, S. R.; Hollister, M. I.; LeDuc, H. G.; Maloney, P. R.; Mazin, B. A.; Noroozian, O.; Sayers, J.; Siegel, S.; Vayonakis, A.; Zmuidzinas, J.

    2011-01-01

    Microwave Kinetic Inductance Detectors (MKIDs) are superconducting resonators useful for detecting light from the millimeter-wave to the X-ray. These detectors are easily multiplexed, as the resonances can be tuned to slightly different frequencies, allowing hundreds of detectors to be read out simultaneously using a single feedline. The Multicolor Submillimeter Inductance Camera, MUSIC, will use 2304 antenna-coupled MKIDs in multicolor operation, with bands centered at wavelengths of 0.85, 1.1, 1.3 and 2.0 mm, beginning in 2011. Here we present the results of our demonstration instrument, DemoCam, containing a single 3-color array with 72 detectors and optics similar to MUSIC. We present sensitivities achieved at the telescope, and compare to those expected based upon laboratory tests. We explore the factors that limit the sensitivity, in particular electronics noise, antenna efficiency, and excess loading. We discuss mitigation of these factors, and how we plan to improve sensitivity to the level of background-limited performance for the scientific operation of MUSIC. Finally, we note the expected mapping speed and contributions of MUSIC to astrophysics, and in particular to the study of submillimeter galaxies. This research has been funded by grants from the National Science Foundation, the Gordon and Betty Moore Foundation, and the NASA Graduate Student Researchers Program.

  2. ANTS2 package: simulation and experimental data processing for Anger camera type detectors

    Science.gov (United States)

    Morozov, A.; Solovov, V.; Martins, R.; Neves, F.; Domingos, V.; Chepel, V.

    2016-04-01

    ANTS2 is a simulation and data processing package developed for position sensitive detectors with Anger camera type readout. The simulation module of ANTS2 is based on ROOT package from CERN, which is used to store the detector geometry and to perform 3D navigation. The module is capable of simulating particle sources, performing particle tracking, generating photons of primary and secondary scintillation, tracing optical photons and generating photosensor signals. The reconstruction module features several position reconstruction methods based on the statistical reconstruction algorithms (including GPU-based implementations), artificial neural networks and k-NN searches. The module can process simulated as well as imported experimental data containing photosensor signals. A custom library for B-spline parameterization of spatial response of photosensors is implemented which can be used to calculate and parameterize the spatial response of a detector. The package includes a graphical user interface with an extensive set of configuration, visualization and analysis tools. ANTS2 is being developed with the focus on the iterative (adaptive) reconstruction of the detector response using flood field irradiation data. The package is implemented in C++ programming language and it is a multiplatform, open source project.

  3. Characterization of Compton camera LaBr{sub 3} absorber detector

    Energy Technology Data Exchange (ETDEWEB)

    Marinsek, T.; Liprandi, S.; Bortfeldt, J.; Lang, C.; Lutter, R.; Dedes, G.; Parodi, K.; Thirolf, P.G. [LMU Munich, Garching (Germany); Aldawood, S. [LMU Munich, Garching (Germany); King Saud University, Riyadh (Saudi Arabia); Maier, L.; Gernhaeuser, R. [TU Munich, Garching (Germany); Kolff, H. van der [LMU Munich, Garching (Germany); TU Delft (Netherlands); Castelhano, I. [LMU Munich, Garching (Germany); University of Lisbon, Lisbon (Portugal); Schaart, D.R. [TU Delft (Netherlands)

    2015-07-01

    Detection of prompt γ rays from nuclear interactions between a particle beam and organic tissue using a Compton camera to determine the Bragg peak position is a promising way of ion-beam range verification in hadron therapy. The Compton camera consists of a stack of six double-sided Si-strip detectors acting as scatterers, while the other essential part - the absorber - is made of a LaBr{sub 3} monolithic scintillator crystal (50 x 50 x 30 mm{sup 3}) with reflective side-surface wrapping, offering excellent time and energy resolution. Scintillation light induced in the crystal is detected by a 256-fold segmented multi-anode PMT. Prerequisite to reconstruct the γ source position is the determination of the photon interaction position in the crystal by applying ''k-nearest neighbors'' algorithm (van Dam et al., Nuclear Science (2011)) using the reference library of light distributions, obtained by performing a 2D scan of the detector using a strong collimated {sup 137}Cs source. The status of the spatial resolution characterization is presented.

  4. Computed tomography with single-shot dual-energy sandwich detectors

    Science.gov (United States)

    Kim, Seung Ho; Youn, Hanbean; Kim, Daecheon; Kim, Dong Woon; Jeon, Hosang; Kim, Ho Kyung

    2016-03-01

    Single-shot dual-energy sandwich detector can produce sharp images because of subtraction of images from two sub-detector layers, which have different thick x-ray converters, of the sandwich detector. Inspired by this observation, the authors have developed a microtomography system with the sandwich detector in pursuit of high-resolution bone-enhanced small-animal imaging. The preliminary results show that the bone-enhanced images reconstructed with the subtracted projection data are better in visibility of bone details than the conventionally reconstructed images. In addition, the bone-enhanced images obtained from the sandwich detector are relatively immune to the artifacts caused by photon starvation. The microtomography with the single-shot dual-energy sandwich detector will be useful for the high-resolution bone imaging.

  5. Laser Timing Jitter Measurements using a Dual-Sweep Streak Camera at the A0 Photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, J.; Lumpkin, A.H.; Santucci, J.K.; /Fermilab

    2009-04-30

    Excellent phase stability of the drive laser is a critical performance specification of photoinjectors such as Fermilab's A0 photoinjector (A0PI). Previous efforts based on the measurement of the power spectrum of the signal of a fast photodiode illuminated by the mode locked infrared laser pulse component indicated a phase jitter of less than 1.4 ps (technique limited). A recently procured dual sweep plugin unit and existing Hamamatsu C5680 streak camera were used to study the phase stability of the UV laser pulse component. Initial measurements with the synchroscan vertical sweep unit locked to 81.25 MHz showed that the phase slew through the micropulse train and the phase jitter micropulse to micropulse were two key aspects that could be evaluated. The phase slew was much less than 100 fs per micropulse, and the total phase jitter (camera, trigger, and laser) was approximately 300 fs RMS for measurements of 50-micropulse trains. Data on the macropulse phase stability were also obtained. A possible upgrade to achieve better phase stability will be also discussed.

  6. Quantification of atmospheric visibility with dual digital cameras during daytime and nighttime

    Science.gov (United States)

    Du, K.; Wang, K.; Shi, P.; Wang, Y.

    2013-08-01

    A digital optical method "DOM-Vis" was developed to measure atmospheric visibility. In this method, two digital pictures were taken of the same target at two different distances along the same straight line. The pictures were analyzed to determine the optical contrasts between the target and its sky background and, subsequently, visibility is calculated. A light transfer scheme for DOM-Vis was delineated, based upon which algorithms were developed for both daytime and nighttime scenarios. A series of field tests were carried out under different weather and meteorological conditions to study the impacts of such operational parameters as exposure, optical zoom, distance between the two camera locations, and distance of the target. This method was validated by comparing the DOM-Vis results with those measured using a co-located Vaisala® visibility meter. The visibility under which this study was carried out ranged from 1 to 20 km. This digital-photography-based method possesses a number of advantages compared with traditional methods. Pre-calibration of the detector with a visibility meter is not required. In addition, the application of DOM-Vis is independent of several factors like the exact distance of the target and several camera setting parameters. These features make DOM-Vis more adaptive under a variety of field conditions.

  7. Quantification of atmospheric visibility with dual digital cameras during daytime and nighttime

    Directory of Open Access Journals (Sweden)

    K. Du

    2013-01-01

    Full Text Available A digital optical method "DOM-Vis" was developed to measure atmospheric visibility. In this method, two digital pictures were taken of the same target at two different distances along the same straight line. The pictures were analyzed to determine the optical contrasts between the target and its sky background, and subsequently, visibility is calculated. A light transfer scheme for DOM-Vis was delineated, based upon which, algorithms were developed for both daytime and nighttime scenarios. A series of field tests were carried out under different weather and meteorological conditions to study the impacts of such operational parameters as exposure, optical zoom, distance between the two camera locations, and distance of the target. This method was validated by comparing the DOM-Vis results with those measured using a co-located Vaisala® visibility meter. The visibility under which this study was carried out ranged from to 1 km to 20 km. This digital photography based method possesses a number of advantages compared with traditional methods. Pre-calibration of the detector with a visibility meter is not required. In addition, the application of DOM-Vis is independent of several factors like the exact distance of the target and several camera setting parameters. These features make DOM-Vis more adaptive under a variety of field conditions.

  8. Quantification of atmospheric visibility with dual digital cameras during daytime and nighttime

    Directory of Open Access Journals (Sweden)

    K. Du

    2013-08-01

    Full Text Available A digital optical method "DOM-Vis" was developed to measure atmospheric visibility. In this method, two digital pictures were taken of the same target at two different distances along the same straight line. The pictures were analyzed to determine the optical contrasts between the target and its sky background and, subsequently, visibility is calculated. A light transfer scheme for DOM-Vis was delineated, based upon which algorithms were developed for both daytime and nighttime scenarios. A series of field tests were carried out under different weather and meteorological conditions to study the impacts of such operational parameters as exposure, optical zoom, distance between the two camera locations, and distance of the target. This method was validated by comparing the DOM-Vis results with those measured using a co-located Vaisala® visibility meter. The visibility under which this study was carried out ranged from 1 to 20 km. This digital-photography-based method possesses a number of advantages compared with traditional methods. Pre-calibration of the detector with a visibility meter is not required. In addition, the application of DOM-Vis is independent of several factors like the exact distance of the target and several camera setting parameters. These features make DOM-Vis more adaptive under a variety of field conditions.

  9. Optimal configuration of a low-dose breast-specific gamma camera based on semiconductor CdZnTe pixelated detectors

    Science.gov (United States)

    Genocchi, B.; Pickford Scienti, O.; Darambara, DG

    2017-05-01

    Breast cancer is one of the most frequent tumours in women. During the ‘90s, the introduction of screening programmes allowed the detection of cancer before the palpable stage, reducing its mortality up to 50%. About 50% of the women aged between 30 and 50 years present dense breast parenchyma. This percentage decreases to 30% for women between 50 to 80 years. In these women, mammography has a sensitivity of around 30%, and small tumours are covered by the dense parenchyma and missed in the mammogram. Interestingly, breast-specific gamma-cameras based on semiconductor CdZnTe detectors have shown to be of great interest to early diagnosis. Infact, due to the high energy, spatial resolution, and high sensitivity of CdZnTe, molecular breast imaging has been shown to have a sensitivity of about 90% independently of the breast parenchyma. The aim of this work is to determine the optimal combination of the detector pixel size, hole shape, and collimator material in a low dose dual head breast specific gamma camera based on a CdZnTe pixelated detector at 140 keV, in order to achieve high count rate, and the best possible image spatial resolution. The optimal combination has been studied by modeling the system using the Monte Carlo code GATE. Six different pixel sizes from 0.85 mm to 1.6 mm, two hole shapes, hexagonal and square, and two different collimator materials, lead and tungsten were considered. It was demonstrated that the camera achieved higher count rates, and better signal-to-noise ratio when equipped with square hole, and large pixels (> 1.3 mm). In these configurations, the spatial resolution was worse than using small pixel sizes (< 1.3 mm), but remained under 3.6 mm in all cases.

  10. Tests of a new CCD-camera based neutron radiography detector system at the reactor stations in Munich and Vienna

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E.; Pleinert, H. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Schillinger, B. [Technische Univ. Muenchen (Germany); Koerner, S. [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria)

    1997-09-01

    The performance of the new neutron radiography detector designed at PSI with a cooled high sensitive CCD-camera was investigated under real neutronic conditions at three beam ports of two reactor stations. Different converter screens were applied for which the sensitivity and the modulation transfer function (MTF) could be obtained. The results are very encouraging concerning the utilization of this detector system as standard tool at the radiography stations at the spallation source SINQ. (author) 3 figs., 5 refs.

  11. Wire transfer function analysis for castellated dual-energy x-ray detectors.

    Science.gov (United States)

    Chan, Jer Wang; Evans, James Paul Owain; Yong, Yen San; Monteith, Andrew

    2004-12-10

    An investigation into the spatial resolving power of a castellated linear dual-energy x-ray detector array is reported. The detector was developed for use in aviation security screening applications. Experiments employing different gauges of lead wire are used to plot a wire transfer function. A numerical simulation is developed to predict and underpin the empirical results. The suitable processing of the castellated detector signals helps to maintain spatial resolving power while affording a 50% reduction in x-ray sensing elements. This encouraging result has formed the basis for an ongoing investigation into materials discrimination capability of the castellated detector array.

  12. A new design for a high resolution, high efficiency CZT gamma camera detector

    Science.gov (United States)

    Mestais, C.; Baffert, N.; Bonnefoy, J. P.; Chapuis, A.; Koenig, A.; Monnet, O.; Ouvrier Buffet, P.; Rostaing, J. P.; Sauvage, F.; Verger, L.

    2001-02-01

    We have designed a CZT gamma camera detector that provides an array of CZT pixels and associated front-end electronics - including an ASIC - and permits gamma camera measurements using the method patented by CEA-LETI and reported by Verger et al. [1]. Electron response in each CZT pixel is registered by correcting pulse height for position of interaction based on fast rise-time information. This method brings advantages of high scatter rejection while allowing high detection efficiency. These techniques and the systems approach have been developed at CEA-LETI in an exclusive joint development with BICRON and CRISMATEC who in turn are commercializing the technology. The initial system is implemented in an array framework with 1920 pixels, approximately 180×215 mm 2 in dimension, but the system architecture expands readily to 4096 pixels, and these arrays can be ganged into groups of up to 8 for pixel planes totaling over 32 000 pixels without architecture changes. The overall system design is described and brain phantom images are presented that were obtained by scanning with a small number of pixels.

  13. CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging.

    Science.gov (United States)

    Boppel, Sebastian; Lisauskas, Alvydas; Max, Alexander; Krozer, Viktor; Roskos, Hartmut G

    2012-02-15

    We demonstrate the principle applicability of antenna-coupled complementary metal oxide semiconductor (CMOS) field-effect transistor arrays as cameras for real-time coherent imaging at 591.4 GHz. By scanning a few detectors across the image plane, we synthesize a focal-plane array of 100×100 pixels with an active area of 20×20 mm2, which is applied to imaging in transmission and reflection geometries. Individual detector pixels exhibit a voltage conversion loss of 24 dB and a noise figure of 41 dB for 16 μW of the local oscillator (LO) drive. For object illumination, we use a radio-frequency (RF) source with 432 μW at 590 GHz. Coherent detection is realized by quasioptical superposition of the image and the LO beam with 247 μW. At an effective frame rate of 17 Hz, we achieve a maximum dynamic range of 30 dB in the center of the image and more than 20 dB within a disk of 18 mm diameter. The system has been used for surface reconstruction resolving a height difference in the μm range.

  14. Noise performance of the multiwavelength sub/millimeter inductance camera (MUSIC) detectors

    Science.gov (United States)

    Siegel, S. R.

    2015-07-01

    MUSIC is a multi-band imaging camera that employs 2304 Microwave Kinetic Inductance Detectors (MKIDs) in 576 spatial pixels to cover a 14 arc-minute field of view, with each pixel simultaneously sensitive to 4 bands centered at 0.87, 1.04, 1.33, and 1.98 mm. In April 2012 the MUSIC instrument was commissioned at the Caltech Submillimeter Observatory with a subset of the full focal plane. We examine the noise present in the detector timestreams during observations taken in the first year of operation. We find that fluctuations in atmospheric emission dominate at long timescales (< 0.5 Hz), and fluctuations in the amplitude and phase of the probe signal due to readout electronics contribute significant 1/f-type noise at shorter timescales. We describe a method to remove the amplitude, phase, and atmospheric noise using the fact that they are correlated among carrier tones. After removal, the complex signal is decomposed, or projected, into dissipation and frequency components. White noise from the cryogenic HEMT amplifier dominates in the dissipation component. An excess noise is observed in the frequency component that is likely due to fluctuations in two-level system (TLS) defects in the device substrate. We compare the amplitude of the TLS noise with previous measurements.

  15. A 90GHz Bolometer Camera Detector System for the Green Bank Telescope

    Science.gov (United States)

    Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest D.; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.

    2004-01-01

    We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3mm) for the 100 m Green Bank Telescope (GBT) This system will provide high sensitivity (<1mjy in 1s rapid imaging (15'x15' to 250 microJy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close packed, Nyquist-sampled array of superconducting transition edge sensor bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approx. 2.10(exp 17) W/square root Hz, the TES bolometers will provide fast linear sensitive response for high performance imaging. The detectors are read out by and 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.

  16. Real-time breath-hold triggering of myocardial perfusion imaging with a novel cadmium-zinc-telluride detector gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Buechel, Ronny R.; Pazhenkottil, Aju P.; Herzog, Bernhard A.; Husmann, Lars; Nkoulou, Rene N.; Burger, Irene A.; Valenta, Ines; Wyss, Christophe A.; Ghadri, Jelena R. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); University of Zurich, Zurich Center for Integrative Human Physiology (ZIHP), Zurich (Switzerland)

    2010-10-15

    The aim of this study was to assess the ability of real-time breath-hold-triggered myocardial perfusion imaging (MPI) using a novel cadmium-zinc-telluride (CZT) gamma camera to discriminate artefacts from true perfusion defects. A group of 40 patients underwent a 1-day {sup 99m}Tc-tetrofosmin pharmacological stress/rest imaging protocol on a conventional dual detector SPECT gamma camera with and without attenuation correction (AC), immediately followed by scanning on an ultrafast CZT camera with and without real-time breath-hold triggering (instead of AC) by intermittent scanning confined to breath-hold at deep inspiration (using list mode acquisition). We studied the use of breath-hold triggering on the CZT camera and its ability to discriminate artefacts from true perfusion defects using AC SPECT MPI as the reference standard. Myocardial tracer uptake (percent of maximum) from CZT was compared to AC SPECT MPI by intraclass correlation and by calculating Bland-Altman limits of agreement. AC of SPECT MPI identified 19 apparent perfusion defects as artefacts. Of these, 13 were correctly identified and 4 were partially unmasked (decrease in extent and/or severity) by breath-hold triggering of the CZT scan. All perfusion defects verified by SPECT MPI with AC were appropriately documented by CZT with and without breath-hold triggering. This was supported by the quantitative analysis, as the correlation (r) of myocardial tracer uptake between CZT and AC SPECT improved significantly from 0.81 to 0.90 (p<0.001) when applying breath-hold triggering. Similarly, Bland-Altman limits of agreement were narrower for CZT scans with breath-hold triggering. This novel CZT camera allows real-time breath-hold triggering as a potential alternative to AC to assist in the discrimination of artefacts from true perfusion defects. (orig.)

  17. Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers

    Science.gov (United States)

    Keen, S.; Leach, J.; Gibson, G.; Padgett, M. J.

    2007-08-01

    We compare the performance of a high-speed camera and a quadrant detector for measuring the displacement of micron-sized particles in optical tweezers. For trapping powers up to 100 mW, the standard deviation of the particle displacements measured by the two techniques shows excellent agreement. This comparison also provides a method for calibrating one technique against the other.

  18. Intraoperative implant rod three-dimensional geometry measured by dual camera system during scoliosis surgery.

    Science.gov (United States)

    Salmingo, Remel Alingalan; Tadano, Shigeru; Abe, Yuichiro; Ito, Manabu

    2016-05-12

    Treatment for severe scoliosis is usually attained when the scoliotic spine is deformed and fixed by implant rods. Investigation of the intraoperative changes of implant rod shape in three-dimensions is necessary to understand the biomechanics of scoliosis correction, establish consensus of the treatment, and achieve the optimal outcome. The objective of this study was to measure the intraoperative three-dimensional geometry and deformation of implant rod during scoliosis corrective surgery.A pair of images was obtained intraoperatively by the dual camera system before rotation and after rotation of rods during scoliosis surgery. The three-dimensional implant rod geometry before implantation was measured directly by the surgeon and after surgery using a CT scanner. The images of rods were reconstructed in three-dimensions using quintic polynomial functions. The implant rod deformation was evaluated using the angle between the two three-dimensional tangent vectors measured at the ends of the implant rod.The implant rods at the concave side were significantly deformed during surgery. The highest rod deformation was found after the rotation of rods. The implant curvature regained after the surgical treatment.Careful intraoperative rod maneuver is important to achieve a safe clinical outcome because the intraoperative forces could be higher than the postoperative forces. Continuous scoliosis correction was observed as indicated by the regain of the implant rod curvature after surgery.

  19. Adaptive Nonlocal Sparse Representation for Dual-Camera Compressive Hyperspectral Imaging.

    Science.gov (United States)

    Wang, Lizhi; Xiong, Zhiwei; Shi, Guangming; Wu, Feng; Zeng, Wenjun

    2016-10-25

    Leveraging the compressive sensing (CS) theory, coded aperture snapshot spectral imaging (CASSI) provides an efficient solution to recover 3D hyperspectral data from a 2D measurement. The dual-camera design of CASSI, by adding an uncoded panchromatic measurement, enhances the reconstruction fidelity while maintaining the snapshot advantage. In this paper, we propose an adaptive nonlocal sparse representation (ANSR) model to boost the performance of dualcamera compressive hyperspectral imaging (DCCHI). Specifically, the CS reconstruction problem is formulated as a 3D cube based sparse representation to make full use of the nonlocal similarity in both the spatial and spectral domains. Our key observation is that, the panchromatic image, besides playing the role of direct measurement, can be further exploited to help the nonlocal similarity estimation. Therefore, we design a joint similarity metric by adaptively combining the internal similarity within the reconstructed hyperspectral image and the external similarity within the panchromatic image. In this way, the fidelity of CS reconstruction is greatly enhanced. Both simulation and hardware experimental results show significant improvement of the proposed method over the state-of-the-art.

  20. The Si/CdTe semiconductor Compton camera of the ASTRO-H Soft Gamma-ray Detector (SGD)

    CERN Document Server

    Watanabe, Shin; Fukazawa, Yasushi; Ichinohe, Yuto; Takeda, Shin'ichiro; Enoto, Teruaki; Fukuyama, Taro; Furui, Shunya; Genba, Kei; Hagino, Kouichi; Harayama, Astushi; Kuroda, Yoshikatsu; Matsuura, Daisuke; Nakamura, Ryo; Nakazawa, Kazuhiro; Noda, Hirofumi; Odaka, Hirokazu; Ohta, Masayuki; Onishi, Mitsunobu; Saito, Shinya; Sato, Goro; Sato, Tamotsu; Takahashi, Tadayuki; Tanaka, Takaaki; Togo, Atsushi; Tomizuka, Shinji

    2015-01-01

    The Soft Gamma-ray Detector (SGD) is one of the instrument payloads onboard ASTRO-H, and will cover a wide energy band (60--600 keV) at a background level 10 times better than instruments currently in orbit. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and cadmium telluride (CdTe) sensors. The design of the SGD Compton camera has been finalized and the final prototype, which has the same configuration as the flight model, has been fabricated for performance evaluation. The Compton camera has overall dimensions of 12 cm x 12 cm x 12 cm, consisting of 32 layers of Si pixel sensors and 8 layers of CdTe pixel sensors surrounded by 2 layers of CdTe pixel sensors. The detection efficiency of the Compton camera reaches about 15% and 3% for 100 keV and 511 keV gamma rays, respectively. The pixel pitch of the Si and CdTe sensors is 3.2 mm, and ...

  1. Imaging system for cardiac planar imaging using a dedicated dual-head gamma camera

    Science.gov (United States)

    Majewski, Stanislaw; Umeno, Marc M.

    2011-09-13

    A cardiac imaging system employing dual gamma imaging heads co-registered with one another to provide two dynamic simultaneous views of the heart sector of a patient torso. A first gamma imaging head is positioned in a first orientation with respect to the heart sector and a second gamma imaging head is positioned in a second orientation with respect to the heart sector. An adjustment arrangement is capable of adjusting the distance between the separate imaging heads and the angle between the heads. With the angle between the imaging heads set to 180 degrees and operating in a range of 140-159 keV and at a rate of up to 500kHz, the imaging heads are co-registered to produce simultaneous dynamic recording of two stereotactic views of the heart. The use of co-registered imaging heads maximizes the uniformity of detection sensitivity of blood flow in and around the heart over the whole heart volume and minimizes radiation absorption effects. A normalization/image fusion technique is implemented pixel-by-corresponding pixel to increase signal for any cardiac region viewed in two images obtained from the two opposed detector heads for the same time bin. The imaging system is capable of producing enhanced first pass studies, bloodpool studies including planar, gated and non-gated EKG studies, planar EKG perfusion studies, and planar hot spot imaging.

  2. Dual-camera system for high-speed imaging in particle image velocimetry

    CERN Document Server

    Hashimoto, K; Hara, T; Onogi, S; Mouri, H

    2012-01-01

    Particle image velocimetry is an important technique in experimental fluid mechanics, for which it has been essential to use a specialized high-speed camera. However, the high speed is at the expense of other performances of the camera, i.e., sensitivity and image resolution. Here, we demonstrate that the high-speed imaging is also possible with a pair of still cameras.

  3. Development of Strained-Layer Superlattice (SLS) IR Detector Camera Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Strained Layer Superlattice (SLS) detectors are a new class of detectors.   In our FY12 IRAD “Strained Layer Superlattice Infrared Detector Array...

  4. Positron emission mammography with tomographic acquisition using dual planar detectors: initial evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Mark F Smith; Raymond R Raylman; Stan Majewski; Andrew G Weisenberger

    2004-05-01

    Positron emission mammography (PEM) with tomographic acquisition using dual planar detectors rotating about the breast can obtain complete angular sampling and has the potential to improve activity estimation compared with PEM using stationary detectors. PEM tomography (PEMT) was compared with stationary PEM for point source and compressed breast phantom studies performed with a compact dual detector system. The acquisition geometries were appropriate for the target application of PEM guidance of stereotactic core biopsy. Images were reconstructed with a three-dimensional iterative maximum likelihood expectation maximization algorithm. PEMT eliminated blurring normal to the detectors seen with stationary PEM. Depth of interaction effects distorted the shape of the point spread functions for PEMT as the angular range from normal incidence of lines of response used in image reconstruction increased. Streak artifacts in PEMT for large detector rotation increments led to the development of an expression for the maximum rotation increment that maintains complete angular sampling. Studies with a compressed breast phantom were used to investigate contrast and signal-to-noise ratio (SNR) trade-offs for different sized spherical tumor models. PEMT and PEM both had advantages depending on lesion size and detector separation. The most appropriate acquisition method for specific detection or quantitation tasks requires additional investigation.

  5. SU-D-BRC-07: System Design for a 3D Volumetric Scintillation Detector Using SCMOS Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Darne, C; Robertson, D; Alsanea, F; Beddar, S [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: The purpose of this project is to build a volumetric scintillation detector for quantitative imaging of 3D dose distributions of proton beams accurately in near real-time. Methods: The liquid scintillator (LS) detector consists of a transparent acrylic tank (20×20×20 cm{sup 3}) filled with a liquid scintillator that when irradiated with protons generates scintillation light. To track rapid spatial and dose variations in spot scanning proton beams we used three scientific-complementary metal-oxide semiconductor (sCMOS) imagers (2560×2160 pixels). The cameras collect optical signal from three orthogonal projections. To reduce system footprint two mirrors oriented at 45° to the tank surfaces redirect scintillation light to cameras for capturing top and right views. Selection of fixed focal length objective lenses for these cameras was based on their ability to provide large depth of field (DoF) and required field of view (FoV). Multiple cross-hairs imprinted on the tank surfaces allow for image corrections arising from camera perspective and refraction. Results: We determined that by setting sCMOS to 16-bit dynamic range, truncating its FoV (1100×1100 pixels) to image the entire volume of the LS detector, and using 5.6 msec integration time imaging rate can be ramped up to 88 frames per second (fps). 20 mm focal length lens provides a 20 cm imaging DoF and 0.24 mm/pixel resolution. Master-slave camera configuration enable the slaves to initiate image acquisition instantly (within 2 µsec) after receiving a trigger signal. A computer with 128 GB RAM was used for spooling images from the cameras and can sustain a maximum recording time of 2 min per camera at 75 fps. Conclusion: The three sCMOS cameras are capable of high speed imaging. They can therefore be used for quick, high-resolution, and precise mapping of dose distributions from scanned spot proton beams in three dimensions.

  6. A wideband and sensitive GW detector for kHz frequencies: the dual sphere

    CERN Document Server

    Conti, L; Bonaldi, M; Cerdonio, M; Falferi, P; Heidmann, A; Lobo, J A; Marin, F; Ortolan, A; Pinard, M; Prodi, G A; Taffarello, L; Vitale, S; Zendri, J P

    2002-01-01

    We discuss the new concept of a sensitive and wide-band detector, consisting of a solid sphere nested inside a hollow one: the dual sphere. The advantage is that it would be possible to keep both the omni-directionality and high sensitivity of the spherical geometry without giving up the wide band. In the few kHz range the dual sphere would be complementary to 'advanced' interferometers. We also discuss the main technological and scientific challenges that the construction of such a system poses, particularly regarding material choice, fabrication, cooling, suspension and readout.

  7. Handheld dual thermal neutron detector and gamma-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stowe, Ashley C.; Burger, Arnold; Bhattacharya, Pijush; Tupitsyn, Yevgeniy

    2017-05-02

    A combined thermal neutron detector and gamma-ray spectrometer system, including: a first detection medium including a lithium chalcopyrite crystal operable for detecting neutrons; a gamma ray shielding material disposed adjacent to the first detection medium; a second detection medium including one of a doped metal halide, an elpasolite, and a high Z semiconductor scintillator crystal operable for detecting gamma rays; a neutron shielding material disposed adjacent to the second detection medium; and a photodetector coupled to the second detection medium also operable for detecting the gamma rays; wherein the first detection medium and the second detection medium do not overlap in an orthogonal plane to a radiation flux. Optionally, the first detection medium includes a .sup.6LiInSe.sub.2 crystal. Optionally, the second detection medium includes a SrI.sub.2(Eu) scintillation crystal.

  8. Using a Borated Panel to Form a Dual Neutron-Gamma Detector

    Energy Technology Data Exchange (ETDEWEB)

    Scott Wilde; Raymond Keegan

    2008-06-20

    A borated polyethylene plane placed between a neutron source and a gamma spectrometer is used to form a dual neutron-gamma detection system. The polyethylene thermalizes the source neutrons so that they are captured by {sup 10}B to produce a flux of 478 keV gamma-rays that radiate from the plane. This results in a buildup of count rate in the detector over that from a disk of the same diameter as the detector crystal (same thickness as the panel). Radiation portal systems are a potential application of this technique.

  9. Adaptive algorithms of position and energy reconstruction in Anger-camera type detectors: experimental data processing in ANTS

    Science.gov (United States)

    Morozov, A.; Defendi, I.; Engels, R.; Fraga, F. A. F.; Fraga, M. M. F. R.; Gongadze, A.; Guerard, B.; Jurkovic, M.; Kemmerling, G.; Manzin, G.; Margato, L. M. S.; Niko, H.; Pereira, L.; Petrillo, C.; Peyaud, A.; Piscitelli, F.; Raspino, D.; Rhodes, N. J.; Sacchetti, F.; Schooneveld, E. M.; Solovov, V.; Van Esch, P.; Zeitelhack, K.

    2013-05-01

    The software package ANTS (Anger-camera type Neutron detector: Toolkit for Simulations), developed for simulation of Anger-type gaseous detectors for thermal neutron imaging was extended to include a module for experimental data processing. Data recorded with a sensor array containing up to 100 photomultiplier tubes (PMT) or silicon photomultipliers (SiPM) in a custom configuration can be loaded and the positions and energies of the events can be reconstructed using the Center-of-Gravity, Maximum Likelihood or Least Squares algorithm. A particular strength of the new module is the ability to reconstruct the light response functions and relative gains of the photomultipliers from flood field illumination data using adaptive algorithms. The performance of the module is demonstrated with simulated data generated in ANTS and experimental data recorded with a 19 PMT neutron detector. The package executables are publicly available at http://coimbra.lip.pt/~andrei/

  10. Optical Demonstration of THz, Dual-Polarization Sensitive Microwave Kinetic Inductance Detectors

    CERN Document Server

    Dober, B; Beall, J A; Becker, D; Che, G; Cho, H M; Devlin, M; Duff, S M; Galitzki, N; Gao, J; Groppi, C; Hilton, G C; Hubmayr, J; Irwin, K D; McKenney, C M; Li, D; Lourie, N; Mauskopf, P; Vissers, M R; Wang, Y

    2016-01-01

    The next generation BLAST experiment (BLAST-TNG) is a suborbital balloon payload that seeks to map polarized dust emission in the 250 $\\mu$m, 350 $\\mu$m and 500 $\\mu$m wavebands. The instrument utilizes a stepped half-wave plate to reduce systematics. The general requirement of the detectors is that they are photon-noise-limited and dual-polarization sensitive. To achieve this goal, we are developing three monolithic arrays of cryogenic sensors, one for each waveband. Each array is feedhorn-coupled and each spatial pixel consists of two orthogonally spaced polarization-sensitive microwave kinetic inductance detectors (MKIDs) fabricated from a Ti/TiN multilayer film. In previous work, we demonstrated photon-noise-limited sensitivity in 250 $\\mu$m waveband single polarization devices. In this work, we present the first results of dual-polarization sensitive MKIDs at 250 $\\mu$m.

  11. A serial dual-electrode detector based on electrogenerated bromine for capillary electrophoresis.

    Science.gov (United States)

    Du, Fuying; Cao, Shunan; Fung, Ying-Sing

    2014-12-01

    A new serial dual-electrode detector for CE has been designed and fabricated for postcolumn reaction detection based on electrogenerated bromine. A coaxial postcolumn reactor was employed to introduce bromide reagent and facilitate the fabrication of upstream generation electrode by simply sputtering Pt film onto the outer surface of the separation capillary. Bromide introduced could be efficiently converted to bromine at this Pt film electrode and subsequently detected by the downstream Pt microdisk detection electrode. Analytes that react with bromine could be determined by the decrease of bromine reduction current at the downstream electrode resulting from the reaction between analytes and bromine. The effects of serial dual-electrode detector working conditions including electrode potentials, bromide flow rate, and bromide concentration on analytical performance were investigated using glutathione (GSH) and glutathione disulfide (GSSG) as test analytes. Under the optimal conditions, detection limits down to 0.16 μM for GSH and 0.14 μM for GSSG (S/N = 3) as well as linear working ranges of two orders of magnitude for GSH and GSSG were achieved. Furthermore, the separation efficiency obtained by our dual-electrode detector design was greatly improved compared with previous reported design. The developed method has been successfully applied to determine the GSH and GSSG impurity in commercial GSH supplement.

  12. Pantir - a Dual Camera Setup for Precise Georeferencing and Mosaicing of Thermal Aerial Images

    Science.gov (United States)

    Weber, I.; Jenal, A.; Kneer, C.; Bongartz, J.

    2015-03-01

    Research and monitoring in fields like hydrology and agriculture are applications of airborne thermal infrared (TIR) cameras, which suffer from low spatial resolution and low quality lenses. Common ground control points (GCPs), lacking thermal activity and being relatively small in size, cannot be used in TIR images. Precise georeferencing and mosaicing however is necessary for data analysis. Adding a high resolution visible light camera (VIS) with a high quality lens very close to the TIR camera, in the same stabilized rig, allows us to do accurate geoprocessing with standard GCPs after fusing both images (VIS+TIR) using standard image registration methods.

  13. Characterization of a module with pixelated CdTe detectors for possible PET, PEM and compton camera applications

    Science.gov (United States)

    Ariño-Estrada, G.; Chmeissani, M.; de Lorenzo, G.; Puigdengoles, C.; Martínez, R.; Cabruja, E.

    2014-05-01

    We present the measurement of the energy resolution and the impact of charge sharing for a pixel CdTe detector. This detector will be used in a novel conceptual design for diagnostic systems in the field of nuclear medicine such as positron emission tomography (PET), positron emission mammography (PEM) and Compton camera. The detector dimensions are 10 mm × 10 mm × 2 mm and with a pixel pitch of 1 mm × 1 mm. The pixel CdTe detector is a Schottky diode and it was tested at a bias of -1000 V. The VATAGP7.1 frontend ASIC was used for the readout of the pixel detector and the corresponding single channel electronic noise was found to be σ < 2 keV for all the pixels. We have achieved an energy resolution, FWHM/Epeak, of 7.1%, 4.5% and 0.98% for 59.5, 122 and 511 keV respectively. The study of the charge sharing shows that 16% of the events deposit part of their energy in the adjacent pixel.

  14. A dual-ended readout PET detector module based on GAPDs with large-area microcells

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jihoon; Choi, Yong; Hong, Key Jo; Hu, Wei; Jung, Jin Ho; Huh, Yoonsuk; Lim, Hyun Keong [Department of Electronic Engineering, Sogang University, 1 Shinsu-Dong, Mapo-Gu, Seoul 121-742 (Korea, Republic of); Kim, Byung-Tae, E-mail: ychoi.image@gmail.com [Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul 135-710 (Korea, Republic of)

    2011-07-15

    The use of a dual-ended readout PET detector module based on Geiger-mode avalanche photodiodes (GAPDs) with large-area microcells was proposed to obtain high photon detection efficiency (PDE) and overcome energy non-linearity problems. A simulation study was performed and experimental measurement were taken for the single- and dual-ended PET detector modules consisting of the two types of GAPDs with 50 x 50 {mu}m{sup 2} and 100 x 100 {mu}m{sup 2} microcells. A Monte Carlo simulation was conducted to predict the number of incident photons impinging on the GAPD entrance surface to estimate the light collection efficiency (LCE) and energy linearity performance. A depth of interaction (DOI) ratio histogram was also obtained. An experimental study was performed to acquire the spectra of different energy {gamma}-rays, and the energy linearity was evaluated by analyzing the photo-peak channels. The simulation results showed that the LCE and energy linearity of the dual-ended PET detector modules were considerably improved compared to the single-ended one, with 100 x 100 {mu}m{sup 2} microcell GAPDs. We also estimated that the proposed method can provide accurate (3-4 mm) and uniform DOI resolution. In the experimental measurement, the 511 keV photo-peak channels of the dual-ended PET detector modules were increased 26% and 71% compared to the single-ended one, with 50 x 50 {mu}m{sup 2} and 100 x 100 {mu}m{sup 2} microcell GAPDs, respectively. The coefficients of determination (R{sup 2}) were increased from 0.97 to 0.99 and from 0.86 to 0.93 with 50 x 50 {mu}m{sup 2} and 100 x 100 {mu}m{sup 2} microcell GAPDs, respectively. The results of this study demonstrate that the dual-ended readout scheme using GAPDs with large-area microcells provides high LCE and DOI information with minimized energy non-linearity. This will enable investigators to configure PET detector modules with high sensitivity and resolution.

  15. ANTS — a simulation package for secondary scintillation Anger-camera type detector in thermal neutron imaging

    Science.gov (United States)

    Morozov, A.; Defendi, I.; Engels, R.; Fraga, F. A. F.; Fraga, M. M. F. R.; Guerard, B.; Jurkovic, M.; Kemmerling, G.; Manzin, G.; Margato, L. M. S.; Niko, H.; Pereira, L.; Petrillo, C.; Peyaud, A.; Piscitelli, F.; Raspino, D.; Rhodes, N. J.; Sacchetti, F.; Schooneveld, E. M.; Van Esch, P.; Zeitelhack, K.

    2012-08-01

    A custom and fully interactive simulation package ANTS (Anger-camera type Neutron detector: Toolkit for Simulations) has been developed to optimize the design and operation conditions of secondary scintillation Anger-camera type gaseous detectors for thermal neutron imaging. The simulation code accounts for all physical processes related to the neutron capture, energy deposition pattern, drift of electrons of the primary ionization and secondary scintillation. The photons are traced considering the wavelength-resolved refraction and transmission of the output window. Photo-detection accounts for the wavelength-resolved quantum efficiency, angular response, area sensitivity, gain and single-photoelectron spectra of the photomultipliers (PMTs). The package allows for several geometrical shapes of the PMT photocathode (round, hexagonal and square) and offers a flexible PMT array configuration: up to 100 PMTs in a custom arrangement with the square or hexagonal packing. Several read-out patterns of the PMT array are implemented. Reconstruction of the neutron capture position (projection on the plane of the light emission) is performed using the center of gravity, maximum likelihood or weighted least squares algorithm. Simulation results reproduce well the preliminary results obtained with a small-scale detector prototype. ANTS executables can be downloaded from http://coimbra.lip.pt/~andrei/.

  16. Dual-exposure technique for extending the dynamic range of x-ray flat panel detectors.

    Science.gov (United States)

    Sisniega, A; Abella, M; Desco, M; Vaquero, J J

    2014-01-20

    This work presents an approach to extend the dynamic range of x-ray flat panel detectors by combining two acquisitions of the same sample taken with two different x-ray photon flux levels and the same beam spectral configuration. In order to combine both datasets, the response of detector pixels was modelled in terms of mean and variance using a linear model. The model was extended to take into account the effect of pixel saturation. We estimated a joint probability density function (j-pdf) of the pixel values by assuming that each dataset follows an independent Gaussian distribution. This j-pdf was used for estimating the final pixel value of the high-dynamic-range dataset using a maximum likelihood method. The suitability of the pixel model for the representation of the detector signal was assessed using experimental data from a small-animal cone-beam micro-CT scanner equipped with a flat panel detector. The potential extension in dynamic range offered by our method was investigated for generic flat panel detectors using analytical expressions and simulations. The performance of the proposed dual-exposure approach in realistic imaging environments was compared with that of a regular single-exposure technique using experimental data from two different phantoms. Image quality was assessed in terms of signal-to-noise ratio, contrast, and analysis of profiles drawn on the images. The dynamic range, measured as the ratio between the exposure for saturation and the exposure equivalent to instrumentation noise, was increased from 76.9 to 166.7 when using our method. Dual-exposure results showed higher contrast-to-noise ratio and contrast resolution than the single-exposure acquisitions for the same x-ray dose. In addition, image artifacts were reduced in the combined dataset. This technique to extend the dynamic range of the detector without increasing the dose is particularly suited to image samples that contain both low and high attenuation regions.

  17. Commissioning of the scatter component of a Compton camera consisting of a stack of Si strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Liprandi, S.; Marinsek, T.; Bortfeldt, J.; Lang, C.; Lutter, R.; Dedes, G.; Parodi, K.; Thirolf, P.G. [LMU Munich, Garching (Germany); Aldawood, S. [LMU Munich, Garching (Germany); King Saud University, Riyadh (Saudi Arabia); Maier, L.; Gernhaeuser, R. [TU Munich, Garching (Germany); Kolff, H. van der [LMU Munich, Garching (Germany); TU Delft (Netherlands); Castelhano, I. [LMU Munich, Garching (Germany); University of Lisbon, Lisbon (Portugal); Schaart, D.R. [TU Delft (Netherlands)

    2015-07-01

    At LMU Munich in Garching a Compton camera is presently being developed aiming at the range verification of proton (or ion) beams for hadron therapy via imaging of prompt γ rays from nuclear reactions in the tissue. The poster presentation focuses on the characterization of the scatter component of the Compton camera, consisting of a stack of six double-sided Si strip detectors (50 x 50 mm{sup 2}, 0.5 mm thick, 128 strips/side). The overall 1536 electronics channels are processed by a readout system based on the GASSIPLEX ASIC chip, feeding into a VME-based data acquisition system. The status of the offline and online characterization studies is presented.

  18. Resolution and mass range performance in distance-of-flight mass spectrometry with a multichannel focal-plane camera detector.

    Science.gov (United States)

    Graham, Alexander W G; Ray, Steven J; Enke, Christie G; Felton, Jeremy A; Carado, Anthony J; Barinaga, Charles J; Koppenaal, David W; Hieftje, Gary M

    2011-11-15

    Distance-of-flight mass spectrometry (DOFMS) is a velocity-based mass-separation technique in which ions are separated in space along the plane of a spatially selective detector. In the present work, a solid-state charge-detection array, the focal-plane camera (FPC), was incorporated into the DOFMS platform. Use of the FPC with our DOFMS instrument resulted in improvements in analytical performance, usability, and versatility over a previous generation instrument that employed a microchannel-plate/phosphor DOF detector. Notably, FPC detection provided resolution improvements of at least a factor of 2, with typical DOF linewidths of 300 μm (R((fwhm)) = 1000). The merits of solid-state detection for DOFMS are evaluated, and methods to extend the DOFMS mass range are considered.

  19. Design of Dual-Polarization Horn-Coupled Kinetic Inductance Detectors for Cosmic Microwave Background Polarimetry

    CERN Document Server

    Bryan, Sean; Che, George; Day, Peter; Flanigan, Daniel; Johnson, Bradley R; Jones, Glenn; Kjellstrand, Bjorn; Limon, Michele; Mauskopf, Philip; McCarrick, Heather; Miller, Amber; Smiley, Brian

    2015-01-01

    Mapping the polarization of the Cosmic Microwave Background is yielding exciting data on the origin of the universe, the reionization of the universe, and the growth of cosmic structure. Kilopixel arrays represent the current state of the art, but advances in detector technology are needed to enable the larger detector arrays needed for future measurements. Here we present a design for single-band dual-polarization Kinetic Inductance Detectors (KIDs) at 20% bandwidths centered at 145, 220, and 280 GHz. The detection and readout system is nearly identical to the successful photon-noise-limited aluminum Lumped-Element KIDs that have been recently built and tested by some of the authors. Fabricating large focal plane arrays of the feed horns and quarter-wave backshorts requires only conventional precision machining. Since the detectors and readout lines consist only of a single patterned aluminum layer on a SOI wafer, arrays of the detectors can be built commercially or at a standard university cleanroom.

  20. Proton irradiation results for long-wave HgCdTe infrared detector arrays for Near-Earth Object Camera

    Science.gov (United States)

    Dorn, Meghan L.; Pipher, Judith L.; McMurtry, Craig; Hartman, Spencer; Mainzer, Amy; McKelvey, Mark; McMurray, Robert; Chevara, David; Rosser, Joshua

    2016-07-01

    HgCdTe detector arrays with a cutoff wavelength of ˜10 μm intended for the Near-Earth Object Camera (NEOCam) space mission were subjected to proton-beam irradiation at the University of California Davis Crocker Nuclear Laboratory. Three arrays were tested-one with 800-μm substrate intact, one with 30-μm substrate, and one completely substrate-removed. The CdZnTe substrate, on which the HgCdTe detector is grown, has been shown to produce luminescence in shorter wave HgCdTe arrays that causes an elevated signal in nonhit pixels when subjected to proton irradiation. This testing was conducted to ascertain whether or not full substrate removal is necessary. At the dark level of the dewar, we detect no luminescence in nonhit pixels during proton testing for both the substrate-removed detector array and the array with 30-μm substrate. The detector array with full 800-μm substrate exhibited substantial photocurrent for a flux of 103 protons/cm2 s at a beam energy of 18.1 MeV (˜750 e-/s) and 34.4 MeV (˜65 e-/s). For the integrated space-like ambient proton flux level measured by the Spitzer Space Telescope, the luminescence would be well below the NEOCam dark current requirement of <200 e-/s, but the pattern of luminescence could be problematic, possibly complicating calibration.

  1. Calibration of cameras of the H.E.S.S. detector

    CERN Document Server

    Aharonian, F A; Aye, K M; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Berghaus, P; Bernlöhr, K; Bolz, O; Boisson, C; Borgmeier, C; Breitling, F; Brown, A M; Chadwick, P M; Chitnis, V R; Chounet, L M; Cornils, R; Costamante, L; Degrange, B; De Jager, O C; Djannati-Atai, A; O'Connor-Drury, L; Ergin, T; Espigat, P; Feinstein, F; Fleury, P; Fontaine, G; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Goret, P; Guy, J; Hadjichristidis, C; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J; Hofmann, W; Holleran, M; Horns, D; Jung, I; Khelifi, B; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemoine, M; Lemiere, A; Leroy, N; Lohse, T; Marcowith, A; Masterson, C; McComb, T J L; De Naurois, Mathieu; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pohl, M; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Redondo, I; Reimer, A; Reimer, O; Ripken, J; Rivoal, M; Rob, L; Rolland, L; Rowell, G; Sahakian, V V; Sauge, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Steenkamp, R; Stegmann, C; Tavernet, J P; Theoret, C G; Tluczykont, M; Van der Walt, D J; Vasileiadis, G; Vincent, P; Visser, B; Völk, H J; Wagner, S J

    2004-01-01

    H.E.S.S. - the High Energy Stereoscopic System- is a new system of large atmospheric Cherenkov telescopes for GeV/TeV astronomy. Each of the four telescopes of 107 m^2 mirror area is equipped with a 960-pixel photomulitiplier-tube camera. This paper describes the methods used to convert the photomultiplier signals into the quantities needed for Cherenkov image analysis. Two independent calibration techniques have been applied in parallel to provide an estimation of uncertainties. Results on the long-term stability of the H.E.S.S. cameras are also presented.

  2. Development of silicon pad detectors and readout electronics for a Compton camera

    Science.gov (United States)

    Studen, A.; Cindro, V.; Clinthorne, N. H.; Czermak, A.; Dulinski, W.; Fuster, J.; Han, L.; Jalocha, P.; Kowal, M.; Kragh, T.; Lacasta, C.; Llosá, G.; Meier, D.; Mikuž, M.; Nygård, E.; Park, S. J.; Roe, S.; Rogers, W. L.; Sowicki, B.; Weilhammer, P.; Wilderman, S. J.; Yoshioka, K.; Zhang, L.

    2003-03-01

    Applications in nuclear medicine and bio-medical engineering may profit using a Compton camera for imaging distributions of radio-isotope labelled tracers in organs and tissues. These applications require detection of photons using thick position-sensitive silicon sensors with the highest possible energy and good spatial resolution. In this paper, research and development on silicon pad sensors and associated readout electronics for a Compton camera are presented. First results with low-noise, self-triggering VATAGP ASIC's are reported. The measured energy resolution was 1.1 keV FWHM at room temperature for the 241Am photo-peak at 59.5 keV.

  3. Dose response characteristics of a novel CCD camera-based electronic portal imaging device comparison with OCTAVIUS detector.

    Science.gov (United States)

    Anvari, Akbar; Aghamiri, Seyed Mahmoud Reza; Mahdavi, Seyed Rabie; Alaei, Parham

    2015-01-01

    Dosimetric properties of a CCD camera-based Electronic Portal Imaging Device (EPID) for clinical dosimetric application have been evaluated. Characteristics obtained by EPID also compared with commercial 2D array of ion chambers. Portal images acquired in dosimetry mode then exported raw fluence or uncorrected images were investigated. Integration time of image acquisition mode has adjusted on 1 s per frame. As saturation of camera of the EPID, dose response does not have linear behavior. The slight nonlinearity of the camera response can be corrected by a logarithmic expression. A fourth order polynomial regression model with coefficient of determination of 0.998 predicts a response to absolute dose values at less than 50 cGy. A field size dependent response of up to 7% (0.99-1.06) relative OCTAVIUS detector measurement was found. The EPID response can be fitted by a cubic regression for field size changes, yielded coefficient of determination of 0.999. These results indicate that the EPID is well suited for accurate dosimetric purposes, the major limitation currently being due to integration time and dead-time in frame acquisition.

  4. Design of wide-field submillimeter-wave camera using SIS photon detectors

    Science.gov (United States)

    Matsuo, Hiroshi; Ariyoshi, Seiichiro; Otani, Chiko; Ezawa, Hajime; Kobayashi, Jun; Mori, Yuko; Nagata, Hirohisa; Shimizu, Hirohiko M.; Fujiwara, Mikio; Akiba, Makoto; Hosako, Iwao

    2004-10-01

    SIS photon detectors are niobium-based superconducting direct detectors for submillimeter-wave that show superior performance when compared with bolometric detectors for ground-based observations. We present the design and development of the SIS photon detectors together with optical and cryogenic components for wide field continuum observation system on Atacama Submillimeter Telescope Experiment (ASTE). Using antenna coupled distributed junctions, SIS photon detectors give wide band response in a 650-GHz atmospheric window as well as high current sensitivity, shot noise limited operation, fast response and high dynamic range. Optical noise equivalent power (NEP) was measured to be 1.6x10-16 W/Hz0.5 that is less than the background photon fluctuation limit for ground based submillimeter-wave observations. Fabrication of focal plane array with 9 detector pixels is underway to install in ASTE. Readout electronics with Si-JFETs operating at about 100 K will be used for this array. Development of readout electronics for larger array is based on GaAs-JFETs operating at 0.3 K. For the purpose of installing 100 element array of SIS photon detectors, we have developed remotely operable low-vibration cryostat, which now cools bolometers for 350, 450, 850-µm observations down to 0.34 K. GM-type 4-K cooler and He3/He4 sorption cooler is used, which can be remotely recycled to keep detectors at 0.34 K. Since we have large optical window for this cryostat, sapphire cryogenic window is used to block infrared radiation. The sapphire window is ante-reflection coated with SiO2 by chemical vapor deposition (CVD). The transmittance of the cryogenic window at 650 GHz is more than 95%.

  5. Multi-chroic dual-polarization bolometric detectors for studies of the Cosmic Microwave Background

    CERN Document Server

    Suzuki, Aritoki; Edwards, Jennifer; Engargiola, Greg; Ghribi, Adnan; Holzapfel, William; Lee, Adrian T; Meng, Xiao Fan; Myers, Michael J; O'Brient, Roger; Quealy, Erin; Rebeiz, Gabriel; Richards, Paul; Rosen, Darin; Siritanasak, Praween

    2012-01-01

    We are developing multi-chroic antenna-coupled TES detectors for CMB polarimetry. Multi-chroic detectors increase the mapping speed per focal plane area and provide greater discrimination of polarized galactic foregrounds with no increase in weight or cryogenic cost. In each pixel, a silicon lens-coupled dual polarized sinuous antenna collects light over a two-octave frequency band. The antenna couples the broadband millimeter wave signal into microstrip transmission lines, and on-chip filter banks split the broadband signal into several frequency bands. Separate TES bolometers detect the power in each frequency band and linear polarization. We will describe the design and performance of these devices and present optical data taken with prototype pixels. Our measurements show beams with percent level ellipticity, percent level cross-polarization leakage, and partitioned bands using banks of 2, 3, and 7 filters. We will also describe the development of broadband anti-reflection coatings for the high dielectric...

  6. A dual-beam dual-camera method for a battery-powered underwater miniature PIV (UWMPIV) system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Binbin; Liao, Qian [University of Wisconsin-Milwaukee, Department of Civil Engineering and Mechanics, Milwaukee, WI (United States); Bootsma, Harvey A. [University of Wisconsin-Milwaukee, School of Freshwater Sciences, Milwaukee, WI (United States); Wang, Pei-Fang [Space and Naval Warfare Systems Center, Advanced Systems and Applied Sciences, Envrionmental Sciences, San Diego, CA (United States)

    2012-06-15

    A battery-powered in situ Underwater Miniature PIV (UWMPIV) has been developed and deployed for field studies. Instead of generating high-energy laser pulses as in a conventional PIV system, the UWMPIV employs a low-power Continuous Wave (CW) laser (class IIIb) and an oscillating mirror (galvanometer) to generate laser sheets. In a previous version of the UWMPIV, the time between exposures of a pair of particle images, {delta}t, could not be reduced without loss of illumination strength. This limitation makes it unsuitable for high-speed flows. In this paper, we present a technique to solve this problem by adopting two CW lasers with different wavelength and two CCD cameras in a second-generation UWMPIV system. Several issues including optical alignment, non-uniform distribution of {delta}t due to the varying speed of the scanning beam and local flow velocities are discussed. The timing issue is solved through a simple calibration procedure that involves the reconstruction of maps of laser beam arrival time. Comparison of the performance between the new method and a conventional PIV system is presented. Measurements were performed in a laboratory open-channel flume. Excellent agreement was found between the new method and the standard PIV measurement in terms of the extracted vertical profiles of mean velocity, RMS fluctuation, Reynolds stress and dissipation rate of turbulent kinetic energy. (orig.)

  7. Improving spatial resolution of high stopping power X- and gamma-ray cameras:. fibers or slat-structured detectors?

    Science.gov (United States)

    Gerstenmayer, J.-L.

    2000-11-01

    For medical imaging applications, the earliness of the detection is an essential factor to increase chances of recovery; in the field of industrial imaging, nondestructive testing with lower detectivity threshold to ensure quality and safe conduct. Accordingly, in all areas using the up-to-date compact (much less-expensive facilities) high-energy pulsed electron accelerators (HF or induction linac, Marx generator) to produce energetic photons (bremsstrahlung), such as industrial and medical numerical imaging, flash radiography, radiotherapy positioning, computed tomography, detection of small- or low-contrasted details require two-dimensional (2D) detectors with an even more improved combination of sensitivity (which implies high stopping power), spatial resolution (millimetric or sub-millimetric) and speed, working in integrating mode (i.e. dose measurement) because bremsstrahlung X-ray sources provide short pulses. The purpose of this paper is to highlight some of the issues involved in the development of high-performance position-sensitive X- and gamma-ray cameras for high-energy flash imaging. The basic idea is that, examining in detail the energy deposition and its statistics (quantum noise), we shall be able to determine in real detectors the following features, such as detectors composition and pixel size, which can simultaneously lead to good detection efficiency and good spatial resolution. In general, conclusions can be transposed to other particle imaging detectors as neutron imagers (changing "dense" metal by "high energy transfer" material). There are, of course, challenges to get such detectors, although new technologies have already provided some prototypes offering more than 30% stopping power and less than 2 mm spatial resolution (blur) for 50 ns long 5 MeV X-ray pulses. There are various detector-segmentation methods that can be applied in order to improve the stopping power (macroscopic cross-section) and reduce the effect of the lateral energy

  8. Sensor for In-Motion Continuous 3D Shape Measurement Based on Dual Line-Scan Cameras.

    Science.gov (United States)

    Sun, Bo; Zhu, Jigui; Yang, Linghui; Yang, Shourui; Guo, Yin

    2016-11-18

    The acquisition of three-dimensional surface data plays an increasingly important role in the industrial sector. Numerous 3D shape measurement techniques have been developed. However, there are still limitations and challenges in fast measurement of large-scale objects or high-speed moving objects. The innovative line scan technology opens up new potentialities owing to the ultra-high resolution and line rate. To this end, a sensor for in-motion continuous 3D shape measurement based on dual line-scan cameras is presented. In this paper, the principle and structure of the sensor are investigated. The image matching strategy is addressed and the matching error is analyzed. The sensor has been verified by experiments and high-quality results are obtained.

  9. Sensor for In-Motion Continuous 3D Shape Measurement Based on Dual Line-Scan Cameras

    Directory of Open Access Journals (Sweden)

    Bo Sun

    2016-11-01

    Full Text Available The acquisition of three-dimensional surface data plays an increasingly important role in the industrial sector. Numerous 3D shape measurement techniques have been developed. However, there are still limitations and challenges in fast measurement of large-scale objects or high-speed moving objects. The innovative line scan technology opens up new potentialities owing to the ultra-high resolution and line rate. To this end, a sensor for in-motion continuous 3D shape measurement based on dual line-scan cameras is presented. In this paper, the principle and structure of the sensor are investigated. The image matching strategy is addressed and the matching error is analyzed. The sensor has been verified by experiments and high-quality results are obtained.

  10. Medical Compton cameras based on semiconductor detectors design and experimental development

    CERN Document Server

    Scannavini, M G

    2001-01-01

    The work presented in this thesis is aimed at the study of Compton scatter as an alternative method of collimating gamma-rays in nuclear medicine applications. Conventional approaches to radioisotope medical imaging and their current limitations are examined. The theory of electronic collimation based on Compton scatter is introduced and it is shown that in principle its application could provide an advantageous imaging method, with both high spatial resolution and high sensitivity. The current status of research in the field, of Compton cameras is assessed and potential niches for applications of clinical interest are suggested. The criteria for the design of a Compton scatter camera are examined. A variety of semiconductors are considered for the construction of an electronic collimator and results from Monte Carlo computer simulations are presented for photon energies of clinical interest. It is concluded that the most viable approach is to design a silicon collimator for the imaging of high-energy (511 ke...

  11. Development of silicon pad detectors and readout electronics for a Compton camera

    CERN Document Server

    Studen, A; Clinthorne, N H; Czermak, A; Dulinski, W; Fuster, J A; Han, L; Jalocha, P; Kowal, M; Kragh, T; Lacasta, C; Llosa, G; Meier, D; Mikuz, M; Nygård, E; Park, S J; Roe, S; Rogers, W L; Sowicki, B; Weilhammer, P; Wilderman, S J; Yoshioka, K; Zhang, L

    2003-01-01

    Applications in nuclear medicine and bio-medical engineering may profit using a Compton camera for imaging distributions of radio-isotope labelled tracers in organs and tissues. These applications require detection of photons using thick position-sensitive silicon sensors with the highest possible energy and good spatial resolution. In this paper, research and development on silicon pad sensors and associated readout electronics for a Compton camera are presented. First results with low-noise, self-triggering VATAGP ASIC's are reported. The measured energy resolution was 1.1 keV FWHM at room temperature for the sup 2 sup 4 sup 1 Am photo-peak at 59.5 keV.

  12. Using MCNPX and GEANT code to study the energy response of dual energy detectors; Utilizacion del codigo MCNP y GEANT para el estudio de la respuesta energetica de detectores de energia dual

    Energy Technology Data Exchange (ETDEWEB)

    Juste, B.; Moreda, D.; Miro, R.; Verdu, G.

    2011-07-01

    The use of radiation detectors Dual energy (dual energy) is a powerful tool for identification of materials subjected to X-ray analysis. Given a photon spectrum emitted by an X-ray tube, at low energies, the absorption of radiation depends mainly on the effective atomic number and thickness of the material. In contrast, higher energy levels, above 100 kilovolts, the energy absorbed depends, above all, the material density.

  13. Use of dual-head gamma camera in radionuclide internal contamination monitoring on radiation workers from a nuclear medicine department

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Laguna, A.; Brandan, M.E., E-mail: alejandro.rodriguez.laguna@gmail.com [Universidad Nacional Autonoma de Mexico, Mexico D.F. (Mexico). Instituto de Fisica; Trujillo-Zamudio, F.E.; Estrada-Lobato, E. [Instituto Nacional de Cancerologia, Mexico D.F. (Mexico)

    2008-07-01

    As a part of an internal dosimetry program that is performed at the Mexican National Institute of Cancerology - Nuclear Medicine Department, in the present work we suggest a procedure for the routinely monitoring of internal contamination on radiation workers and nuclear medicine staff. The procedure is based on the identification and quantification of contaminating radionuclides in human body by using a dual-head whole-body gamma camera. The results have shown that the procedures described in this study can be used to implement a method to quantify minimal accumulated activity in the main human organs to evaluate internal contamination with radionuclides. The high sensitivity of the uncollimated gamma camera is advantageous for the routinely detection and identification of small activities of internal contamination. But, the null spatial resolution makes impossible the definition of contaminated region of interest. Then, the use of collimators is necessary to the quantification of incorporated radionuclides activities in the main human organs and for the internal doses assessment. (author)

  14. Linear modeling of single-shot dual-energy x-ray imaging using a sandwich detector

    Science.gov (United States)

    Kim, J.; Kim, D. W.; Kim, S. H.; Yun, S.; Youn, H.; Jeon, H.; Kim, H. K.

    2017-01-01

    For single-shot dual-energy (DE) imaging, a sandwich detector typically consists of a thin front detector and a thick rear detector. Therefore, the spatial-resolution characteristics of the two detectors are different, and as a result, weighted subtraction of the corresponding two images gives rise to edge-enhancement characteristics in the resulting DE images. This is a unique characteristic of single-shot DE imaging compared to the conventional dual-shot DE imaging which uses the same detector to acquire low- and high-energy images. Using a linear-systems theory, in this paper, we show that the modulation-transfer function (MTF) of a sandwich detector is a weighted average of contributions from each MTF characteristic of two detector layers forming the sandwich detector. The MTF results obtained using the developed model are validated with those measured directly from single-shot DE images for an edge-knife phantom. Weighting larger than at least 0.5 in DE reconstruction gives an enhancement in DE MTF at mid and high spatial frequencies compared to the MTFs obtained from each detector layer. The behavior of the linear model as a function of weighting factor used for DE reconstruction is discussed in comparisons with numerical simulations.

  15. NIKA2, a dual-band millimetre camera on the IRAM 30 m telescope to map the cold universe

    Science.gov (United States)

    Désert, F.-X.; Adam, R.; Ade, P.; André, P.; Aussel, H.; Beelen, A.; Benoît, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Calvo, M.; Catalano, A.; Coiffard, G.; Comis, B.; Doyle, S.; Goupy, J.; Kramer, C.; Lagache, G.; Leclercq, S.; Lestrade, J.-F.; Macías-Pérez, J. F.; Maury, A.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Pajot, F.; Pascale, E.; Perotto, L.; Pisano, G.; Ponthieu, N.; Revéret, V.; Ritacco, A.; Rodriguez, L.; Romero, C.; Roussel, H.; Ruppin, F.; Soler, J.; Schuster, K.; Sievers, A.; Triqueneaux, S.; Tucker, C.; Zylka, R.

    2016-12-01

    A consortium led by Institut Néel (Grenoble) has just finished installing a new powerful millimetre camera NIKA2 on the IRAM 30 m telescope. It has an instantaneous field-of-view of 6.5 arcminutes at both 1.2 and 2.0 mm with polarimetric capabilities at 1.2 mm. NIKA2 provides a near diffraction-limited angular resolution (resp. 12 and 18 arcseconds). The 3 detector arrays are made of more than 1000 KIDs each. KIDs are new superconducting devices emerging as an alternative to bolometers. The commissionning is ongoing in 2016 with a likely opening to the IRAM community in early 2017. NIKA2 is a very promising multi-purpose instrument which will enable many scientific discoveries in the coming decade.

  16. Design of dual Beam multi-wavelength UV-visible absorbance detectors based on CCD

    Institute of Scientific and Technical Information of China (English)

    SHEN Shuang; TANG Zhen-an; LI Tong

    2006-01-01

    @@ Because the general multi-wavelength UV-Visible absorbance detector cannot avoid the noise and drift resulting from the intensity fluctuation of the light source,a dual beam multi-wavelength UV-Visible detector based on CCD was designed.The ray of light source is divided into a signal ray and a reference ray by the beam splitter after it passes through the chopper.The signal ray shines into the sample cell.The signal ray passing through the sample cell falls onto a concave mirror which focuses it onto a slot that is imaged on one portion of CCD by a concave grating.The reference ray is imaged on the other portion of CCD by the concave grating after the slot.The signal spectrum,the reference spectrum and the dark current of CCD can be measured on the same CCD under the cooperation of the optical system and accessorial circuits.The real-time compensation for the signal spectrum by using the reference spectrum and the dark current of CCD can effectively depress the noise and drift of the detector.The short-term noise is 10-5AU and the drift is 10-4AU/h.

  17. In situ micro-focused X-ray beam characterization with a lensless camera using a hybrid pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Kachatkou, Anton, E-mail: anton.kachatkou@manchester.ac.uk [The University of Manchester, Sackville Street Building, Manchester M13 9PL (United Kingdom); Marchal, Julien [Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Silfhout, Roelof van, E-mail: anton.kachatkou@manchester.ac.uk [The University of Manchester, Sackville Street Building, Manchester M13 9PL (United Kingdom)

    2014-02-04

    Position and size measurements of a micro-focused X-ray beam, using an X-ray beam imaging device based on a lensless camera that collects radiation scattered from a thin foil placed in the path of the beam at an oblique angle, are reported. Results of studies on micro-focused X-ray beam diagnostics using an X-ray beam imaging (XBI) instrument based on the idea of recording radiation scattered from a thin foil of a low-Z material with a lensless camera are reported. The XBI instrument captures magnified images of the scattering region within the foil as illuminated by the incident beam. These images contain information about beam size, beam position and beam intensity that is extracted during dedicated signal processing steps. In this work the use of the device with beams for which the beam size is significantly smaller than that of a single detector pixel is explored. The performance of the XBI device equipped with a state-of-the-art hybrid pixel X-ray imaging sensor is analysed. Compared with traditional methods such as slit edge or wire scanners, the XBI micro-focused beam characterization is significantly faster and does not interfere with on-going experiments. The challenges associated with measuring micrometre-sized beams are described and ways of optimizing the resolution of beam position and size measurements of the XBI instrument are discussed.

  18. IRDIS, the dual-band imager camera of SPHERE: testing the performances in laboratory

    CERN Document Server

    Zurlo, A; Moutou, C; Mesa, D; Gratton, R; Langlois, M; Beuzit, J -L; Costille, A; Desidera, S; Dolhen, K; Gry, C; Madec, F; Mignant, D Le; Mouillet, D; Sauvage, J -F

    2013-01-01

    Next year the second generation instrument SPHERE will begin science operations at the Very Large Telecope (ESO). This instrument will be dedicated to the search for exoplanets through the direct imaging techniques, with the new generation extreme adaptive optics. In this poster, we present the performances of one of the focal instruments, the Infra-Red Dual-beam Imaging and Spectroscopy (IRDIS). All the results have been obtained with tests in laboratory, simulating the observing conditions in Paranal. We tested several configurations using the sub-system Integral Field Spectrograph (IFS) in parallel and simulating long coronographic exposures on a star, calibrating instrumental ghosts, checking the performance of the adaptive optics system and reducing data with the consortium pipeline. The contrast one can reach with IRDIS is of the order of 2\\times 10^{-6}$ at 0.5 arcsec separation from the central star.

  19. C-RED One : the infrared camera using the Saphira e-APD detector

    Science.gov (United States)

    Greffe, Timothée.; Feautrier, Philippe; Gach, Jean-Luc; Stadler, Eric; Clop, Fabien; Lemarchand, Stephane; Boutolleau, David; Baker, Ian

    2016-08-01

    Name for Person Card: Observatoire de la Côte d'Azur First Light Imaging' C-RED One infrared camera is capable of capturing up to 3500 full frames per second with a sub-electron readout noise and very low background. This breakthrough has been made possible thanks to the use of an e- APD infrared focal plane array which is a real disruptive technology in imagery. C-RED One is an autonomous system with an integrated cooling system and a vacuum regeneration system. It operates its sensor with a wide variety of read out techniques and processes video on-board thanks to an FPGA. We will show its performances and expose its main features. The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement N° 673944.

  20. A dual, single detector relaxed eddy accumulation system for long-term measurement of mercury flux

    Directory of Open Access Journals (Sweden)

    S. Osterwalder

    2015-08-01

    Full Text Available The fate of anthropogenic emissions of mercury (Hg to the atmosphere is influenced by the exchange of elemental Hg with the earth surface. This exchange which holds the key to a better understanding of Hg cycling from local to global scales has been difficult to quantify. To advance and facilitate research about land–atmosphere Hg interactions, we developed a dual-intake, single analyzer Relaxed Eddy Accumulation (REA system. REA is an established technique for measuring turbulent fluxes of trace gases and aerosol particles in the atmospheric surface layer. Accurate determination of gaseous elemental mercury (GEM fluxes has proven difficult to technical challenges presented by extremely small concentration differences (typically −3 between updrafts and downdrafts. To address this we present an advanced REA design that uses two inlets and two pair of gold cartridges for semi-continuous monitoring of GEM fluxes. They are then analyzed sequentially on the same detector while another pair of gold cartridges takes over the sample collection. We also added a reference gas module for repeated quality-control measurements. To demonstrate the system performance, we present results from field campaigns in two contrasting environments: an urban setting with a heterogeneous fetch and a boreal mire during snow-melt. The observed emission rates were 15 and 3 ng m−2 h−1. We claim that this dual-inlet, single detector approach is a significant development of the REA system for ultra-trace gases and can help to advance our understanding of long-term land–atmosphere GEM exchange.

  1. Dual-Energy Subtraction Imaging for Diagnosing Vocal Cord Paralysis with Flat Panel Detector Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Machida, Haruhiko; Yoda, Keiko; Arai, Yasuko [Tokyo Women' s Medical University Medical Center East, Tokyo (Japan)] (and others)

    2010-06-15

    To investigate the clinical feasibility of dual energy subtraction (DES) imaging to improve the delineation of the vocal cord and diagnostic accuracy of vocal cord paralysis as compared with the anterior-posterior view of flat panel detector (FPD) neck radiography. For 122 consecutive patients who underwent both a flexible laryngoscopy and conventional/DES FPD radiography, three blinded readers retrospectively graded the radiographs during phonation and inspiration on a scale of 1 (poor) to 5 (excellent) for the delineation of the vocal cord, and in consensus, reviewed the diagnostic accuracy of vocal cord paralysis employing the laryngoscopy as the reference. We compared vocal cord delineation scores and accuracy of vocal cord paralysis diagnosis by both conventional and DES techniques using ({kappa}statistics and assessing the area under the receiver operating characteristic curve (AUC). Vocal cord delineation scores by DES (mean, 4.2 {+-} 0.4) were significantly higher than those by conventional imaging (mean, 3.3 {+-} 0.5) (p < 0.0001). Sensitivity for diagnosing vocal cord paralysis by the conventional technique was 25%, whereas the specificity was 94%. Sensitivity by DES was 75%, whereas the specificity was 96%. The diagnostic accuracy by DES was significantly superior (({kappa}= 0.60, AUC = 0.909) to that by conventional technique ({kappa}= 0.18, AUC = 0.852) (p = 0.038). Dual energy subtraction is a superior method compared to the conventional FPD radiography for delineating the vocal cord and accurately diagnosing vocal cord paralysis.

  2. Progetto di un detector a camera di ionizzazione per esperimenti SAXS

    CERN Document Server

    Voltolina, Francesco

    2010-01-01

    The work presented in this Tesi di Laurea arises from a collaboration between the IPL (Image Processing Laboratory) of the Dipartimento di Elettrotecnica, Elettronica ed Informatica (DEEI) at the University of Trieste and the Instrumentation and Detector Laboratory belonging to the ELETTRA Synchrotron Light Source of Trieste. Under the European Contract ERBFMGECT 980104 a project was active at ELETTRA with the objective to improve facilities for time resolved small angle X-ray scattering (SAXS) experiments within Europe. Partners of the project were, together with ELETTRA, other large scale facilities like the HASYLAB (Hamburger Synchrotron, Germany), the CCLRC (Daresbury Laboratory, UK), the ESRF (European Synchrotron Radiation Facility in Grenoble, France) and the University of Siegen (Germany). In particular the latest half of the time spent working on this project was based in the Arbeitsgruppe Detektorphysik und Elektronik belonging to the Faculty of Physics at the University of Siegen.

  3. Fast-channel LSO detectors and fiber-optic encoding for excellent dual photon transmission measurements in PET

    Energy Technology Data Exchange (ETDEWEB)

    Jones, W.F.; Moyers, J.C.; Casey, M.E.; Watson, C.C.; Nutt, R. [CTI PET Systems, Inc., Knoxville, TN (United States)

    1999-08-01

    Improved attenuation correction remains critical to PET. Currently with dual photon rotating rod sources, benefits of windowing are limited by counting losses of detectors nearest the rods, the near detectors. With single photon sources, improved statistics are offset by a greater need for collimation and more complex emission background correction. Now, a dual photon point source array with fast-channel, near detectors improves on these earlier techniques -- here, adding transmission measurement to dual-head rotating PET. Arrays of collimated point sources are aligned axially and orbit the FOV. With each source is a dedicated near detector (LSO crystal). Crystals couple to photomultipliers (PMTs). As the crystals are not ``block`` encoded, pulse-processing time is reduced (to 120 ns). Reduced processing time lowers dead time and permits hotter sources. For improved axial sampling, larger arrays (21 sources/head) may be configured. To reduce costs, crystals couple fiber-optically into unique PMT pairs -- decreasing the total number of near-detector PMTs by 71%.

  4. Effect of position resolution on LoR discrimination for a dual-head Compton camera

    Science.gov (United States)

    Gillam, John E.; Beveridge, Toby E.; Boston, Andrew J.; Boston, Helen C.; Cooper, Reynold J.; Hall, Chris J.; Mather, Andrew R.; Nolan, Paul J.; Lewis, Rob A.

    2007-04-01

    With the current increase in effective germanium semiconductor detection technology, a positron emission tomography system comprising two opposing HPGe detectors is under development. This type of detection offers not only improvement to some aspects of PET, but also the ability to record single-photon information in the detection process. This information can be used in stand-alone imaging, and also as an additional information source in the PET process. Discrimination based on this single-photon information was proposed; however, the effectiveness of this discrimination is dependent on the resolution of the single-photon information. Simulations of the detection system, in which the positional resolution of the interaction information is variable, was conducted. The single-photon information has then been used in the PET imaging process and its effect on image improvement shown. Much like mechanical collimation, electronic collimation may be used to remove false LoRs from an image, at the expense of efficiency. Moreover, unlike mechanical collimation, this trade off may be dynamically adjusted post data acquisition.

  5. The TIGER trigger processor for the CAMERA detector at COMPASS-II

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Tobias; Buechele, Maximilian; Fischer, Horst; Gorzellik, Matthias; Grussenmeyer, Tobias; Herrmann, Florian; Joerg, Philipp; Kremser, Paul; Kunz, Tobias; Michalski, Christoph; Schopferer, Sebastian; Szameitat, Tobias [Physikalisches Institut der Universitaet Freiburg, Freiburg im Breisgau (Germany)

    2013-07-01

    In today's nuclear and high-energy physics experiments the background-induced occupancy of the detector channels can be quite high; therefore it is important to have sophisticated trigger subsystems which process the data in real-time to generate trigger objects for the global trigger decision. In this work we present a FPGA based low-latency trigger processor for the COMPASS-II experiment. TIGER is a high-performance trigger processor that was developed to fit perfectly in the GANDALF framework and extend its versatility. It is designed as a VXS module and is allocated to the central VXS switch slot, which has a direct link from every payload slot. The synchronous transfer protocol was optimized for low latencies and offers a bandwidth of up to 8 Gbit/s per link. The centerpiece of the board is a Xilinx Virtex-6 SX315T FPGA, offering vast programmable logic, embedded memory and DSP resources. It is accompanied by DDR3 memory, a COM Express CPU and a MXM GPU. Besides the VXS backplane ports, the board features two SFP+ transceivers, 32 LVDS inputs and 32 LVDS outputs to interface with the global trigger system and a Gigabit Ethernet port for configuration and monitoring.

  6. Graphical user interface for a dual-module EMCCD x-ray detector array

    Science.gov (United States)

    Wang, Weiyuan; Ionita, Ciprian; Kuhls-Gilcrist, Andrew; Huang, Ying; Qu, Bin; Gupta, Sandesh K.; Bednarek, Daniel R.; Rudin, Stephen

    2011-03-01

    A new Graphical User Interface (GUI) was developed using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) for a high-resolution, high-sensitivity Solid State X-ray Image Intensifier (SSXII), which is a new x-ray detector for radiographic and fluoroscopic imaging, consisting of an array of Electron-Multiplying CCDs (EMCCDs) each having a variable on-chip electron-multiplication gain of up to 2000x to reduce the effect of readout noise. To enlarge the field-of-view (FOV), each EMCCD sensor is coupled to an x-ray phosphor through a fiberoptic taper. Two EMCCD camera modules are used in our prototype to form a computer-controlled array; however, larger arrays are under development. The new GUI provides patient registration, EMCCD module control, image acquisition, and patient image review. Images from the array are stitched into a 2kx1k pixel image that can be acquired and saved at a rate of 17 Hz (faster with pixel binning). When reviewing the patient's data, the operator can select images from the patient's directory tree listed by the GUI and cycle through the images using a slider bar. Commonly used camera parameters including exposure time, trigger mode, and individual EMCCD gain can be easily adjusted using the GUI. The GUI is designed to accommodate expansion of the EMCCD array to even larger FOVs with more modules. The high-resolution, high-sensitivity EMCCD modular-array SSXII imager with the new user-friendly GUI should enable angiographers and interventionalists to visualize smaller vessels and endovascular devices, helping them to make more accurate diagnoses and to perform more precise image-guided interventions.

  7. High-Resolution L(Y)SO Detectors Using PMT-Quadrant-Sharing for Human and Animal PET Cameras

    Science.gov (United States)

    Ramirez, Rocio A.; Liu, Shitao; Liu, Jiguo; Zhang, Yuxuan; Kim, Soonseok; Baghaei, Hossain; Li, Hongdi; Wang, Yu; Wong, Wai-Hoi

    2008-06-01

    We developed high resolution L(Y)SO detectors for human and animal PET applications using Photomulti- plier-quadrant-sharing (PQS) technology. The crystal sizes were 1.27 times 1.27 times 10 mm3 for the animal PQS-blocks and 3.25 times 3.25 times 20 mm3 for human ones. Polymer mirror film patterns (PMR) were placed between crystals as reflector. The blocks were assembled together using optical grease and wrapped by Teflon tape. The blocks were coupled to regular round PMTs of 19/51 mm in PQS configuration. List-mode data of Ga-68 source (511 keV) were acquired with our high yield pileup-event recovery (HYPER) electronics and data acquisition software. The high voltage bias was 1100 V. Crystal decoding maps and individual crystal energy resolutions were extracted from the data. To investigate the potential imaging resolution of the PET cameras with these blocks, we used GATE (Geant4 Application for Tomographic Emission) simulation package. GATE is a GEANT4 based software toolkit for realistic simulation of PET and SPECT systems. The packing fractions of these blocks were found to be 95.6% and 98.2%. From the decoding maps, all 196 and 225 crystals were clearly identified. The average energy resolutions were 14.1% and 15.6%. For small animal PET systems, the detector ring diameter was 16.5 cm with an axial field of view (AFOV) of 11.8 cm. The simulation data suggests that a reconstructed radial (tangential) spatial resolution of 1.24 (1.25) mm near the center is potentially achievable. For the whole-body human PET systems, the detector ring diameter was 86 cm. The simulation data suggests that a reconstructed radial (tangential) spatial resolution of 3.09(3.38) mm near the center is potentially achievable. From this study we can conclude that the PQS design could achieve high spatial resolutions and excellent energy resolutions on human and animal PET systems with substantially lower production costs and inexpensive readout devices.

  8. A 4K x 4K HgCdTe astronomical camera enabled by the JWST NIR detector development program

    Science.gov (United States)

    Hall, Donald N. B.; Luppino, Gerard; Hodapp, Klaus W.; Garnett, James D.; Loose, Markus; Zandian, Majid

    2004-09-01

    The ambitious science goals of the James Webb Space Telescope (JWST) have driven spectacular advances in λco ~ 5um detector technology over the past five years. This paper reviews both the UH/RSC team"s Phase A development and evaluation of 2Kx2K arrays exceeding the detector requirements for JWST"s near infrared instruments and also the hardware integration of these into a 4Kx4K (16Mpxl) close packed mosaic focal plane array housed in an Ultra Low Background test facility. Both individual first generation 2Kx2K SCA"s and 4Kx4K mosaic focal planes have been extensively characterized in the laboratory and, since September 2003, a NIR camera utilizing the 4Kx4K mosaic focal plane has been in use for nearly 100 nights at the UH 2.2 m telescope on Mauna Kea. Typical test results for the first generation 2Kx2K arrays and their integration into 4Kx4K mosaic focal planes are reported. Demonstration of the design concepts and both array and mosaic focal plane performance in actual hardware, as described here, has provided the foundation for design iterations leading to later generations of 2Kx2K arrays and 4Kx4K mosaic focal planes. Four major technology developments leading to first generation hardware demonstrations of both 2Kx2K SCA"s and a 4Kx4K mosaic FPA are reviewed. These are: 1) improvement in test equipment and procedures to characterize the detectors against JWST requirements and goals, primarily at 37K but with the capability to test from 30K to 100K; 2) optimization of λc ~ 5 um MBE HgCdTe material on a CZT substrate for low dark current (goal of 0.003 e-/sec at 37K) with high quantum efficiency, low cross-talk and greatly reduced image persistence; 3) development of the 2Kx2K HAWAII-2RG multiplexer designed specifically to take full advantage of these detector characteristics for a wide range of astronomical applications (and fully compatible with an ASIC controller developed under the JWST Instrument Technology Development initiative) and 4) development of

  9. Feedback-amplified electrochemical dual-plate boron-doped diamond microtrench detector for flow injection analysis

    Science.gov (United States)

    Lewis, Grace E M; Gross, Andrew J; Kasprzyk-Hordern, Barbara; Lubben, Anneke T; Marken, Frank

    2015-01-01

    An electrochemical flow cell with a boron-doped diamond dual-plate microtrench electrode has been developed and demonstrated for hydroquinone flow injection electroanalysis in phosphate buffer pH 7. Using the electrochemical generator-collector feedback detector improves the sensitivity by one order of magnitude (when compared to a single working electrode detector). The diffusion process is switched from an analyte consuming “external” process to an analyte regenerating “internal” process with benefits in selectivity and sensitivity. PMID:25735831

  10. Interstudy repeatability of left and right ventricular volume estimations by serial-gated tomographic radionuclide angiographies using a cadmium-zinc-telluride detector gamma camera

    DEFF Research Database (Denmark)

    Jensen, Maria Maj; Haase, Christine; Zerahn, Bo

    2015-01-01

    ·3% (-6·90 to 5·20) and 7·0% (-13·9 to 11·1), respectively. For the right ventricle, the corresponding values were 11·9% (-9·40 to 10·8), 9·8% (-14·9 to 10·8) and 8·1% (-20·7 to 16·3). DISCUSSION: The CZT detector camera has excellent reproducibility with regard to interstudy variation when assessing LV...

  11. Design and gamma sensitivity measurement of a novel dual-emitter vacuum Compton detector

    Institute of Scientific and Technical Information of China (English)

    Han He-Tong; Wang Qun-Shu; Xia Liang-Bin; Guan Xing-Yin; Zhang Zi-Chuan

    2009-01-01

    A novel dual-emitter vacuum Compton detector (D-VCD) with higher gamma ray detecting efficiency is proposed. The emitters are made of Ta-A1 clad metal. The gamma ray sensitivity is studied by Monte Carlo simulation using the MCNP code. A comparison between calculations and results measured by using the 1.25 MeV gamma ray of Co-60 is also performed. Experimental sensitivities for two sample D-VCDs with the same materials and structures are 1.92×10~(-20) and 2.02×10~(-20)C·cm~2/MeV separately. which are consistent with the simulation result of 1.98×10~(-20)C·cm~2/MeV and are 4 times higher than that of VCD with a single Fe emitter. According to the simulation results, in a gamma energy range from 0.5 to 3 MeV, the maximum sensitivity variance for the D-VCD is less than 15%, and less than 5% in a range from 1 to 2 MeV in particular. The novel D-VCD is applicable to the detection of intense pulse gamma rays.

  12. Development of a 32-detector CdTe matrix for the SVOM ECLAIRs x/gamma camera: tests results of first flight models

    Science.gov (United States)

    Lacombe, K.; Dezalay, J.-P.; Houret, B.; Amoros, C.; Atteia, J.-L.; Aubaret, K.; Billot, M.; Bordon, S.; Cordier, B.; Delaigue, S.; Galliano, M.; Gevin, O.; Godet, O.; Gonzalez, F.; Guillemot, Ph.; Limousin, O.; Mercier, K.; Nasser, G.; Pons, R.; Rambaud, D.; Ramon, P.; Waegebaert, V.

    2016-07-01

    ECLAIRs, a 2-D coded-mask imaging camera on-board the Sino-French SVOM space mission, will detect and locate gamma-ray bursts in near real time in the 4 - 150 keV energy band in a large field of view. The design of ECLAIRs has been driven by the objective to reach an unprecedented low-energy threshold of 4 keV. The detection plane is an assembly of 6400 Schottky CdTe detectors of size 4x4x1 mm3, biased from -200V to -500V and operated at -20°C. The low-energy threshold is achieved thanks to an innovative hybrid module composed of a thick film ceramic holding 32 CdTe detectors ("Detectors Ceramics"), associated to an HTCC ceramic housing a low-noise 32-channel ASIC ("ASIC Ceramics"). We manage the coupling between Detectors Ceramics and ASIC Ceramics in order to achieve the best performance and ensure the uniformity of the detection plane. In this paper, we describe the complete hybrid XRDPIX, of which 50 flight models have been manufactured by the SAGEM company. Afterwards, we show test results obtained on Detectors Ceramics, on ASIC Ceramics and on the modules once assembled. Then, we compare and confront detectors leakage currents and ASIC ENC with the energy threshold values and FWHM measured on XRDPIX modules at the temperature of -20°C by using a calibrated radioactive source of 241Am. Finally, we study the homogeneity of the spectral properties of the 32-detector hybrid matrices and we conclude on general performance of more than 1000 detection channels which may reach the lowenergy threshold of 4 keV required for the future ECLAIRs space camera.

  13. Initial evaluation of a modified dual-energy window scatter correction method for CZT-based gamma cameras for breast SPECT

    Science.gov (United States)

    Mann, Steve D.; Tornai, Martin P.

    2015-03-01

    Solid state Cadmium Zinc Telluride (CZT) gamma cameras for SPECT imaging offer significantly improved energy resolution compared to traditional scintillation detectors. However, the photopeak resolution is often asymmetric due to incomplete charge collection within the detector, resulting in many photopeak events incorrectly sorted into lower energy bins ("tailing"). These misplaced events contaminate the true scatter signal, which may negatively impact scatter correction methods that rely on estimates of scatter from the spectra. Additionally, because CZT detectors are organized into arrays, each individual detector element may exhibit different degrees of tailing. Here, we present a modified dualenergy window scatter correction method for emission detection and imaging that attempts to account for positiondependent effects of incomplete charge collection in the CZT gamma camera of our dedicated breast SPECT-CT system. Point source measurements and geometric phantoms were used to estimate the impact of tailing on the scatter signal and extract a better estimate of the ratio of scatter within two energy windows. To evaluate the method, cylindrical phantoms with and without a separate fillable chamber were scanned to determine the impact on quantification in hot, cold, and uniform background regions. Projections were reconstructed using OSEM, and the results for the traditional and modified scatter correction methods were compared. Results show that while modest reduced quantification accuracy was observed in hot and cold regions of the multi-chamber phantoms, the modified scatter correction method yields up to 8% improved quantification accuracy with 4% less added noise than the traditional DEW method within uniform background regions.

  14. Characterisation of Low Frequency Gravitational Waves from Dual RF Coaxial-Cable Detector: Fractal Textured Dynamical 3-Space

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2012-07-01

    Full Text Available Experiments have revealed that the Fresnel drag effect is not present in RF coaxial cables, contrary to a previous report. This enables a very sensitive, robust and compact detector, that is 1st order in v / c and using one clock, to detect the dynamical space passing the earth, revealing the sidereal rotation of the earth, together with significant wave / turbulence e ff ects. These are “gravitational waves”, and previously detected by Cahill 2006, using an Optical-Fibre – RF Coaxial Cable Detector, and Cahill 2009, using a preliminary version of the Dual RF Coaxial Cable Detector. The gravitational waves have a 1 / f spectrum, implying a fractal structure to the textured dynamical 3- space.

  15. Feasibility study of a dual detector configuration concept for simultaneous megavoltage imaging and dose verification in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Shrikant, E-mail: shrikant.Deshpande@sswahs.nsw.gov.au [Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centre, Sydney NSW 2170 (Australia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong NSW 2170 (Australia); Ingham Institute for Applied Medical Research, Sydney, NSW 2170 (Australia); McNamara, Aimee L. [Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia and Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Holloway, Lois [Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centre, Sydney NSW 2170 (Australia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong NSW 2170 (Australia); Ingham Institute for Applied Medical Research, Sydney, NSW 2170 (Australia); Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); South Western Sydney Clinical School, University of New South Wales, Sydney, NSW 2052 (Australia); Metcalfe, Peter [Centre for Medical Radiation Physics, University of Wollongong, Wollongong NSW 2170 (Australia); Ingham Institute for Applied Medical Research, Sydney, NSW 2170 (Australia); Vial, Philip [Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centre, Sydney NSW 2170 (Australia); Ingham Institute for Applied Medical Research, Sydney, NSW 2170 (Australia); Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia)

    2015-04-15

    Purpose: To test the feasibility of a dual detector concept for comprehensive verification of external beam radiotherapy. Specifically, the authors test the hypothesis that a portal imaging device coupled to a 2D dosimeter provides a system capable of simultaneous imaging and dose verification, and that the presence of each device does not significantly detract from the performance of the other. Methods: The dual detector configuration comprised of a standard radiotherapy electronic portal imaging device (EPID) positioned directly on top of an ionization-chamber array (ICA) with 2 cm solid water buildup material (between EPID and ICA) and 5 cm solid backscatter material. The dose response characteristics of the ICA and the imaging performance of the EPID in the dual detector configuration were compared to the performance in their respective reference clinical configurations. The reference clinical configurations were 6 cm solid water buildup material, an ICA, and 5 cm solid water backscatter material as the reference dosimetry configuration, and an EPID with no additional buildup or solid backscatter material as the reference imaging configuration. The dose response of the ICA was evaluated by measuring the detector’s response with respect to off-axis position, field size, and transit object thickness. Clinical dosimetry performance was evaluated by measuring a range of clinical intensity-modulated radiation therapy (IMRT) beams in transit and nontransit geometries. The imaging performance of the EPID was evaluated quantitatively by measuring the contrast-to-noise ratio (CNR) and spatial resolution. Images of an anthropomorphic phantom were also used for qualitative assessment. Results: The measured off-axis and field size response with the ICA in both transit and nontransit geometries for both dual detector configuration and reference dosimetry configuration agreed to within 1%. Transit dose response as a function of object thickness agreed to within 0.5%. All

  16. Investigation of dual-energy X-ray photon counting using a cadmium telluride detector with dual-energy selection electronics

    Science.gov (United States)

    Sato, Eiichi; Kosuge, Yoshiyuki; Yamanome, Hayato; Mikata, Akiko; Miura, Tatsuya; Oda, Yasuyuki; Ishii, Tomotaka; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Watanabe, Manabu; Kusachi, Shinya

    2017-01-01

    To obtain two kinds of tomograms at two different X-ray energy ranges simultaneously, we have developed a dual-energy X-ray photon counter with a cadmium telluride (CdTe) detector and two energy-selecting devices (ESDs). The ESD consists of two comparators and a microcomputer (MC). X-ray photons are detected using the CdTe detector, and the event pulses from a shaping amplifier are sent to two ESDs simultaneously to determine two energy ranges. X-ray photons in the two ranges are counted using the MCs, and the logical pulses from the MCs are input to frequency-to-voltage converters (FVCs). The outputs from the two FVCs are input to a personal computer through an analog-to-digital converter to carry out dual-energy computed tomography. The tube voltage and current were 80 kV and 8.5 μA, respectively. Two tomograms were obtained simultaneously with two energy ranges. K-edge CT using iodine and gadolinium media was carried out utilizing two energy ranges of 33-45 and 50-65 keV, respectively. The maximum count rate was 6.8 kilocounts per second with energies ranging from 10 to 80 keV, and the exposure time for tomography was 9.8 min.

  17. Absolute phase-assisted three-dimensional data registration for a dual-camera structured light system.

    Science.gov (United States)

    Zhang, Song; Yau, Shing-Tung

    2008-06-10

    For a three-dimensional shape measurement system with a single projector and multiple cameras, registering patches from different cameras is crucial. Registration usually involves a complicated and time-consuming procedure. We propose a new method that can robustly match different patches via absolute phase without significantly increasing its cost. For y and z coordinates, the transformations from one camera to the other are approximated as third-order polynomial functions of the absolute phase. The x coordinates involve only translations and scalings. These functions are calibrated and only need to be determined once. Experiments demonstrated that the alignment error is within RMS 0.7 mm.

  18. Large arrays of dual-polarized multichroic TES detectors for CMB measurements with the SPT-3G receiver

    Science.gov (United States)

    Posada, Chrystian M.; Ade, Peter A. R.; Anderson, Adam J.; Avva, Jessica; Ahmed, Zeeshan; Arnold, Kam S.; Austermann, Jason; Bender, Amy N.; Benson, Bradford A.; Bleem, Lindsey; Byrum, Karen; Carlstrom, John E.; Carter, Faustin W.; Chang, Clarence; Cho, Hsiao-Mei; Cukierman, Ari; Czaplewski, David A.; Ding, Junjia; Divan, Ralu N. S.; de Haan, Tijmen; Dobbs, Matt; Dutcher, Daniel; Everett, Wenderline; Gannon, Renae N.; Guyser, Robert J.; Halverson, Nils W.; Harrington, Nicholas L.; Hattori, Kaori; Henning, Jason W.; Hilton, Gene C.; Holzapfel, William L.; Huang, Nicholas; Irwin, Kent D.; Jeong, Oliver; Khaire, Trupti; Korman, Milo; Kubik, Donna L.; Kuo, Chao-Lin; Lee, Adrian T.; Leitch, Erik M.; Lendinez Escudero, Sergi; Meyer, Stephan S.; Miller, Christina S.; Montgomery, Joshua; Nadolski, Andrew; Natoli, Tyler J.; Nguyen, Hogan; Novosad, Valentyn; Padin, Stephen; Pan, Zhaodi; Pearson, John E.; Rahlin, Alexandra; Reichardt, Christian L.; Ruhl, John E.; Saliwanchik, Benjamin; Shirley, Ian; Sayre, James T.; Shariff, Jamil A.; Shirokoff, Erik D.; Stan, Liliana; Stark, Antony A.; Sobrin, Joshua; Story, Kyle; Suzuki, Aritoki; Tang, Qing Yang; Thakur, Ritoban B.; Thompson, Keith L.; Tucker, Carole E.; Vanderlinde, Keith; Vieira, Joaquin D.; Wang, Gensheng; Whitehorn, Nathan; Yefremenko, Volodymyr; Yoon, Ki Won

    2016-07-01

    Detectors for cosmic microwave background (CMB) experiments are now essentially background limited, so a straightforward alternative to improve sensitivity is to increase the number of detectors. Large arrays of multichroic pixels constitute an economical approach to increasing the number of detectors within a given focal plane area. Here, we present the fabrication of large arrays of dual-polarized multichroic transition-edge-sensor (TES) bolometers for the South Pole Telescope third-generation CMB receiver (SPT-3G). The complete SPT-3G receiver will have 2690 pixels, each with six detectors, allowing for individual measurement of three spectral bands (centered at 95 GHz, 150 GHz and 220 GHz) in two orthogonal polarizations. In total, the SPT-3G focal plane will have 16140 detectors. Each pixel is comprised of a broad-band sinuous antenna coupled to a niobium microstrip transmission line. In-line filters are used to define the different band-passes before the millimeter-wavelength signal is fed to the respective Ti/Au TES sensors. Detectors are read out using a 64x frequency domain multiplexing (fMux) scheme. The microfabrication of the SPT-3G detector arrays involves a total of 18 processes, including 13 lithography steps. Together with the fabrication process, the effect of processing on the Ti/Au TES's Tc is discussed. In addition, detectors fabricated with Ti/Au TES films with Tc between 400 mK 560 mK are presented and their thermal characteristics are evaluated. Optical characterization of the arrays is presented as well, indicating that the response of the detectors is in good agreement with the design values for all three spectral bands (95 GHz, 150 GHz, and 220 GHz). The measured optical efficiency of the detectors is between 0.3 and 0.8. Results discussed here are extracted from a batch of research of development wafers used to develop the baseline process for the fabrication of the arrays of detectors to be deployed with the SPT-3G receiver. Results from

  19. Simulations of a dual TOF detector system for isochronous mass spectrometry in the collector ring at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Diwisch, Marcel; Kuzminchuk-Feuerstein, Natalia [Justus-Liebig-Universitaet Giessen (Germany); Dickel, Timo; Geissel, Hans; Knoebel, Ronja; Plass, Wolfgang; Scheidenberger, Christoph [Justus-Liebig-Universitaet Giessen (Germany); GSI, Darmstadt (Germany); Weick, Helmut [GSI, Darmstadt (Germany)

    2013-07-01

    Direct mass measurements of short-lived exotic nuclei yield key information for modern nuclear physics. Experimentally determined mass values of exotic nuclei have a big impact on numerous applications in fundamental and applied science. With the Superconducting-Fragment Separator (Super-FRS) at the new FAIR facility a whole new range of exotic nuclei far away from stability will be accessible. Higher beam intensities and larger phase space volumes impose new challenges for the detection systems. To measure masses of short-lived exotic nuclei one can use the Isochronous Mass Spectrometry (IMS) which presently is successfully performed at the FRS-ESR facility. For IMS in the future Collector Ring, (CR) a first version of a new dual Time-Of-Flight (TOF) detector system, which fulfills the requirements of the new beam parameters has been designed. Simulation results for the new TOF detector in the CR will be shown.

  20. Calibration model of a dual gain flat panel detector for 2D and 3D x-ray imaging.

    Science.gov (United States)

    Schmidgunst, C; Ritter, D; Lang, E

    2007-09-01

    The continuing research and further development in flat panel detector technology have led to its integration into more and more medical x-ray systems for two-dimensional (2D) and three-dimensional (3D) imaging, such as fixed or mobile C arms. Besides the obvious advantages of flat panel detectors, like the slim design and the resulting optimum accessibility to the patient, their success is primarily a product of the image quality that can be achieved. The benefits in the physical and performance-related features as opposed to conventional image intensifier systems, (e.g., distortion-free reproduction of imaging information or almost linear signal response over a large dynamic range) can be fully exploited, however, only if the raw detector images are correctly calibrated and postprocessed. Previous procedures for processing raw data contain idealizations that, in the real world, lead to artifacts or losses in image quality. Thus, for example, temperature dependencies or changes in beam geometry, as can occur with mobile C arm systems, have not been taken into account up to this time. Additionally, adverse characteristics such as image lag or aging effects have to be compensated to attain the best possible image quality. In this article a procedure is presented that takes into account the important dependencies of the individual pixel sensitivity of flat panel detectors used in 2D or 3D imaging and simultaneously minimizes the work required for an extensive recalibration. It is suitable for conventional detectors with only one gain mode as well as for the detectors specially developed for 3D imaging with dual gain read-out technology.

  1. Dual-Energy Semiconductor Detector of X-rays and Gamma Radiation

    Directory of Open Access Journals (Sweden)

    Brodyn, M.S.

    2014-03-01

    Full Text Available Analysis of the major types of ionizing radiation detectors, their advantages and disadvantages are presented. Application of ZnSe-based semiconductor detector in high temperature environment is substantiated. Different forms of ZnSe-based detector samples and double-crystal scheme for registration of X- and gamma rays in a broad energy range were used . Based on the manufactured simulator device, the study sustains the feasibility of the gamma quanta recording by a high-resistance ZnSe-based detector operating in a perpulse mode.

  2. Extensive testing of Schottky CdTe detectors for the ECLAIRs X-Gamma-ray Camera on board the SVOM mission

    CERN Document Server

    Nadege, Remoue; Olivier, Godet; Pierre, Mandrou

    2010-01-01

    We report on an on-going test campaign of more than 5000 Schottky CdTe detectors (4x4x1 mm^3), over a sample of twelve thousands, provided by Acrorad Co., Ltd (Japan). 6400 of these detectors will be used to build the detection plane of the ECLAIRs camera on the Chinese-French gamma-ray burst mission SVOM. These tests are mandatory to fulfill the prime requirement of ECLAIRs to detect gamma-ray burst photons down to 4 keV. The detectors will be operated at -20C under a reverse bias of 600 V. We found that 78% of the detectors already tested could be considered for the flight model. We measured a mean energy resolution of 1.8 keV at 59.6 keV. We investigated the polarization effect first at room temperature and low bias voltage for faster analysis. We found that the spectroscopic degradation in quantum efficiency, gain and energy resolution, starts as soon as the bias is turned on: first slowly and then dramatically after a time t_p which depends on the temperature and the voltage value. Preliminary tests unde...

  3. Determination of kidney function with 99mTc-DTPA renography using a dual-head camera

    DEFF Research Database (Denmark)

    Madsen, Claus J; Møller, Michael L; Zerahn, Bo;

    2013-01-01

    Single-head gamma camera renography has been used for decades to estimate kidney function. An estimate of the glomerular filtration rate (GFR) can be obtained using Tc-diethylenetriaminepentaacetic acid (Tc-DTPA). However, because of differing attenuation, an error is introduced when the kidney...

  4. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    Science.gov (United States)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56-0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose.

  5. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time.

    Science.gov (United States)

    Zhang, Qingteng; Dufresne, Eric M; Grybos, Pawel; Kmon, Piotr; Maj, Piotr; Narayanan, Suresh; Deptuch, Grzegorz W; Szczygiel, Robert; Sandy, Alec

    2016-05-01

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. The potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.

  6. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qingteng; Dufresne, Eric M.; Grybos, Pawel; Kmon, Piotr; Maj, Piotr; Narayanan, Suresh; Deptuch, Grzegorz W.; Szczygiel, Robert; Sandy, Alec

    2016-04-19

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. The potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.

  7. High-efficiency microstructured semiconductor neutron detectors that are arrayed, dual-integrated, and stacked

    Energy Technology Data Exchange (ETDEWEB)

    Bellinger, Steven L., E-mail: slb3888@ksu.edu [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States); Fronk, Ryan G. [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States); Sobering, Timothy J. [Electronics Design Laboratory, Kansas State University, Manhattan, KS 66506 (United States); McGregor, Douglas S. [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States)

    2012-07-15

    Silicon diodes with large aspect ratio 3D microstructures backfilled with {sup 6}LiF show a significant increase in neutron detection efficiency beyond that of conventional thin-film coated planar devices. Described in this work are advancements in the technology using detector stacking methods and summed-detector 6 Multiplication-Sign 6-element arraying methods to dramatically increase the sensitivity to thermal neutrons. The intrinsic detection efficiency of the 6 Multiplication-Sign 6 array for normal-incident 0.0253 eV neutrons was found 6.8% compared against a calibrated {sup 3}He proportional counter. - Highlights: Black-Right-Pointing-Pointer Solid-state semiconductor neutron detectors utilizing {sup 6}LiF. Black-Right-Pointing-Pointer Large aspect ratio 3D microstructured silicon diodes. Black-Right-Pointing-Pointer Arrayed solid-state semiconductor neutron detectors.

  8. The dual-gain mode: a way to enhance the dynamic range of X-ray detectors

    CERN Document Server

    Matsinos, E; Kaissl, Wolfgang; Matsinos, Evangelos

    2006-01-01

    Varian Medical Systems has manufactured and recently put into operation a clinically-applicable solution for image-guided radiation therapy. Cone-beam CT imaging, one of the operation modes of the imaging unit of this device, aims at high-quality volumetric reconstruction. To boost the image quality, the dual-gain mode, a successful means for enhancing the dynamic range of the flat-panel detectors and obtaining better results in the contrast of the reconstructed image, was developed and successfully tested during the last few years. The important steps in the calibration of this mode involve a correction to the pulse widths associated with the X-ray production, the assessment of the detector signal above which nonlinear effects become significant and the determination of some properties of the detector pixels, namely, of dark fields, flatness corrections, etc. Finally, the defect-pixel map is obtained, containing dead and flickering pixels, as well as pixels with properties which are sufficiently `out of rang...

  9. Commissioning and Characterization of a Dedicated High-Resolution Breast PET Camera

    Science.gov (United States)

    2014-02-01

    project consists of many detector modules formed by coupling pairs of high resolution scintillation crystal arrays to position sensitive avalanche...completed part of the camera. Two panels with each 8 layers of 16 dual modules can be seen. A water cooled heatsink is visible as well. Flat Flexible...mounted to using a miniature screw. These fins conduct the produced heat ( about 3 mW per fin ) to the edge of the detector panels . A thermoelectric

  10. Monolithic dual-band HgCdTe infrared detector structure

    CSIR Research Space (South Africa)

    Parish, G

    1997-07-01

    Full Text Available A monolithic HgCdTe photoconductive device structure is presented that is suitable for dual-band optically registered infrared photodetection in the two atmospheric transmission windows of 3-5 mu m and 8-12 mu m, which correspond to the mid...

  11. Adaptive compressive sensing camera

    Science.gov (United States)

    Hsu, Charles; Hsu, Ming K.; Cha, Jae; Iwamura, Tomo; Landa, Joseph; Nguyen, Charles; Szu, Harold

    2013-05-01

    We have embedded Adaptive Compressive Sensing (ACS) algorithm on Charge-Coupled-Device (CCD) camera based on the simplest concept that each pixel is a charge bucket, and the charges comes from Einstein photoelectric conversion effect. Applying the manufactory design principle, we only allow altering each working component at a minimum one step. We then simulated what would be such a camera can do for real world persistent surveillance taking into account of diurnal, all weather, and seasonal variations. The data storage has saved immensely, and the order of magnitude of saving is inversely proportional to target angular speed. We did design two new components of CCD camera. Due to the matured CMOS (Complementary metal-oxide-semiconductor) technology, the on-chip Sample and Hold (SAH) circuitry can be designed for a dual Photon Detector (PD) analog circuitry for changedetection that predicts skipping or going forward at a sufficient sampling frame rate. For an admitted frame, there is a purely random sparse matrix [Φ] which is implemented at each bucket pixel level the charge transport bias voltage toward its neighborhood buckets or not, and if not, it goes to the ground drainage. Since the snapshot image is not a video, we could not apply the usual MPEG video compression and Hoffman entropy codec as well as powerful WaveNet Wrapper on sensor level. We shall compare (i) Pre-Processing FFT and a threshold of significant Fourier mode components and inverse FFT to check PSNR; (ii) Post-Processing image recovery will be selectively done by CDT&D adaptive version of linear programming at L1 minimization and L2 similarity. For (ii) we need to determine in new frames selection by SAH circuitry (i) the degree of information (d.o.i) K(t) dictates the purely random linear sparse combination of measurement data a la [Φ]M,N M(t) = K(t) Log N(t).

  12. A dual-inlet, single detector relaxed eddy accumulation system for long-term measurement of mercury flux

    Science.gov (United States)

    Osterwalder, S.; Fritsche, J.; Alewell, C.; Schmutz, M.; Nilsson, M. B.; Jocher, G.; Sommar, J.; Rinne, J.; Bishop, K.

    2016-02-01

    The fate of anthropogenic emissions of mercury (Hg) to the atmosphere is influenced by the exchange of elemental Hg with the earth surface. This exchange holds the key to a better understanding of Hg cycling from local to global scales, which has been difficult to quantify. To advance research about land-atmosphere Hg interactions, we developed a dual-inlet, single detector relaxed eddy accumulation (REA) system. REA is an established technique for measuring turbulent fluxes of trace gases and aerosol particles in the atmospheric surface layer. Accurate determination of gaseous elemental mercury (GEM) fluxes has proven difficult due to technical challenges presented by extremely small concentration differences (typically < 0.5 ng m-3) between updrafts and downdrafts. We present an advanced REA design that uses two inlets and two pairs of gold cartridges for continuous monitoring of GEM fluxes. This setup reduces the major uncertainty created by the sequential sampling in many previous designs. Additionally, the instrument is equipped with a GEM reference gas generator that monitors drift and recovery rates. These innovations facilitate continuous, autonomous measurement of GEM flux. To demonstrate the system performance, we present results from field campaigns in two contrasting environments: an urban setting with a heterogeneous fetch and a boreal peatland during snowmelt. The observed average emission rates were 15 and 3 ng m-2 h-1, respectively. We believe that this dual-inlet, single detector approach is a significant improvement of the REA system for ultra-trace gases and can help to advance our understanding of long-term land-atmosphere GEM exchange.

  13. New optical four-quadrant phase detector integrated into a photogate array for small and precise 3D cameras

    Science.gov (United States)

    Schwarte, Rudolf; Xu, Zhanping; Heinol, Horst-Guenther; Olk, Joachim; Buxbaum, Bernd

    1997-03-01

    The photonic mixer device (PMD) is a new electro-optical mixing semiconductor device. Integrated into a line or an array it may contribute a significant improvement in developing an extremely fast, flexible, robust and low cost 3D-solid-state camera. Three dimensional (3D)-cameras are of dramatically increasing interest in industrial automation, especially for production integrated quality control, in- house navigation, etc. The type of 3D-camera here under consideration is based on the principle of time-of-flight respectively phase delay of surface reflected echoes of rf- modulated light. In contrast to 3D-laser radars there is no scanner required since the whole 3D-scene is illuminated simultaneously using intensity-modulated incoherent light, e.g. in the 10 to 1000 MHz range. The rf-modulated light reflected from the 3D-scene represents the total depth information within the local delay of the back scattered phase front. If this incoming wave front is again rf- modulated by a 2D-mixer within the whole receiving aperture we get a quasi-stationary rf-inference pattern respectively rf-interferogram which may be captured by means of a conventional CCD-camera. This procedure is called rf- modulation interferometry (RFMI). Corresponding to first simulative results the new PMD-array will be appropriate to the RFMI-procedure. Though looking like a modified CCD-array or CMOS-photodetector array it will be able to perform both, the pixelwise mixing process for phase delay respectively depth evaluation and the pixelwise light intensity acquisition for gray level or color evaluation. Further advantageous properties are achieved by means of a four- quadrant (4Q)-PMD array which operates as a balanced inphase/quadrature phase (I/Q)-mixer and will be able to capture the total 3D-scene information of several 100,000 voxels within the microsecond(s) - to ms-range.

  14. Development of dual-layer GSO depth-of-interaction block detector using angled optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Satoshi, E-mail: okumura.satoshi@c.mbox.nagoya-u.ac.jp [Nagoya University Graduate School of Medicine (Japan); Yamamoto, Seiichi [Nagoya University Graduate School of Medicine (Japan); Watabe, Hiroshi [Cyclotron and Radioisotope Center (CYRIC), Tohoku University (Japan); Kato, Natsuki; Hamamura, Huka [Nagoya University Graduate School of Medicine (Japan)

    2015-05-01

    A PET system for small animals requires a small detector ring to obtain high-spatial resolution images. However, when we use a relatively large size of photodetector such as a position-sensitive photomultiplier tube (PSPMT), the detector ring is arranged in a hexagonal- or octagonal-shape, and the PET system has large gaps between the block detectors. The large gaps produce image distortion, and the reconstruction algorithm is difficult. To solve these problems, we proposed to arrange two scintillator blocks on one PSPMT using two angled optical fiber-based image guides. We could set two scintillator blocks angled at 22.5° on a PSPMT so that these scintillator blocks are arranged in a nearly circular (hexadecagonal) shape with eight developed block detectors. We used Gd{sub 2}SiO{sub 5} (GSO) scintillators with Ce concentrations of 1.5 mol% (decay time: 39 ns) and 0.4 mol% (decay time: 63 ns). Sizes of these GSO cells were 1.6×2.4×7.0 mm{sup 3} and 1.6×2.4×8.0 mm{sup 3} for 1.5 mol% Ce and 0.4 mol% Ce, respectively. These two types of GSO were arranged in an 11×15 matrix and optically coupled in the depth direction to form a depth-of-interaction (DOI) detector. Two GSO blocks and two optical fiber-based image guides were optically coupled to a 2-in. PSPMT (Hamamatsu Photonics H8500: 8×8 anodes). We measured the performances of the block detector with Cs-137 gamma photons (662-keV). We could resolve almost all pixels clearly in a two-dimensional position histogram. The average peak-to-valley ratios (P/Vs) of the two-dimensional position histogram along profiles were 2.6 and 4.8 in horizontal and vertical directions, respectively. The energy resolution was 28.4% full-width at half-maximum (FWHM). The pulse shape spectra showed good separation with a P/V of 5.2. The developed block detector performed well and shows promise for the development of high-sensitivity and high-spatial resolution PET systems.

  15. Effects of Intermediate Filter Thickness on the Detective Quantum Efficiency of Sandwich Detectors for Dual-Energy X-ray Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junwoo; Kim, Dong Woon; Kam, Soohwa; Youn, Hanbean; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2015-05-15

    The double-shot dual-energy imaging (DEI) can discriminate, or enhance, material content (e.g., bone or soft tissue) within a two-dimensional radiograph and can provide improved visualization of lesions for clinician. Existing double-shot DEI system uses the fast kilovoltage (kV) switching technique (also known as the double-shot or double-exposure technique). However, the double-shot technique is susceptible to motion artifacts resulting from an anatomical mismatch between two successive exposures. We have built the sandwich detector for the singleshot DEI. In order to quantitatively evaluate the imaging performance, we measured the characteristic curve, MTF, NNPS, and DQE of the sandwich detector. The imaging characteristics of the front detector are barely affected by the sandwich structure. On the other hand, a thicker filtration reduces the rear detector response and degrades the NNPS. The MTF of the rear detector is not affected by variations in the Cu filter.

  16. VUV Testing of Science Cameras at MSFC: QE Measurement of the CLASP Flight Cameras

    Science.gov (United States)

    Champey, Patrick R.; Kobayashi, Ken; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, B.; Beabout, D.; Stewart, M.

    2015-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras were built and tested for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The CLASP camera design includes a frame-transfer e2v CCD57-10 512x512 detector, dual channel analog readout electronics and an internally mounted cold block. At the flight operating temperature of -20 C, the CLASP cameras achieved the low-noise performance requirements (less than or equal to 25 e- read noise and greater than or equal to 10 e-/sec/pix dark current), in addition to maintaining a stable gain of approximately equal to 2.0 e-/DN. The e2v CCD57-10 detectors were coated with Lumogen-E to improve quantum efficiency (QE) at the Lyman- wavelength. A vacuum ultra-violet (VUV) monochromator and a NIST calibrated photodiode were employed to measure the QE of each camera. Four flight-like cameras were tested in a high-vacuum chamber, which was configured to operate several tests intended to verify the QE, gain, read noise, dark current and residual non-linearity of the CCD. We present and discuss the QE measurements performed on the CLASP cameras. We also discuss the high-vacuum system outfitted for testing of UV and EUV science cameras at MSFC.

  17. Feasibility Study for a Dual Field of View-Single Detector Array Infrared System.

    Science.gov (United States)

    1974-06-01

    the background is shown in Figure 2-8. In this system the field stop is scare I with a vertical slit and essentially all the energy falling on the...cylindrical mirror will be o focused as a vertical iine on the detector array. Several of the previous problems have been solved in this system. The...patterns Limillid only by DAC, AD,,.J Access y u, limited by speed. anid Display Mtsaitor strict possible formats. xalbe Modification of timing salto

  18. Improved image quality using monolithic scintillator detectors with dual-sided readout in a whole-body TOF-PET ring: a simulation study

    Science.gov (United States)

    Tabacchini, Valerio; Surti, Suleman; Borghi, Giacomo; Karp, Joel S.; Schaart, Dennis R.

    2017-03-01

    We have recently built and characterized the performance of a monolithic scintillator detector based on a 32 mm  ×  32 mm  ×  22 mm LYSO:Ce crystal read out by digital silicon photomultiplier (dSiPM) arrays coupled to the crystal front and back surfaces in a dual-sided readout (DSR) configuration. The detector spatial resolution appeared to be markedly better than that of a detector consisting of the same crystal with conventional back-sided readout (BSR). Here, we aim to evaluate the influence of this difference in the detector spatial response on the quality of reconstructed images, so as to quantify the potential benefit of the DSR approach for high-resolution, whole-body time-of-flight (TOF) positron emission tomography (PET) applications. We perform Monte Carlo simulations of clinical PET systems based on BSR and DSR detectors, using the results of our detector characterization experiments to model the detector spatial responses. We subsequently quantify the improvement in image quality obtained with DSR compared to BSR, using clinically relevant metrics such as the contrast recovery coefficient (CRC) and the area under the localized receiver operating characteristic curve (ALROC). Finally, we compare the results with simulated rings of pixelated detectors with DOI capability. Our results show that the DSR detector produces significantly higher CRC and increased ALROC values than the BSR detector. The comparison with pixelated systems indicates that one would need to choose a crystal size of 3.2 mm with three DOI layers to match the performance of the BSR detector, while a pixel size of 1.3 mm with three DOI layers would be required to get on par with the DSR detector.

  19. Application of PIC microcontrollers in single-sensor dual gas-CO/CH4 detectors

    Science.gov (United States)

    Pietraszek, Stanislaw; Pachole, Aleksander

    2001-08-01

    The main aim of this work is to present an application of PIC16 microcontrollers in single sensor two gas - CO and CH4 detectors, using recently developed by FIS Incorporated, semiconductor sensor SB-95. Microcontroller is used not only for comparison the actual output signal from the sensor with the warning and alarm thresholds, but also provides control and self diagnostic functions. Output logic signals allow user to check the level of gas concentration and detect the improper operation of sensor and electronics circuits.

  20. DSP-based non-coherent dual detector demodulator for land mobile radio channels

    Science.gov (United States)

    Saulnier, Gary J.; Rafferty, William

    1986-01-01

    This paper outlines the development of a digital demodulator suitable for the non-coherent detection of various modulation formats including: Phase Shift Keying (PSK), Continuous Phase Frequency Shift Keying (CPFSK) and Frequency Modulation (FM). The demodulator design concept has been derived with a view towards a single integrated circuit (IC) implementation. Two detectors, one non-coherent and one differentially coherent, operate concurrently, providing data detection and automatic frequency control (AFC). Bit error rate results are provided which illustrate the receiver performance in white Gaussian noise.

  1. Invited article: The fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis

    Science.gov (United States)

    Labiche, Jean-Claude; Mathon, Olivier; Pascarelli, Sakura; Newton, Mark A.; Ferre, Gemma Guilera; Curfs, Caroline; Vaughan, Gavin; Homs, Alejandro; Carreiras, David Fernandez

    2007-09-01

    Originally conceived and developed at the European Synchrotron Radiation Facility (ESRF) as an "area" detector for rapid x-ray imaging studies, the fast readout low noise (FReLoN) detector of the ESRF [J.-C. Labiche, ESRF Newsletter 25, 41 (1996)] has been demonstrated to be a highly versatile and unique detector. Charge coupled device (CCD) cameras at present available on the public market offer either a high dynamic range or a high readout speed. A compromise between signal dynamic range and readout speed is always sought. The parameters of the commercial cameras can sometimes be tuned, in order to better fulfill the needs of specific experiments, but in general these cameras have a poor duty cycle (i.e., the signal integration time is much smaller than the readout time). In order to address scientific problems such as time resolved experiments at the ESRF, a FReLoN camera has been developed by the Instrument Support Group at ESRF. This camera is a low noise CCD camera that combines high dynamic range, high readout speed, accuracy, and improved duty cycle in a single image. In this paper, we show its application in a quasi-one-dimensional sense to dynamic problems in materials science, catalysis, and chemistry that require data acquisition on a time scale of milliseconds or a few tens of milliseconds. It is demonstrated that in this mode the FReLoN can be applied equally to the investigation of rapid changes in long range order (via diffraction) and local order (via energy dispersive extended x-ray absorption fine structure) and in situations of x-ray hardness and flux beyond the capacity of other detectors.

  2. Potential applications of a dual-sweep streak camera system for characterizing particle and photon beams of VUV, XUV, and x-ray FELS

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. [Argonne National Lab., IL (United States)

    1995-12-31

    The success of time-resolved imaging techniques in the Characterization of particle beams and photon beams of the recent generation of L-band linac-driven or storage ring FELs in the infrared, visible, and ultraviolet wavelength regions can be extended to the VUV, XUV, and x-ray FELs. Tests and initial data have been obtained with the Hamamatsu C5680 dual-sweep streak camera system which includes a demountable photocathode (thin Au) assembly and a flange that allows windowless operation with the transport vacuum system. This system can be employed at wavelengths shorter than 100 nm and down to 1 {Angstrom}. First tests on such a system at 248-nm wavelengths have been performed oil the Argonne Wakefield Accelerator (AWA) drive laser source. A quartz window was used at the tube entrance aperture. A preliminary test using a Be window mounted on a different front flange of the streak tube to look at an x-ray bremsstrahlung source at the AWA was limited by photon statistics. This system`s limiting resolution of {sigma}{approximately}1.1 ps observed at 248 nm would increase with higher incoming photon energies to the photocathode. This effect is related to the fundamental spread in energies of the photoelectrons released from the photocathodes. Possible uses of the synchrotron radiation sources at the Advanced Photon Source and emerging short wavelength FELs to test the system will be presented.

  3. First polarised light with the NIKA camera

    CERN Document Server

    Ritacco, A; Adane, A; Ade, P; André, P; Beelen, A; Belier, B; Benoît, A; Bideaud, A; Billot, N; Bourrion, O; Calvo, M; Catalano, A; Coiffard, G; Comis, B; D'Addabbo, A; Désert, F -X; Doyle, S; Goupy, J; Kramer, C; Leclercq, S; Macías-Pérez, J F; Martino, J; Mauskopf, P; Maury, A; Mayet, F; Monfardini, A; Pajot, F; Pascale, E; Perotto, L; Pisano, G; Ponthieu, N; Rebolo-Iglesias, M; Réveret, V; Rodriguez, L; Savini, G; Schuster, K; Sievers, A; Thum, C; Triqueneaux, S; Tucker, C; Zylka, R

    2015-01-01

    NIKA is a dual-band camera operating with 315 frequency multiplexed LEKIDs cooled at 100 mK. NIKA is designed to observe the sky in intensity and polarisation at 150 and 260 GHz from the IRAM 30-m telescope. It is a test-bench for the final NIKA2 camera. The incoming linear polarisation is modulated at four times the mechanical rotation frequency by a warm rotating multi-layer Half Wave Plate. Then, the signal is analysed by a wire grid and finally absorbed by the LEKIDs. The small time constant (< 1ms ) of the LEKID detectors combined with the modulation of the HWP enables the quasi-simultaneous measurement of the three Stokes parameters I, Q, U, representing linear polarisation. In this pa- per we present results of recent observational campaigns demonstrating the good performance of NIKA in detecting polarisation at mm wavelength.

  4. First Polarised Light with the NIKA Camera

    Science.gov (United States)

    Ritacco, A.; Adam, R.; Adane, A.; Ade, P.; André, P.; Beelen, A.; Belier, B.; Benoît, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Calvo, M.; Catalano, A.; Coiffard, G.; Comis, B.; D'Addabbo, A.; Désert, F.-X.; Doyle, S.; Goupy, J.; Kramer, C.; Leclercq, S.; Macías-Pérez, J. F.; Martino, J.; Mauskopf, P.; Maury, A.; Mayet, F.; Monfardini, A.; Pajot, F.; Pascale, E.; Perotto, L.; Pisano, G.; Ponthieu, N.; Rebolo-Iglesias, M.; Revéret, V.; Rodriguez, L.; Savini, G.; Schuster, K.; Sievers, A.; Thum, C.; Triqueneaux, S.; Tucker, C.; Zylka, R.

    2016-08-01

    NIKA is a dual-band camera operating with 315 frequency multiplexed LEKIDs cooled at 100 mK. NIKA is designed to observe the sky in intensity and polarisation at 150 and 260 GHz from the IRAM 30-m telescope. It is a test-bench for the final NIKA2 camera. The incoming linear polarisation is modulated at four times the mechanical rotation frequency by a warm rotating multi-layer half- wave plate. Then, the signal is analyzed by a wire grid and finally absorbed by the lumped element kinetic inductance detectors (LEKIDs). The small time constant (ms ) of the LEKIDs combined with the modulation of the HWP enables the quasi-simultaneous measurement of the three Stokes parameters I, Q, U, representing linear polarisation. In this paper, we present the results of recent observational campaigns demonstrating the good performance of NIKA in detecting polarisation at millimeter wavelength.

  5. Closed bipolar electrode-enabled dual-cell electrochromic detectors for chemical sensing.

    Science.gov (United States)

    Xu, Wei; Fu, Kaiyu; Ma, Chaoxiong; Bohn, Paul W

    2016-10-17

    Bipolar electrodes (BPE) are electrically floating metallic elements placed in electrified fluids that enable the coupling of anodic and cathodic redox reactions at the opposite ends by electron transfer through the electrode. One particularly compelling application allows electron transfer reactions at one end of a closed BPE to be read out optically by inducing a redox-initiated change in the optical response function of a reporter system at the other end. Here, a BPE-enabled method for electrochemical sensing based on the electrochromic response of a methyl viologen (MV) reporter is developed, characterized, and rendered in a field-deployable format. BPE-enabled devices based on two thin-layer-cells of ITO and Pt were fabricated to couple an analytical reaction in one cell with an MV reporter reaction, producing a color change in the complementary cell. Using Fe(CN)6(3/4-) as a model analyte, the electrochemically induced color change of MV was determined initially by measuring its absorbance via a CCD camera coupled to a microscope. Then, smartphone-based detection and RGB analysis were employed to further simplify the sensing scheme. Both methods produced a linear relationship between the analyte concentration, the quantity of MV generated, and the colorimetric response, yielding a limit of detection of 1.0 μM. Similar responses were observed in the detection of dopamine and acetaminophen. Further evolution of the device replaced the potentiostat with batteries to control potential, demonstrating the simplicity and portability of the device. Finally, the physical separation of the reporter and analytical cells renders the device competent to detect analytes in different (e.g. non-aqueous) phases, as demonstrated by using the electrochromic behavior of aqueous MV to detect ferrocene in acetonitrile in the analytical cell.

  6. Image quality evaluation of direct-conversion digital mammography system with new dual a-Se layer detector

    Science.gov (United States)

    Kuwabara, Takao; Iwasaki, Nobuyuki; Sendai, Tomonari; Furue, Ryosuke; Agano, Toshitaka

    2009-02-01

    To increase the detection performance of breast cancers in mammograms, we need to improve shape delineation of micro calcifications and tumors. We accomplished this by developing a direct-conversion mammography system with an optical reading method and a new dual a-Se layer detector. The system achieved both small pixel size (50 micrometer) and a high Detective Quantum Efficiency (DQE) realized by 100 % of fill factor and noise reduction. We evaluated image quality performance and determined the best exposure conditions. We measured DQE and Modulation Transfer Function(MTF) according to the IEC62220-1-2. High DQE was maintained at a low radiation dosage, indicating that the optical reading method accompanies low noises. Response of MTF was maintained at up to the Nyquist frequency of 10 cyc/mm, which corresponds to 50 micrometer pixel size. To determine the best exposure conditions, we measured Contrast to Noise Ratio (CNR) and visually evaluated images of a resected breast under conditions of MoMo, MoRh, and WRh. There were occasional disagreements between the exposure conditions for achieving the maximum CNR and those for the best image graded by the visual evaluation. This was probably because CNR measurement does not measure effects of scattered X-ray. The images verified the improvement in detection and delineation performance of micro calcifications and tumors.

  7. The effect of amorphous selenium detector thickness on dual-energy digital breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yue-Houng, E-mail: yuehoung.hu@gmail.com; Zhao, Wei [Department of Radiology, State University of New York at Stony Brook, L-4 120 Health Sciences Center, Stony Brook, New York 11794-8460 (United States)

    2014-11-01

    Purpose: Contrast enhanced (CE) imaging techniques for both planar digital mammography (DM) and three-dimensional (3D) digital breast tomosynthesis (DBT) applications requires x-ray photon energies higher than the k-edge of iodine (33.2 keV). As a result, x-ray tube potentials much higher (>40 kVp) than those typical for screening mammography must be utilized. Amorphous selenium (a-Se) based direct conversion flat-panel imagers (FPI) have been widely used in DM and DBT imaging systems. The a-Se layer is typically 200 μm thick with quantum detective efficiency (QDE) >87% for x-ray energies below 26 keV. However, QDE decreases substantially above this energy. To improve the object detectability of either CE-DM or CE-DBT, it may be advantageous to increase the thickness (d{sub Se}) of the a-Se layer. Increasing the d{sub Se} will improve the detective quantum efficiency (DQE) at the higher energies used in CE imaging. However, because most DBT systems are designed with partially isocentric geometries, where the gantry moves about a stationary detector, the oblique entry of x-rays will introduce additional blur to the system. The present investigation quantifies the effect of a-Se thickness on imaging performance for both CE-DM and CE-DBT, discussing the effects of improving photon absorption and blurring from oblique entry of x-rays. Methods: In this paper, a cascaded linear system model (CLSM) was used to investigate the effect of d{sub Se} on the imaging performance (i.e., MTF, NPS, and DQE) of FPI in CE-DM and CE-DBT. The results from the model are used to calculate the ideal observer signal-to-noise ratio, d′, which is used as a figure-of-merit to determine the total effect of increasing d{sub Se} for CE-DM and CE-DBT. Results: The results of the CLSM show that increasing d{sub Se} causes a substantial increase in QDE at the high energies used in CE-DM. However, at the oblique projection angles used in DBT, the increased length of penetration through a

  8. A Multimodality Hybrid Gamma-Optical Camera for Intraoperative Imaging

    Directory of Open Access Journals (Sweden)

    John E. Lees

    2017-03-01

    Full Text Available The development of low profile gamma-ray detectors has encouraged the production of small field of view (SFOV hand-held imaging devices for use at the patient bedside and in operating theatres. Early development of these SFOV cameras was focussed on a single modality—gamma ray imaging. Recently, a hybrid system—gamma plus optical imaging—has been developed. This combination of optical and gamma cameras enables high spatial resolution multi-modal imaging, giving a superimposed scintigraphic and optical image. Hybrid imaging offers new possibilities for assisting clinicians and surgeons in localising the site of uptake in procedures such as sentinel node detection. The hybrid camera concept can be extended to a multimodal detector design which can offer stereoscopic images, depth estimation of gamma-emitting sources, and simultaneous gamma and fluorescence imaging. Recent improvements to the hybrid camera have been used to produce dual-modality images in both laboratory simulations and in the clinic. Hybrid imaging of a patient who underwent thyroid scintigraphy is reported. In addition, we present data which shows that the hybrid camera concept can be extended to estimate the position and depth of radionuclide distribution within an object and also report the first combined gamma and Near-Infrared (NIR fluorescence images.

  9. Unmanned ground vehicle perception using thermal infrared cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellutta, Paolo; Sherwin, Gary W.

    2011-05-01

    The ability to perform off-road autonomous navigation at any time of day or night is a requirement for some unmanned ground vehicle (UGV) programs. Because there are times when it is desirable for military UGVs to operate without emitting strong, detectable electromagnetic signals, a passive only terrain perception mode of operation is also often a requirement. Thermal infrared (TIR) cameras can be used to provide day and night passive terrain perception. TIR cameras have a detector sensitive to either mid-wave infrared (MWIR) radiation (3-5μm) or long-wave infrared (LWIR) radiation (7-14μm). With the recent emergence of high-quality uncooled LWIR cameras, TIR cameras have become viable passive perception options for some UGV programs. The Jet Propulsion Laboratory (JPL) has used a stereo pair of TIR cameras under several UGV programs to perform stereo ranging, terrain mapping, tree-trunk detection, pedestrian detection, negative obstacle detection, and water detection based on object reflections. In addition, we have evaluated stereo range data at a variety of UGV speeds, evaluated dual-band TIR classification of soil, vegetation, and rock terrain types, analyzed 24 hour water and 12 hour mud TIR imagery, and analyzed TIR imagery for hazard detection through smoke. Since TIR cameras do not currently provide the resolution available from megapixel color cameras, a UGV's daytime safe speed is often reduced when using TIR instead of color cameras. In this paper, we summarize the UGV terrain perception work JPL has performed with TIR cameras over the last decade and describe a calibration target developed by General Dynamics Robotic Systems (GDRS) for TIR cameras and other sensors.

  10. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellutta, Paolo; Sherwin, Gary W.

    2011-01-01

    The ability to perform off-road autonomous navigation at any time of day or night is a requirement for some unmanned ground vehicle (UGV) programs. Because there are times when it is desirable for military UGVs to operate without emitting strong, detectable electromagnetic signals, a passive only terrain perception mode of operation is also often a requirement. Thermal infrared (TIR) cameras can be used to provide day and night passive terrain perception. TIR cameras have a detector sensitive to either mid-wave infrared (MWIR) radiation (3-5?m) or long-wave infrared (LWIR) radiation (8-12?m). With the recent emergence of high-quality uncooled LWIR cameras, TIR cameras have become viable passive perception options for some UGV programs. The Jet Propulsion Laboratory (JPL) has used a stereo pair of TIR cameras under several UGV programs to perform stereo ranging, terrain mapping, tree-trunk detection, pedestrian detection, negative obstacle detection, and water detection based on object reflections. In addition, we have evaluated stereo range data at a variety of UGV speeds, evaluated dual-band TIR classification of soil, vegetation, and rock terrain types, analyzed 24 hour water and 12 hour mud TIR imagery, and analyzed TIR imagery for hazard detection through smoke. Since TIR cameras do not currently provide the resolution available from megapixel color cameras, a UGV's daytime safe speed is often reduced when using TIR instead of color cameras. In this paper, we summarize the UGV terrain perception work JPL has performed with TIR cameras over the last decade and describe a calibration target developed by General Dynamics Robotic Systems (GDRS) for TIR cameras and other sensors.

  11. Chronic bacterial osteomyelitis: prospective comparison of {sup 18}F-FDG imaging with a dual-head coincidence camera and {sup 111}In-labelled autologous leucocyte scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Meller, J.; Siefker, U.; Lehmann, K.; Meyer, I.; Schreiber, K.; Altenvoerde, G.; Becker, W. [Goettingen Univ. (Germany). Abt. fuer Nuklearmedizin; Koester, G. [Dept. of Orthopedics, Goettingen Univ. (Germany); Liersch, T. [Dept. of Traumatic Surgery, Goettingen Univ. (Germany)

    2002-01-01

    Indium-111-labelled white blood cells ({sup 111}In-WBCs) are currently considered the tracer of choice in the diagnostic work-up of suspected active chronic osteomyelitis (COM). Previous studies in a limited number of patients, performed with dedicated PET systems, have shown that [{sup 18}F]2'-deoxy-2-fluoro-D-glucose (FDG) imaging may offer at least similar diagnostic accuracy. The aim of this prospective study was to compare FDG imaging with a dual-head coincidence camera (DHCC) and {sup 111}In-WBC imaging in patients with suspected COM. Thirty consecutive non-diabetic patients with possible COM underwent combined skeletal scintigraphy (30/30 patients), {sup 111}In-WBC imaging (28/30 patients) and FDG-PET with a DHCC (30/30 patients). During diagnostic work-up, COM was proven in 11/36 regions of suspected skeletal infection and subsequently excluded in 25/36 regions. In addition, soft tissue infection was present in five patients and septic arthritis in three. {sup 111}In-WBC imaging in 28 patients was true positive in 2/11 regions with proven COM and true negative in 21/23 regions without further evidence of COM. False-positive results occurred in two regions and false-negative results in nine regions suspected for COM. Most of the false-negative results (7/9) occurred in the central skeleton. If the analysis was restricted to the 18 regions with available histology (n=17) or culture (n=1), {sup 111}In-WBC imaging was true positive in 2/18 regions, true negative in 8/18 regions, false negative in 7/18 regions and false positive in 1/18 regions. FDG-DHCC imaging was true positive in 11/11 regions with proven COM and true negative in 23/25 regions without further evidence of COM. False-positive results occurred in two regions. If the analysis was restricted to the 19 regions with available histology (n=18) or culture (n=1), FDG-DHCC imaging was true positive in 9/9 regions with proven COM and true negative in 10/10 regions without further evidence of COM. It

  12. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    Energy Technology Data Exchange (ETDEWEB)

    Bolotnikov, A. E., E-mail: bolotnik@bnl.gov; Ackley, K.; Camarda, G. S.; Cherches, C.; Cui, Y.; De Geronimo, G.; Fried, J.; Hossain, A.; Mahler, G.; Maritato, M.; Roy, U.; Salwen, C.; Vernon, E.; Yang, G.; James, R. B. [Brookhaven National Laboratory, Upton, New York 11793 (United States); Hodges, D. [University of Texas at El Paso, El Paso, Texas 79968 (United States); Lee, W. [Korea University, Seoul 136-855 (Korea, Republic of); Petryk, M. [SUNY Binghamton, Vestal, New York 13902 (United States)

    2015-07-15

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm{sup 3} detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays’ performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  13. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras.

    Science.gov (United States)

    Bolotnikov, A E; Ackley, K; Camarda, G S; Cherches, C; Cui, Y; De Geronimo, G; Fried, J; Hodges, D; Hossain, A; Lee, W; Mahler, G; Maritato, M; Petryk, M; Roy, U; Salwen, C; Vernon, E; Yang, G; James, R B

    2015-07-01

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm(3) detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays' performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  14. Triple-head gamma camera PET: system overview and performance characteristics.

    Science.gov (United States)

    Grosev, D; Loncarić, S; Vandenberghe, S; Dodig, D

    2002-08-01

    Positron emission tomography (PET) is currently performed using either a dedicated PET scanner or scintillation gamma camera equipped with electronic circuitry for coincidence detection of 511 keV annihilation quanta (gamma camera PET system). Although the resolution limits of these two instruments are comparable, the sensitivity and count rate performance of the gamma camera PET system are several times lower than that of the PET scanner. Most gamma camera PET systems are manufactured as dual-detector systems capable of performing dual-head coincidence imaging. One possible step towards the improvement of the sensitivity of the gamma camera PET system is to add another detector head. This work investigates the characteristics of one such triple-head gamma camera PET system capable of performing triple-head coincidence imaging. The following performance characteristics of the system were assessed: spatial resolution, sensitivity, count rate performance. The spatial resolution, expressed as the full width at half-maximum (FWHM), at 1 cm radius is 5.9 mm; at 10 cm radius, the transverse radial resolution is 5.3 mm, whilst the transverse tangential and axial resolutions are 8.9 mm and 13.3 mm, respectively. The sensitivity for a standard cylindrical phantom is 255 counts.s(-1).MBq*(-1)), using a 30% width photopeak energy window. An increase of 35% in the PET sensitivity is achievable by opening an additional 30% width energy window in the Compton region. The count rate in coincidence mode, at the upper limit of the systems optimal performance, is 45 kc.s(-1) (kc=kilocounts) using the photopeak energy window only, and increases to 60 kc.s(-1) using the photopeak + Compton windows. Sensitivity results are compared with published data for a similar dual-head detector system.

  15. Evaluation of dual-input perfusion in lung cancer using a 320-detector CT: Its correlation with tumor size, location, and presence of metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Eun Ju; Lee, Ki Nam; Roh, Mee Sook; Son, Choon Hee [Dong-A University College of Medicine, Busan (Korea, Republic of); Roh, Mee Sook [Dept. of Radiology, Dongnam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of)

    2016-11-15

    The purposes of our study were to assess the dual blood supply of lung cancer using a computed tomography (CT) perfusion technique, and to analyze the correlations between dual perfusion and various characteristics of lung cancer. Thirty-five consecutive patients with lung tumors highly suggestive of malignancy were included in this study. All subjects underwent a dual-input dynamic perfusion volume scan using a 320-detector-row CT before CT-guided biopsy. The pulmonary trunk and the descending thoracic aorta were selected for the arterial input functions. From the CT data, pulmonary arterial perfusion (PP), aortic perfusion (AP), and the perfusion index [PI = PP / (PP + AP)] were calculated using the dual-input maximum-slope method. We statistically analyzed the relationship of the perfusion data with tumor locations (central, peripheral, and abutting the pleural lesions), tumor volumes, and the presence of lymph node metastasis or distant metastasis. All subjects were pathologically diagnosed with primary lung cancers via CT-guided aspiration biopsy. The overall mean PI was 53.7 ± 7.2%. The PI showed a significant difference according to the tumor location (central, 49.2 ± 3.3%; peripheral, 56.2 ± 6.7%; abutting the pleural lesions, 48.9 ± 7.6%, p = 0.047). In contrast, no significant difference was detected in tumor size or the presence of metastasis (p > 0.05). We found that the proportion of dual perfusion in lung cancer was significantly dependent on the location of the tumor, while tumor size or the presence of metastasis was not distinctly associated with dual perfusion.

  16. Neutron counting with cameras

    Energy Technology Data Exchange (ETDEWEB)

    Van Esch, Patrick; Crisanti, Marta; Mutti, Paolo [Institut Laue Langevin, Grenoble (France)

    2015-07-01

    A research project is presented in which we aim at counting individual neutrons with CCD-like cameras. We explore theoretically a technique that allows us to use imaging detectors as counting detectors at lower counting rates, and transits smoothly to continuous imaging at higher counting rates. As such, the hope is to combine the good background rejection properties of standard neutron counting detectors with the absence of dead time of integrating neutron imaging cameras as well as their very good spatial resolution. Compared to Xray detection, the essence of thermal neutron detection is the nuclear conversion reaction. The released energies involved are of the order of a few MeV, while X-ray detection releases energies of the order of the photon energy, which is in the 10 KeV range. Thanks to advances in camera technology which have resulted in increased quantum efficiency, lower noise, as well as increased frame rate up to 100 fps for CMOS-type cameras, this more than 100-fold higher available detection energy implies that the individual neutron detection light signal can be significantly above the noise level, as such allowing for discrimination and individual counting, which is hard to achieve with X-rays. The time scale of CMOS-type cameras doesn't allow one to consider time-of-flight measurements, but kinetic experiments in the 10 ms range are possible. The theory is next confronted to the first experimental results. (authors)

  17. Rapid-acquisition myocardial perfusion scintigraphy (MPS) on a novel gamma camera using multipinhole collimation and miniaturized cadmium-zinc-telluride (CZT) detectors: prognostic value and diagnostic accuracy in a 'real-world' nuclear cardiology service.

    Science.gov (United States)

    Chowdhury, F U; Vaidyanathan, S; Bould, M; Marsh, J; Trickett, C; Dodds, K; Clark, T P R; Sapsford, R J; Dickinson, C J; Patel, C N; Thorley, P J

    2014-03-01

    To study the prognostic value of rapid-acquisition adenosine stress-rest myocardial perfusion scintigraphy (MPS) on a gamma camera using multipinhole collimation and cadmium-zinc-telluride (CZT) detectors. The secondary aim was to assess the diagnostic accuracy of the technique compared with invasive coronary angiography. Retrospective analysis of 1109 consecutive patients undergoing MPS in a routine clinical setting on a high-efficiency multipinhole gamma camera. MPS acquisition, performed with a standard injection of 550 MBq of (99m)Tc-tetrofosmin, required a mean (±SD) scanning time of 322 ± 51 s. The hard cardiac event rate at a median (inter-quartile range) follow-up of 624 (552-699) days was 0.4% (95% CI 0.1-1.1) in patients with no significant perfusion abnormality versus 6.8% (95% CI 4.3-10.7%, P MPS of 84% (95% CI 74-91), 79% (95% CI 68-87), 82% (95% CI 72-89), 81% (95% CI 70-89), and 82% (95% CI 73-89), respectively. MPS performed on a CZT solid-state detector camera with multipinhole collimation is an evolutionary development that provides reliable prognostic and diagnostic information, while significantly reducing image acquisition time.

  18. Uncooled radiometric camera performance

    Science.gov (United States)

    Meyer, Bill; Hoelter, T.

    1998-07-01

    Thermal imaging equipment utilizing microbolometer detectors operating at room temperature has found widespread acceptance in both military and commercial applications. Uncooled camera products are becoming effective solutions to applications currently using traditional, photonic infrared sensors. The reduced power consumption and decreased mechanical complexity offered by uncooled cameras have realized highly reliable, low-cost, hand-held instruments. Initially these instruments displayed only relative temperature differences which limited their usefulness in applications such as Thermography. Radiometrically calibrated microbolometer instruments are now available. The ExplorIR Thermography camera leverages the technology developed for Raytheon Systems Company's first production microbolometer imaging camera, the Sentinel. The ExplorIR camera has a demonstrated temperature measurement accuracy of 4 degrees Celsius or 4% of the measured value (whichever is greater) over scene temperatures ranges of minus 20 degrees Celsius to 300 degrees Celsius (minus 20 degrees Celsius to 900 degrees Celsius for extended range models) and camera environmental temperatures of minus 10 degrees Celsius to 40 degrees Celsius. Direct temperature measurement with high resolution video imaging creates some unique challenges when using uncooled detectors. A temperature controlled, field-of-view limiting aperture (cold shield) is not typically included in the small volume dewars used for uncooled detector packages. The lack of a field-of-view shield allows a significant amount of extraneous radiation from the dewar walls and lens body to affect the sensor operation. In addition, the transmission of the Germanium lens elements is a function of ambient temperature. The ExplorIR camera design compensates for these environmental effects while maintaining the accuracy and dynamic range required by today's predictive maintenance and condition monitoring markets.

  19. 月基极紫外相机反射镜与探测器间支撑结构%Supporting structure between reflection mirror and detector in lunar-based extreme ultraviolet camera

    Institute of Scientific and Technical Information of China (English)

    王智; 王忠素

    2013-01-01

    In order to meet the requirements of the position precision between reflection mirror and detector of extreme ultraviolet (EUV) camera under the conditions of large level vibration and impact in satellite launching, earth -moon orbit transfer and moon landing, extra large temperature difference on lunar surface and light weight of the camera, the supporting structure between reflection mirror and detector was designed based on carbon fiber reinforced plastic (CFRP) ; and the stability of the supporting structure was analyzed and validated with experiments. Firstly, the form of the supporting structure between reflection mirror and detector is determined according to the optical system of EUV camera. Then, considering the requirements of the camera weight, and the positioning accuracy and stability between reflection mirror and detector of EUV camera,CFRP is adopted as the material for the supporting structure. The reflection mirror surface shape, the angle variation between reflection mirror and detector are analyzed under the weight and temperature loadings. The natural frequency of the supporting structure and the stress responses under sinusoidal and random vibrations in the system are analyzed. Verification experiment results show that the angle variation between reflection mirror and detector is less than 20", and after verification experiment the image resolution meets the specification requirements of the camera.%为了保证月基极紫外相机在卫星发射、地月变轨及月表着陆过程中的大量级振动冲击、月表超大温差环境以及尽量轻的相机重量条件下,反射镜相对于探测器的位置精度要求,设计并研制了基于CFRP(carbon fiber reinforeed plastic)的反射镜与探测器间的支撑结构,分析并试验验证了支撑结构的稳定性.首先,根据极紫外相机的光学系统,确定了反射镜与探测器间的支撑结构形式;然后,考虑相机重量及反射镜相对探测器的位置精度及稳

  20. A band-tunable, multichannel amplifier for neural recording with AP/LFP separation and dual-threshold adaptive AP detector.

    Science.gov (United States)

    Wu, Jo-Yu; Tang, Kea-Tiong

    2011-01-01

    This article presents a low-power low-noise neural recording system comprising a set of 4-channel amplifiers and a dual-threshold adaptive action potential detector. The front-end amplifier is optimized for power efficiency, noise, and silicon area. A balanced tunable pseudo-resistor is used to acquire local field potential (LFP) and action potential (AP) separately. The post-layout simulation results show that the system achieved input referred noise 4.7 μVrms and noise efficiency factor (NEF) 2.79 with mid-band gain of 51.9 dB and power consumption of 5.22 μW. The bandwidth is highly tunable in the range of 2.38 Hz-300 Hz for high-pass corner and 248 Hz-12.9 kHz for low-pass corner, which can acquire AP and LPF without out-band noise. The proposed dual-threshold adaptive AP detector can capture action potential precisely from background activity, thus data reduction can be realized by only processing these significant waveforms. The results show that the proposed low-power, low-noise biomedical system is suitable for implantable device applications.

  1. Dual-energy cone-beam CT with a flat-panel detector: Effect of reconstruction algorithm on material classification

    Energy Technology Data Exchange (ETDEWEB)

    Zbijewski, W., E-mail: wzbijewski@jhu.edu; Gang, G. J.; Xu, J.; Wang, A. S.; Stayman, J. W. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Taguchi, K.; Carrino, J. A. [Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Siewerdsen, J. H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 and Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2014-02-15

    Purpose: Cone-beam CT (CBCT) with a flat-panel detector (FPD) is finding application in areas such as breast and musculoskeletal imaging, where dual-energy (DE) capabilities offer potential benefit. The authors investigate the accuracy of material classification in DE CBCT using filtered backprojection (FBP) and penalized likelihood (PL) reconstruction and optimize contrast-enhanced DE CBCT of the joints as a function of dose, material concentration, and detail size. Methods: Phantoms consisting of a 15 cm diameter water cylinder with solid calcium inserts (50–200 mg/ml, 3–28.4 mm diameter) and solid iodine inserts (2–10 mg/ml, 3–28.4 mm diameter), as well as a cadaveric knee with intra-articular injection of iodine were imaged on a CBCT bench with a Varian 4343 FPD. The low energy (LE) beam was 70 kVp (+0.2 mm Cu), and the high energy (HE) beam was 120 kVp (+0.2 mm Cu, +0.5 mm Ag). Total dose (LE+HE) was varied from 3.1 to 15.6 mGy with equal dose allocation. Image-based DE classification involved a nearest distance classifier in the space of LE versus HE attenuation values. Recognizing the differences in noise between LE and HE beams, the LE and HE data were differentially filtered (in FBP) or regularized (in PL). Both a quadratic (PLQ) and a total-variation penalty (PLTV) were investigated for PL. The performance of DE CBCT material discrimination was quantified in terms of voxelwise specificity, sensitivity, and accuracy. Results: Noise in the HE image was primarily responsible for classification errors within the contrast inserts, whereas noise in the LE image mainly influenced classification in the surrounding water. For inserts of diameter 28.4 mm, DE CBCT reconstructions were optimized to maximize the total combined accuracy across the range of calcium and iodine concentrations, yielding values of ∼88% for FBP and PLQ, and ∼95% for PLTV at 3.1 mGy total dose, increasing to ∼95% for FBP and PLQ, and ∼98% for PLTV at 15.6 mGy total dose. For a

  2. Sensitive and accurate dual wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols

    CERN Document Server

    David, G; Thomas, B; Rairoux, P

    2012-01-01

    An UV-VIS polarization Lidar has been designed and specified for aerosols monitoring in the troposphere, showing the ability to precisely address low particle depolarization ratios, in the range of a few percents. Non-spherical particle backscattering coefficients as low as 5 {\\times} 10-8 m-1.sr-1 have been measured and the particle depolarization ratio detection limit is 0.6 %. This achievement is based on a well-designed detector with laser-specified optical components (polarizers, dichroic beamsplitters) summarized in a synthetic detector transfer matrix. Hence, systematic biases are drastically minimized. The detector matrix being diagonal, robust polarization calibration has been achieved under real atmospheric conditions. This UV-VIS polarization detector measures particle depolarization ratios over two orders of magnitude, from 0.6 up to 40 %, which is new, especially in the UV where molecular scattering is strong. Hence, a calibrated UV polarization-resolved time-altitude map is proposed for urban an...

  3. Cascaded-Systems Analysis of Flat-Panel Sandwich Detectors for Single-Shot Dual-Energy X-ray Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Kyung; Kim, Dong Woon; Kim, Junwoo; Youn, Hanbean [Pusan National University, Busan (Korea, Republic of)

    2015-05-15

    We have developed the cascaded-systems model to investigate the signal and noise characteristics in the flat-panel sandwich detector which was developed for the preclinical single-shot dual-energy x-ray imaging. The model incorporates parallel branches to include direct interaction of x-rays in photodiode that is unavoidable in the sandwich structure with a corresponding potential increase in image noise. The model has been validated in comparison with the experimental. The cascaded-systems analysis shows that direct x-ray interaction noise behaves as additive electronic noise that is white in the frequency domain; hence it is harmful to the DQE at higher frequencies where the number of secondary quanta lessens. Even at zero frequency, the direct x-ray interaction noise can reduce the DQE of the detectors investigated in this study by ∼20% for the 60 kV x-ray spectrum. The DQE of rear detector in the sandwich structure is sensitive to additive electronic noise because of the enhancement in the number of electronic noise quanta relative to that of x-ray quanta that are attenuated through the front layers including the intermediate filter layer (i.e. incident photon fluence times transmission factor)

  4. High-performance 1024x1024 MWIR/LWIR Dual-band InAs/GaSb Type-II Superlattice-based Camera System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High performance LWIR detectors are highly needed. In order to image from long distance, it is important that imagers have high sensitivity, high resolution, and...

  5. Breast Imaging Utilizing Dedicated Gamma Camera and (99m)Tc-MIBI: Experience at the Tel Aviv Medical Center and Review of the Literature Breast Imaging.

    Science.gov (United States)

    Even-Sapir, Einat; Golan, Orit; Menes, Tehillah; Weinstein, Yuliana; Lerman, Hedva

    2016-07-01

    The scope of the current article is the clinical role of gamma cameras dedicated for breast imaging and (99m)Tc-MIBI tumor-seeking tracer, as both a screening modality among a healthy population and as a diagnostic modality in patients with breast cancer. Such cameras are now commercially available. The technology utilizing a camera composed of a NaI (Tl) detector is termed breast-specific gamma imaging. The technology of dual-headed camera composed of semiconductor cadmium zinc telluride detectors that directly converts gamma-ray energy into electronic signals is termed molecular breast imaging. Molecular breast imaging system has been installed at the Department of Nuclear medicine at the Tel Aviv Sourasky Medical Center, Tel Aviv in 2009. The article reviews the literature well as our own experience. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Comparison of FDG PET and positron coincidence detection imaging using a dual-head gamma camera with 5/8-inch NaI(Tl) crystals in patients with suspected body malignancies.

    Science.gov (United States)

    Boren, E L; Delbeke, D; Patton, J A; Sandler, M P

    1999-04-01

    The purpose of this study was to compare the diagnostic accuracy of fluorine-18 fluorodeoxyglucose (FDG) images obtained with (a) a dual-head coincidence gamma camera (DHC) equipped with 5/8-inch-thick NaI(Tl) crystals and parallel slit collimators and (b) a dedicated positron emission tomograph (PET) in a series of 28 patients with known or suspected malignancies. Twenty-eight patients with known or suspected malignancies underwent whole-body FDG PET imaging (Siemens, ECAT 933) after injection of approximately 10 mCi of 18F-FDG. FDG DHC images were then acquired for 30 min over the regions of interest using a dual-head gamma camera (VariCam, Elscint). The images were reconstructed in the normal mode, using photopeak/photopeak, photopeak/Compton, and Compton/photopeak coincidence events. FDG PET imaging found 45 lesions ranging in size from 1 cm to 7 cm in 28 patients. FDG DHC imaging detected 35/45 (78%) of these lesions. Among the ten lesions not seen with FDG DHC imaging, eight were less than 1.5 cm in size, and two were located centrally within the abdomen suffering from marked attenuation effects. The lesions were classified into three categories: thorax (n=24), liver (n=12), and extrahepatic abdominal (n=9). FDG DHC imaging identified 100% of lesions above 1.5 cm in the thorax group and 78% of those below 1.5 cm, for an overall total of 83%. FDG DHC imaging identified 100% of lesions above 1.5 cm, in the liver and 43% of lesions below 1.5 cm, for an overall total of 67%. FDG DHC imaging identified 78% of lesions above 1.5 cm in the extrahepatic abdominal group. There were no lesions below 1.5 cm in this group. FDG coincidence imaging using a dual-head gamma camera detected 90% of lesions greater than 1.5 cm. These data suggest that DHC imaging can be used clinically in well-defined diagnostic situations to differentiate benign from malignant lesions.

  7. A Compton camera for spectroscopic imaging from 100keV to 1MeV

    Science.gov (United States)

    Earnhart, Jonathan Raby Dewitt

    The objective of this work is to investigate Compton camera technology for spectroscopic imaging of gamma rays in the 100keV to 1MeV range. An efficient, specific purpose Monte Carlo code was developed to investigate the image formation process in Compton cameras. The code is based on a pathway sampling technique with extensive use of variance reduction techniques. The code includes detailed Compton scattering physics, including incoherent scattering functions, Doppler broadening, and multiple scattering. Experiments were performed with two different camera configurations for a scene containing a 75Se source and a 137Cs source. The first camera was based on a fixed silicon detector in the front plane and a CdZnTe detector mounted in the stage. The second camera configuration was based on two CdZnTe detectors. Both systems were able to reconstruct images of 75Se, using the 265keV line, and 137Cs, using the 662keV line. Only the silicon-CdZnTe camera was able to resolve the low intensity 400keV line of 75Se. Neither camera was able to reconstruct the 75Se source location using the 136keV line. The energy resolution of the silicon-CdZnTe camera system was 4% at 662keV. This camera reproduced the location of the 137Cs source by event circle image reconstruction with angular resolutions of 10° for a source on the camera axis and 14° for a source 30° off axis. Typical detector pair efficiencies were measured as 3 x 10-11 at 662keV. The dual CdZnTe camera had an energy resolution of 3.2% at 662keV. This camera reproduced the location of the 137Cs source by event circle image reconstruction with angular resolutions of 8° for a source on the camera axis and 12° for a source 20° off axis. Typical detector pair efficiencies were measured as 7 x 10-11 at 662keV. Of the two prototype camera configurations tested, the silicon-CdZnTe configuration had superior imaging characteristics. This configuration is less sensitive to effects caused by source decay cascades and random

  8. Comparison of Anger camera and BGO mosaic position-sensitive detectors for `Super ACAR`. Precision electron momentum densities via angular correlation of annihilation radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mills, A.P. Jr. [Bell Labs. Murray Hill, NJ (United States); West, R.N.; Hyodo, Toshio

    1997-03-01

    We discuss the relative merits of Anger cameras and Bismuth Germanate mosaic counters for measuring the angular correlation of positron annihilation radiation at a facility such as the proposed Positron Factory at Takasaki. The two possibilities appear equally cost effective at this time. (author)

  9. Semiconductor Detectors; Detectores de Semiconductores

    Energy Technology Data Exchange (ETDEWEB)

    Cortina, E.

    2007-07-01

    Particle detectors based on semiconductor materials are among the few devices used for particle detection that are available to the public at large. In fact we are surrounded by them in our daily lives: they are used in photoelectric cells for opening doors, in digital photographic and video camera, and in bar code readers at supermarket cash registers. (Author)

  10. Impact of reduced-radiation dual-energy protocols using 320-detector row computed tomography for analyzing urinary calculus components: initial in vitro evaluation.

    Science.gov (United States)

    Cai, Xiangran; Zhou, Qingchun; Yu, Juan; Xian, Zhaohui; Feng, Youzhen; Yang, Wencai; Mo, Xukai

    2014-10-01

    To evaluate the impact of reduced-radiation dual-energy (DE) protocols using 320-detector row computed tomography on the differentiation of urinary calculus components. A total of 58 urinary calculi were placed into the same phantom and underwent DE scanning with 320-detector row computed tomography. Each calculus was scanned 4 times with the DE protocols using 135 kV and 80 kV tube voltage and different tube current combinations, including 100 mA and 570 mA (group A), 50 mA and 290 mA (group B), 30 mA and 170 mA (group C), and 10 mA and 60 mA (group D). The acquisition data of all 4 groups were then analyzed by stone DE analysis software, and the results were compared with x-ray diffraction analysis. Noise, contrast-to-noise ratio, and radiation dose were compared. Calculi were correctly identified in 56 of 58 stones (96.6%) using group A and B protocols. However, only 35 stones (60.3%) and 16 stones (27.6%) were correctly diagnosed using group C and D protocols, respectively. Mean noise increased significantly and mean contrast-to-noise ratio decreased significantly from groups A to D (P calculus component analysis while reducing patient radiation exposure to 1.81 mSv. Further reduction of tube currents may compromise diagnostic accuracy. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. A compact and high sensitivity positron detector using dual-layer thin GSO scintillators for a small animal PET blood sampling system.

    Science.gov (United States)

    Yamamoto, Seiichi; Imaizumi, Masao; Shimosegawa, Eku; Kanai, Yasukazu; Sakamoto, Yusuke; Minato, Kotaro; Shimizu, Keiji; Senda, Michio; Hatazawa, Jun

    2010-07-07

    For quantitative measurements of small animals such as mice or rats, a compact and high sensitivity continuous blood sampling detector is required because their blood sampling volume is limited. For this purpose we have developed and tested a new positron detector. The positron detector uses a pair of dual-layer thin gadolinium orthosilicate (GSO) scintillators with different decay times. The front layer detects the positron and the background gamma photons, and the back layer detects the background gamma photons. By subtracting the count rate of the latter from that of the former, the count rate of the positrons can be estimated. The GSO for the front layer has a Ce concentration of 1.5 mol% (decay time of 35 ns), and that for the back layer has a Ce concentration of 0.5 mol% (decay time of 60 ns). By using the pulse shape analysis, the count rate of these two GSOs can be discriminated. The thickness is 0.5 mm, which is thick enough to detect positrons while minimizing the detection of the background gamma photons. These two types of thin GSOs were optically coupled to each other and connected to a metal photomultiplier tube (PMT) through triangular light guides. The signal from the PMT was digitized by 100 MHz free-running A-D converters in the data acquisition system and digitally integrated at two different integration times for the pulse shape analysis. We obtained good separation of the pulse shape distributions of these two GSOs. The energy threshold level was decreased to 80 keV, increasing the sensitivity of the detector. The sensitivity of a small diameter plastic tube was 8.6% and 24% for the F-18 and C-11 positrons, respectively. The count rate performance was linear up to approximately 50 kcps. The background counts from the gamma photons could be precisely corrected. The time-activity curve (TAC) of the rat artery blood was successfully obtained and showed a good correlation with that measured using a well counter. With these results, we confirmed

  12. High-resolution application of YAG:Ce and LuAG:Ce imaging detectors with a CCD X-ray camera

    Science.gov (United States)

    Touš, Jan; Horváth, Martin; Pína, Ladislav; Blažek, Karel; Sopko, Bruno

    2008-06-01

    A high-resolution CCD X-ray camera based on YAG:Ce or LuAG:Ce thin scintillators is presented. High-resolution in low-energy X-ray radiation is proved with several objects. The spatial resolution achieved in the images is about 1 μm. The high-resolution imaging system is a combination of a high-sensitivity digital CCD camera and an optical system with a thin scintillator-imaging screen. The screen can consist of YAG:Ce or LuAG:Ce inorganic scintillator [J.A. Mares, Radiat. Meas. 38 (2004) 353]. These materials have the advantages of mechanical and chemical stability and non-hygroscopicity. The high-resolution imaging system can be used with different types of radiation (X-ray, electrons, UV, and VUV [M. Nikl, Meas. Sci. Technol. 17 (2006) R37]). The objects used for the imaging tests are grids and small animals with features of several microns in size. The resolution capabilities were tested using different types of CCD cameras and scintillation imaging screens.

  13. CAOS-CMOS camera.

    Science.gov (United States)

    Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid

    2016-06-13

    Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems.

  14. Tower Camera

    Data.gov (United States)

    Oak Ridge National Laboratory — The tower camera in Barrow provides hourly images of ground surrounding the tower. These images may be used to determine fractional snow cover as winter arrives, for...

  15. 双频金属探测器的研究%Research on Dual Frequency Metal Detector

    Institute of Scientific and Technical Information of China (English)

    庞瑞帆; 钟翔; 胡泷; 何云龙; 徐毅刚; 倪宏伟

    2001-01-01

    With the method of equivalent impedance, this paper analyzes themetal target characteristic of amplitude and phase of low frequency electromagnetic induction signal,the theoretical basis and design of dual frequency,and the relationship between the dual frequency and sensitivity. This paper also researches the design of multi-layer printed circuit board receiving coil and phase shift coil, the method of automatic controls, the effect of conductive and magnetic background signal caused by seawater and magnetic ground, and presents the method of automatic tracks and the direct current shift caused by climate condition.%用等效阻抗法分析了金属目标低频电磁感应信号幅度和相位特性,剖析了双频的理论基础和设计技术,论述了双频与探测灵敏度之间的关系,研究并设计了多层印制板接收线圈以及移相线圈,研究并解决了全自动抑制海水、磁性土等导电、导磁背景信号以及温度效应所引起的直流漂移的方法。

  16. Cardiac cameras.

    Science.gov (United States)

    Travin, Mark I

    2011-05-01

    Cardiac imaging with radiotracers plays an important role in patient evaluation, and the development of suitable imaging instruments has been crucial. While initially performed with the rectilinear scanner that slowly transmitted, in a row-by-row fashion, cardiac count distributions onto various printing media, the Anger scintillation camera allowed electronic determination of tracer energies and of the distribution of radioactive counts in 2D space. Increased sophistication of cardiac cameras and development of powerful computers to analyze, display, and quantify data has been essential to making radionuclide cardiac imaging a key component of the cardiac work-up. Newer processing algorithms and solid state cameras, fundamentally different from the Anger camera, show promise to provide higher counting efficiency and resolution, leading to better image quality, more patient comfort and potentially lower radiation exposure. While the focus has been on myocardial perfusion imaging with single-photon emission computed tomography, increased use of positron emission tomography is broadening the field to include molecular imaging of the myocardium and of the coronary vasculature. Further advances may require integrating cardiac nuclear cameras with other imaging devices, ie, hybrid imaging cameras. The goal is to image the heart and its physiological processes as accurately as possible, to prevent and cure disease processes.

  17. ProtoDUNE-DP---PROTOtype for the Deep Underground Neutrino Experiment - Dual Phase detector (Electrostatic Simulations and Performance Studies)

    CERN Document Server

    Chiu, Pin-Jung

    In search of answers to the biggest missing puzzle in the field of neutrino physics, large- scale Liquid Argon Time Projection Chambers (LAr-TPCs) have been postulated to be the most attractive instruments for next generation neutrino observations. A state-of-the- art experiment, the Deep Underground Neutrino Experiment (DUNE), which will utilize this LAr-TPC technology for the studies of neutrino science and proton decay, is currently in the stage of design and prototyping. This thesis reports on the behavior studies of a 6 × 6 × 6 m^3 prototype, ProtoDUNE, in the context of DUNE from the electrostatic’s point of view. Electrostatic simulations had been performed on the whole detector in order to verify the uniformity of the electric field, and to assure that all local electric fields within the detector are below a certain value to avoid any electrical breakdown phenomena. Additionally, to characterize the performance of the 2D anode used for charge readout in the experiment, some simulations and measur...

  18. The dual-dose imaging technique: a way to enhance the dynamic range of X-ray detectors

    CERN Document Server

    Matsinos, E; Matsinos, Evangelos; Kaissl, Wolfgang

    2006-01-01

    We describe a method aiming at increasing the dynamic range of X-ray detectors. Two X-ray exposures of an object are acquired at different dose levels and constitute the only input data. The values of the parameters which are needed to process these images are determined from information contained in the images themselves; the values of two parameters are extracted from the input data. The two input images are finally merged in such a way as to create one image containing useful information in all its entirety. This selective use of parts of each image allows both the contour of the irradiated object to be visible and the high-attenuation areas to retain their image quality corresponding to the information contained in the high-dose image. The benefits of the method are demonstrated with an example involving a head phantom.

  19. Increase in the Array Television Camera Sensitivity

    Science.gov (United States)

    Shakhrukhanov, O. S.

    A simple adder circuit for successive television frames that enables to considerably increase the sensitivity of such radiation detectors is suggested by the example of array television camera QN902K.

  20. 一种双通道微波密度湿度检测仪的研制%A Development for Dual-Channel Microwave Density and Humidity Detector

    Institute of Scientific and Technical Information of China (English)

    林伟; 杨健荣

    2015-01-01

    Dual-channel density and humidity detector as ultra-high speed rol ing machines cigarette weight control system sensor,used for density and humidity of cigarette online detection is an important part of the sys-tem.In this paper,a design scheme of Dual-channel density and humidity detector is presented,first introduces the measuring principle of detector,and then introduces the whole detector architecture,final y the design and implementation of the detector is described in detail.%双通道微波密度湿度检测仪作为高速、超高速机型上烟支重量控制系统的传感器,用于烟草卷接机烟条密度、湿度的在线检测,是该系统的一个重要组成部分。该文提出了一种双通道微波密度湿度检测仪的研制的设计方案,先介绍了该检测仪测量原理,然后介绍了整机构成,最后详细阐述了整机设计与实现过程。

  1. Active induction balance method for metal detector sensing head utilizing transmitter-bucking and dual current source

    Science.gov (United States)

    Ambruš, D.; Vasić, D.; Bilas, V.

    2013-06-01

    A central problem in a design of frequency domain electromagnetic induction sensors used in landmine detection is an effective suppression of a direct inductive coupling between the transmitter and the receiver coil (induction balance, IB). In sensing heads based on the transmitter-bucking configuration, IB is achieved by using two concentric transmitter coils with opposing exciter fields in order to create a central magnetic cavity for the receiver coil. This design has numerous advantages over other IB methods in terms of detection sensitivity, spatial resolution, sensor dimensions and suitability for model-based measurements. However, very careful design and precise sensing head geometry are required if a single excitation source is used for driving both transmitter coils. In this paper we analyze the IB sensitivity to small perturbations of geometrical properties of coils. We propose a sensor design with dual current source and active induction balance scheme which overcomes the limitations of geometry-based balancing and potentially provides more efficient compensation of soil effects.

  2. CCD Camera

    Science.gov (United States)

    Roth, Roger R.

    1983-01-01

    A CCD camera capable of observing a moving object which has varying intensities of radiation eminating therefrom and which may move at varying speeds is shown wherein there is substantially no overlapping of successive images and wherein the exposure times and scan times may be varied independently of each other.

  3. A portable lab-on-a-chip instrument based on MCE with dual top-bottom capacitive coupled contactless conductivity detector in replaceable cell cartridge.

    Science.gov (United States)

    Ansari, Kambiz; Ying, Jasmine Yuen Shu; Hauser, Peter C; de Rooij, Nico F; Rodriguez, Isabel

    2013-05-01

    A new design for a compact portable lab-on-a-chip instrument based on MCE and dual capacitively coupled contactless conductivity detection (dC(4) D) is described. The instrument is battery powered with total dimension of 14 × 25 × 8 cm(3) (w × l × h), and weighs 1.2 kg. The device consists of a front electrophoresis compartment which has the chip holder and the chip, the associated high-voltage electrodes for electrophoresis injection and separation and the detector. The detection cell is integrated into the device housing with an exchangeable plug-and-play cartridge format. The design of the dC(4) D cell has been optimized for maximum performance. The cartridge includes the top-bottom excitation and pick up electrodes incorporated into the cell and connected to push-pull self-latching pins that are insulated with plastic. The metal frame of the cartridge is grounded completely to eliminate electronic interferences. The cartridge is designed to clamp a thin fluidic chip at the detection point. The cartridges are replaceable whereby different cartridges have different detection electrode configurations to employ according to the sensitivity or resolution needed in the specific analytical application. The second compartment consists of all the electronics, data acquisition card, high-voltage modules of up to ±5 kV both polarity, and batteries for 10 h of operation. The improved detector performance is illustrated by the electrophoresis analysis of six cations (NH4 (+) , K(+) , Ca(2+) , Na(+) , Mg(2+) , Li(+) ) with a detection limit of approximately 5 μM and the analysis of the anions (Br(-) , Cl(-) , NO2 (-) , NO3 (-) , SO4 (2-) , F(-) ) with a detection limit of about 3 μM. Analytical capabilities of the instrument for food and medical applications were evaluated by simultaneous detection of organic and inorganic acids in fruit juice and inorganic cations and anions in rabbit blood samples and human urine samples are also demonstrated.

  4. Scintillating track image camera-SCITIC

    CERN Document Server

    Sato, Akira; Ieiri, Masaharu; Iwata, Soma; Kadowaki, Tetsuhito; Kurosawa, Maki; Nagae, Tomohumi; Nakai, Kozi

    2004-01-01

    A new type of track detector, scintillating track image camera (SCITIC) has been developed. Scintillating track images of particles in a scintillator are focused by an optical lens system on a photocathode on image intesifier tube (IIT). The image signals are amplified by an IIT-cascade and stored by a CCD camera. The performance of the detector has been tested with cosmic-ray muons and with pion- and proton-beams from the KEK 12-GeV proton synchrotron. Data of the test experiments have shown promising features of SCITIC as a triggerable track detector with a variety of possibilities. 7 Refs.

  5. High Frequency Design Considerations for the Large Detector Number and Small Form Factor Dual Electron Spectrometer of the Fast Plasma Investigation on NASA's Magnetospheric Multiscale Mission

    Science.gov (United States)

    Kujawski, Joseph T.; Gliese, Ulrik B.; Cao, N. T.; Zeuch, M. A.; White, D.; Chornay, D. J; Lobell, J. V.; Avanov, L. A.; Barrie, A. C.; Mariano, A. J.; hide

    2015-01-01

    Each half of the Dual Electron Spectrometer (DES) of the Fast Plasma Investigation (FPI) on NASA's Magnetospheric MultiScale (MMS) mission utilizes a microchannel plate Chevron stack feeding 16 separate detection channels each with a dedicated anode and amplifier/discriminator chip. The desire to detect events on a single channel with a temporal spacing of 100 ns and a fixed dead-time drove our decision to use an amplifier/discriminator with a very fast (GHz class) front end. Since the inherent frequency response of each pulse in the output of the DES microchannel plate system also has frequency components above a GHz, this produced a number of design constraints not normally expected in electronic systems operating at peak speeds of 10 MHz. Additional constraints are imposed by the geometry of the instrument requiring all 16 channels along with each anode and amplifier/discriminator to be packaged in a relatively small space. We developed an electrical model for board level interactions between the detector channels to allow us to design a board topology which gave us the best detection sensitivity and lowest channel to channel crosstalk. The amplifier/discriminator output was designed to prevent the outputs from one channel from producing triggers on the inputs of other channels. A number of Radio Frequency design techniques were then applied to prevent signals from other subsystems (e.g. the high voltage power supply, command and data handling board, and Ultraviolet stimulation for the MCP) from generating false events. These techniques enabled us to operate the board at its highest sensitivity when operated in isolation and at very high sensitivity when placed into the overall system.

  6. Intelligent thermal imaging camera with network interface

    Science.gov (United States)

    Sielewicz, Krzysztof M.; Kasprowicz, Grzegorz; Poźniak, Krzysztof T.; Romaniuk, R. S.

    2011-10-01

    In recent years, a significant increase in usage of thermal imagining cameras can be observed in both public and commercial sector, due to the lower cost and expanding availability of uncooled microbolometer infrared radiation detectors. Devices present on the market vary in their parameters and output interfaces. However, all these thermographic cameras are only a source of an image, which is then analyzed in external image processing unit. There is no possibility to run users dedicated image processing algorithms by thermal imaging camera itself. This paper presents a concept of realization, architecture and hardware implementation of "Intelligent thermal imaging camera with network interface" utilizing modern technologies, standards and approach in one single device.

  7. A stereoscopic lens for digital cinema cameras

    Science.gov (United States)

    Lipton, Lenny; Rupkalvis, John

    2015-03-01

    Live-action stereoscopic feature films are, for the most part, produced using a costly post-production process to convert planar cinematography into stereo-pair images and are only occasionally shot stereoscopically using bulky dual-cameras that are adaptations of the Ramsdell rig. The stereoscopic lens design described here might very well encourage more live-action image capture because it uses standard digital cinema cameras and workflow to save time and money.

  8. SPEIR: A Ge Compton Camera

    Energy Technology Data Exchange (ETDEWEB)

    Mihailescu, L; Vetter, K M; Burks, M T; Hull, E L; Craig, W W

    2004-02-11

    The SPEctroscopic Imager for {gamma}-Rays (SPEIR) is a new concept of a compact {gamma}-ray imaging system of high efficiency and spectroscopic resolution with a 4-{pi} field-of-view. The system behind this concept employs double-sided segmented planar Ge detectors accompanied by the use of list-mode photon reconstruction methods to create a sensitive, compact Compton scatter camera.

  9. High-performance dual-energy imaging with a flat-panel detector: imaging physics from blackboard to benchtop to bedside

    Science.gov (United States)

    Siewerdsen, J. H.; Shkumat, N. A.; Dhanantwari, A. C.; Williams, D. B.; Richard, S.; Daly, M. J.; Paul, N. S.; Moseley, D. J.; Jaffray, D. A.; Yorkston, J.; Van Metter, R.

    2006-03-01

    The application of high-performance flat-panel detectors (FPDs) to dual-energy (DE) imaging offers the potential for dramatically improved detection and characterization of subtle lesions through reduction of "anatomical noise," with applications ranging from thoracic imaging to image-guided interventions. In this work, we investigate DE imaging performance from first principles of image science to preclinical implementation, including: 1.) generalized task-based formulation of NEQ and detectability as a guide to system optimization; 2.) measurements of imaging performance on a DE imaging benchtop; and 3.) a preclinical system developed in our laboratory for cardiac-gated DE chest imaging in a research cohort of 160 patients. Theoretical and benchtop studies directly guide clinical implementation, including the advantages of double-shot versus single-shot DE imaging, the value of differential added filtration between low- and high-kVp projections, and optimal selection of kVp pairs, filtration, and dose allocation. Evaluation of task-based NEQ indicates that the detectability of subtle lung nodules in double-shot DE imaging can exceed that of single-shot DE imaging by a factor of 4 or greater. Filter materials are investigated that not only harden the high-kVp beam (e.g., Cu or Ag) but also soften the low-kVp beam (e.g., Ce or Gd), leading to significantly increased contrast in DE images. A preclinical imaging system suitable for human studies has been constructed based upon insights gained from these theoretical and experimental studies. An important component of the system is a simple and robust means of cardiac-gated DE image acquisition, implemented here using a fingertip pulse oximeter. Timing schemes that provide cardiac-gated image acquisition on the same or successive heartbeats is described. Preclinical DE images to be acquired under research protocol will afford valuable testing of optimal deployment, facilitate the development of DE CAD, and support

  10. A laser-induced fluorescence dual-fiber optic array detector applied to the rapid HPLC separation of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Sean J.; Hall, Gregory J.; Kenny, Jonathan E. [Tufts University, Chemistry Department, Medford, MA, (United States)

    2002-01-01

    A multi-channel detection system utilizing fiber optics has been developed for the laser-induced fluorescence (LIF) analysis of chromatographic eluents. It has been applied to the detection of polycyclic aromatic hydrocarbons (PAH) in a chromatographically overlapped standard mixture and to a complex soil sample extract obtained during fieldwork. The instrument utilizes dual-fiber optic arrays, one to deliver multiple excitation wavelengths (258-342 nm) generated by a Raman shifter, and the other to collect fluorescence generated by the sample at each excitation wavelength; the collected fluorescence is dispersed and detected with a spectrograph/CCD combination. The resulting data were arranged into excitation emission matrices (EEM) for visualization and data analysis. Rapid characterization of PAH mixtures was achieved under isocratic chromatographic conditions (1.5 mL min{sup -1} and 80% acetonitrile in water), with mid {mu}g L{sup -1} detection limits, in less than 4 minutes. The ability of the instrument to identify co-eluting compounds was demonstrated by identifying and quantifying analytes in the rapid analysis of a 17 component laboratory-prepared PAH mixture and a soil extracted sample. Identification and quantification were accomplished using rank annihilation factor analysis (RAFA) using pure component standards and the EEMs of mixtures measured during the rapid high-performance liquid chromatography (HPLC) method as the unknowns. The percentage errors of the retention times (RTs) determined using RAFA compared to the known RTs measured with a standard absorbance detector were between 0 and 11%. For the standard PAH mixture, all 17 components were identified correctly and for the soil extracted sample, all 8 analytes present were correctly identified with only one false positive. Overall, the system achieved excellent qualitative performance with semi-quantitative results in the concentration predictions of both the standard mixture and the real

  11. Single-acquisition method for simultaneous determination of extrinsic gamma-camera sensitivity and spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J.A.M. [Servico de Fisica Medica, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal)], E-mail: a.miranda@portugalmail.pt; Sarmento, S. [Servico de Fisica Medica, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal); Alves, P.; Torres, M.C. [Departamento de Fisica da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Bastos, A.L. [Servico de Medicina Nuclear, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal); Ponte, F. [Servico de Fisica Medica, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal)

    2008-01-15

    A new method for measuring simultaneously both the extrinsic sensitivity and spatial resolution of a gamma-camera in a single planar acquisition was implemented. A dual-purpose phantom (SR phantom; sensitivity/resolution) was developed, tested and the results compared with other conventional methods used for separate determination of these two important image quality parameters. The SR phantom yielded reproducible and accurate results, allowing an immediate visual inspection of the spatial resolution as well as the quantitative determination of the contrast for six different spatial frequencies. It also proved to be useful in the estimation of the modulation transfer function (MTF) of the image formation collimator/detector system at six different frequencies and can be used to estimate the spatial resolution as function of the direction relative to the digital matrix of the detector.

  12. Characterization of the count rate performance of modern gamma cameras

    Science.gov (United States)

    Silosky, M.; Johnson, V.; Beasley, C.; Cheenu Kappadath, S.

    2013-01-01

    Purpose: Evaluation of count rate performance (CRP) is an integral component of gamma camera quality assurance and system deadtime (τ) may be utilized for image correction in quantitative studies. This work characterizes the CRP of three modern gamma cameras and estimates τ using two established methods (decay and dual source) under a variety of experimental conditions. Methods: For the decay method, uncollimated detectors were exposed to a Tc-99m source of relatively high activity and count rates were sampled regularly over 48 h. Input count rate at each time point was based on the lowest observed count rate data point. The input count rate was plotted against the observed count rate and fit via least-squares to the paralyzable detector model (PDM) to estimate τ (rates method). A novel expression for observed counts as a function of measurement time interval was derived, taking into account the PDM and the presence of background but making no assumption regarding input count rate. The observed counts were fit via least-squares to this novel expression to estimate τ (counts method). Correlation and Bland-Altman analyses were performed to assess agreement in estimates of τ between the rates and counts methods. The dependence of τ on energy window definition and incident energy spectrum were characterized. The dual source method was also used to estimate τ and its agreement with estimates from the decay method under identical conditions was also investigated. The dependences of τ on the total activity and the ratio of source activities were characterized. Results: The observed CRP curves for each gamma camera agreed with the PDM at low count rates but deviated substantially from it at high count rates. The estimates of τ determined from the paralyzable portion of the CPR curve using the rates method and the counts method were found to be highly correlated (r = 0.999) but with a small (∼6%) difference. No statistically significant difference was observed

  13. NOTE: Changes in the energy response of a dedicated gamma camera after exposure to a high-flux irradiation

    Science.gov (United States)

    Matheoud, Roberta; Zito, Felicia; Canzi, Cristina; Voltini, Franco; Gerundini, Paolo

    1999-06-01

    This work reports the effects of the gain variation of the photomultiplier tubes (PMTs) observed on a cardiac dedicated gamma camera after accidental high-flux irradiation. One detector of this dual-headed 90°-fixed gamma camera was accidentally left uncollimated during a quality assurance procedure on the other detector with a 57Co flood source (259 MBq) and received a non-uniform high flux of 1.9-0.6 Mcps over 25 000 mm2 areas for about 30 min. To evaluate the severity and the duration of the perturbation effect on the energy response of the detector, the photopeak position was monitored for about 1 month with a 99mTc point source. The 140 keV photopeak shifted to 158 keV soon after irradiation, reached the correct position after 9 days and moved to a stable value of 132 keV after 15 days. Afterwards, a new energy calibration reset the photopeak position at 140 keV and the correct energy response of the gamma camera. This experience suggests that particular care should be taken to avoid exposures to high radiation fluxes that induce persistent gain shifts on the PMTs of this system.

  14. Gamma camera performance: technical assessment protocol

    Energy Technology Data Exchange (ETDEWEB)

    Bolster, A.A. [West Glasgow Hospitals NHS Trust, London (United Kingdom). Dept. of Clinical Physics; Waddington, W.A. [University College London Hospitals NHS Trust, London (United Kingdom). Inst. of Nuclear Medicine

    1996-12-31

    This protocol addresses the performance assessment of single and dual headed gamma cameras. No attempt is made to assess the performance of any associated computing systems. Evaluations are usually performed on a gamma camera commercially available within the United Kingdom and recently installed at a clinical site. In consultation with the manufacturer, GCAT selects the site and liaises with local staff to arrange a mutually convenient time for assessment. The manufacturer is encouraged to have a representative present during the evaluation. Three to four days are typically required for the evaluation team to perform the necessary measurements. When access time is limited, the team will modify the protocol to test the camera as thoroughly as possible. Data are acquired on the camera`s computer system and are subsequently transferred to the independent GCAT computer system for analysis. This transfer from site computer to the independent system is effected via a hardware interface and Interfile data transfer. (author).

  15. Traditional gamma cameras are preferred.

    Science.gov (United States)

    DePuey, E Gordon

    2016-08-01

    Although the new solid-state dedicated cardiac cameras provide excellent spatial and energy resolution and allow for markedly reduced SPECT acquisition times and/or injected radiopharmaceutical activity, they have some distinct disadvantages compared to traditional sodium iodide SPECT cameras. They are expensive. Attenuation correction is not available. Cardio-focused collimation, advantageous to increase depth-dependent resolution and myocardial count density, accentuates diaphragmatic attenuation and scatter from subdiaphragmatic structures. Although supplemental prone imaging is therefore routinely advised, many patients cannot tolerate it. Moreover, very large patients cannot be accommodated in the solid-state camera gantries. Since data are acquired simultaneously with an arc of solid-state detectors around the chest, no temporally dependent "rotating" projection images are obtained. Therefore, patient motion can be neither detected nor corrected. In contrast, traditional sodium iodide SPECT cameras provide rotating projection images to allow technologists and physicians to detect and correct patient motion and to accurately detect the position of soft tissue attenuators and to anticipate associated artifacts. Very large patients are easily accommodated. Low-dose x-ray attenuation correction is widely available. Also, relatively inexpensive low-count density software is provided by many vendors, allowing shorter SPECT acquisition times and reduced injected activity approaching that achievable with solid-state cameras.

  16. Proportional counter radiation camera

    Science.gov (United States)

    Borkowski, C.J.; Kopp, M.K.

    1974-01-15

    A gas-filled proportional counter camera that images photon emitting sources is described. A two-dimensional, positionsensitive proportional multiwire counter is provided as the detector. The counter consists of a high- voltage anode screen sandwiched between orthogonally disposed planar arrays of multiple parallel strung, resistively coupled cathode wires. Two terminals from each of the cathode arrays are connected to separate timing circuitry to obtain separate X and Y coordinate signal values from pulse shape measurements to define the position of an event within the counter arrays which may be recorded by various means for data display. The counter is further provided with a linear drift field which effectively enlarges the active gas volume of the counter and constrains the recoil electrons produced from ionizing radiation entering the counter to drift perpendicularly toward the planar detection arrays. A collimator is interposed between a subject to be imaged and the counter to transmit only the radiation from the subject which has a perpendicular trajectory with respect to the planar cathode arrays of the detector. (Official Gazette)

  17. 凸度仪双排阵列气体电离室探测器的设计与研制%Design and Development of Dual-array Gas Ionization Chamber Detector in Profile Gauge

    Institute of Scientific and Technical Information of China (English)

    王振涛; 王立强

    2011-01-01

    为提高凸度仪系统的稳定性与可靠性,更好地适应恶劣的现场环境,采用气体电离室作为凸度仪的探测器.本文分析了气体电离室探测器的特点,对电离室结构进行了研究与设计,阐述了“双排阵列”这一特点,并对阵列布置方式进行了研究.最终设计出的水平布置的双排阵列气体电离室探测器满足了凸度仪系统的要求,且提高了系统的分辨率及重建精度.%In order to improve stability and reliability of the profile gauge system and to fit the harsh on-line environment better, the gas ionization chamber was used as detector of the profile gauge. In this article, the characteristic of the ionization chamber was analyzed and the structure of the chamber was studied and designed. The feature of ' dual-array' was discussed and the arrangement mode of the array was studied. The dual-array gas ionization chamber detector designed eventually meets the requirements of the profile gauge and increases the resolution and reconstruction precision of the system.

  18. Gamma-ray imaging with compton cameras: recent years development

    CERN Document Server

    Hirasawa, M; Shibata, S; Enomoto, S; Yano, Y

    2002-01-01

    Compton cameras can image the distribution of gamma-ray sources with electronic collimation instead of mechanical collimators. It consists of at least two position sensitive detectors. The first detector measures the position and the recoil electron energy of Compton scattering process and the second detector working in coincidence with the first measures the position of the scattered ray. This camera was proposed in the 1970s and since then has been improved in moderate pace until recently. This paper reviews the recent years development on Compton cameras technology. (author)

  19. In-Flight performance of MESSENGER's Mercury dual imaging system

    Science.gov (United States)

    Hawkins, S.E.; Murchie, S.L.; Becker, K.J.; Selby, C.M.; Turner, F.S.; Noble, M.W.; Chabot, N.L.; Choo, T.H.; Darlington, E.H.; Denevi, B.W.; Domingue, D.L.; Ernst, C.M.; Holsclaw, G.M.; Laslo, N.R.; Mcclintock, W.E.; Prockter, L.M.; Robinson, M.S.; Solomon, S.C.; Sterner, R.E.

    2009-01-01

    The Mercury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 and planned for insertion into orbit around Mercury in 2011, has already completed two flybys of the innermost planet. The Mercury Dual Imaging System (MDIS) acquired nearly 2500 images from the first two flybys and viewed portions of Mercury's surface not viewed by Mariner 10 in 1974-1975. Mercury's proximity to the Sun and its slow rotation present challenges to the thermal design for a camera on an orbital mission around Mercury. In addition, strict limitations on spacecraft pointing and the highly elliptical orbit create challenges in attaining coverage at desired geometries and relatively uniform spatial resolution. The instrument designed to meet these challenges consists of dual imagers, a monochrome narrow-angle camera (NAC) with a 1.5?? field of view (FOV) and a multispectral wide-angle camera (WAC) with a 10.5?? FOV, co-aligned on a pivoting platform. The focal-plane electronics of each camera are identical and use a 1024??1024 charge-coupled device detector. The cameras are passively cooled but use diode heat pipes and phase-change-material thermal reservoirs to maintain the thermal configuration during the hot portions of the orbit. Here we present an overview of the instrument design and how the design meets its technical challenges. We also review results from the first two flybys, discuss the quality of MDIS data from the initial periods of data acquisition and how that compares with requirements, and summarize how in-flight tests are being used to improve the quality of the instrument calibration. ?? 2009 SPIE.

  20. Phase camera experiment for Advanced Virgo

    Energy Technology Data Exchange (ETDEWEB)

    Agatsuma, Kazuhiro, E-mail: agatsuma@nikhef.nl [National Institute for Subatomic Physics, Amsterdam (Netherlands); Beuzekom, Martin van; Schaaf, Laura van der [National Institute for Subatomic Physics, Amsterdam (Netherlands); Brand, Jo van den [National Institute for Subatomic Physics, Amsterdam (Netherlands); VU University, Amsterdam (Netherlands)

    2016-07-11

    We report on a study of the phase camera, which is a frequency selective wave-front sensor of a laser beam. This sensor is utilized for monitoring sidebands produced by phase modulations in a gravitational wave (GW) detector. Regarding the operation of the GW detectors, the laser modulation/demodulation method is used to measure mirror displacements and used for the position controls. This plays a significant role because the quality of controls affect the noise level of the GW detector. The phase camera is able to monitor each sideband separately, which has a great benefit for the manipulation of the delicate controls. Also, overcoming mirror aberrations will be an essential part of Advanced Virgo (AdV), which is a GW detector close to Pisa. Especially low-frequency sidebands can be affected greatly by aberrations in one of the interferometer cavities. The phase cameras allow tracking such changes because the state of the sidebands gives information on mirror aberrations. A prototype of the phase camera has been developed and is currently tested. The performance checks are almost completed and the installation of the optics at the AdV site has started. After the installation and commissioning, the phase camera will be combined to a thermal compensation system that consists of CO{sub 2} lasers and compensation plates. In this paper, we focus on the prototype and show some limitations from the scanner performance. - Highlights: • The phase camera is being developed for a gravitational wave detector. • A scanner performance limits the operation speed and layout design of the system. • An operation range was found by measuring the frequency response of the scanner.

  1. Performance Characterization of UV Science Cameras Developed for the Chromospheric Lyman-Alpha Spectro-Polarimeter

    Science.gov (United States)

    Champey, P.; Kobayashi, K.; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, D.; Beabout, B.; Stewart, M.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-alpha and to detect the Hanle effect in the line core. Due to the nature of Lyman-alpha polarization in the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1 percent in the line core. CLASP is a dual-beam spectro-polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1 percent polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. Coating the e2v CCD57-10 512x512 detectors with Lumogen-E coating allows for a relatively high (30 percent) quantum efficiency at the Lyman-alpha line. The CLASP cameras were designed to operate with 10 e-/pixel/second dark current, 25 e- read noise, a gain of 2.0 +/- 0.5 and 1.0 percent residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; dark current, read noise, camera gain and residual non-linearity.

  2. Signal and noise analysis of flat-panel sandwich detectors for single-shot dual-energy x-ray imaging

    Science.gov (United States)

    Kim, Dong Woon; Kim, Ho Kyung; Youn, Hanbean; Yun, Seungman; Han, Jong Chul; Kim, Junwoo; Kam, Soohwa; Tanguay, Jesse; Cunningham, Ian A.

    2015-03-01

    We have developed a novel sandwich-style single-shot (single-kV) detector by stacking two indirect-conversion flat-panel detectors for preclinical mouse imaging. In the sandwich detector structure, extra noise due to the direct x-ray absorption in photodiode arrays is inevitable. We develop a simple cascaded linear-systems model to describe signal and noise propagation in the flat-panel sandwich detector considering direct x-ray interactions. The noise-power spectrum (NPS) and detective quantum efficiency (DQE) obtained from the front and rear detectors are analyzed by using the cascaded-systems model. The NPS induced by the absorption of direct x-ray photons that are unattenuated within the photodiode layers is white in the spatial-frequency domain like the additive readout noise characteristic; hence that is harmful to the DQE at higher spatial frequencies at which the number of secondary quanta lessens. The model developed in this study will be useful for determining the optimal imaging techniques with sandwich detectors and their optimal design.

  3. Detectors for the space telescope

    Science.gov (United States)

    Kelsall, T.

    1978-01-01

    This review of Space Telescope (ST) detectors is divided into two parts. The first part gives short summaries of detector programs carried out during the final planning stage (Phase B) of the ST and discusses such detectors as Photicon, the MAMA detectors, the CODACON, the University of Maryland ICCD, the Goddard Space Flight Center ICCD, and the 70 mm SEC TV sensor. The second part describes the detectors selected for the first ST flight, including the wide field/planetary camera, the faint object and high resolution spectrographs, and the high speed photometer.

  4. The Legal Implications of Surveillance Cameras

    Science.gov (United States)

    Steketee, Amy M.

    2012-01-01

    The nature of school security has changed dramatically over the last decade. Schools employ various measures, from metal detectors to identification badges to drug testing, to promote the safety and security of staff and students. One of the increasingly prevalent measures is the use of security cameras. In fact, the U.S. Department of Education…

  5. High-performance digital color video camera

    Science.gov (United States)

    Parulski, Kenneth A.; D'Luna, Lionel J.; Benamati, Brian L.; Shelley, Paul R.

    1992-01-01

    Typical one-chip color cameras use analog video processing circuits. An improved digital camera architecture has been developed using a dual-slope A/D conversion technique and two full-custom CMOS digital video processing integrated circuits, the color filter array (CFA) processor and the RGB postprocessor. The system used a 768 X 484 active element interline transfer CCD with a new field-staggered 3G color filter pattern and a lenslet overlay, which doubles the sensitivity of the camera. The industrial-quality digital camera design offers improved image quality, reliability, manufacturability, while meeting aggressive size, power, and cost constraints. The CFA processor digital VLSI chip includes color filter interpolation processing, an optical black clamp, defect correction, white balance, and gain control. The RGB postprocessor digital integrated circuit includes a color correction matrix, gamma correction, 2D edge enhancement, and circuits to control the black balance, lens aperture, and focus.

  6. Paired emitter-detector diode detection with dual wavelength monitoring for enhanced sensitivity to transition metals in ion chromatography with post-column reaction.

    Science.gov (United States)

    O' Toole, Martina; Barron, Leon; Shepherd, Roderick; Paull, Brett; Nesterenko, Pavel; Diamond, Dermot

    2009-01-01

    The combination of post-column derivatisation and visible detection are regularly employed in ion chromatography (IC) to detect poorly absorbing species. Although this mode is often highly sensitive, one disadvantage is the increase in repeating baseline artifacts associated with out-of-sync pumping systems. The work presented here will demonstrate the use of a second generation design paired emitter-detector diode (PEDD-II) detection mode offering enhanced sensitivity to transition metals in IC by markedly reducing this problem and also by improving signal noise. First generation designs demonstrated the use of a single integrated PEDD detector cell as a simple, small (15 x 5 mm), highly sensitive, low cost photometric detector for the detection of metals in IC. The basic principle of this detection mode lies in the employment of two linear light emitting diodes (LEDs), one operating in normal mode as a light source and the other in reverse bias serving as a light detector. The second generation PEDD-II design showed increased sensitivity for Mn(II)- and Co(II)-2-(pyridylazo)resorcinol (PAR) complexes as a result of two simultaneously acquiring detection cells--one analytical PEDD cell and one reference PEDD cell. Therefore, the PEDD-II employs two wavelengths whereby one monitors the analyte reaction product and the second monitors a wavelength close to the isosbestic point. The optimum LED wavelength to be used for the analytical cell was investigated to maximise peak response. The fabrication process for both the analytical and reference PEDD cells was validated by determining the reproducibility of detectors within a batch. The reproducibility and sensitivity of the PEDD-II detector was then investigated using signals obtained from both intra- and inter-day chromatograms.

  7. Bullet Design and Fabrication of Dual Mode Pyroelectric Sensor: High Sensitive Energymeter for Nd: YAG Laser and Detector for Chopped He-Ne Laser

    Directory of Open Access Journals (Sweden)

    S. SATAPATHY

    2008-05-01

    Full Text Available Pyroelectric sensor using TGS has been designed and fabricated which can be operated in laser energy meter mode as well as pyroelectric detector mode. The amplifying circuit configuration has very good signal to noise ratio, very high input impedance and low drift. The pyroelectric sensor has been tested using Q-switched Nd: YAG laser and chopped He-Ne laser. The sensitivity of pyroelectric sensor in energymeter mode is 421.7V/J and the voltage responsivity of the pyroelectric sensor is 3.27 V/W in detector mode.

  8. LSST camera readout chip ASPIC: test tools

    Science.gov (United States)

    Antilogus, P.; Bailly, Ph; Jeglot, J.; Juramy, C.; Lebbolo, H.; Martin, D.; Moniez, M.; Tocut, V.; Wicek, F.

    2012-02-01

    The LSST camera will have more than 3000 video-processing channels. The readout of this large focal plane requires a very compact readout chain. The correlated ''Double Sampling technique'', which is generally used for the signal readout of CCDs, is also adopted for this application and implemented with the so called ''Dual Slope integrator'' method. We have designed and implemented an ASIC for LSST: the Analog Signal Processing asIC (ASPIC). The goal is to amplify the signal close to the output, in order to maximize signal to noise ratio, and to send differential outputs to the digitization. Others requirements are that each chip should process the output of half a CCD, that is 8 channels and should operate at 173 K. A specific Back End board has been designed especially for lab test purposes. It manages the clock signals, digitizes the analog differentials outputs of ASPIC and stores data into a memory. It contains 8 ADCs (18 bits), 512 kwords memory and an USB interface. An FPGA manages all signals from/to all components on board and generates the timing sequence for ASPIC. Its firmware is written in Verilog and VHDL languages. Internals registers permit to define various tests parameters of the ASPIC. A Labview GUI allows to load or update these registers and to check a proper operation. Several series of tests, including linearity, noise and crosstalk, have been performed over the past year to characterize the ASPIC at room and cold temperature. At present, the ASPIC, Back-End board and CCD detectors are being integrated to perform a characterization of the whole readout chain.

  9. The GCT camera for the Cherenkov Telescope Array

    CERN Document Server

    Brown, Anthony M; Allan, D; Amans, J P; Armstrong, T P; Balzer, A; Berge, D; Boisson, C; Bousquet, J -J; Bryan, M; Buchholtz, G; Chadwick, P M; Costantini, H; Cotter, G; Daniel, M K; De Franco, A; De Frondat, F; Dournaux, J -L; Dumas, D; Fasola, G; Funk, S; Gironnet, J; Graham, J A; Greenshaw, T; Hervet, O; Hidaka, N; Hinton, J A; Huet, J -M; Jegouzo, I; Jogler, T; Kraus, M; Lapington, J S; Laporte, P; Lefaucheur, J; Markoff, S; Melse, T; Mohrmann, L; Molyneux, P; Nolan, S J; Okumura, A; Osborne, J P; Parsons, R D; Rosen, S; Ross, D; Rowell, G; Sato, Y; Sayede, F; Schmoll, J; Schoorlemmer, H; Servillat, M; Sol, H; Stamatescu, V; Stephan, M; Stuik, R; Sykes, J; Tajima, H; Thornhill, J; Tibaldo, L; Trichard, C; Vink, J; Watson, J J; White, R; Yamane, N; Zech, A; Zink, A; Zorn, J

    2016-01-01

    The Gamma-ray Cherenkov Telescope (GCT) is proposed for the Small-Sized Telescope component of the Cherenkov Telescope Array (CTA). GCT's dual-mirror Schwarzschild-Couder (SC) optical system allows the use of a compact camera with small form-factor photosensors. The GCT camera is ~0.4 m in diameter and has 2048 pixels; each pixel has a ~0.2 degree angular size, resulting in a wide field-of-view. The design of the GCT camera is high performance at low cost, with the camera housing 32 front-end electronics modules providing full waveform information for all of the camera's 2048 pixels. The first GCT camera prototype, CHEC-M, was commissioned during 2015, culminating in the first Cherenkov images recorded by a SC telescope and the first light of a CTA prototype. In this contribution we give a detailed description of the GCT camera and present preliminary results from CHEC-M's commissioning.

  10. Interconnected network of cameras

    Science.gov (United States)

    Hosseini Kamal, Mahdad; Afshari, Hossein; Leblebici, Yusuf; Schmid, Alexandre; Vandergheynst, Pierre

    2013-02-01

    The real-time development of multi-camera systems is a great challenge. Synchronization and large data rates of the cameras adds to the complexity of these systems as well. The complexity of such system also increases as the number of their incorporating cameras increases. The customary approach to implementation of such system is a central type, where all the raw stream from the camera are first stored then processed for their target application. An alternative approach is to embed smart cameras to these systems instead of ordinary cameras with limited or no processing capability. Smart cameras with intra and inter camera processing capability and programmability at the software and hardware level will offer the right platform for distributed and parallel processing for multi- camera systems real-time application development. Inter camera processing requires the interconnection of smart cameras in a network arrangement. A novel hardware emulating platform is introduced for demonstrating the concept of the interconnected network of cameras. A methodology is demonstrated for the interconnection network of camera construction and analysis. A sample application is developed and demonstrated.

  11. Model-based correction for scatter and tailing effects in simultaneous 99mTc and 123I imaging for a CdZnTe cardiac SPECT camera

    Science.gov (United States)

    Holstensson, M.; Erlandsson, K.; Poludniowski, G.; Ben-Haim, S.; Hutton, B. F.

    2015-04-01

    An advantage of semiconductor-based dedicated cardiac single photon emission computed tomography (SPECT) cameras when compared to conventional Anger cameras is superior energy resolution. This provides the potential for improved separation of the photopeaks in dual radionuclide imaging, such as combined use of 99mTc and 123I . There is, however, the added complexity of tailing effects in the detectors that must be accounted for. In this paper we present a model-based correction algorithm which extracts the useful primary counts of 99mTc and 123I from projection data. Equations describing the in-patient scatter and tailing effects in the detectors are iteratively solved for both radionuclides simultaneously using a maximum a posteriori probability algorithm with one-step-late evaluation. Energy window-dependent parameters for the equations describing in-patient scatter are estimated using Monte Carlo simulations. Parameters for the equations describing tailing effects are estimated using virtually scatter-free experimental measurements on a dedicated cardiac SPECT camera with CdZnTe-detectors. When applied to a phantom study with both 99mTc and 123I, results show that the estimated spatial distribution of events from 99mTc in the 99mTc photopeak energy window is very similar to that measured in a single 99mTc phantom study. The extracted images of primary events display increased cold lesion contrasts for both 99mTc and 123I.

  12. Making Ceramic Cameras

    Science.gov (United States)

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  13. Making Ceramic Cameras

    Science.gov (United States)

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  14. Vacuum Camera Cooler

    Science.gov (United States)

    Laugen, Geoffrey A.

    2011-01-01

    Acquiring cheap, moving video was impossible in a vacuum environment, due to camera overheating. This overheating is brought on by the lack of cooling media in vacuum. A water-jacketed camera cooler enclosure machined and assembled from copper plate and tube has been developed. The camera cooler (see figure) is cup-shaped and cooled by circulating water or nitrogen gas through copper tubing. The camera, a store-bought "spy type," is not designed to work in a vacuum. With some modifications the unit can be thermally connected when mounted in the cup portion of the camera cooler. The thermal conductivity is provided by copper tape between parts of the camera and the cooled enclosure. During initial testing of the demonstration unit, the camera cooler kept the CPU (central processing unit) of this video camera at operating temperature. This development allowed video recording of an in-progress test, within a vacuum environment.

  15. Constrained space camera assembly

    Science.gov (United States)

    Heckendorn, Frank M.; Anderson, Erin K.; Robinson, Casandra W.; Haynes, Harriet B.

    1999-01-01

    A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras.

  16. The 4th concept detector

    Indian Academy of Sciences (India)

    John Hauptman

    2007-12-01

    The 4th concept detector consists of four detector subsystems, a small-pixel vertex detector, a high-resolution TPC, a new multiple-readout fiber calorimeter and a new dual-solenoid iron-free muon system. We discuss the design of a comprehensive facility that measures and identifies all partons of the standard model, including hadronic → and → decays, with high precision and high e±ciency. We emphasis here the calorimeter and muon systems.

  17. Evaluating intensified camera systems

    Energy Technology Data Exchange (ETDEWEB)

    S. A. Baker

    2000-07-01

    This paper describes image evaluation techniques used to standardize camera system characterizations. Key areas of performance include resolution, noise, and sensitivity. This team has developed a set of analysis tools, in the form of image processing software used to evaluate camera calibration data, to aid an experimenter in measuring a set of camera performance metrics. These performance metrics identify capabilities and limitations of the camera system, while establishing a means for comparing camera systems. Analysis software is used to evaluate digital camera images recorded with charge-coupled device (CCD) cameras. Several types of intensified camera systems are used in the high-speed imaging field. Electro-optical components are used to provide precise shuttering or optical gain for a camera system. These components including microchannel plate or proximity focused diode image intensifiers, electro-static image tubes, or electron-bombarded CCDs affect system performance. It is important to quantify camera system performance in order to qualify a system as meeting experimental requirements. The camera evaluation tool is designed to provide side-by-side camera comparison and system modeling information.

  18. Adapting Virtual Camera Behaviour

    DEFF Research Database (Denmark)

    Burelli, Paolo

    2013-01-01

    In a three-dimensional virtual environment aspects such as narrative and interaction completely depend on the camera since the camera defines the player’s point of view. Most research works in automatic camera control aim to take the control of this aspect from the player to automatically gen...

  19. Digital Pinhole Camera

    Science.gov (United States)

    Lancor, Rachael; Lancor, Brian

    2014-01-01

    In this article we describe how the classic pinhole camera demonstration can be adapted for use with digital cameras. Students can easily explore the effects of the size of the pinhole and its distance from the sensor on exposure time, magnification, and image quality. Instructions for constructing a digital pinhole camera and our method for…

  20. Radiation Tolerance Characterization of Dual Band InAs/GaSb Type-II Strain-Layer Superlattice pBp Detectors Using 63 MeV Protons

    Science.gov (United States)

    2012-01-01

    films J. Appl. Phys. 112, 073718 (2012) Additional information on Appl. Phys. Lett. Journal Homepage: http://apl.aip.org/ Journal Information...considered for space applications due to their relative advantage in manu- facturability, compared with conventional mercury -cadmium- telluride (MCT) IR...preliminary 1–2 MeV proton irradiation studies of Sb -based T2SLS photodiodes where the detectors were unbiased and at 300 K during irradiation, which

  1. GRAVITY detector systems

    Science.gov (United States)

    Mehrgan, Leander H.; Finger, Gert; Eisenhauer, Frank; Panduro, Johana

    2016-08-01

    GRAVITY is a second generation instrument for the VLT Interferometer, designed for high-precision narrow-angle astrometry and phase-referenced interferometric imaging in the K-band. It will combine the AO corrected beams of the four VLT telescopes. In total, the GRAVITY instrument uses five eAPD detectors four for the infrared wavefront sensors of each telescope and one for the fringe tracker. In addition two Hawaii2RG arrays are installed, one for the acquisition camera and one for the spectrometer. The SAPHIRA eAPD array is a newly developed near-infrared detector with sub-electron noise performance at frame rates > 1Kfps. For all seven detectors the ESO common controller, NGC, is used. This paper presents an overview and comparison of GRAVITY detector systems and their final performances at the telescope

  2. Nitrogen camera: detection of antipersonnel mines

    Science.gov (United States)

    Trower, W. Peter; Saunders, Anna W.; Shvedunov, Vasiliy I.

    1997-01-01

    We describe a nuclear technique, the nitrogen camera, with which we have produced images of elemental nitrogen in concentrations and with surface densities typical of buried plastic anti-personnel mines. We have, under laboratory conditions, obtained images of nitrogen in amounts substantially less than in these small 200 g mines. We report our progress in creating the enabling technology to make the nitrogen camera a field deployable instrument: a mobile 70 MeV electron racetrack microtron and scintillator/semiconductor materials and the detectors based on them.

  3. Development of a readout electronic for a Si-pixeldetector for application in a Compton camera

    OpenAIRE

    Ibragimov, Iskander

    2005-01-01

    Compton cameras are very promising gamma-ray imaging systems, which have already found their application in astrophysics. Their use in nuclear medicine could offer higher sensitivity and better spatial resolution than existing mechanically-collimated gamma cameras, leading to a reduction of the radiation dose given to a patient. A Comp- ton camera consists basically of two detectors: a scatter detector, where Compton scatter- ing takes place, and a photoabsorber, where the scat...

  4. Design and characterization of a low profile NaI(Tl) gamma camera for dedicated molecular breast tomosynthesis

    Science.gov (United States)

    Polemi, Andrew M.; Niestroy, Justin; Stolin, Alexander; Jaliparthi, Gangadhar; Wojcik, Randy; Majewski, Stan; Williams, Mark B.

    2016-10-01

    A new low profile gamma camera is being developed for use in a dual modality (x-ray transmission and gamma-ray emission) tomosynthesis system. Compared to the system's current gamma camera, the new camera has a larger field of view ( 20x25 cm) to better match the system's x-ray detector ( 23x29 cm), and is thinner (7.3 cm instead of 10.3 cm) permitting easier camera positioning near the top surface of the breast. It contains a pixelated NaI(Tl) array with a crystal pitch of 2.2 mm, which is optically coupled to a 4x5 array of Hamamatsu H8500C position sensitive photomultiplier tubes (PSPMTs). The manufacturer-provided connector board of each PSPMT was replaced with a custom designed board that a) reduces the 64 channel readout of the 8x8 electrode anode of the H8500C to 16 channels (8X and 8Y), b) performs gain non-uniformity correction, and c) reduces the height of the PSPMT-base assembly, 37.7 mm to 27.87 mm. The X and Y outputs of each module are connected in a lattice framework, and at two edges of this lattice, the X and Y outputs (32Y by 40X) are coupled to an amplifier/output board whose signals are fed via shielded ribbon cables to external ADCs. The camera uses parallel hole collimation. We describe the measured camera imaging performance, including intrinsic and extrinsic spatial resolution, detection sensitivity, uniformity of response, energy resolution for 140 keV gamma rays, and geometric linearity.

  5. Performance Characterization of UV Science Cameras Developed for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP)

    Science.gov (United States)

    Champey, Patrick; Kobayashi, Ken; Winebarger, Amy; Cirtin, Jonathan; Hyde, David; Robertson, Bryan; Beabout, Brent; Beabout, Dyana; Stewart, Mike

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-alpha and to detect the Hanle effect in the line core. Due to the nature of Lyman-alpha polarization in the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1% in the line core. CLASP is a dual-beam spectro-polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1% polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. Coating the e2v CCD57-10 512x512 detectors with Lumogen-E coating allows for a relatively high (30%) quantum efficiency at the Lyman-$\\alpha$ line. The CLASP cameras were designed to operate with =10 e- /pixel/second dark current, = 25 e- read noise, a gain of 2.0 and =0.1% residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; dark current, read noise, camera gain and residual non-linearity.

  6. 基于OpenCV的红外与可见光双摄像机标定方法研究%Study of Lnfrared and Visible Light Dual Camera Calibration Method Based on OpenCV

    Institute of Scientific and Technical Information of China (English)

    任贵文

    2016-01-01

    With the development of infrared thermal imaging technology , as well as the advantages of non-con-tact temperature measurement , study of infrared thermal imaging technology is also increasing , And the fusion of in-frared and visible images become the focus of current research , integration of the main difficulty is the calibration of infrared and visible light cameras , for image registration .Based on the versatile camera calibration technique , in the VS2013 environment , combined with the OpenCV open source computer vision library , we developed a set of calibration system for infrared and visible light cameras .The system overcomes the disadvantages of Infrared Image camera can not take clear checkerboard images , and achieving fast , accurate real-time infrared and visible light cameras calibration .%随着红外热成像技术的不断发展,以及其非接触性测温的优点,人们对红外热成像技术的研究也越来越多;其中,红外与可见光图像的融合成为目前研究的热点;融合的主要难点是对红外和可见光摄像机的参数标定,已达到图像配准的目的。根据通用的摄像机标定技术,在VS2013环境下,结合开源的计算机视觉库OpenCV ,开发了一套红外与可见光摄像机标定系统;该系统克服了红外热成像摄像机采集的棋盘格图像模糊的弊端,实现了红外与可见光摄像机的快速、准确的实时标定。

  7. Evaluation of the optical cross talk level in the SiPMs adopted in ASTRI SST-2M Cherenkov Camera using EASIROC front-end electronics

    CERN Document Server

    Impiombato, D; Mineo, T; Agnetta, G; Biondo, B; Catalano, O; Gargano, C; La Rosa, G; Russo, F; Sottile, G; Belluso, M; Billotta, S; Bonanno, G; Garozzo, S; Marano, D; Romeo, G

    2013-01-01

    ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana), is a flagship project of the Italian Ministry of Education, University and Research whose main goal is the design and construction of an end-to-end prototype of the Small Size of Telescopes of the Cherenkov Telescope Array. The prototype, named ASTRI SST-2M, will adopt a wide field dual mirror optical system in a Schwarzschild-Couder configuration to explore the VHE range of the electromagnetic spectrum. The camera at the focal plane is based on Silicon Photo-Multipliers detectors which is an innovative solution for the detection astronomical Cherenkov light. This contribution reports some preliminary results on the evaluation of the optical cross talk level among the SiPM pixels foreseen for the ASTRI SST-2M camera.

  8. Characteristics of stereo images from detectors in focal plane array.

    Science.gov (United States)

    Son, Jung-Young; Yeom, Seokwon; Chun, Joo-Hwan; Guschin, Vladmir P; Lee, Dong-Su

    2011-07-01

    The equivalent ray geometry of two horizontally aligned detectors at the focal plane of the main antenna in a millimeter wave imaging system is analyzed to reveal the reason why the images from the detectors are fused as an image with a depth sense. Scanning the main antenna in both horizontal and vertical directions makes each detector perform as a camera, and the two detectors can work like a stereo camera in the millimeter wave range. However, the stereo camera geometry is different from that of the stereo camera used in the visual spectral range because the detectors' viewing directions are diverging to each other and they are a certain distance apart. The depth sense is mainly induced by the distance between detectors. The images obtained from the detectors in the millimeter imaging system are perceived with a good depth sense. The disparities responsible for the depth sense are identified in the images.

  9. Two cameras detect more lesions in the small-bowel than one

    Institute of Scientific and Technical Information of China (English)

    Konstantinos Triantafyllou; Ioannis S Papanikolaou; Kostis Papaxoinis; Spiros D Ladas

    2011-01-01

    AIM: To explore the feasibility of dual camera capsule (DCC) small-bowel (SB) imaging and to examine if two cameras complement each other to detect more SB lesions. METHODS: Forty-one eligible, consecutive patients underwent DCC SB imaging. Two experienced investigators examined the videos and compared the total number of detected lesions to the number of lesions detected by each camera separately. Examination tolerability was assessed using a questionnaire. RESULTS: One patient was excluded. DCC cameras detected 68 positive findings (POS) in 20 (50%) cases. Fifty of them were detected by the "yellow" camera, 48 by the "green" and 28 by both cameras; 44% (n = 22) of the "yellow" camera's POS were not detected by the "green" camera and 42% (n = 20) of the "green" camera's POS were not detected by the "yellow" camera. In two cases, only one camera detected significant findings. All participants had 216 findings of unknown significance (FUS). The "yellow", "green" and both cameras detected 171, 161, and 116 FUS, respectively; 32% (n = 55) of the "yellow" camera's FUS were not detected by the "green" camera and 28% (n = 45) of the "green" camera's FUS were not detected by the "yellow" camera. There were no complications related to the examination, and 97.6% of the patients would repeat the examination, if necessary. CONCLUSION: DCC SB examination is feasible and well tolerated. The two cameras complement each other to detect more SB lesions.

  10. Detection of the tSZ effect with the NIKA camera

    CERN Document Server

    Comis, B; Macías-Pérez, J F; Adane, A; Ade, P; André, P; Beelen, A; Belier, B; Benoît, A; Bideaud, A; Billot, N; Boudou, N; Bourrion, O; Calvo, M; Catalano, A; Coiffard, G; D'Addabbo, A; Désert, F -X; Doyle, S; Goupy, J; Kramer, C; Leclercq, S; Martino, J; Mauskopf, P; Mayet, F; Monfardini, A; Pajot, F; Pascale, E; Perotto, L; Pointecouteau, E; Ponthieu, N; Revéret, V; Rodriguez, L; Savini, G; Schuster, K; Sievers, A; Tucker, C; Zylka, R

    2013-01-01

    We present the first detection of the thermal Sunyaev-Zel'dovich (tSZ) effect from a cluster of galaxies performed with a KIDs (Kinetic Inductance Detectors) based instrument. The tSZ effect is a distortion of the black body CMB (Cosmic Microwave Background) spectrum produced by the inverse Compton interaction of CMB photons with the hot electrons of the ionized intra-cluster medium. The massive, intermediate redshift cluster RX J1347.5-1145 has been observed using NIKA (New IRAM KIDs arrays), a dual-band (140 and 240 GHz) mm-wave imaging camera, which exploits two arrays of hundreds of KIDs: the resonant frequencies of the superconducting resonators are shifted by mm-wave photons absorption. This tSZ cluster observation demonstrates the potential of the next generation NIKA2 instrument, being developed for the 30m telescope of IRAM, at Pico Veleta (Spain). NIKA2 will have 1000 detectors at 140GHz and 2x2000 detectors at 240GHz, providing in that band also a measurement of the linear polarization. NIKA2 will ...

  11. Microchannel plate streak camera

    Science.gov (United States)

    Wang, Ching L.

    1989-01-01

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 KeV x-rays.

  12. Solid state video cameras

    CERN Document Server

    Cristol, Y

    2013-01-01

    Solid State Video Cameras reviews the state of the art in the field of solid-state television cameras as compiled from patent literature. Organized into 10 chapters, the book begins with the basic array types of solid-state imagers and appropriate read-out circuits and methods. Documents relating to improvement of picture quality, such as spurious signal suppression, uniformity correction, or resolution enhancement, are also cited. The last part considerssolid-state color cameras.

  13. LSST Camera Optics Design

    Energy Technology Data Exchange (ETDEWEB)

    Riot, V J; Olivier, S; Bauman, B; Pratuch, S; Seppala, L; Gilmore, D; Ku, J; Nordby, M; Foss, M; Antilogus, P; Morgado, N

    2012-05-24

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, telescope design feeding a camera system that includes a set of broad-band filters and three refractive corrector lenses to produce a flat field at the focal plane with a wide field of view. Optical design of the camera lenses and filters is integrated in with the optical design of telescope mirrors to optimize performance. We discuss the rationale for the LSST camera optics design, describe the methodology for fabricating, coating, mounting and testing the lenses and filters, and present the results of detailed analyses demonstrating that the camera optics will meet their performance goals.

  14. Ringfield lithographic camera

    Science.gov (United States)

    Sweatt, William C.

    1998-01-01

    A projection lithography camera is presented with a wide ringfield optimized so as to make efficient use of extreme ultraviolet radiation from a large area radiation source (e.g., D.sub.source .apprxeq.0.5 mm). The camera comprises four aspheric mirrors optically arranged on a common axis of symmetry with an increased etendue for the camera system. The camera includes an aperture stop that is accessible through a plurality of partial aperture stops to synthesize the theoretical aperture stop. Radiation from a mask is focused to form a reduced image on a wafer, relative to the mask, by reflection from the four aspheric mirrors.

  15. On Recall Rate of Interest Point Detectors

    DEFF Research Database (Denmark)

    Aanæs, Henrik; Lindbjerg Dahl, Anders; Pedersen, Kim Steenstrup

    2010-01-01

    , and for each scene we have 119 precisely located camera positions obtained from a camera mounted on an industrial robot arm. The scene surfaces have been scanned using structured light, providing precise 3D ground truth. We have investigated a number of the most popular interest point detectors where we...

  16. Evaluation of sCMOS cameras for detection and localization of single Cy5 molecules.

    Science.gov (United States)

    Saurabh, Saumya; Maji, Suvrajit; Bruchez, Marcel P

    2012-03-26

    The ability to detect single molecules over the electronic noise requires high performance detector systems. Electron Multiplying Charge-Coupled Device (EMCCD) cameras have been employed successfully to image single molecules. Recently, scientific Complementary Metal Oxide Semiconductor (sCMOS) based cameras have been introduced with very low read noise at faster read out rates, smaller pixel sizes and a lower price compared to EMCCD cameras. In this study, we have compared the two technologies using two EMCCD and three sCMOS cameras to detect single Cy5 molecules. Our findings indicate that the sCMOS cameras perform similar to EMCCD cameras for detecting and localizing single Cy5 molecules.

  17. CCD Luminescence Camera

    Science.gov (United States)

    Janesick, James R.; Elliott, Tom

    1987-01-01

    New diagnostic tool used to understand performance and failures of microelectronic devices. Microscope integrated to low-noise charge-coupled-device (CCD) camera to produce new instrument for analyzing performance and failures of microelectronics devices that emit infrared light during operation. CCD camera also used to indentify very clearly parts that have failed where luminescence typically found.

  18. Camera as Cultural Critique

    DEFF Research Database (Denmark)

    Suhr, Christian

    2015-01-01

    What does the use of cameras entail for the production of cultural critique in anthropology? Visual anthropological analysis and cultural critique starts at the very moment a camera is brought into the field or existing visual images are engaged. The framing, distances, and interactions between...... to establish analysis as a continued, iterative movement of transcultural dialogue and critique....

  19. Camera Operator and Videographer

    Science.gov (United States)

    Moore, Pam

    2007-01-01

    Television, video, and motion picture camera operators produce images that tell a story, inform or entertain an audience, or record an event. They use various cameras to shoot a wide range of material, including television series, news and sporting events, music videos, motion pictures, documentaries, and training sessions. Those who film or…

  20. Thermal Cameras and Applications

    DEFF Research Database (Denmark)

    Gade, Rikke; Moeslund, Thomas B.

    2014-01-01

    Thermal cameras are passive sensors that capture the infrared radiation emitted by all objects with a temperature above absolute zero. This type of camera was originally developed as a surveillance and night vision tool for the military, but recently the price has dropped, significantly opening up...... a broader field of applications. Deploying this type of sensor in vision systems eliminates the illumination problems of normal greyscale and RGB cameras. This survey provides an overview of the current applications of thermal cameras. Applications include animals, agriculture, buildings, gas detection......, industrial, and military applications, as well as detection, tracking, and recognition of humans. Moreover, this survey describes the nature of thermal radiation and the technology of thermal cameras....

  1. Dry imaging cameras

    Directory of Open Access Journals (Sweden)

    I K Indrajit

    2011-01-01

    Full Text Available Dry imaging cameras are important hard copy devices in radiology. Using dry imaging camera, multiformat images of digital modalities in radiology are created from a sealed unit of unexposed films. The functioning of a modern dry camera, involves a blend of concurrent processes, in areas of diverse sciences like computers, mechanics, thermal, optics, electricity and radiography. Broadly, hard copy devices are classified as laser and non laser based technology. When compared with the working knowledge and technical awareness of different modalities in radiology, the understanding of a dry imaging camera is often superficial and neglected. To fill this void, this article outlines the key features of a modern dry camera and its important issues that impact radiology workflow.

  2. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellut, Paolo; Sherwin, Gary

    2011-01-01

    TIR cameras can be used for day/night Unmanned Ground Vehicle (UGV) autonomous navigation when stealth is required. The quality of uncooled TIR cameras has significantly improved over the last decade, making them a viable option at low speed Limiting factors for stereo ranging with uncooled LWIR cameras are image blur and low texture scenes TIR perception capabilities JPL has explored includes: (1) single and dual band TIR terrain classification (2) obstacle detection (pedestrian, vehicle, tree trunks, ditches, and water) (3) perception thru obscurants

  3. High Spatial Resolution Investigations of Microchannel Plate Imaging Properties for UV Detectors

    Science.gov (United States)

    Siegmund, Oswald

    1996-01-01

    Microchannel plate (MCP) photon counting detectors are currently being used with great success on many of the recent NASA/ESA ultraviolet (UV) astrophysics missions that make observations in the 1OO A - 1600 A range. These include HUT, the Wide Field Camera on ROSAT, EUVE, ALEXIS, ORFEUS, and SOHO. These devices have also been chosen to fly on future UV astrophysics missions such as FUSE, FUVITA, IMAGE, and both the HST STIS and Advanced Camera instruments. During the period of this award we have fabricated a dual-chamber vacuum test facility to carry out laboratory testing of detector resolution, image stability and linearity, and flat field performance to enable us to characterize the performance of MCPs and their associated read-out architectures. We have also fabricated and tested a laboratory 'test-bed' delay line detector, which can accommodate MCP's with a wide range of formats and run at high data rates, to continue our studies of MCP image fixed pattern noise, and particularly for new small pore MCP's which have recently come onto the market. These tests were mainly focussed on the assessment of cross delay-line (XDL) and double delay line (DDL) anode read-out schemes, with particular attention being focussed on flat-field and spatial resolution performance.

  4. Nuclear probes and intraoperative gamma cameras.

    Science.gov (United States)

    Heller, Sherman; Zanzonico, Pat

    2011-05-01

    Gamma probes are now an important, well-established technology in the management of cancer, particularly in the detection of sentinel lymph nodes. Intraoperative sentinel lymph node as well as tumor detection may be improved under some circumstances by the use of beta (negatron or positron), rather than gamma detection, because the very short range (∼ 1 mm or less) of such particulate radiations eliminates the contribution of confounding counts from activity other than in the immediate vicinity of the detector. This has led to the development of intraoperative beta probes. Gamma camera imaging also benefits from short source-to-detector distances and minimal overlying tissue, and intraoperative small field-of-view gamma cameras have therefore been developed as well. Radiation detectors for intraoperative probes can generally be characterized as either scintillation or ionization detectors. Scintillators used in scintillation-detector probes include thallium-doped sodium iodide, thallium- and sodium-doped cesium iodide, and cerium-doped lutecium orthooxysilicate. Alternatives to inorganic scintillators are plastic scintillators, solutions of organic scintillation compounds dissolved in an organic solvent that is subsequently polymerized to form a solid. Their combined high counting efficiency for beta particles and low counting efficiency for 511-keV annihilation γ-rays make plastic scintillators well-suited as intraoperative beta probes in general and positron probes in particular Semiconductors used in ionization-detector probes include cadmium telluride, cadmium zinc telluride, and mercuric iodide. Clinical studies directly comparing scintillation and semiconductor intraoperative probes have not provided a clear choice between scintillation and ionization detector-based probes. The earliest small field-of-view intraoperative gamma camera systems were hand-held devices having fields of view of only 1.5-2.5 cm in diameter that used conventional thallium

  5. NIKA 2: next-generation continuum/polarized camera at the IRAM 30 m telescope and its prototype

    CERN Document Server

    Ritacco, A; Adane, A; Ade, P; André, P; Beelen, A; Benoît, A; Bideaud, A; Billot, N; Bourrion, O; Calvo, M; Catalano, A; Coiffard, G; Comis, B; Désert, F -X; Doyle, S; Goupy, J; Kramer, C; Leclercq, S; Macías-Pérez, J F; Mauskopf, P; Maury, A; Mayet, F; Monfardini, A; Pajot, F; Pascale, E; Perotto, L; Pisano, G; Ponthieu, N; Rebolo-Iglesias, M; Revéret, V; Rodriguez, L; Ruppin, F; Savini, G; Schuster, K; Sievers, A; Triqueneaux, S; Tucker, C; Zylka, R

    2016-01-01

    NIKA 2 (New Instrument of Kids Array) is a next generation continuum and polarized instrument successfully installed in October 2015 at the IRAM 30 m telescope on Pico-Veleta (Granada, Spain). NIKA 2 is a high resolution dual-band camera, operating with frequency multiplexed LEKIDs (Lumped Element Kinetic Inductance Detectors) cooled at 100 mK. Dual color images are obtained thanks to the simultaneous readout of a 1020 pixels array at 2 mm and 1140 x 2 pixels arrays at 1.15 mm with a final resolution of 18 and 12 arcsec respectively, and 6.5 arcmin of Field of View (FoV). The two arrays at 1.15 mm allow us to measure the linear polarization of the incoming light. This will place NIKA 2 as an instrument of choice to study the role of magnetic fields in the star formation process. The NIKA experiment, a prototype for NIKA 2 with a reduced number of detectors (about 400 LEKIDs) and FoV (1.8 arcmin), has been successfully operated at the IRAM 30 telescope in several open observational campaigns. The performance o...

  6. ATTICA family of thermal cameras in submarine applications

    Science.gov (United States)

    Kuerbitz, Gunther; Fritze, Joerg; Hoefft, Jens-Rainer; Ruf, Berthold

    2001-10-01

    Optronics Mast Systems (US: Photonics Mast Systems) are electro-optical devices which enable a submarine crew to observe the scenery above water during dive. Unlike classical submarine periscopes they are non-hull-penetrating and therefore have no direct viewing capability. Typically they have electro-optical cameras both for the visual and for an IR spectral band with panoramic view and a stabilized line of sight. They can optionally be equipped with laser range- finders, antennas, etc. The brand name ATTICA (Advanced Two- dimensional Thermal Imager with CMOS-Array) characterizes a family of thermal cameras using focal-plane-array (FPA) detectors which can be tailored to a variety of requirements. The modular design of the ATTICA components allows the use of various detectors (InSb, CMT 3...5 μm , CMT 7...11 μm ) for specific applications. By means of a microscanner ATTICA cameras achieve full standard TV resolution using detectors with only 288 X 384 (US:240 X 320) detector elements. A typical requirement for Optronics-Mast Systems is a Quick- Look-Around capability. For FPA cameras this implies the need for a 'descan' module which can be incorporated in the ATTICA cameras without complications.

  7. Do Speed Cameras Reduce Collisions?

    OpenAIRE

    Skubic, Jeffrey; Johnson, Steven B.; Salvino, Chris; Vanhoy, Steven; Hu, Chengcheng

    2013-01-01

    We investigated the effects of speed cameras along a 26 mile segment in metropolitan Phoenix, Arizona. Motor vehicle collisions were retrospectively identified according to three time periods – before cameras were placed, while cameras were in place and after cameras were removed. A 14 mile segment in the same area without cameras was used for control purposes. Five cofounding variables were eliminated. In this study, the placement or removal of interstate highway speed cameras did not indepe...

  8. Do speed cameras reduce collisions?

    Science.gov (United States)

    Skubic, Jeffrey; Johnson, Steven B; Salvino, Chris; Vanhoy, Steven; Hu, Chengcheng

    2013-01-01

    We investigated the effects of speed cameras along a 26 mile segment in metropolitan Phoenix, Arizona. Motor vehicle collisions were retrospectively identified according to three time periods - before cameras were placed, while cameras were in place and after cameras were removed. A 14 mile segment in the same area without cameras was used for control purposes. Five cofounding variables were eliminated. In this study, the placement or removal of interstate highway speed cameras did not independently affect the incidence of motor vehicle collisions.

  9. ISOCAM, the ISO's satellite infra-red camera

    Science.gov (United States)

    de Sa, L.; Taride, S.

    1990-09-01

    Upon launch in 1993, the IR Space Observatory's 'ISOCAM' IR camera experiment will collect 2.5-5.5 and 4-17 micron astronomical data over an 18-month lifetime. On the basis of an open loop of superfluid He, ISOCAM's detectors, stepping motors, wheels, mechanisms, filters, lenses and primary mirror will all be cooled. The primary system design difficulties were encountered in the securing of low temperature stability for the detectors, as well as in the thermal control of high-inertia elements, and the cryogenic testing of the camera under spacelike conditions. Additional challenges were met in the development of such cryomechanical elements as stepping motors, ball bearings, and gears.

  10. The ASTRI SST-2M Prototype: Camera and Electronics

    CERN Document Server

    Catalano, Osvaldo; La Rosa, Giovanni; Maccarone, Maria Concetta; Mineo, Teresa; Russo, Francesco; Sottile, Giuseppe; Impiombato, Domenico; Bonanno, Giovanni; Belluso, Massimiliano; Billotta, Sergio; Grillo, Alessandro; Marano, Davide; De Caprio, Vincenzo; Fiorini, Mauro; Stringhetti, Luca; GAROZZO, Salvo; ROMEO, Giuseppe

    2013-01-01

    ASTRI is a Flagship Project financed by the Italian Ministry of Education, University and Research, and led by INAF, the Italian National Institute of Astrophysics. The primary goal of the ASTRI project is the realization of an end-to-end prototype of a Small Size Telescope for the Cherenkov Telescope Array. The prototype, named ASTRI SST-2M, is based on a completely new double mirror optics design and will be equipped with a camera made of a matrix of SiPM detectors. Here we describe the ASTRI SST-2M camera concept: basic idea, detectors, electronics, current status and some results coming from experiments in lab.

  11. VIRUS-P: camera design and performance

    Science.gov (United States)

    Tufts, Joseph R.; MacQueen, Phillip J.; Smith, Michael P.; Segura, Pedro R.; Hill, Gary J.; Edmonston, Robert D.

    2008-07-01

    We present the design and performance of the prototype Visible Integral-field Replicable Unit Spectrograph (VIRUS-P) camera. Commissioned in 2007, VIRUS-P is the prototype for 150+ identical fiber-fed integral field spectrographs for the Hobby-Eberly Telescope Dark Energy Experiment. With minimal complexity, the gimbal mounted, double-Schmidt design achieves high on-sky throughput, image quality, contrast, and stability with novel optics, coatings, baffling, and minimization of obscuration. The system corrector working for both the collimator and f / 1.33 vacuum Schmidt camera serves as the cryostat window while a 49 mm square aspheric field flattener sets the central obscuration. The mount, electronics, and cooling of the 2k × 2k, Fairchild Imaging CCD3041-BI fit in the field-flattener footprint. Ultra-black knife edge baffles at the corrector, spider, and adjustable mirror, and a detector mask, match the optical footprints at each location and help maximize the 94% contrast between 245 spectra. An optimally stiff and light symmetric four vane stainless steel spider supports the CCD which is thermally isolated with an equally stiff Ultem-1000 structure. The detector/field flattener spacing is maintained to 1 μm for all camera orientations and repeatably reassembled to 12 μm. Invar rods in tension hold the camera focus to +/-4 μm over a -5-25 °C temperature range. Delivering a read noise of 4.2 e- RMS, sCTE of 1-10-5 , and pCTE of 1-10-6 at 100 kpix/s, the McDonald V2 controller also helps to achieve a 38 hr hold time with 3 L of LN2 while maintaining the detector temperature setpoint to 150 μK (5σ RMS).

  12. Performance and calibration of the NIKA camera at the IRAM 30 m telescope

    CERN Document Server

    Catalano, A; Ponthieu, N; Adam, R; Adane, A; Ade, P; Andre, P; Beelen, A; Belier, B; Benoit, A; Bideaud, A; Billot, N; Boudou, N; Bourrion, O; Coiffard, G; Comis, B; D'Addabbo, A; Desert, F -X; Doyle, S; Goupy, J; Kramer, C; Leclercq, S; Macias-Perez, J F; Martino, J; Mauskopf, P; Mayet, F; Monfardini, A; Pajot, F; Pascale, E; Perotto, L; Reveret, V; Rodriguez, L; Savini, G; Schuster, K; Sievers, A; Tucker, C; Zylka, R

    2014-01-01

    The New IRAM KID Array (NIKA) instrument is a dual-band imaging camera operating with Kinetic Inductance Detectors (KID) cooled at 100 mK. NIKA is designed to observe the sky at wavelengths of 1.25 and 2.14 mm from the IRAM 30m telescope at Pico Veleta with an estimated resolution of 13 arcsec and 18 arcsec respectively. This work presents the performance of the NIKA camera prior to its opening to the astrophysical community as an IRAM common user facility in early 2014. NIKA is a test-bench for the final NIKA2 instrument to be installed at the end of 2015. The last NIKA observation campaigns on November 2012 and June 2013 have been used to evaluate this performance and to improve the control of systematic effects. We discuss here the dynamical tuning of the readout electronics to optimize the KID working point with respect to background changes and the new technique of atmospheric absorption correction. These modifications improve significantly the overall linearity, sensitivity and absolute calibration perf...

  13. Advanced CCD camera developments

    Energy Technology Data Exchange (ETDEWEB)

    Condor, A. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  14. TARGETLESS CAMERA CALIBRATION

    Directory of Open Access Journals (Sweden)

    L. Barazzetti

    2012-09-01

    Full Text Available In photogrammetry a camera is considered calibrated if its interior orientation parameters are known. These encompass the principal distance, the principal point position and some Additional Parameters used to model possible systematic errors. The current state of the art for automated camera calibration relies on the use of coded targets to accurately determine the image correspondences. This paper presents a new methodology for the efficient and rigorous photogrammetric calibration of digital cameras which does not require any longer the use of targets. A set of images depicting a scene with a good texture are sufficient for the extraction of natural corresponding image points. These are automatically matched with feature-based approaches and robust estimation techniques. The successive photogrammetric bundle adjustment retrieves the unknown camera parameters and their theoretical accuracies. Examples, considerations and comparisons with real data and different case studies are illustrated to show the potentialities of the proposed methodology.

  15. TOUCHSCREEN USING WEB CAMERA

    Directory of Open Access Journals (Sweden)

    Kuntal B. Adak

    2015-10-01

    Full Text Available In this paper we present a web camera based touchscreen system which uses a simple technique to detect and locate finger. We have used a camera and regular screen to achieve our goal. By capturing the video and calculating position of finger on the screen, we can determine the touch position and do some function on that location. Our method is very easy and simple to implement. Even our system requirement is less expensive compare to other techniques.

  16. The Circular Camera Movement

    DEFF Research Database (Denmark)

    Hansen, Lennard Højbjerg

    2014-01-01

    It has been an accepted precept in film theory that specific stylistic features do not express specific content. Nevertheless, it is possible to find many examples in the history of film in which stylistic features do express specific content: for instance, the circular camera movement is used...... such as the circular camera movement. Keywords: embodied perception, embodied style, explicit narration, interpretation, style pattern, television style...

  17. Characterization of the front-end EASIROC for read-out of SiPM in the ASTRI camera

    CERN Document Server

    Impiombato, D; Belluso, M; Bilotta, S; Bonanno, G; Catalano, O; Grillo, A; La Rosa, G; Marano, D; Mineo, T; Russo, F; Sottile, G

    2013-01-01

    The design and realization of a prototype for the Small-Size class Telescopes of the Cherenkov Telescope Array is one of the cornerstones of the ASTRI project. The prototype will adopt a focal plane camera based on Silicon Photo-Multiplier sensors that coupled with a dual mirror optics configuration represents an innovative solution for the detection of Atmospheric Cherenkov light. These detectors can be read by the Extended Analogue Silicon Photo-Multiplier Integrated Read Out Chip (EASIROC) equipped with 32-channels. In this paper, we report some preliminary results on measurements aimed to evaluate EASIROC capability of autotriggering and measurements of the trigger time walk, jitter, DAC linearity and trigger efficiency vs the injected charge. Moreover, the dynamic range of the ASIC is also reported.

  18. Quantitatively accurate activity measurements with a dedicated cardiac SPECT camera: Physical phantom experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pourmoghaddas, Amir, E-mail: apour@ottawaheart.ca; Wells, R. Glenn [Physics Department, Carleton University, Ottawa, Ontario K1S 5B6, Canada and Cardiology, The University of Ottawa Heart Institute, Ottawa, Ontario K1Y4W7 (Canada)

    2016-01-15

    Purpose: Recently, there has been increased interest in dedicated cardiac single photon emission computed tomography (SPECT) scanners with pinhole collimation and improved detector technology due to their improved count sensitivity and resolution over traditional parallel-hole cameras. With traditional cameras, energy-based approaches are often used in the clinic for scatter compensation because they are fast and easily implemented. Some of the cardiac cameras use cadmium-zinc-telluride (CZT) detectors which can complicate the use of energy-based scatter correction (SC) due to the low-energy tail—an increased number of unscattered photons detected with reduced energy. Modified energy-based scatter correction methods can be implemented, but their level of accuracy is unclear. In this study, the authors validated by physical phantom experiments the quantitative accuracy and reproducibility of easily implemented correction techniques applied to {sup 99m}Tc myocardial imaging with a CZT-detector-based gamma camera with multiple heads, each with a single-pinhole collimator. Methods: Activity in the cardiac compartment of an Anthropomorphic Torso phantom (Data Spectrum Corporation) was measured through 15 {sup 99m}Tc-SPECT acquisitions. The ratio of activity concentrations in organ compartments resembled a clinical {sup 99m}Tc-sestamibi scan and was kept consistent across all experiments (1.2:1 heart to liver and 1.5:1 heart to lung). Two background activity levels were considered: no activity (cold) and an activity concentration 1/10th of the heart (hot). A plastic “lesion” was placed inside of the septal wall of the myocardial insert to simulate the presence of a region without tracer uptake and contrast in this lesion was calculated for all images. The true net activity in each compartment was measured with a dose calibrator (CRC-25R, Capintec, Inc.). A 10 min SPECT image was acquired using a dedicated cardiac camera with CZT detectors (Discovery NM530c, GE

  19. Segment Based Camera Calibration

    Institute of Scientific and Technical Information of China (English)

    马颂德; 魏国庆; 等

    1993-01-01

    The basic idea of calibrating a camera system in previous approaches is to determine camera parmeters by using a set of known 3D points as calibration reference.In this paper,we present a method of camera calibration in whih camera parameters are determined by a set of 3D lines.A set of constraints is derived on camea parameters in terms of perspective line mapping.Form these constraints,the same perspective transformation matrix as that for point mapping can be computed linearly.The minimum number of calibration lines is 6.This result generalizes that of Liu,Huang and Faugeras[12] for camera location determination in which at least 8 line correspondences are required for linear computation of camera location.Since line segments in an image can be located easily and more accurately than points,the use of lines as calibration reference tends to ease the computation in inage preprocessing and to improve calibration accuracy.Experimental results on the calibration along with stereo reconstruction are reported.

  20. On recall rate of interest point detectors

    DEFF Research Database (Denmark)

    Aanæs, Henrik; Lindbjerg Dahl, Anders; Pedersen, Kim Steenstrup

    2010-01-01

    In this paper we provide a method for evaluating interest point detectors independently of image descriptors. This is possible because we have compiled a unique data set enabling us to determine if common interest points are found. The data contains 60 scenes of a wide range of object types......, and for each scene we have 119 precisely located camera positions obtained from a camera mounted on an industrial robot arm. The scene surfaces have been scanned using structured light, providing precise 3D ground truth. We have investigated a number of the most popular interest point detectors where we...... systematically have varied camera position, light and model parameters. The overall conclusion is that the Harris and Hessian corner detectors perform well followed by MSER, whereas the FAST corner detector, IBR and EBR performs poorly. Furthermore, only the number of interest points change with changing...

  1. Spectral Camera based on Ghost Imaging via Sparsity Constraints

    CERN Document Server

    Liu, Zhentao; Wu, Jianrong; Li, Enrong; Shen, Xia; Han, Shensheng

    2015-01-01

    The information acquisition ability of conventional camera is far lower than the Shannon Limit because of the correlation between pixels of image data. Applying sparse representation of images to reduce the abundance of image data and combined with compressive sensing theory, the spectral camera based on ghost imaging via sparsity constraints (GISC spectral camera) is proposed and demonstrated experimentally. GISC spectral camera can acquire the information at a rate significantly below Nyquist, and the resolution of the cells in the three-dimensional (3D) spectral image data-cube can be achieved with a two-dimensional (2D) detector in a single exposure. For the first time, GISC spectral camera opens the way of approaching the Shannon Limit determined by Information Theory in optical imaging instruments.

  2. Spectral Camera based on Ghost Imaging via Sparsity Constraints

    Science.gov (United States)

    Liu, Zhentao; Tan, Shiyu; Wu, Jianrong; Li, Enrong; Shen, Xia; Han, Shensheng

    2016-05-01

    The image information acquisition ability of a conventional camera is usually much lower than the Shannon Limit since it does not make use of the correlation between pixels of image data. Applying a random phase modulator to code the spectral images and combining with compressive sensing (CS) theory, a spectral camera based on true thermal light ghost imaging via sparsity constraints (GISC spectral camera) is proposed and demonstrated experimentally. GISC spectral camera can acquire the information at a rate significantly below the Nyquist rate, and the resolution of the cells in the three-dimensional (3D) spectral images data-cube can be achieved with a two-dimensional (2D) detector in a single exposure. For the first time, GISC spectral camera opens the way of approaching the Shannon Limit determined by Information Theory in optical imaging instruments.

  3. Spectral Camera based on Ghost Imaging via Sparsity Constraints.

    Science.gov (United States)

    Liu, Zhentao; Tan, Shiyu; Wu, Jianrong; Li, Enrong; Shen, Xia; Han, Shensheng

    2016-05-16

    The image information acquisition ability of a conventional camera is usually much lower than the Shannon Limit since it does not make use of the correlation between pixels of image data. Applying a random phase modulator to code the spectral images and combining with compressive sensing (CS) theory, a spectral camera based on true thermal light ghost imaging via sparsity constraints (GISC spectral camera) is proposed and demonstrated experimentally. GISC spectral camera can acquire the information at a rate significantly below the Nyquist rate, and the resolution of the cells in the three-dimensional (3D) spectral images data-cube can be achieved with a two-dimensional (2D) detector in a single exposure. For the first time, GISC spectral camera opens the way of approaching the Shannon Limit determined by Information Theory in optical imaging instruments.

  4. 双Wollaston棱镜偏振测量系统棱镜安置误差分析%Analysis of Prisms' Misalignment Errors in Dual Wollaston Prisms Polarization Detector

    Institute of Scientific and Technical Information of China (English)

    张寅超; 李阳; 陈和; 陈思颖; 郭磐

    2013-01-01

    研究双Wollaston棱镜偏振测量系统分光棱镜安置误差对测量精度的影响.从安置误差对Stockes参量测量的影响出发,研究棱镜纵向、横向及两棱镜光轴夹角的安置误差引起的测量误差.结果表明:对于一定的偏振测量精度,纵向、横向允许的安置误差随波长和目标偏振度的变化而变化,两棱镜光轴夹角允许的安置误差则为固定值.研究结果为双Wollaston棱镜偏振测量系统的设计提供了理论依据.%This research analyzes the influence of Wollaston prisms' misalignment errors on the measurement accuracy.The misalignment errors of prisms in longitude and horizontal as well as the cross angle between two optical axes of the Wollaston prisms have been studied based on the inversion of the Stokes parameters.The result shows that,for a given accuracy of polarization measurement,the acceptable longitudinal and horizontal misalignment errors changes with the variance of wavelength and degree of polarization,while the acceptable misalignment error of cross angle between two optical axes is a fixed value.The conclusion provides a theoretical basis for the design of dual-Wollaston prisms polarization detector.

  5. Camera Trajectory fromWide Baseline Images

    Science.gov (United States)

    Havlena, M.; Torii, A.; Pajdla, T.

    2008-09-01

    angle θ of its corresponding rays w.r.t. the optical axis as θ = ar 1+br2 . After a successful calibration, we know the correspondence of the image points to the 3D optical rays in the coordinate system of the camera. The following steps aim at finding the transformation between the camera and the world coordinate systems, i.e. the pose of the camera in the 3D world, using 2D image matches. For computing 3D structure, we construct a set of tentative matches detecting different affine covariant feature regions including MSER, Harris Affine, and Hessian Affine in acquired images. These features are alternative to popular SIFT features and work comparably in our situation. Parameters of the detectors are chosen to limit the number of regions to 1-2 thousands per image. The detected regions are assigned local affine frames (LAF) and transformed into standard positions w.r.t. their LAFs. Discrete Cosine Descriptors are computed for each region in the standard position. Finally, mutual distances of all regions in one image and all regions in the other image are computed as the Euclidean distances of their descriptors and tentative matches are constructed by selecting the mutually closest pairs. Opposed to the methods using short baseline images, simpler image features which are not affine covariant cannot be used because the view point can change a lot between consecutive frames. Furthermore, feature matching has to be performed on the whole frame because no assumptions on the proximity of the consecutive projections can be made for wide baseline images. This is making the feature detection, description, and matching much more time-consuming than it is for short baseline images and limits the usage to low frame rate sequences when operating in real-time. Robust 3D structure can be computed by RANSAC which searches for the largest subset of the set of tentative matches which is, within a predefined threshold ", consistent with an epipolar geometry. We use ordered sampling as

  6. Detectors in Extreme Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Blaj, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Carini, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Carron, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Haller, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hart, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hasi, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Herrmann, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kenney, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Segal, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tomada, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-06

    Free Electron Lasers opened a new window on imaging the motion of atoms and molecules. At SLAC, FEL experiments are performed at LCLS using 120Hz pulses with 1012 - 1013 photons in 10 femtoseconds (billions of times brighter than the most powerful synchrotrons). This extreme detection environment raises unique challenges, from obvious to surprising. Radiation damage is a constant threat due to accidental exposure to insufficiently attenuated beam, focused beam and formation of ice crystals reflecting the beam onto the detector. Often high power optical lasers are also used (e.g., 25TW), increasing the risk of damage or impeding data acquisition through electromagnetic pulses (EMP). The sample can contaminate the detector surface or even produce shrapnel damage. Some experiments require ultra high vacuum (UHV) with strict design, surface contamination and cooling requirements - also for detectors. The setup is often changed between or during experiments with short turnaround times, risking mechanical and ESD damage, requiring work planning, training of operators and sometimes continuous participation of the LCLS Detector Group in the experiments. The detectors used most often at LCLS are CSPAD cameras for hard x-rays and pnCCDs for soft x-rays.

  7. Robust pedestrian detection by combining visible and thermal infrared cameras.

    Science.gov (United States)

    Lee, Ji Hoon; Choi, Jong-Suk; Jeon, Eun Som; Kim, Yeong Gon; Le, Toan Thanh; Shin, Kwang Yong; Lee, Hyeon Chang; Park, Kang Ryoung

    2015-05-05

    With the development of intelligent surveillance systems, the need for accurate detection of pedestrians by cameras has increased. However, most of the previous studies use a single camera system, either a visible light or thermal camera, and their performances are affected by various factors such as shadow, illumination change, occlusion, and higher background temperatures. To overcome these problems, we propose a new method of detecting pedestrians using a dual camera system that combines visible light and thermal cameras, which are robust in various outdoor environments such as mornings, afternoons, night and rainy days. Our research is novel, compared to previous works, in the following four ways: First, we implement the dual camera system where the axes of visible light and thermal cameras are parallel in the horizontal direction. We obtain a geometric transform matrix that represents the relationship between these two camera axes. Second, two background images for visible light and thermal cameras are adaptively updated based on the pixel difference between an input thermal and pre-stored thermal background images. Third, by background subtraction of thermal image considering the temperature characteristics of background and size filtering with morphological operation, the candidates from whole image (CWI) in the thermal image is obtained. The positions of CWI (obtained by background subtraction and the procedures of shadow removal, morphological operation, size filtering, and filtering of the ratio of height to width) in the visible light image are projected on those in the thermal image by using the geometric transform matrix, and the searching regions for pedestrians are defined in the thermal image. Fourth, within these searching regions, the candidates from the searching image region (CSI) of pedestrians in the thermal image are detected. The final areas of pedestrians are located by combining the detected positions of the CWI and CSI of the thermal

  8. The Dark Energy Camera

    CERN Document Server

    Flaugher, B; Honscheid, K; Abbott, T M C; Alvarez, O; Angstadt, R; Annis, J T; Antonik, M; Ballester, O; Beaufore, L; Bernstein, G M; Bernstein, R A; Bigelow, B; Bonati, M; Boprie, D; Brooks, D; Buckley-Geer, E J; Campa, J; Cardiel-Sas, L; Castander, F J; Castilla, J; Cease, H; Cela-Ruiz, J M; Chappa, S; Chi, E; Cooper, C; da Costa, L N; Dede, E; Derylo, G; DePoy, D L; de Vicente, J; Doel, P; Drlica-Wagner, A; Eiting, J; Elliott, A E; Emes, J; Estrada, J; Neto, A Fausti; Finley, D A; Flores, R; Frieman, J; Gerdes, D; Gladders, M D; Gregory, B; Gutierrez, G R; Hao, J; Holland, S E; Holm, S; Huffman, D; Jackson, C; James, D J; Jonas, M; Karcher, A; Karliner, I; Kent, S; Kessler, R; Kozlovsky, M; Kron, R G; Kubik, D; Kuehn, K; Kuhlmann, S; Kuk, K; Lahav, O; Lathrop, A; Lee, J; Levi, M E; Lewis, P; Li, T S; Mandrichenko, I; Marshall, J L; Martinez, G; Merritt, K W; Miquel, R; Munoz, F; Neilsen, E H; Nichol, R C; Nord, B; Ogando, R; Olsen, J; Palio, N; Patton, K; Peoples, J; Plazas, A A; Rauch, J; Reil, K; Rheault, J -P; Roe, N A; Rogers, H; Roodman, A; Sanchez, E; Scarpine, V; Schindler, R H; Schmidt, R; Schmitt, R; Schubnell, M; Schultz, K; Schurter, P; Scott, L; Serrano, S; Shaw, T M; Smith, R C; Soares-Santos, M; Stefanik, A; Stuermer, W; Suchyta, E; Sypniewski, A; Tarle, G; Thaler, J; Tighe, R; Tran, C; Tucker, D; Walker, A R; Wang, G; Watson, M; Weaverdyck, C; Wester, W; Woods, R; Yanny, B

    2015-01-01

    The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250 micron thick fully-depleted CCDs cooled inside a vacuum Dewar. The 570 Mpixel focal plane comprises 62 2kx4k CCDs for imaging and 12 2kx2k CCDs for guiding and focus. The CCDs have 15 microns x15 microns pixels with a plate scale of 0.263 arc sec per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construct...

  9. The Dark Energy Camera

    Energy Technology Data Exchange (ETDEWEB)

    Flaugher, B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). et al.

    2015-04-11

    The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250-μm thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 Mpixel focal plane comprises 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. The CCDs have 15μm x 15μm pixels with a plate scale of 0.263" per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.

  10. Detector Unit

    CERN Multimedia

    1960-01-01

    Original detector unit of the Instituut voor Kernfysisch Onderzoek (IKO) BOL project. This detector unit shows that silicon detectors for nuclear physics particle detection were already developed and in use in the 1960's in Amsterdam. Also the idea of putting 'strips' onto the silicon for high spatial resolution of a particle's impact on the detector were implemented in the BOL project which used 64 of these detector units. The IKO BOL project with its silicon particle detectors was designed, built and operated from 1965 to roughly 1977. Detector Unit of the BOL project: These detectors, notably the ‘checkerboard detector’, were developed during the years 1964-1968 in Amsterdam, The Netherlands, by the Natuurkundig Laboratorium of the N.V. Philips Gloeilampen Fabrieken. This was done in close collaboration with the Instituut voor Kernfysisch Onderzoek (IKO) where the read-out electronics for their use in the BOL Project was developed and produced.

  11. HIGH SPEED CAMERA

    Science.gov (United States)

    Rogers, B.T. Jr.; Davis, W.C.

    1957-12-17

    This patent relates to high speed cameras having resolution times of less than one-tenth microseconds suitable for filming distinct sequences of a very fast event such as an explosion. This camera consists of a rotating mirror with reflecting surfaces on both sides, a narrow mirror acting as a slit in a focal plane shutter, various other mirror and lens systems as well as an innage recording surface. The combination of the rotating mirrors and the slit mirror causes discrete, narrow, separate pictures to fall upon the film plane, thereby forming a moving image increment of the photographed event. Placing a reflecting surface on each side of the rotating mirror cancels the image velocity that one side of the rotating mirror would impart, so as a camera having this short a resolution time is thereby possible.

  12. Infrared detectors

    CERN Document Server

    Rogalski, Antonio

    2010-01-01

    This second edition is fully revised and reorganized, with new chapters concerning third generation and quantum dot detectors, THz detectors, cantilever and antenna coupled detectors, and information on radiometry and IR optics materials. Part IV concerning focal plane arrays is significantly expanded. This book, resembling an encyclopedia of IR detectors, is well illustrated and contains many original references … a really comprehensive book.-F. Sizov, Institute of Semiconductor Physics, National Academy of Sciences, Kiev, Ukraine

  13. Cervical SPECT Camera for Parathyroid Imaging

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-08-31

    Primary hyperparathyroidism characterized by one or more enlarged parathyroid glands has become one of the most common endocrine diseases in the world affecting about 1 per 1000 in the United States. Standard treatment is highly invasive exploratory neck surgery called Parathyroidectomy. The surgery has a notable mortality rate because of the close proximity to vital structures. The move to minimally invasive parathyroidectomy is hampered by the lack of high resolution pre-surgical imaging techniques that can accurately localize the parathyroid with respect to surrounding structures. We propose to develop a dedicated ultra-high resolution (~ 1 mm) and high sensitivity (10x conventional camera) cervical scintigraphic imaging device. It will be based on a multiple pinhole-camera SPECT system comprising a novel solid state CZT detector that offers the required performance. The overall system will be configured to fit around the neck and comfortably image a patient.

  14. Automatic Camera Control

    DEFF Research Database (Denmark)

    Burelli, Paolo; Preuss, Mike

    2014-01-01

    Automatically generating computer animations is a challenging and complex problem with applications in games and film production. In this paper, we investigate howto translate a shot list for a virtual scene into a series of virtual camera configurations — i.e automatically controlling the virtual...... camera. We approach this problem by modelling it as a dynamic multi-objective optimisation problem and show how this metaphor allows a much richer expressiveness than a classical single objective approach. Finally, we showcase the application of a multi-objective evolutionary algorithm to generate a shot...

  15. Optimization of precision localization microscopy using CMOS camera technology

    Science.gov (United States)

    Fullerton, Stephanie; Bennett, Keith; Toda, Eiji; Takahashi, Teruo

    2012-02-01

    Light microscopy imaging is being transformed by the application of computational methods that permit the detection of spatial features below the optical diffraction limit. Successful localization microscopy (STORM, dSTORM, PALM, PhILM, etc.) relies on the precise position detection of fluorescence emitted by single molecules using highly sensitive cameras with rapid acquisition speeds. Electron multiplying CCD (EM-CCD) cameras are the current standard detector for these applications. Here, we challenge the notion that EM-CCD cameras are the best choice for precision localization microscopy and demonstrate, through simulated and experimental data, that certain CMOS detector technology achieves better localization precision of single molecule fluorophores. It is well-established that localization precision is limited by system noise. Our findings show that the two overlooked noise sources relevant for precision localization microscopy are the shot noise of the background light in the sample and the excess noise from electron multiplication in EM-CCD cameras. At low light conditions (CCD cameras are the preferred detector. However, in practical applications, optical background noise is significant, creating conditions where CMOS performs better than EM-CCD. Furthermore, the excess noise of EM-CCD is equivalent to reducing the information content of each photon detected which, in localization microscopy, reduces the precision of the localization. Thus, new CMOS technology with 100fps, super resolution precision localization microscopy.

  16. Dual-comb MIXSEL

    Science.gov (United States)

    Link, S. M.; Zaugg, C. A.; Klenner, A.; Mangold, M.; Golling, M.; Tilma, B. W.; Keller, U.

    2015-03-01

    We present a single semiconductor disk laser simultaneously emitting two different gigahertz modelocked pulse trains. A birefringent crystal inside a modelocked integrated external-cavity surface-emitting laser (MIXSEL) separates the cavity beam into two spatially separated beams with perpendicular polarizations on the MIXSEL chip. This MIXSEL then generates two orthogonally polarized collinear modelocked pulse trains from one simple straight cavity. Superimposing the beams on a photo detector creates a microwave beat signal, representing a strikingly simple setup to down-convert the terahertz optical frequencies into the electronically accessible microwave regime. This makes the dual-comb MIXSEL scheme an ultra-compact and cost-efficient candidate for dual-comb spectroscopy applications.

  17. Seeing elements by visible-light digital camera.

    Science.gov (United States)

    Zhao, Wenyang; Sakurai, Kenji

    2017-03-31

    A visible-light digital camera is used for taking ordinary photos, but with new operational procedures it can measure the photon energy in the X-ray wavelength region and therefore see chemical elements. This report describes how one can observe X-rays by means of such an ordinary camera - The front cover of the camera is replaced by an opaque X-ray window to block visible light and to allow X-rays to pass; the camera takes many snap shots (called single-photon-counting mode) to record every photon event individually; an integrated-filtering method is newly proposed to correctly retrieve the energy of photons from raw camera images. Finally, the retrieved X-ray energy-dispersive spectra show fine energy resolution and great accuracy in energy calibration, and therefore the visible-light digital camera can be applied to routine X-ray fluorescence measurement to analyze the element composition in unknown samples. In addition, the visible-light digital camera is promising in that it could serve as a position sensitive X-ray energy detector. It may become able to measure the element map or chemical diffusion in a multi-element system if it is fabricated with external X-ray optic devices. Owing to the camera's low expense and fine pixel size, the present method will be widely applied to the analysis of chemical elements as well as imaging.

  18. The first GCT camera for the Cherenkov Telescope Array

    CERN Document Server

    De Franco, A.; Allan, D.; Armstrong, T.; Ashton, T.; Balzer, A.; Berge, D.; Bose, R.; Brown, A.M.; Buckley, J.; Chadwick, P.M.; Cooke, P.; Cotter, G.; Daniel, M.K.; Funk, S.; Greenshaw, T.; Hinton, J.; Kraus, M.; Lapington, J.; Molyneux, P.; Moore, P.; Nolan, S.; Okumura, A.; Ross, D.; Rulten, C.; Schmoll, J.; Schoorlemmer, H.; Stephan, M.; Sutcliffe, P.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Varner, G.; Watson, J.; Zink, A.

    2015-01-01

    The Gamma Cherenkov Telescope (GCT) is proposed to be part of the Small Size Telescope (SST) array of the Cherenkov Telescope Array (CTA). The GCT dual-mirror optical design allows the use of a compact camera of diameter roughly 0.4 m. The curved focal plane is equipped with 2048 pixels of ~0.2{\\deg} angular size, resulting in a field of view of ~9{\\deg}. The GCT camera is designed to record the flashes of Cherenkov light from electromagnetic cascades, which last only a few tens of nanoseconds. Modules based on custom ASICs provide the required fast electronics, facilitating sampling and digitisation as well as first level of triggering. The first GCT camera prototype is currently being commissioned in the UK. On-telescope tests are planned later this year. Here we give a detailed description of the camera prototype and present recent progress with testing and commissioning.

  19. World's fastest and most sensitive astronomical camera

    Science.gov (United States)

    2009-06-01

    The next generation of instruments for ground-based telescopes took a leap forward with the development of a new ultra-fast camera that can take 1500 finely exposed images per second even when observing extremely faint objects. The first 240x240 pixel images with the world's fastest high precision faint light camera were obtained through a collaborative effort between ESO and three French laboratories from the French Centre National de la Recherche Scientifique/Institut National des Sciences de l'Univers (CNRS/INSU). Cameras such as this are key components of the next generation of adaptive optics instruments of Europe's ground-based astronomy flagship facility, the ESO Very Large Telescope (VLT). ESO PR Photo 22a/09 The CCD220 detector ESO PR Photo 22b/09 The OCam camera ESO PR Video 22a/09 OCam images "The performance of this breakthrough camera is without an equivalent anywhere in the world. The camera will enable great leaps forward in many areas of the study of the Universe," says Norbert Hubin, head of the Adaptive Optics department at ESO. OCam will be part of the second-generation VLT instrument SPHERE. To be installed in 2011, SPHERE will take images of giant exoplanets orbiting nearby stars. A fast camera such as this is needed as an essential component for the modern adaptive optics instruments used on the largest ground-based telescopes. Telescopes on the ground suffer from the blurring effect induced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way that delights poets, but frustrates astronomers, since it blurs the finest details of the images. Adaptive optics techniques overcome this major drawback, so that ground-based telescopes can produce images that are as sharp as if taken from space. Adaptive optics is based on real-time corrections computed from images obtained by a special camera working at very high speeds. Nowadays, this means many hundreds of times each second. The new generation instruments require these

  20. The Compton Camera - medical imaging with higher sensitivity Exhibition LEPFest 2000

    CERN Multimedia

    2000-01-01

    The Compton Camera reconstructs the origin of Compton-scattered X-rays using electronic collimation with Silicon pad detectors instead of the heavy conventional lead collimators in Anger cameras - reaching up to 200 times better sensitivity and a factor two improvement in resolution. Possible applications are in cancer diagnosis, neurology neurobiology, and cardiology.

  1. Communities, Cameras, and Conservation

    Science.gov (United States)

    Patterson, Barbara

    2012-01-01

    Communities, Cameras, and Conservation (CCC) is the most exciting and valuable program the author has seen in her 30 years of teaching field science courses. In this citizen science project, students and community volunteers collect data on mountain lions ("Puma concolor") at four natural areas and public parks along the Front Range of Colorado.…

  2. Make a Pinhole Camera

    Science.gov (United States)

    Fisher, Diane K.; Novati, Alexander

    2009-01-01

    On Earth, using ordinary visible light, one can create a single image of light recorded over time. Of course a movie or video is light recorded over time, but it is a series of instantaneous snapshots, rather than light and time both recorded on the same medium. A pinhole camera, which is simple to make out of ordinary materials and using ordinary…

  3. Underwater camera with depth measurement

    Science.gov (United States)

    Wang, Wei-Chih; Lin, Keng-Ren; Tsui, Chi L.; Schipf, David; Leang, Jonathan

    2016-04-01

    The objective of this study is to develop an RGB-D (video + depth) camera that provides three-dimensional image data for use in the haptic feedback of a robotic underwater ordnance recovery system. Two camera systems were developed and studied. The first depth camera relies on structured light (as used by the Microsoft Kinect), where the displacement of an object is determined by variations of the geometry of a projected pattern. The other camera system is based on a Time of Flight (ToF) depth camera. The results of the structural light camera system shows that the camera system requires a stronger light source with a similar operating wavelength and bandwidth to achieve a desirable working distance in water. This approach might not be robust enough for our proposed underwater RGB-D camera system, as it will require a complete re-design of the light source component. The ToF camera system instead, allows an arbitrary placement of light source and camera. The intensity output of the broadband LED light source in the ToF camera system can be increased by putting them into an array configuration and the LEDs can be modulated comfortably with any waveform and frequencies required by the ToF camera. In this paper, both camera were evaluated and experiments were conducted to demonstrate the versatility of the ToF camera.

  4. Gaseous Detectors: Charged Particle Detectors - Particle Detectors and Detector Systems

    CERN Document Server

    Hilke, H J

    2011-01-01

    Gaseous Detectors in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.2 Gaseous Detectors' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.2 Gaseous Detectors 3.1.2.1 Introduction 3.1.2.2 Basic Processes 3.1.2.2.1 Gas ionization by charged particles 3.1.2.2.1.1 Primary clusters 3.1.2.2.1.2 Cluster size distribution 3.1.2.2.1.3 Total number of ion pairs 3.1.2.2.1.4 Dependence of energy deposit on particle velocity 3.1.2.2.2 Transport of...

  5. The PAU Camera

    Science.gov (United States)

    Casas, R.; Ballester, O.; Cardiel-Sas, L.; Carretero, J.; Castander, F. J.; Castilla, J.; Crocce, M.; de Vicente, J.; Delfino, M.; Fernández, E.; Fosalba, P.; García-Bellido, J.; Gaztañaga, E.; Grañena, F.; Jiménez, J.; Madrid, F.; Maiorino, M.; Martí, P.; Miquel, R.; Neissner, C.; Ponce, R.; Sánchez, E.; Serrano, S.; Sevilla, I.; Tonello, N.; Troyano, I.

    2011-11-01

    The PAU Camera (PAUCam) is a wide-field camera designed to be mounted at the William Herschel Telescope (WHT) prime focus, located at the Observatorio del Roque de los Muchachos in the island of La Palma (Canary Islands).Its primary function is to carry out a cosmological survey, the PAU Survey, covering an area of several hundred square degrees of sky. Its purpose is to determine positions and distances using photometric redshift techniques. To achieve accurate photo-z's, PAUCam will be equipped with 40 narrow-band filters covering the range from 450 to850 nm, and six broad-band filters, those of the SDSS system plus the Y band. To fully cover the focal plane delivered by the telescope optics, 18 CCDs 2k x 4k are needed. The pixels are square of 15 μ m size. The optical characteristics of the prime focus corrector deliver a field-of-view where eight of these CCDs will have an illumination of more than 95% covering a field of 40 arc minutes. The rest of the CCDs will occupy the vignetted region extending the field diameter to one degree. Two of the CCDs will be devoted to auto-guiding.This camera have some innovative features. Firstly, both the broad-band and the narrow-band filters will be placed in mobile trays, hosting 16 such filters at most. Those are located inside the cryostat at few millimeters in front of the CCDs when observing. Secondly, a pressurized liquid nitrogen tank outside the camera will feed a boiler inside the cryostat with a controlled massflow. The read-out electronics will use the Monsoon architecture, originally developed by NOAO, modified and manufactured by our team in the frame of the DECam project (the camera used in the DES Survey).PAUCam will also be available to the astronomical community of the WHT.

  6. Flexible high-performance IR camera systems

    Science.gov (United States)

    Hoelter, Theodore R.; Petronio, Susan M.; Carralejo, Ronald J.; Frank, Jeffery D.; Graff, John H.

    1999-07-01

    Indigo Systems Corporation has developed a family of standard readout integrated circuits (ROIC) for use in IR focal plane arrays (FPAs) imaging systems. These standard ROICs are designed to provide a compete set of operating features for camera level FPA control, while also providing high performance capability with any of several detector materials. By creating a uniform electrical interface for FPAs, these standard ROICs simplify the task of FPA integration with imaging electronics and physical packages. This paper begins with a brief description of the features of four Indigo standard ROICs and continues with a description of the features, design, and measured performance of indium antimonide, quantum well IR photo- detectors and indium gallium arsenide imaging system built using the described standard ROICs.

  7. Design for a high-resolution small-animal spect system usingpixellated Si(Li) detectors for in vivo Iodine-125 imaging

    Energy Technology Data Exchange (ETDEWEB)

    Choong, Woon-Seng; Moses, William W.; Tindall, Craig S.; Luke,Paul N.

    2004-08-01

    We propose a design for a high-resolution single-photon emission computed tomography (SPECT) system for in vivo {sup 125}I imaging in small animal using pixellated lithium-drifted silicon (Si(Li)) detectors. The proposed detectors are expected to have high interaction probability (>90%), good energy resolution (<15% FWHM), and good intrinsic spatial resolution ({approx}1 mm FWHM). The SPECT system will consist of a dual head detector geometry with the distance between the detectors ranging 30-50 mm to minimize the imaging distance between the mouse and the detectors. The detectors, each with an active area of 64 mm x 40 mm (64 x 40 array of 1 mm{sup 2} pixels and a 6 mm thick Si(Li) detector), will be mounted on a rotating gantry with an axial field-of-view of 64 mm. The detector signals will be read out by custom application-specific integrated circuits (ASICs). Using a high-resolution parallel-hole collimator, the expected spatial resolution is 1.6 mm FWHM at an imaging distance of 20 mm, and sensitivity is 6.7 cps/{micro}Ci. {sup 125}I is a readily available radioisotope with a long half-life of 59.4 days and it is commonly used to label biological compounds in molecular biology. Conventional gamma cameras are not optimized to detect the low emission energies (27 to 35 keV) of {sup 125}I. However, Si(Li) detector provides an ideal solution for detecting the low-energy emissions of {sup 125}I. In addition to presenting the design of the system, this paper presents a feasibility study of using Si(Li) detectors to detect the emissions of {sup 125}I.

  8. Image Sensors Enhance Camera Technologies

    Science.gov (United States)

    2010-01-01

    In the 1990s, a Jet Propulsion Laboratory team led by Eric Fossum researched ways of improving complementary metal-oxide semiconductor (CMOS) image sensors in order to miniaturize cameras on spacecraft while maintaining scientific image quality. Fossum s team founded a company to commercialize the resulting CMOS active pixel sensor. Now called the Aptina Imaging Corporation, based in San Jose, California, the company has shipped over 1 billion sensors for use in applications such as digital cameras, camera phones, Web cameras, and automotive cameras. Today, one of every three cell phone cameras on the planet feature Aptina s sensor technology.

  9. MISR radiometric camera-by-camera Cloud Mask V004

    Data.gov (United States)

    National Aeronautics and Space Administration — This file contains the Radiometric camera-by-camera Cloud Mask dataset. It is used to determine whether a scene is classified as clear or cloudy. A new parameter has...

  10. Miniature gamma-ray camera for tumor localization

    Energy Technology Data Exchange (ETDEWEB)

    Lund, J.C.; Olsen, R.W.; James, R.B.; Cross, E. [and others

    1997-08-01

    The overall goal of this LDRD project was to develop technology for a miniature gamma-ray camera for use in nuclear medicine. The camera will meet a need of the medical community for an improved means to image radio-pharmaceuticals in the body. In addition, this technology-with only slight modifications-should prove useful in applications requiring the monitoring and verification of special nuclear materials (SNMs). Utilization of the good energy resolution of mercuric iodide and cadmium zinc telluride detectors provides a means for rejecting scattered gamma-rays and improving the isotopic selectivity in gamma-ray images. The first year of this project involved fabrication and testing of a monolithic mercuric iodide and cadmium zinc telluride detector arrays and appropriate collimators/apertures. The second year of the program involved integration of the front-end detector module, pulse processing electronics, computer, software, and display.

  11. On Recall Rate of Interest Point Detectors

    DEFF Research Database (Denmark)

    Aanæs, Henrik; Dahl, Anders Lindbjerg; Pedersen, Kim Steenstrup

    2010-01-01

    in relation to the number of interest points, the recall rate as a function of camera position and light variation, and the sensitivity relative to model parameter change. The overall conclusion is that the Harris corner detector has a very high recall rate, but is sensitive to change in scale. The Hessian......In this paper we provide a method for evaluating interest point detectors independently of image descriptors. This is possible because we have compiled a unique data set enabling us to determine if common interest points are found. The data contains 60 scenes of a wide range of object types......, and for each scene we have 119 precisely located camera positions obtained from a camera mounted on an industrial robot arm. The scene surfaces have been scanned using structured light, providing precise 3D ground truth. We have investigated a number of the most popular interest point detectors. This is done...

  12. A novel fully integrated handheld gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Massari, R.; Ucci, A.; Campisi, C. [Biostructure and Bioimaging Institute (IBB), National Research Council of Italy (CNR), Rome (Italy); Scopinaro, F. [University of Rome “La Sapienza”, S. Andrea Hospital, Rome (Italy); Soluri, A., E-mail: alessandro.soluri@ibb.cnr.it [Biostructure and Bioimaging Institute (IBB), National Research Council of Italy (CNR), Rome (Italy)

    2016-10-01

    In this paper, we present an innovative, fully integrated handheld gamma camera, namely designed to gather in the same device the gamma ray detector with the display and the embedded computing system. The low power consumption allows the prototype to be battery operated. To be useful in radioguided surgery, an intraoperative gamma camera must be very easy to handle since it must be moved to find a suitable view. Consequently, we have developed the first prototype of a fully integrated, compact and lightweight gamma camera for radiopharmaceuticals fast imaging. The device can operate without cables across the sterile field, so it may be easily used in the operating theater for radioguided surgery. The prototype proposed consists of a Silicon Photomultiplier (SiPM) array coupled with a proprietary scintillation structure based on CsI(Tl) crystals. To read the SiPM output signals, we have developed a very low power readout electronics and a dedicated analog to digital conversion system. One of the most critical aspects we faced designing the prototype was the low power consumption, which is mandatory to develop a battery operated device. We have applied this detection device in the lymphoscintigraphy technique (sentinel lymph node mapping) comparing the results obtained with those of a commercial gamma camera (Philips SKYLight). The results obtained confirm a rapid response of the device and an adequate spatial resolution for the use in the scintigraphic imaging. This work confirms the feasibility of a small gamma camera with an integrated display. This device is designed for radioguided surgery and small organ imaging, but it could be easily combined into surgical navigation systems.

  13. First observation of the thermal Sunyaev-Zel'dovich effect with Kinetic Inductance Detectors

    CERN Document Server

    Adam, R; Macías-Pérez, J F; Adane, A; Ade, P; André, P; Beelen, A; Belier, B; Benoît, A; Bideaud, A; Billot, N; Boudou, N; Bourrion, O; Calvo, M; Catalano, A; Coiffard, G; D'Addabbo, A; Désert, F -X; Doyle, S; Goupy, J; Kramer, C; Leclercq, S; Martino, J; Mauskopf, P; Mayet, F; Monfardini, A; Pajot, F; Pascale, E; Perotto, L; Pointecouteau, E; Ponthieu, N; Revéret, V; Rodriguez, L; Savini, G; Schuster, K; Sievers, A; Tucker, C; Zylka, R

    2013-01-01

    Clusters of galaxies provide precious informations on the evolution of the Universe and large scale structures. Recent cluster observations via the thermal Sunyaev-Zel'dovich (tSZ) effect have proven to be a powerful tool to detect and study them. In this context, high resolution tSZ observations (about tens of arcsec) are of particular interest to probe intermediate and high redshift clusters. Such observations will be carried out with the millimeter dual-band NIKA2 camera, based on Kinetic Inductance Detectors (KIDs) and to be installed at the IRAM 30-meter telescope in 2015. To demonstrate the potential of such an instrument, we present tSZ observations with the NIKA camera prototype, consisting of two arrays of 132 and 224 detectors observing at 140 and 240 GHz with a 18.5 and 12.5 arcsec angular resolution, respectively. The cluster RX J1347.5-1145 was observed simultaneously at 140 and 240 GHz. We used a spectral decorrelation technique to remove the atmospheric noise and obtain a map of the cluster at ...

  14. Combustion pinhole camera system

    Science.gov (United States)

    Witte, Arvel B.

    1984-02-21

    A pinhole camera system utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor.

  15. The Star Formation Camera

    CERN Document Server

    Scowen, Paul A; Beasley, Matthew; Calzetti, Daniela; Desch, Steven; Fullerton, Alex; Gallagher, John; Lisman, Doug; Macenka, Steve; Malhotra, Sangeeta; McCaughrean, Mark; Nikzad, Shouleh; O'Connell, Robert; Oey, Sally; Padgett, Deborah; Rhoads, James; Roberge, Aki; Siegmund, Oswald; Shaklan, Stuart; Smith, Nathan; Stern, Daniel; Tumlinson, Jason; Windhorst, Rogier; Woodruff, Robert

    2009-01-01

    The Star Formation Camera (SFC) is a wide-field (~15'x19, >280 arcmin^2), high-resolution (18x18 mas pixels) UV/optical dichroic camera designed for the Theia 4-m space-borne space telescope concept. SFC will deliver diffraction-limited images at lambda > 300 nm in both a blue (190-517nm) and a red (517-1075nm) channel simultaneously. Our aim is to conduct a comprehensive and systematic study of the astrophysical processes and environments relevant for the births and life cycles of stars and their planetary systems, and to investigate and understand the range of environments, feedback mechanisms, and other factors that most affect the outcome of the star and planet formation process. This program addresses the origins and evolution of stars, galaxies, and cosmic structure and has direct relevance for the formation and survival of planetary systems like our Solar System and planets like Earth. We present the design and performance specifications resulting from the implementation study of the camera, conducted ...

  16. Gamma ray camera

    Science.gov (United States)

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  17. Hemispherical Laue camera

    Science.gov (United States)

    Li, James C. M.; Chu, Sungnee G.

    1980-01-01

    A hemispherical Laue camera comprises a crystal sample mount for positioning a sample to be analyzed at the center of sphere of a hemispherical, X-radiation sensitive film cassette, a collimator, a stationary or rotating sample mount and a set of standard spherical projection spheres. X-radiation generated from an external source is directed through the collimator to impinge onto the single crystal sample on the stationary mount. The diffracted beam is recorded on the hemispherical X-radiation sensitive film mounted inside the hemispherical film cassette in either transmission or back-reflection geometry. The distances travelled by X-radiation diffracted from the crystal to the hemispherical film are the same for all crystal planes which satisfy Bragg's Law. The recorded diffraction spots or Laue spots on the film thereby preserve both the symmetry information of the crystal structure and the relative intensities which are directly related to the relative structure factors of the crystal orientations. The diffraction pattern on the exposed film is compared with the known diffraction pattern on one of the standard spherical projection spheres for a specific crystal structure to determine the orientation of the crystal sample. By replacing the stationary sample support with a rotating sample mount, the hemispherical Laue camera can be used for crystal structure determination in a manner previously provided in conventional Debye-Scherrer cameras.

  18. Gamma ray camera

    Science.gov (United States)

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  19. Pixel Detectors

    OpenAIRE

    Wermes, Norbert

    2005-01-01

    Pixel detectors for precise particle tracking in high energy physics have been developed to a level of maturity during the past decade. Three of the LHC detectors will use vertex detectors close to the interaction point based on the hybrid pixel technology which can be considered the state of the art in this field of instrumentation. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as the very harsh...

  20. A pinhole gamma camera with optical depth-of-interaction elimination

    NARCIS (Netherlands)

    Korevaar, M.A.N.; Heemskerk, J.W.T.; Beekman, F.J.

    2009-01-01

    The performance of pinhole single photon emission computed tomography (SPECT) depends on the spatial resolution of the gamma-ray detectors used. Pinhole cameras suffer from strong resolution loss due to the varying depth-of-interaction (DOI) of gamma quanta that enter the detector material at an ang

  1. Seeing elements by visible-light digital camera

    Science.gov (United States)

    Zhao, Wenyang; Sakurai, Kenji

    2017-03-01

    A visible-light digital camera is used for taking ordinary photos, but with new operational procedures it can measure the photon energy in the X-ray wavelength region and therefore see chemical elements. This report describes how one can observe X-rays by means of such an ordinary camera - The front cover of the camera is replaced by an opaque X-ray window to block visible light and to allow X-rays to pass; the camera takes many snap shots (called single-photon-counting mode) to record every photon event individually; an integrated-filtering method is newly proposed to correctly retrieve the energy of photons from raw camera images. Finally, the retrieved X-ray energy-dispersive spectra show fine energy resolution and great accuracy in energy calibration, and therefore the visible-light digital camera can be applied to routine X-ray fluorescence measurement to analyze the element composition in unknown samples. In addition, the visible-light digital camera is promising in that it could serve as a position sensitive X-ray energy detector. It may become able to measure the element map or chemical diffusion in a multi-element system if it is fabricated with external X-ray optic devices. Owing to the camera’s low expense and fine pixel size, the present method will be widely applied to the analysis of chemical elements as well as imaging.

  2. Microtomography with sandwich detectors for small-animal bone imaging

    Science.gov (United States)

    Kim, S. H.; Kim, D. W.; Kim, D.; Youn, H.; Cho, S.; Kim, H. K.

    2016-10-01

    An x-ray radiographic system consisting of two detectors in tandem, or a sandwich detector, can produce dual-energy image from a single-shot exposure. Subtraction of two images obtained from the two detectors can produce a sharper image through an unsharp masking effect if the two images are formed at different spatial resolutions. This is indeed possible by incorporating different thicknesses of x-ray conversion layers in the detectors. In this study, we have developed a microtomography system with a sandwich detector in pursuit of high-resolution bone-enhanced small-animal imaging. The results show that the bone-enhanced images reconstructed from the dual-energy projection data provide higher visibility of bone details than the conventionally reconstructed images. The microtomography with the single-shot dual-energy sandwich detector will be useful for the high-resolution bone-enhanced small-animal imaging.

  3. Measuring SO2 ship emissions with an ultraviolet imaging camera

    Science.gov (United States)

    Prata, A. J.

    2014-05-01

    Over the last few years fast-sampling ultraviolet (UV) imaging cameras have been developed for use in measuring SO2 emissions from industrial sources (e.g. power plants; typical emission rates ~ 1-10 kg s-1) and natural sources (e.g. volcanoes; typical emission rates ~ 10-100 kg s-1). Generally, measurements have been made from sources rich in SO2 with high concentrations and emission rates. In this work, for the first time, a UV camera has been used to measure the much lower concentrations and emission rates of SO2 (typical emission rates ~ 0.01-0.1 kg s-1) in the plumes from moving and stationary ships. Some innovations and trade-offs have been made so that estimates of the emission rates and path concentrations can be retrieved in real time. Field experiments were conducted at Kongsfjord in Ny Ålesund, Svalbard, where SO2 emissions from cruise ships were made, and at the port of Rotterdam, Netherlands, measuring emissions from more than 10 different container and cargo ships. In all cases SO2 path concentrations could be estimated and emission rates determined by measuring ship plume speeds simultaneously using the camera, or by using surface wind speed data from an independent source. Accuracies were compromised in some cases because of the presence of particulates in some ship emissions and the restriction of single-filter UV imagery, a requirement for fast-sampling (> 10 Hz) from a single camera. Despite the ease of use and ability to determine SO2 emission rates from the UV camera system, the limitation in accuracy and precision suggest that the system may only be used under rather ideal circumstances and that currently the technology needs further development to serve as a method to monitor ship emissions for regulatory purposes. A dual-camera system or a single, dual-filter camera is required in order to properly correct for the effects of particulates in ship plumes.

  4. Crystal Compton Camera

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, Klaus-Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Braverman, Joshua B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hornback, Donald Eric [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fabris, Lorenzo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Newby, Jason [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-09-26

    Stand-off detection is one of the most important radiation detection capabilities for arms control and the control of illicit nuclear materials. For long range passive detection one requires a large detector and a means of “seeing through” the naturally occurring and varying background radiation, i.e. imaging. Arguably, Compton imaging is the best approach over much of the emission band suitable for long range detection. It provides not only imaging, but more information about the direction of incidence of each detected gamma-ray than the alternate approach of coded-aperture imaging. The directional information allows one to reduce the background and hence improve the sensitivity of a measurement. However, to make an efficient Compton imager requires localizing and measuring the simultaneous energy depositions when gamma-rays Compton scatter and are subsequently captured within a single, large detector volume. This concept has been demonstrated in semi-conductor detectors (HPGe, CZT, Si) but at ~ $1k/cm3 these materials are too expensive to build the large systems needed for standoff detection. Scintillator detectors, such as NaI(Tl), are two orders of magnitude less expensive and possess the energy resolution required to make such an imager. However, they do not currently have the ability to localize closely spaced, simultaneous energy depositions in a single large crystal. In this project we are applying a new technique that should, for the first time ever, allow cubic-millimeter event localization in a bulk scintillator crystal.

  5. Terrain mapping camera for Chandrayaan-1

    Indian Academy of Sciences (India)

    A S Kiran Kumar; A Roy Chowdhury

    2005-12-01

    The Terrain Mapping Camera (TMC)on India ’s first satellite for lunar exploration,Chandrayaan-1, is for generating high-resolution 3-dimensional maps of the Moon.With this instrument,a complete topographic map of the Moon with 5 m spatial resolution and 10-bit quantization will be available for scienti fic studies.The TMC will image within the panchromatic spectral band of 0.4 to 0.9 m with a stereo view in the fore,nadir and aft directions of the spacecraft movement and have a B/H ratio of 1.The swath coverage will be 20 km.The camera is configured for imaging in the push broom-mode with three linear detectors in the image plane.The camera will have four gain settings to cover the varying illumination conditions of the Moon.Additionally,a provision of imaging with reduced resolution,for improving Signal-to-Noise Ratio (SNR)in polar regions,which have poor illumination conditions throughout,has been made.SNR of better than 100 is expected in the ± 60° latitude region for mature mare soil,which is one of the darkest regions on the lunar surface. This paper presents a brief description of the TMC instrument.

  6. Improvement of passive THz camera images

    Science.gov (United States)

    Kowalski, Marcin; Piszczek, Marek; Palka, Norbert; Szustakowski, Mieczyslaw

    2012-10-01

    Terahertz technology is one of emerging technologies that has a potential to change our life. There are a lot of attractive applications in fields like security, astronomy, biology and medicine. Until recent years, terahertz (THz) waves were an undiscovered, or most importantly, an unexploited area of electromagnetic spectrum. The reasons of this fact were difficulties in generation and detection of THz waves. Recent advances in hardware technology have started to open up the field to new applications such as THz imaging. The THz waves can penetrate through various materials. However, automated processing of THz images can be challenging. The THz frequency band is specially suited for clothes penetration because this radiation does not point any harmful ionizing effects thus it is safe for human beings. Strong technology development in this band have sparked with few interesting devices. Even if the development of THz cameras is an emerging topic, commercially available passive cameras still offer images of poor quality mainly because of its low resolution and low detectors sensitivity. Therefore, THz image processing is very challenging and urgent topic. Digital THz image processing is a really promising and cost-effective way for demanding security and defense applications. In the article we demonstrate the results of image quality enhancement and image fusion of images captured by a commercially available passive THz camera by means of various combined methods. Our research is focused on dangerous objects detection - guns, knives and bombs hidden under some popular types of clothing.

  7. Acceptance of gamma camera Philips bright view based in the protocol nema 2001; Aceptacion de gammacamara philips brightview basada en el protocolo nema 2001

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer Gracia, C.; Luquero Llopis, N.; Plaza Aparicio, R.; Huerga Cabrerizo, C.; Corredoira Silva, E.; Serrada Hierro, A.

    2013-07-01

    Recently a new Philips Bright View X gamma camera installed in the Nuclear Medicine Service. It is one gamma camera of nuclear medicine of variable angle with double detector that can be configured for cardiac SPECT, SPECT not circular, body full, dynamic planar and several acquisitions with a single detector. (Author)

  8. Optimization of dedicated scintimammography procedure using detector prototypes and compressible phantoms

    CERN Document Server

    Majewski, S R; Curran, E; Keppel, C E; Kross, B J; Palumbo, A; Popov, V; Wisenberger, A G; Welch, B; Wojcik, R; Williams, M B; Goode, A R; More, M; Zhang, G

    2001-01-01

    Results are presented on the optimization of the design and use of dedicated compact scintimammography gamma cameras. Prototype imagers with a field of view (FOV) of 5*5 cm/sup 2/, 10*10 cm/sup 2/ and 15*20 cm/sup 2/ were used in either a dual modality mode as an adjunct technique to digital X-ray mammography imagers or as stand- alone instruments such as dedicated breast SPECT and planar imagers. Experimental data were acquired to select the best imaging modality (SPECT or planar) to detect small lesions using Tc/sup 99m/ radio- labeled pharmaceuticals. In addition, studies were performed to optimize the imaging geometry. Results suggest that the preferred imaging geometry is planar imaging with two opposing detector heads while the breast is under compression. However, further study of the dedicated breast SPECT is warranted. (24 refs).

  9. Quantification of harman alkaloids in sour passion fruit pulp and seeds by a novel dual SBSE-LC/Flu (stir bar sorptive extraction-liquid chromatography with fluorescence detector) method

    OpenAIRE

    PEREIRA, Cíntia A. M.; Rodrigues,Thyago R.; YARIWAKE, Janete H.

    2014-01-01

    A method for the quantification of the alkaloids harmane and harmine in sour passion fruit (Passiflora edulis f. flavicarpa O. Degener, Passifloraceae) pulp and seeds by stir-bar sorptive extraction and high performance liquid chromatography with fluorescence detection (dual SBSE-LC/Flu) is described. The SBSE parameters were optimized using a fractional factorial design, and the dual SBSE-LC/Flu method was validated following the International Conference on Harmonisation of Technical Require...

  10. Camera Development for the Cherenkov Telescope Array

    Science.gov (United States)

    Moncada, Roberto Jose

    2017-01-01

    With the Cherenkov Telescope Array (CTA), the very-high-energy gamma-ray universe, between 30 GeV and 300 TeV, will be probed at an unprecedented resolution, allowing deeper studies of known gamma-ray emitters and the possible discovery of new ones. This exciting project could also confirm the particle nature of dark matter by looking for the gamma rays produced by self-annihilating weakly interacting massive particles (WIMPs). The telescopes will use the imaging atmospheric Cherenkov technique (IACT) to record Cherenkov photons that are produced by the gamma-ray induced extensive air shower. One telescope design features dual-mirror Schwarzschild-Couder (SC) optics that allows the light to be finely focused on the high-resolution silicon photomultipliers of the camera modules starting from a 9.5-meter primary mirror. Each camera module will consist of a focal plane module and front-end electronics, and will have four TeV Array Readout with GSa/s Sampling and Event Trigger (TARGET) chips, giving them 64 parallel input channels. The TARGET chip has a self-trigger functionality for readout that can be used in higher logic across camera modules as well as across individual telescopes, which will each have 177 camera modules. There will be two sites, one in the northern and the other in the southern hemisphere, for full sky coverage, each spanning at least one square kilometer. A prototype SC telescope is currently under construction at the Fred Lawrence Whipple Observatory in Arizona. This work was supported by the National Science Foundation's REU program through NSF award AST-1560016.

  11. Image Mosaicking Approach for a Double-Camera System in the GaoFen2 Optical Remote Sensing Satellite Based on the Big Virtual Camera.

    Science.gov (United States)

    Cheng, Yufeng; Jin, Shuying; Wang, Mi; Zhu, Ying; Dong, Zhipeng

    2017-06-20

    The linear array push broom imaging mode is widely used for high resolution optical satellites (HROS). Using double-cameras attached by a high-rigidity support along with push broom imaging is one method to enlarge the field of view while ensuring high resolution. High accuracy image mosaicking is the key factor of the geometrical quality of complete stitched satellite imagery. This paper proposes a high accuracy image mosaicking approach based on the big virtual camera (BVC) in the double-camera system on the GaoFen2 optical remote sensing satellite (GF2). A big virtual camera can be built according to the rigorous imaging model of a single camera; then, each single image strip obtained by each TDI-CCD detector can be re-projected to the virtual detector of the big virtual camera coordinate system using forward-projection and backward-projection to obtain the corresponding single virtual image. After an on-orbit calibration and relative orientation, the complete final virtual image can be obtained by stitching the single virtual images together based on their coordinate information on the big virtual detector image plane. The paper subtly uses the concept of the big virtual camera to obtain a stitched image and the corresponding high accuracy rational function model (RFM) for concurrent post processing. Experiments verified that the proposed method can achieve seamless mosaicking while maintaining the geometric accuracy.

  12. Monocular camera and IMU integration for indoor position estimation.

    Science.gov (United States)

    Zhang, Yinlong; Tan, Jindong; Zeng, Ziming; Liang, Wei; Xia, Ye

    2014-01-01

    This paper presents a monocular camera (MC) and inertial measurement unit (IMU) integrated approach for indoor position estimation. Unlike the traditional estimation methods, we fix the monocular camera downward to the floor and collect successive frames where textures are orderly distributed and feature points robustly detected, rather than using forward oriented camera in sampling unknown and disordered scenes with pre-determined frame rate and auto-focus metric scale. Meanwhile, camera adopts the constant metric scale and adaptive frame rate determined by IMU data. Furthermore, the corresponding distinctive image feature point matching approaches are employed for visual localizing, i.e., optical flow for fast motion mode; Canny Edge Detector & Harris Feature Point Detector & Sift Descriptor for slow motion mode. For superfast motion and abrupt rotation where images from camera are blurred and unusable, the Extended Kalman Filter is exploited to estimate IMU outputs and to derive the corresponding trajectory. Experimental results validate that our proposed method is effective and accurate in indoor positioning. Since our system is computationally efficient and in compact size, it's well suited for visually impaired people indoor navigation and wheelchaired people indoor localization.

  13. Metal Detectors.

    Science.gov (United States)

    Harrington-Lueker, Donna

    1992-01-01

    Schools that count on metal detectors to stem the flow of weapons into the schools create a false sense of security. Recommendations include investing in personnel rather than hardware, cultivating the confidence of law-abiding students, and enforcing discipline. Metal detectors can be quite effective at afterschool events. (MLF)

  14. Optical Detectors

    Science.gov (United States)

    Tabbert, Bernd; Goushcha, Alexander

    Optical detectors are applied in all fields of human activities from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  15. Optimization of the performance of a pixellated germanium Compton camera

    OpenAIRE

    Ghoggali, W.

    2015-01-01

    A planar HPGe Compton camera for nuclear medicine applications that contains 177 pixels of 4 × 4mm2, of which 25 are at the back detector, is being used to image point sources of Cs137, line sources and clinical-like shape distributed sources. Experimental results are obtained to study the e ffects of energy resolution, position sensitivity, and reconstruction algorithms on camera images. Preamplifi ed pulses are digitized for pulse shape analysis using gamma ray tracking GRT4s data acquisiti...

  16. The FACT camera project, a novel camera type for very high energy (VHE) gamma astronomy with imaging air Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Neise, Dominik [TU, Dortmund (Germany)

    2010-07-01

    Recent progress in the field of photon detectors allows the development of novel camera types for VHE gamma astronomy with Imaging Air Cherenkov Telescopes. We are currently constructing a first full size camera, dubbed FACT (first avalanche-photodiode camera test) based on the novel Geiger-mode avalanche photodiodes (G-APD). These semiconductor photon detectors show several advanced features compared to conventional photomultiplier tubes, such as a significantly higher photon detection efficiency (PDE), high compactness, insensitivity against magnetic fields etc. In addition an entirely embedded new type of data acquisition as well as trigger system based on the novel domino ring sampling chip (DRS4) is being developed. The camera will be integral part of the new DWARF telescope located on the Canary island La Palma using the renovated HEGRA CT3 mount. DWARF is dedicated for long-term monitoring and observations of bright active galactic nuclei. A report about the successful prototype runs as well as about the concept and current status of the camera development is given.

  17. Digital camera in ophthalmology

    Directory of Open Access Journals (Sweden)

    Ashish Mitra

    2015-01-01

    Full Text Available Ophthalmology is an expensive field and imaging is an indispensable modality in ophthalmology; and in developing countries including India, it is not possible for every ophthalmologist to afford slit-lamp photography unit. We here present our experience of slit-lamp photography using digital camera. Good quality pictures of anterior and posterior segment disorders were captured using readily available devices. It can be a used as a good teaching tool for residents learning ophthalmology and can also be a method to document lesions which at many times is necessary for medicolegal purposes. It's a technique which is simple, inexpensive, and has a short learning curve.

  18. A Portable, Inexpensive, Nonmydriatic Fundus Camera Based on the Raspberry Pi® Computer

    Directory of Open Access Journals (Sweden)

    Bailey Y. Shen

    2017-01-01

    Full Text Available Purpose. Nonmydriatic fundus cameras allow retinal photography without pharmacologic dilation of the pupil. However, currently available nonmydriatic fundus cameras are bulky, not portable, and expensive. Taking advantage of recent advances in mobile technology, we sought to create a nonmydriatic fundus camera that was affordable and could be carried in a white coat pocket. Methods. We built a point-and-shoot prototype camera using a Raspberry Pi computer, an infrared-sensitive camera board, a dual infrared and white light light-emitting diode, a battery, a 5-inch touchscreen liquid crystal display, and a disposable 20-diopter condensing lens. Our prototype camera was based on indirect ophthalmoscopy with both infrared and white lights. Results. The prototype camera measured 133mm×91mm×45mm and weighed 386 grams. The total cost of the components, including the disposable lens, was $185.20. The camera was able to obtain good-quality fundus images without pharmacologic dilation of the pupils. Conclusion. A fully functional, inexpensive, handheld, nonmydriatic fundus camera can be easily assembled from a relatively small number of components. With modest improvements, such a camera could be useful for a variety of healthcare professionals, particularly those who work in settings where a traditional table-mounted nonmydriatic fundus camera would be inconvenient.

  19. A Portable, Inexpensive, Nonmydriatic Fundus Camera Based on the Raspberry Pi® Computer

    Science.gov (United States)

    Shen, Bailey Y.

    2017-01-01

    Purpose. Nonmydriatic fundus cameras allow retinal photography without pharmacologic dilation of the pupil. However, currently available nonmydriatic fundus cameras are bulky, not portable, and expensive. Taking advantage of recent advances in mobile technology, we sought to create a nonmydriatic fundus camera that was affordable and could be carried in a white coat pocket. Methods. We built a point-and-shoot prototype camera using a Raspberry Pi computer, an infrared-sensitive camera board, a dual infrared and white light light-emitting diode, a battery, a 5-inch touchscreen liquid crystal display, and a disposable 20-diopter condensing lens. Our prototype camera was based on indirect ophthalmoscopy with both infrared and white lights. Results. The prototype camera measured 133mm × 91mm × 45mm and weighed 386 grams. The total cost of the components, including the disposable lens, was $185.20. The camera was able to obtain good-quality fundus images without pharmacologic dilation of the pupils. Conclusion. A fully functional, inexpensive, handheld, nonmydriatic fundus camera can be easily assembled from a relatively small number of components. With modest improvements, such a camera could be useful for a variety of healthcare professionals, particularly those who work in settings where a traditional table-mounted nonmydriatic fundus camera would be inconvenient.

  20. A Portable, Inexpensive, Nonmydriatic Fundus Camera Based on the Raspberry Pi® Computer.

    Science.gov (United States)

    Shen, Bailey Y; Mukai, Shizuo

    2017-01-01

    Purpose. Nonmydriatic fundus cameras allow retinal photography without pharmacologic dilation of the pupil. However, currently available nonmydriatic fundus cameras are bulky, not portable, and expensive. Taking advantage of recent advances in mobile technology, we sought to create a nonmydriatic fundus camera that was affordable and could be carried in a white coat pocket. Methods. We built a point-and-shoot prototype camera using a Raspberry Pi computer, an infrared-sensitive camera board, a dual infrared and white light light-emitting diode, a battery, a 5-inch touchscreen liquid crystal display, and a disposable 20-diopter condensing lens. Our prototype camera was based on indirect ophthalmoscopy with both infrared and white lights. Results. The prototype camera measured 133mm × 91mm × 45mm and weighed 386 grams. The total cost of the components, including the disposable lens, was $185.20. The camera was able to obtain good-quality fundus images without pharmacologic dilation of the pupils. Conclusion. A fully functional, inexpensive, handheld, nonmydriatic fundus camera can be easily assembled from a relatively small number of components. With modest improvements, such a camera could be useful for a variety of healthcare professionals, particularly those who work in settings where a traditional table-mounted nonmydriatic fundus camera would be inconvenient.

  1. Small animals bone density and morphometry analysis with a dual energy X-rays absorptiometry bone densitometer using a 2D digital radiographic detector; Analyse de la densite osseuse et de la morphometrie de petits animaux avec un osteodensitometre bi-energie utilisant un capteur 2D de radiographie numerique

    Energy Technology Data Exchange (ETDEWEB)

    Boudousq, V. [Centre Hospitalier Universitaire de Nimes, 30 (France); Bordy, T.; Gonon, G.; Dinten, J.M. [CEA Grenoble (DTBS/STD), Lab. d' Electronique et de Technologie de l' Informatique, LETI, 38 (France)

    2004-07-01

    LEXXOS (DMS, Montpellier, France) is the first axial and total body cone beam bone densitometer using a 2D digital radiographic detector. In previous papers, technical principles and patients' Bone Mineral Density (BMD) measurement performances were presented. Bone densitometers are also used on small animals for drug development. In this presentation, we show how LEXXOS can be adapted for small animals' examinations and evaluate its performances. At first, in order to take advantage of the whole area of the 20 x 20 cm{sup 2} digital radiographic detector, it has been made profit of X-Rays magnification by adapting the geometrical configuration. Secondly, as small animals present low BMD, a specific dual energy calibration has been defined. This adapted system has then been evaluated on two sets of mice: six reference mice and six ovariectomized mice. Each month, these two populations have been examined and the averaged total body BMD has been measured. This evaluation shows that the right order of BMD magnitude is obtained and, as expected, BMD increases on two sets until a period around puberty and the ovariectomized set presents a significant decrease after. Moreover, the bone image obtained by dual energy processing on LEXXOS presents a radiographic image quality providing useful complementary information on bone morphometry and architecture. This study shows that LEXXOS cone beam bone densitometer provides simultaneously useful quantitative and qualitative information for analysis of bone evolution on small animals. In the future, same system architecture and processing methodology can be used with higher resolution detectors in order to refine information on bone architecture. (authors)

  2. Three-Dimensional Object Motion and Velocity Estimation Using a Single Computational RGB-D Camera

    Directory of Open Access Journals (Sweden)

    Seungwon Lee

    2015-01-01

    Full Text Available In this paper, a three-dimensional (3D object moving direction and velocity estimation method is presented using a dual off-axis color-filtered aperture (DCA-based computational camera. Conventional object tracking methods provided only two-dimensional (2D states of an object in the image for the target representation. The proposed method estimates depth information in the object region from a single DCA camera that transforms 2D spatial information into 3D model parameters of the object. We also present a calibration method of the DCA camera to estimate the entire set of camera parameters for a practical implementation. Experimental results show that the proposed DCA-based color and depth (RGB-D camera can calculate the 3D object moving direction and velocity of a randomly moving object in a single-camera framework.

  3. Three-dimensional object motion and velocity estimation using a single computational RGB-D camera.

    Science.gov (United States)

    Lee, Seungwon; Jeong, Kyungwon; Park, Jinho; Paik, Joonki

    2015-01-08

    In this paper, a three-dimensional (3D) object moving direction and velocity estimation method is presented using a dual off-axis color-filtered aperture (DCA)-based computational camera. Conventional object tracking methods provided only two-dimensional (2D) states of an object in the image for the target representation. The proposed method estimates depth information in the object region from a single DCA camera that transforms 2D spatial information into 3D model parameters of the object. We also present a calibration method of the DCA camera to estimate the entire set of camera parameters for a practical implementation. Experimental results show that the proposed DCA-based color and depth (RGB-D) camera can calculate the 3D object moving direction and velocity of a randomly moving object in a single-camera framework.

  4. SPECT and {sup 123}I-Iodolisuride ({sup 123}-I-ILIS) in extra-pyramidal syndromes. The use of different models of {gamma}-cameras; TEMP a l'{sup 123}I-Iodolisuride chez des patients presentant un syndrome extrapyramidal. Utilisation de differents modeles {gamma}-camera

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, M.J.; Jannuario, C.; Santos, A.C.; Cunha, L.; Pedroso de Lima, J.J. [FMC Coimbra (Portugal); Prunier-Levilion, C.; Autret, A.; Guilloteau, D.; Besnard, J.C.; Baulieu, J.L. [Centre Hospitalier Universitaire, 37 - Tours (France); Chassat, F.; Bekhechi, D.; Marchand, J.; Mauclaire, L. [CIS bio international, CEA Saclay, 91 - Gif-sur-Yvette (France); Catela, L. [ITN, Sacavem (Portugal)

    1999-06-01

    The aim of this work was to evaluate {sup 123}I-ILIS as a radioligand of dopamine receptors in patients with extra-pyramidal diseases by using different cameras in two different centers. 45 patients were included and divided in 2 groups: group I (n=28): idiopathic Parkinson disease, group II (n=17): other extra-pyramidal syndrome. {sup 123}I-ILIS, 1.7 to 2.8 MBq/kg, was injected after informed consent. Imaging was performed with a single head camera, a dual head camera, a triple head camera and a brain dedicated annular detector. The pattern of the transverse slices containing the basal ganglia was classified according to 3 types: type 1: visible basal ganglia and invisible cortex, type 2: invisible basal ganglia and visible cortex, type 3: visible basal ganglia and cortex. Striatal/frontal cortex ratio (S/FC) was calculated from standardized, geometrical ROI's. No patient showed any undesirable effect. All SPECT images were interpretable. In group 1, 45/45 scintigraphic pattern were type 1 or 3, in group II 18/23 scintigraphic patterns were type 2 or 3. S/FC was significantly lower in group II than in group I patients. We conclude that {sup 123}I-ILIS SPECT can be performed with any conventional {gamma}-camera. It provides functional informations about the striatal dopaminergic synapse in patients with extra-pyramidal degenerative disease, and could be useful in the differential diagnosis between Parkinson disease and other extra-pyramidal syndromes. (author)

  5. Radionuclide annular single crystal scintillator camera with rotating collimator

    Energy Technology Data Exchange (ETDEWEB)

    Genna, S.; Pang, S.-C.

    1986-04-22

    A radionuclide emission tomography camera is described for sensing gamma ray emissions from a source within the field of view consisting of: a fixed, position-sensitive detector means, responsive to the gamma ray emissions and surrounding the field of view for detecting the contact position and the trajectory from which a gamma ray emission originates, the fixed, position-sensitive detector including a single continuous stationary scintillation crystal; rotatable collimator means, disposed between the fixed, position-sensitive detecto means and the field of view, and including at least one array of collimator elements, for restricting and collimating the gamma ray emissions; and means for rotating the collimator means relative to the fixed, position-sensitive detector, for exposing different sections of the position-sensitive detector to the gamma ray emissions in order to view the source from different angles.

  6. Mars Science Laboratory Engineering Cameras

    Science.gov (United States)

    Maki, Justin N.; Thiessen, David L.; Pourangi, Ali M.; Kobzeff, Peter A.; Lee, Steven W.; Dingizian, Arsham; Schwochert, Mark A.

    2012-01-01

    NASA's Mars Science Laboratory (MSL) Rover, which launched to Mars in 2011, is equipped with a set of 12 engineering cameras. These cameras are build-to-print copies of the Mars Exploration Rover (MER) cameras, which were sent to Mars in 2003. The engineering cameras weigh less than 300 grams each and use less than 3 W of power. Images returned from the engineering cameras are used to navigate the rover on the Martian surface, deploy the rover robotic arm, and ingest samples into the rover sample processing system. The navigation cameras (Navcams) are mounted to a pan/tilt mast and have a 45-degree square field of view (FOV) with a pixel scale of 0.82 mrad/pixel. The hazard avoidance cameras (Haz - cams) are body-mounted to the rover chassis in the front and rear of the vehicle and have a 124-degree square FOV with a pixel scale of 2.1 mrad/pixel. All of the cameras utilize a frame-transfer CCD (charge-coupled device) with a 1024x1024 imaging region and red/near IR bandpass filters centered at 650 nm. The MSL engineering cameras are grouped into two sets of six: one set of cameras is connected to rover computer A and the other set is connected to rover computer B. The MSL rover carries 8 Hazcams and 4 Navcams.

  7. HONEY -- The Honeywell Camera

    Science.gov (United States)

    Clayton, C. A.; Wilkins, T. N.

    The Honeywell model 3000 colour graphic recorder system (hereafter referred to simply as Honeywell) has been bought by Starlink for producing publishable quality photographic hardcopy from the IKON image displays. Full colour and black & white images can be recorded on positive or negative 35mm film. The Honeywell consists of a built-in high resolution flat-faced monochrome video monitor, a red/green/blue colour filter mechanism and a 35mm camera. The device works on the direct video signals from the IKON. This means that changing the brightness or contrast on the IKON monitor will not affect any photographs that you take. The video signals from the IKON consist of separate red, green and blue signals. When you take a picture, the Honeywell takes the red, green and blue signals in turn and displays three pictures consecutively on its internal monitor. It takes an exposure through each of three filters (red, green and blue) onto the film in the camera. This builds up the complete colour picture on the film. Honeywell systems are installed at nine Starlink sites, namely Belfast (locally funded), Birmingham, Cambridge, Durham, Leicester, Manchester, Rutherford, ROE and UCL.

  8. Stereoscopic camera design

    Science.gov (United States)

    Montgomery, David J.; Jones, Christopher K.; Stewart, James N.; Smith, Alan

    2002-05-01

    It is clear from the literature that the majority of work in stereoscopic imaging is directed towards the development of modern stereoscopic displays. As costs come down, wider public interest in this technology is expected to increase. This new technology would require new methods of image formation. Advances in stereo computer graphics will of course lead to the creation of new stereo computer games, graphics in films etc. However, the consumer would also like to see real-world stereoscopic images, pictures of family, holiday snaps etc. Such scenery would have wide ranges of depth to accommodate and would need also to cope with moving objects, such as cars, and in particular other people. Thus, the consumer acceptance of auto/stereoscopic displays and 3D in general would be greatly enhanced by the existence of a quality stereoscopic camera. This paper will cover an analysis of existing stereoscopic camera designs and show that they can be categorized into four different types, with inherent advantages and disadvantages. A recommendation is then made with regard to 3D consumer still and video photography. The paper will go on to discuss this recommendation and describe its advantages and how it can be realized in practice.

  9. Multicolor Detectors for Ultrasensitive Long-Wave Imaging Cameras

    Science.gov (United States)

    Brown, Ari; Benford, Dominic; Chervenak, James; Wollack, Edward

    2012-01-01

    A document describes a zeptobolometer for ultrasensitive, long-wavelength sensors. GSFC is developing pixels based on the zeptobolometer design that sense three THz wavelengths simultaneously. Two innovations are described in the document: (1) a quasiparticle (QO) filter arrangement that enables a compact multicolor spectrum at the focal plane, and (2) a THz antenna readout by up to three bolometers. The innovations enable high efficiency by greatly reducing high, frequency-dependent microstrip losses, and pixel compactness by eliminating the need for bulky filters in the focal plane. The zeptobolometer is a small TES bolometer, on the scale of a few microns, which can be readily coupled through an impedance-matching resistor to a metal or dielectric antenna. The bolometer is voltage-biased in its superconducting transition, allowing the use of superconducting RF multiplexers to read out large arrays. The antenna is geometrically tapped at three locations so as to efficiently couple radiation of three distinct wavelengths to the individual TESs. The transition edge hot electrons in metals offer a simple, compact arrangement for antenna readout, which can be crucial in the THz where line losses at high frequencies can be substantial. A metallic grill filter acts as a high-pass filter and directs the low-frequency components to a location where they will be absorbed. The absorption spectrum shows that three well-separated THz bands are feasible. The filters can be made from high-purity dielectrics such as float zone silicon or sapphire.

  10. The MARS Photon Processing Cameras for Spectral CT

    CERN Document Server

    Doesburg, Robert Michael Nicholas; Butler, APH; Renaud, PF

    This thesis is about the development of the MARS camera: a stan- dalone portable digital x-ray camera with spectral sensitivity. It is built for use in the MARS Spectral system from the Medipix2 and Medipix3 imaging chips. Photon counting detectors and Spectral CT are introduced, and Medipix is identified as a powerful new imaging device. The goals and strategy for the MARS camera are discussed. The Medipix chip physical, electronic and functional aspects, and ex- perience gained, are described. The camera hardware, firmware and supporting PC software are presented. Reports of experimental work on the process of equalisation from noise, and of tests of charge sum- ming mode, conclude the main body of the thesis. The camera has been actively used since late 2009 in pre-clinical re- search. A list of publications that derive from the use of the camera and the MARS Spectral scanner demonstrates the practical benefits already obtained from this work. Two of the publications are first- author, eight are co-authore...

  11. DUMAND detector

    CERN Multimedia

    This object is one of the 256 other detectors of the DUMAND (Deep Underwater Muon And Neutrino Detection) experiment. The goal of the experiment was the construction of the first deep ocean high energy neutrino detector, to be placed at 4800 m depth in the Pacific Ocean off Keahole Point on the Big Island of Hawaii. A few years ago, a European conference with Cosmic experiments was organized at CERN as they were projects like DUMAND in Hawaii. Along with the conference, a temporary exhibition was organised as well. It was a collaboration of institutions from Germany, Japan, Switzerland and the U.S.A. CERN had borrowed equipment and objects from different institutes around the world, including this detector of the DUMAND experiment. Most of the equipment were sent back to the institutes, however this detector sphere was offered to a CERN member of the personnel.

  12. New CZT cardiac cameras and myocardial perfusion imaging with thallium 201; Nouvelles cameras cardiaques a semi-conducteur cadmium -zinc- telluride (CZT) et scintigraphies myocardiques au thallium 201

    Energy Technology Data Exchange (ETDEWEB)

    Songy, B. [Service de medecine et imagerie nucleaire, centre cardiologique du Nord (CCN), 93 - Saint-Denis (France)

    2010-08-15

    Myocardial perfusion imaging is widely used for management of coronary artery disease. However, it suffers from technical limitations. New cardiac cameras using CZT detectors are now available and increase spatial (x2) and energy (x2) resolutions and photons sensitivity (x5). We describe here the General Electric Discovery NM 530c new camera and summarize the validation studies with technetium agents and with thallium 201, protocols to reduce doses, ultrafast protocols and perspectives offered with this new technology. (author)

  13. Dual diagnosis

    OpenAIRE

    2013-01-01

    Dual diagnosis denotes intertwining of intellectual disabilities with mental disorders. With the help of systematic examination of literature, intellectual disabilities are determined (they are characterized by subaverage intellectual activity and difficulties in adaptive skills), along side mental disorders. Their influence is seen in changes of thinking, perception, emotionality, behaviour and cognition. Mental disorders often occur with people with intellectual disabilities (data differs f...

  14. Transmission electron microscope CCD camera

    Science.gov (United States)

    Downing, Kenneth H.

    1999-01-01

    In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

  15. Neutron streak camera

    Science.gov (United States)

    Wang, Ching L.

    1983-09-13

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  16. A Compton camera prototype for prompt gamma medical imaging

    Directory of Open Access Journals (Sweden)

    Thirolf P.G.

    2016-01-01

    Full Text Available Compton camera prototype for a position-sensitive detection of prompt γ rays from proton-induced nuclear reactions is being developed in Garching. The detector system allows to track the Comptonscattered electrons. The camera consists of a monolithic LaBr3:Ce scintillation absorber crystal, read out by a multi-anode PMT, preceded by a stacked array of 6 double-sided silicon strip detectors acting as scatterers. The LaBr3:Ce crystal has been characterized with radioactive sources. Online commissioning measurements were performed with a pulsed deuteron beam at the Garching Tandem accelerator and with a clinical proton beam at the OncoRay facility in Dresden. The determination of the interaction point of the photons in the monolithic crystal was investigated.

  17. A thick Anger camera for gamma-ray astronomy

    Science.gov (United States)

    Cook, W. R.; Finger, M.; Prince, T. A.

    1985-01-01

    The NaI(Tl) Anger camera is a natural candidate for a position sensitive detector in imaging of astrophysical gamma-ray sources. Here laboratory measurements are presented of the response of a relatively thick (5.1 cm) NaI(Tl) Anger camera designed for coded aperture imaging in the 50 keV to 2 MeV energy range. A position resolution of 10.5 mm FWHM at 122 keV and 6.3 mm FWHM at 662 keV. The energy resolution was 7 percent FWHM at 662 keV. The ability of the detector to resolve the depth of the gamma-ray interaction and the use of this depth resolution to reduce back-incident and internal background is discussed.

  18. Dual control vibration tests of flight hardware

    Science.gov (United States)

    Scharton, Terry D.

    1991-01-01

    A vibration retest of a spacecraft flight instrument, the Mars Observer Camera (MOC), was conducted using extremal dual control to automatically limit the shaker force and notch the shaker acceleration at resonances. This was the first application of extremal dual control with flight hardware at JPL. The retest was successful in that the environment was representative of flight plus some margin, the instrument survived without any structural or performance degradation, and the force limiting worked very well. The test set-up, force limiting procedure, and test results are described herein. It is concluded that dual control should be utilized when there is a concern about overtesting in hard-base-drive tests and the instrumentation for force measurement and control is available. Recommendations for improving the implementation of dual control are provided as a result of this first experience.

  19. On camera-based smoke and gas leakage detection

    Energy Technology Data Exchange (ETDEWEB)

    Nyboe, Hans Olav

    1999-07-01

    Gas detectors are found in almost every part of industry and in many homes as well. An offshore oil or gas platform may host several hundred gas detectors. The ability of the common point and open path gas detectors to detect leakages depends on their location relative to the location of a gas cloud. This thesis describes the development of a passive volume gas detector, that is, one than will detect a leakage anywhere in the area monitored. After the consideration of several detection techniques it was decided to use an ordinary monochrome camera as sensor. Because a gas leakage may perturb the index of refraction, parts of the background appear to be displaced from their true positions, and it is necessary to develop algorithms that can deal with small differences between images. The thesis develops two such algorithms. Many image regions can be defined and several feature values can be computed for each region. The value of the features depends on the pattern in the image regions. The classes studied in this work are: reference, gas, smoke and human activity. Test show that observation belonging to these classes can be classified fairly high accuracy. The features in the feature set were chosen and developed for this particular application. Basically, the features measure the magnitude of pixel differences, size of detected phenomena and image distortion. Interesting results from many experiments are presented. Most important, the experiments show that apparent motion caused by a gas leakage or heat convection can be detected by means of a monochrome camera. Small leakages of methane can be detected at a range of about four metres. Other gases, such as butane, where the densities differ more from the density of air than the density of methane does, can be detected further from the camera. Gas leakages large enough to cause condensation have been detected at a camera distance of 20 metres. 59 refs., 42 figs., 13 tabs.

  20. In-Flight Performance of Wide Field Camera 3

    Science.gov (United States)

    Kimble, Randy

    2010-01-01

    Wide Field Camera 3 (WFC3), a powerful new UVNisible/IR imager, was installed into HST during Servicing Mission 4. After a successful commissioning in the Servicing Mission Orbital Verification program, WFC3 has been engaged in an exciting program of scientific observations. I review here the in-flight scientific performance of the instrument, addressing such topics as image quality, sensitivity, detector performance, and stability.

  1. Flight Calibration of the LROC Narrow Angle Camera

    Science.gov (United States)

    Humm, D. C.; Tschimmel, M.; Brylow, S. M.; Mahanti, P.; Tran, T. N.; Braden, S. E.; Wiseman, S.; Danton, J.; Eliason, E. M.; Robinson, M. S.

    2016-04-01

    Characterization and calibration are vital for instrument commanding and image interpretation in remote sensing. The Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) takes 500 Mpixel greyscale images of lunar scenes at 0.5 meters/pixel. It uses two nominally identical line scan cameras for a larger crosstrack field of view. Stray light, spatial crosstalk, and nonlinearity were characterized using flight images of the Earth and the lunar limb. These are important for imaging shadowed craters, studying ˜1 meter size objects, and photometry respectively. Background, nonlinearity, and flatfield corrections have been implemented in the calibration pipeline. An eight-column pattern in the background is corrected. The detector is linear for DN = 600--2000 but a signal-dependent additive correction is required and applied for DNground-based images taken with the Robotic Lunar Observatory (ROLO) at much lower spatial resolution but with the same photometric angles.

  2. Multi-Angle Snowflake Camera Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Shkurko, Konstantin [Univ. of Utah, Salt Lake City, UT (United States); Garrett, T. [Univ. of Utah, Salt Lake City, UT (United States); Gaustad, K [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-12-01

    The Multi-Angle Snowflake Camera (MASC) addresses a need for high-resolution multi-angle imaging of hydrometeors in freefall with simultaneous measurement of fallspeed. As illustrated in Figure 1, the MASC consists of three cameras, separated by 36°, each pointing at an identical focal point approximately 10 cm away. Located immediately above each camera, a light aims directly at the center of depth of field for its corresponding camera. The focal point at which the cameras are aimed lies within a ring through which hydrometeors fall. The ring houses a system of near-infrared emitter-detector pairs, arranged in two arrays separated vertically by 32 mm. When hydrometeors pass through the lower array, they simultaneously trigger all cameras and lights. Fallspeed is calculated from the time it takes to traverse the distance between the upper and lower triggering arrays. The trigger electronics filter out ambient light fluctuations associated with varying sunlight and shadows. The microprocessor onboard the MASC controls the camera system and communicates with the personal computer (PC). The image data is sent via FireWire 800 line, and fallspeed (and camera control) is sent via a Universal Serial Bus (USB) line that relies on RS232-over-USB serial conversion. See Table 1 for specific details on the MASC located at the Oliktok Point Mobile Facility on the North Slope of Alaska. The value-added product (VAP) detailed in this documentation analyzes the raw data (Section 2.0) using Python: images rely on OpenCV image processing library and derived aggregated statistics rely on some clever averaging. See Sections 4.1 and 4.2 for more details on what variables are computed.

  3. Evaluation of two Compton camera models for scintimammography

    Science.gov (United States)

    Uche, C. Z.; Round, W. H.; Cree, M. J.

    2012-01-01

    We study the performance of a Si/LaBr 3:Ce Compton camera model for scintimammography, and compare it with a Si/NaI(Tl) model of similar geometry. The GEANT4 simulation toolkit was used to study the behaviour of the cameras at 511 keV. Certain simulation steps, such as the modelling of radionuclide decay times, scintillation photon transport and interactions with photomultipliers, as well as detector dead time corrections were included to make the modelling of the cameras more realistic than previous studies. The Si/LaBr 3:Ce Compton camera shows superior efficiency of 2.0×10 -3 and resolution of 5.3 mm over the Si/NaI(Tl) Compton camera model which has the efficiency of 1.6×10 -3 and resolution of 6.9 mm at a source-to-scatterer distance of interest, 2.5 cm. A similar result sequence is obtained for two breast tumours of 5 mm diameter embedded in the medial region of an average-size breast phantom of thickness 5 cm. Notably, the signal-to-noise ratios (SNR) obtained for the Si/LaBr 3:Ce camera are 9.7 and 3.4 for tumour/background radiation uptakes of 10:1 and 6:1, whereas 6.8 and 2.4 were obtained for the Si/NaI(Tl) camera model for the same tumour/background radiation uptakes respectively. It is therefore envisioned that with lower cost, LaBr 3:Ce could replace NaI(Tl) as the Compton camera absorber.

  4. Evaluation of two Compton camera models for scintimammography

    Energy Technology Data Exchange (ETDEWEB)

    Uche, C.Z., E-mail: czu1@waikato.ac.nz [School of Engineering, University of Waikato, Private Bag 3105 Hamilton (New Zealand); Round, W.H., E-mail: h.round@waikato.ac.nz [School of Engineering, University of Waikato, Private Bag 3105 Hamilton (New Zealand); Cree, M.J., E-mail: cree@waikato.ac.nz [School of Engineering, University of Waikato, Private Bag 3105 Hamilton (New Zealand)

    2012-01-11

    We study the performance of a Si/LaBr{sub 3}:Ce Compton camera model for scintimammography, and compare it with a Si/NaI(Tl) model of similar geometry. The GEANT4 simulation toolkit was used to study the behaviour of the cameras at 511 keV. Certain simulation steps, such as the modelling of radionuclide decay times, scintillation photon transport and interactions with photomultipliers, as well as detector dead time corrections were included to make the modelling of the cameras more realistic than previous studies. The Si/LaBr{sub 3}:Ce Compton camera shows superior efficiency of 2.0 Multiplication-Sign 10{sup -3} and resolution of 5.3 mm over the Si/NaI(Tl) Compton camera model which has the efficiency of 1.6 Multiplication-Sign 10{sup -3} and resolution of 6.9 mm at a source-to-scatterer distance of interest, 2.5 cm. A similar result sequence is obtained for two breast tumours of 5 mm diameter embedded in the medial region of an average-size breast phantom of thickness 5 cm. Notably, the signal-to-noise ratios (SNR) obtained for the Si/LaBr{sub 3}:Ce camera are 9.7 and 3.4 for tumour/background radiation uptakes of 10:1 and 6:1, whereas 6.8 and 2.4 were obtained for the Si/NaI(Tl) camera model for the same tumour/background radiation uptakes respectively. It is therefore envisioned that with lower cost, LaBr{sub 3}:Ce could replace NaI(Tl) as the Compton camera absorber.

  5. Chemical aerosol Raman detector

    Science.gov (United States)

    Aggarwal, R. L.; Farrar, L. W.; Di Cecca, S.; Amin, M.; Perkins, B. G.; Clark, M. L.; Jeys, T. H.; Sickenberger, D. W.; D'Amico, F. M.; Emmons, E. D.; Christesen, S. D.; Kreis, R. J.; Kilper, G. K.

    2017-03-01

    A sensitive chemical aerosol Raman detector (CARD) has been developed for the trace detection and identification of chemical particles in the ambient atmosphere. CARD includes an improved aerosol concentrator with a concentration factor of about 40 and a CCD camera for improved detection sensitivity. Aerosolized isovanillin, which is relatively safe, has been used to characterize the performance of the CARD. The limit of detection (SNR = 10) for isovanillin in 15 s has been determined to be 1.6 pg/cm3, which corresponds to 6.3 × 109 molecules/cm3 or 0.26 ppb. While less sensitive, CARD can also detect gases. This paper provides a more detailed description of the CARD hardware and detection algorithm than has previously been published.

  6. Development of an Astronomical Infrared PtSi Camera

    Science.gov (United States)

    Hong, S. S.; Ueno, M.; Koo, B. C.; Kim, K.-T.; Kim, C. Y.; Oh, K. S.; Lee, M. G.; Lee, H. M.; Kang, Y. W.; Park, W.-K.

    1996-12-01

    We have built a near-infrared imaging camera with a PtSi array detector manufactured the Mitsubishi Company. The PtSi detector is sensitive in the wavelength range 1 to 5micrometer. Quantum efficiency of PtSi is much lower than that of InSb and HgCdTe types. However, the PtSi array has advantages over the latter ones:(i)The read-out noise is very low;(ii)the characteristics of the array elements are uniform and stable; (iii)it is not difficult to make a large PtSi array; and (iv)consequently the price is affordably low. The array used consists of 512 x 512 pixels and its size is 10.2 mm x 13.3 mm. The filter wheel of the camera is equipped with J, H, K filters, and an aluminum plate for measuring the dark noise. The dewar is cooled with liquid nitrogen. We have adopted a method of installing the clock pattern and the observing softwares in the RAM, which can be easily used for other systems. We have developed a software with a pull-down menu for operating the camera and data acquisition. The camera has been tested by observing Orionis.

  7. Performance characteristics of the novel PETRRA positron camera

    CERN Document Server

    Ott, R J; Erlandsson, K; Reader, A; Duxbury, D; Bateman, J; Stephenson, R; Spill, E

    2002-01-01

    The PETRRA positron camera consists of two 60 cmx40 cm annihilation photon detectors mounted on a rotating gantry. Each detector contains large BaF sub 2 scintillators interfaced to large area multiwire proportional chambers filled with a photo-sensitive vapour (tetrakis-(dimethylamino)-ethylene). The spatial resolution of the camera has been measured as 6.5+-1.0 mm FWHM throughout the sensitive field-of-view (FoV), the timing resolution is between 7 and 10 ns FWHM and the detection efficiency for annihilation photons is approx 30% per detector. The count-rates obtained, from a 20 cm diameter by 11 cm long water filled phantom containing 90 MBq of sup 1 sup 8 F, were approx 1.25x10 sup 6 singles and approx 1.1x10 sup 5 cps raw coincidences, limited only by the read-out system dead-time of approx 4 mu s. The count-rate performance, sensitivity and large FoV make the camera ideal for whole-body imaging in oncology.

  8. Yearly progress report on WA105/ProtoDUNE dual-phase (2017)

    CERN Document Server

    Aimard, B

    2017-01-01

    WA105/ProtoDUNE dual-phase aims at fully demonstrating the concept of a very large dual-phase LAr TPC and calibrating it with a charged particles test beam, in view of the application of this detector design for the construction of DUNE 10 kton far detector modules. In this document we report the general progress of the dual-phase experimental activities at CERN since the last SPSC yearly report.

  9. QCD Dual

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2009-01-01

    We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...... fixed point. Remarkably this value is identical to the maximum bound predicted in the nonpertubative regime via the all-orders conjectured beta function for nonsupersymmetric gauge theories.......We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...

  10. Camera artifacts in IUE spectra

    Science.gov (United States)

    Bruegman, O. W.; Crenshaw, D. M.

    1994-01-01

    This study of emission line mimicking features in the IUE cameras has produced an atlas of artifiacts in high-dispersion images with an accompanying table of prominent artifacts and a table of prominent artifacts in the raw images along with a medium image of the sky background for each IUE camera.

  11. Radiation camera motion correction system

    Science.gov (United States)

    Hoffer, P.B.

    1973-12-18

    The device determines the ratio of the intensity of radiation received by a radiation camera from two separate portions of the object. A correction signal is developed to maintain this ratio at a substantially constant value and this correction signal is combined with the camera signal to correct for object motion. (Official Gazette)

  12. Coherent infrared imaging camera (CIRIC)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.P.; Simpson, M.L.; Bennett, C.A.; Richards, R.K.; Emery, M.S.; Crutcher, R.I.; Sitter, D.N. Jr.; Wachter, E.A.; Huston, M.A.

    1995-07-01

    New developments in 2-D, wide-bandwidth HgCdTe (MCT) and GaAs quantum-well infrared photodetectors (QWIP) coupled with Monolithic Microwave Integrated Circuit (MMIC) technology are now making focal plane array coherent infrared (IR) cameras viable. Unlike conventional IR cameras which provide only thermal data about a scene or target, a coherent camera based on optical heterodyne interferometry will also provide spectral and range information. Each pixel of the camera, consisting of a single photo-sensitive heterodyne mixer followed by an intermediate frequency amplifier and illuminated by a separate local oscillator beam, constitutes a complete optical heterodyne receiver. Applications of coherent IR cameras are numerous and include target surveillance, range detection, chemical plume evolution, monitoring stack plume emissions, and wind shear detection.

  13. Camera Movement in Narrative Cinema

    DEFF Research Database (Denmark)

    Nielsen, Jakob Isak

    2007-01-01

    known as ‘the poetics of cinema.’ The dissertation embraces two branches of research within this perspective: stylistics and historical poetics (stylistic history). The dissertation takes on three questions in relation to camera movement and is accordingly divided into three major sections. The first...... section unearths what characterizes the literature on camera movement. The second section of the dissertation delineates the history of camera movement itself within narrative cinema. Several organizational principles subtending the on-screen effect of camera movement are revealed in section two...... to illustrate how the functions may mesh in individual camera movements six concrete examples are analyzed. The analyses illustrate how the taxonomy presented can substantiate analysis and interpretation of film style. More generally, the dissertation - and particularly these in-depth analyses - illustrates how...

  14. OPERA goes on camera

    CERN Multimedia

    2007-01-01

    OPERA, the experiment which uses the neutrino beam of CERN’s CNGS facility, has delivered its first neutrino "photos". The core of the detector has been commissioned and has produced images of events resulting from neutrino collisions. The reconstruction of the core (a few cubic millimetres!) of a neutrino interaction at OPERA. The neutrino arriving from the left of the image has interacted with the lead of a brick, producing various particles identifiable by their tracks visible in the emulsion.The snapshot is tiny but it was greeted with enthusiasm by the physicists of OPERA. On 2 October, for the first time, the experiment at the Gran Sasso Laboratory in Italy "photographed" an event produced by the beam of neutrinos sent from CERN, 732 kilometres away. One of the 60,000 photosensitive bricks already installed at the heart of the experiment had produced its first particle track. The commissioning of the OPERA experiment began la...

  15. Calorimeter detectors

    CERN Document Server

    de Barbaro, P; The ATLAS collaboration

    2013-01-01

    Although the instantaneous and integrated luminosity in HL-LHC will be far higher than the LHC detectors were originally designed for, the Barrel calorimeters of the four experiments are expected to continue to perform well  throughout the Phase II program. The conditions for the End-Cap calorimeters are far more challenging and whilst some detectors will require relatively modest changes, others require far more substantial upgrades. We present the results of longevity and performance studies for the calorimeter systems of the four main LHC experiments and outline the upgrade options under consideration. We include a discussion of the R&D required to make the final technology choices for the upgraded detectors.

  16. Pixel detectors

    CERN Document Server

    Passmore, M S

    2001-01-01

    positions on the detector. The loss of secondary electrons follows the profile of the detector and increases with higher energy ions. studies of the spatial resolution predict a value of 5.3 lp/mm. The image noise in photon counting systems is investigated theoretically and experimentally and is shown to be given by Poisson statistics. The rate capability of the LAD1 was measured to be 250 kHz per pixel. Theoretical and experimental studies of the difference in contrast for ideal charge integrating and photon counting imaging systems were carried out. It is shown that the contrast differs and that for the conventional definition (contrast = (background - signal)/background) the photon counting device will, in some cases, always give a better contrast than the integrating system. Simulations in MEDICI are combined with analytical calculations to investigate charge collection efficiencies (CCE) in semiconductor detectors. Different pixel sizes and biasing conditions are considered. The results show charge shari...

  17. New gamma cameras in nuclear cardiology: D-SPECT; Les nouvelles gamma cameras en cardiologie nucleaire: D-Spect

    Energy Technology Data Exchange (ETDEWEB)

    Rouzet, F.; Bechara, T.; Ben Ali, K.; Nassar, P.; Grellier, J.F.; Burg, S.; Hyafil, F.; Le Guludec, D. [Service de medecine nucleaire, groupe hospitalier Bichat-Claude-Bernard, AP-HP, 75 - Paris (France)

    2010-08-15

    Over the past few years, advances in nuclear medicine aimed at decreasing both the duration and dosimetry of exams, without decreasing image quality. In this setting, Spectrum Dynamics (D-Spect) is a new generation gamma camera dedicated to cardiac scintigraphy. Its technology includes solid-state detectors based on pixelated semiconductors, region-centric (cardiac area) scanning, high-sensitivity collimators and resolution recovery. An additional particularity is the patient position during scanning. Phantom studies showed an improvement of sensitivity compared to conventional cameras, at the price of a loss in geometric resolution, which is compensated by resolution recovery. Semiconductors detectors provide a better energy resolution than conventional detectors suited to double isotope acquisitions, and a high count rate allowing dynamic acquisitions. Only few clinical studies are available so far, they suggest performances similar to that of conventional cameras obtained with acquisitions duration reduced to few minutes. The next step is to establish a trade-off between acquisition duration and dosimetry reduction. (authors)

  18. Design and performance of a large area neutron sensitive anger camera

    Science.gov (United States)

    Riedel, R. A.; Donahue, C.; Visscher, T.; Montcalm, C.

    2015-09-01

    We describe the design and performance of a 157 mm×157 mm two dimensional neutron detector. The detector uses the Anger principle to determine the position of neutrons. We have verified FWHM resolution of Anger Cameras. The performance of the detector is limited by the light yield of the scintillator, and it is estimated that the resolution of the current detector could be doubled with a brighter scintillator. Data collected from small (<1 mm3) single crystal reference samples at the single crystal instrument TOPAZ provide results with low values of the refinement parameter Rw(F).

  19. Measurement of the timing behaviour of off-the-shelf cameras

    Science.gov (United States)

    Schatz, Volker

    2017-04-01

    This paper presents a measurement method suitable for investigating the timing properties of cameras. A single light source illuminates the camera detector starting with a varying defined delay after the camera trigger. Pixels from the recorded camera frames are summed up and normalised, and the resulting function is indicative of the overlap between illumination and exposure. This allows one to infer the trigger delay and the exposure time with sub-microsecond accuracy. The method is therefore of interest when off-the-shelf cameras are used in reactive systems or synchronised with other cameras. It can supplement radiometric and geometric calibration methods for cameras in scientific use. A closer look at the measurement results reveals deviations from the ideal camera behaviour of constant sensitivity limited to the exposure interval. One of the industrial cameras investigated retains a small sensitivity long after the end of the nominal exposure interval. All three investigated cameras show non-linear variations of sensitivity at O≤ft({{10}-3}\\right) to O≤ft({{10}-2}\\right) during exposure. Due to its sign, the latter effect cannot be described by a sensitivity function depending on the time after triggering, but represents non-linear pixel characteristics.

  20. Camera sensitivity study

    Science.gov (United States)

    Schlueter, Jonathan; Murphey, Yi L.; Miller, John W. V.; Shridhar, Malayappan; Luo, Yun; Khairallah, Farid

    2004-12-01

    As the cost/performance Ratio of vision systems improves with time, new classes of applications become feasible. One such area, automotive applications, is currently being investigated. Applications include occupant detection, collision avoidance and lane tracking. Interest in occupant detection has been spurred by federal automotive safety rules in response to injuries and fatalities caused by deployment of occupant-side air bags. In principle, a vision system could control airbag deployment to prevent this type of mishap. Employing vision technology here, however, presents a variety of challenges, which include controlling costs, inability to control illumination, developing and training a reliable classification system and loss of performance due to production variations due to manufacturing tolerances and customer options. This paper describes the measures that have been developed to evaluate the sensitivity of an occupant detection system to these types of variations. Two procedures are described for evaluating how sensitive the classifier is to camera variations. The first procedure is based on classification accuracy while the second evaluates feature differences.

  1. Autonomous absolute calibration of an ICCD camera in single-photon detection regime

    CERN Document Server

    Qi, Luo; Leuchs, Gerd; Chekhova, Maria V

    2016-01-01

    Intensified charge coupled device (ICCD) cameras are widely used in various applications such as microscopy, astronomy, spectroscopy. Often they are used as single-photon detectors, with thresholding being an essential part of the readout. In this paper, we measure the quantum efficiency of an ICCD camera in the single-photon detection mode using the Klyshko absolute calibration technique. The quantum efficiency is obtained as a function of the threshold value and of the wavelength of the detected light. In addition, we study the homogeneity of the photon sensitivity over the camera chip area. The experiment is performed in the autonomous regime, without using any additional detectors. We therefore demonstrate the self-calibration of an ICCD camera.

  2. Imaging Asteroid 4 Vesta Using the Framing Camera

    Science.gov (United States)

    Keller, H. Uwe; Nathues, Andreas; Coradini, Angioletta; Jaumann, Ralf; Jorda, Laurent; Li, Jian-Yang; Mittlefehldt, David W.; Mottola, Stefano; Raymond, C. A.; Schroeder, Stefan E.

    2011-01-01

    The Framing Camera (FC) onboard the Dawn spacecraft serves a dual purpose. Next to its central role as a prime science instrument it is also used for the complex navigation of the ion drive spacecraft. The CCD detector with 1024 by 1024 pixels provides the stability for a multiyear mission and its high requirements of photometric accuracy over the wavelength band from 400 to 1000 nm covered by 7 band-pass filters. Vesta will be observed from 3 orbit stages with image scales of 227, 63, and 17 m/px, respectively. The mapping of Vesta s surface with medium resolution will be only completed during the exit phase when the north pole will be illuminated. A detailed pointing strategy will cover the surface at least twice at similar phase angles to provide stereo views for reconstruction of the topography. During approach the phase function of Vesta was determined over a range of angles not accessible from earth. This is the first step in deriving the photometric function of the surface. Combining the topography based on stereo tie points with the photometry in an iterative procedure will disclose details of the surface morphology at considerably smaller scales than the pixel scale. The 7 color filters are well positioned to provide information on the spectral slope in the visible, the depth of the strong pyroxene absorption band, and their variability over the surface. Cross calibration with the VIR spectrometer that extends into the near IR will provide detailed maps of Vesta s surface mineralogy and physical properties. Georeferencing all these observation will result in a coherent and unique data set. During Dawn s approach and capture FC has already demonstrated its performance. The strong variation observed by the Hubble Space Telescope can now be correlated with surface units and features. We will report on results obtained from images taken during survey mode covering the whole illuminated surface. Vesta is a planet-like differentiated body, but its surface

  3. Dual energy CT: New horizon in medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [Dept. of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Goo, Jin Mo [Dept. of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2017-08-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector.

  4. Dual-Energy CT: New Horizon in Medical Imaging.

    Science.gov (United States)

    Goo, Hyun Woo; Goo, Jin Mo

    2017-01-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector.

  5. Analysis of the variation of range parameters of thermal cameras

    Science.gov (United States)

    Bareła, Jarosław; Kastek, Mariusz; Firmanty, Krzysztof; Krupiński, Michał

    2016-10-01

    Measured range characteristics may vary considerably (up to several dozen percent) between different samples of the same camera type. The question is whether the manufacturing process somehow lacks repeatability or the commonly used measurement procedures themselves need improvement. The presented paper attempts to deal with the aforementioned question. The measurement method has been thoroughly analyzed as well as the measurement test bed. Camera components (such as detector and optics) have also been analyzed and their key parameters have been measured, including noise figures of the entire system. Laboratory measurements are the most precise method used to determine range parameters of a thermal camera. However, in order to obtain reliable results several important conditions have to be fulfilled. One must have the test equipment capable of measurement accuracy (uncertainty) significantly better than the magnitudes of measured quantities. The measurements must be performed in a controlled environment thus excluding the influence of varying environmental conditions. The personnel must be well-trained, experienced in testing the thermal imaging devices and familiar with the applied measurement procedures. The measurement data recorded for several dozen of cooled thermal cameras (from one of leading camera manufacturers) have been the basis of the presented analysis. The measurements were conducted in the accredited research laboratory of Institute of Optoelectronics (Military University of Technology).

  6. Test stand for determining parameters of microbolometer camera

    Science.gov (United States)

    Krupiński, Michał; Bareła, Jarosław; Kastek, Mariusz; Chmielewski, Krzysztof

    2016-10-01

    In order to objectively compare the two infrared cameras ones must to measure and compare their parameters on a laboratory. One of the basic parameters for the evaluation of the designed camera is NEDT (noise equivalent delta temperature). In order to examine the NEDT ,parameters such as sensitivity and pixels noise must be measured. To do so, ones should register the output signal from the camera in response to the radiation of black bodies at two different temperatures. The article presents an application and measuring stand for determining the parameters of microbolometers camera. In addition to determination of parameters of a cameras the measuring stand allow to determine defective pixel map, the non uniformity correction (NUC) coefficients: 1-point and 2-point. Additionally, developed test stand serves as a test system to read the raw data from microbolometer detector. Captured image can be corrected with calculated non-uniformity correction coefficients. In a next step the image is processed and visualized on a monitor. Developed test stand allows for an initial assessment of the quality of designed readout circuit. It also allows for efficient testing and comparison of the number of sensors or readout circuits.

  7. Spectroscopic gamma camera for use in high dose environments

    Science.gov (United States)

    Ueno, Yuichiro; Takahashi, Isao; Ishitsu, Takafumi; Tadokoro, Takahiro; Okada, Koichi; Nagumo, Yasushi; Fujishima, Yasutake; Kometani, Yutaka; Suzuki, Yasuhiko; Umegaki, Kikuo

    2016-06-01

    We developed a pinhole gamma camera to measure distributions of radioactive material contaminants and to identify radionuclides in extraordinarily high dose regions (1000 mSv/h). The developed gamma camera is characterized by: (1) tolerance for high dose rate environments; (2) high spatial and spectral resolution for identifying unknown contaminating sources; and (3) good usability for being carried on a robot and remotely controlled. These are achieved by using a compact pixelated detector module with CdTe semiconductors, efficient shielding, and a fine resolution pinhole collimator. The gamma camera weighs less than 100 kg, and its field of view is an 8 m square in the case of a distance of 10 m and its image is divided into 256 (16×16) pixels. From the laboratory test, we found the energy resolution at the 662 keV photopeak was 2.3% FWHM, which is enough to identify the radionuclides. We found that the count rate per background dose rate was 220 cps h/mSv and the maximum count rate was 300 kcps, so the maximum dose rate of the environment where the gamma camera can be operated was calculated as 1400 mSv/h. We investigated the reactor building of Unit 1 at the Fukushima Dai-ichi Nuclear Power Plant using the gamma camera and could identify the unknown contaminating source in the dose rate environment that was as high as 659 mSv/h.

  8. Spectroscopic gamma camera for use in high dose environments

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Yuichiro, E-mail: yuichiro.ueno.bv@hitachi.com [Research and Development Group, Hitachi, Ltd., Hitachi-shi, Ibaraki-ken 319-1221 (Japan); Takahashi, Isao; Ishitsu, Takafumi; Tadokoro, Takahiro; Okada, Koichi; Nagumo, Yasushi [Research and Development Group, Hitachi, Ltd., Hitachi-shi, Ibaraki-ken 319-1221 (Japan); Fujishima, Yasutake; Kometani, Yutaka [Hitachi Works, Hitachi-GE Nuclear Energy, Ltd., Hitachi-shi, Ibaraki-ken (Japan); Suzuki, Yasuhiko [Measuring Systems Engineering Dept., Hitachi Aloka Medical, Ltd., Ome-shi, Tokyo (Japan); Umegaki, Kikuo [Faculty of Engineering, Hokkaido University, Sapporo-shi, Hokkaido (Japan)

    2016-06-21

    We developed a pinhole gamma camera to measure distributions of radioactive material contaminants and to identify radionuclides in extraordinarily high dose regions (1000 mSv/h). The developed gamma camera is characterized by: (1) tolerance for high dose rate environments; (2) high spatial and spectral resolution for identifying unknown contaminating sources; and (3) good usability for being carried on a robot and remotely controlled. These are achieved by using a compact pixelated detector module with CdTe semiconductors, efficient shielding, and a fine resolution pinhole collimator. The gamma camera weighs less than 100 kg, and its field of view is an 8 m square in the case of a distance of 10 m and its image is divided into 256 (16×16) pixels. From the laboratory test, we found the energy resolution at the 662 keV photopeak was 2.3% FWHM, which is enough to identify the radionuclides. We found that the count rate per background dose rate was 220 cps h/mSv and the maximum count rate was 300 kcps, so the maximum dose rate of the environment where the gamma camera can be operated was calculated as 1400 mSv/h. We investigated the reactor building of Unit 1 at the Fukushima Dai-ichi Nuclear Power Plant using the gamma camera and could identify the unknown contaminating source in the dose rate environment that was as high as 659 mSv/h.

  9. XMASS detector

    CERN Document Server

    Abe, K; Hiraide, K; Hirano, S; Kishimoto, Y; Kobayashi, K; Moriyama, S; Nakagawa, K; Nakahata, M; Nishiie, H; Ogawa, H; Oka, N; Sekiya, H; Shinozaki, A; Suzuki, Y; Takeda, A; Takachio, O; Ueshima, K; Umemoto, D; Yamashita, M; Yang, B S; Tasaka, S; Liu, J; Martens, K; Hosokawa, K; Miuchi, K; Murata, A; Onishi, Y; Otsuka, Y; Takeuchi, Y; Kim, Y H; Lee, K B; Lee, M K; Lee, J S; Fukuda, Y; Itow, Y; Nishitani, Y; Masuda, K; Takiya, H; Uchida, H; Kim, N Y; Kim, Y D; Kusaba, F; Motoki, D; Nishijima, K; Fujii, K; Murayama, I; Nakamura, S

    2013-01-01

    The XMASS project aims to detect dark matter, pp and $^{7}$Be solar neutrinos, and neutrinoless double beta decay using ultra pure liquid xenon. The first phase of the XMASS experiment searches for dark matter. In this paper, we describe the XMASS detector in detail, including its configuration, data acquisition equipment and calibration system.

  10. XMASS detector

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Hieda, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Hiraide, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Hirano, S. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kishimoto, Y.; Kobayashi, K.; Moriyama, S. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nakagawa, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Nakahata, M. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nishiie, H. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Ogawa, H. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); and others

    2013-07-11

    The XMASS project aims to detect dark matter, pp and {sup 7}Be solar neutrinos, and neutrinoless double beta decay using ultra pure liquid xenon. The first phase of the XMASS experiment searches for dark matter. In this paper, we describe the XMASS detector in detail, including its configuration, data acquisition equipment and calibration system.

  11. Vision Sensors and Cameras

    Science.gov (United States)

    Hoefflinger, Bernd

    Silicon charge-coupled-device (CCD) imagers have been and are a specialty market ruled by a few companies for decades. Based on CMOS technologies, active-pixel sensors (APS) began to appear in 1990 at the 1 μm technology node. These pixels allow random access, global shutters, and they are compatible with focal-plane imaging systems combining sensing and first-level image processing. The progress towards smaller features and towards ultra-low leakage currents has provided reduced dark currents and μm-size pixels. All chips offer Mega-pixel resolution, and many have very high sensitivities equivalent to ASA 12.800. As a result, HDTV video cameras will become a commodity. Because charge-integration sensors suffer from a limited dynamic range, significant processing effort is spent on multiple exposure and piece-wise analog-digital conversion to reach ranges >10,000:1. The fundamental alternative is log-converting pixels with an eye-like response. This offers a range of almost a million to 1, constant contrast sensitivity and constant colors, important features in professional, technical and medical applications. 3D retino-morphic stacking of sensing and processing on top of each other is being revisited with sub-100 nm CMOS circuits and with TSV technology. With sensor outputs directly on top of neurons, neural focal-plane processing will regain momentum, and new levels of intelligent vision will be achieved. The industry push towards thinned wafers and TSV enables backside-illuminated and other pixels with a 100% fill-factor. 3D vision, which relies on stereo or on time-of-flight, high-speed circuitry, will also benefit from scaled-down CMOS technologies both because of their size as well as their higher speed.

  12. Eliminating spatial distortions in Anger-type gamma cameras

    Science.gov (United States)

    Leitner, Michael; Ceeh, Hubert; Weber, Josef-Andreas

    2012-12-01

    A procedure to quantify and correct the spatial distortions inherent to Anger-type gamma cameras is presented. It consists in imaging a pattern of regularly spaced holes, assigning to each pair of lattice indices the actual position on the detector and generating a look-up matrix describing the inverse mapping. This allows one to correct the position of the distinct events either during or after the measurement with minimal computational effort. The corrected spectrum is indistinguishable from a spectrum taken with an ideal detector in a statistical sense. The effect of the increased resolution on measurements of angular correlation of positron annihilation radiation is demonstrated. The presented scheme is applicable for all types of area detectors.

  13. Transverse electric fields' effects in the Dark Energy Camera CCDs

    CERN Document Server

    Plazas, Andres; Sheldon, Erin

    2014-01-01

    Spurious electric fields transverse to the surface of thick, fully-depleted, high-resistivity CCDs displace the photo-generated charges in the bulk of the detector, effectively modifying the pixel area and producing noticeable signals in astrometric and photometric measurements. We use data from the science verification period of the Dark Energy Survey (DES) to characterize these effects in the Dark Energy Camera (DECam) CCDs. The transverse fields mainly manifest as concentric rings (tree rings) and bright stripes near the boundaries of the detectors (edge distortions) with relative amplitudes of about 1 % and 10 % in the flat-field images, respectively. Their nature as pixel size variations is confirmed by comparing their photometric and astrometric signatures. Using flat-field images from DECam, we derive templates in the five DES photometric bands (grizY) for the tree rings and the edge distortions as a function of their position in each DECam detector. The templates are directly incorporated into the der...

  14. The ITER Radial Neutron Camera Detection System

    Science.gov (United States)

    Marocco, D.; Belli, F.; Bonheure, G.; Esposito, B.; Kaschuck, Y.; Petrizzi, L.; Riva, M.

    2008-03-01

    A multichannel neutron detection system (Radial Neutron Camera, RNC) will be installed on the ITER equatorial port plug 1 for total neutron source strength, neutron emissivity/ion temperature profiles and nt/nd ratio measurements [1]. The system is composed by two fan shaped collimating structures: an ex-vessel structure, looking at the plasma core, containing tree sets of 12 collimators (each set lying on a different toroidal plane), and an in-vessel structure, containing 9 collimators, for plasma edge coverage. The RNC detecting system will work in a harsh environment (neutron fiux up to 108-109 n/cm2 s, magnetic field >0.5 T or in-vessel detectors), should provide both counting and spectrometric information and should be flexible enough to cover the high neutron flux dynamic range expected during the different ITER operation phases. ENEA has been involved in several activities related to RNC design and optimization [2,3]. In the present paper the up-to-date design and the neutron emissivity reconstruction capabilities of the RNC will be described. Different options for detectors suitable for spectrometry and counting (e.g. scintillators and diamonds) focusing on the implications in terms of overall RNC performance will be discussed. The increase of the RNC capabilities offered by the use of new digital data acquisition systems will be also addressed.

  15. CATAVIÑA: new infrared camera for OAN-SPM

    Science.gov (United States)

    Iriarte, Arturo; Cruz-González, Irene; Martínez, Luis A.; Tinoco, Silvio; Lara, Gerardo; Ruiz, Elfego; Sohn, Erika; Bernal, Abel; Angeles, Fernando; Moreno, Arturo; Murillo, Francisco; Langarica, Rosalía; Luna, Esteban; Salas, Luis; Cajero, Vicente

    2006-06-01

    CATAVIÑA is a near-infrared camera system to be operated in conjunction with the existing multi-purpose nearinfrared optical bench "CAMALEON" in OAN-SPM. Observing modes include direct imaging, spectroscopy, Fabry- Perot interferometry and polarimetry. This contribution focuses on the optomechanics and detector controller description of CATAVIÑA, which is planned to start operating later in 2006. The camera consists of an 8 inch LN2 dewar containing a 10 filter carousel, a radiation baffle and the detector circuit board mount. The system is based on a Rockwell 1024x1024 HgCdTe (HAWAII-I) FPA, operating in the 1 to 2.5 micron window. The detector controller/readout system was designed and developed at UNAM Instituto de Astronomia. It is based on five Texas Instruments DSK digital signal processor (DSP) modules. One module generates the detector and ADC-system control, while the remaining four are in charge of the acquisition of each of the detector's quadrants. Each DSP has a built-in expanded memory module in order to store more than one image. The detector read-out and signal driver subsystems are mounted onto the dewar in a "back-pack" fashion, each containing four independent pre-amplifiers, converters and signal drivers, that communicate through fiber optics with their respective DSPs. This system has the possibility of programming the offset input voltage and converter gain. The controller software architecture is based on a client/server model. The client sends commands through the TCP/IP protocol and acquires the image. The server consists of a microcomputer with an embedded Linux operating system, which runs the main program that receives the user commands and interacts with the timing and acquisition DSPs. The observer's interface allows for several readout and image processing modes.

  16. A Compton camera application for the GAMOS GEANT4-based framework

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, L.J., E-mail: ljh@ns.ph.liv.ac.uk [Oliver Lodge Laboratory, The University of Liverpool, Liverpool L69 7ZE (United Kingdom); Arce, P. [Department of Basic Research, CIEMAT, Madrid (Spain); Judson, D.S.; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Dormand, J.; Jones, M.; Nolan, P.J.; Sampson, J.A.; Scraggs, D.P.; Sweeney, A. [Oliver Lodge Laboratory, The University of Liverpool, Liverpool L69 7ZE (United Kingdom); Lazarus, I.; Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom)

    2012-04-11

    Compton camera systems can be used to image sources of gamma radiation in a variety of applications such as nuclear medicine, homeland security and nuclear decommissioning. To locate gamma-ray sources, a Compton camera employs electronic collimation, utilising Compton kinematics to reconstruct the paths of gamma rays which interact within the detectors. The main benefit of this technique is the ability to accurately identify and locate sources of gamma radiation within a wide field of view, vastly improving the efficiency and specificity over existing devices. Potential advantages of this imaging technique, along with advances in detector technology, have brought about a rapidly expanding area of research into the optimisation of Compton camera systems, which relies on significant input from Monte-Carlo simulations. In this paper, the functionality of a Compton camera application that has been integrated into GAMOS, the GEANT4-based Architecture for Medicine-Oriented Simulations, is described. The application simplifies the use of GEANT4 for Monte-Carlo investigations by employing a script based language and plug-in technology. To demonstrate the use of the Compton camera application, simulated data have been generated using the GAMOS application and acquired through experiment for a preliminary validation, using a Compton camera configured with double sided high purity germanium strip detectors. Energy spectra and reconstructed images for the data sets are presented.

  17. Status of the FACT camera

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, Quirin [ETH Zurich, Institute for Particle Physics, 8093 Zurich (Switzerland); Collaboration: FACT-Collaboration

    2011-07-01

    The First G-APD Cherenkov Telescope (FACT) project develops a novel camera type for very high energy gamma-ray astronomy. A total of 1440 Geiger-mode avalanche photodiodes (G-APD) are used for light detection, each accompanied by a solid light concentrator. All electronics for analog signal processing, digitization and triggering are fully integrated into the camera body. The event data are sent via Ethernet to the counting house. In order to compensate for gain variations of the G-APDs an online feedback system analyzing calibration light pulses is employed. Once the construction and commissioning of the camera is finished it will be transported to La Palma, Canary Islands, and mounted on the refurbished HEGRA CT3 telescope structure. In this talk the architecture and status of the FACT camera is presented.

  18. An Inexpensive Digital Infrared Camera

    Science.gov (United States)

    Mills, Allan

    2012-01-01

    Details are given for the conversion of an inexpensive webcam to a camera specifically sensitive to the near infrared (700-1000 nm). Some experiments and practical applications are suggested and illustrated. (Contains 9 figures.)

  19. The TESS camera: modeling and measurements with deep depletion devices

    Science.gov (United States)

    Woods, Deborah F.; Vanderspek, Roland; MacDonald, Robert; Morgan, Edward; Villasenor, Joel; Thayer, Carolyn; Burke, Barry; Chesbrough, Christian; Chrisp, Michael; Clark, Kristin; Furesz, Gabor; Gonzales, Alexandria; Nguyen, Tam; Prigozhin, Gregory; Primeau, Brian; Ricker, George; Sauerwein, Timothy; Suntharalingam, Vyshnavi

    2016-07-01

    The Transiting Exoplanet Survey Satellite, a NASA Explorer-class mission in development, will discover planets around nearby stars, most notably Earth-like planets with potential for follow up characterization. The all-sky survey requires a suite of four wide field-of-view cameras with sensitivity across a broad spectrum. Deep depletion CCDs with a silicon layer of 100 μm thickness serve as the camera detectors, providing enhanced performance in the red wavelengths for sensitivity to cooler stars. The performance of the camera is critical for the mission objectives, with both the optical system and the CCD detectors contributing to the realized image quality. Expectations for image quality are studied using a combination of optical ray tracing in Zemax and simulations in Matlab to account for the interaction of the incoming photons with the 100 μm silicon layer. The simulations include a probabilistic model to determine the depth of travel in the silicon before the photons are converted to photo-electrons, and a Monte Carlo approach to charge diffusion. The charge diffusion model varies with the remaining depth for the photo-electron to traverse and the strength of the intermediate electric field. The simulations are compared with laboratory measurements acquired by an engineering unit camera with the TESS optical design and deep depletion CCDs. In this paper we describe the performance simulations and the corresponding measurements taken with the engineering unit camera, and discuss where the models agree well in predicted trends and where there are differences compared to observations.

  20. The future of consumer cameras

    Science.gov (United States)

    Battiato, Sebastiano; Moltisanti, Marco

    2015-03-01

    In the last two decades multimedia, and in particular imaging devices (camcorders, tablets, mobile phones, etc.) have been dramatically diffused. Moreover the increasing of their computational performances, combined with an higher storage capability, allows them to process large amount of data. In this paper an overview of the current trends of consumer cameras market and technology will be given, providing also some details about the recent past (from Digital Still Camera up today) and forthcoming key issues.

  1. Camera location optimisation for traffic surveillance in urban road networks with multiple user classes

    Science.gov (United States)

    Lu, Xiao-Shan; Huang, Hai-Jun; Long, Jiancheng

    2013-12-01

    New sensor technologies (e.g. surveillance cameras, loop detectors) enable the synthesis of disaggregated vehicle information from multiple locations. This article studies the camera location problem for traffic surveillance in urban road networks with multiple user classes. All users are differentiated by their own acceptance degree of camera monitoring and make their route choices in a logit-based stochastic user equilibrium manner. A bi-level programming model is proposed to formulate the problem and solved by the sensitivity analysis based branch and bound method. Numerical examples are presented to illustrate the model application and show the effectiveness of the solution method.

  2. Optimizing a three-stage Compton camera for measuring prompt gamma rays emitted during proton radiotherapy.

    Science.gov (United States)

    Peterson, S W; Robertson, D; Polf, J

    2010-11-21

    In this work, we investigate the use of a three-stage Compton camera to measure secondary prompt gamma rays emitted from patients treated with proton beam radiotherapy. The purpose of this study was (1) to develop an optimal three-stage Compton camera specifically designed to measure prompt gamma rays emitted from tissue and (2) to determine the feasibility of using this optimized Compton camera design to measure and image prompt gamma rays emitted during proton beam irradiation. The three-stage Compton camera was modeled in Geant4 as three high-purity germanium detector stages arranged in parallel-plane geometry. Initially, an isotropic gamma source ranging from 0 to 15 MeV was used to determine lateral width and thickness of the detector stages that provided the optimal detection efficiency. Then, the gamma source was replaced by a proton beam irradiating a tissue phantom to calculate the overall efficiency of the optimized camera for detecting emitted prompt gammas. The overall calculated efficiencies varied from ∼ 10(-6) to 10(-3) prompt gammas detected per proton incident on the tissue phantom for several variations of the optimal camera design studied. Based on the overall efficiency results, we believe it feasible that a three-stage Compton camera could detect a sufficient number of prompt gammas to allow measurement and imaging of prompt gamma emission during proton radiotherapy.

  3. Coincidence velocity map imaging using a single detector

    Science.gov (United States)

    Zhao, Arthur; Sándor, Péter; Weinacht, Thomas

    2017-07-01

    We demonstrate a single-detector velocity map imaging setup which is capable of rapidly switching between coincidence and non-coincidence measurements. By rapidly switching the extraction voltages on the electrostatic lenses, both electrons and ions can be collected in coincidence with a single detector. Using a fast camera as the 2D detector avoids the saturation problem associated with traditional delay line detectors and allows for easy transitions between coincidence and non-coincidence data collection modes. This is a major advantage in setting up a low-cost and versatile coincidence apparatus. We present both coincidence and non-coincidence measurements of strong field atomic and molecular ionization.

  4. Silicon Photomultiplier Camera for Schwarzschild-Couder Cherenkov Telescopes

    CERN Document Server

    Vandenbroucke, J

    2014-01-01

    The Cherenkov Telescope Array (CTA) is an atmospheric Cherenkov observatory that will image the cosmos in very-high-energy gamma rays. CTA will study the highest-energy particle accelerators in the Universe and potentially confirm the particle nature of dark matter. We have designed an innovative Schwarzschild-Couder telescope which uses two mirrors to achieve excellent optical performance across a wide field of view. The small plate scale of the dual-mirror optics enables a compact camera which uses modern technology including silicon photomultipliers and the TARGET application-specific integrated circuit to read out a finely pixelated focal plane of 11,328 channels with modest weight, volume, cost, and power consumption. The camera design is hierarchical and modular at each level, enabling robust construction, operation, and maintenance. A prototype telescope is under construction and will be commissioned at the VERITAS site in Arizona. An array of such telescopes will provide excellent angular resolution a...

  5. Development of 1000 arrays MKID camera for the CMB observation

    Science.gov (United States)

    Karatsu, Kenichi; Naruse, Masato; Nitta, Tom; Sekine, Masakazu; Sekimoto, Yutaro; Noguchi, Takashi; Uzawa, Yoshinori; Matsuo, Hiroshi; Kiuchi, Hitoshi

    2012-09-01

    A precise measurement of the Cosmic Microwave Background (CMB) provides us a wealth of information about early universe. LiteBIRD is a future satellite mission lead by High Energy Accelerator Research Organization (KEK) and its scientific target is detection of the B-mode polarization of the CMB, which is a footprint of primordial gravitational waves generated during inflation era, but has not been successfully observed so far due to lack of sensitivity. Microwave Kinetic Inductance Detector (MKID) is one candidate of sensitive millimeterwave camera which will be able to detect the B-mode polarization. We have been developing MKID at National Astronomical Observatory of Japan (NAOJ) in cooperation with KEK and RIKEN for the focal plane detector of the LiteBIRD. The developed technologies are: fabrication process of MKIDs with epitaxially-formed aluminum (Al) on silicon (Si) wafer; optical system of the camera consisting of double-slot antenna with Si lens array; and readout circuit utilizing Fast Fourier Transform Spectrometer (FFTS). With these technologies, we designed a prototype MKIDs camera for the LiteBIRD.

  6. Region-of-interest micro-angiographic fluoroscope detector used in aneurysm and artery stenosis diagnoses and treatment

    Science.gov (United States)

    Wang, Weiyuan; Ionita, Ciprian; Huang, Ying; Qu, Bin; Panse, Ashish; Jain, Amit; Bednarek, Daniel R.; Rudin, Stephen

    2012-03-01

    Due to the need for high-resolution angiographic and interventional vascular imaging, a Micro-Angiographic Fluoroscope (MAF) detector with a Control, Acquisition, Processing, and Image Display System (CAPIDS) was installed on a detector changer, which was attached to the C-arm of a clinical angiographic unit at a local hospital. The MAF detector provides high-resolution, high-sensitivity, and real-time imaging capabilities and consists of a 300 μm thick CsI phosphor, a dual stage micro-channel plate light image intensifier (LII) coupled to a fiber optic taper (FOT), and a scientific grade frame-transfer CCD camera, providing an image matrix of 1024×1024 35 μm effective square pixels with 12 bit depth. The changer allows the MAF region-of-interest (ROI) detector to be inserted in front of the Image Intensifier (II) when higher resolution is needed during angiographic or interventional vascular imaging procedures, e.g. endovascular stent deployment. The CAPIDS was developed and implemented using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) software and provides a user-friendly interface that enables control of several clinical radiographic imaging modes of the MAF including: fluoroscopy, roadmapping, radiography, and digital-subtraction-angiography (DSA). The total system has been used for image guidance during endovascular image-guided interventions (EIGI) for diagnosing and treating artery stenoses and aneurysms using self-expanding endovascular stents and coils in fifteen patient cases, which have demonstrated benefits of using the ROI detector. The visualization of the fine detail of the endovascular devices and the vessels generally gave the clinicians confidence on performing neurovascular interventions and in some instances contributed to improved interventions.

  7. A 32 mm  ×  32 mm  ×  22 mm monolithic LYSO:Ce detector with dual-sided digital photon counter readout for ultrahigh-performance TOF-PET and TOF-PET/MRI

    Science.gov (United States)

    Borghi, Giacomo; Peet, Bart Jan; Tabacchini, Valerio; Schaart, Dennis R.

    2016-07-01

    New applications for positron emission tomography (PET) and combined PET/magnetic resonance imaging (MRI) are currently emerging, for example in the fields of neurological, breast, and pediatric imaging. Such applications require improved image quality, reduced dose, shorter scanning times, and more precise quantification. This can be achieved by means of dedicated scanners based on ultrahigh-performance detectors, which should provide excellent spatial resolution, precise depth-of-interaction (DOI) estimation, outstanding time-of-flight (TOF) capability, and high detection efficiency. Here, we introduce such an ultrahigh-performance TOF/DOI PET detector, based on a 32 mm  ×  32 mm  ×  22 mm monolithic LYSO:Ce crystal. The 32 mm  ×  32 mm front and back faces of the crystal are coupled to a digital photon counter (DPC) array, in so-called dual-sided readout (DSR) configuration. The fully digital detector offers a spatial resolution of ~1.1 mm full width at half maximum (FWHM)/~1.2 mm mean absolute error, together with a DOI resolution of ~2.4 mm FWHM, an energy resolution of 10.2% FWHM, and a coincidence resolving time of 147 ps FWHM. The time resolution closely approaches the best results (135 ps FWHM) obtained to date with small crystals made from the same material coupled to the same DPC arrays, illustrating the excellent correction for optical and electronic transit time spreads that can be achieved in monolithic scintillators using maximum-likelihood techniques for estimating the time of interaction. The performance barely degrades for events with missing data (up to 6 out of 32 DPC dies missing), permitting the use of almost all events registered under realistic acquisition conditions. Moreover, the calibration procedures and computational methods used for position and time estimation follow recently made improvements that make them fast and practical, opening up realistic perspectives for using DSR monolithic

  8. SUB-CAMERA CALIBRATION OF A PENTA-CAMERA

    Directory of Open Access Journals (Sweden)

    K. Jacobsen

    2016-03-01

    Full Text Available Penta cameras consisting of a nadir and four inclined cameras are becoming more and more popular, having the advantage of imaging also facades in built up areas from four directions. Such system cameras require a boresight calibration of the geometric relation of the cameras to each other, but also a calibration of the sub-cameras. Based on data sets of the ISPRS/EuroSDR benchmark for multi platform photogrammetry the inner orientation of the used IGI Penta DigiCAM has been analyzed. The required image coordinates of the blocks Dortmund and Zeche Zollern have been determined by Pix4Dmapper and have been independently adjusted and analyzed by program system BLUH. With 4.1 million image points in 314 images respectively 3.9 million image points in 248 images a dense matching was provided by Pix4Dmapper. With up to 19 respectively 29 images per object point the images are well connected, nevertheless the high number of images per object point are concentrated to the block centres while the inclined images outside the block centre are satisfying but not very strongly connected. This leads to very high values for the Student test (T-test of the finally used additional parameters or in other words, additional parameters are highly significant. The estimated radial symmetric distortion of the nadir sub-camera corresponds to the laboratory calibration of IGI, but there are still radial symmetric distortions also for the inclined cameras with a size exceeding 5μm even if mentioned as negligible based on the laboratory calibration. Radial and tangential effects of the image corners are limited but still available. Remarkable angular affine systematic image errors can be seen especially in the block Zeche Zollern. Such deformations are unusual for digital matrix cameras, but it can be caused by the correlation between inner and exterior orientation if only parallel flight lines are used. With exception of the angular affinity the systematic image errors

  9. A testbed for wide-field, high-resolution, gigapixel-class cameras.

    Science.gov (United States)

    Kittle, David S; Marks, Daniel L; Son, Hui S; Kim, Jungsang; Brady, David J

    2013-05-01

    The high resolution and wide field of view (FOV) of the AWARE (Advanced Wide FOV Architectures for Image Reconstruction and Exploitation) gigapixel class cameras present new challenges in calibration, mechanical testing, and optical performance evaluation. The AWARE system integrates an array of micro-cameras in a multiscale design to achieve gigapixel sampling at video rates. Alignment and optical testing of the micro-cameras is vital in compositing engines, which require pixel-level accurate mappings over the entire array of cameras. A testbed has been developed to automatically calibrate and measure the optical performance of the entire camera array. This testbed utilizes translation and rotation stages to project a ray into any micro-camera of the AWARE system. A spatial light modulator is projected through a telescope to form an arbitrary object space pattern at infinity. This collimated source is then reflected by an elevation stage mirror for pointing through the aperture of the objective into the micro-optics and eventually the detector of the micro-camera. Different targets can be projected with the spatial light modulator for measuring the modulation transfer function (MTF) of the system, fiducials in the overlap regions for registration and compositing, distortion mapping, illumination profiles, thermal stability, and focus calibration. The mathematics of the testbed mechanics are derived for finding the positions of the stages to achieve a particular incident angle into the camera, along with calibration steps for alignment of the camera and testbed coordinate axes. Measurement results for the AWARE-2 gigapixel camera are presented for MTF, focus calibration, illumination profile, fiducial mapping across the micro-camera for registration and distortion correction, thermal stability, and alignment of the camera on the testbed.

  10. A versatile photogrammetric camera automatic calibration suite for multispectral fusion and optical helmet tracking

    Science.gov (United States)

    de Villiers, Jason; Jermy, Robert; Nicolls, Fred

    2014-06-01

    This paper presents a system to determine the photogrammetric parameters of a camera. The lens distortion, focal length and camera six degree of freedom (DOF) position are calculated. The system caters for cameras of different sensitivity spectra and fields of view without any mechanical modifications. The distortion characterization, a variant of Brown's classic plumb line method, allows many radial and tangential distortion coefficients and finds the optimal principal point. Typical values are 5 radial and 3 tangential coefficients. These parameters are determined stably and demonstrably produce superior results to low order models despite popular and prevalent misconceptions to the contrary. The system produces coefficients to model both the distorted to undistorted pixel coordinate transformation (e.g. for target designation) and the inverse transformation (e.g. for image stitching and fusion) allowing deterministic rates far exceeding real time. The focal length is determined to minimise the error in absolute photogrammetric positional measurement for both multi camera systems or monocular (e.g. helmet tracker) systems. The system determines the 6 DOF position of the camera in a chosen coordinate system. It can also determine the 6 DOF offset of the camera relative to its mechanical mount. This allows faulty cameras to be replaced without requiring a recalibration of the entire system (such as an aircraft cockpit). Results from two simple applications of the calibration results are presented: stitching and fusion of the images from a dual-band visual/ LWIR camera array, and a simple laboratory optical helmet tracker.

  11. Comparison of two real-time hand gesture recognition systems involving stereo cameras, depth camera, and inertial sensor

    Science.gov (United States)

    Liu, Kui; Kehtarnavaz, Nasser; Carlsohn, Matthias

    2014-05-01

    This paper presents a comparison of two real-time hand gesture recognition systems. One system utilizes a binocular stereo camera set-up while the other system utilizes a combination of a depth camera and an inertial sensor. The latter system is a dual-modality system as it utilizes two different types of sensors. These systems have been previously developed in the Signal and Image Processing Laboratory at the University of Texas at Dallas and the details of the algorithms deployed in these systems are reported in previous papers. In this paper, a comparison is carried out between these two real-time systems in order to examine which system performs better for the same set of hand gestures under realistic conditions.

  12. Target-Tracking Camera for a Metrology System

    Science.gov (United States)

    Liebe, Carl; Bartman, Randall; Chapsky, Jacob; Abramovici, Alexander; Brown, David

    2009-01-01

    An analog electronic camera that is part of a metrology system measures the varying direction to a light-emitting diode that serves as a bright point target. In the original application for which the camera was developed, the metrological system is used to determine the varying relative positions of radiating elements of an airborne synthetic aperture-radar (SAR) antenna as the airplane flexes during flight; precise knowledge of the relative positions as a function of time is needed for processing SAR readings. It has been common metrology system practice to measure the varying direction to a bright target by use of an electronic camera of the charge-coupled-device or active-pixel-sensor type. A major disadvantage of this practice arises from the necessity of reading out and digitizing the outputs from a large number of pixels and processing the resulting digital values in a computer to determine the centroid of a target: Because of the time taken by the readout, digitization, and computation, the update rate is limited to tens of hertz. In contrast, the analog nature of the present camera makes it possible to achieve an update rate of hundreds of hertz, and no computer is needed to determine the centroid. The camera is based on a position-sensitive detector (PSD), which is a rectangular photodiode with output contacts at opposite ends. PSDs are usually used in triangulation for measuring small distances. PSDs are manufactured in both one- and two-dimensional versions. Because it is very difficult to calibrate two-dimensional PSDs accurately, the focal-plane sensors used in this camera are two orthogonally mounted one-dimensional PSDs.

  13. Dual waveband compact catadioptric imaging spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Chrisp, Michael P.

    2012-12-25

    A catadioptric dual waveband imaging spectrometer that covers the visible through short-wave infrared, and the midwave infrared spectral regions, dispersing the visible through shortwave infrared with a zinc selenide grating and midwave infrared with a sapphire prism. The grating and prism are at the cold stop position, enabling the pupil to be split between them. The spectra for both wavebands are focused onto the relevant sections of a single dual waveband detector. Spatial keystone distortion is controlled to less than one tenth of a pixel over the full wavelength range, facilitating the matching of the spectra in the midwave infrared with the shorter wavelength region.

  14. Pixel detectors from fundamentals to applications

    CERN Document Server

    Rossi, Leonardo; Rohe, Tilman; Wermes, Norbert

    2006-01-01

    Pixel detectors are a particularly important class of particle and radiation detection devices. They have an extremely broad spectrum of applications, ranging from high-energy physics to the photo cameras of everyday life. This book is a general purpose introduction into the fundamental principles of pixel detector technology and semiconductor-based hybrid pixel devices. Although these devices were developed for high-energy ionizing particles and radiation beyond visible light, they are finding new applications in many other areas. This book will therefore benefit all scientists and engineers working in any laboratory involved in developing or using particle detection.

  15. Application of cooled IR focal plane arrays in thermographic cameras

    Science.gov (United States)

    Vollheim, B.; Gaertner, M.; Dammass, G.; Krausz, M.

    2016-05-01

    The usage of cooled IR Focal Plane Array detectors in thermographic or radiometric thermal imaging cameras, respectively, leads to special demands on these detectors, which are discussed in this paper. For a radiometric calibration of wide temperature measuring ranges from -40 up to 2,000 °C, a linear and time-stable response of the photodiode array has to be ensured for low as well as high radiation intensities. The maximum detectable photon flux is limited by the allowed shift of the photodiode's bias that should remain in the linear part of the photodiode's I(V) curve even for the highest photocurrent. This limits the measurable highest object temperature in practice earlier than the minimum possible integration time. Higher temperature measuring ranges are realized by means of neutral or spectral filters. Defense and Security applications normally provide images at the given ambient temperature with small hot spots. The usage of radiometric thermal imagers for thermography often feature larger objects with a high temperature contrast to the background. This should not generate artifacts in the image, like pixel patterns or stripes. Further issues concern the clock regime or the sub-frame capabilities of the Read-Out-Circuit and the frame rate dependency of the signal. We will briefly describe the demands on the lens design for thermal imaging cameras when using cooled IR Focal Plane Array detectors with large apertures.

  16. New high spatial resolution portable camera in medical imaging

    Science.gov (United States)

    Trotta, C.; Massari, R.; Palermo, N.; Scopinaro, F.; Soluri, A.

    2007-07-01

    In the last years, many studies have been carried out on portable gamma cameras in order to optimize a device for medical imaging. In this paper, we present a new type of gamma camera, for low energies detection, based on a position sensitive photomultiplier tube Hamamatsu Flat Panel H8500 and an innovative technique based on CsI(Tl) scintillation crystals inserted into the square holes of a tungsten collimator. The geometrical features of this collimator-scintillator structure, which affect the camera spatial resolution and sensitivity, were chosen to offer optimal performances in clinical functional examinations. Detector sensitivity, energy resolution and spatial resolution were measured and the acquired image quality was evaluated with particular attention to the pixel identification capability. This low weight (about 2 kg) portable gamma camera was developed thanks to a miniaturized resistive chain electronic readout, combined with a dedicated compact 4 channel ADC board. This data acquisition board, designed by our research group, showed excellent performances, with respect to a commercial PCI 6110E card (National Intruments), in term of sampling period and additional on board operation for data pre-processing.

  17. Performance of the Tachyon Time-of-Flight PET Camera.

    Science.gov (United States)

    Peng, Q; Choong, W-S; Vu, C; Huber, J S; Janecek, M; Wilson, D; Huesman, R H; Qi, Jinyi; Zhou, Jian; Moses, W W

    2015-02-01

    We have constructed and characterized a time-of-flight Positron Emission Tomography (TOF PET) camera called the Tachyon. The Tachyon is a single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the ~ 550 ps found in present commercial TOF cameras, in order to quantify the benefit of improved TOF resolution for clinically relevant tasks. The Tachyon's detector module is optimized for timing by coupling the 6.15 × 25 mm(2) side of 6.15 × 6.15 × 25 mm(3) LSO scintillator crystals onto a 1-inch diameter Hamamatsu R-9800 PMT with a super-bialkali photocathode. We characterized the camera according to the NEMA NU 2-2012 standard, measuring the energy resolution, timing resolution, spatial resolution, noise equivalent count rates and sensitivity. The Tachyon achieved a coincidence timing resolution of 314 ps +/- ps FWHM over all crystal-crystal combinations. Experiments were performed with the NEMA body phantom to assess the imaging performance improvement over non-TOF PET. The results show that at a matched contrast, incorporating 314 ps TOF reduces the standard deviation of the contrast by a factor of about 2.3.

  18. Dark Energy Camera for Blanco

    Energy Technology Data Exchange (ETDEWEB)

    Binder, Gary A.; /Caltech /SLAC

    2010-08-25

    In order to make accurate measurements of dark energy, a system is needed to monitor the focus and alignment of the Dark Energy Camera (DECam) to be located on the Blanco 4m Telescope for the upcoming Dark Energy Survey. One new approach under development is to fit out-of-focus star images to a point spread function from which information about the focus and tilt of the camera can be obtained. As a first test of a new algorithm using this idea, simulated star images produced from a model of DECam in the optics software Zemax were fitted. Then, real images from the Mosaic II imager currently installed on the Blanco telescope were used to investigate the algorithm's capabilities. A number of problems with the algorithm were found, and more work is needed to understand its limitations and improve its capabilities so it can reliably predict camera alignment and focus.

  19. Perceptual Color Characterization of Cameras

    Directory of Open Access Journals (Sweden)

    Javier Vazquez-Corral

    2014-12-01

    Full Text Available Color camera characterization, mapping outputs from the camera sensors to an independent color space, such as \\(XYZ\\, is an important step in the camera processing pipeline. Until now, this procedure has been primarily solved by using a \\(3 \\times 3\\ matrix obtained via a least-squares optimization. In this paper, we propose to use the spherical sampling method, recently published by Finlayson al., to perform a perceptual color characterization. In particular, we search for the \\(3 \\times 3\\ matrix that minimizes three different perceptual errors, one pixel based and two spatially based. For the pixel-based case, we minimize the CIE \\(\\Delta E\\ error, while for the spatial-based case, we minimize both the S-CIELAB error and the CID error measure. Our results demonstrate an improvement of approximately 3for the \\(\\Delta E\\ error, 7& for the S-CIELAB error and 13% for the CID error measures.

  20. The GISMO-2 Bolometer Camera

    Science.gov (United States)

    Staguhn, Johannes G.; Benford, Dominic J.; Fixsen, Dale J.; Hilton, Gene; Irwin, Kent D.; Jhabvala, Christine A.; Kovacs, Attila; Leclercq, Samuel; Maher, Stephen F.; Miller, Timothy M.; Moseley, Samuel H.; Sharp, Elemer H.; Wollack, Edward J.

    2012-01-01

    We present the concept for the GISMO-2 bolometer camera) which we build for background-limited operation at the IRAM 30 m telescope on Pico Veleta, Spain. GISM0-2 will operate Simultaneously in the 1 mm and 2 mm atmospherical windows. The 1 mm channel uses a 32 x 40 TES-based Backshort Under Grid (BUG) bolometer array, the 2 mm channel operates with a 16 x 16 BUG array. The camera utilizes almost the entire full field of view provided by the telescope. The optical design of GISM0-2 was strongly influenced by our experience with the GISMO 2 mm bolometer camera which is successfully operating at the 30m telescope. GISMO is accessible to the astronomical community through the regular IRAM call for proposals.

  1. The DUV Stability of Superlattice-Doped CMOS Detector Arrays

    Science.gov (United States)

    Hoenk, M. E.; Carver, A. G.; Jones, T.; Dickie, M.; Cheng, P.; Greer, H. F.; Nikzad, S.; Sgro, J.; Tsur, S.

    2013-01-01

    JPL and Alacron have recently developed a high performance, DUV camera with a superlattice doped CMOS imaging detector. Supperlattice doped detectors achieve nearly 100% internal quantum efficiency in the deep and far ultraviolet, and a single layer, Al2O3 antireflection coating enables 64% external quantum efficiency at 263nm. In lifetime tests performed at Applied Materials using 263 nm pulsed, solid state and 193 nm pulsed excimer laser, the quantum efficiency and dark current of the JPL/Alacron camera remained stable to better than 1% precision during long-term exposure to several billion laser pulses, with no measurable degradation, no blooming and no image memory at 1000 fps.

  2. EDICAM (Event Detection Intelligent Camera)

    Energy Technology Data Exchange (ETDEWEB)

    Zoletnik, S. [Wigner RCP RMI, EURATOM Association, Budapest (Hungary); Szabolics, T., E-mail: szabolics.tamas@wigner.mta.hu [Wigner RCP RMI, EURATOM Association, Budapest (Hungary); Kocsis, G.; Szepesi, T.; Dunai, D. [Wigner RCP RMI, EURATOM Association, Budapest (Hungary)

    2013-10-15

    Highlights: ► We present EDICAM's hardware modules. ► We present EDICAM's main design concepts. ► This paper will describe EDICAM firmware architecture. ► Operation principles description. ► Further developments. -- Abstract: A new type of fast framing camera has been developed for fusion applications by the Wigner Research Centre for Physics during the last few years. A new concept was designed for intelligent event driven imaging which is capable of focusing image readout to Regions of Interests (ROIs) where and when predefined events occur. At present these events mean intensity changes and external triggers but in the future more sophisticated methods might also be defined. The camera provides 444 Hz frame rate at full resolution of 1280 × 1024 pixels, but monitoring of smaller ROIs can be done in the 1–116 kHz range even during exposure of the full image. Keeping space limitations and the harsh environment in mind the camera is divided into a small Sensor Module and a processing card interconnected by a fast 10 Gbit optical link. This camera hardware has been used for passive monitoring of the plasma in different devices for example at ASDEX Upgrade and COMPASS with the first version of its firmware. The new firmware and software package is now available and ready for testing the new event processing features. This paper will present the operation principle and features of the Event Detection Intelligent Camera (EDICAM). The device is intended to be the central element in the 10-camera monitoring system of the Wendelstein 7-X stellarator.

  3. Polarimetric Edge Detector Based on the Complex Wishart Distribution

    DEFF Research Database (Denmark)

    Skriver, Henning; Schou, Jesper; Nielsen, Allan Aasbjerg

    2001-01-01

    A new edge detector for polarimetric SAR data has been developed. The edge detector is based on a newly developed test statistic for equality of two complex covariance matrices following the complex Wishart distribution and an associated asymptotic probability for the test statistic. The new...... polarimetric edge detector provides a constant false alarm rate and it utilizes the full polarimetric information. The edge detector has been applied to polarimetric SAR data from the Danish dual-frequency, airborne polarimetric SAR, EMISAR. The results show clearly an improved edge detection performance...

  4. On site calibration for new fluorescence detectors of the telescope array experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tokuno, H. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan)], E-mail: htokuno@icrr.u-tokyo.ac.jp; Murano, Y. [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Kawana, S. [Graduate School of Science and Engineering, Saitama University, Saitama 338-8570 (Japan); Tameda, Y. [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Taketa, A.; Ikeda, D.; Udo, S. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Ogio, S. [Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585 (Japan); Fukushima, M. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Azuma, R.; Fukuda, M. [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Inoue, N. [Graduate School of Science and Engineering, Saitama University, Saitama 338-8570 (Japan); Kadota, K. [Faculty of Knowledge Engineering, Musashi Institute of Technology, Setagaya, Tokyo 158-8557 (Japan); Kakimoto, F. [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Sagawa, H.; Sakurai, N.; Shibata, T.; Takeda, M. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Tsunesada, Y. [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan)

    2009-04-01

    The Telescope Array experiment is searching for the origin of ultra-high energy cosmic rays using a ground array of particle detectors and three fluorescence telescope stations. The precise calibration of the fluorescence detectors is important for small systematic errors in shower reconstruction. This paper details the process of calibrating cameras for two of the fluorescence telescope stations. This paper provides the operational results of these camera calibrations.

  5. PANIC: A Near-infrared Camera for the Magellan Telescopes

    CERN Document Server

    Martini, P; Murphy, D C; Birk, C; Shectman, S A; Grunnels, S M; Koch, E

    2004-01-01

    PANIC (Persson's Auxiliary Nasmyth Infrared Camera) is a near-infrared camera designed to operate at any one of the f/11 folded ports of the 6.5m Magellan telescopes at Las Campanas Observatory, Chile. The instrument is built around a simple, all-refractive design that reimages the Magellan focal plane to a plate scale of 0.125'' pixel^{-1} onto a Rockwell 1024x1024 HgCdTe detector. The design goals for PANIC included excellent image quality to sample the superb seeing measured with the Magellan telescopes, high throughput, a relatively short construction time, and low cost. PANIC has now been in regular operation for over one year and has proved to be highly reliable and produce excellent images. The best recorded image quality has been ~0.2'' FWHM.

  6. Evaluation of efficiency of a semiconductor gamma camera

    CERN Document Server

    Otake, H; Takeuchi, Y

    2002-01-01

    We evaluation basic characteristics of a compact type semiconductor gamma camera (eZ-SCOPE AN) of Cadmium Zinc Telluride (CdZnTe). This new compact gamma camera has 256 semiconductors representing the same number of pixels. Each semiconductor is 2 mm square and is located in 16 lines and rows on the surface of the detector. The specific performance characteristics were evaluated in the study referring to National Electrical Manufactures Association (NEMA) standards; intrinsic energy resolution, intrinsic count rate performance, integral uniformity, system planar sensitivity, system spatial resolution, and noise to the neighboring pixels. The intrinsic energy resolution measured 5.7% as full width half maximum (FWHM). The intrinsic count rate performance ranging from 17 kcps to 1,285 kcps was evaluated, but the highest intrinsic count rate was not observed. Twenty percents count loss was recognized at 1,021 kcps. The integral uniformity was 1.3% with high sensitivity collimator. The system planar sensitivity w...

  7. Multi-spectral camera development

    CSIR Research Space (South Africa)

    Holloway, M

    2012-10-01

    Full Text Available stream_source_info Holloway_2012.pdf.txt stream_content_type text/plain stream_size 6209 Content-Encoding ISO-8859-1 stream_name Holloway_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Multi-Spectral Camera... Development 4th Biennial Conference Presented by Mark Holloway 10 October 2012 Fused image ? Red, Green and Blue Applications of the Multi-Spectral Camera ? CSIR 2012 Slide 2 Green and Blue, Near Infrared (IR) RED Applications of the Multi...

  8. Smart-aggregation imaging for single molecule localisation with SPAD cameras.

    Science.gov (United States)

    Gyongy, Istvan; Davies, Amy; Dutton, Neale A W; Duncan, Rory R; Rickman, Colin; Henderson, Robert K; Dalgarno, Paul A

    2016-11-23

    Single molecule localisation microscopy (SMLM) has become an essential part of the super-resolution toolbox for probing cellular structure and function. The rapid evolution of these techniques has outstripped detector development and faster, more sensitive cameras are required to further improve localisation certainty. Single-photon avalanche photodiode (SPAD) array cameras offer single-photon sensitivity, very high frame rates and zero readout noise, making them a potentially ideal detector for ultra-fast imaging and SMLM experiments. However, performance traditionally falls behind that of emCCD and sCMOS devices due to lower photon detection efficiency. Here we demonstrate, both experimentally and through simulations, that the sensitivity of a binary SPAD camera in SMLM experiments can be improved significantly by aggregating only frames containing signal, and that this leads to smaller datasets and competitive performance with that of existing detectors. The simulations also indicate that with predicted future advances in SPAD camera technology, SPAD devices will outperform existing scientific cameras when capturing fast temporal dynamics.

  9. Center for Research on Infrared Detectors (CENTROID)

    Science.gov (United States)

    2006-09-30

    Average carper energy in a bound-to-continuum detector for va:rious val- ue~ of tow-field capture tillllt . Figure 5. Results of Monte Carlo studies...Orlando and Santa Barbara Focal Plane in the realization of QDIP-based IR cameras. We have fabricated and shipped 320x256 QDIP arrays to them for...International Science Center HRL Laboratories Texas Instruments/DRS Technologies EPIR Limited Lockheed Martin Santa Barbara Focalplane BAE Systems AFRL

  10. Color camera computed tomography imaging spectrometer for improved spatial-spectral image accuracy

    Science.gov (United States)

    Wilson, Daniel W. (Inventor); Bearman, Gregory H. (Inventor); Johnson, William R. (Inventor)

    2011-01-01

    Computed tomography imaging spectrometers ("CTIS"s) having color focal plane array detectors are provided. The color FPA detector may comprise a digital color camera including a digital image sensor, such as a Foveon X3.RTM. digital image sensor or a Bayer color filter mosaic. In another embodiment, the CTIS includes a pattern imposed either directly on the object scene being imaged or at the field stop aperture. The use of a color FPA detector and the pattern improves the accuracy of the captured spatial and spectral information.

  11. Development of a Compton camera for online ion beam range verification via prompt γ detection

    Energy Technology Data Exchange (ETDEWEB)

    Aldawood, Saad [Ludwig-Maximilians-Universitaet Muenchen (Germany); King Saud University, Riyadh (Saudi Arabia); Lang, Christian; Lutter, Rudolf; Bortfeldt, Jonathan; Parodi, Katia; Thirolf, Peter G. [Ludwig-Maximilians-Universitaet Muenchen (Germany); Kolff, Hugh van der [Ludwig-Maximilians-Universitaet Muenchen (Germany); Delft University of Technology (Netherlands); Maier, Ludwig [Technische Universitaet Muenchen (Germany)

    2014-07-01

    Precise and preferably online ion beam range verification is a mandatory prerequisite to fully exploit the advantages of hadron-therapy in cancer treatment. Our aim is to develop an imaging system based on a Compton camera designed to detect prompt γ rays induced by nuclear reactions between ion beam and biological tissue. The Compton camera prototype consists of a stack of double-sided Si-strip detectors (DSSSD) acting as scatterers, while the absorber is formed by a LaBr{sub 3} scintillator crystal read out by a position-sensitive multi-anode photomultiplier. The LaBr{sub 3} detector was characterized with both absorptive and reflective side-face wrapping materials. Comparative studies of energy and time resolution, photopeak detection efficiency and spatial resolution are presented together with first tests of the complete camera system.

  12. A New Dual-electrode and Multi-channel Electrochemical DetectionSystem for Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    Bing Yi YANG; Jin Yuan MO; Rong LAI

    2004-01-01

    A new type of dual-electrode and multi-channel electrochemical detection technology for capillary electrophoresis is described in this paper. Two detectors(the amperometric detector and the conductometric detector)or two conductometric detectors are connected to the same capillary electrophoresis system. The whole system possesses the advantages of the two electrochemical detectors including sparing time,improving the analytical speed and expanding the sample range.The working electrode and detector cell are handled easily.The system was applied to sample detection with satisfactory results.

  13. Data acquisition and analysis for the energy-subtraction Compton scatter camera for medical imaging

    Science.gov (United States)

    Khamzin, Murat Kamilevich

    In response to the shortcomings of the Anger camera currently being used in conventional SPECT, particularly the trade-off between sensitivity and spatial resolution, a novel energy-subtraction Compton scatter camera, or the ESCSC, has been proposed. A successful clinical implementation of the ESCSC could revolutionize the field of SPECT. Features of this camera include utilization of silicon and CdZnTe detectors in primary and secondary detector systems, list-mode time stamping data acquisition, modular architecture, and post-acquisition data analysis. Previous ESCSC studies were based on Monte Carlo modeling. The objective of this work is to test the theoretical framework developed in previous studies by developing the data acquisition and analysis techniques necessary to implement the ESCSC. The camera model working in list-mode with time stamping was successfully built and tested thus confirming potential of the ESCSC that was predicted in previous simulation studies. The obtained data were processed during the post-acquisition data analysis based on preferred event selection criteria. Along with the construction of a camera model and proving the approach, the post-acquisition data analysis was further extended to include preferred event weighting based on the likelihood of a preferred event to be a true preferred event. While formulated to show ESCSC capabilities, the results of this study are important for any Compton scatter camera implementation as well as for coincidence data acquisition systems in general.

  14. Radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Taleyarkhan, Rusi P.

    2017-06-27

    Alpha particle detecting devices are disclosed that have a chamber that can hold a fluid in a tensioned metastable state. The chamber is tuned with a suitable fluid and tension such that alpha emitting materials such as radon and one or more of its decay products can be detected. The devices can be portable and can be placed in areas, such as rooms in dwellings or laboratories and used to measure radon in these areas, in situ and in real time. The disclosed detectors can detect radon at and below 4 pCi/L in air; also, at and below 4,000 pCi/L or 300 pCi/L in water.

  15. FlashCam: A fully digital camera for CTA telescopes

    CERN Document Server

    Pühlhofer, G; Biland, A; Florin, D; Föhr, C; Gadola, A; Hermann, G; Kalkuhl, C; Kasperek, J; Kihm, T; Koziol, J; Manalaysay, A; Marszalek, A; Rajda, P J; Schanz, T; Steiner, S; Straumann, U; Tenzer, C; Vogler, P; Vollhardt, A; Weitzel, Q; Winiarski, K; Zietara, K

    2012-01-01

    The future Cherenkov Telescope Array (CTA) will consist of several tens of telescopes of different mirror sizes. CTA will provide next generation sensitivity to very high energy photons from few tens of GeV to >100 TeV. Several focal plane instrumentation options are currently being evaluated inside the CTA consortium. In this paper, the current status of the FlashCam prototyping project is described. FlashCam is based on a fully digital camera readout concept and features a clean separation between photon detector plane and signal digitization/triggering electronics.

  16. High-speed multicolor photometry with CMOS cameras

    CERN Document Server

    Pokhvala, S M; Reshetnyk, V M

    2012-01-01

    We present the results of testing the commercial digital camera Nikon D90 with a CMOS sensor for high-speed photometry with a small telescope Celestron 11" on Peak Terskol. CMOS sensor allows to perform photometry in 3 filters simultaneously that gives a great advantage compared with monochrome CCD detectors. The Bayer BGR color system of CMOS sensors is close to the Johnson BVR system. The results of testing show that we can measure the stars up to V $\\simeq$ 14 with the precision of 0.01 mag. Stars up to magnitude V $\\sim$ 10 can shoot at 24 frames per second in the video mode.

  17. The Camera Comes to Court.

    Science.gov (United States)

    Floren, Leola

    After the Lindbergh kidnapping trial in 1935, the American Bar Association sought to eliminate electronic equipment from courtroom proceedings. Eventually, all but two states adopted regulations applying that ban to some extent, and a 1965 Supreme Court decision encouraged the banning of television cameras at trials as well. Currently, some states…

  18. OSIRIS camera barrel optomechanical design

    Science.gov (United States)

    Farah, Alejandro; Tejada, Carlos; Gonzalez, Jesus; Cobos, Francisco J.; Sanchez, Beatriz; Fuentes, Javier; Ruiz, Elfego

    2004-09-01

    A Camera Barrel, located in the OSIRIS imager/spectrograph for the Gran Telescopio Canarias (GTC), is described in this article. The barrel design has been developed by the Institute for Astronomy of the University of Mexico (IA-UNAM), in collaboration with the Institute for Astrophysics of Canarias (IAC), Spain. The barrel is being manufactured by the Engineering Center for Industrial Development (CIDESI) at Queretaro, Mexico. The Camera Barrel includes a set of eight lenses (three doublets and two singlets), with their respective supports and cells, as well as two subsystems: the Focusing Unit, which is a mechanism that modifies the first doublet relative position; and the Passive Displacement Unit (PDU), which uses the third doublet as thermal compensator to maintain the camera focal length and image quality when the ambient temperature changes. This article includes a brief description of the scientific instrument; describes the design criteria related with performance justification; and summarizes the specifications related with misalignment errors and generated stresses. The Camera Barrel components are described and analytical calculations, FEA simulations and error budgets are also included.

  19. The Fluorescence Detector of the Pierre Auger Observatory

    CERN Document Server

    Abraham, J; Aglietta, M; Aguirre, C; Ahn, E J; Allard, D; Allekotte, I; Allen, J; Allison, P; Alvarez-Muñiz, J; Ambrosio, M; Anchordoqui, L; Andringa, S; Anzalone, A; Aramo, C; Arganda, E; Argirò, S; Arisaka, K; Arneodo, F; Arqueros, F; Asch, T; Asorey, H; Assis, P; Aublin, J; Ave, M; Avila, G; Bacher, A; Bäcker, T; Badagnani, D; Barber, K B; Barbosa-Ademarlaudo, F; Barbosa, H J M; Barenthien, N; Barroso, S L C; Baughman, B; Bauleo, P; Beatty, J J; Beau, T; Becker, B R; Becker, K H; Bellétoile, A; Bellido, J A; BenZvi, S; Bérat, C; Bernardini, P; Bertou, X; Biermann, P L; Billoir, P; Blanch-Bigas, O; Blanco, F; Bleve, C; Blümer, H; Boháčová, M; Bollmann, E; Bolz, H; Bonifazi, C; Bonino, R; Borodai, N; Bracci, F; Brack, J; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Burton, R E; Busca, N G; Caballero-Mora, K S; Caramete, D CaminL; Caruso, R; Carvalho, W; Castellina, A; Castro, J; Catalano, O; Cazon, L; Cester, R; Chauvin, J; Chiavassa, A; Chinellato, J A; Chou, A; Chudoba, J; Chye, J; Clark, P D J; Clay, R W; Colombo, E; Conceição, R; Connolly, B; Contreras, F; Coppens, J; Cordero, A; Cordier, A; Cotti, U; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J W; Cuautle, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Daudo, F; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; De Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; De Souza, V; de Vries, K D; Decerprit, G; Del Peral, L; Deligny, O; Della Selva, A; Fratte, C Delle; Dembinski, H; Di Giulio, C; Diaz, J C; Diep, P N; Dobrigkeit, C; D'Olivo, J C; Dong, P N; Dornic, D; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; Duvernois, M A; Engel, R; Erdmann, M; Escobar, C O; Etchegoyen, A; Luis, P Facal San; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferrer, F; Ferrero, A; Fick, B; Filevich, A; Filipčič, A; Fleck, I; Fliescher, S; Fonte, R; Fracchiolla, C E; Fraenkel, E D; Fulgione, W; Gamarra, R F; Gambetta, S; García, B; Gámez, D García; Garcia-Pinto, D; Garrido, X; Geenen, H; Gelmini, G; Gemmeke, H; Ghia, P L; Giaccari, U; Gibbs, K; Giller, M; Gitto, J; Glass, H; Goggin, L M; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Vitale, P F Gomez; Gonçalves, P; Amaral, M Gonçalves do; González, D; Gonzalez, J G; Góra, D; Gorgi, A; Gouffon, P; Grashorn, E; Grassi, V; Grebe, S; Grigat, M; Grillo, A F; Grygar, J; Guardincerri, Y; Guardone, N; Guerard, C; Guarino, F; Gumbsheimer, R; Guedes, G P; Gutiérrez, J; Hague, J D; Halenka, V; Hansen, P; Harari, D; Harmsma, S; Hartmann, S; Harton, J L; Haungs, A; Healy, M D; Hebbeker, T; Hebrero, G; Heck, D; Hojvat, C; Holmes, V C; Homola, P; Hofman, G; Hörandel, J R; Horneffer, A; Horvat, M; Hrabovský, M; Hucker, H; Huege, T; Hussain, M; Iarlori, M; Insolia, A; Ionita, F; Italiano, A; Jiraskova, S; Kaducak, M; Kampert, K H; Karova, T; Kasper, P; Kégl, B; Keilhauer, B; Kemp, E; Kern, H; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapik, R; Knapp, J; Koang, D -H; Kopmann, A; Krieger, A; Krömer, O; Kruppke-Hansen, D; Kuempel, D; Kunka, N; Kusenko, A; La Rosa, G; Lachaud, C; Lago, B L; Lautridou, P; Leão, M S A B; Lebrun, D; Lebrun, P; Lee, J; de Oliveira, M A Leigui; Lemiere, A; Letessier-Selvon, A A; Leuthold, M; Lhenry-Yvon, I; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lucero, A; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Malek, M; Mandat, D; Mantsch, P; Marchetto, F; Mariazzi, A G; Maris, I C; Falcon, H R Marquez; Martello, D; Martineau, O; Bravo, O Martínez; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mazur, P O; McEwen, M; McNeil, R R; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Meyhandan, R; Micheletti, M I; Miele, G; Miller, W; Miramonti, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, J C; Morris, C; Mostafá, M; Moura, C A; Mucchi, M; Müller, S; Muller, M A; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Nerling, F; Newman-Holmes, C; Newton, D; Nhung, P T; Nicotra, D; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Nyklicek, M; Oehlschläger, J; Olinto, A; Oliva, P; Olmos-Gilbaja, V M; Ortiz, M; Ortolani, F; Oßwald, B; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Parente, G; Parizot, E; Parlati, S; Pastor, S; Patel, M; Paul, T; Pavlidou, V; Payet, K; Pech, M; Pȩkala, J; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrinca, P; Petrolini, A; Petrov, Y; Petrovic, J; Pfendner, C; Pichel, A; Piegaia, R; Pierog, T; Pimenta, M; Pinto, T; Pirronello, V; Pisanti, O; Platino, M; Pochon, J; Ponce, V H; Pontz, M; Pouryamout, J; Prado, L; Privitera, P; Prouza, M; Quel, E J; Rautenberg, G Raia J; Ravel, O; Ravignani, D; Redondo, A; Reis, H C; Reucroft, S; Revenu, B; Rezende, F A S; Rídky, J; Riggi, S; Risse, M; Rivière, C; Rizi, V; Robledo, C; Roberts, M D; Rodríguez, G; Martino, J Rodriguez; Rojo, J Rodriguez; Rodriguez-Cabo, I; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Salamida, F; b, H Salazar; Salina, G; Sánchez, F; Santander, M; Santo, C E; Santos, E M; Sarazin, F; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, G Schleif A; Schmidt, F; Schmidt, T; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schroeder, F; Schulte, S; Schüssler, F; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Semikoz, D; Sequieros, G; Settimo, M; Shellard, R C; Sidelnik, I; Siffert, B B; Smiałkowski, A; Šmída, R; Smith, A G K; Smith, B E; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Strazzeri, E; Stutz, A; Suárez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Tamashiro, A; Tamburro, A; Tarutina, T; Taşcuau, O; Tcaciuc, R; Tcherniakhovski, D; Thao, N T; Thomas, D; Ticona, R; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Peixoto, C J Todero; Tomé, B; Tonachini, A; Torres, I; Trapani, P; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tuci, V; Tueros, M; Tusi, E; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; Berg, A M van den; Vázquez, J R; Vázquez, R A; Veberič, D; Velarde, A; Venters, T; Verzi, V; Videla, M; Villaseñor, L; Vitali, G; Vorobiov, S; Voyvodic, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Warner, D; Westerhoff, S; Whelan, B J; Wild, N; Wiebusch, C; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Wileman, C; Winnick, M G; Wörner, G; Wu, H; Wundheiler, B; Yamamoto, T; Younk, P; Yuan, G; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; b, A Zepeda; Ziolkowski, M

    2009-01-01

    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.

  20. The fluorescence detector of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, J. [Universidad Tecnologica Nacional, Facultad Regional Mendoza, (UTN-FRM), Mendoza (Argentina); Abreu, P. [LIP and Instituto Superior Tecnico, Lisboa (Portugal); Aglietta, M. [Istituto di Fisica dello Spazio Interplanetario (INAF), Universita di Torino and Sezione INFN, Torino (Italy); Aguirre, C. [Universidad Catolica de Bolivia, La Paz (Bolivia, Plurinational State of); Ahn, E.J. [Fermilab, Batavia, IL (United States); Allard, D. [Laboratoire AstroParticule et Cosmologie (APC), Universite Paris 7, CNRS-IN2P3, Paris (France); Allekotte, I. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche (Argentina); Allen, J. [New York University, New York, NY (United States); Allison, P. [Ohio State University, Columbus, OH (United States); Alvarez-Muniz, J. [Universidad de Santiago de Compostela (Spain); Ambrosio, M. [Universita di Napoli ' Federico II' and Sezione INFN, Napoli (Italy); Anchordoqui, L. [University of Wisconsin, Milwaukee, WI (United States); Andringa, S. [LIP and Instituto Superior Tecnico, Lisboa (Portugal); Anzalone, A. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo (INAF), Palermo (Italy); Sezione INFN, Catania (Italy); Aramo, C. [Universita di Napoli ' Federico II' and Sezione INFN, Napoli (Italy); Arganda, E. [Universidad Complutense de Madrid, Madrid (Spain); Argiro, S. [Universita di Torino and Sezione INFN, Torino (Italy); Arisaka, K. [University of California, Los Angeles, CA (United States); Arneodo, F. [INFN, Laboratori Nazionali del Gran Sasso, Assergi , L' Aquila (Italy); Arqueros, F. [Universidad Complutense de Madrid, Madrid (Spain)

    2010-08-21

    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.

  1. The fluorescence detector of the Pierre Auger Observatory

    Science.gov (United States)

    Abraham, J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E. J.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez-Muñiz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Anzalone, A.; Aramo, C.; Arganda, E.; Argirò, S.; Arisaka, K.; Arneodo, F.; Arqueros, F.; Asch, T.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avila, G.; Bacher, A.; Bäcker, T.; Badagnani, D.; Barber, K. B.; Barbosa, A. F.; Barbosa, H. J. M.; Barenthien, N.; Barroso, S. L. C.; Baughman, B.; Bauleo, P.; Beatty, J. J.; Beau, T.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bernardini, P.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Bleve, C.; Blümer, H.; Boháčová, M.; Bollmann, E.; Bolz, H.; Bonifazi, C.; Bonino, R.; Borodai, N.; Bracci, F.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Camin, D.; Caramete, L.; Caruso, R.; Carvalho, W.; Castellina, A.; Castro, J.; Catalano, O.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Chye, J.; Clark, P. D. J.; Clay, R. W.; Colombo, E.; Conceição, R.; Connolly, B.; Contreras, F.; Coppens, J.; Cordero, A.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J. W.; Cuautle, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daudo, F.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; Di Giulio, C.; Diaz, J. C.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dornic, D.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; DuVernois, M. A.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferrer, F.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fleck, I.; Fliescher, S.; Fonte, R.; Fracchiolla, C. E.; Fraenkel, E. D.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Garrido, X.; Geenen, H.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Gibbs, K.; Giller, M.; Gitto, J.; Glass, H.; Goggin, L. M.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gomez Vitale, P. F.; Gonçalves, P.; Gonçalves do Amaral, M.; Gonzalez, D.; Gonzalez, J. G.; Góra, D.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grassi, V.; Grebe, S.; Grigat, M.; Grillo, A. F.; Grygar, J.; Guardincerri, Y.; Guardone, N.; Guerard, C.; Guarino, F.; Gumbsheimer, R.; Guedes, G. P.; Gutiérrez, J.; Hague, J. D.; Halenka, V.; Hansen, P.; Harari, D.; Harmsma, S.; Hartmann, S.; Harton, J. L.; Haungs, A.; Healy, M. D.; Hebbeker, T.; Hebrero, G.; Heck, D.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hofman, G.; Hörandel, J. R.; Horneffer, A.; Horvat, M.; Hrabovský, M.; Hucker, H.; Huege, T.; Hussain, M.; Iarlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kaducak, M.; Kampert, K. H.; Karova, T.; Kasper, P.; Kégl, B.; Keilhauer, B.; Kemp, E.; Kern, H.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D.-H.; Kopmann, A.; Krieger, A.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; Kusenko, A.; La Rosa, G.; Lachaud, C.; Lago, B. L.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Lee, J.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Leuthold, M.; Lhenry-Yvon, I.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Malek, M.; Mandat, D.; Mantsch, P.; Marchetto, F.; Mariazzi, A. G.; Maris, I. C.; Marquez Falcon, H. R.; Martello, D.; Martineau, O.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McEwen, M.; McNeil, R. R.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meyhandan, R.; Micheletti, M. I.; Miele, G.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mucchi, M.; Mueller, S.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nerling, F.; Newman-Holmes, C.; Newton, D.; Nhung, P. T.; Nicotra, D.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Ortolani, F.; Oßwald, B.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Parente, G.; Parizot, E.; Parlati, S.; Pastor, S.; Patel, M.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; Peķala, J.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Pichel, A.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pinto, T.; Pirronello, V.; Pisanti, O.; Platino, M.; Pochon, J.; Ponce, V. H.; Pontz, M.; Pouryamout, J.; Prado, L., Jr.; Privitera, P.; Prouza, M.; Quel, E. J.; Raia, G.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Redondo, A.; Reis, H. C.; Reucroft, S.; Revenu, B.; Rezende, F. A. S.; Ridky, J.; Riggi, S.; Risse, M.; Rivière, C.; Rizi, V.; Robledo, C.; Roberts, M. D.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schleif, G.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schroeder, F.; Schulte, S.; Schüssler, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Sequieros, G.; Settimo, M.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; SmiaŁkowski, A.; Šmída, R.; Smith, A. G. K.; Smith, B. E.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tamburro, A.; Tarutina, T.; Taşcău, O.; Tcaciuc, R.; Tcherniakhovski, D.; Thao, N. T.; Thomas, D.; Ticona, R.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Torres, I.; Trapani, P.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tuci, V.; Tueros, M.; Tusi, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Velarde, A.; Venters, T.; Verzi, V.; Videla, M.; Villaseñor, L.; Vitali, G.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Westerhoff, S.; Whelan, B. J.; Wild, N.; Wiebusch, C.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Wileman, C.; Winnick, M. G.; Wörner, G.; Wu, H.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.; Pierre Auger Collaboration

    2010-08-01

    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.

  2. Dual energy with dual source CT and kVp switching with single source CT: a comparison of dual energy performance

    Science.gov (United States)

    Grasruck, M.; Kappler, S.; Reinwand, M.; Stierstorfer, K.

    2009-02-01

    Stimulated by the introduction of clinical dual source CT, the interest in dual energy methods has been increasing in the past years. Whereas the potential of material decomposition by dual energy methods is known since the early 1980ies, the realization of dual energy methods is a wide field of today's research. Energy separation can be achieved with energy selective detectors or by varying X-ray source spectra. This paper focuses on dual energy techniques with varying X-ray spectra. These can be provided by dual source CT devices, operated with different kVp settings on each tube. Excellent spectral separation is the key property for use in clinical routine. The drawback of higher cost for two tubes and two detectors leads to an alternative realization, where a single source CT yields different spectra by fast kVp switching from reading to reading. This provides access to dual-energy methods in single source CT. However, this technique comes with some intrinsic limitations. The maximum X-ray flux is reduced in comparison to the dual source system. The kVp rise and fall time between each reading reduces the spectral separation. In comparison to dual source CT, for a constant number of projections per energy spectrum the temporal resolution is reduced; a reasonable trade of between reduced numbers of projection and limited temporal resolution has to be found. The overall dual energy performance is the guiding line for our investigations. We present simulations and measurements which benchmark both solutions in terms of spectral behavior, especially of spectral separation.

  3. CLIC Detector Power Requirements

    CERN Document Server

    Gaddi, A

    2013-01-01

    An estimate for the CLIC detector power requirements is outlined starting from the available data on power consumptions of the four LHC experiments and considering the differences between a typical LHC Detector (CMS) and the CLIC baseline detector concept. In particular the impact of the power pulsing scheme for the CLIC Detector electronics on the overall detector consumption is considered. The document will be updated with the requirements of the sub-detector electronics once they are more defined.

  4. Pixel Vertex Detectors

    OpenAIRE

    Wermes, Norbert

    2006-01-01

    Pixel vertex detectors are THE instrument of choice for the tracking of charged particles close to the interaction point at the LHC. Hybrid pixel detectors, in which sensor and read-out IC are separate entities, constitute the present state of the art in detector technology. Three of the LHC detectors use vertex detectors based on this technology. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as ...

  5. 4π FOV compact Compton camera for nuclear material investigations

    Science.gov (United States)

    Lee, Wonho; Lee, Taewoong

    2011-10-01

    A compact Compton camera with a 4π field of view (FOV) was manufactured using the design parameters optimized with the effective choice of gamma-ray interaction order determined from a Monte Carlo simulation. The camera consisted of six CsI(Na) planar scintillators with a pixelized structure that was coupled to position sensitive photomultiplier tubes (H8500) consisting of multiple anodes connected to custom-made circuits. The size of the scintillator and each pixel was 4.4×4.4×0.5 and 0.2×0.2×0.5 cm, respectively. The total size of each detection module was only 5×5×6 cm and the distance between the detector modules was approximately 10 cm to maximize the camera performance, as calculated by the simulation. Therefore, the camera is quite portable for examining nuclear materials in areas, such as harbors or nuclear power plants. The non-uniformity of the multi-anode PMTs was corrected using a novel readout circuit. Amplitude information of the signals from the electronics attached to the scintillator-coupled multi-anode PMTs was collected using a data acquisition board (cDAQ-9178), and the timing information was sent to a FPGA (SPARTAN3E). The FPGA picked the rising edges of the timing signals, and compared the edges of the signals from six detection modules to select the coincident signal from a Compton pair only. The output of the FPGA triggered the DAQ board to send the effective Compton events to a computer. The Compton image was reconstructed, and the performance of the 4π FOV Compact camera was examined.

  6. Dynamic Camera Positioning and Reconfiguration for Multi-Camera Networks

    OpenAIRE

    Konda, Krishna Reddy

    2015-01-01

    The large availability of different types of cameras and lenses, together with the reduction in price of video sensors, has contributed to a widespread use of video surveillance systems, which have become a widely adopted tool to enforce security and safety, in detecting and preventing crimes and dangerous events. The possibility for personalization of such systems is generally very high, letting the user customize the sensing infrastructure, and deploying ad-hoc solutions based on the curren...

  7. Feedhorn-coupled TES polarimeter camera modules at 150 GHz for CMB polarization measurements with SPTpol

    CERN Document Server

    Henning, J W; Aird, K A; Austermann, J E; Beall, J A; Becker, D; Benson, B A; Bleem, L E; Britton, J; Carlstrom, J E; Chang, C L; Cho, H -M; Crawford, T M; Crites, A T; Datesman, A; de Haan, T; Dobbs, M A; Everett, W; Ewall-Wice, A; George, E M; Halverson, N W; Harrington, N; Hilton, G C; Holzapfel, W L; Hubmayr, J; Irwin, K D; Karfunkle, M; Keisler, R; Kennedy, J; Lee, A T; Leitch, E; Li, D; Lueker, M; Marrone, D P; McMahon, J J; Mehl, J; Meyer, S S; Montgomery, J; Montroy, T E; Nagy, J; Natoli, T; Nibarger, J P; Niemack, M D; Novosad, V; Padin, S; Pryke, C; Reichardt, C L; Ruhl, J E; Saliwanchik, B R; Sayre, J T; Schaffer, K K; Shirokoff, E; Story, K; Tucker, C; Vanderlinde, K; Vieira, J D; Wang, G; Williamson, R; Yefremenko, V; Yoon, K W; Young, E; 10.1117/12.927172

    2012-01-01

    The SPTpol camera is a dichroic polarimetric receiver at 90 and 150 GHz. Deployed in January 2012 on the South Pole Telescope (SPT), SPTpol is looking for faint polarization signals in the Cosmic Microwave Background (CMB). The camera consists of 180 individual Transition Edge Sensor (TES) polarimeters at 90 GHz and seven 84-polarimeter camera modules (a total of 588 polarimeters) at 150 GHz. We present the design, dark characterization, and in-lab optical properties of the 150 GHz camera modules. The modules consist of photolithographed arrays of TES polarimeters coupled to silicon platelet arrays of corrugated feedhorns, both of which are fabricated at NIST-Boulder. In addition to mounting hardware and RF shielding, each module also contains a set of passive readout electronics for digital frequency-domain multiplexing. A single module, therefore, is fully functional as a miniature focal plane and can be tested independently. Across the modules tested before deployment, the detectors average a critical temp...

  8. Overview of the ARGOS X-ray framing camera for Laser MegaJoule

    Energy Technology Data Exchange (ETDEWEB)

    Trosseille, C., E-mail: clement.trosseille@cea.fr; Aubert, D.; Auger, L.; Bazzoli, S.; Brunel, P.; Burillo, M.; Chollet, C.; Jasmin, S.; Maruenda, P.; Moreau, I.; Oudot, G.; Raimbourg, J.; Soullié, G.; Stemmler, P.; Zuber, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Beck, T. [CEA, DEN, CADARACHE, F-13108 St Paul lez Durance (France); Gazave, J. [CEA, DAM, CESTA, F-33116 Le Barp (France)

    2014-11-15

    Commissariat à l’Énergie Atomique et aux Énergies Alternatives has developed the ARGOS X-ray framing camera to perform two-dimensional, high-timing resolution imaging of an imploding target on the French high-power laser facility Laser MegaJoule. The main features of this camera are: a microchannel plate gated X-ray detector, a spring-loaded CCD camera that maintains proximity focus in any orientation, and electronics packages that provide remotely-selectable high-voltages to modify the exposure-time of the camera. These components are integrated into an “air-box” that protects them from the harsh environmental conditions. A miniaturized X-ray generator is also part of the device for in situ self-testing purposes.

  9. Structured photocathodes for improved high-energy x-ray efficiency in streak cameras

    Science.gov (United States)

    Opachich, Y. P.; Bell, P. M.; Bradley, D. K.; Chen, N.; Feng, J.; Gopal, A.; Hatch, B.; Hilsabeck, T. J.; Huffman, E.; Koch, J. A.; Landen, O. L.; MacPhee, A. G.; Nagel, S. R.; Udin, S.

    2016-11-01

    We have designed and fabricated a structured streak camera photocathode to provide enhanced efficiency for high energy X-rays (1-12 keV). This gold coated photocathode was tested in a streak camera and compared side by side against a conventional flat thin film photocathode. Results show that the measured electron yield enhancement at energies ranging from 1 to 10 keV scales well with predictions, and that the total enhancement can be more than 3×. The spatial resolution of the streak camera does not show degradation in the structured region. We predict that the temporal resolution of the detector will also not be affected as it is currently dominated by the slit width. This demonstration with Au motivates exploration of comparable enhancements with CsI and may revolutionize X-ray streak camera photocathode design.

  10. An ISPA-camera for $\\beta$-radiography

    CERN Document Server

    Puertolas, D; Leutz, H; Gys, Thierry; D'Ambrosio, C

    1996-01-01

    We have developed a new type of beta-camera based on an Imaging Silicon Pixel Array (ISPA)-tube combined with planar plastic scintillators or with SiY2O5(Ce)-scintillating powder. The ISPA-tube consists of a photocathode viewed at 3 cm distance by a silicon anode divided into 1024 rectangular (75 microm x 500 microm) detector pixels, each bump-bonded to its equally-sized electronic pixel. Depending on the beta-detector thickness we achieved spatial resolutions (FWHM) between 105 microm (63Ni source and 30 microm thick plastic scintillator) and 240 microm (90Sr-90Y source and 120 microm thick plastic scintillator) by covering the detectors with brass templates. With their four 60 microm wide slits oriented parallel to the long pixel edges we simulated small sized beta-strips. The impact of detector thickness is explained by multiple scattering, angular aperture of the template slits and scintillating light distribution at the ISPA-photocathode. Beta detection sensitivities were measured with calibrated...

  11. A Compact High Energy Camera for the Cherenkov Telescope Array

    CERN Document Server

    Daniel, M K; Berge, D; Buckley, J; Chadwick, P M; Cotter, G; Funk, S; Greenshaw, T; Hidaka, N; Hinton, J; Lapington, J; Markoff, S; Moore, P; Nolan, S; Ohm, S; Okumura, A; Ross, D; Sapozhnikov, L; Schmoll, J; Sutcliffe, P; Sykes, J; Tajima, H; Varner, G S; Vandenbroucke, J; Vink, J; Williams, D

    2013-01-01

    The Compact High Energy Camera (CHEC) is a camera-development project involving UK, US, Japanese and Dutch institutes for the dual-mirror Small-Sized Telescopes (SST-2M) of the Cherenkov Telescope Array (CTA). Two CHEC prototypes, based on different photosensors are funded and will be assembled and tested in the UK over the next ~18 months. CHEC is designed to record flashes of Cherenkov light lasting from a few to a hundred nanoseconds, with typical RMS image width and length of ~0.2 x 1.0 degrees, and has a 9 degree field of view. The physical camera geometry is dictated by the telescope optics: a curved focal surface with radius of curvature 1m and diameter ~35cm is required. CHEC is designed to work with both the ASTRI and GATE SST-2M telescope structures and will include an internal LED flasher system for calibration. The first CHEC prototype will be based on multi-anode photomultipliers (MAPMs) and the second on silicon photomultipliers (SiPMs or MPPCs). The first prototype will soon be installed on the...

  12. MUON DETECTOR

    CERN Multimedia

    F. Gasparini

    DT As announced in the previous Bulletin MU DT completed the installation of the vertical chambers of barrel wheels 0, +1 and +2. 242 DT and RPC stations are now installed in the negative barrel wheels. The missing 8 (4 in YB-1 and 4 in YB-2) chambers can be installed only after the lowering of the two wheels into the UX cavern, which is planned for the last quarter of the year. Cabling on the surface of the negative wheels was finished in May after some difficulties with RPC cables. The next step was to begin the final commissioning of the wheels with the final trigger and readout electronics. Priority was giv¬en to YB0 in order to check everything before the chambers were covered by cables and services of the inner detectors. Commissioning is not easy since it requires both activity on the central and positive wheels underground, as well as on the negative wheels still on the surface. The DT community is requested to commission the negative wheels on surface to cope with a possible lack of time a...

  13. X-Ray Detector Simulations - Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Tina, Adrienne [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-20

    The free-electron laser at LCLS produces X-Rays that are used in several facilities. This light source is so bright and quick that we are capable of producing movies of objects like proteins. But making these movies would not be possible without a device that can detect the X-Rays and produce images. We need X-Ray cameras. The challenges LCLS faces include the X-Rays’ high repetition rate of 120 Hz, short pulses that can reach 200 femto-seconds, and extreme peak brightness. We need detectors that are compatible with this light source, but before they can be used in the facilities, they must first be characterized. My project was to do just that, by making a computer simulation program. My presentation discusses the individual detectors I simulated, the details of my program, and how my project will help determine which detector is most useful for a specific experiment.

  14. Architectural Design Document for Camera Models

    DEFF Research Database (Denmark)

    Thuesen, Gøsta

    1998-01-01

    Architecture of camera simulator models and data interface for the Maneuvering of Inspection/Servicing Vehicle (MIV) study.......Architecture of camera simulator models and data interface for the Maneuvering of Inspection/Servicing Vehicle (MIV) study....

  15. Architectural Design Document for Camera Models

    DEFF Research Database (Denmark)

    Thuesen, Gøsta

    1998-01-01

    Architecture of camera simulator models and data interface for the Maneuvering of Inspection/Servicing Vehicle (MIV) study.......Architecture of camera simulator models and data interface for the Maneuvering of Inspection/Servicing Vehicle (MIV) study....

  16. High-Resolution PET Detector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Joel

    2014-03-26

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface.

  17. An optical metasurface planar camera

    CERN Document Server

    Arbabi, Amir; Kamali, Seyedeh Mahsa; Horie, Yu; Han, Seunghoon; Faraon, Andrei

    2016-01-01

    Optical metasurfaces are 2D arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optical design by enabling complex low cost systems where multiple metasurfaces are lithographically stacked on top of each other and are integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here, we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has an f-number of 0.9, an angle-of-view larger than 60$^\\circ$$\\times$60$^\\circ$, and operates at 850 nm wavelength with large transmission. The camera exhibits high image quality, which indicates the potential of this technology to produce a paradigm shift in future designs of imaging systems for microscopy, photograp...

  18. Combustion pinhole-camera system

    Science.gov (United States)

    Witte, A.B.

    1982-05-19

    A pinhole camera system is described utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor.

  19. Mirrored Light Field Video Camera Adapter

    OpenAIRE

    Tsai, Dorian; Dansereau, Donald G.; Martin, Steve; Corke, Peter

    2016-01-01

    This paper proposes the design of a custom mirror-based light field camera adapter that is cheap, simple in construction, and accessible. Mirrors of different shape and orientation reflect the scene into an upwards-facing camera to create an array of virtual cameras with overlapping field of view at specified depths, and deliver video frame rate light fields. We describe the design, construction, decoding and calibration processes of our mirror-based light field camera adapter in preparation ...

  20. Automated Placement of Multiple Stereo Cameras

    OpenAIRE

    Malik, Rahul; Bajcsy, Peter

    2008-01-01

    International audience; This paper presents a simulation framework for multiple stereo camera placement. Multiple stereo camera systems are becoming increasingly popular these days. Applications of multiple stereo camera systems such as tele-immersive systems enable cloning of dynamic scenes in real-time and delivering 3D information from multiple geographic locations to everyone for viewing it in virtual (immersive) 3D spaces. In order to make such multi stereo camera systems ubiquitous, sol...

  1. Graphic design of pinhole cameras

    Science.gov (United States)

    Edwards, H. B.; Chu, W. P.

    1979-01-01

    The paper describes a graphic technique for the analysis and optimization of pinhole size and focal length. The technique is based on the use of the transfer function of optical elements described by Scott (1959) to construct the transfer function of a circular pinhole camera. This transfer function is the response of a component or system to a pattern of lines having a sinusoidally varying radiance at varying spatial frequencies. Some specific examples of graphic design are presented.

  2. Automatic tracking sensor camera system

    Science.gov (United States)

    Tsuda, Takao; Kato, Daiichiro; Ishikawa, Akio; Inoue, Seiki

    2001-04-01

    We are developing a sensor camera system for automatically tracking and determining the positions of subjects moving in three-dimensions. The system is intended to operate even within areas as large as soccer fields. The system measures the 3D coordinates of the object while driving the pan and tilt movements of camera heads, and the degree of zoom of the lenses. Its principal feature is that it automatically zooms in as the object moves farther away and out as the object moves closer. This maintains the area of the object as a fixed position of the image. This feature makes stable detection by the image processing possible. We are planning to use the system to detect the position of a soccer ball during a soccer game. In this paper, we describe the configuration of the developing automatic tracking sensor camera system. We then give an analysis of the movements of the ball within images of games, the results of experiments on method of image processing used to detect the ball, and the results of other experiments to verify the accuracy of an experimental system. These results show that the system is sufficiently accurate in terms of obtaining positions in three-dimensions.

  3. Unassisted 3D camera calibration

    Science.gov (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  4. Coaxial fundus camera for opthalmology

    Science.gov (United States)

    de Matos, Luciana; Castro, Guilherme; Castro Neto, Jarbas C.

    2015-09-01

    A Fundus Camera for ophthalmology is a high definition device which needs to meet low light illumination of the human retina, high resolution in the retina and reflection free image1. Those constraints make its optical design very sophisticated, but the most difficult to comply with is the reflection free illumination and the final alignment due to the high number of non coaxial optical components in the system. Reflection of the illumination, both in the objective and at the cornea, mask image quality, and a poor alignment make the sophisticated optical design useless. In this work we developed a totally axial optical system for a non-midriatic Fundus Camera. The illumination is performed by a LED ring, coaxial with the optical system and composed of IR of visible LEDs. The illumination ring is projected by the objective lens in the cornea. The Objective, LED illuminator, CCD lens are coaxial making the final alignment easily to perform. The CCD + capture lens module is a CCTV camera with autofocus and Zoom built in, added to a 175 mm focal length doublet corrected for infinity, making the system easily operated and very compact.

  5. Image Based Camera Localization: an Overview

    OpenAIRE

    Wu, Yihong

    2016-01-01

    Recently, virtual reality, augmented reality, robotics, self-driving cars et al attractive much attention of industrial community, in which image based camera localization is a key task. It is urgent to give an overview of image based camera localization. In this paper, an overview of image based camera localization is presented. It will be useful to not only researchers but also engineers.

  6. 21 CFR 886.1120 - Opthalmic camera.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Opthalmic camera. 886.1120 Section 886.1120 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1120 Opthalmic camera. (a) Identification. An ophthalmic camera is an AC-powered device intended to take photographs of the eye and the surrounding...

  7. 21 CFR 892.1110 - Positron camera.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Positron camera. 892.1110 Section 892.1110 Food... DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A positron camera is a device intended to image the distribution of positron-emitting radionuclides in the...

  8. 16 CFR 501.1 - Camera film.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Camera film. 501.1 Section 501.1 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENT OF GENERAL POLICY OR INTERPRETATION AND... 500 § 501.1 Camera film. Camera film packaged and labeled for retail sale is exempt from the...

  9. The effect of metal detector gates on implanted permanent pacemakers.

    Science.gov (United States)

    Copperman, Y; Zarfati, D; Laniado, S

    1988-10-01

    The effect of metal detector security gates, such as are used in airports, was tested in 103 nonselected pacemaker patients. Various types of single and dual chamber units were examined, using telemetry during the test. Pulse rate and duration were measured immediately before and after the procedure. No ill effect was seen on any of the units tested, pacemaker inhibition was not observed, and programmability was not affected. Metal detector security gates have no effect on implanted permanent pacemakers.

  10. Energy-based scatter correction for 3-D PET scanners using NaI(T1) detectors.

    Science.gov (United States)

    Adam, L E; Karp, J S; Freifelder, R

    2000-05-01

    Earlier investigations with BGO positron emission tomography (PET) scanners showed that the scatter correction technique based on multiple acquisitions with different energy windows are problematic to implement because of the poor energy resolution of BGO (22%), particularly for whole-body studies. We believe that these methods are likely to work better with NaI(TI) because of the better energy resolution achievable with NaI(TI) detectors (10%). Therefore, we investigate two different choices for the energy window, a low-energy window (LEW) on the Compton spectrum at 400-450 keV, and a high-energy window (HEW) within the photopeak (lower threshold above 511 keV). The results obtained for our three-dimensional (3-D) (septa-less) whole-body scanners [axial field of view (FOV) of 12.8 cm and 25.6 cm] as well as for our 3-D brain scanner (axial FOV of 25.6 cm) show an accurate prediction of the scatter distribution for the estimation of trues method (ETM) using a HEW, leading to a significant reduction of the scatter contamination. The dual-energy window (DEW) technique using a LEW is shown to be intrinsically wrong; in particular, it fails for line source and bar phantom measurements. However, the method is able to produce good results for homogeneous activity distributions. Both methods are easy to implement, are fast, have a low noise propagation, and will be applicable to other PET scanners with good energy resolution and stability, such as hybrid NaI(TI) PET/SPECT dual-head cameras and future PET cameras with GSO or LSO scintillators.

  11. A 640×512-20μm dual-polarity ROIC for MWIR and LWIR hybrid FPAs

    Science.gov (United States)

    Eminoglu, Selim; Incedere, O. Samet; Bayhan, Nusret; Isikhan, Murat; Soyer, S. T.; Ustundag, C. M. B.; Kocak, Serhat; Turan, Ozge; Eksi, Umut; Akin, Tayfun

    2016-05-01

    This paper reports the development of a new dual-polarity Direct-Injection (DI) Readout Integrated Circuit (ROIC), called MT6420DDA, designed to support back-to-back connected photodiodes with a single contact per pixel using dual pixel input circuitries suitable for both p-on-n and n-on-p type detectors. The ROIC has a format of 640 × 512 (VGA) and a pixel pitch of 20μm, and can be used to build dual-color or dual-band FPAs working in the MWIR and/or LWIR bands. The ROIC supports snapshot operation with Integrate-then-Read (ITR) and Integrate-while-Read modes (IWR). MT6420DDA has a system-on-chip architecture, with programmable biasing, timing, and configuration. The ROIC supports 2, 4, and 8-output modes at pixel output rates up to 12.5 MHz per output. It runs on 3.3 V analog and 1.8 V digital supplies, and dissipates less than 135 mW in the 4-output mode at 10 MHz. The ROIC has separate programmable full well capacitance values of 1.5 Me-, 3.0 Me-, and 6.0 Me- for both polarities in the high-gain (HG), mid-gain (MG), and low-gain (LG) modes. The ROIC supports two type of polarity switching modes as PSBF (Polarity Switching between Frames) and PSWF (Polarity Switching within Frames). In the PSBF modes, an alternating input polarity is used for each detector type for each frame during each integration period, possibly with different full-well and integration time settings. In the PSWF mode, both type of pixels are exposed almost simultaneously, where detector current is integrated in a time multiplexed manner using the two separate integration capacitors of the pixel input circuitry. The PSBF mode is simple, but the time stamp for each image frame is different. The PSWF mode is complex, but results in a pseudo simultaneous registration of images for each color or spectral band. The ROIC has been developed for cryogenic operation down to 65K with an input referred noise level of less than 470 e- rms in the low-gain (LG) mode at 77K. The MT6420DDA ROIC has been

  12. The first demonstration of the concept of "narrow-FOV Si/CdTe semiconductor Compton camera"

    OpenAIRE

    Ichinohe, Yuto; Uchida, Yuusuke; Watanabe, Shin; Edahiro, Ikumi; Hayashi, Katsuhiro; Kawano, Takafumi; Ohno, Masanori; Ohta, Masayuki; Takeda, Shin'ichiro; Fukazawa, Yasushi; Katsuragawa, Miho; Nakazawa, Kazuhiro; Odaka, Hirokazu; Tajima, Hiroyasu; Takahashi, Hiromitsu

    2015-01-01

    The Soft Gamma-ray Detector (SGD), to be deployed onboard the {\\it ASTRO-H} satellite, has been developed to provide the highest sensitivity observations of celestial sources in the energy band of 60-600~keV by employing a detector concept which uses a Compton camera whose field-of-view is restricted by a BGO shield to a few degree (narrow-FOV Compton camera). In this concept, the background from outside the FOV can be heavily suppressed by constraining the incident direction of the gamma ray...

  13. X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics

    Science.gov (United States)

    Rácz, R.; Biri, S.; Pálinkás, J.; Mascali, D.; Castro, G.; Caliri, C.; Romano, F. P.; Gammino, S.

    2016-02-01

    Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.

  14. X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Rácz, R., E-mail: rracz@atomki.hu; Biri, S.; Pálinkás, J. [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/C, H-4026 Debrecen (Hungary); Mascali, D.; Castro, G.; Caliri, C.; Gammino, S. [Instituto Nazionale di Fisica Nucleare—Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Romano, F. P. [Instituto Nazionale di Fisica Nucleare—Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); CNR, Istituto per i Beni Archeologici e Monumentali, Via Biblioteca 4, 95124 Catania (Italy)

    2016-02-15

    Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.

  15. X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics.

    Science.gov (United States)

    Rácz, R; Biri, S; Pálinkás, J; Mascali, D; Castro, G; Caliri, C; Romano, F P; Gammino, S

    2016-02-01

    Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.

  16. Towards monolithically integrated CMOS cameras for active imaging with 600 GHz radiation

    Science.gov (United States)

    Boppel, Sebastian; Lisauskas, Alvydas; Krozer, Viktor; Roskos, Hartmut G.

    2012-02-01

    We explore terahertz imaging with CMOS field-effect transistors exploiting their plasmonic detection capability and the advantages of CMOS technology for the fabrication of THz cameras with respect to process stability, array uniformity, ease of integration of additional functionality, scalability and cost-effectiveness. A 100×100-pixel camera with an active area of 20×20 mm² is physically simulated by scanning single detectors and groups of a few detectors in the image plane. Using detectors with a noise-equivalent power of 43 pW/√Hz, a distributed illumination of 432 μW at 591.4 GHz, and an integration time of 20 ms (for a possible frame rate of 17 fps), this virtual camera allows to obtain images with a dynamic range of at least 20 dB and a resolution approaching the diffraction limit. Imaging examples acquired in direct and heterodyne detection mode, and in transmission and reflection geometry, show the potential for real-time operation. It is demonstrated that heterodyning (i) improves the dynamic range substantially even if the radiation from the local oscillator is distributed over the camera area, and (ii) allows sensitive determination of object-induced phase changes, which promises the realization of coherent imaging systems.

  17. A neutron pinhole camera for PF-24 source: Conceptual design and optimization

    Science.gov (United States)

    Bielecki, J.; Wójcik-Gargula, A.; Wiacek, U.; Scholz, M.; Igielski, A.; Drozdowicz, K.; Woźnicka, U.

    2015-07-01

    A fast-neutron pinhole camera based on small-area (5mm × 5 mm) BCF-12 scintillation detectors with nanosecond time resolution has been designed. The pinhole camera is dedicated to the investigation of the spatial and temporal distributions of DD neutrons from the Plasma Focus (PF-24) source. The geometrical parameters of the camera have been optimized in terms of maximum neutron flux at the imaging plane by means of MCNP calculations. The detection system consists of four closely packed scintillation detectors coupled via long optical fibres to Hamamatsu H3164-10 photomultiplier tubes. The pinhole consists of specially designed 420 mm long copper collimator with an effective aperture of 1.7 mm mounted inside a cylindrical polyethylene tube. The performance of the presented detection system in the mixed (hard X-ray and neutron) radiation field of the PF-24 plasma focus device has been tested. The results of the tests showed that the small-area BCF-12 scintillation detectors can be successfully applied as the detection system of the neutron pinhole camera for the PF-24 device.

  18. Visual enhancement of laparoscopic nephrectomies using the 3-CCD camera

    Science.gov (United States)

    Crane, Nicole J.; Kansal, Neil S.; Dhanani, Nadeem; Alemozaffar, Mehrdad; Kirk, Allan D.; Pinto, Peter A.; Elster, Eric A.; Huffman, Scott W.; Levin, Ira W.

    2006-02-01

    Many surgical techniques are currently shifting from the more conventional, open approach towards minimally invasive laparoscopic procedures. Laparoscopy results in smaller incisions, potentially leading to less postoperative pain and more rapid recoveries . One key disadvantage of laparoscopic surgery is the loss of three-dimensional assessment of organs and tissue perfusion. Advances in laparoscopic technology include high-definition monitors for improved visualization and upgraded single charge coupled device (CCD) detectors to 3-CCD cameras, to provide a larger, more sensitive color palette to increase the perception of detail. In this discussion, we further advance existing laparoscopic technology to create greater enhancement of images obtained during radical and partial nephrectomies in which the assessment of tissue perfusion is crucial but limited with current 3-CCD cameras. By separating the signals received by each CCD in the 3-CCD camera and by introducing a straight forward algorithm, rapid differentiation of renal vessels and perfusion is accomplished and could be performed real time. The newly acquired images are overlaid onto conventional images for reference and comparison. This affords the surgeon the ability to accurately detect changes in tissue oxygenation despite inherent limitations of the visible light image. Such additional capability should impact procedures in which visual assessment of organ vitality is critical.

  19. Mini gamma camera, camera system and method of use

    Science.gov (United States)

    Majewski, Stanislaw; Weisenberger, Andrew G.; Wojcik, Randolph F.

    2001-01-01

    A gamma camera comprising essentially and in order from the front outer or gamma ray impinging surface: 1) a collimator, 2) a scintillator layer, 3) a light guide, 4) an array of position sensitive, high resolution photomultiplier tubes, and 5) printed circuitry for receipt of the output of the photomultipliers. There is also described, a system wherein the output supplied by the high resolution, position sensitive photomultipiler tubes is communicated to: a) a digitizer and b) a computer where it is processed using advanced image processing techniques and a specific algorithm to calculate the center of gravity of any abnormality observed during imaging, and c) optional image display and telecommunications ports.

  20. The ASTRI SST-2M telescope prototype for the Cherenkov Telescope Array: camera DAQ software architecture

    Science.gov (United States)

    Conforti, Vito; Trifoglio, Massimo; Bulgarelli, Andrea; Gianotti, Fulvio; Fioretti, Valentina; Tacchini, Alessandro; Zoli, Andrea; Malaguti, Giuseppe; Capalbi, Milvia; Catalano, Osvaldo

    2014-07-01

    ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is a Flagship Project financed by the Italian Ministry of Education, University and Research, and led by INAF, the Italian National Institute of Astrophysics. Within this framework, INAF is currently developing an end-to-end prototype of a Small Size dual-mirror Telescope. In a second phase the ASTRI project foresees the installation of the first elements of the array at CTA southern site, a mini-array of 7 telescopes. The ASTRI Camera DAQ Software is aimed at the Camera data acquisition, storage and display during Camera development as well as during commissioning and operations on the ASTRI SST-2M telescope prototype that will operate at the INAF observing station located at Serra La Nave on the Mount Etna (Sicily). The Camera DAQ configuration and operations will be sequenced either through local operator commands or through remote commands received from the Instrument Controller System that commands and controls the Camera. The Camera DAQ software will acquire data packets through a direct one-way socket connection with the Camera Back End Electronics. In near real time, the data will be stored in both raw and FITS format. The DAQ Quick Look component will allow the operator to display in near real time the Camera data packets. We are developing the DAQ software adopting the iterative and incremental model in order to maximize the software reuse and to implement a system which is easily adaptable to changes. This contribution presents the Camera DAQ Software architecture with particular emphasis on its potential reuse for the ASTRI/CTA mini-array.

  1. Spectrometry with consumer-quality CMOS cameras.

    Science.gov (United States)

    Scheeline, Alexander

    2015-01-01

    Many modern spectrometric instruments use diode arrays, charge-coupled arrays, or CMOS cameras for detection and measurement. As portable or point-of-use instruments are desirable, one would expect that instruments using the cameras in cellular telephones and tablet computers would be the basis of numerous instruments. However, no mass market for such devices has yet developed. The difficulties in using megapixel CMOS cameras for scientific measurements are discussed, and promising avenues for instrument development reviewed. Inexpensive alternatives to use of the built-in camera are also mentioned, as the long-term question is whether it is better to overcome the constraints of CMOS cameras or to bypass them.

  2. Single Camera Calibration in 3D Vision

    Directory of Open Access Journals (Sweden)

    Caius SULIMAN

    2009-12-01

    Full Text Available Camera calibration is a necessary step in 3D vision in order to extract metric information from 2D images. A camera is considered to be calibrated when the parameters of the camera are known (i.e. principal distance, lens distorsion, focal length etc.. In this paper we deal with a single camera calibration method and with the help of this method we try to find the intrinsic and extrinsic camera parameters. The method was implemented with succes in the programming and simulation environment Matlab.

  3. Small prototype gamma camera based on wavelength-shifting fibres

    Science.gov (United States)

    Castro, I. F.; Soares, A. J.; Moutinho, L. M.; Veloso, J. F. C. A.

    2012-01-01

    We are studying and developing a small field of view gamma camera based on wavelength-shifting optical fibres coupled to both sides of an inorganic scintillation crystal and using for the light readout highly sensitive photon detectors, namely silicon photomultipliers (SiPMs) and high efficiency multi-anode photomultiplier tubes (MaPMTs). The coupling of the fibres in orthogonal directions allows obtaining 2D position information, while the energy signal is provided by a PMT. A first prototype laboratory system has been developed using a custom-made 50 × 50 × 3 mm3 CsI(Na) crystal with embedded 1 mm diameter fibres and reading out the light from several fibres in each direction, both with individual SiPMs and with a MaPMT. Proof-of-concept studies and results obtained with these systems using 57Co are presented and compared. The application of optical fibres combined with highly sensitive SiPMs or MaPMTs as light sensors in a compact gamma camera has the potential to improve the spatial resolution to the 1-2 mm FWHM level, thus improving the sensitivity of typical scintigraphy techniques and making such camera clinically useful. Results demonstrate the feasibility and imaging capability of the system using both types of photon detectors for imaging. In the case of SiPMs, a temperature cooling system is necessary to improve the SNR and consequently achieve a better imaging performance. The development of larger prototypes with 10 × 10 cm2 and 12 × 12 cm2 is under way, using 1 mm2 SiPMs and 64 anode PMTs, respectively.

  4. First Avalanche-photodiode camera test (FACT): A novel camera using G-APDs for the observation of very high-energy {gamma}-rays with Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Braun, I. [ETH Zurich, CH-8093 Zurich (Switzerland); Commichau, S.C. [ETH Zurich, CH-8093 Zurich (Switzerland)], E-mail: commichau@phys.ethz.ch; Rissi, M. [ETH Zurich, CH-8093 Zurich (Switzerland); Backes, M. [Dortmund University of Technology, D-44221 Dortmund (Germany); Biland, A. [ETH Zurich, CH-8093 Zurich (Switzerland); Bretz, T. [University of Wuerzburg, D-97074 Wuerzburg (Germany); Britvitch, I.; Commichau, V.; Gunten, H. von; Hildebrand, D.; Horisberger, U.; Kranich, D. [ETH Zurich, CH-8093 Zurich (Switzerland); Lorenz, E. [ETH Zurich, CH-8093 Zurich (Switzerland); Max-Planck-Institut fuer Physik, D-80805 Muenchen (Germany); Lustermann, W. [ETH Zurich, CH-8093 Zurich (Switzerland); Mannheim, K. [University of Wuerzburg, D-97074 Wuerzburg (Germany); Neise, D. [Dortmund University of Technology, D-44221 Dortmund (Germany); Pauss, F. [ETH Zurich, CH-8093 Zurich (Switzerland); Pohl, M. [University of Geneva, CH-1211 Geneva (Switzerland); Renker, D. [Paul Scherrer Institut (PSI) Villigen, CH-5232 Villigen (Switzerland); Rhode, W. [Dortmund University of Technology, D-44221 Dortmund (Germany)] (and others)

    2009-10-21

    We present a project for a novel camera using Geiger-mode Avalanche Photodiodes (G-APDs), to be installed in a small telescope (former HEGRA CT3) on the MAGIC site in La Palma (Canary Island, Spain). This novel type of semiconductor photon detector provides several superior features compared to conventional photomultiplier tubes (PMTs). The most promising one is a much higher Photon Detection Efficiency.

  5. Design of a Compton camera for 3D prompt-{gamma} imaging during ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Roellinghoff, F., E-mail: roelling@ipnl.in2p3.fr [Universite de Lyon, F-69622 Lyon (France); Universite Lyon 1 and CNRS/IN2P3, UMR 5822, IPNL, F-69622 Villeurbanne (France); INSA-Lyon Laboratory of Nondestructive Testing using Ionizing Radiation (CNDRI), F-69621 Villeurbanne Cedex (France); Richard, M.-H., E-mail: mrichard@ipnl.in2p3.fr [Universite de Lyon, F-69622 Lyon (France); Universite Lyon 1 and CNRS/IN2P3, UMR 5822, IPNL, F-69622 Villeurbanne (France); INSA-Lyon Laboratory of Nondestructive Testing using Ionizing Radiation (CNDRI), F-69621 Villeurbanne Cedex (France); Chevallier, M.; Constanzo, J.; Dauvergne, D. [Universite de Lyon, F-69622 Lyon (France); Universite Lyon 1 and CNRS/IN2P3, UMR 5822, IPNL, F-69622 Villeurbanne (France); Freud, N. [INSA-Lyon Laboratory of Nondestructive Testing using Ionizing Radiation (CNDRI), F-69621 Villeurbanne Cedex (France); Henriquet, P.; Le Foulher, F. [Universite de Lyon, F-69622 Lyon (France); Universite Lyon 1 and CNRS/IN2P3, UMR 5822, IPNL, F-69622 Villeurbanne (France); Letang, J.M. [INSA-Lyon Laboratory of Nondestructive Testing using Ionizing Radiation (CNDRI), F-69621 Villeurbanne Cedex (France); Montarou, G. [LPC, CNRS/IN2P3, Clermont-F. University (France); Ray, C.; Testa, E.; Testa, M. [Universite de Lyon, F-69622 Lyon (France); Universite Lyon 1 and CNRS/IN2P3, UMR 5822, IPNL, F-69622 Villeurbanne (France); Walenta, A.H. [Uni-Siegen, FB Physik, Emmy-Noether Campus, D-57068 Siegen (Germany)

    2011-08-21

    We investigate, by means of Geant4 simulations, a real-time method to control the position of the Bragg peak during ion therapy, based on a Compton camera in combination with a beam tagging device (hodoscope) in order to detect the prompt gamma emitted during nuclear fragmentation. The proposed set-up consists of a stack of 2 mm thick silicon strip detectors and a LYSO absorber detector. The {gamma} emission points are reconstructed analytically by intersecting the ion trajectories given by the beam hodoscope and the Compton cones given by the camera. The camera response to a polychromatic point source in air is analyzed with regard to both spatial resolution and detection efficiency. Various geometrical configurations of the camera have been tested. In the proposed configuration, for a typical polychromatic photon point source, the spatial resolution of the camera is about 8.3 mm FWHM and the detection efficiency 2.5x10{sup -4} (reconstructable photons/emitted photons in 4{pi}). Finally, the clinical applicability of our system is considered and possible starting points for further developments of a prototype are discussed.

  6. A camera for imaging hard x-rays from suprathermal electrons during lower hybrid current drive on PBX-M

    Energy Technology Data Exchange (ETDEWEB)

    von Goeler, S.; Kaita, R.; Bernabei, S.; Davis, W.; Fishman, H.; Gettelfinger, G.; Ignat, D.; Roney, P.; Stevens, J.; Stodiek, W. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Jones, S.; Paoletti, F. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center); Petravich, G. (Hungarian Academy of Sciences, Budapest (Hungary). Central Research Inst. for Physics); Rimini,

    1993-05-01

    During lower hybrid current drive (LHCD), suprathermal electrons are generated that emit hard X-ray bremsstrahlung. A pinhole camera has been installed on the PBX-M tokamak that records 128 [times] 128 pixel images of the bremsstrahlung with a 3 ms time resolution. This camera has identified hollow radiation profiles on PBX-M, indicating off-axis current drive. The detector is a 9in. dia. intensifier. A detailed account of the construction of the Hard X-ray Camera, its operation, and its performance is given.

  7. Automatic inference of geometric camera parameters and intercamera topology in uncalibrated disjoint surveillance cameras

    OpenAIRE

    Hollander, R.J.M. den; Bouma, H.; Baan, J.; Eendebak, P. T.; Rest, J.H.C. van

    2015-01-01

    Person tracking across non-overlapping cameras and other types of video analytics benefit from spatial calibration information that allows an estimation of the distance between cameras and a relation between pixel coordinates and world coordinates within a camera. In a large environment with many cameras, or for frequent ad-hoc deployments of cameras, the cost of this calibration is high. This creates a barrier for the use of video analytics. Automating the calibration allows for a short conf...

  8. Automatic calibration method for plenoptic camera

    Science.gov (United States)

    Luan, Yinsen; He, Xing; Xu, Bing; Yang, Ping; Tang, Guomao

    2016-04-01

    An automatic calibration method is proposed for a microlens-based plenoptic camera. First, all microlens images on the white image are searched and recognized automatically based on digital morphology. Then, the center points of microlens images are rearranged according to their relative position relationships. Consequently, the microlens images are located, i.e., the plenoptic camera is calibrated without the prior knowledge of camera parameters. Furthermore, this method is appropriate for all types of microlens-based plenoptic cameras, even the multifocus plenoptic camera, the plenoptic camera with arbitrarily arranged microlenses, or the plenoptic camera with different sizes of microlenses. Finally, we verify our method by the raw data of Lytro. The experiments show that our method has higher intelligence than the methods published before.

  9. Task analysis of laparoscopic camera control schemes.

    Science.gov (United States)

    Ellis, R Darin; Munaco, Anthony J; Reisner, Luke A; Klein, Michael D; Composto, Anthony M; Pandya, Abhilash K; King, Brady W

    2016-12-01

    Minimally invasive surgeries rely on laparoscopic camera views to guide the procedure. Traditionally, an expert surgical assistant operates the camera. In some cases, a robotic system is used to help position the camera, but the surgeon is required to direct all movements of the system. Some prior research has focused on developing automated robotic camera control systems, but that work has been limited to rudimentary control schemes due to a lack of understanding of how the camera should be moved for different surgical tasks. This research used task analysis with a sample of eight expert surgeons to discover and document several salient methods of camera control and their related task contexts. Desired camera placements and behaviours were established for two common surgical subtasks (suturing and knot tying). The results can be used to develop better robotic control algorithms that will be more responsive to surgeons' needs. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Characterization of the Series 1000 Camera System

    Energy Technology Data Exchange (ETDEWEB)

    Kimbrough, J; Moody, J; Bell, P; Landen, O

    2004-04-07

    The National Ignition Facility requires a compact network addressable scientific grade CCD camera for use in diagnostics ranging from streak cameras to gated x-ray imaging cameras. Due to the limited space inside the diagnostic, an analog and digital input/output option in the camera controller permits control of both the camera and the diagnostic by a single Ethernet link. The system consists of a Spectral Instruments Series 1000 camera, a PC104+ controller, and power supply. The 4k by 4k CCD camera has a dynamic range of 70 dB with less than 14 electron read noise at a 1MHz readout rate. The PC104+ controller includes 16 analog inputs, 4 analog outputs and 16 digital input/output lines for interfacing to diagnostic instrumentation. A description of the system and performance characterization is reported.

  11. Demonstration of a passive, low-noise, millimeter-wave detector array for imaging

    Science.gov (United States)

    Wikner, David; Grossman, Erich

    2009-05-01

    The design of a millimeter-wave (MMW) camera is presented. The camera is meant to serve as a demonstration platform for a new 32-channel MMW detector array that requires no pre-amplification prior to detection. The Army Research Laboratory (ARL) and National Institute of Standards and Technology (NIST) have worked with the Defense Advanced Research Projects Agency and several contractors for four years to develop an affordable MMW detector array technology suitable for use in a large staring array. The camera described uses one particular embodiment of detector array that resulted from the program. This paper reviews the design of the MMW optics that will be used to form imagery with the linear array and the tradeoffs made in that design. Also presented are the results of laboratory tests of the detector array that were made at both ARL and NIST.

  12. The test of intrinsic uniformity is one of the basic tests to check the status of the detectors of gamma cameras, and as such is contained in RD 1 841/1997 Quality Control in Nuclear Medicine; Protocolo NEMA para el calculo de la uniformidad intrinsica en gamma-camaras: aplicacion y comparacion con el software del fabricante

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Soto, X. L.; Gonzalez Ruiz, C.; Lopez-Boto, M. A.; Polo Cezon, R.

    2015-07-01

    Spanish Protocol Quality Control Instrumentation in Nuclear Medicine provides guidelines for conducting this test, similar to those established in the NEMA protocol NEMA Protocol for the calculation of the uniformity intrinsic in GAMMA cameras: application and comparison with the SQFTWARE of the manufacturer. it is advisable to conduct a study to ensure that the results for the test of intrinsic uniformity of the software provided by the equipment manufacturer are equivalent to those obtained by applying the protocol recommended by the SEFM before using this software for performing quality control. (Author)

  13. Comparison of flash lidar detector options

    Science.gov (United States)

    McManamon, Paul F.; Banks, Paul; Beck, Jeffrey; Fried, Dale G.; Huntington, Andrew S.; Watson, Edward A.

    2017-03-01

    Three lidar receiver technologies using the total laser energy required to perform a set of imaging tasks are compared. The tasks are combinations of two collection types (3-D mapping from near and far), two scene types (foliated and unobscured), and three types of data products (geometry only, geometry plus 3-bit intensity, and geometry plus 6-bit intensity). The receiver technologies are based on Geiger mode avalanche photodiodes (GMAPD), linear mode avalanche photodiodes (LMAPD), and optical time-of-flight lidar, which combine rapid polarization rotation of the image and dual low-bandwidth cameras to generate a 3-D image. We choose scenarios to highlight the strengths and weaknesses of various lidars. We consider HgCdTe and InGaAs variations of LMAPD cameras. The InGaAs GMAPD and the HgCdTe LMAPD cameras required the least energy to 3-D map both scenarios for bare earth, with the GMAPD taking slightly less energy. We comment on the strengths and weaknesses of each receiver technology. Six bits of intensity gray levels requires substantial energy using all camera modalities.

  14. protoDUNE-Single Phase and protDUNE-DualPhase

    CERN Multimedia

    Brice, Maximilien

    2016-01-01

    At the EHN1 two big 8m x 8m x8m detector prototypes (protoDUNE-Single Phase and protDUNE-DualPhase) are being constructed. The aim is to test technologies and detector performances for DUNE, a new generation of LBN neutr

  15. Radiometric calibration for MWIR cameras

    Science.gov (United States)

    Yang, Hyunjin; Chun, Joohwan; Seo, Doo Chun; Yang, Jiyeon

    2012-06-01

    Korean Multi-purpose Satellite-3A (KOMPSAT-3A), which weighing about 1,000 kg is scheduled to be launched in 2013 and will be located at a sun-synchronous orbit (SSO) of 530 km in altitude. This is Korea's rst satellite to orbit with a mid-wave infrared (MWIR) image sensor, which is currently being developed at Korea Aerospace Research Institute (KARI). The missions envisioned include forest re surveillance, measurement of the ocean surface temperature, national defense and crop harvest estimate. In this paper, we shall explain the MWIR scene generation software and atmospheric compensation techniques for the infrared (IR) camera that we are currently developing. The MWIR scene generation software we have developed taking into account sky thermal emission, path emission, target emission, sky solar scattering and ground re ection based on MODTRAN data. Here, this software will be used for generating the radiation image in the satellite camera which requires an atmospheric compensation algorithm and the validation of the accuracy of the temperature which is obtained in our result. Image visibility restoration algorithm is a method for removing the eect of atmosphere between the camera and an object. This algorithm works between the satellite and the Earth, to predict object temperature noised with the Earth's atmosphere and solar radiation. Commonly, to compensate for the atmospheric eect, some softwares like MODTRAN is used for modeling the atmosphere. Our algorithm doesn't require an additional software to obtain the surface temperature. However, it needs to adjust visibility restoration parameters and the precision of the result still should be studied.

  16. Golden Jubilee photos: A New Class of Detectors

    CERN Multimedia

    2004-01-01

    In the 1960s, detection in particle physics mainly meant examining millions of photographs from bubble chambers or spark chambers. This was slow, labour intensive and not suitable for studies into rare phenomena, so there was a bottleneck that could have affected further progress in high energy physics. The transistor revolution triggered new ideas. While a camera could detect a spark, a detector wire connected to an amplifier could detect a much smaller effect. In 1968, Georges Charpak developed the 'multiwire proportional chamber', a gas-filled box with a large number of parallel detector wires, each connected to individual amplifiers. Linked to a computer, it could achieve a counting rate a thousand times better than existing techniques - without a camera in sight. Today practically every experiment in particle physics uses some type of track detector that is based on the principle of the multiwire proportional chamber. The technology is also used in many other fields using ionising radiation such as biol...

  17. Detection of non-classical space-time correlations with a novel type of single-photon camera

    CERN Document Server

    Just, Felix; Cavanna, Andrea; Michel, Thilo; Gleixner, Thomas; Taheri, Michael; Vallerga, John; Campbell, Michael; Tick, Timo; Anton, Gisela; Chekhova, Maria V; Leuchs, Gerd

    2014-01-01

    During the last decades, multi-pixel detectors have been developed capable of registering single photons. The newly developed Hybrid Photon Detector camera has a remarkable property that it has not only spatial but also temporal resolution. In this work, we use this device for the detection of non-classical light from spontaneous parametric down-conversion and use two-photon correlations for the absolute calibration of its quantum efficiency.

  18. Wide Field Camera 3: A Powerful New Imager for the Hubble Space Telescope

    Science.gov (United States)

    Kimble, Randy

    2008-01-01

    Wide Field Camera 3 (WFC3) is a powerful UV/visible/near-infrared camera in development for installation into the Hubble Space Telescope during upcoming Servicing Mission 4. WFC3 provides two imaging channels. The UVIS channel incorporates a 4096 x 4096 pixel CCD focal plane with sensitivity from 200 to 1000 nm. The IR channel features a 1024 x 1024 pixel HgCdTe focal plane covering 850 to 1700 nm. We report here on the design of the instrument, the performance of its flight detectors, results of the ground test and calibration program, and the plans for the Servicing Mission installation and checkout.

  19. Cryogenic mechanism for ISO camera

    Science.gov (United States)

    Luciano, G.

    1987-12-01

    The Infrared Space Observatory (ISO) camera configuration, architecture, materials, tribology, motorization, and development status are outlined. The operating temperature is 2 to 3 K, at 2.5 to 18 microns. Selected material is a titanium alloy, with MoS2/TiC lubrication. A stepping motor drives the ball-bearing mounted wheels to which the optical elements are fixed. Model test results are satisfactory, and also confirm the validity of the test facilities, particularly for vibration tests at 4K.

  20. The Flutter Shutter Camera Simulator

    Directory of Open Access Journals (Sweden)

    Yohann Tendero

    2012-10-01

    Full Text Available The proposed method simulates an embedded flutter shutter camera implemented either analogically or numerically, and computes its performance. The goal of the flutter shutter is to make motion blur invertible, by a "fluttering" shutter that opens and closes on a well chosen sequence of time intervals. In the simulations the motion is assumed uniform, and the user can choose its velocity. Several types of flutter shutter codes are tested and evaluated: the original ones considered by the inventors, the classic motion blur, and finally several analog or numerical optimal codes proposed recently. In all cases the exact SNR of the deconvolved result is also computed.