WorldWideScience

Sample records for dual continuum matrix-fractures

  1. 3D asynchronous particle tracking in single and dual continuum matrix-fractures. Application to nuclear waste storage; Modelisation 3D du transport particulaire asynchrone en simple et double continuum matrice-fractures: application au stockage de dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Lam, M.Ph

    2008-06-15

    This PhD research was conducted as a collaboration between Laboratoire National d'Hydraulique et Environnement (LNHE) from EDF R and D and the Institut de Mecanique des Fluides de Toulouse (IMFT) in the frame of a CIFRE contract. This PhD thesis aims at providing LNHE a reliable numerical model to study the feasibility of a nuclear waste storage in deep geological structures. The main focus of the thesis is put on developing and implementing a Random Walk Particle Method (RWPM) to model contaminant transport in 3D heterogeneous and fractured porous media. In its first part, the report presents the Lagrangian particle tracking method used to model transport in heterogeneous media with a direct high resolution approach. The solute plume is discretized into concentration packets: particles. The model tracks each particle based on a time-explicit displacement algorithm according to an advective component and a diffusive random component. The method is implemented on a hydraulic model discretized on a 3D unstructured tetrahedral finite element mesh. We focus on techniques to overcome problems due to the discontinuous transport parameters and the unstructured mesh. First, we introduce an asynchronous time-stepping approach to deal with the numerical and overshoot errors that occur with conventional RWPM. Then, a filtering method is applied to smooth discontinuous transport parameters (pre-processing). Finally, once the particle displacements are computed, we propose several filtering and sampling methods to obtain concentrations from particle positions (post-processing). Applications of these methods are presented with cases of tracer advection-dispersion in homogeneous and heterogeneous media. For dense fracture networks, direct high resolution methods are very time consuming and need a lot of computational resources. So, as an alternative to the discrete approach, a dual-continuum representation is used, in the second part of the report, to describe the porous

  2. Matrix-fracture interactions in dual porosity simulation

    Energy Technology Data Exchange (ETDEWEB)

    Shook, G.M.

    1996-01-01

    A new method for simulating flow in fractured media is presented which uses a truncated version of the analytical solution to resolve pressure transients in the rock matrix. The point at which the series solution may be truncated is a known function of the problem, and may therefore be readily determined. Furthermore, the functional form of the method is essentially dimension-independent, and implementation of the method requires only minimal modification to an existing dual porosity simulator. Three test cases are presented comparing results from fine grid simulations, Warren and Root simulations, and the new formulation. In each of the three cases presented, excellent agreement with the fine grid simulations is obtained using the new method. The W&R formulation exhibits excessive error throughout the simulated time, first underpredicting outflow rates, and then overpredicting rates. The error using the W&R formulation is largest for 3-D fracture networks, but is large for all cases tested.

  3. Acceleration of Gas Flow Simulations in Dual-Continuum Porous Media Based on the Mass-Conservation POD Method

    KAUST Repository

    Wang, Yi

    2017-09-12

    Reduced-order modeling approaches for gas flow in dual-porosity dual-permeability porous media are studied based on the proper orthogonal decomposition (POD) method combined with Galerkin projection. The typical modeling approach for non-porous-medium liquid flow problems is not appropriate for this compressible gas flow in a dual-continuum porous media. The reason is that non-zero mass transfer for the dual-continuum system can be generated artificially via the typical POD projection, violating the mass-conservation nature and causing the failure of the POD modeling. A new POD modeling approach is proposed considering the mass conservation of the whole matrix fracture system. Computation can be accelerated as much as 720 times with high precision (reconstruction errors as slow as 7.69 × 10−4%~3.87% for the matrix and 8.27 × 10−4%~2.84% for the fracture).

  4. Inverse modeling of rainfall infiltration with a dual permeability approach using different matrix-fracture coupling variants.

    Science.gov (United States)

    Blöcher, Johanna; Kuraz, Michal

    2017-04-01

    In this contribution we propose implementations of the dual permeability model with different inter-domain exchange descriptions and metaheuristic optimization algorithms for parameter identification and mesh optimization. We compare variants of the coupling term with different numbers of parameters to test if a reduction of parameters is feasible. This can reduce parameter uncertainty in inverse modeling, but also allow for different conceptual models of the domain and matrix coupling. The different variants of the dual permeability model are implemented in the open-source objective library DRUtES written in FORTRAN 2003/2008 in 1D and 2D. For parameter identification we use adaptations of the particle swarm optimization (PSO) and Teaching-learning-based optimization (TLBO), which are population-based metaheuristics with different learning strategies. These are high-level stochastic-based search algorithms that don't require gradient information or a convex search space. Despite increasing computing power and parallel processing, an overly fine mesh is not feasible for parameter identification. This creates the need to find a mesh that optimizes both accuracy and simulation time. We use a bi-objective PSO algorithm to generate a Pareto front of optimal meshes to account for both objectives. The dual permeability model and the optimization algorithms were tested on virtual data and field TDR sensor readings. The TDR sensor readings showed a very steep increase during rapid rainfall events and a subsequent steep decrease. This was theorized to be an effect of artificial macroporous envelopes surrounding TDR sensors creating an anomalous region with distinct local soil hydraulic properties. One of our objectives is to test how well the dual permeability model can describe this infiltration behavior and what coupling term would be most suitable.

  5. On Mathematical Aspects of Dual Variables in Continuum Mechanics. Part 1 : Mathematical Principles

    NARCIS (Netherlands)

    Giessen, E. van der; Kollmann, F.G.

    1996-01-01

    In this paper consisting of two parts we consider mathematical aspects of dual variables appearing in continuum mechanics. Tensor calculus on manifolds as introduced into continuum mechanics is used as a point of departure. This mathematical formalism leads to additional structure of continuum

  6. On Mathematical Aspects of Dual Variables in Continuum Mechanics. Part 1 : Mathematical Principles

    NARCIS (Netherlands)

    Giessen, E. van der; Kollmann, F.G.

    1996-01-01

    In this paper consisting of two parts we consider mathematical aspects of dual variables appearing in continuum mechanics. Tensor calculus on manifolds as introduced into continuum mechanics is used as a point of departure. This mathematical formalism leads to additional structure of continuum mecha

  7. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Canamon, I.; Javier Elorza, F. [Universidad Politecnica de Madrid, Dept. de Matematica Aplicada y Metodos Informaticas, ETSI Minas (UPM) (Spain); Ababou, R. [Institut de Mecanique des Fluides de Toulouse (IMFT), 31 (France)

    2007-07-01

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB{sup R}, for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  8. A dual flowing continuum approach to model denitrification experiments in porous media colonized by biofilms

    Science.gov (United States)

    Delay, Frederick; Porel, Gilles; Chatelier, Marion

    2013-07-01

    We present a modeling exercise of solute transport and biodegradation in a coarse porous medium widely colonized by a biofilm phase. Tracer tests in large laboratory columns using both conservative (fluorescein) and biodegradable (nitrate) solutes are simulated by means of a dual flowing continuum approach. The latter clearly distinguishes concentrations in a flowing porous phase from concentrations conveyed in the biofilm. With this conceptual setting, it becomes possible to simulate the sharp front of concentrations at early times and the flat tail of low concentrations at late times observed on the experimental breakthrough curves. Thanks to the separation of flow in two phases at different velocities, dispersion coefficients in both flowing phases keep reasonable values with some physical meaning. This is not the case with simpler models based on a single continuum (eventually concealing dead-ends), for which inferred dispersivity may reach the unphysical value of twice the size of the columns. We also show that the behavior of the dual flowing continuum is mainly controlled by the relative fractions of flow passing in each phase and the rate of mass transfer between phases. These parameters also condition the efficiency of nitrate degradation, the degradation rate in a well-seeded medium being a weakly sensitive parameter. Even though the concept of dual flowing continuum appears promising for simulating transport in complex porous media, its inversion onto experimental data really benefits from attempts with simpler models providing a rough pre-evaluation of parameters such as porosity and mean fluid velocity in the system.

  9. Comparative study of shale-gas production using single- and dual-continuum approaches

    KAUST Repository

    El-Amin, Mohamed

    2017-07-06

    In this paper, we explore the possibility of specifying the ideal hypothetical positions of matrices blocks and fractures in fractured porous media as a single-continuum reservoir model in a way that mimics the dual-porosity dual-permeability (DPDP) configuration. In order to get an ideal mimic, we use the typical configuration and geometrical hypotheses of the DPDP model for the SDFM. Unlike the DPDP model which consists of two equations for the two-continuum coupled by a transfer term, the proposed single-domain fracture model (SDFM) model consists of a single equation for the single-continuum. Each one of the two models includes slippage effect, adsorption, Knudsen diffusion, geomechanics, and thermodynamics deviation factor. For the thermodynamics calculations, the cubic Peng-Robinson equation of state is employed. The diffusion model is verified by calculating the total mass flux through a nanopore by combination of slip flow and Knudsen diffusion and compared with experimental data. A semi-implicit scheme is used for the time discretization while the thermodynamics equations are updated explicitly. The spatial discretization is done using the cell-centered finite difference (CCFD) method. Finally, numerical experiments are performed under variations of the physical parameters. Several results are discussed such as pressure, production rate and cumulative production. We compare the results of the two models using the same dimensions and physical and computational parameters. We found that the DPDP and the SDFM models production rate and cumulative production behave similarly with approximately the same slope but with some differences in values. Moreover, we found that the poroelasticity effect reduces the production rate and consequently the cumulative production rate but in the SDFM model the reservoir takes more time to achieve depletion than the DPDP model. The normal fracture factor which appears in the transfer term of the DPDP model is adjusted against

  10. Flow and transport in the drift shadow in a dual-continuum model

    Energy Technology Data Exchange (ETDEWEB)

    Houseworth, J.E.; Finsterle, S.; Bodvarsson, G.S.

    2002-09-01

    The current concept for high-level radioactive waste disposal at Yucca Mountain is for the waste to be placed in underground tunnels (or drifts) in the middle of a thick unsaturated zone. Flow modeling and field testing have shown that not all flow encountering a drift will seep into the drift. The underlying reason for the diversion of unsaturated flow around a drift is that capillary forces in the fractures and matrix prevent water entry into the drift unless the capillary pressure in the rock decreases sufficiently to allow for gravity forces to overcome the capillary barrier. As a result of the capillary barrier effect, flow tends to be diverted around the drift, affecting the flow pattern beneath the drift. For some distance beneath the drift, water saturation and flux are reduced. This drift shadow zone is much more pronounced in the fractures than in the matrix due to dominance of gravity over capillary forces in the fractures. Moving downward, away from the drift, the shadow zone asymptotically re-equilibrates to the undisturbed flow conditions due to capillary forces. The behavior of radionuclide transport in this zone of reduced flow is investigated here because this will affect the amount of time required for radionuclides to penetrate the unsaturated zone. The delay of radio nuclide movement in the geosphere is one aspect of the potential repository system that could limit public exposure to radioactive waste. The behavior of flow and transport are calculated using a two-dimensional, drift-scale dual permeability model extending to nine drift diameters below the potential waste emplacement drift. The flow model is first compared with an analytical model for a single-continuum. Then the dual-continuum flow model is investigated with respect to drift-scale and mountain-scale property sets. Transport calculations are performed for a wide range of flow conditions and for different aqueous radionuclides and colloids. Findings indicate that transport times

  11. Analytical 1-D dual-porosity equivalent solutions to 3-D discrete single-continuum models. Application to karstic spring hydrograph modelling

    CERN Document Server

    Cornaton, F

    2011-01-01

    One dimensional analytical porosity-weighted solutions of the dual-porosity model are derived, providing insights on how to relate exchange and storage coefficients to the volumetric density of the high-permeability medium. It is shown that porosity-weighted storage and exchange coefficients are needed when handling highly heterogeneous systems - such as karstic aquifers - using equivalent dual-porosity models. The sensitivity of these coefficients is illustrated by means of numerical experiments with theoretical karst systems. The presented 1-D dual-porosity analytical model is used to reproduce the hydraulic responses of reference 3-D karst aquifers, modelled by a discrete single-continuum approach. Under various stress conditions, simulation results show the relations between the dual-porosity model coefficients and the structural features of the discrete single-continuum model. The calibration of the equivalent 1-D analytical dual-porosity model on reference hydraulic responses confirms the dependence of ...

  12. Category-boundary effects and speeded sorting with a harmonic musical-interval continuum: evidence for dual processing.

    Science.gov (United States)

    Zatorre, R J

    1983-10-01

    In the first experiment, a continuum of 10 harmonic musical intervals was constructed from a minor to a major third. Four pairs of stimuli with constant physical distances were presented to seven musicians in a two-interval forced-choice discrimination task. Either silence, an interfering tone, or a noise burst was interposed between the two stimuli in a pair. Unbiased discriminability was found to be consistently higher for pairs straddling the boundary between two categories than for the endpoint pairs. The interfering tone lowered overall discrimination but left the shape of the function unchanged, whereas the noise burst had no effect. Experiment 2 used a similar paradigm, but the continuum consisted of the single tone that had cued the minor-major distinction for intervals. Discrimination of this series did not show consistent changes as a function of continuum position. In Experiment 3, triads that varied in either interval or overall pitch were presented to musicians for sorting according to one dimension or another. The result was that there were much longer latencies to sort according to interval when pitch varied irrelevantly than vice versa. These results demonstrate that there are changes in discriminability associated with learned categories and suggest that there may be two hierarchically organized stages. A dual-processing model is discussed in which the listener has available both auditory and categorical information.

  13. Subsurface Flow Modeling in Single and Dual Continuum Anisotropic Porous Media using the Multipoint Flux Approximation Method

    KAUST Repository

    Negara, Ardiansyah

    2015-05-01

    Anisotropy of hydraulic properties of the subsurface geologic formations is an essential feature that has been established as a consequence of the different geologic processes that undergo during the longer geologic time scale. With respect to subsurface reservoirs, in many cases, anisotropy plays significant role in dictating the direction of flow that becomes no longer dependent only on driving forces like the pressure gradient and gravity but also on the principal directions of anisotropy. Therefore, there has been a great deal of motivation to consider anisotropy into the subsurface flow and transport models. In this dissertation, we present subsurface flow modeling in single and dual continuum anisotropic porous media, which include the single-phase groundwater flow coupled with the solute transport in anisotropic porous media, the two-phase flow with gravity effect in anisotropic porous media, and the natural gas flow in anisotropic shale reservoirs. We have employed the multipoint flux approximation (MPFA) method to handle anisotropy in the flow model. The MPFA method is designed to provide correct discretization of the flow equations for general orientation of the principal directions of the permeability tensor. The implementation of MPFA method is combined with the experimenting pressure field approach, a newly developed technique that enables the solution of the global problem breaks down into the solution of multitude of local problems. The numerical results of the study demonstrate the significant effects of anisotropy of the subsurface formations. For the single-phase groundwater flow coupled with the solute transport modeling in anisotropic porous media, the results shows the strong impact of anisotropy on the pressure field and the migration of the solute concentration. For the two-phase flow modeling with gravity effect in anisotropic porous media, it is observed that the buoyancy-driven flow, which emerges due to the density differences between the

  14. Combining dual-continuum approach with diffusion wave model to include a preferential flow component in hillslope scale modeling of shallow subsurface runoff

    Science.gov (United States)

    Dusek, Jaromir; Vogel, Tomas; Dohnal, Michal; Gerke, Horst H.

    2012-08-01

    In the absence of overland flow, shallow subsurface runoff is one of the most important mechanisms determining hydrological responses of headwater catchments to rainstorms. Subsurface runoff can be triggered by preferential flow of infiltrating water frequently occurring in heterogeneous and structured soils as a basically one-dimensional (1D) vertical process. Any attempt to include effects of preferential flow in hydrological hillslope studies is limited by the fact that the thickness of the permeable soil is mostly small compared to the length of the hillslope. The objective of this study is to describe preferential flow effects on hillslope-scale subsurface runoff by combining a 1D vertical dual-continuum approach with a 1D lateral flow equation. The 1D vertical flow of water in a variably saturated soil is described by a coupled set of Richards' equations and the 1D saturated lateral flow of water on less permeable bedrock by the diffusion wave equation. The numerical solution of the combined model was used to study rainfall-runoff events on the Tomsovska hillslope by comparing simulated runoff with observed trench discharge data. The dual-continuum model generated the observed rapid runoff response, which served as an input for the lateral flow model. The diffusion wave model parameters (i.e., length of the contributing hillslope, effective porosity, and effective hydraulic conductivity) indicate that the hillslope length that contributed to subsurface drainage is relatively short (in the range of 25-50 m). Significant transformation of the 1D vertical inflow signal by lateral flow is expected for longer hillslopes, smaller effective conductivities, and larger effective porosities. The physically-based combined modeling approach allows for a consistent description of both preferential flow in a 1D vertical soil profile and lateral subsurface hillslope flow in the simplest way.

  15. A cubic matrix-fracture geometry model for radial tracer flow in naturally fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Jetzabeth Ramirez-Sabag; Fernando Samaniego V.

    1992-01-01

    This study presents a general solution for the radial flow of tracers in naturally fractured reservoirs, with cubic blocks matrix-fracture geometry. Continuous and finite step injection of chemical and radioactive tracers are considered. The reservoir is treated as being composed of two regions: a mobile where dispersion and convection take place and a stagnant where only diffusion and adsorption are allowed. Radioactive decay is considered in both regions. The model of this study is thoroughly compared under proper simplified conditions to those previously presented in the literature. The coupled matrix to fracture solution in the Laplace space is numerically inverted by means of the Crump algorithm. A detailed validation of the model with respect to solutions previously presented and/or simplified physical conditions solutions (i.e., homogeneous case) or limit solutions (i.e., naturally fractured nearly homogeneous) was carried out. The influence of the three of the main dimensionless parameters that enter into the solution was carefully investigated. A comparison of results for three different naturally fractured systems, vertical fractures (linear flow), horizontal fractures (radial flow) and the cubic geometry model of this study, is presented.

  16. Continuum mechanics

    CERN Document Server

    Spencer, A J M

    2004-01-01

    The mechanics of fluids and the mechanics of solids represent the two major areas of physics and applied mathematics that meet in continuum mechanics, a field that forms the foundation of civil and mechanical engineering. This unified approach to the teaching of fluid and solid mechanics focuses on the general mechanical principles that apply to all materials. Students who have familiarized themselves with the basic principles can go on to specialize in any of the different branches of continuum mechanics. This text opens with introductory chapters on matrix algebra, vectors and Cartesian ten

  17. Continuum Nanofluidics

    DEFF Research Database (Denmark)

    Hansen, Jesper S; Dyre, Jeppe C; Daivis, Peter

    2015-01-01

    This paper introduces the fundamental continuum theory governing momentum transport in isotropic nanofluidic systems. The theory is an extension of the classical Navier-Stokes equation, and includes coupling between translational and rotational degrees of freedom as well as nonlocal response...

  18. Continuum Nanofluidics

    DEFF Research Database (Denmark)

    Hansen, Jesper S; Dyre, Jeppe C; Daivis, Peter;

    2015-01-01

    This paper introduces the fundamental continuum theory governing momentum transport in isotropic nanofluidic systems. The theory is an extension of the classical Navier-Stokes equation, and includes coupling between translational and rotational degrees of freedom as well as nonlocal response...

  19. Extension versus Bending for Continuum Robots

    Directory of Open Access Journals (Sweden)

    George Grimes

    2008-11-01

    Full Text Available In this paper, we analyze the capabilities of a novel class of continuous-backbone ("continuum" robots. These robots are inspired by biological "trunks, and tentacles". However, the capabilities of established continuum robot designs, which feature controlled bending but not extension, fall short of those of their biological counterparts. In this paper, we argue that the addition of controlled extension provides dual and complementary functionality, and correspondingly enhanced performance, in continuum robots. We present an interval-based analysis to show how the inclusion of controllable extension significantly enhances the workspace and capabilities of continuum robots.

  20. Continuum Physics

    CERN Document Server

    Hertel, Peter

    2012-01-01

    This small book on the properties of continuously distributed matter covers a huge field. It sets out the governing principles of continuum physics and illustrates them by carefully chosen examples. These examples comprise structural mechanics and elasticity, fluid media, electricity and optics, thermoelectricity, fluctuation phenomena and more, from Archimedes' principle via Brownian motion to white dwarfs. Metamaterials, pattern formation by reaction-diffusion and surface plasmon polaritons are dealt with as well as classical topics such as Stokes' formula, beam bending and buckling, crystal optics and electro- and magnetooptic effects, dielectric waveguides, Ohm's law, surface acoustic waves, to mention just some.   The set of balance equations for content, flow and production of particles, mass, charge, momentum, energy and entropy is augmented by material, or constitutive equations. They describe entire classes of materials, such as viscid fluids and gases, elastic media, dielectrics or electrical con...

  1. Geometric continuum mechanics and induced beam theories

    CERN Document Server

    R Eugster, Simon

    2015-01-01

    This research monograph discusses novel approaches to geometric continuum mechanics and introduces beams as constraint continuous bodies. In the coordinate free and metric independent geometric formulation of continuum mechanics as well as for beam theories, the principle of virtual work serves as the fundamental principle of mechanics. Based on the perception of analytical mechanics that forces of a mechanical system are defined as dual quantities to the kinematical description, the virtual work approach is a systematic way to treat arbitrary mechanical systems. Whereas this methodology is very convenient to formulate induced beam theories, it is essential in geometric continuum mechanics when the assumptions on the physical space are relaxed and the space is modeled as a smooth manifold. The book addresses researcher and graduate students in engineering and mathematics interested in recent developments of a geometric formulation of continuum mechanics and a hierarchical development of induced beam theories.

  2. Notes on continuum mechanics

    CERN Document Server

    Chaves, Eduardo W V

    2013-01-01

    This publication is aimed at students, teachers, and researchers of Continuum Mechanics and focused extensively on stating and developing Initial Boundary Value equations used to solve physical problems. With respect to notation, the tensorial, indicial and Voigt notations have been used indiscriminately.   The book is divided into twelve chapters with the following topics: Tensors, Continuum Kinematics, Stress, The Objectivity of Tensors, The Fundamental Equations of Continuum Mechanics, An Introduction to Constitutive Equations, Linear Elasticity, Hyperelasticity, Plasticity (small and large deformations), Thermoelasticity (small and large deformations), Damage Mechanics (small and large deformations), and An Introduction to Fluids. Moreover, the text is supplemented with over 280 figures, over 100 solved problems, and 130 references.

  3. Computational Continuum Mechanics

    CERN Document Server

    Shabana, Ahmed A

    2011-01-01

    This text presents the theory of continuum mechanics using computational methods. Ideal for students and researchers, the second edition features a new chapter on computational geometry and finite element analysis.

  4. Introduction to continuum mechanics

    CERN Document Server

    Lai, W Michael; Rubin, David

    1996-01-01

    Introduction to Continuum Mechanics is a recently updated and revised text which is perfect for either introductory courses in an undergraduate engineering curriculum or for a beginning graduate course.Continuum Mechanics studies the response of materials to different loading conditions. The concept of tensors is introduced through the idea of linear transformation in a self-contained chapter, and the interrelation of direct notation, indicial notation, and matrix operations is clearly presented. A wide range of idealized materials are considered through simple static and dynamic problems, a

  5. Fundamentals of continuum mechanics

    CERN Document Server

    Rudnicki, John W

    2014-01-01

    A concise introductory course text on continuum mechanics Fundamentals of Continuum Mechanics focuses on the fundamentals of the subject and provides the background for formulation of numerical methods for large deformations and a wide range of material behaviours. It aims to provide the foundations for further study, not just of these subjects, but also the formulations for much more complex material behaviour and their implementation computationally.  This book is divided into 5 parts, covering mathematical preliminaries, stress, motion and deformation, balance of mass, momentum and energ

  6. Numerical continuum mechanics

    CERN Document Server

    Kukudzhanov, Vladimir N

    2013-01-01

    This work focuses on computational methods in continuum thermomechanics. The text is based on the author's lectures, which ensures a didactical and coherent buildup.The main emphasis is put on the presentation of ideas and qualitative considerations, illustrated by specific examples and applications. Conditions and explanations that are essential for the practical application of methods are discussed thoroughly.

  7. On the Waterbag Continuum

    Science.gov (United States)

    Besse, Nicolas

    2011-02-01

    The aim of this paper is to study the existence of a classical solution for the waterbag model with a continuum of waterbags, which can been viewed as an infinite dimensional system of first-order conservation laws. The waterbag model, which constitutes a special class of exact weak solution of the Vlasov equation, is well known in plasma physics, and its applications in gyrokinetic theory and laser-plasma interaction are very promising. The proof of the existence of a continuum of regular waterbags relies on a generalized definition of hyperbolicity for an integrodifferential hyperbolic system of equations, some results in singular integral operators theory and harmonic analysis, Riemann-Hilbert boundary value problems and energy estimates.

  8. Nonlocal continuum field theories

    CERN Document Server

    2002-01-01

    Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...

  9. Struggles with the Continuum

    CERN Document Server

    Baez, John C

    2016-01-01

    Our assumption that spacetime is a continuum leads to many challenges in mathematical physics. Singularities, divergent integrals and the like threaten many of our favorite theories, from Newtonian gravity to classical electrodynamics, quantum electrodynamics and the Standard Model. In general relativity, singularities are intimately connected to some of the theory's most dramatic successful predictions. We survey these problems and the large amount of work that has gone into dealing with them.

  10. Introduction to continuum mechanics

    CERN Document Server

    Rubin, David; Lai, W Michael

    1994-01-01

    Continuum mechanics studies the response of materials to different loading conditions. The concept of tensors is introduced through the idea of linear transformation in a self-contained chapter, and the interrelation of direct notation, indicial notation and matrix operations is clearly presented. A wide range of idealized materials are considered through simple static and dynamic problems, and the book contains an abundance of illustrative examples and problems, many with solutions. Through the addition of more advanced material (solution of classical elasticity problems, constitutive e

  11. Continuum mechanics of anisotropic materials

    CERN Document Server

    Cowin, Stephen C

    2013-01-01

    Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.

  12. Continuum robots and underactuated grasping

    Directory of Open Access Journals (Sweden)

    N. Giri

    2011-02-01

    Full Text Available We discuss the capabilities of continuum (continuous backbone robot structures in the performance of under-actuated grasping. Continuum robots offer the potential of robust grasps over a wide variety of object classes, due to their ability to adapt their shape to interact with the environment via non-local continuum contact conditions. Furthermore, this capability can be achieved with simple, low degree of freedom hardware. However, there are practical issues which currently limit the application of continuum robots to grasping. We discuss these issues and illustrate via an experimental continuum grasping case study.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  13. Continuum of Care (COC) Areas

    Data.gov (United States)

    Department of Housing and Urban Development — The purpose of the Continuum of Care (CoC) Homeless Assistance Programs is to reduce the incidence of homelessness in CoC communities by assisting homeless...

  14. Nonlocal Theories in Continuum Mechanics

    Directory of Open Access Journals (Sweden)

    M. Jirásek

    2004-01-01

    Full Text Available The purpose of this paper is to explain why the standard continuum theory fails to properly describe certain mechanical phenomena and how the description can be improved by enrichments that incorporate the influence of gradients or weighted spatial averages of strain or of an internal variable. Three typical mechanical problems that require such enrichments are presented: (i dispersion of short elastic waves in heterogeneous or discrete media, (ii size effects in microscale elastoplasticity, in particular with the size dependence of the apparent hardening modulus, and (iii localization of strain and damage in quasibrittle structures and with the resulting transitional size effect. Problems covered in the examples encompass static and dynamic phenomena, linear and nonlinear behavior, and three constitutive frameworks, namely elasticity, plasticity and continuum damage mechanics. This shows that enrichments of the standard continuum theory can be useful in a wide range of mechanical problems. 

  15. Quantum Theory of Continuum Optomechanics

    CERN Document Server

    Rakich, Peter

    2016-01-01

    We present the basic ingredients of continuum optomechanics, i.e. the suitable extension of cavity-optomechanical concepts to the interaction of photons and phonons in an extended waveguide. We introduce a real-space picture and argue which coupling terms may arise in leading order in the spatial derivatives. This picture allows us to discuss quantum noise, dissipation, and the correct boundary conditions at the waveguide entrance. The connections both to optomechanical arrays as well as to the theory of Brillouin scattering in waveguides are highlighted. We identify the 'strong coupling regime' of continuum optomechanics that may be accessible in future experiments.

  16. Lagrangian continuum dynamics in ALEGRA.

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Michael K. W.; Love, Edward

    2007-12-01

    Alegra is an ALE (Arbitrary Lagrangian-Eulerian) multi-material finite element code that emphasizes large deformations and strong shock physics. The Lagrangian continuum dynamics package in Alegra uses a Galerkin finite element spatial discretization and an explicit central-difference stepping method in time. The goal of this report is to describe in detail the characteristics of this algorithm, including the conservation and stability properties. The details provided should help both researchers and analysts understand the underlying theory and numerical implementation of the Alegra continuum hydrodynamics algorithm.

  17. Homogenization of a Cauchy continuum towards a micromorphic continuum

    Science.gov (United States)

    Hütter, Geralf

    2017-02-01

    The micromorphic theory of Eringen and Mindlin, including special cases like strain gradient theory or Cosserat theory, is widely used to model size effects and localization phenomena. The heuristic construction of such theories based on thermodynamic considerations is well-established. However, the identification of corresponding constitutive laws and of the large number of respective constitutive parameters limits the practical application of such theories. In the present contribution, a closed procedure for the homogenization of a Cauchy continuum at the microscale towards a fully micromorphic continuum is derived including explicit definitions of all involved generalized macroscopic stress and deformation measures. The boundary value problem to be solved on the microscale is formulated either for using static or kinematic boundary conditions. The procedure is demonstrated with an example.

  18. An expedition to continuum theory

    CERN Document Server

    Müller, Wolfgang H

    2014-01-01

    This book introduces field theory as required in solid and fluid mechanics as well as in electromagnetism. It also presents the necessary mathematical framework, namely tensor algebra and tensor calculus, by using an inductive approach, which makes it particularly suitable for beginners. In general, the book can be used in undergraduate classes on continuum theory and, more specifically, in courses on continuum mechanics, for students of physics and engineering alike. The benefits for the readers consist of providing a sound basis of the subject as a whole and of training their ability for solving specific problems in a rational manner.  For this purpose the general laws of nature in terms of the balances for mass, momentum, and energy are applied and combined with constitutive relations, which are material specific. Various examples and homework problems illustrate how to use the theory in daily practice. Numerous mini-biographies have been added to the mathematical text for diversion and amusement.

  19. Mathematical Modeling in Continuum Mechanics

    Science.gov (United States)

    Temam, Roger; Miranville, Alain

    2005-06-01

    Temam and Miranville present core topics within the general themes of fluid and solid mechanics. The brisk style allows the text to cover a wide range of topics including viscous flow, magnetohydrodynamics, atmospheric flows, shock equations, turbulence, nonlinear solid mechanics, solitons, and the nonlinear Schrödinger equation. This second edition will be a unique resource for those studying continuum mechanics at the advanced undergraduate and beginning graduate level whether in engineering, mathematics, physics or the applied sciences. Exercises and hints for solutions have been added to the majority of chapters, and the final part on solid mechanics has been substantially expanded. These additions have now made it appropriate for use as a textbook, but it also remains an ideal reference book for students and anyone interested in continuum mechanics.

  20. Continuum representations of cellular solids

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, M.K.

    1993-09-01

    Cellular materials consist of interconnected struts or plates which form cells. The struts or plates are constructed from a variety of metals, polymers, ceramics and wood products. Cellular materials are often used in impact limiters for shipping containers to protect the contents from accidental impact events. These materials exhibit a variety of complex behavior when subjected to crushing loads. This research focuses on the development of continuum representations of cellular solids that can be used in the finite element analysis of shipping container accidents. A significant portion of this work is the development of a new methodology to relate localized deformations to appropriate constitutive descriptions. This methodology provides the insight needed to select constitutive descriptions for cellular solids that capture the localized deformations that are observed experimentally. Constitutive relations are developed for two different cellular materials, aluminum honeycomb and polyurethane foam. These constitutive relations are based on plasticity and continuum damage theories. Plasticity is used to describe the permanent deformation exhibited by both aluminum honeycomb and polyurethane foam. Continuum damage is needed to capture the change in elastic parameters due to cracking of the polyurethane cell wall materials. The new constitutive description of polyurethane foam is implemented in both static and dynamic finite element codes, and analytical and numerical predictions are compared with available experimental data.

  1. Continuum mechanics of electromagnetic solids

    CERN Document Server

    Maugin, GA

    1988-01-01

    This volume is a rigorous cross-disciplinary theoretical treatment of electromechanical and magnetomechanical interactions in elastic solids. Using the modern style of continuum thermomechanics (but without excessive formalism) it starts from basic principles of mechanics and electromagnetism, and goes on to unify these two fields in a common framework. It treats linear and nonlinear static and dynamic problems in a variety of elastic solids such as piezoelectrics, electricity conductors, ferromagnets, ferroelectrics, ionic crystals and ceramics. Chapters 1-3 are introductory, describing the e

  2. Continuum modeling of myxobacteria clustering

    Science.gov (United States)

    Harvey, Cameron W.; Alber, Mark; Tsimring, Lev S.; Aranson, Igor S.

    2013-03-01

    In this paper we develop a continuum theory of clustering in ensembles of self-propelled inelastically colliding rods with applications to collective dynamics of common gliding bacteria Myxococcus xanthus. A multi-phase hydrodynamic model that couples densities of oriented and isotropic phases is described. This model is used for the analysis of an instability that leads to spontaneous formation of directionally moving dense clusters within initially dilute isotropic ‘gas’ of myxobacteria. Numerical simulations of this model confirm the existence of stationary dense moving clusters and also elucidate the properties of their collisions. The results are shown to be in a qualitative agreement with experiments.

  3. Records Continuum: An Emerging Recordkeeping Theory

    Directory of Open Access Journals (Sweden)

    Chi-Shiou Lin

    2007-12-01

    Full Text Available This paper introduces Records Continuum, a recordkeeping theory emerging from the Australian archives and records management studies which gained international recognition in the 1990s. This paper first describes the background of the theory development. It goes on to explicate the theses of continuum theorists including the Records Continuum Diagram developed by Frank Upward. Finally, it offers some critiques on the theoretical propositions and discusses their implications on records and archival practices. [Article content in Chinese

  4. ON THE CONTINUUM MODELING OF CARBON NANOTUBES

    Institute of Scientific and Technical Information of China (English)

    张鹏; 黄永刚; Philippe H.Geubelle; 黄克智

    2002-01-01

    We have recently proposed a nanoscale continuum theory for carbonnanotubes. The theory links continuum analysis with atomistic modeling by incor-porating interatomic potentials and atomic structures of carbon nanotubes directlyinto the constitutive law. Here we address two main issues involved in setting upthe nanoscale continuum theory for carbon nanotubes, namely the multi-body in-teratomic potentials and the lack of centrosymmetry in the nanotube structure. Weexplain the key ideas behind these issues in establishing a nanoscale continuum theoryin terms of interatomic potentials and atomic structures.

  5. Bound states in the continuum

    Science.gov (United States)

    Hsu, Chia Wei; Zhen, Bo; Stone, A. Douglas; Joannopoulos, John D.; Soljačić, Marin

    2016-09-01

    Bound states in the continuum (BICs) are waves that remain localized even though they coexist with a continuous spectrum of radiating waves that can carry energy away. Their very existence defies conventional wisdom. Although BICs were first proposed in quantum mechanics, they are a general wave phenomenon and have since been identified in electromagnetic waves, acoustic waves in air, water waves and elastic waves in solids. These states have been studied in a wide range of material systems, such as piezoelectric materials, dielectric photonic crystals, optical waveguides and fibres, quantum dots, graphene and topological insulators. In this Review, we describe recent developments in this field with an emphasis on the physical mechanisms that lead to BICs across seemingly very different materials and types of waves. We also discuss experimental realizations, existing applications and directions for future work.

  6. Continuum Hamiltonian Hopf Bifurcation II

    CERN Document Server

    Hagstrom, G I

    2013-01-01

    Building on the development of [MOR13], bifurcation of unstable modes that emerge from continuous spectra in a class of infinite-dimensional noncanonical Hamiltonian systems is investigated. Of main interest is a bifurcation termed the continuum Hamiltonian Hopf (CHH) bifurcation, which is an infinite-dimensional analog of the usual Hamiltonian Hopf (HH) bifurcation. Necessary notions pertaining to spectra, structural stability, signature of the continuous spectra, and normal forms are described. The theory developed is applicable to a wide class of 2+1 noncanonical Hamiltonian matter models, but the specific example of the Vlasov-Poisson system linearized about homogeneous (spatially independent) equilibria is treated in detail. For this example, structural (in)stability is established in an appropriate functional analytic setting, and two kinds of bifurcations are considered, one at infinite and one at finite wavenumber. After defining and describing the notion of dynamical accessibility, Kre\\u{i}n-like the...

  7. Elementary Continuum Mechanics for Everyone

    DEFF Research Database (Denmark)

    Byskov, Esben

    •The principle of virtual work is used to establish consistent theories of kinematic nonlinearity and linearity for other kinds of bodies, such as beams and plates •An in-depth treatment of structural instability as many structures fail due to this phenomenon •An introduction to the most versatile...... numerical method, the finite element method, including means of mending inherent problems •An informal, yet precise exposition that emphasizes not just how a topic is treated, but discusses why a particular choice is made The book opens with a derivation of kinematically nonlinear 3-D continuum mechanics...... for solids. Then the principle of virtual work is utilized to derive the simpler, kinematically linear 3-D theory and to provide the foundation for developing consistent theories of kinematic nonlinearity and linearity for specialized continua, such as beams and plates, and finite element methods...

  8. Physics of the continuum of borromean nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Vaagen, J.S.; Rogde, T. [Dept. of Physics, Univ. of Bergen (Norway); Danilin, B.V. [RRC The Kurchatov Inst., Kurchatov, Moscow (Russian Federation); Ershov, S.N. [JINR, Dubna, Moscow (Russian Federation); Thompson, I.J. [Dept. of Physics, Univ. of Surrey, Guildford (United Kingdom); Zhukov, M.V. [Chalmers Univ. of Technology and Goeteborg Univ., Goeteborg (Sweden); RNBT Collaboration

    1998-06-01

    The continuum states of two-neutron halo nuclei are calculated in the method of hyperspherical harmonics. Using DWIA theory appropriate for dilute halo matter we have probed the structure of the low-lying {sup 6}He continuum via calculations of charge-exchange and inelastic scattering. (orig.)

  9. Dual diagnosis

    OpenAIRE

    2013-01-01

    Dual diagnosis denotes intertwining of intellectual disabilities with mental disorders. With the help of systematic examination of literature, intellectual disabilities are determined (they are characterized by subaverage intellectual activity and difficulties in adaptive skills), along side mental disorders. Their influence is seen in changes of thinking, perception, emotionality, behaviour and cognition. Mental disorders often occur with people with intellectual disabilities (data differs f...

  10. Continuum Lowering -- A New Perspective

    CERN Document Server

    Crowley, B J B

    2013-01-01

    What is meant by continuum lowering and ionisation potential depression (IPD) in a Coulomb system depends very much upon what question is being asked and whether it relates to equilibrium (equation-of-state) phenomena or non-equilibrium dynamical processes like photoionisation. It is shown that these scenarios are characterised by different values of the IPD. In the former, the ionisation potential of an atom embedded in matter is the difference in the free energy of the many-body system between states of thermodynamic equilibrium differing by the ionisation state of just one atom. Typically, this energy is less than that required to ionise the same atom in vacuo. Probably, the best known example of the IPD determined this way is that given by Stewart and Pyatt (SP). However, it is a common misconception that this formula should apply to the energy of a photon causing photoionisation - a local adiabatic process that occurs on timescales far too short to allow the final state to come into equilibrium, and addi...

  11. Area Regge calculus and continuum limit

    CERN Document Server

    Khatsymovsky, V M

    2002-01-01

    Encountered in the literature generalisations of general relativity to independent area variables are considered, the discrete (generalised Regge calculus) and continuum ones. The generalised Regge calculus can be either with purely area variables or, as we suggest, with area tensor-connection variables. Just for the latter, in particular, we prove that in analogy with corresponding statement in ordinary Regge calculus (by Feinberg, Friedberg, Lee and Ren), passing to the (appropriately defined) continuum limit yields the generalised continuum area tensor-connection general relativity.

  12. Continuum mechanics of single-substance bodies

    CERN Document Server

    Eringen, A Cemal

    1975-01-01

    Continuum Physics, Volume II: Continuum Mechanics of Single-Substance Bodies discusses the continuum mechanics of bodies constituted by a single substance, providing a thorough and precise presentation of exact theories that have evolved during the past years. This book consists of three parts-basic principles, constitutive equations for simple materials, and methods of solution. Part I of this publication is devoted to a discussion of basic principles irrespective of material geometry and constitution that are valid for all kinds of substances, including composites. The geometrical notions, k

  13. QCD Dual

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2009-01-01

    We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...... fixed point. Remarkably this value is identical to the maximum bound predicted in the nonpertubative regime via the all-orders conjectured beta function for nonsupersymmetric gauge theories.......We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...

  14. Dynamical Structure of Nuclear Excitation in Continuum

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chun-Lei; ZHANG Huan-Qiao; ZHANG Xi-Zhen

    2005-01-01

    @@ Dynamical structures of collective excitation in continuum are studied by calculating the isoscalar and isovector strength as well as transition density of nuclei near the drip-line such as 28O and 34Ca. It is found that for some excited states in continuum the proton and neutron transition density calculated from isoscalar and isovector excitation at some given energies may be different, which will affect the calculation of the polarization for nuclei with N ≠ Z.

  15. Cassini observation of Jovian anomalous continuum radiation

    Science.gov (United States)

    Ye, Sheng-Yi; Gurnett, D. A.; Menietti, J. D.; Kurth, W. S.; Fischer, G.; Schippers, P.; Hospodarsky, G. B.

    2012-04-01

    Jovian anomalous continuum is a narrowband electromagnetic radiation near 10 kHz that can escape from Jupiter's magnetosphere to interplanetary space. One possible source mechanism is the magnetosheath re-radiation of the Jovian low frequency radio emissions such as the quasiperiodic (QP) radio emissions, broadband kilometric radiation (bKOM) and non-thermal continuum. Jovian anomalous continuum was consistently observed by the Cassini Radio and Plasma Wave Science instrument from 2000 to 2004, right before the Saturn orbit insertion, which means the radiation can be detected as far as 8 AU away from Jupiter. An analysis of intensity versus radial distance shows that the Jovian anomalous continuum has a line source rather than a point source, consistent with the theory that the emission is radiated by the whole length of the magnetotail. The emissions are modulated at the system III period of Jupiter and are unpolarized. Since the lower cutoff frequency of the anomalous continuum is related to the plasma frequency in the magnetosheath of Jupiter, which is a function of solar wind density, the recurrent variations of the lower cutoff frequency can be used as a remote diagnostic of the solar wind condition at Jupiter. We propose that the frequency dispersion, a unique characteristic of the anomalous continuum, is likely a comprehensive effect of both the slow group velocity near the local plasma frequency and the refraction/scattering of the waves by density structures as they propagate in the magnetosheath.

  16. The shadow continuum : testing the records continuum model through the Djogdja Documenten and the migrated archives

    NARCIS (Netherlands)

    Karabinos, Michael Joseph

    2015-01-01

    This dissertation tests the universal suitability of the records continuum model by using two cases from the decolonization of Southeast Asia. The continuum model is a new model of records visualization invented in the 1990s that sees records as free to move throughout four ‘dimensions’ rather than

  17. The shadow continuum : testing the records continuum model through the Djogdja Documenten and the migrated archives

    NARCIS (Netherlands)

    Karabinos, Michael Joseph

    2015-01-01

    This dissertation tests the universal suitability of the records continuum model by using two cases from the decolonization of Southeast Asia. The continuum model is a new model of records visualization invented in the 1990s that sees records as free to move throughout four ‘dimensions’ rather than

  18. LOW ACTIVATION JOINING OF SIC/SIC COMPOSITES FOR FUSION APPLICATIONS: MODELING DUAL-PHASE MICROSTRUCTURES AND DISSIMILAR MATERIAL JOINTS

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.; Ferraris, M.; Katoh, Y.

    2016-03-31

    Finite element continuum damage models (FE-CDM) have been developed to simulate and model dual-phase joints and cracked joints for improved analysis of SiC materials in nuclear environments. This report extends the analysis from the last reporting cycle by including results from dual-phase models and from cracked joint models.

  19. Improvements in continuum modeling for biomolecular systems

    CERN Document Server

    Qiao, Yu

    2015-01-01

    Modeling of biomolecular systems plays an essential role in understanding biological processes, such as ionic flow across channels, protein modification or interaction, and cell signaling. The continuum model described by the Poisson-Boltzmann (PB)/Poisson-Nernst-Planck (PNP) equations has made great contributions towards simulation of these processes. However, the model has shortcomings in its commonly used form and cannot capture (or cannot accurately capture) some important physical properties of biological systems. Considerable efforts have been made to improve the continuum model to account for discrete particle interactions and to make progress in numerical methods to provide accurate and efficient simulation. This review will summarize recent main improvements in continuum modeling for biomolecular systems, with focus on the size-modified models, the coupling of the classical density functional theory and PNP equations, the coupling of polar and nonpolar interactions, and numerical progress.

  20. Stiffness Control of Surgical Continuum Manipulators

    Science.gov (United States)

    Mahvash, Mohsen; Dupont, Pierre E.

    2013-01-01

    This paper introduces the first stiffness controller for continuum robots. The control law is based on an accurate approximation of a continuum robot’s coupled kinematic and static force model. To implement a desired tip stiffness, the controller drives the actuators to positions corresponding to a deflected robot configuration that produces the required tip force for the measured tip position. This approach provides several important advantages. First, it enables the use of robot deflection sensing as a means to both sense and control tip forces. Second, it enables stiffness control to be implemented by modification of existing continuum robot position controllers. The proposed controller is demonstrated experimentally in the context of a concentric tube robot. Results show that the stiffness controller achieves the desired stiffness in steady state, provides good dynamic performance, and exhibits stability during contact transitions. PMID:24273466

  1. Defining and testing a granular continuum element

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, Chris H.; Kamrin, Ken; Bazant, Martin Z.

    2007-12-03

    Continuum mechanics relies on the fundamental notion of amesoscopic volume "element" in which properties averaged over discreteparticles obey deterministic relationships. Recent work on granularmaterials suggests a continuum law may be inapplicable, revealinginhomogeneities at the particle level, such as force chains and slow cagebreaking. Here, we analyze large-scale Discrete-Element Method (DEM)simulations of different granular flows and show that a "granularelement" can indeed be defined at the scale of dynamical correlations,roughly three to five particle diameters. Its rheology is rather subtle,combining liquid-like dependence on deformation rate and solid-likedependence on strain. Our results confirm some aspects of classicalplasticity theory (e.g., coaxiality of stress and deformation rate),while contradicting others (i.e., incipient yield), and can guide thedevelopment of more realistic continuum models.

  2. Hyperbolic conservation laws in continuum physics

    CERN Document Server

    Dafermos, Constantine M

    2016-01-01

    This is a masterly exposition and an encyclopedic presentation of the theory of hyperbolic conservation laws. It illustrates the essential role of continuum thermodynamics in providing motivation and direction for the development of the mathematical theory while also serving as the principal source of applications. The reader is expected to have a certain mathematical sophistication and to be familiar with (at least) the rudiments of analysis and the qualitative theory of partial differential equations, whereas prior exposure to continuum physics is not required. The target group of readers would consist of (a) experts in the mathematical theory of hyperbolic systems of conservation laws who wish to learn about the connection with classical physics; (b) specialists in continuum mechanics who may need analytical tools; (c) experts in numerical analysis who wish to learn the underlying mathematical theory; and (d) analysts and graduate students who seek introduction to the theory of hyperbolic systems of conser...

  3. Discrete and continuum modelling of soil cutting

    Science.gov (United States)

    Coetzee, C. J.

    2014-12-01

    Both continuum and discrete methods are used to investigate the soil cutting process. The Discrete Element Method ( dem) is used for the discrete modelling and the Material-Point Method ( mpm) is used for continuum modelling. M pmis a so-called particle method or meshless finite element method. Standard finite element methods have difficulty in modelling the entire cutting process due to large displacements and deformation of the mesh. The use of meshless methods overcomes this problem. M pm can model large deformations, frictional contact at the soil-tool interface, and dynamic effects (inertia forces). In granular materials the discreteness of the system is often important and rotational degrees of freedom are active, which might require enhanced theoretical approaches like polar continua. In polar continuum theories, the material points are considered to possess orientations. A material point has three degrees-of-freedom for rigid rotations, in addition to the three classic translational degrees-of-freedom. The Cosserat continuum is the most transparent and straightforward extension of the nonpolar (classic) continuum. Two-dimensional dem and mpm (polar and nonpolar) simulations of the cutting problem are compared to experiments. The drag force and flow patterns are compared using cohesionless corn grains as material. The corn macro (continuum) and micro ( dem) properties were obtained from shear and oedometer tests. Results show that the dilatancy angle plays a significant role in the flow of material but has less of an influence on the draft force. Nonpolar mpm is the most accurate in predicting blade forces, blade-soil interface stresses and the position and orientation of shear bands. Polar mpm fails in predicting the orientation of the shear band, but is less sensitive to mesh size and mesh orientation compared to nonpolar mpm. dem simulations show less material dilation than observed during experiments.

  4. Continuum secondary structure captures protein flexibility

    DEFF Research Database (Denmark)

    Anderson, C.A.F.; Palmer, A.G.; Brunak, Søren;

    2002-01-01

    The DSSP program assigns protein secondary structure to one of eight states. This discrete assignment cannot describe the continuum of thermal fluctuations. Hence, a continuous assignment is proposed. Technically, the continuum results from averaging over ten discrete DSSP assignments...... protein structure analysis, comparison, and prediction....... with different hydrogen bond thresholds. The final continuous assignment for a single NMR model successfully reflected the structural variations observed between all NMR models in the ensemble. The structural variations between NMR models were verified to correlate with thermal motion; these variations were...

  5. Transfer to the continuum and Breakup reactions

    CERN Document Server

    Moro, A M

    2006-01-01

    A standard approach for the calculation of breakup reactions of exotic nuclei into two fragments is to consider inelastic excitations into the single particle continuum of the projectile. Alternatively one can also consider the transfer to the continuum of a system composed of the light fragment and the target. In this work we make a comparative study of the two approaches, underline the different inputs, and identify the advantages and disadvantages of each approach. Our test cases consist of the breakup of $^{11}$Be on a proton target at intermediate energies, and the breakup of $^8$B on $^{58}$Ni at energies around the Coulomb barrier.

  6. AN EQUIVALENT CONTINUUM METHOD OF LATTICE STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    Fan Hualin; Yang Wei

    2006-01-01

    An equivalent continuum method is developed to analyze the effective stiffness of three-dimensional stretching dominated lattice materials. The strength and three-dimensional plastic yield surfaces are calculated for the equivalent continuum. A yielding model is formulated and compared with the results of other models. The bedding-in effect is considered to include the compliance of the lattice joints. The predicted stiffness and strength are in good agreement with the experimental data, validating the present model in the prediction of the mechanical properties of stretching dominated lattice structures.

  7. Cosmological measurements with forthcoming radio continuum surveys

    CSIR Research Space (South Africa)

    Raccanelli

    2012-08-01

    Full Text Available –819 (2012) doi:10.1111/j.1365-2966.2012.20634.x Cosmological measurements with forthcoming radio continuum surveys Alvise Raccanelli,1� Gong-Bo Zhao,1 David J. Bacon,1 Matt J. Jarvis,2,3 Will J. Percival,1 Ray P. Norris,4 Huub Ro¨ttgering,5 Filipe B. Abdalla... of Universe – radio continuum: galaxies. 1 IN T RO D U C T I O N Radio surveys for cosmology are entering a new phase with the construction of the Low Frequency Array (LOFAR) for radio �E-mail: alvise.raccanelli@port.ac.uk astronomy (Ro¨ttgering 2003...

  8. Continuum mechanics concise theory and problems

    CERN Document Server

    Chadwick, P

    1998-01-01

    Written in response to the dearth of practical and meaningful textbooks in the field of fundamental continuum mechanics, this comprehensive treatment offers students and instructors an immensely useful tool. Its 115 solved problems and exercises not only provide essential practice but also systematically advance the understanding of vector and tensor theory, basic kinematics, balance laws, field equations, jump conditions, and constitutive equations.Readers follow clear, formally precise steps through the central ideas of classical and modern continuum mechanics, expressed in a common, effici

  9. Scalar QED$_2$ with a topological term - a lattice study in a dual representation

    CERN Document Server

    Kloiber, Thomas

    2014-01-01

    We present a dual representation for the partition function of 2-dimensional scalar quantum electrodynamics with a topological term ($\\theta$-term). In the dual representation the complex action problem at non-zero $\\theta$ is absent, which is an obstacle for Monte Carlo simulations in the conventional form of the model. We discuss the technical aspects of the dual representation and show that a dual Monte Carlo simulation can be implemented. As a first application we demonstrate how the $2\\pi$-periodicity of physical observables is recovered in a suitable continuum limit.

  10. Continuum and line emission of flares on red dwarf stars: origin of the blue continuum radiation

    CERN Document Server

    Morchenko, E S

    2016-01-01

    There are two types of models that explain the appearance of the blue continuum radiation during the impulsive phase of stellar flares. Grinin and Sobolev (Astrophysics, vol. 13, 348, 1977) argue that this component of the optical continuum is formed in "the transition layer between the chromosphere and the photosphere". Katsova et al. (Astrophysics, vol. 17, 156, 1981) have "raised" the source of the white-light continuum up to the dense region in the perturbed chromosphere. In the present contribution (the main paper was submitted to journal "Astrophysics"), we show that the statement by Katsova et al. is erroneous.

  11. Radiation from charges in the continuum limit

    CERN Document Server

    Ianconescu, Reuven

    2012-01-01

    It is known that an accelerating charge radiates according to Larmor formula. On the other hand, any DC current following a curvilinear path, e.g. a circular loop, consists of accelerating charges, but in such case the radiated power is 0. The scope of this paper is to analyze and quantify how the radiation vanishes when one goes to the continuum DC limit.

  12. Radio continuum from FU Orionis stars

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, L.F.; Hartmann, L.W.; Chavira, E. (Universidad Nacional Autonoma de Mexico, Coyoacan (Mexico) Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (USA) Instituto Nacional de Astrofisica, Optica y Electronica, Puebla (Mexico))

    1990-12-01

    Using the very large array a sensitive search is conducted for 3.6-cm continuum emission toward four FU Orionis objects: FU Ori, V1515 Cyg, V1057 Cyg, and Elias 1-12. V1057 Cyg and Elias 1-12 at the level of about 0.1 mJy is detected. The association of radio continuum emission with these FU Ori objects strengthens a possible relation between FU Ori stars and objects like L 1551 IRS 5 and Z CMa that are also sources of radio continuum emission and have been proposed as post-FU Ori objects. Whether the radio continuum emission is caused by free-free emission from ionized ejecta or if it is optically thin emission from a dusty disk is discussed. It was determined that, in the archives of the Tonantzintla Observatory, a plate taken in 1957 does not show Elias 1-12. This result significantly narrows the time range for the epoch of the outburst of this source to between 1957 and 1965. 38 refs.

  13. 6d holographic anomaly match as a continuum limit

    CERN Document Server

    Cremonesi, Stefano

    2015-01-01

    An infinite class of analytic AdS_7 x S^3 solutions has recently been found. The S^3 is distorted into a "crescent roll" shape by the presence of D8-branes. These solutions are conjectured to be dual to a class of "linear quivers", with a large number of gauge groups coupled to (bi-)fundamental matter and tensor fields. In this paper we perform a precise quantitative check of this correspondence, showing that the a Weyl anomalies computed in field theory and gravity agree. In the holographic limit, where the number of gauge groups is large, the field theory result is a quadratic form in the gauge group ranks involving the inverse of the A_N Cartan matrix C. The agreement can be understood as a continuum limit, using the fact that C is a lattice analogue of a second derivative. The discrete data of the field theory, summarized by two partitions, become in this limit the continuous functions in the geometry. Conversely, the geometry of the internal space gets discretized at the quantum level to the discrete dat...

  14. Continuum of Collaboration: Little Steps for Little Feet

    Science.gov (United States)

    Powell, Gwynn M.

    2013-01-01

    This mini-article outlines a continuum of collaboration for faculty within a department of the same discipline. The goal of illustrating this continuum is showcase different stages of collaboration so that faculty members can assess where they are as a collective and consider steps to collaborate more. The separate points along a continuum of…

  15. Elementary Continuum Mechanics for Everyone - And Some More

    DEFF Research Database (Denmark)

    Byskov, Esben

    Quite trivially, Continuum mechanics per se deals with the description of deformations of three-dimensional continua i.e. models whose properties are independent of scale in that the continuum does not possess a structure. Thus, continuum mechanics does not try to model the atomic structure...

  16. Elementary Continuum Mechanics for Everyone - and Some More

    DEFF Research Database (Denmark)

    Byskov, Esben

    Quite trivially, Continuum mechanics per se deals with the description of deformations of three-dimensional continua i.e. models whose properties are independent of scale in that the continuum does not possess a structure. Thus, continuum mechanics does not try to model the atomic structure of th...

  17. The geometrical language of continuum mechanics

    CERN Document Server

    Epstein, Marcelo

    2010-01-01

    This book presents the fundamental concepts of modern differential geometry within the framework of continuum mechanics. It is divided into three parts of roughly equal length. The book opens with a motivational chapter to impress upon the reader that differential geometry is indeed the natural language of continuum mechanics or, better still, that the latter is a prime example of the application and materialization of the former. In the second part, the fundamental notions of differential geometry are presented with rigor using a writing style that is as informal as possible. Differentiable manifolds, tangent bundles, exterior derivatives, Lie derivatives, and Lie groups are illustrated in terms of their mechanical interpretations. The third part includes the theory of fiber bundles, G-structures, and groupoids, which are applicable to bodies with internal structure and to the description of material inhomogeneity. The abstract notions of differential geometry are thus illuminated by practical and intuitivel...

  18. Mesoscopic and continuum modelling of angiogenesis

    KAUST Repository

    Spill, F.

    2014-03-11

    Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. © 2014 Springer-Verlag Berlin Heidelberg.

  19. Development of a continuum robot for colonoscopy

    Institute of Scientific and Technical Information of China (English)

    Hu Haiyan; Li Mantian; Wang Pengfei; Feng Yuan; Sun Lining

    2009-01-01

    A novel continuum robot for colonoscopy is presented. The aim is to develop a robot for colonoscopy which can provide the same functions as conventional colonoscope, but much less pain and discomfort for patient. In contrast to traditional rigid-link robot, the robot features a continuous backbone with no joints. The continuum robot is 300 mm in total length and 12 mm in diameter that is less than the average diameter of human colon (20 mm). The robot has a total of 4 DOF (degrees of freedom) and is actuated remotely by 6 hybrid step motors through super-elastic NiTi wires. Its shape can be changed with high dexterity, therefore ensuring its adaptability to the tortuous shape of human colon. The mechanical structure, kinematics and DSP-based control system are discussed; prototype experiments are carried out to validate the kinematics model and to show the motion performances.

  20. Computer Simulations on a Multidimensional Continuum:

    DEFF Research Database (Denmark)

    Girault, Isabelle; Pfeffer, Melanie; Chiocarriello, Augusto

    2016-01-01

    Computer simulations exist on a multidimensional continuum with other educational technologies including static animations, serious games, and virtual worlds. The act of defining simulations is context dependent. In our context of science education, we define simulations as algorithmic, dynamic...... with emphasis on simulations’ algorithmic, dynamic, and simple features. Defined as models, simulations can be computational or conceptual in nature and may reflect hypothetical or real events; such distinctions are addressed. Examples of programs that demonstrate the features of simulations emphasized in our...

  1. Sensitivity filtering from a continuum mechanics perspective

    DEFF Research Database (Denmark)

    Sigmund, Ole; Maute, Kurt

    2012-01-01

    In topology optimization filtering is a popular approach for preventing numerical instabilities. This short note shows that the well-known sensitivity filtering technique, that prevents checkerboards and ensures mesh-independent designs in density-based topology optimization, is equivalent to min...... to minimizing compliance for nonlocal elasticity problems known from continuum mechanics. Hence, the note resolves the long-standing quest for finding an explanation and physical motivation for the sensitivity filter....

  2. Radio continuum jet in NGC 7479

    OpenAIRE

    Laine, Seppo; Beck, Rainer

    2008-01-01

    The barred galaxy NGC 7479 hosts a remarkable jet-like radio continuum feature: bright, 12-kpc long in projection, and hosting an aligned magnetic field. The degree of polarization is 6%-8% along the jet, and remarkably constant, which is consistent with helical field models. The radio brightness of the jet suggests strong interaction with the ISM and hence a location near the disk plane. We observed NGC 7479 at four wavelengths with the VLA and Effelsberg radio telescopes. The equipartition ...

  3. Continuum mechanics the birthplace of mathematical models

    CERN Document Server

    Allen, Myron B

    2015-01-01

    Continuum mechanics is a standard course in many graduate programs in engineering and applied mathematics as it provides the foundations for the various differential equations and mathematical models that are encountered in fluid mechanics, solid mechanics, and heat transfer.  This book successfully makes the topic more accessible to advanced undergraduate mathematics majors by aligning the mathematical notation and language with related courses in multivariable calculus, linear algebra, and differential equations; making connections with other areas of applied mathematics where parial differe

  4. Continuation through Singularity of Continuum Multiphase Algorithms

    Science.gov (United States)

    2013-03-01

    of dissipative particle dynamics ( DPD ). Several accomplishments are worth mentioning. A many-body dissipative particle dynamics (MDPD) code...prohibitively high cost. In this project, the mesoscopic Dissipative Particle Dynamics ( DPD ) approach is adopted to bridge the molecular and continuum...scales. The interfacial dynamics is accounted for using a variant of DPD called Many-body DPD described below. 1.2.1 Background of MDPD The

  5. On Friedrichs Model with Two Continuum States

    CERN Document Server

    Xiao, Zhiguang

    2016-01-01

    The Friedrichs model with one discrete state coupled to more than one continuum is studied. The exact eigenstates for the full Hamiltonian can be solved explicitly. The discrete state is found to generate more than one virtual state pole or more than one pair of resonance poles in different Riemann sheets in different situations. The form factors could also generate new states on different sheets. All these states can appear in the generalized completeness relation.

  6. Cosmology with SKA Radio Continuum Surveys

    CERN Document Server

    Jarvis, Matt J; Blake, Chris; Brown, Michael L; Lindsay, Sam N; Raccanelli, Alvise; Santos, Mario; Schwarz, Dominik

    2015-01-01

    Radio continuum surveys have, in the past, been of restricted use in cosmology. Most studies have concentrated on cross-correlations with the cosmic microwave background to detect the integrated Sachs-Wolfe effect, due to the large sky areas that can be surveyed. As we move into the SKA era, radio continuum surveys will have sufficient source density and sky area to play a major role in cosmology on the largest scales. In this chapter we summarise the experiments that can be carried out with the SKA as it is built up through the coming decade. We show that the SKA can play a unique role in constraining the non-Gaussianity parameter to \\sigma(f_NL) ~ 1, and provide a unique handle on the systematics that inhibit weak lensing surveys. The SKA will also provide the necessary data to test the isotropy of the Universe at redshifts of order unity and thus evaluate the robustness of the cosmological principle.Thus, SKA continuum surveys will turn radio observations into a central probe of cosmological research in th...

  7. DISCRETE AND CONTINUUM MODELLING OF GRANULAR FLOW

    Institute of Scientific and Technical Information of China (English)

    H. P. Zhu; Y. H. WU; A. B. Yu

    2005-01-01

    This paper analyses three popular methods simulating granular flow at different time and length scales:discrete element method (DEM), averaging method and viscous, elastic-plastic continuum model. The theoretical models of these methods and their applications to hopper flows are discussed. It is shown that DEM is an effective method to study the fundamentals of granular flow at a particle or microscopic scale. By use of the continuum approach, granular flow can also be described at a continuum or macroscopic scale. Macroscopic quantities such as velocity and stress can be obtained by use of such computational method as FEM. However, this approach depends on the constitutive relationship of materials and ignores the effect of microscopic structure of granular flow. The combined approach of DEM and averaging method can overcome this problem. The approach takes into account the discrete nature of granular materials and does not require any global assumption and thus allows a better understanding of the fundamental mechanisms of granular flow. However, it is difficult to adapt this approach to process modelling because of the limited number of particles which can be handled with the present computational capacity, and the difficulty in handling non-spherical particles.Further work is needed to develop an appropriate approach to overcome these problems.

  8. Improvements in continuum modeling for biomolecular systems

    Science.gov (United States)

    Yu, Qiao; Ben-Zhuo, Lu

    2016-01-01

    Modeling of biomolecular systems plays an essential role in understanding biological processes, such as ionic flow across channels, protein modification or interaction, and cell signaling. The continuum model described by the Poisson- Boltzmann (PB)/Poisson-Nernst-Planck (PNP) equations has made great contributions towards simulation of these processes. However, the model has shortcomings in its commonly used form and cannot capture (or cannot accurately capture) some important physical properties of the biological systems. Considerable efforts have been made to improve the continuum model to account for discrete particle interactions and to make progress in numerical methods to provide accurate and efficient simulations. This review will summarize recent main improvements in continuum modeling for biomolecular systems, with focus on the size-modified models, the coupling of the classical density functional theory and the PNP equations, the coupling of polar and nonpolar interactions, and numerical progress. Project supported by the National Natural Science Foundation of China (Grant No. 91230106) and the Chinese Academy of Sciences Program for Cross & Cooperative Team of the Science & Technology Innovation.

  9. Quantifying Distributions of Lyman Continuum Escape Fraction

    CERN Document Server

    Cen, Renyue

    2015-01-01

    Simulations have indicated that most of the escaped Lyman continuum photons escape through a minority of solid angles with near complete transparency, with the remaining majority of the solid angles largely opaque, resulting in a very broad and skewed probability distribution function (PDF) of the escape fraction when viewed at different angles. Thus, the escape fraction of Lyman continuum photons of a galaxy observed along a line of sight merely represents the properties of the interstellar medium along that line of sight, which may be an ill-representation of true escape fraction of the galaxy averaged over its full sky. Here we study how Lyman continuum photons escape from galaxies at $z=4-6$, utilizing high-resolution large-scale cosmological radiation-hydrodynamic simulations. We compute the PDF of the mean escape fraction ($\\left$) averaged over mock observational samples, as a function of the sample size, compared to the true mean (had you an infinite sample size). We find that, when the sample size is...

  10. Bipotential continuum models for granular mechanics

    Science.gov (United States)

    Goddard, Joe

    2014-03-01

    Most currently popular continuum models for granular media are special cases of a generalized Maxwell fluid model, which describes the evolution of stress and internal variables such as granular particle fraction and fabric,in terms of imposed strain rate. It is shown how such models can be obtained from two scalar potentials, a standard elastic free energy and a ``dissipation potential'' given rigorously by the mathematical theory of Edelen. This allows for a relatively easy derivation of properly invariant continuum models for granular media and fluid-particle suspensions within a thermodynamically consistent framework. The resulting continuum models encompass all the prominent regimes of granular flow, ranging from the quasi-static to rapidly sheared, and are readily extended to include higher-gradient or Cosserat effects. Models involving stress diffusion, such as that proposed recently by Kamrin and Koval (PRL 108 178301), provide an alternative approach that is mentioned in passing. This paper provides a brief overview of a forthcoming review articles by the speaker (The Princeton Companion to Applied Mathematics, and Appl. Mech. Rev.,in the press, 2013).

  11. Low Activation Joining of SiC/SiC Composites for Fusion Applications: Thermomechanical Modeling of Dual-Phase Microstructures and Dissimilar Material Joints

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.; Ferraris, M.; Katoh, Yutai

    2016-09-30

    Finite element (FE) continuum damage mechanics (CDM) models have been developed to simulate and model dual-phase joints and cracked joints for improved analysis of SiC materials in nuclear environments. This report extends the analysis from the last reporting cycle by including preliminary thermomechanical analyses of cracked joints and implementation of dual-phase damage models.

  12. Continuum limit of gl(M vertical stroke N) spin chains

    Energy Technology Data Exchange (ETDEWEB)

    Candu, Constantin [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie

    2011-03-15

    We study the spectrum of an integrable antiferromagnetic Hamiltonian of the gl(M vertical stroke N) spin chain of alternating fundamental and dual representations. After extensive numerical analysis, we identify the vacuum and low lying excitations and with this knowledge perform the continuum limit, while keeping a finite gap. All antiferromagnetic gl(n+N vertical stroke N) spin chains with n>0 and N{ne}0 are shown to possess in the continuum limit 2n-2 multiplets of massive particles which scatter with gl(n) Gross-Neveu like S-matrices, namely their eigenvalues do not depend on N. We argue that the continuum theory is the gl(M vertical stroke N) Gross-Neveu model, that is the massive deformation of the gl(M vertical stroke N){sub 1} Wess-Zumino-Witten model. As we can see ion the example of gl(2m vertical stroke 1) spin chains, the full particle spectrum is much richer. Our analysis suggests that for a complete characterization of the latter it is not enough to restrict to large volume calculations, as we do in this work. (orig.)

  13. Interpreting angina: symptoms along a gender continuum

    Science.gov (United States)

    Crea-Arsenio, Mary; Shannon, Harry S; Velianou, James L; Giacomini, Mita

    2016-01-01

    Background ‘Typical’ angina is often used to describe symptoms common among men, while ‘atypical’ angina is used to describe symptoms common among women, despite a higher prevalence of angina among women. This discrepancy is a source of controversy in cardiac care among women. Objectives To redefine angina by (1) qualitatively comparing angina symptoms and experiences in women and men and (2) to propose a more meaningful construct of angina that integrates a more gender-centred approach. Methods Patients were recruited between July and December 2010 from a tertiary cardiac care centre and interviewed immediately prior to their first angiogram. Symptoms were explored through in-depth semi-structured interviews, transcribed verbatim and analysed concurrently using a modified grounded theory approach. Angiographically significant disease was assessed at ≥70% stenosis of a major epicardial vessel. Results Among 31 total patients, 13 men and 14 women had angiograpically significant CAD. Patients describe angina symptoms according to 6 symptomatic subthemes that array along a ‘gender continuum’. Gender-specific symptoms are anchored at each end of the continuum. At the centre of the continuum, are a remarkably large number of symptoms commonly expressed by both men and women. Conclusions The ‘gender continuum’ offers new insights into angina experiences of angiography candidates. Notably, there is more overlap of shared experiences between men and women than conventionally thought. The gender continuum can help researchers and clinicians contextualise patient symptom reports, avoiding the conventional ‘typical’ versus ‘atypical’ distinction that can misrepresent gendered angina experiences. PMID:27158523

  14. Non-classical continuum mechanics a dictionary

    CERN Document Server

    Maugin, Gérard A

    2017-01-01

    This dictionary offers clear and reliable explanations of over 100 keywords covering the entire field of non-classical continuum mechanics and generalized mechanics, including the theory of elasticity, heat conduction, thermodynamic and electromagnetic continua, as well as applied mathematics. Every entry includes the historical background and the underlying theory, basic equations and typical applications. The reference list for each entry provides a link to the original articles and the most important in-depth theoretical works. Last but not least, every entry is followed by a cross-reference to other related subject entries in the dictionary.

  15. Radiation from charges in the continuum limit

    Energy Technology Data Exchange (ETDEWEB)

    Ianconescu, Reuven [Shenkar College of Engineering and Design, Ramat Gan 52526 (Israel)

    2013-06-15

    It is known that an accelerating charge radiates according to Larmor formula. On the other hand, any DC current following a curvilinear path, consists of accelerating charges, but in such case the radiated power is 0. The scope of this paper is to analyze and quantify how a system of charges goes from a radiating state to a non radiating state when the charges distribution goes to the continuum limit. Understanding this is important from the theoretical point of view and the results of this work are applicable to particle accelerator, cyclotron and other high energy devices.

  16. Continuum modeling an approach through practical examples

    CERN Document Server

    Muntean, Adrian

    2015-01-01

    This book develops continuum modeling skills and approaches the topic from three sides: (1) derivation of global integral laws together with the associated local differential equations, (2) design of constitutive laws and (3) modeling boundary processes. The focus of this presentation lies on many practical examples covering aspects such as coupled flow, diffusion and reaction in porous media or microwave heating of a pizza, as well as traffic issues in bacterial colonies and energy harvesting from geothermal wells. The target audience comprises primarily graduate students in pure and applied mathematics as well as working practitioners in engineering who are faced by nonstandard rheological topics like those typically arising in the food industry.

  17. The Continuum is Countable: Infinity is Unique

    CERN Document Server

    Germain, Laurent

    2008-01-01

    Since the theory developed by Georg Cantor, mathematicians have taken a sharp interest in the sizes of infinite sets. We know that the set of integers is infinitely countable and that its cardinality is Aleph0. Cantor proved in 1891 with the diagonal argument that the set of real numbers is uncountable and that there cannot be any bijection between integers and real numbers. Cantor states in particular the Continuum Hypothesis. In this paper, I show that the cardinality of the set of real numbers is the same as the set of integers. I show also that there is only one dimension for infinite sets, Aleph.

  18. Millimeter Continuum Observations Of Disk Solids

    Science.gov (United States)

    Andrews, Sean

    2016-07-01

    I will offer a condensed overview of some key issues in protoplanetary disk research that makes use interferometric measurements of the millimeter-wavelength continuum emitted by their solid particles. Several lines of evidence now qualitatively support theoretical models for the growth and migration of disk solids, but also advertise a quantitative tension with the traditional efficiency of that evolution. New observations of small-scale substructures in disks might both reconcile the conflict and shift our focus in the mechanics of planet formation.

  19. Chiral symmetry breaking in continuum QCD

    Science.gov (United States)

    Mitter, Mario; Pawlowski, Jan M.; Strodthoff, Nils

    2015-03-01

    We present a quantitative analysis of chiral symmetry breaking in two-flavor continuum QCD in the quenched limit. The theory is set up at perturbative momenta, where asymptotic freedom leads to precise results. The evolution of QCD towards the hadronic phase is achieved by means of dynamical hadronization in the nonperturbative functional renormalization group approach. We use a vertex expansion scheme based on gauge-invariant operators and discuss its convergence properties and the remaining systematic errors. In particular, we present results for the quark propagator, the full tensor structure and momentum dependence of the quark-gluon vertex, and the four-Fermi scatterings.

  20. Set theory and the continuum hypothesis

    CERN Document Server

    Cohen, Paul J

    2008-01-01

    This exploration of a notorious mathematical problem is the work of the man who discovered the solution. The independence of the continuum hypothesis is the focus of this study by Paul J. Cohen. It presents not only an accessible technical explanation of the author's landmark proof but also a fine introduction to mathematical logic. An emeritus professor of mathematics at Stanford University, Dr. Cohen won two of the most prestigious awards in mathematics: in 1964, he was awarded the American Mathematical Society's Bôcher Prize for analysis; and in 1966, he received the Fields Medal for Logic.

  1. From continuum mechanics to general relativity

    CERN Document Server

    Boehmer, Christian G

    2014-01-01

    Using ideas from continuum mechanics we construct a theory of gravity. We show that this theory is equivalent to Einstein's theory of general relativity; it is also a much faster way of reaching general relativity than the conventional route. Our approach is simple and natural: we form a very general model and then apply two physical assumptions supported by experimental evidence. This easily reduces our construction to a model equivalent to general relativity. Finally, we suggest a simple way of modifying our theory to investigate non-standard space-time symmetries.

  2. CDENPROP: Transition matrix elements involving continuum states

    CERN Document Server

    Harvey, Alex G; Morales, Felipe; Smirnova, Olga

    2014-01-01

    Transition matrix elements between electronic states where one electron can be in the continuum are required for a wide range of applications of the molecular R-matrix method. These include photoionization, photorecombination and photodetachment; electron-molecule scattering and photon-induced processes in the presence of an external D.C. field, and time-dependent R-matrix approaches to study the effect of the exposure of molecules to strong laser fields. We present a new algorithm, implemented as a module (CDENPROP) in the UKRmol electron-molecule scattering code suite.

  3. Mid-IR super-continuum generation

    Science.gov (United States)

    Islam, Mohammed N.; Xia, Chenan; Freeman, Mike J.; Mauricio, Jeremiah; Zakel, Andy; Ke, Kevin; Xu, Zhao; Terry, Fred L., Jr.

    2009-02-01

    A Mid-InfraRed FIber Laser (MIRFIL) has been developed that generates super-continuum covering the spectral range from 0.8 to 4.5 microns with a time-averaged power as high as 10.5W. The MIRFIL is an all-fiber integrated laser with no moving parts and no mode-locked lasers that uses commercial off-the-shelf parts and leverages the mature telecom/fiber optics platform. The MIRFIL power can be easily scaled by changing the repetition rate and modifying the erbium-doped fiber amplifier. Some of the applications using the super-continuum laser will be described in defense, homeland security and healthcare. For example, the MIRFIL is being applied to a catheter-based medical diagnostic system to detect vulnerable plaque, which is responsible for most heart attacks resulting from hardening-of-the-arteries or atherosclerosis. More generally, the MIRFIL can be a platform for selective ablation of lipids without damaging normal protein or smooth muscle tissue.

  4. Multiple Temperature Model for Near Continuum Flows

    Energy Technology Data Exchange (ETDEWEB)

    XU, Kun; Liu, Hongwei [Hong Kong University of Science and Technology, Kowloon (Hong Kong); Jiang, Jianzheng [Chinese Academy ofSciences, Beijing (China)

    2007-09-15

    In the near continuum flow regime, the flow may have different translational temperatures in different directions. It is well known that for increasingly rarefied flow fields, the predictions from continuum formulation, such as the Navier-Stokes equations, lose accuracy. These inaccuracies may be partially due to the single temperature assumption in the Navier-Stokes equations. Here, based on the gas-kinetic Bhatnagar-Gross-Krook (BGK) equation, a multitranslational temperature model is proposed and used in the flow calculations. In order to fix all three translational temperatures, two constraints are additionally proposed to model the energy exchange in different directions. Based on the multiple temperature assumption, the Navier-Stokes relation between the stress and strain is replaced by the temperature relaxation term, and the Navier-Stokes assumption is recovered only in the limiting case when the flow is close to the equilibrium with the same temperature in different directions. In order to validate the current model, both the Couette and Poiseuille flows are studied in the transition flow regime.

  5. Evolution of the Pleistocene Climate Continuum

    Science.gov (United States)

    Meyers, S. R.; Hinnov, L. A.

    2008-12-01

    Orbital-climate theory provides a powerful deterministic framework for the analysis of Pleistocene climate change, and has become a cornerstone of modern Paleoclimatology. The stochastic component of Pleistocene climate has received considerably less attention, although some studies have argued for the dominance of stochastic climate processes. Undoubtedly, a complete understanding of the controls on Pleistocene climate change necessitates an assessment of both deterministic and stochastic processes, as well as potential linkages between the two. In this study, we investigate changes in the dominance of deterministic versus stochastic climate processes associated with evolution of the Pleistocene climate system. Achievement of this objective requires: (1) careful selection and analysis of paleoclimate data series, to isolate true climate noise from other proxy noise sources (e.g., proxy fidelity, time-scale distortion, diagenesis, analytical error), and (2) application of quantitative methods capable of separating deterministic periodic signals (the spectral "lines") from the stochastic component of climate (the spectral "continuum"). This study focuses on an analysis of published benthic foraminifera oxygen isotopic records using a number of techniques rooted in Thomson's multi-taper method, which is specifically designed to separate deterministic "line" energy from stochastic "continuum" energy. Our analysis indicates large, and sometimes abrupt, changes in the relative dominance of stochastic versus deterministic energy. These changes in energy distribution parallel the evolution of the Pleistocene climate system. This analysis also demonstrates linkages between stochastic and deterministic climate processes, and yields insight into the mechanisms of Pleistocene climate change.

  6. Continuum deformation of multi-agent systems

    CERN Document Server

    Rastgoftar, Hossein

    2016-01-01

    This monograph presents new algorithms for formation control of multi-agent systems (MAS) based on principles of continuum mechanics. Beginning with an overview of traditional methods, the author then introduces an innovative new approach whereby agents of an MAS are considered as particles in a continuum evolving in ℝn whose desired configuration is required to satisfy an admissible deformation function. The necessary theory and its validation on a mobile-agent-based swarm test bed are considered for two primary tasks: homogeneous transformation of the MAS and deployment of a random distribution of agents on a desired configuration. The framework for this model is based on homogeneous transformations for the evolution of an MAS under no inter-agent communication, local inter-agent communication, and intelligent perception by agents. Different communication protocols for MAS evolution, the robustness of tracking of a desired motion by an MAS evolving in ℝn, and the effect of communication delays in an MAS...

  7. Design Gradient Descent Optimal Sliding Mode Control of Continuum Robots

    OpenAIRE

    Farzin Piltan; Shahnaz Tayebi Haghighi

    2012-01-01

    In this research, a new approach for gradient descent optimal sliding mode controller for continuum robots is proposed. Based on the new dynamic models developed, a novel technique for nonlinear control of continuum manipulators to be employed in various situations has also been proposed and developed. A section of a continuum arm is modeled using lumped model elements (masses, springs and dampers) and control by nonlinear methodology (sliding mode method) and optimization the sliding surface...

  8. 3D real-space calculations of continuum response

    CERN Document Server

    Nakatsukasa, T; Nakatsukasa, Takashi; Yabana, Kazuhiro

    2001-01-01

    We present linear response theories in the continuum capable of describing continuum spectra and dynamical correlations of finite systems with no spatial symmetry. Our formulation is essentially the same as the continuum random-phase approximation (RPA) but suitable for uniform grid representation in the three-dimensional (3D) Cartesian coordinate. Effects of the continuum are taken into account by solving equations iteratively with a retarded Green's function. The method is applied to photoabsorption spectra in small molecules (acetylene and ethylene) and inelastic electron scattering from a deformed nucleus 12C.

  9. A continuum theory of edge dislocations

    Science.gov (United States)

    Berdichevsky, V. L.

    2017-09-01

    Continuum theory of dislocation aims to describe the behavior of large ensembles of dislocations. This task is far from completion, and, most likely, does not have a ;universal solution;, which is applicable to any dislocation ensemble. In this regards it is important to have guiding lines set by benchmark cases, where the transition from a discrete set of dislocations to a continuum description is made rigorously. Two such cases have been considered recently: equilibrium of dislocation walls and screw dislocations in beams. In this paper one more case is studied, equilibrium of a large set of 2D edge dislocations placed randomly in a 2D bounded region. The major characteristic of interest is energy of dislocation ensemble, because it determines the structure of continuum equations. The homogenized energy functional is obtained for the periodic dislocation ensembles with a random contents of the periodic cell. Parameters of the periodic structure can change slowly on distances of order of the size of periodic cells. The energy functional is obtained by the variational-asymptotic method. Equilibrium positions are local minima of energy. It is confirmed the earlier assertion that energy density of the system is the sum of elastic energy of averaged elastic strains and microstructure energy, which is elastic energy of the neutralized dislocation system, i.e. the dislocation system placed in a constant dislocation density field making the averaged dislocation density zero. The computation of energy is reduced to solution of a variational cell problem. This problem is solved analytically. The solution is used to investigate stability of simple dislocation arrays, i.e. arrays with one dislocation in the periodic cell. The relations obtained yield two outcomes: First, there is a state parameter of the system, dislocation polarization; averaged stresses affect only dislocation polarization and cannot change other characteristics of the system. Second, the structure of

  10. Dual Income Taxes

    DEFF Research Database (Denmark)

    Sørensen, Peter Birch

    This paper discusses the principles and practices of dual income taxation in the Nordic countries. The first part of the paper explains the rationale and the historical background for the introduction of the dual income tax and describes the current Nordic tax practices. The second part...... of the paper focuses on the problems of taxing income from small businesses and the issue of corporate-personal tax integration under the dual income tax, considering alternative ways of dealing with these challenges. In the third and final part of the paper, I briefly discuss whether introducing a dual income...... tax could be relevant for New Zealand....

  11. Dual Income Taxes

    DEFF Research Database (Denmark)

    Sørensen, Peter Birch

    This paper discusses the principles and practices of dual income taxation in the Nordic countries. The first part of the paper explains the rationale and the historical background for the introduction of the dual income tax and describes the current Nordic tax practices. The second part...... of the paper focuses on the problems of taxing income from small businesses and the issue of corporate-personal tax integration under the dual income tax, considering alternative ways of dealing with these challenges. In the third and final part of the paper, I briefly discuss whether introducing a dual income...... tax could be relevant for New Zealand....

  12. Embodiment design of soft continuum robots

    Directory of Open Access Journals (Sweden)

    Rongjie Kang

    2016-04-01

    Full Text Available This article presents the results of a multidisciplinary project where mechatronic engineers worked alongside biologists to develop a soft robotic arm that captures key features of octopus anatomy and neurophysiology. The concept of embodiment (the dynamic coupling between sensory-motor control, anatomy, materials and environment that allows for the animal to achieve adaptive behaviours is used as a starting point for the design process but tempered by current engineering technologies and approaches. In this article, the embodied design requirements are first discussed from a robotic viewpoint by taking into account real-life engineering limitations; then, the motor control schemes inspired by octopus nervous system are investigated. Finally, the mechanical and control design of a prototype is presented that appropriately blends bio-inspiration and engineering limitations. Simulated and experimental results show that the developed continuum robotic arm is able to reproduce octopus-like motions for bending, reaching and grasping.

  13. Nucleon and Delta structure in continuum QCD

    Science.gov (United States)

    Cloet, Ian

    2014-03-01

    Quantum Chromodynamics (QCD) is the only known example in nature of a fundamental quantum field theory that is innately non-perturbative. Solving QCD will have profound implications for our understanding of the natural world, for example, it will explain how light quarks and massless gluons bind together to form the observed mesons and baryons; hence explaining the origin of more than 98% of the mass in the visible universe. Given the challenges posed by QCD, it is insufficient to study hadron ground-states alone if one seeks a solution; in this regard the delta plays a special role as the lightest baryon resonance. I will discuss recent progress using continuum QCD approaches to the study of nucleon and delta properties, with a focus on insights gained by the calculation (and measurement) of their electromagnetic form factors.

  14. Variational continuum multiphase poroelasticity theory and applications

    CERN Document Server

    Serpieri, Roberto

    2017-01-01

    This book collects the theoretical derivation of a recently presented general variational macroscopic continuum theory of multiphase poroelasticity (VMTPM), together with its applications to consolidation and stress partitioning problems of interest in several applicative engineering contexts, such as in geomechanics and biomechanics. The theory is derived based on a purely-variational deduction, rooted in the least-Action principle, by considering a minimal set of kinematic descriptors. The treatment herein considered keeps a specific focus on the derivation of most general medium-independent governing equations. It is shown that VMTPM recovers paradigms of consolidated use in multiphase poroelasticity such as Terzaghi's stress partitioning principle and Biot's equations for wave propagation. In particular, the variational treatment permits the derivation of a general medium-independent stress partitioning law, and the proposed variational theory predicts that the external stress, the fluid pressure, and the...

  15. A CONTINUUM DAMAGE MODEL OF AGING CONCRETE

    Institute of Scientific and Technical Information of China (English)

    Zhao Zhenyang; Xie Huicai; Xu Tao; Yu Jie; Cai Changan

    2001-01-01

    There is up to now no constitutive model in the current theories of CDM that could give a description for the degradation of aging concrete. The two internal state variables β and ω are introduced in this paper. β is called cohesion variable as an additional kinematic parameter, reflecting the cohesion state among material particles. ω is called damage factor for micro-defects such as voids.Then a damage model and a series of constitutive equations are developed on Continuum Mechanics.The model proposed could give a valid description for the whole-course-degradation of aging concrete due tochemical and mechanical actions. Finally, the validity of the model is evaluated by an example and experimental results.

  16. Continuum mechanics, stresses, currents and electrodynamics.

    Science.gov (United States)

    Segev, Reuven

    2016-04-28

    The Eulerian approach to continuum mechanics does not make use of a body manifold. Rather, all fields considered are defined on the space, or the space-time, manifolds. Sections of some vector bundle represent generalized velocities which need not be associated with the motion of material points. Using the theories of de Rham currents and generalized sections of vector bundles, we formulate a weak theory of forces and stresses represented by vector-valued currents. Considering generalized velocities represented by differential forms and interpreting such a form as a generalized potential field, we present a weak formulation of pre-metric, p-form electrodynamics as a natural example of the foregoing theory. Finally, it is shown that the assumptions leading to p-form electrodynamics may be replaced by the condition that the force functional is continuous with respect to the flat topology of forms.

  17. Radio Continuum Sources Associated with AB Aur

    CERN Document Server

    Rodríguez, L F; Ho, P T P; Rodriguez, Luis F.; Zapata, Luis; Ho, Paul T. P.

    2006-01-01

    We present high angular resolution, high-sensitivity Very Large Array observations at 3.6 cm of the Herbig Ae star AB Aur. This star is of interest since its circumstellar disk exhibits characteristics that have been attributed to the presence of an undetected low mass companion or giant gas planet. Our image confirms the continuum emission known to exist in association with the star, and detects a faint protuberance that extends about $0\\rlap.{''}3$ to its SE. Previous theoretical considerations and observational results are consistent with the presence of a companion to AB Aur with the separation and position angle derived from our radio data. We also determine the proper motion of AB Aur by comparing our new observations with data taken about 17 years ago and find values consistent with those found by Hipparcos.

  18. Continuum-kinetic approach to sheath simulations

    Science.gov (United States)

    Cagas, Petr; Hakim, Ammar; Srinivasan, Bhuvana

    2016-10-01

    Simulations of sheaths are performed using a novel continuum-kinetic model with collisions including ionization/recombination. A discontinuous Galerkin method is used to directly solve the Boltzmann-Poisson system to obtain a particle distribution function. Direct discretization of the distribution function has advantages of being noise-free compared to particle-in-cell methods. The distribution function, which is available at each node of the configuration space, can be readily used to calculate the collision integrals in order to get ionization and recombination operators. Analytical models are used to obtain the cross-sections as a function of energy. Results will be presented incorporating surface physics with a classical sheath in Hall thruster-relevant geometry. This work was sponsored by the Air Force Office of Scientific Research under Grant Number FA9550-15-1-0193.

  19. Exercise therapy across the lung cancer continuum.

    Science.gov (United States)

    Jones, Lee W; Eves, Neil D; Waner, Emily; Joy, Anil A

    2009-07-01

    A lung cancer diagnosis and associated therapeutic management are associated with unique and varying degrees of adverse physical/functional impairments that dramatically reduce patients' ability to tolerate exercise. Poor exercise capacity predisposes to increased susceptibility to other common age-related diseases, poor quality of life, and likely premature death. This article reviews the literature investigating the role of exercise as an adjunct therapy across the lung cancer continuum (ie, prevention to palliation). The current evidence suggests that exercise training is a safe and feasible adjunct therapy for patients with operable lung cancer both before and after pulmonary resection. Among patients with inoperable disease, feasibility and safety studies of carefully prescribed exercise training are warranted. Preliminary evidence in this area suggests that exercise therapy may be an important consideration in multidisciplinary management of patients diagnosed with lung cancer.

  20. Continuum Mechanics of Beam and Plate Flexure

    DEFF Research Database (Denmark)

    Jönsson, Jeppe

    This text has been written and used during the spring of 1995 for a course on flexural mechanics of beams and plates at Aalborg University. The idea has been to concentrate on basic principles of the theories, which are of importance to the modern structural engineer. Today's structural engineer...... must be acquainted with the classic beam and plate theories, when reading manuals and using modern software tools such as the finite element method. Each chapter includes supplementary theory and derivations enabling consultation of the notes also at a later stage of study. A preliminary chapter...... introduces the modern notation used in textbooks and in research today. It further gives an introduction to three-dimensional continuum mechanics of elastic bodies and the related principles of virtual work. The ideas to give the students a basic understanding of the stresses and strains, the equilibrium...

  1. Continuum beliefs about psychotic symptoms are a valid, unidimensional construct: Construction and validation of a revised continuum beliefs questionnaire.

    Science.gov (United States)

    Schlier, Björn; Scheunemann, Jakob; Lincoln, Tania M

    2016-07-30

    Growing evidence supports a continuum model of psychosis, with mild psychotic symptoms being frequently experienced by the general population. Moreover, believing in the continuum model correlates with less stigmatization of schizophrenia. This study explores whether continuum beliefs are a valid construct and develops a continuum beliefs scale. First, expert-generated items were reduced to a candidate scale (study 1, n=95). One-dimensionality was tested using confirmatory factor analysis (study 2, n=363). Convergent validity was tested with a previous continuum beliefs scale, essentialist beliefs, and stigmatization (study 2), while self-reported psychotic experiences (i.e. frequency and conviction) served to test discriminant validity (study 3, n=229). A nine item questionnaire that assesses continuum beliefs about schizophrenia symptoms showed acceptable to good psychometric values, high correlations with a previous continuum beliefs scale and small correlations with essentialist beliefs, stereotypes, and desired social distance. No correlations with psychotic experiences were found. Thus, continuum beliefs can be considered a valid construct. The construed CBQ-R asks about symptoms rather than the abstract category "schizophrenia", which may increase understandability of the scale. Validation confirms previous studies and highlights the difference between continuum beliefs and personal psychotic experiences.

  2. Dual-fuel, dual-throat engine preliminary analysis

    Science.gov (United States)

    Obrien, C. J.

    1979-01-01

    A propulsion system analysis of the dual fuel, dual throat engine for launch vehicle applications was conducted. Basic dual throat engine characterization data were obtained to allow vehicle optimization studies to be conducted. A preliminary baseline engine system was defined.

  3. Continuum Damage Mechanics A Continuum Mechanics Approach to the Analysis of Damage and Fracture

    CERN Document Server

    Murakami, Sumio

    2012-01-01

    Recent developments in engineering and technology have brought about serious and enlarged demands for reliability, safety and economy in wide range of fields such as aeronautics, nuclear engineering, civil and structural engineering, automotive and production industry.  This, in turn, has caused more interest in continuum damage mechanics and its engineering applications.   This book aims to give a concise overview of the current state of damage mechanics, and then to show the fascinating possibility of this promising branch of mechanics, and to provide researchers, engineers and graduate students with an intelligible and self-contained textbook.   The book consists of two parts and an appendix.  Part I  is concerned with the foundation of continuum damage mechanics.  Basic concepts of material damage and the mechanical representation of damage state of various kinds are described in Chapters 1 and 2.  In Chapters 3-5, irreversible thermodynamics, thermodynamic constitutive theory and its application ...

  4. Continuum Random Phase Approximation with finite-range interactions

    Energy Technology Data Exchange (ETDEWEB)

    Co' , Giampaolo [Universita del Salento, Dipartimento di Fisica ' ' E. De Giorgi' ' , Lecce (Italy); INFN, Sezione di Lecce, Lecce (Italy); De Donno, Viviana [Universita del Salento, Dipartimento di Fisica ' ' E. De Giorgi' ' , Lecce (Italy); Anguiano, Marta; Lallena, Antonio M. [Universidad de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, Granada (Spain)

    2016-05-15

    We rewrite the Random Phase Approximation secular equations in a form which allows the treatment of the continuum part of the single-particle spectrum without approximations. Within this formalism finite-range interactions can be used without restrictions. We present some results, obtained with Gogny interactions, where the role of the continuum is relevant. (orig.)

  5. Continuum of Counseling Goals: A Framework for Differentiating Counseling Strategies.

    Science.gov (United States)

    Bruce, Paul

    1984-01-01

    Presents counseling goals in a developmental continuum similar in concept to Maslow's hierarchy of needs. Discusses ego development goals, socialization goals, developmental goals, self-esteem goals, and self-realization goals and describes characteristics and implications of the continuum. (JAC)

  6. Bursts and shocks in a continuum shell model

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Bohr, Tomas; Jensen, M.H.

    1998-01-01

    We study a burst event, i.e., the evolution of an initial condition having support only in a finite interval of k-space, in the continuum shell model due to Parisi. We show that the continuum equation without forcing or dissipation can be explicitly written in characteristic form and that the rig...

  7. Continuum Thinking and the Contexts of Personal Information Management

    Science.gov (United States)

    Huvila, Isto; Eriksen, Jon; Häusner, Eva-Maria; Jansson, Ina-Maria

    2014-01-01

    Introduction: Recent personal information management literature has underlined the significance of the contextuality of personal information and its use. The present article discusses the applicability of the records continuum model and its generalisation, continuum thinking, as a theoretical framework for explicating the overlap and evolution of…

  8. Points-Based Safe Path Planning of Continuum Robots

    Directory of Open Access Journals (Sweden)

    Khuram Shahzad

    2015-07-01

    Full Text Available Continuum robots exhibit great potential in a number of challenging applications where traditional rigid link robots pose certain limitations, e.g., working in unstructured environments. In order to enable the usage of continuum robots in safety-critical applications, such as surgery and nuclear decontamination, it is extremely important to ensure a safe path for the robot's movement. Existing algorithms for continuum robot path planning have certain limitations that need to be addressed. These include the fact that none of the algorithms provide safety assurance parameters and control for path planning. They are computationally expensive, applicable to a specific type of continuum robots, and mostly they do not incorporate design and kinematics constraints. In this paper, we propose a points-based path planning (PoPP algorithm for continuum robots that computes the path by imposing safety constraints and improves upon the limitations of existing approaches. In the algorithm, we exploit the constant curvature-bending property of continuum robots in their path planning process. The algorithm is computationally efficient and provides a good tradeoff between accuracy and efficiency that can be implemented to enable the safety-critical application of continuum robots. This algorithm also provides information regarding path volume and flexibility in movement. Simulation results confirm that the algorithm possesses promising potential for all types of continuum robots (following the constant curvature-bending property. We believe that this effectively balances the desired safety and efficiency requirements.

  9. The logic of Kant’s temporal continuum

    NARCIS (Netherlands)

    Pinosio, R.

    2017-01-01

    In this thesis I provide an account of the philosophical foundations and mathematical structure of Kant's temporal continuum. I mainly focus on the development of a formalization of Kant's temporal continuum as it appears in the Critique of Pure Reason and in other works from Kant's critical period,

  10. Searching for a Continuum Limit in CDT Quantum Gravity

    CERN Document Server

    Ambjorn, Jan; Gizbert-Studnicki, Jakub; Jurkiewicz, Jerzy

    2016-01-01

    We search for a continuum limit in the causal dynamical triangulation (CDT) approach to quantum gravity by determining the change in lattice spacing using two independent methods. The two methods yield similar results that may indicate how to tune the relevant couplings in the theory in order to take a continuum limit.

  11. Hybrid continuum-atomistic approach to model electrokinetics in nanofluidics

    Energy Technology Data Exchange (ETDEWEB)

    Amani, Ehsan, E-mail: eamani@aut.ac.ir; Movahed, Saeid, E-mail: smovahed@aut.ac.ir

    2016-06-07

    In this study, for the first time, a hybrid continuum-atomistic based model is proposed for electrokinetics, electroosmosis and electrophoresis, through nanochannels. Although continuum based methods are accurate enough to model fluid flow and electric potential in nanofluidics (in dimensions larger than 4 nm), ionic concentration is too low in nanochannels for the continuum assumption to be valid. On the other hand, the non-continuum based approaches are too time-consuming and therefore is limited to simple geometries, in practice. Here, to propose an efficient hybrid continuum-atomistic method of modelling the electrokinetics in nanochannels; the fluid flow and electric potential are computed based on continuum hypothesis coupled with an atomistic Lagrangian approach for the ionic transport. The results of the model are compared to and validated by the results of the molecular dynamics technique for a couple of case studies. Then, the influences of bulk ionic concentration, external electric field, size of nanochannel, and surface electric charge on the electrokinetic flow and ionic mass transfer are investigated, carefully. The hybrid continuum-atomistic method is a promising approach to model more complicated geometries and investigate more details of the electrokinetics in nanofluidics. - Highlights: • A hybrid continuum-atomistic model is proposed for electrokinetics in nanochannels. • The model is validated by molecular dynamics. • This is a promising approach to model more complicated geometries and physics.

  12. Rotational bands in the continuum illustrated by 8Be results

    Science.gov (United States)

    Garrido, E.; Jensen, A. S.; Fedorov, D. V.

    2013-08-01

    We use the α-α cluster model to describe the properties of 8Be. The rotational energy sequence of the (0+,2+,4+) resonances are reproduced with the complex energy scaling technique for Ali-Bodmer and Buck potentials. However, both static and transition probabilities are far from the rotational values. We trace this observation to the prominent continuum properties of the 2+ and 4+ resonances. They resemble free continuum solutions although still exhibit strong collective rotational character. We compare with cluster models and discuss concepts of rotations in the continuum in connection with such central quantities as transition probabilities, inelastic cross sections, and resonance widths. We compute the 6+ and 8+ S-matrix poles and discuss properties of this possible continuation of the band beyond the known 4+ state. Regularization of diverging quantities is discussed to extract observable continuum properties. We formulate the division of electromagnetic transition probabilities into interfering contributions from resonance-resonance, continuum-resonance, resonance-continuum, and continuum-continuum transitions.

  13. Continuum of Counseling Goals: A Framework for Differentiating Counseling Strategies.

    Science.gov (United States)

    Bruce, Paul

    1984-01-01

    Presents counseling goals in a developmental continuum similar in concept to Maslow's hierarchy of needs. Discusses ego development goals, socialization goals, developmental goals, self-esteem goals, and self-realization goals and describes characteristics and implications of the continuum. (JAC)

  14. Teaching Continuum Mechanics in a Mechanical Engineering Program

    Science.gov (United States)

    Liu, Yucheng

    2011-01-01

    This paper introduces a graduate course, continuum mechanics, which is designed for and taught to graduate students in a Mechanical Engineering (ME) program. The significance of continuum mechanics in engineering education is demonstrated and the course structure is described. Methods used in teaching this course such as topics, class…

  15. The Elastic Continuum Limit of the Tight Binding Model

    Institute of Scientific and Technical Information of China (English)

    Weinan E; Jianfeng LU

    2007-01-01

    The authors consider the simplest quantum mechanics model of solids, the tight binding model, and prove that in the continuum limit, the energy of tight binding model converges to that of the continuum elasticity model obtained using Cauchy-Born rule. Thet echnique in this paper is based mainly on spectral perturbation theory for large matrices.

  16. Points-based Safe Path Planning of Continuum Robots

    Directory of Open Access Journals (Sweden)

    Khuram Shahzad

    2015-07-01

    Full Text Available Continuum robots exhibit great potential in a number of challenging applications where traditional rigid link robots pose certain limitations, e.g.,working in unstructured environments. In order to enable the usage of continuum robots in safety-critical applications, such as surgery and nuclear decontamination, it is extremely important to ensure a safe path for the robot’s movement. Existing algorithms for continuum robot path planning have certain limitations that need to be addressed. These include the fact that none of the algorithms provide safety assurance parameters and control for path planning. They are computationally expensive, applicable to a specific type of continuum robots, and mostly they do not incorporate design and kinematics constraints. In this paper, we propose a points-based path planning (PoPP algorithm for continuum robots that computes the path by imposing safety constraints and improves upon the limitations of existing approaches. In the algorithm, we exploit the constant curvature-bending property of continuum robots in their path planning process. The algorithm is computationally efficient and provides a good tradeoff between accuracy and efficiency that can be implemented to enable the safety-critical application of continuum robots. This algorithm also provides information regarding path volume and flexibility in movement. Simulation results confirm that the algorithm possesses promising potential for all types of continuum robots (following the constant curvature-bending property. We believe that this effectively balances the desired safety and efficiency requirements.

  17. Teaching Continuum Mechanics in a Mechanical Engineering Program

    Science.gov (United States)

    Liu, Yucheng

    2011-01-01

    This paper introduces a graduate course, continuum mechanics, which is designed for and taught to graduate students in a Mechanical Engineering (ME) program. The significance of continuum mechanics in engineering education is demonstrated and the course structure is described. Methods used in teaching this course such as topics, class…

  18. The Dual Career Family.

    Science.gov (United States)

    Gurtin, Lee

    1980-01-01

    The dual career couple is forced to make a series of choices and compromises that impact the realms of marriage and career. The dilemmas that confront dual career marriages can be overcome only by compromise, accommodation, and mutual understanding on the part of the individuals involved. A revamping of human resources and recruitment programs is…

  19. Dual Credit Report

    Science.gov (United States)

    Light, Noreen

    2016-01-01

    In 2015, legislation to improve access to dual-credit programs and to reduce disparities in access and completion--particularly for low income and underrepresented students--was enacted. The new law focused on expanding access to College in the High School but acknowledged issues in other dual-credit programs and reinforced the notion that cost…

  20. Dual Youla parameterization

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2003-01-01

    A different aspect of using the parameterisation of all systems stabilised by a given controller, i.e. the dual Youla parameterisation, is considered. The relation between system change and the dual Youla parameter is derived in explicit form. A number of standard uncertain model descriptions are...

  1. Self-Dual Gravity

    CERN Document Server

    Krasnov, Kirill

    2016-01-01

    Self-dual gravity is a diffeomorphism invariant theory in four dimensions that describes two propagating polarisations of the graviton and has a negative mass dimension coupling constant. Nevertheless, this theory is not only renormalisable but quantum finite, as we explain. We also collect various facts about self-dual gravity that are scattered across the literature.

  2. Optical dual self functions

    Institute of Scientific and Technical Information of China (English)

    华建文; 刘立人; 王宁

    1997-01-01

    A recipe to construct the exact dual self-Fourier-Fresnel-transform functions is shown, where the Dirac comb function and transformable even periodic function are used. The mathematical proof and examples are given Then this kind of self-transform function is extended to the feasible optical dual self-transform functions.

  3. Dual doubled geometry

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Riccioni, Fabio; Alvarez-Gaumé, L.

    2011-01-01

    We probe doubled geometry with dual fundamental branes. i.e. solitons. Restricting ourselves first to solitonic branes with more than two transverse directions we find that the doubled geometry requires an effective wrapping rule for the solitonic branes which is dual to the wrapping rule for fundam

  4. Research on Dual Control

    Institute of Scientific and Technical Information of China (English)

    Duan Li; Fucai Qian; Peilin Fu

    2005-01-01

    This paper summarizes recent progress by the authors in developing two solution frameworks for dual control. The first solution framework considers a class of dual control problems where there exists a parameter uncertainty in the observation equation of the LQG problem. An analytical active dual control law is derived by a variance minimization approach. The issue of how to determine an optimal degree of active learning is then addressed, thus achieving an optimality for this class of dual control problems. The second solution framework considers a general class of discrete-time LQG problems with unknown parameters in both state and observation equations. The best possible (partial) closed-loop feedback control law is derived by exploring the future nominal posterior probabilities, thus taking into account the effect of future learning when constructing the optimal nominal dual control.

  5. Patients' experiences with continuum of care across hospitals. A multilevel analysis of Consumer Quality Index Continuum of Care

    NARCIS (Netherlands)

    Kollen, Boudewijn J.; Groenier, Klaas H.; Berendsen, Annette J.

    Objective: Communication between professionals is essential because it contributes to an optimal continuum of care. Whether patients experience adequate continuum of care is uncertain. To address this, a questionnaire was developed to elucidate this care process from a patients' perspective. In this

  6. Continuum regularization of quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Z.

    1986-04-01

    Possible nonperturbative continuum regularization schemes for quantum field theory are discussed which are based upon the Langevin equation of Parisi and Wu. Breit, Gupta and Zaks made the first proposal for new gauge invariant nonperturbative regularization. The scheme is based on smearing in the ''fifth-time'' of the Langevin equation. An analysis of their stochastic regularization scheme for the case of scalar electrodynamics with the standard covariant gauge fixing is given. Their scheme is shown to preserve the masslessness of the photon and the tensor structure of the photon vacuum polarization at the one-loop level. Although stochastic regularization is viable in one-loop electrodynamics, two difficulties arise which, in general, ruins the scheme. One problem is that the superficial quadratic divergences force a bottomless action for the noise. Another difficulty is that stochastic regularization by fifth-time smearing is incompatible with Zwanziger's gauge fixing, which is the only known nonperturbaive covariant gauge fixing for nonabelian gauge theories. Finally, a successful covariant derivative scheme is discussed which avoids the difficulties encountered with the earlier stochastic regularization by fifth-time smearing. For QCD the regularized formulation is manifestly Lorentz invariant, gauge invariant, ghost free and finite to all orders. A vanishing gluon mass is explicitly verified at one loop. The method is designed to respect relevant symmetries, and is expected to provide suitable regularization for any theory of interest. Hopefully, the scheme will lend itself to nonperturbative analysis. 44 refs., 16 figs.

  7. Diagnostic Reasoning across the Medical Education Continuum

    Directory of Open Access Journals (Sweden)

    C. Scott Smith

    2014-07-01

    Full Text Available We aimed to study linguistic and non-linguistic elements of diagnostic reasoning across the continuum of medical education. We performed semi-structured interviews of premedical students, first year medical students, third year medical students, second year internal medicine residents, and experienced faculty (ten each as they diagnosed three common causes of dyspnea. A second observer recorded emotional tone. All interviews were digitally recorded and blinded transcripts were created. Propositional analysis and concept mapping were performed. Grounded theory was used to identify salient categories and transcripts were scored with these categories. Transcripts were then unblinded. Systematic differences in propositional structure, number of concept connections, distribution of grounded theory categories, episodic and semantic memories, and emotional tone were identified. Summary concept maps were created and grounded theory concepts were explored for each learning level. We identified three major findings: (1 The “apprentice effect” in novices (high stress and low narrative competence; (2 logistic concept growth in intermediates; and (3 a cognitive state transition (between analytical and intuitive approaches in experts. These findings warrant further study and comparison.

  8. A continuum damage model for piezoelectric materials

    Institute of Scientific and Technical Information of China (English)

    Yiming Fu; Xianqiao Wang

    2008-01-01

    In this paper, a constitutive model is proposed for piezoelectric material solids containing distributed cracks.The model is formulated in a framework of continuum damage mechanics using second rank tensors as internal variables. The Helmhotlz free energy of piezoelectric mate-rials with damage is then expressed as a polynomial including the transformed strains, the electric field vector and the ten-sorial damage variables by using the integrity bases restricted by the initial orthotropic symmetry of the material. By using the Talreja's tensor valued internal state damage variables as well as the Helmhotlz free energy of the piezoelectric mate-rial, the constitutive relations of piezoelectric materials with damage are derived. The model is applied to a special case of piezoelectric plate with transverse matrix cracks. With theKirchhoff hypothesis of plate, the free vibration equationsof the piezoelectric rectangular plate considering damage isestablished. By using Galerkin method, the equations are sol-ved. Numerical results show the effect of the damage on the free vibration of the piezoelectric plate under the close-circuit condition, and the present results are compared with those of the three-dimensional theory.

  9. Detection of radio continuum emission from Procyon

    Science.gov (United States)

    Drake, Stephen A.; Simon, Theodore; Brown, Alexander

    1993-01-01

    We have detected the F5 IV-V star Procyon as a weak and variable 3.6 cm radio continuum source using the VLA. The inferred radio luminosity is similar to, though some-what higher than, the X-band luminosity of the active and flaring sun. The 33 micro-Jy flux density level at which we detected Procyon on four of five occasions is close to the 36 micro-Jy radio flux density expected from a model in which the radio emission consists of two components: optically thick 'stellar disk' emission with a 3.6 cm brightness temperature of 20,000 K that is 50 percent larger than the solar value, and optically thin coronal emission with an emission measure the same as that indicated by Einstein and EXOSAT X-ray flux measurements in 1981 and 1983. The maximum mass-loss rate of a warm stellar wind is less than 2 x 10 exp -11 solar mass/yr. An elevated flux density of 115 micro-Jy observed on a single occasion provides circumstantial evidence for the existence of highly localized magnetic fields on the surface of Procyon.

  10. Continuum model for dipolar coupled planar lattices

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Miguel D.; Pogorelov, Yuri G. E-mail: ypogorel@fc.up.pt

    2003-03-01

    In an effective continuum approach alike the phenomenological Landau theory, we study low energy excitations in a square lattice of dipolar coupled magnetic moments {mu}, over continuously degenerate microvortex (MV) ground states defined by an arbitrary angle 0<{theta}<{pi}/2. We consider two vector order parameters: the MV vector v={mu} (cos {theta}, sin {theta}) and the ferromagnetic (FM) vector f=((1)/(2)) ({partial_derivative}{sub y}v{sub x}, -{partial_derivative}{sub x}v{sub y}). The excitation energy density {approx}f{sup 2} leads to a non-linear Euler equation. It allows, besides common linear waves of small amplitude, also non-linear excitations with unlimited (but slow) variation of {theta}(r). For plane wave excitations {theta}(r)={theta}(n{center_dot}r) propagating along n=(cos phi (cursive,open) Greek, sin phi (cursive,open) Greek), exact integrals of Euler equation are found. The density of excitation states turns anisotropic in {theta}, conforming to the enhanced occurrence of MV-like states with {theta} close to 0 or {pi}/2 in our Monte Carlo simulations of this system at low excitation energies.

  11. Radio Continuum Jet in NGC 7479

    CERN Document Server

    Laine, Seppo

    2007-01-01

    The barred galaxy NGC 7479 hosts a remarkable jet-like radio continuum feature: bright, 12-kpc long in projection, and hosting an aligned magnetic field. The degree of polarization is 6%-8% along the jet, and remarkably constant, which is consistent with helical field models. The radio brightness of the jet suggests strong interaction with the ISM and hence a location near the disk plane. We observed NGC 7479 at four wavelengths with the VLA and Effelsberg radio telescopes. The equipartition strength is 35-40 micro-G for the total and >10 micro-G for the ordered magnetic field in the jet. The jet acts as a bright, polarized background. Faraday rotation between 3.5 and 6 cm and depolarization between 6 and 22 cm can be explained by magneto-ionic gas in front of the jet, with thermal electron densities of ~0.06 cm**(-3) in the bar and ~0.03 cm**(-3) outside the bar. The regular magnetic field along the bar points toward the nucleus on both sides. The regular field in the disk reveals multiple reversals, probabl...

  12. The Infrared Continuum Spectrum of VY CMa

    CERN Document Server

    Harwit, M; Decin, L; Waelkens, C; Feuchtgruber, H; Melnick, G J; Harwit, Martin; Malfait, Koen; Decin, Leen; Waelkens, Christoffel; Feuchtgruber, Helmut; Melnick, Gary J.

    2001-01-01

    We combine spectra of VY CMa obtained with the short- and long-wavelength spectrometers, SWS and LWS, on the Infrared Space Observatory to provide a first detailed continuum spectrum of this highly luminous star. The circumstellar dust cloud through which the star is observed is partially self-absorbing, which makes for complex computational modeling. We review previous work and comment on the range of uncertainties about the physical traits and mineralogical composition of the modeled disk. We show that these uncertainties significantly affect the modeling of the outflow and the estimated mass loss. In particular, we demonstrate that a variety of quite diverse models can produce good fits to the observed spectrum. If the outflow is steady, and the radiative repulsion on the dust cloud dominates the star's gravitational attraction, we show that the total dust mass-loss rate is $\\sim 4\\times 10^{-6}M_{\\odot}$ yr$^{-1}$, assuming that the star is at a distance of 1.5 kpc. Several indications, however, suggest t...

  13. Optical continuum generation on a silicon chip

    Science.gov (United States)

    Jalali, Bahram; Boyraz, Ozdal; Koonath, Prakash; Raghunathan, Varun; Indukuri, Tejaswi; Dimitropoulos, Dimitri

    2005-08-01

    Although the Raman effect is nearly two orders of magnitude stronger than the electronic Kerr nonlinearity in silicon, under pulsed operation regime where the pulse width is shorter than the phonon response time, Raman effect is suppressed and Kerr nonlinearity dominates. Continuum generation, made possible by the non-resonant Kerr nonlinearity, offers a technologically and economically appealing path to WDM communication at the inter-chip or intra-chip levels. We have studied this phenomenon experimentally and theoretically. Experimentally, a 2 fold spectral broadening is obtained by launching ~4ps optical pulses with 2.2GW/cm2 peak power into a conventional silicon waveguide. Theoretical calculations, that include the effect of two-photon-absorption, free carrier absorption and refractive index change indicate that up to >30 times spectral broadening is achievable in an optimized device. The broadening is due to self phase modulation and saturates due to two photon absorption. Additionally, we find that free carrier dynamics also contributes to the spectral broadening and cause the overall spectrum to be asymmetric with respect to the pump wavelength.

  14. Second law violations, continuum mechanics, and permeability

    Science.gov (United States)

    Ostoja-Starzewski, Martin

    2016-03-01

    The violations of the second law are relevant as the length and/or time scales become very small. The second law then needs to be replaced by the fluctuation theorem and mathematically, the irreversible entropy is a submartingale. First, we discuss the consequences of these results for the axioms of continuum mechanics, arguing in favor of a framework relying on stochastic functionals of energy and entropy. We next determine a Lyapunov function for diffusion-type problems governed by stochastic rather than deterministic functionals of internal energy and entropy, where the random field coefficients of diffusion are not required to satisfy the positive definiteness everywhere. Next, a formulation of micropolar fluid mechanics is developed, accounting for the lack of symmetry of stress tensor on molecular scales. This framework is then applied to employed to show that spontaneous random fluctuations of the microrotation field will arise in Couette—and Poiseuille-type flows in the absence of random (turbulence-like) fluctuations of the classical velocity field. Finally, while the permeability is classically modeled by the Darcy law or its modifications, besides considering the violations of the second law, one also needs to account for the spatial randomness of the channel network, implying a modification of the hierarchy of scale-dependent bounds on the macroscopic property of the network.

  15. Continuum Edge Gyrokinetic Theory and Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X Q; Xiong, Z; Dorr, M R; Hittinger, J A; Bodi, K; Candy, J; Cohen, B I; Cohen, R H; Colella, P; Kerbel, G D; Krasheninnikov, S; Nevins, W M; Qin, H; Rognlien, T D; Snyder, P B; Umansky, M V

    2007-01-09

    The following results are presented from the development and application of TEMPEST, a fully nonlinear (full-f) five dimensional (3d2v) gyrokinetic continuum edge-plasma code. (1) As a test of the interaction of collisions and parallel streaming, TEMPEST is compared with published analytic and numerical results for endloss of particles confined by combined electrostatic and magnetic wells. Good agreement is found over a wide range of collisionality, confining potential, and mirror ratio; and the required velocity space resolution is modest. (2) In a large-aspect-ratio circular geometry, excellent agreement is found for a neoclassical equilibrium with parallel ion flow in the banana regime with zero temperature gradient and radial electric field. (3) The four-dimensional (2d2v) version of the code produces the first self-consistent simulation results of collisionless damping of geodesic acoustic modes and zonal flow (Rosenbluth-Hinton residual) with Boltzmann electrons using a full-f code. The electric field is also found to agree with the standard neoclassical expression for steep density and ion temperature gradients in the banana regime. In divertor geometry, it is found that the endloss of particles and energy induces parallel flow stronger than the core neoclassical predictions in the SOL. (5) Our 5D gyrokinetic formulation yields a set of nonlinear electrostatic gyrokinetic equations that are for both neoclassical and turbulence simulations.

  16. Dual Credit/Dual Enrollment and Data Driven Policy Implementation

    Science.gov (United States)

    Lichtenberger, Eric; Witt, M. Allison; Blankenberger, Bob; Franklin, Doug

    2014-01-01

    The use of dual credit has been expanding rapidly. Dual credit is a college course taken by a high school student for which both college and high school credit is given. Previous studies provided limited quantitative evidence that dual credit/dual enrollment is directly connected to positive student outcomes. In this study, predictive statistics…

  17. A robust, coupled approach for atomistic-continuum simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Aubry, Sylvie; Webb, Edmund Blackburn, III (Sandia National Laboratories, Albuquerque, NM); Wagner, Gregory John; Klein, Patrick A.; Jones, Reese E.; Zimmerman, Jonathan A.; Bammann, Douglas J.; Hoyt, Jeffrey John (Sandia National Laboratories, Albuquerque, NM); Kimmer, Christopher J.

    2004-09-01

    This report is a collection of documents written by the group members of the Engineering Sciences Research Foundation (ESRF), Laboratory Directed Research and Development (LDRD) project titled 'A Robust, Coupled Approach to Atomistic-Continuum Simulation'. Presented in this document is the development of a formulation for performing quasistatic, coupled, atomistic-continuum simulation that includes cross terms in the equilibrium equations that arise due to kinematic coupling and corrections used for the calculation of system potential energy to account for continuum elements that overlap regions containing atomic bonds, evaluations of thermo-mechanical continuum quantities calculated within atomistic simulations including measures of stress, temperature and heat flux, calculation used to determine the appropriate spatial and time averaging necessary to enable these atomistically-defined expressions to have the same physical meaning as their continuum counterparts, and a formulation to quantify a continuum 'temperature field', the first step towards constructing a coupled atomistic-continuum approach capable of finite temperature and dynamic analyses.

  18. Equivalent-Continuum Modeling With Application to Carbon Nanotubes

    Science.gov (United States)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2002-01-01

    A method has been proposed for developing structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with equivalent-continuum models. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As important examples with direct application to the development and characterization of single-walled carbon nanotubes and the design of nanotube-based devices, the modeling technique has been applied to determine the effective-continuum geometry and bending rigidity of a graphene sheet. A representative volume element of the chemical structure of graphene has been substituted with equivalent-truss and equivalent continuum models. As a result, an effective thickness of the continuum model has been determined. This effective thickness has been shown to be significantly larger than the interatomic spacing of graphite. The effective thickness has been shown to be significantly larger than the inter-planar spacing of graphite. The effective bending rigidity of the equivalent-continuum model of a graphene sheet was determined by equating the vibrational potential energy of the molecular model of a graphene sheet subjected to cylindrical bending with the strain energy of an equivalent continuum plate subjected to cylindrical bending.

  19. Dual coil ignition system

    Energy Technology Data Exchange (ETDEWEB)

    Huberts, Garlan J.; Qu, Qiuping; Czekala, Michael Damian

    2017-03-28

    A dual coil ignition system is provided. The dual coil ignition system includes a first inductive ignition coil including a first primary winding and a first secondary winding, and a second inductive ignition coil including a second primary winding and a second secondary winding, the second secondary winding connected in series to the first secondary winding. The dual coil ignition system further includes a diode network including a first diode and a second diode connected between the first secondary winding and the second secondary winding.

  20. Dual energy CT

    DEFF Research Database (Denmark)

    Al-Najami, Issam; Drue, Henrik Christian; Steele, Robert

    2017-01-01

    and inaccurate with existing methods. Dual Energy Computed Tomography (DECT) enables qualitative tissue differentiation by simultaneous scanning with different levels of energy. We aimed to assess the feasibility of DECT in quantifying tumor response to neoadjuvant therapy in loco-advanced rectal cancer. METHODS...... to determine the average quantitative parameters; effective-Z, water- and iodine-concentration, Dual Energy Index (DEI), and Dual Energy Ratio (DER). These parameters were compared to the regression in the resection specimen as measured by the pathologist. RESULTS: Changes in the quantitative parameters...

  1. SEACAS Theory Manuals: Part II. Nonlinear Continuum Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Attaway, S.W.; Laursen, T.A.; Zadoks, R.I.

    1998-09-01

    This report summarizes the key continuum mechanics concepts required for the systematic prescription and numerical solution of finite deformation solid mechanics problems. Topics surveyed include measures of deformation appropriate for media undergoing large deformations, stress measures appropriate for such problems, balance laws and their role in nonlinear continuum mechanics, the role of frame indifference in description of large deformation response, and the extension of these theories to encompass two dimensional idealizations, structural idealizations, and rigid body behavior. There are three companion reports that describe the problem formulation, constitutive modeling, and finite element technology for nonlinear continuum mechanics systems.

  2. Continuum simulations of water flow past fullerene molecules

    Science.gov (United States)

    Popadić, A.; Praprotnik, M.; Koumoutsakos, P.; Walther, J. H.

    2015-09-01

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently by continuum flow solvers, allowing for investigations into spatiotemporal scales inaccessible to atomistic simulations.

  3. Some fundamental aspects of the continuumization problem in granular Media

    Science.gov (United States)

    Peters, John F.

    The central problem of devising mathematical models of granular materials is how to define a granular medium as a continuum. This paper outlines the elements of a theory that could be incorporated in discrete models such as the Discrete-Element Method, without recourse to a continuum description. It is shown that familiar concepts from continuum mechanics such as stress and strain can be defined for interacting discrete quantities. Established concepts for constitutive equations can likewise be applied to discrete quantities. The key problem is how to define the constitutive response in terms of truncated strain measures that are a practical necessity for analysis of large granular systems.

  4. On the solution of a pairing problem in the continuum

    CERN Document Server

    Mercenne, A; Dukelsky, J; Płoszajczak, M

    2016-01-01

    We present a generalized Richardson solution for fermions interacting with the pairing interaction in both discrete and continuum parts of the single particle (s.p.) spectrum. The pairing Hamiltonian is based on the rational Gaudin (RG) model which is formulated in the Berggren ensemble. We show that solutions of the generalized Richardson equations are exact in the two limiting situations: (i) in the pole approximation and (ii) in the s.p. continuum. If the s.p. spectrum contains both discrete and continuum parts, then the generalized Richardson equations provide accurate solutions for the Gamow Shell Model.

  5. Semianalytic continuum spectra of Type 2 supernovae

    Science.gov (United States)

    Montes, Marcos J.; Wagoner, Robert V.

    1995-01-01

    We extend the approximate radiative transfer analysis of Hershkowitz, Linder, & Wagoner (1986) to a more general class of supernova model atmospheres, using a simple fit to the effective continuum opacity produced by lines (Wagoner, Perez, & Vasu 1991). At the low densities considered, the populations of the excited states of hydrogen are governed mainly by photoionization and recombination, and scattering dominates absorptive opacity. We match the asymptotic expressions for the spectral energy density J(sub nu) at the photosphere, whose location at each frequency is determined by a first-order calculation of the deviation of J(sub nu) from the Planck function B(sub nu). The emergent spectral luminosity then assumes the form L(sub nu) = 4 pi(squared)r(squared)(sub *) zeta(squared)B(sub nu)(T(sub p)), where T(sub p)(nu) is the photospheric temperature zeta is the dilution factor, and r(sub *) is a fiducial radius (ultimately taken to be the photospheric radius r(sub p)(nu)). The atmosphere is characterized by an effective temperature T(sub e) (varies as L(sup 1/4)r(sup -1/2)(sub *)) and hydrogen density n(sub H) = dependence of zeta on frequency nu and the parameters T(sub p), r(sub p), and alpha. The resulting understanding of the dependence of the spectral luminosity on observable parameters which characterize the relevant physical conditions will be of particular use in assessing the reliability of the expanding photosphere method of distance determination. This is particularly important at cosmological distances, where no information about the progenitor star will be available. This technique can also be applied to other low-density photosphere.

  6. The Hurricane-Flood-Landslide Continuum

    Science.gov (United States)

    Negri, Andrew J.; Burkardt, Nina; Golden, Joseph H.; Halverson, Jeffrey B.; Huffman, George J.; Larsen, Matthew C.; McGinley, John A.; Updike, Randall G.; Verdin, James P.; Wieczorek, Gerald F.

    2005-01-01

    In August 2004, representatives from NOAA, NASA, the USGS, and other government agencies convened in San Juan, Puerto Rim for a workshop to discuss a proposed research project called the Hurricane-Flood-Landslide Continuum (HFLC). The essence of the HFLC is to develop and integrate tools across disciplines to enable the issuance of regional guidance products for floods and landslides associated with major tropical rain systems, with sufficient lead time that local emergency managers can protect vulnerable populations and infrastructure. All three lead agencies are independently developing precipitation-flood-debris flow forecasting technologies, and all have a history of work on natural hazards both domestically and overseas. NOM has the capability to provide tracking and prediction of storm rainfall, trajectory and landfall and is developing flood probability and magnTtude capabilities. The USGS has the capability to evaluate the ambient stability of natural and man-made landforms, to assess landslide susceptibilities for those landforms, and to establish probabilities for initiation of landslides and debris flows. Additionally, the USGS has well-developed operational capacity for real-time monitoring and reporting of streamflow across distributed networks of automated gaging stations (http://water.usgs.gov/waterwatch/). NASA has the capability to provide sophisticated algorithms for satellite remote sensing of precipitation, land use, and in the future, soil moisture. The Workshop sought to initiate discussion among three agencies regarding their specific and highly complimentary capabilities. The fundamental goal of the Workshop was to establish a framework that will leverage the strengths of each agency. Once a prototype system is developed for example, in relatively data-rich Puerto Rim, it could be adapted for use in data-poor, low-infrastructure regions such as the Dominican Republic or Haiti. This paper provides an overview of the Workshop s goals

  7. Walkable dual emissions

    National Research Council Canada - National Science Library

    Xu, Hai-Bing; Jiao, Peng-Chong; Kang, Bin; Deng, Jian-Guo; Zhang, Yan

    2013-01-01

    Walkable dual emissions, in which the emission bands of the walker reversibly cross or leave those of the stationary ones depending on temperature and concentration, have been demonstrated in cyclic...

  8. IUTAM-Symposium on The Generalized Cosserat Continuum and the Continuum Theory of Dislocations with Applications

    CERN Document Server

    1968-01-01

    5 The symposium was held in Freudenstadt from 28\\h to 31 \\ ofAugust st nd 1967 and in Stuttgart from 1 to 2 of September 1967. The proposal to hold this symposium originated with the German Society of Applied Mathematics and Mechanics (GAMM) late in 1964 and was examined by a committee of IUTAM especially appointed for this purpose. The basis of this examination was a report in which the present situation in the field and the possible aims of the symposium were surveyed. Briefly, the aims of the symposium were stated to be 1. the unification of the various approaches developed in recent years with the aim of penetrating into the microscopic world of matter by means of continuum theories; 2. the bridging of the gap between microscopic (or atomic) research on mechanics on one hand, and the phenomenological (or continuum mechanical) approach on the other hand; 3. the physical interpretation and the relation to actual material behaviour of the quantities and laws introduced into the new theories, together with ap...

  9. RENEWAL OF BASIC LAWS AND PRINCIPLES FOR POLAR CONTINUUM THEORIES (Ⅱ)-MICROMORPHIC CONTINUUM THEORY AND COUPLE STRESS THEORY

    Institute of Scientific and Technical Information of China (English)

    戴天民

    2003-01-01

    The purpose is to reestablish the balance laws of momentum, angular momentumand energy and to derive the corresponding local and nonlocal balance equations formicromorphic continuum mechanics and couple stress theory. The desired results formicromorphic continuum mechanics and couple stress theory are naturally obtained via directtransitions and reductions from the coupled conservation law of energy for micropolarcontinuum theory, respectively. The basic balance laws and equation s for micromorphiccontinuum mechanics and couple stress theory are constituted by combining these resultsderived here and the traditional conservation laws and equations of mass and microinertiaand the entropy inequality. The incomplete degrees of the former related continuum theoriesare clarified. Finally, some special cases are conveniently derived.

  10. Measuring the continuum linear polarization with ESPaDOnS

    CERN Document Server

    Pereyra, A; Martioli, E

    2014-01-01

    Our goal is to test the feasibility to obtain accurate measurements of the continuum linear polarization from high-resolution spectra using the spectropolarimetric mode of ESPaDOnS. We used the new pipeline OPERA to reduce recent and archived ESPaDOnS data. A couple of standard polarization stars and several science objects were tested. Synthetic broad-band polarization was computed from the ESPaDOnS continuum linear polarization spectra and compared with published values to quantify the accuracy of the instrument. The continuum linear polarization measured by ESPaDOnS is consistent with the broad-band polarimetry measurements available in the literature. The polarization degree accuracy is better than 0.2% considering the full sample. The accuracy in polarization position angle using the most polarized objects is better than 5deg. Our results suggest that measurements of the continuum linear polarization using ESPaDOnS are viable.

  11. Rotational bands in the continuum illustrated by $^{8}$Be results

    CERN Document Server

    Garrido, E; Fedorov, D V

    2013-01-01

    We use the two-alpha cluster model to describe the properties of $^{8}$Be. The rotational energy sequence of the $(0^+,2^+,4^+)$ resonances are reproduced with the complex energy scaling technique for Ali-Bodmer and Buck-potentials. However, both static and transition probabilities are far from the rotational values. We trace this observation to the prominent continuum properties of the $2^+$ and $4^+$ resonances. They resemble free continuum solutions although still exhibiting strong collective rotational character. We compare with cluster models and discuss concepts of rotations in the continuum in connection with central quantities as transition probabilities, inelastic cross sections and resonance widths. We compute the $6^+$ and $8^+$ $S$-matrix poles and discuss properties of this possible continuation of the band beyond the known $4^+$ state. Regularization of diverging quantities are discussed in order to extract observable continuum properties. We formulate division of electromagnetic transition prob...

  12. Continuum discretized BCS approach for weakly bound nuclei

    CERN Document Server

    Lay, J A; Fortunato, L; Vitturi, A

    2015-01-01

    The Bardeen-Cooper-Schrieffer (BCS) formalism is extended by including the single-particle continuum, thus enabling the analysis of an isotopic chain from stability up to the drip line. We propose a continuum discretized generalized BCS based on single-particle pseudostates (PS). These PS are generated from the diagonalization of the single-particle Hamiltonian within a Transformed Harmonic Oscillator (THO) basis. The consistency of the results versus the size of the basis is studied. The method is applied to neutron rich Oxygen and Carbon isotopes and compared with similar previous works and available experimental data. We make use of the flexibility of the proposed model in order to study the evolution of the occupation of the low-energy continuum when the system becomes weakly bound. We find a larger influence of the non-resonant continuum as long as the Fermi level approaches zero.

  13. Links between annual, Milankovitch and continuum temperature variability.

    Science.gov (United States)

    Huybers, Peter; Curry, William

    2006-05-18

    Climate variability exists at all timescales-and climatic processes are intimately coupled, so that understanding variability at any one timescale requires some understanding of the whole. Records of the Earth's surface temperature illustrate this interdependence, having a continuum of variability following a power-law scaling. But although specific modes of interannual variability are relatively well understood, the general controls on continuum variability are uncertain and usually described as purely stochastic processes. Here we show that power-law relationships of surface temperature variability scale with annual and Milankovitch-period (23,000- and 41,000-year) cycles. The annual cycle corresponds to scaling at monthly to decadal periods, while millennial and longer periods are tied to the Milankovitch cycles. Thus the annual, Milankovitch and continuum temperature variability together represent the response to deterministic insolation forcing. The identification of a deterministic control on the continuum provides insight into the mechanisms governing interannual and longer-period climate variability.

  14. Asymmetric continuum extreme processes in solids and fluids

    CERN Document Server

    Teisseyre, Roman

    2014-01-01

    This book deals with a class of basic deformations in asymmetric continuum theory. It describes molecular deformations and transport velocities in fluids, strain deformations in solids as well as the molecular transport, important in fracture processes.

  15. Non coherent continuum scattering as a line polarization mechanism

    CERN Document Server

    Alemán, T del Pino; Bueno, J Trujillo

    2014-01-01

    Line scattering polarization can be strongly affected by Rayleigh scattering by neutral hydrogen and Thompson scattering by free electrons. Often a continuum depolarization results, but the Doppler redistribution produced by the continuum scatterers, which are light (hence, fast), induces more complex interactions between the polarization in spectral lines and in the continuum. Here we formulate and solve the radiative transfer problem of scattering line polarization with non coherent continumm scattering consistently. The problem is formulated within the spherical tensor representation of atomic and light polarization. The numerical method of solution is a generalization of the Accelerated Lambda Iteration that is applied to both, the atomic system and the radiation field. We show that the redistribution of the spectral line radiation due to the non coherence of the continuum scattering may modify significantly the shape of the emergent fractional linear polarization patterns, even yielding polarization sign...

  16. A version of Hill's lemma for Cosserat continuum

    Institute of Scientific and Technical Information of China (English)

    Xikui Li; Qipeng Liu

    2009-01-01

    On the basis of Hill's lemma for classical Cauchy continuum, a version of Hill's lemma for micro-macro homogenization modeling of heterogeneous Cosserat continuum is presented in the frame of average-field theory. The admissible boundary conditions required to prescribe on the representative volume element for the modeling are extracted and discussed to ensure the satisfaction of HillMandel energy condition and the first-order average field theory.

  17. An extended Coleman-Noll procedure for generalized continuum theories

    Science.gov (United States)

    Hütter, Geralf

    2016-11-01

    Within rational continuum mechanics, the Coleman-Noll procedure is established to derive requirements to constitutive equations. Aiming in particular at generalized continuum theories, the present contribution demonstrates how this procedure can be extended to yield additionally the underlying balance equations of stress-type quantities. This is demonstrated for micromorphic and strain gradient media as well as for the microforce theory. The relation between the extended Coleman-Noll procedure and the method of virtual powers is pointed out.

  18. Uses of Continuum Radiation in the AXAF Calibration

    Science.gov (United States)

    Kolodziejczak, J. J.; Austin, R. A.; Eisner, R. F.; ODell, S. L.; Sulkanen, M. E.; Swartz, D. A.; Tennant, A. F.; Weisskopf, M. C.; Zirnstein, G.; McDermott, W. C.

    1997-01-01

    X-ray calibration of the Advanced X-ray Astrophysics Facility (AXAF) observatory at the MSFC X-Ray Calibration Facility (XRCF) made novel use of the x-ray continuum from a conventional electron-impact source. Taking advantage of the good spectral resolution of solid-state detectors, continuum measurements proved advantageous in calibrating the effective area of AXAF's High-Resolution Mirror Assembly (HRMA) and in verifying its alignment to the XRCF's optical axis.

  19. WMAP, Verschuur's Galactic Associations, and the Dual Proposal

    Science.gov (United States)

    Bartlett, David F.

    2009-01-01

    Gerrit Verschuur (2007,2008) has associated 21-cm emissions from neutral hydrogen in the Milky Way with the small scale (1/2 - 1 degree) continuum emissions of WMAP.This association has been challenged by Land and Slosar (2007). In this poster I will show how the dual proposal supports Verschuur. In the dual proposal there are maxima of gravitational potential spaced 400 pc apart throughout the Galaxy. ["Analogies between Electricity and Gravity, Metrologia 41, (2004) S114-S124; "Contour Map for the Gravitational Potential of the Milky Way", BAAS 38, 1148 (2006). I gratefully acknowledge using the Leyden-Argentine-Bonn all-sky survey of HI. (www.astro.uni-bonn.de).

  20. Design Gradient Descent Optimal Sliding Mode Control of Continuum Robots

    Directory of Open Access Journals (Sweden)

    Farzin Piltan

    2012-08-01

    Full Text Available In this research, a new approach for gradient descent optimal sliding mode controller for continuum robots is proposed. Based on the new dynamic models developed, a novel technique for nonlinear control of continuum manipulators to be employed in various situations has also been proposed and developed. A section of a continuum arm is modeled using lumped model elements (masses, springs and dampers and control by nonlinear methodology (sliding mode method and optimization the sliding surface slope by gradient descent method. It is shown that this type of control methodology, although used to a certain model, can be used to conveniently control the dynamics of the arm with suitable tradeoff in accuracy of modeling. This relatively controller is more plausible to implement in an actual real-time when compared to other techniques of nonlinear controller methodology of continuum arms. Principles of sliding mode methodology is based on derive the sliding surface slope and nonlinear dynamic model and applied in the system. Based on the gradient descent optimization method, the sliding surface slope and gain updating factor has been developed in certain and partly uncertain continuum robots. This methodology is represented in certain and uncertain area whose only optimization for certain area and test this optimization for uncertainty. The new techniques proposed and methodologies adopted in this paper supported by MATLAB/SIMULINK results represent a significant contribution to the field of design an optimized nonlinear sliding mode controller for continuum robots.

  1. Relativistic corrections and non-Gaussianity in radio continuum surveys

    Energy Technology Data Exchange (ETDEWEB)

    Maartens, Roy [Physics Department, University of the Western Cape, Cape Town 7535 (South Africa); Zhao, Gong-Bo; Bacon, David; Koyama, Kazuya [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Raccanelli, Alvise, E-mail: Roy.Maartens@port.ac.uk, E-mail: Gong-bo.Zhao@port.ac.uk, E-mail: David.Bacon@port.ac.uk, E-mail: Kazuya.Koyama@port.ac.uk, E-mail: alvise@caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA 91109 (United States)

    2013-02-01

    Forthcoming radio continuum surveys will cover large volumes of the observable Universe and will reach to high redshifts, making them potentially powerful probes of dark energy, modified gravity and non-Gaussianity. We consider the continuum surveys with LOFAR, WSRT and ASKAP, and examples of continuum surveys with the SKA. We extend recent work on these surveys by including redshift space distortions and lensing convergence in the radio source auto-correlation. In addition we compute the general relativistic (GR) corrections to the angular power spectrum. These GR corrections to the standard Newtonian analysis of the power spectrum become significant on scales near and beyond the Hubble scale at each redshift. We find that the GR corrections are at most percent-level in LOFAR, WODAN and EMU surveys, but they can produce O(10%) changes for high enough sensitivity SKA continuum surveys. The signal is however dominated by cosmic variance, and multiple-tracer techniques will be needed to overcome this problem. The GR corrections are suppressed in continuum surveys because of the integration over redshift — we expect that GR corrections will be enhanced for future SKA HI surveys in which the source redshifts will be known. We also provide predictions for the angular power spectra in the case where the primordial perturbations have local non-Gaussianity. We find that non-Gaussianity dominates over GR corrections, and rises above cosmic variance when f{sub NL}∼>5 for SKA continuum surveys.

  2. New treatment of breakup continuum in the method of continuum discretized coupled channels

    CERN Document Server

    Matsumoto, T; Ogata, K; Iseri, Y; Hiyama, E; Kamimura, M; Yahiro, M

    2003-01-01

    In the method of continuum discretized coupled channels (CDCC) for treating three-body processes in projectile breakup reactions, the discretization of continuous breakup channels is essential. We propose a practical method of the discretization. The validity of the method is numerically tested and confirmed for two realistic examples, $d+^{58}$Ni scattering at 80 MeV and $^{6}Li+^{40}$Ca scattering at 156 MeV. Calculated elastic and breakup S-matrix elements based on the new method converge as the number of discretized breakup channels is increased. The converged S-matrix element agrees with the exact one which is derived with average (Av) discretization established as an accurate method. The new discretization requires a smaller number of breakup channels than the Av method. The feasibility of the new method for more complicated reactions is also discussed.

  3. Dual phase evolution

    CERN Document Server

    Green, David G; Abbass, Hussein A

    2014-01-01

    This book explains how dual phase evolution operates in all these settings and provides a detailed treatment of the subject. The authors discuss the theoretical foundations for the theory, how it relates to other phase transition phenomena and its advantages in evolutionary computation and complex adaptive systems. The book provides methods and techniques to use this concept for problem solving. Dual phase evolution concerns systems that evolve via repeated phase shifts in the connectivity of their elements. It occurs in vast range of settings, including natural systems (species evolution, landscape ecology, geomorphology), socio-economic systems (social networks) and in artificial systems (annealing, evolutionary computing).

  4. ALMA Band 8 Continuum Emission from Orion Source I

    Science.gov (United States)

    Hirota, Tomoya; Machida, Masahiro N.; Matsushita, Yuko; Motogi, Kazuhito; Matsumoto, Naoko; Kim, Mi Kyoung; Burns, Ross A.; Honma, Mareki

    2016-12-01

    We have measured continuum flux densities of a high-mass protostar candidate, a radio source I in the Orion KL region (Orion Source I) using the Atacama Large Millimeter/Submillimeter Array (ALMA) at band 8 with an angular resolution of 0.″1. The continuum emission at 430, 460, and 490 GHz associated with Source I shows an elongated structure along the northwest-southeast direction perpendicular to the so-called low-velocity bipolar outflow. The deconvolved size of the continuum source, 90 au × 20 au, is consistent with those reported previously at other millimeter/submillimeter wavelengths. The flux density can be well fitted to the optically thick blackbody spectral energy distribution, and the brightness temperature is evaluated to be 700-800 K. It is much lower than that in the case of proton-electron or H- free-free radiations. Our data are consistent with the latest ALMA results by Plambeck & Wright, in which the continuum emission was proposed to arise from the edge-on circumstellar disk via thermal dust emission, unless the continuum source consists of an unresolved structure with a smaller beam filling factor.

  5. A Framework for Health Communication Across the HIV Treatment Continuum

    Science.gov (United States)

    Van Lith, Lynn M.; Mallalieu, Elizabeth C.; Packman, Zoe R.; Myers, Emily; Ahanda, Kim Seifert; Harris, Emily; Gurman, Tilly; Figueroa, Maria-Elena

    2017-01-01

    Background: As test and treat rolls out, effective interventions are needed to address the determinants of outcomes across the HIV treatment continuum and ensure that people infected with HIV are promptly tested, initiate treatment early, adhere to treatment, and are virally suppressed. Communication approaches offer viable options for promoting relevant behaviors across the continuum. Conceptual Framework: This article introduces a conceptual framework, which can guide the development of effective health communication interventions and activities that aim to impact behaviors across the HIV treatment continuum in low- and medium-income countries. The framework includes HIV testing and counseling, linkage to care, retention in pre-antiretroviral therapy and antiretroviral therapy initiation in one single-stage linkage to care and treatment, and adherence for viral suppression. The determinants of behaviors vary across the continuum and include both facilitators and barriers with communication interventions designed to focus on specific determinants presented in the model. At each stage, relevant determinants occur at the various levels of the social–ecological model: intrapersonal, interpersonal, health services, community, and policy. Effective health communication interventions have mainly relied on mHealth, interpersonal communication through service providers and peers, community support groups, and treatment supporters. Discussion: The conceptual framework and evidence presented highlight areas across the continuum where health communication can significantly impact treatment outcomes to reach the 90-90-90 goals by strategically addressing key behavioral determinants. As test and treat rolls out, multifaceted health communication approaches will be critical. PMID:27930606

  6. A CONTINUUM HARD-SPHERE MODEL OF PROTEIN ADSORPTION.

    Science.gov (United States)

    Finch, Craig; Clarke, Thomas; Hickman, James J

    2013-07-01

    Protein adsorption plays a significant role in biological phenomena such as cell-surface interactions and the coagulation of blood. Two-dimensional random sequential adsorption (RSA) models are widely used to model the adsorption of proteins on solid surfaces. Continuum equations have been developed so that the results of RSA simulations can be used to predict the kinetics of adsorption. Recently, Brownian dynamics simulations have become popular for modeling protein adsorption. In this work a continuum model was developed to allow the results from a Brownian dynamics simulation to be used as the boundary condition in a computational fluid dynamics (CFD) simulation. Brownian dynamics simulations were used to model the diffusive transport of hard-sphere particles in a liquid and the adsorption of the particles onto a solid surface. The configuration of the adsorbed particles was analyzed to quantify the chemical potential near the surface, which was found to be a function of the distance from the surface and the fractional surface coverage. The near-surface chemical potential was used to derive a continuum model of adsorption that incorporates the results from the Brownian dynamics simulations. The equations of the continuum model were discretized and coupled to a CFD simulation of diffusive transport to the surface. The kinetics of adsorption predicted by the continuum model closely matched the results from the Brownian dynamics simulation. This new model allows the results from mesoscale simulations to be incorporated into micro- or macro-scale CFD transport simulations of protein adsorption in practical devices.

  7. A Framework for Health Communication Across the HIV Treatment Continuum.

    Science.gov (United States)

    Babalola, Stella; Van Lith, Lynn M; Mallalieu, Elizabeth C; Packman, Zoe R; Myers, Emily; Ahanda, Kim Seifert; Harris, Emily; Gurman, Tilly; Figueroa, Maria-Elena

    2017-01-01

    As test and treat rolls out, effective interventions are needed to address the determinants of outcomes across the HIV treatment continuum and ensure that people infected with HIV are promptly tested, initiate treatment early, adhere to treatment, and are virally suppressed. Communication approaches offer viable options for promoting relevant behaviors across the continuum. This article introduces a conceptual framework, which can guide the development of effective health communication interventions and activities that aim to impact behaviors across the HIV treatment continuum in low- and medium-income countries. The framework includes HIV testing and counseling, linkage to care, retention in pre-antiretroviral therapy and antiretroviral therapy initiation in one single-stage linkage to care and treatment, and adherence for viral suppression. The determinants of behaviors vary across the continuum and include both facilitators and barriers with communication interventions designed to focus on specific determinants presented in the model. At each stage, relevant determinants occur at the various levels of the social-ecological model: intrapersonal, interpersonal, health services, community, and policy. Effective health communication interventions have mainly relied on mHealth, interpersonal communication through service providers and peers, community support groups, and treatment supporters. The conceptual framework and evidence presented highlight areas across the continuum where health communication can significantly impact treatment outcomes to reach the 90-90-90 goals by strategically addressing key behavioral determinants. As test and treat rolls out, multifaceted health communication approaches will be critical.

  8. A field theoretical approach to the quasi-continuum method

    Science.gov (United States)

    Iyer, Mrinal; Gavini, Vikram

    2011-08-01

    The quasi-continuum method has provided many insights into the behavior of lattice defects in the past decade. However, recent numerical analysis suggests that the approximations introduced in various formulations of the quasi-continuum method lead to inconsistencies—namely, appearance of ghost forces or residual forces, non-conservative nature of approximate forces, etc.—which affect the numerical accuracy and stability of the method. In this work, we identify the source of these errors to be the incompatibility of using quadrature rules, which is a local notion, on a non-local representation of energy. We eliminate these errors by first reformulating the extended interatomic interactions into a local variational problem that describes the energy of a system via potential fields. We subsequently introduce the quasi-continuum reduction of these potential fields using an adaptive finite-element discretization of the formulation. We demonstrate that the present formulation resolves the inconsistencies present in previous formulations of the quasi-continuum method, and show using numerical examples the remarkable improvement in the accuracy of solutions. Further, this field theoretic formulation of quasi-continuum method makes mathematical analysis of the method more amenable using functional analysis and homogenization theories.

  9. Commuting Dual Toeplitz Operators on the Polydisk

    Institute of Scientific and Technical Information of China (English)

    Yu Feng LU; Shu Xia SHANG

    2007-01-01

    On the polydisk, the commutativity of dual Toeplitz operators is studied. We obtain characterizations of commuting dual Toeplitz operators, essentially commuting dual Toeplitz operators and essentially semi-commuting dual Toeplitz operators.

  10. Continuum model of tendon pathology - where are we now?

    Science.gov (United States)

    McCreesh, Karen; Lewis, Jeremy

    2013-08-01

    Chronic tendon pathology is a common and often disabling condition, the causes of which remain poorly understood. The continuum model of tendon pathology was proposed to provide a model for the staging of tendon pathology and to assist clinicians in managing this often complex condition (Br. J. Sports Med., 43, 2009, 409). The model presents clinical, histological and imaging evidence for the progression of tendon pathology as a three-stage continuum: reactive tendinopathy, tendon disrepair and degenerative tendinopathy. It also provides clinical information to assist in identifying the stage of pathology, in addition to proposed treatment approaches for each stage. The usefulness of such a model is determined by its ability to incorporate and inform new and emerging research. This review examines the degree to which recent research supports or refutes the continuum model and proposes future directions for clinical and research application of the model. © 2013 The Authors. International Journal of Experimental Pathology © 2013 International Journal of Experimental Pathology.

  11. Continuum emission associated with 6.7-GHz methanol masers

    CERN Document Server

    Ellingsen, S P; McCulloch, P M

    1995-01-01

    We have used the Australia Telescope Compact Array (ATCA) to search for continuum emission toward three strong 6.7-GHz methanol maser sources. For two of the sources, G339.88-1.26 and NGC 6334F (G351.42+0.64), we detect continuum emission closely associated with the methanol masers. A further three clusters of masers showed no radio continuum emission above our sensitivity limit of 1-5 mJy. We find the position of the 6.7-GHz methanol masers in G339.88-1.26 to be consistent with the hypothesis that the masers lie in the circumstellar disc surrounding a massive star. We also argue that one of the clusters of methanol masers in NGC 6334F provides indirect observational support for the circumstellar disc hypothesis.

  12. Lyman Continuum Emission from Galaxies at z~3.4

    CERN Document Server

    Steidel, C C; Adelberger, K L

    2000-01-01

    We report the detection of significant Lyman continuum flux in the composite spectrum of 29 Lyman break galaxies (LBGs) with redshifts = 3.40+/-0.09. After correction for opacity due to intervening absorption using a new composite QSO spectrum evaluated at the same redshift, the ratio of emergent flux density at 1500 \\AA in the rest frame to that in the Lyman continuum is L(1500)/L(900) = 4.6 +/- 1.0. If the relative intensity of the inferred escaping Lyman continuum radiation is typical of LBGs at z ~ 3 (the galaxies in this sample are drawn from the bluest quartile of LBG spectral energy distributions due to known selection effects), then observed LBGs produce about 5 times more H-ionizing photons per unit co-moving volume than QSOs at z ~ 3. The associated contribution to the metagalactic ionizing radiation field is J_{\

  13. Tensors the mathematics of relativity and continuum mechanics

    CERN Document Server

    Das, A J

    2007-01-01

    Tensors: The Mathematics of Relativity Theory and Continuum Mechanics, by Anadijiban Das, emerged from courses taught over the years at the University College of Dublin, Carnegie-Mellon University and Simon Fraser University. This book will serve readers well as a modern introduction to the theories of tensor algebra and tensor analysis. Throughout Tensors, examples and worked-out problems are furnished from the theory of relativity and continuum mechanics. Topics covered in this book include, but are not limited to: -tensor algebra -differential manifold -tensor analysis -differential forms -connection forms -curvature tensors -Riemannian and pseudo-Riemannian manifolds The extensive presentation of the mathematical tools, examples and problems make the book a unique text for the pursuit of both the mathematical relativity theory and continuum mechanics.

  14. Dislocations in the Spacetime Continuum: Framework for Quantum Physics

    Directory of Open Access Journals (Sweden)

    Millette P. A.

    2015-10-01

    Full Text Available This paper provides a framework for the physical description of physical processes at the quantum level based on dislocations in the spacetime continuum within STCED (Spacetime Continuum Elastodynamics. In this framework, photon and particle self- energies and interactions are mediated by the strain energy density of the dislocations, replacing the role played by virtual particles in QED. We postulate that the spacetime continuum has a granularity characterized by a length b 0 corresponding to the smallest STC elementary Burgers dislocation-displacement vector. Screw dislocations corre- sponding to transverse displacements are identified with photons, and edge dislocations corresponding to longitudinal displacements are identified with particles. Mixed dislo- cations give rise to wave-particle duality. The strain energy density of the dislocations are calculated and proposed to explain the QED problem of mass renormalization.

  15. Continuum mechanics using Mathematica fundamentals, methods, and applications

    CERN Document Server

    Romano, Antonio

    2014-01-01

    This textbook's methodological approach familiarizes readers with the mathematical tools required to correctly define and solve problems in continuum mechanics. Covering essential principles and fundamental applications, this second edition of Continuum Mechanics using Mathematica® provides a solid basis for a deeper study of more challenging and specialized problems related to nonlinear elasticity, polar continua, mixtures, piezoelectricity, ferroelectricity, magneto-fluid mechanics, and state changes (see A. Romano, A. Marasco, Continuum Mechanics: Advanced Topics and Research Trends, Springer (Birkhäuser), 2010, ISBN 978-0-8176-4869-5). Key topics and features: * Concise presentation strikes a balance between fundamentals and applications * Requisite mathematical background carefully collected in two introductory chapters and one appendix * Recent developments highlighted through coverage of more significant applications to areas such as wave propagation, fluid mechanics, porous media, linear elasticity....

  16. The density wave in a new anisotropic continuum model

    Institute of Scientific and Technical Information of China (English)

    Ge Hong-Xia; Dai Shi-Qiang; Dong Li-Yun

    2008-01-01

    In this paper the new continuum traffic flow model proposed by Jiang et al is developed based on an improved car-following model,in which the speed gradient term replaces the density gradient term in the equation of motion.It overcomes the wrong-way travel which exists in many high-order continuum models.Based on the continuum version of car-following model,the condition for stable traffic flow is derived.Nonlinear analysis shows that the density fluctuation in traffic flow induces a variety of density waves.Near the onset of instability,a small disturbance could lead to solitons determined by the Korteweg-de-Vries (KdV) equation,and the soliton solution is derived.

  17. ICMS Workshop on Differential Geometry and Continuum Mechanics

    CERN Document Server

    Grinfeld, Michael; Knops, R

    2015-01-01

    This book examines the exciting interface between differential geometry and continuum mechanics, now recognised as being of increasing technological significance. Topics discussed include isometric embeddings in differential geometry and the relation with microstructure in nonlinear elasticity, the use of manifolds in the description of microstructure in continuum mechanics, experimental measurement of microstructure, defects, dislocations, surface energies, and nematic liquid crystals. Compensated compactness in partial differential equations is also treated. The volume is intended for specialists and non-specialists in pure and applied geometry, continuum mechanics, theoretical physics, materials and engineering sciences, and partial differential equations. It will also be of interest to postdoctoral scientists and advanced postgraduate research students. These proceedings include revised written versions of the majority of papers presented by leading experts at the ICMS Edinburgh Workshop on Differential G...

  18. Early Dual Language Learning

    Science.gov (United States)

    Genesee, Fred

    2008-01-01

    Parents and child care personnel in English-dominant parts of the world often express misgivings about raising children bilingually. Their concerns are based on the belief that dual language learning during the infant-toddler stage confuses children, delays their development, and perhaps even results in reduced language competence. In this…

  19. FUV Continuum in Flare Kernels Observed by IRIS

    Science.gov (United States)

    Daw, Adrian N.; Kowalski, Adam; Allred, Joel C.; Cauzzi, Gianna

    2016-05-01

    Fits to Interface Region Imaging Spectrograph (IRIS) spectra observed from bright kernels during the impulsive phase of solar flares are providing long-sought constraints on the UV/white-light continuum emission. Results of fits of continua plus numerous atomic and molecular emission lines to IRIS far ultraviolet (FUV) spectra of bright kernels are presented. Constraints on beam energy and cross sectional area are provided by cotemporaneous RHESSI, FERMI, ROSA/DST, IRIS slit-jaw and SDO/AIA observations, allowing for comparison of the observed IRIS continuum to calculations of non-thermal electron beam heating using the RADYN radiative-hydrodynamic loop model.

  20. Simulation of concrete perforation based on a continuum damage model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, E.P. [Sandia National Labs., Albuquerque, NM (United States). Solid and Structural Mechanics Dept.

    1994-10-01

    Numerical simulation of dynamic fracture of concrete slabs, impacted by steel projectiles, was carried out in this study. The concrete response was described by a continuum damage model. This continuum damage model was originally developed to study rock fragmentation and was modified in the present study with an emphasis on the post-limit structural response. The model was implemented into a transient dynamic explicit finite element code LS-DYNA2D and the code was then used for the numerical simulations. The specific impact configuration of this study follows the experiment series conducted by Hanchak et al. Comparisons between calculated results and measured data were made. Good agreements were found.

  1. QCD thermodynamics with continuum extrapolated dynamical overlap fermions

    CERN Document Server

    Borsanyi, Sz; Lippert, T; Nogradi, D; Pittler, F; Szabo, K K; Toth, B C

    2015-01-01

    We study the finite temperature transition in QCD with two flavors of dynamical fermions at a pseudoscalar pion mass of about 350 MeV. We use lattices with temporal extent of $N_t$=8, 10 and 12. For the first time in the literature a continuum limit is carried out for several observables with dynamical overlap fermions. These findings are compared with results obtained within the staggered fermion formalism at the same pion masses and extrapolated to the continuum limit. The presented results correspond to fixed topology and its effect is studied in the staggered case. Nice agreement is found between the overlap and staggered results.

  2. Shape Modeling of a Concentric-tube Continuum Robot

    DEFF Research Database (Denmark)

    Bai, Shaoping; Xing, Charles Chuhao

    2012-01-01

    Concentric-tube continuum robots feature with simple and compact structures and have a great potential in medical applications. The paper is concerned with the shape modeling of a type of concentric-tube continuum robot built with a collection of super-elastic NiTiNol tubes. The mechanics...... is modeled on the basis of energy approach for both the in-plane and out-plane cases. The torsional influences on the shape of the concentric-tube robots are considered. An experimental device was build for the model validation. The results of simulation and experiments are included and analyzed....

  3. Resonantly Trapped Bound State in the Continuum Laser

    CERN Document Server

    Lepetit, Thomas; Kodigala, Ashok; Bahari, Babak; Fainman, Yeshaiahu; Kanté, Boubacar

    2015-01-01

    Cavities play a fundamental role in wave phenomena from quantum mechanics to electromagnetism and dictate the spatiotemporal physics of lasers. In general, they are constructed by closing all "doors" through which waves can escape. We report, at room temperature, a bound state in the continuum laser that harnesses optical modes residing in the radiation continuum but nonetheless may possess arbitrarily high quality factors. These counterintuitive cavities are based on resonantly trapped symmetry-compatible modes that destructively interfere. Our experimental demonstration opens exciting avenues towards coherent sources with intriguing topological properties for optical trapping, biological imaging, and quantum communication.

  4. Towards the continuum limit in transport coefficient computations

    CERN Document Server

    Francis, A; Laine, M; Müller, M; Neuhaus, T; Ohno, H

    2013-01-01

    The analytic continuation needed for the extraction of transport coefficients necessitates in principle a continuous function of the Euclidean time variable. We report on progress towards achieving the continuum limit for 2-point correlator measurements in thermal SU(3) gauge theory, with specific attention paid to scale setting. In particular, we improve upon the determination of the critical lattice coupling and the critical temperature of pure SU(3) gauge theory, estimating r0*Tc ~ 0.7470(7) after a continuum extrapolation. As an application the determination of the heavy quark momentum diffusion coefficient from a correlator of colour-electric fields attached to a Polyakov loop is discussed.

  5. Capillarity-driven flows at the continuum limit

    Science.gov (United States)

    Vincent, Olivier; Szenicer, Alexandre; Stroock, Abraham D.

    We experimentally investigate the dynamics of capillary-driven flows at the nanoscale, using an original platform that combines nanoscale pores and microfluidic features. Our results show a coherent picture across multiple experiments including imbibition, poroelastic transient flows, and a drying-based method that we introduce. In particular, we exploit extreme drying stresses - up to 100 MPa of tension - to drive nanoflows and provide quantitative tests of continuum theories of fluid mechanics and thermodynamics (e.g. Kelvin-Laplace equation) across an unprecedented range. We isolate the breakdown of continuum as a negative slip length of molecular dimension.

  6. Continuum radiative transfer Modeling of Sagittarius B2

    OpenAIRE

    Schmiedeke, A.; Schilke, P.; Möller, Th.; Sánchez-Monge, Á.; Bergin, E.; Comito, C.; Csengeri, T.; Lis, D. C.; Molinari, S.; Qin, S.L.; Rolffs, R.

    2016-01-01

    We present results from radiative transfer modeling of the continuum emission towards Sagittarius B2 (hereafter Sgr B2). We have developed a radiative transfer framework – Pandora – that employs RADMC-3D (Dullemond 2012) for a self-consistent determination of the dust temperature. With this pipeline, we have set-up a single model that consistently reproduces the thermal dust and free-free continuum emission of Sgr B2 spanning four orders of magnitude in spatial scales (0.02–45 pc) and two ord...

  7. Is the dream solution to the continuum hypothesis attainable?

    CERN Document Server

    Hamkins, Joel David

    2012-01-01

    The dream solution of the continuum hypothesis (CH) would be a solution by which we settle the continuum hypothesis on the basis of a newly discovered fundamental principle of set theory, a missing axiom, widely regarded as true. Such a dream solution would indeed be a solution, since we would all accept the new axiom along with its consequences. In this article, however, I argue that such a dream solution to CH is unattainable. The article is adapted from and expands upon material in my article, "The set-theoretic multiverse", to appear in the Review of Symbolic Logic (see arXiv:1108.4223).

  8. Fractional Quantum Field Theory: From Lattice to Continuum

    Directory of Open Access Journals (Sweden)

    Vasily E. Tarasov

    2014-01-01

    Full Text Available An approach to formulate fractional field theories on unbounded lattice space-time is suggested. A fractional-order analog of the lattice quantum field theories is considered. Lattice analogs of the fractional-order 4-dimensional differential operators are proposed. We prove that continuum limit of the suggested lattice field theory gives a fractional field theory for the continuum 4-dimensional space-time. The fractional field equations, which are derived from equations for lattice space-time with long-range properties of power-law type, contain the Riesz type derivatives on noninteger orders with respect to space-time coordinates.

  9. A Coupling Tool for Parallel Molecular Dynamics-Continuum Simulations

    KAUST Repository

    Neumann, Philipp

    2012-06-01

    We present a tool for coupling Molecular Dynamics and continuum solvers. It is written in C++ and is meant to support the developers of hybrid molecular - continuum simulations in terms of both realisation of the respective coupling algorithm as well as parallel execution of the hybrid simulation. We describe the implementational concept of the tool and its parallel extensions. We particularly focus on the parallel execution of particle insertions into dense molecular systems and propose a respective parallel algorithm. Our implementations are validated for serial and parallel setups in two and three dimensions. © 2012 IEEE.

  10. ALMA band 8 continuum emission from Orion Source I

    CERN Document Server

    Hirota, Tomoya; Matsushita, Yuko; Motogi, Kazuhito; Matsumoto, Naoko; Kim, Mi Kyoung; Burns, Ross A; Honma, Mareki

    2016-01-01

    We have measured continuum flux densities of a high-mass protostar candidate, a radio source I in the Orion KL region (Orion Source I) using the Atacama Large Millimeter/Submillimeter Array (ALMA) at band 8 with an angular resolution of 0.1". The continuum emission at 430, 460, and 490 GHz associated with Source I shows an elongated structure along the northwest-southeast direction perpendicular to the so-called low-velocity bipolar outflow. The deconvolved size of the continuum source, 90 au times 20 au, is consistent with those reported previously at other millimeter/submillimeter wavelength. The flux density can be well fitted to the optically thick black-body spectral energy distribution (SED), and the brightness temperature is evaluated to be 700-800 K. It is much lower than that in the case of proton-electron or H- free-free radiations. Our data are consistent with the latest ALMA results by Plambeck & Wright (2016), in which the continuum emission have been proposed to arise from the edge-on circum...

  11. Continuum theory of defects - Structural-analytical mechanics of materials

    Science.gov (United States)

    Likhachev, V. A.; Volkov, A. E.; Shudegov, V. E.

    The fundamental concepts of the continuum theory of defects in crystals are examined including dislocations, disclinations, and planar defects. The principal plastic characteristics of materials are then calculated using these concepts. Elements of deformation theory for piecewise inhomogeneous bodies with a structural hierarchy and phase transformations are examined. The nature of the amorphous state is discussed.

  12. Generalized continuum theories : Application to stress analysis in bone

    NARCIS (Netherlands)

    Fatemi, J.; Keulen, F. van; Onck, P.R.

    2002-01-01

    Bone is a heterogeneous material with microstructural features. Continuum models of bone on the basis of classical elasticity ignore microstructure-related scale effects on the macroscopic mechanical properties. Consequently, these models do not provide a complete description of the mechanical

  13. Construction of a state evolution for Kawasaki dynamics in continuum

    Science.gov (United States)

    Berns, Christoph; Kondratiev, Yuri; Kutoviy, Oleksandr

    2013-06-01

    We consider conservative, non-equilibrium stochastic jump dynamics of interacting particles in continuum. These dynamics have a (grand canonical) Gibbs measure as invariant measure. The problem of existence of these dynamics is studied. The corresponding time evolution of correlation functions is constructed.

  14. The Eating Disorders Continuum, Self-Esteem, and Perfectionism

    Science.gov (United States)

    Peck, Lisa D.; Lightsey, Owen Richard

    2008-01-01

    Among 261 undergraduate women, increased severity of eating disorders along a continuum was associated with decreased self-esteem, increased perfectionism, and increased scores on 7 subscales of the Eating Disorders Inventory-2. Women with eating disorders differed from both symptomatic women and asymptomatic women on all variables, whereas…

  15. Continuum Coupling and Pair Correlation in Weakly Bound Deformed Nuclei

    CERN Document Server

    Oba, Hiroshi

    2009-01-01

    We formulate a new Hartree-Fock-Bogoliubov method applicable to weakly bound deformed nuclei using the coordinate-space Green's function technique. An emphasis is put on treatment of quasiparticle states in the continuum, on which we impose the correct boundary condition of the asymptotic out-going wave. We illustrate this method with numerical examples.

  16. Continuum simulations of water flow past fullerene molecules

    DEFF Research Database (Denmark)

    Popadic, A.; Praprotnik, M.; Koumoutsakos, P.;

    2015-01-01

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest as ...

  17. Assessing continuum postulates in simulations of granular flow

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, Chris; Kamrin, Ken; Bazant, Martin

    2008-08-26

    Continuum mechanics relies on the fundamental notion of a mesoscopic volume"element" in which properties averaged over discrete particles obey deterministic relationships. Recent work on granular materials suggests a continuum law may be inapplicable, revealing inhomogeneities at the particle level, such as force chains and slow cage breaking. Here, we analyze large-scale three-dimensional Discrete-Element Method (DEM) simulations of different granular flows and show that an approximate"granular element" defined at the scale of observed dynamical correlations (roughly three to five particle diameters) has a reasonable continuum interpretation. By viewing all the simulations as an ensemble of granular elements which deform and move with the flow, we can track material evolution at a local level. Our results confirm some of the hypotheses of classical plasticity theory while contradicting others and suggest a subtle physical picture of granular failure, combining liquid-like dependence on deformation rate and solid-like dependence on strain. Our computational methods and results can be used to guide the development of more realistic continuum models, based on observed local relationships betweenaverage variables.

  18. The Eating Disorders Continuum, Self-Esteem, and Perfectionism

    Science.gov (United States)

    Peck, Lisa D.; Lightsey, Owen Richard

    2008-01-01

    Among 261 undergraduate women, increased severity of eating disorders along a continuum was associated with decreased self-esteem, increased perfectionism, and increased scores on 7 subscales of the Eating Disorders Inventory-2. Women with eating disorders differed from both symptomatic women and asymptomatic women on all variables, whereas…

  19. Continuum contribution to excitonic four-wave mixing

    DEFF Research Database (Denmark)

    Birkedal, Dan; Sayed, Karim El; Vadim, Lyssenko

    1996-01-01

    Summary form only given. We present an experimental and theoretical investigation of ultrafast transient four-wave mixing (TFWM) of GaAs-AlGaAs quantum wells for simultaneous excitation of exciton and continuum states. Recent TFWM experiments on semiconductors have shown unexpected results when...

  20. Self-Assessment Exercises in Continuum Mechanics with Autonomous Learning

    Science.gov (United States)

    Marcé-Nogué, Jordi; Gil, LLuís; Pérez, Marco A.; Sánchez, Montserrat

    2013-01-01

    The main objective of this work is to generate a set of exercises to improve the autonomous learning in "Continuum Mechanics" through a virtual platform. Students will have to resolve four exercises autonomously related to the subject developed in class and they will post the solutions on the virtual platform within a deadline. Students…

  1. Breakup channels for C-12 triple-alpha continuum states

    NARCIS (Netherlands)

    Diget, C. Aa; Barker, F. C.; Borge, M. J. G.; Boutami, R.; Dendooven, P.; Eronen, T.; Fox, S. P.; Fulton, B. R.; Fynbo, H. O. U.; Huikari, J.; Hyldegaard, S.; Jeppesen, H. B.; Jokinen, A.; Jonson, B.; Kankainen, A.; Moore, I.; Nieminen, A.; Nyman, G.; Penttila, H.; Pucknell, V. F. E.; Riisager, K.; Rinta-Antila, S.; Tengblad, O.; Wang, Y.; Wilhelmsen, K.; Aysto, J.

    The triple-alpha-particle breakup of states in the triple-alpha continuum of C-12 has been investigated by way of coincident detection of all three alpha particles of the breakup. The states have been fed in the beta decay of N-12 and B-12, and the alpha particles measured using a setup that covers

  2. A Disproof of the Continuum Hypothesis by Approximations of Sets

    CERN Document Server

    Rede, Slavko

    2008-01-01

    A set theory is developed in which the Continuum Hypothesis is false. The set of all sets exists but the paradoxes of Russell and Cantor do not exist. The axioms of separation, replacement and foundation are not valid. All the other axioms of ZF are valid and all the basic sets, such as complement, intersection and cartesian product, exist.

  3. Imprints of Molecular Clouds in Radio Continuum Images

    CERN Document Server

    Yusef-Zadeh, F

    2012-01-01

    We show radio continuum images of several molecular complexes in the inner Galaxy and report the presence of dark features that coincide with dense molecular clouds. Unlike infrared dark clouds, these features which we call "radio dark clouds" are produced by a deficiency in radio continuum emission from molecular clouds that are embedded in a bath of UV radiation field or synchrotron emitting cosmic ray particles. The contribution of the continuum emission along different pathlengths results in dark features that trace embedded molecular clouds. The new technique of identifying cold clouds can place constraints on the depth and the magnetic field of molecular clouds when compared to those of the surrounding hot plasma radiating at radio wavelengths. The study of five molecular complexes in the inner Galaxy, Sgr A, Sgr B2, radio Arc, the snake filament and G359.75-0.13 demonstrate an anti--correlation between the distributions of radio continuum and molecular line and dust emission. Radio dark clouds are iden...

  4. Chaos and the continuum limit in charged particle beams

    Directory of Open Access Journals (Sweden)

    Henry E. Kandrup

    2004-01-01

    Full Text Available We investigate the validity of the Vlasov-Poisson equations for calculating properties of systems of N charged particles governed by time-independent Hamiltonians. Through numerical experiments we verify that there is a smooth convergence toward a continuum limit as N→∞ and the particle charge q→0 such that the system charge Q=qN remains fixed. However, in real systems N and q are always finite, and the assumption of the continuum limit must be questioned. We demonstrate that Langevin simulations can be used to assess the importance of discreteness effects, i.e., granularity, in systems for which the physical particle number N is too large to enable orbit integrations based on direct summation of interparticle forces. We then consider a beam bunch in thermal equilibrium and apply Langevin techniques to assess whether the continuum limit can be safely applied to this system. In the process we show, especially for systems supporting a sizable population of chaotic orbits that roam globally through phase space, that for the continuum limit to be valid, N must sometimes be surprisingly large. Otherwise the influence of granularity on particle orbits cannot be ignored.

  5. Continuum of Medical Education in Obstetrics and Gynecology.

    Science.gov (United States)

    Dohner, Charles W.; Hunter, Charles A., Jr.

    1980-01-01

    Over the past eight years the obstetric and gynecology specialty has applied a system model of instructional planning to the continuum of medical education. The systems model of needs identification, preassessment, instructional objectives, instructional materials, learning experiences; and evaluation techniques directly related to objectives was…

  6. Hα Emission vs. Continuum Variability of MWC349A

    Science.gov (United States)

    Schwarz, Kamber R.; Strelnitski, V.; Walker, G.

    2011-01-01

    We report on a three-year CCD monitoring of MWC349A at the Maria Mitchell Observatory with narrowband and broadband filters. The use of three narrowband filters centered on Hα and adjacent continuum allowed us to separate, for the first time, the variability of this object’s Hα emission from that of the continuum. We detected a general anticorrelation of Hα emission with its nearby continuum and, tentatively, periodic variations of the Hα flux with a period of 223±7 days and a peak-to-peak amplitude of ≈6%. This period is close to the supposed period of 238±8 days for the variations of the peak ratio of the double-peak spectrum of the masing H30α line (Fuchs et al. 2010). More observations, both in the optical and radio domains, are needed to verify these new phenomena. We briefly discuss possible causes of the periodicity and the anticorrelation between the Hα emission and continuum. This project was supported by NSF/REU grant AST-0851892 and the Nantucket Maria Mitchell Association.

  7. A radio continuum and infrared study of Galactic HII regions

    NARCIS (Netherlands)

    Martin-Hernandez, NL; van der Hulst, JM; Tielens, AGGM

    2003-01-01

    We present observations of the 4.8 and 8.6 GHz continuum emission towards 11 southern H II regions made with the Australian Telescope Compact Array. The observed objects were selected from the Infrared Space Observatory (ISO) spectral catalogue of compact H II regions (Peeters et al. 2002b). The mor

  8. Pidgin and English in Melanesia: Is There a Continuum?

    Science.gov (United States)

    Siegel, Jeff

    1997-01-01

    Examines the linguistic features of Tok Pisin (the Papua New Guinea variety of Melanesian Pidgin) resulting from decreolization and the linguistic features of Papua New Guinea English. Discusses code-switching and transference between Tok Pisin and English and concludes that an English-to-pidgin continuum does not exist in Papua New Guinea or in…

  9. Coherent properties of a tripod system coupled via a continuum

    CERN Document Server

    Unanyan, R G; Shore, B W; Bergmann, K

    2000-01-01

    We present results from a study of the coherence properties of a system involving three discrete states coupled to each other by two-photon processes via a common continuum. This tripod linkage is an extension of the standard laser-induced continuum structure (LICS) which involves two discrete states and two lasers. We show that in the tripod scheme, there exist two population trapping conditions; in some cases these conditions are easier to satisfy than the single trapping condition in two-state LICS. Depending on the pulse timing, various effects can be observed. We derive some basic properties of the tripod scheme, such as the solution for coincident pulses, the behaviour of the system in the adiabatic limit for delayed pulses, the conditions for no ionization and for maximal ionization, and the optimal conditions for population transfer between the discrete states via the continuum. In the case when one of the discrete states is strongly coupled to the continuum, the population dynamics reduces to a stand...

  10. Relativistic continuum random phase approximation in spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Daoutidis, Ioannis

    2009-10-01

    Covariant density functional theory is used to analyze the nuclear response in the external multipole fields. The investigations are based on modern functionals with zero range and density dependent coupling constants. After a self-consistent solution of the Relativistic Mean Field (RMF) equations for the nuclear ground states multipole giant resonances are studied within the Relativistic Random Phase Approximation (RRPA), the small amplitude limit of the time-dependent RMF. The coupling to the continuum is treated precisely by calculating the single particle Greens-function of the corresponding Dirac equation. In conventional methods based on a discretization of the continuum this was not possible. The residual interaction is derived from the same RMF Lagrangian. This guarantees current conservation and a precise decoupling of the Goldstone modes. For nuclei with open shells pairing correlations are taken into account in the framework of BCS theory and relativistic quasiparticle RPA. Continuum RPA (CRPA) presents a robust method connected with an astonishing reduction of the numerical effort as compared to conventional methods. Modes of various multipolarities and isospin are investigated, in particular also the newly discovered Pygmy modes in the vicinity of the neutron evaporation threshold. The results are compared with conventional discrete RPA calculations as well as with experimental data. We find that the full treatment of the continuum is essential for light nuclei and the study of resonances in the neighborhood of the threshold. (orig.)

  11. Ratings of Attention Problems in ADHD: A Continuum

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2009-12-01

    Full Text Available To determine whether ADHD should be classified in three distinct DSM-IV diagnostic subtypes or a continuum of attention problems, maternal ratings of attention on the Child Behavior Check List (CBCL, in Durch boys at age 7, 10, and 12 years, were fitted to class models, assuming either subtype or severity differences.

  12. Radio-continuum observations of Sersic-Pastoriza galaxies

    Science.gov (United States)

    Yates, G. J.; Saikia, D. J.; Pedlar, A.; Axon, D. J.

    1989-07-01

    Preliminary results of radio continuum observations of selected Sersic-Pastoriza galaxies are presented. Subjects reported are their radio properties at 6 and 20 cm, estimates of linear polarization and spectral indices and a discussion of possible relationships between nuclear morphology and radio luminosity.

  13. Scaffolding the Inquiry Continuum and the Constitution of Identity

    Science.gov (United States)

    Melville, Wayne; Bartley, Anthony; Fazio, Xavier

    2013-01-01

    This article considers the impact of scaffolding on pre-service science teachers' constitution of identities as teachers of inquiry. This scaffolding has consisted of 2 major components, a unit on current electricity which encompasses the inquiry continuum and an open inquiry which is situated in context of classroom practice. Our analysis…

  14. Dual-readout Calorimetry

    CERN Document Server

    Akchurin, N; Cardini, A.; Cascella, M.; Cei, F.; De Pedis, D.; Fracchia, S.; Franchino, S.; Fraternali, M.; Gaudio, G.; Genova, P.; Hauptman, J.; La Rotonda, L.; Lee, S.; Livan, M.; Meoni, E.; Moggi, A.; Pinci, D.; Policicchio, A.; Saraiva, J.G.; Sill, A.; Venturelli, T.; Wigmans, R.

    2013-01-01

    The RD52 Project at CERN is a pure instrumentation experiment whose goal is to un- derstand the fundamental limitations to hadronic energy resolution, and other aspects of energy measurement, in high energy calorimeters. We have found that dual-readout calorimetry provides heretofore unprecedented information event-by-event for energy resolution, linearity of response, ease and robustness of calibration, fidelity of data, and particle identification, including energy lost to binding energy in nuclear break-up. We believe that hadronic energy resolutions of {\\sigma}/E $\\approx$ 1 - 2% are within reach for dual-readout calorimeters, enabling for the first time comparable measurement preci- sions on electrons, photons, muons, and quarks (jets). We briefly describe our current progress and near-term future plans. Complete information on all aspects of our work is available at the RD52 website http://highenergy.phys.ttu.edu/dream/.

  15. Higher Representations Duals

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2010-01-01

    We uncover novel solutions of the 't Hooft anomaly matching conditions for scalarless gauge theories with matter transforming according to higher dimensional representations of the underlying gauge group. We argue that, if the duals exist, they are gauge theories with fermions transforming...... according to the defining representation of the dual gauge group. The resulting conformal windows match the one stemming from the all-orders beta function results when taking the anomalous dimension of the fermion mass to be unity which are also very close to the ones obtained using the Schwinger......-Dyson approximation. We use the solutions to gain useful insight on the conformal window of the associated electric theory. A consistent picture emerges corroborating previous results obtained via different analytic methods and in agreement with first principle lattice explorations....

  16. Dual Campus High School

    Directory of Open Access Journals (Sweden)

    Carmen P. Mombourquette

    2013-04-01

    Full Text Available September 2010 witnessed the opening of the first complete dual campus high school in Alberta. Catholic Central High School, which had been in existence since 1967 in one building, now offered courses to students on two campuses. The “dual campus” philosophy was adopted so as to ensure maximum program flexibility for students. The philosophy, however, was destined to affect student engagement and staff efficacy as the change in organizational structure, campus locations, and course availability was dramatic. Changing school organizational structure also had the potential of affecting student achievement. A mixed-methods study utilizing engagement surveys, efficacy scales, and interviews with students and teachers was used to ascertain the degree of impact. The results of the study showed that minimal impact occurred to levels of student engagement, minor negative impact to staff efficacy, and a slight increase to student achievement results.

  17. Dual Double Field Theory

    CERN Document Server

    Bergshoeff, Eric A; Penas, Victor A; Riccioni, Fabio

    2016-01-01

    We present the dual formulation of double field theory at the linearized level. This is a classically equivalent theory describing the duals of the dilaton, the Kalb-Ramond field and the graviton in a T-duality or O(D,D) covariant way. In agreement with previous proposals, the resulting theory encodes fields in mixed Young-tableau representations, combining them into an antisymmetric 4-tensor under O(D,D). In contrast to previous proposals, the theory also requires an antisymmetric 2-tensor and a singlet, which are not all pure gauge. The need for these additional fields is analogous to a similar phenomenon for "exotic" dualizations, and we clarify this by comparing with the dualizations of the component fields. We close with some speculative remarks on the significance of these observations for the full non-linear theory yet to be constructed.

  18. Dual-comb MIXSEL

    Science.gov (United States)

    Link, S. M.; Zaugg, C. A.; Klenner, A.; Mangold, M.; Golling, M.; Tilma, B. W.; Keller, U.

    2015-03-01

    We present a single semiconductor disk laser simultaneously emitting two different gigahertz modelocked pulse trains. A birefringent crystal inside a modelocked integrated external-cavity surface-emitting laser (MIXSEL) separates the cavity beam into two spatially separated beams with perpendicular polarizations on the MIXSEL chip. This MIXSEL then generates two orthogonally polarized collinear modelocked pulse trains from one simple straight cavity. Superimposing the beams on a photo detector creates a microwave beat signal, representing a strikingly simple setup to down-convert the terahertz optical frequencies into the electronically accessible microwave regime. This makes the dual-comb MIXSEL scheme an ultra-compact and cost-efficient candidate for dual-comb spectroscopy applications.

  19. Dual-readout Calorimetry

    OpenAIRE

    Akchurin, N.; Bedeschi, F.; Cardini, A.; Cascella, M.; Cei, F.; Pedis, D.; Fracchia, S.; Franchino, S.; Fraternali, M.; Gaudio, G.; P. Genova; Hauptman, J.; La Rotonda, L.; Lee, S.; Livan, M.(INFN Sezione di Pavia, Pavia, Italy)

    2013-01-01

    The RD52 Project at CERN is a pure instrumentation experiment whose goal is to understand the fundamental limitations to hadronic energy resolution, and other aspects of energy measurement, in high energy calorimeters. We have found that dual-readout calorimetry provides heretofore unprecedented information event-by-event for energy resolution, linearity of response, ease and robustness of calibration, fidelity of data, and particle identification, including energy lost to binding energy in n...

  20. Dual-Schemata Model

    Science.gov (United States)

    Taniguchi, Tadahiro; Sawaragi, Tetsuo

    In this paper, a new machine-learning method, called Dual-Schemata model, is presented. Dual-Schemata model is a kind of self-organizational machine learning methods for an autonomous robot interacting with an unknown dynamical environment. This is based on Piaget's Schema model, that is a classical psychological model to explain memory and cognitive development of human beings. Our Dual-Schemata model is developed as a computational model of Piaget's Schema model, especially focusing on sensori-motor developing period. This developmental process is characterized by a couple of two mutually-interacting dynamics; one is a dynamics formed by assimilation and accommodation, and the other dynamics is formed by equilibration and differentiation. By these dynamics schema system enables an agent to act well in a real world. This schema's differentiation process corresponds to a symbol formation process occurring within an autonomous agent when it interacts with an unknown, dynamically changing environment. Experiment results obtained from an autonomous facial robot in which our model is embedded are presented; an autonomous facial robot becomes able to chase a ball moving in various ways without any rewards nor teaching signals from outside. Moreover, emergence of concepts on the target movements within a robot is shown and discussed in terms of fuzzy logics on set-subset inclusive relationships.

  1. Alexander Duals of Multipermutohedron Ideals

    Indian Academy of Sciences (India)

    Ajay Kumar; Chanchal Kumar

    2014-02-01

    An Alexander dual of a multipermutohedron ideal has many combinatorial properties. The standard monomials of an Artinian quotient of such a dual correspond bijectively to some -parking functions, and many interesting properties of these Artinian quotients are obtained by Postnikov and Shapiro (Trans. Am. Math. Soc. 356 (2004) 3109–3142). Using the multigraded Hilbert series of an Artinian quotient of an Alexander dual of multipermutohedron ideals, we obtained a simple proof of Steck determinant formula for enumeration of -parking functions. A combinatorial formula for all the multigraded Betti numbers of an Alexander dual of multipermutohedron ideals are also obtained.

  2. Dual massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Morand, Kevin, E-mail: Kevin.Morand@lmpt.univ-tours.fr [Laboratoire de Mathematiques et Physique Theorique, Universite Francois-Rabelais Tours, Federation Denis Poisson - CNRS, Parc de Grandmont, 37200 Tours (France); Solodukhin, Sergey N., E-mail: Sergey.Solodukhin@lmpt.univ-tours.fr [Laboratoire de Mathematiques et Physique Theorique, Universite Francois-Rabelais Tours, Federation Denis Poisson - CNRS, Parc de Grandmont, 37200 Tours (France)

    2012-08-29

    The linearized massive gravity in three dimensions, over any maximally symmetric background, is known to be presented in a self-dual form as a first order equation which encodes not only the massive Klein-Gordon type field equation but also the supplementary transverse-traceless conditions. We generalize this construction to higher dimensions. The appropriate dual description in d dimensions, additionally to a (non-symmetric) tensor field h{sub {mu}{nu}}, involves an extra rank-(d-1) field equivalently represented by the torsion rank-3 tensor. The symmetry condition for h{sub {mu}{nu}} arises on-shell as a consequence of the field equations. The action principle of the dual theory is formulated. The focus has been made on four dimensions. Solving one of the fields in terms of the other and putting back in the action one obtains two other equivalent formulations of the theory in which the action is quadratic in derivatives. In one of these representations the theory is formulated entirely in terms of a rank-2 non-symmetric tensor h{sub {mu}{nu}}. This quadratic theory is not identical to the Fierz-Pauli theory and contains the coupling between the symmetric and antisymmetric parts of h{sub {mu}{nu}}. Nevertheless, the only singularity in the propagator is the same as in the Fierz-Pauli theory so that only the massive spin-2 particle is propagating. In the other representation, the theory is formulated in terms of the torsion rank-3 tensor only. We analyze the conditions which follow from the field equations and show that they restrict to 5 degrees of freedom thus producing an alternative description to the massive spin-2 particle. A generalization to higher dimensions is suggested.

  3. Towards a Dual Approach

    DEFF Research Database (Denmark)

    Holli, Anne Maria; Harder, Mette Marie Stæhr

    2016-01-01

    countries acknowledged as forerunners in gender equality, which also have ‘fairly strong’ parliamentary standing committees. The results show that both committees on gender equality can be regarded as ‘feminist’ in character and both interact with relevant civil society organisations. Their impact......Drawing on insights from state feminism and legislative studies on parliamentary committees, this article develops a dual approach for the comparative analysis of committees on gender equality. Empirically, it compares the standing committees on gender equality in Denmark and Finland, two Nordic...

  4. Dual cure photocatalyst systems

    Energy Technology Data Exchange (ETDEWEB)

    DeVoe, R.J.; Brown-Wensley, K.A.; Holmes, G.L.; Mathis, M.D.; McCormick, F.B.; Palazzotto, M.C.; Spurgeon, K.M. (Minnesota Mining and Mfg. Co., St. Paul, MN (USA). Corporate Research Labs.)

    1990-01-01

    A family of dual cure photocatalyst systems is being developed to be used in the solventless processing of organic coatings. The photocatalyst systems consist of organometallic compounds often in combination with other agents. Upon photolysis, the photocatalyst system generates a Lewis acid and a free radical. The Lewis acid can initiate the polymerization of epoxies or the addition of isocyanates and polyols to form polyurethanes while the free radical can initiate the polymerization of acrylates. The performance of the various photocatalyst systems will be compared on the basis of the physical properties of the cured compositions they produce. 17 figs.

  5. A survey of large N continuum phase transitions

    CERN Document Server

    Narayanan, R

    2007-01-01

    The main focus of this talk is the physics of large N QCD on a continuum torus. A cascade of phase transitions associated with the breaking of U(1) symmetries will be discussed. The continuum Wilson loop as a function of its area will be discussed along with its universality properties and the associated double scaling limit. Some recent progress in twisted Eguchi-Kawai is presented. Gauge field topology and $\\theta$ vacuua are also discussed in the context of large N gauge theories. Phase transitions in 2D large N principal chiral models are compared with similar transitions in large $N$ gauge theories. Finally, connections to some topics in string theory and gravity are briefly described.

  6. Continuum Kinetic and Multi-Fluid Simulations of Classical Sheaths

    CERN Document Server

    Cagas, Petr; Juno, James; Srinivasan, Bhuvana

    2016-01-01

    The kinetic study of plasma sheaths is critical, among other things, to understand the deposition of heat on walls, the effect of sputtering, and contamination of the plasma with detrimental impurities. The plasma sheath also provides a boundary condition and can often have a significant global impact on the bulk plasma. In this paper, kinetic studies of classical sheaths are performed with the continuum code, Gkeyll, that directly solves the Vlasov-Poisson/Maxwell equations. The code uses a novel version of the finite-element discontinuous Galerkin (DG) scheme that conserves energy in the continuous-time limit. The electrostatic field is computed using the Poisson equation. Ionization and scattering collisions are included, however, surface effects are neglected. The aim of this work is to introduce the continuum-kinetic method and compare its results to those obtained from an already established finite-volume multi-fluid model also implemented in Gkeyll. Novel boundary conditions on the fluids allow the she...

  7. Nebular Continuum and Line Emission in Stellar Population Synthesis Models

    CERN Document Server

    Byler, Nell; Conroy, Charlie; Johnson, Benjamin D

    2016-01-01

    Accounting for nebular emission when modeling galaxy spectral energy distributions (SEDs) is important, as both line and continuum emission can contribute significantly to the total observed flux. In this work, we present a new nebular emission model integrated within the Flexible Stellar Population Synthesis code that computes the total line and continuum emission for complex stellar populations using the photoionization code Cloudy. The self-consistent coupling of the nebular emission to the matched ionizing spectrum produces emission line intensities that correctly scale with the stellar population as a function of age and metallicity. This more complete model of galaxy SEDs will improve estimates of global gas properties derived with diagnostic diagrams, star formation rates based on H$\\alpha$, and stellar masses derived from NIR broadband photometry. Our models agree well with results from other photoionization models and are able to reproduce observed emission from H II regions and star-forming galaxies...

  8. Derivation of Electromagnetism from the Elastodynamics of the Spacetime Continuum

    Directory of Open Access Journals (Sweden)

    Millette P. A.

    2013-04-01

    Full Text Available We derive Electromagnetism from the Elastodynamics of the Spacetime Continuum based on the identification of the theory’s antisymmetric rotation tensor with the elec- tromagnetic field-strength tensor. The theory provides a physical explanation of the electromagnetic potential, which arises from transverse ( shearing displacements of the spacetime continuum, in contrast to mass which arises from longitudinal (dilatational displacements. In addition, the theory provides a physical explanation of the current density four-vector, as the 4-gradient of the volume dilatation of the spacetime con- tinuum. The Lorentz condition is obtained directly from the theory. In addition, we obtain a generalization of Electromagnetism for the situation where a volume force is present, in the general non-macroscopic case. Maxwell’s equations are found to remain unchanged, but the current density has an additional term proportional to the volume force.

  9. Dynamic brittle material response based on a continuum damage model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, E.P.

    1994-12-31

    The response of brittle materials to dynamic loads was studied in this investigation based on a continuum damage model. Damage mechanism was selected to be interaction and growth of subscale cracks. Briefly, the cracks are activated by bulk tension and the density of activated cracks are described by a Weibull statistical distribution. The moduli of a cracked solid derived by Budiansky and O`Connell are then used to represent the global material degradation due to subscale cracking. This continuum damage model was originally developed to study rock fragmentation and was modified in the present study to improve on the post-limit structural response. The model was implemented into a transient dynamic explicit finite element code PRONTO 2D and then used for a numerical study involving the sudden stretching of a plate with a centrally located hole. Numerical results characterizing the dynamic responses of the material were presented. The effect of damage on dynamic material behavior was discussed.

  10. Asteroid-Comet Continuum Objects in the Solar System

    CERN Document Server

    Hsieh, Henry H

    2016-01-01

    In this review presented at the Royal Society meeting, "Cometary Science After Rosetta", I present an overview of studies of small solar system objects that exhibit properties of both asteroids and comets (with a focus on so-called active asteroids). Sometimes referred to as "transition objects", these bodies are perhaps more appropriately described as "continuum objects", to reflect the notion that rather than necessarily representing actual transitional evolutionary states between asteroids and comets, they simply belong to the general population of small solar system bodies that happen to exhibit a continuous range of observational, physical, and dynamical properties. Continuum objects are intriguing because they possess many of the properties that make classical comets interesting to study (e.g., relatively primitive compositions, ejection of surface and subsurface material into space where it can be more easily studied, and orbital properties that allow us to sample material from distant parts of the sol...

  11. Carbon cycling along the land to ocean continuum (Invited)

    Science.gov (United States)

    Ciais, P.; Regnier, P.; Friedlingstein, P.; Mackenzie, F. T.; Gruber, N.; Raymond, P. A.

    2013-12-01

    A fraction of atmospheric CO2 taken up on land through photosynthesis and chemical weathering is transported laterally from upland terrestrial ecosystems into the ocean. Global carbon budget estimates have assumed that the lateral transport and sources / sinks along this aquatic continuum have remained unchanged. Based upon the recent review of Regnier et al., the main flux components of carbon fluxes along the land to ocean continuum will be presented, together with more recent estimates of CO2 outgassing fluxes from rivers and lakes. The potential origin of carbon delivered to rivers will be discussed, as well as missing components in the system such as wetlands and flooded regions. How these processes could be incorporated in Earth System Models will be presented.

  12. Continuum-mediated dark matter–baryon scattering

    CERN Document Server

    Katz, Andrey; Sajjad, Aqil

    2016-01-01

    Many models of dark matter scattering with baryons may be treated either as a simple contact interaction or as the exchange of a light mediator particle. We study an alternative, in which a continuum of light mediator states may be exchanged. This could arise, for instance, from coupling to a sector which is approximately conformal at the relevant momentum transfer scale. In the non-relativistic effective theory of dark matter-baryon scattering, which is useful for parametrizing direct detection signals, the effect of such continuum mediators is to multiply the amplitude by a function of the momentum transfer q, which in the simplest case is just a power law. We develop the basic framework and study two examples: the case where the mediator is a scalar operator coupling to the Higgs portal (which turns out to be highly constrained) and the case of an antisymmetric tensor operator ${\\cal O}_{\\mu \

  13. The continuum of spreading depolarizations in acute cortical lesion development

    DEFF Research Database (Denmark)

    Hartings, Jed A; Shuttleworth, C William; Kirov, Sergei A;

    2017-01-01

    A modern understanding of how cerebral cortical lesions develop after acute brain injury is based on Aristides Leão's historic discoveries of spreading depression and asphyxial/anoxic depolarization. Treated as separate entities for decades, we now appreciate that these events define a continuum...... of spreading mass depolarizations, a concept that is central to understanding their pathologic effects. Within minutes of acute severe ischemia, the onset of persistent depolarization triggers the breakdown of ion homeostasis and development of cytotoxic edema. These persistent changes are diagnosed....... The causal role of these waves in lesion development has been proven by real-time monitoring of electrophysiology, blood flow, and cytotoxic edema. The spreading depolarization continuum further applies to other models of acute cortical lesions, suggesting that it is a universal principle of cortical lesion...

  14. Continuum effects in the scattering of exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Druet, T. [Universite Libre de Bruxelles (ULB), Physique Quantique, C.P. 165/82, Brussels (Belgium); Universite Libre de Bruxelles (ULB), Physique Nucleaire Theorique et Physique Mathematique, Brussels (Belgium); Descouvemont, P. [Universite Libre de Bruxelles (ULB), Physique Nucleaire Theorique et Physique Mathematique, Brussels (Belgium)

    2012-10-15

    We discuss continuum effects in the scattering of exotic nuclei, and more specifically on the {sup 11}Be + {sup 64}Zn scattering. {sup 11}Be is a typical example of an exotic nucleus, with a low binding energy. Elastic, inelastic and breakup cross-sections of the {sup 11}Be + {sup 64}Zn system are computed in the Continuum Discretized Coupled Channel formalism, at energies near the Coulomb barrier. We show that converged cross-sections need high angular momenta as well as as large excitation energies in the wave functions of the projectile. Extensions to other systems are simulated by different collision energies, and by varying the binding energy of {sup 11}Be. (orig.)

  15. Dyson-Schwinger Equation Density, Temperature and Continuum Strong QCD

    CERN Document Server

    Roberts, C D

    2000-01-01

    Continuum strong QCD is the application of models and continuum quantum field theory to the study of phenomena in hadronic physics, which includes; e.g., the spectrum of QCD bound states and their interactions; and the transition to, and properties of, a quark gluon plasma. We provide a contemporary perspective, couched primarily in terms of the Dyson-Schwinger equations but also making comparisons with other approaches and models. Our discourse provides a practitioners' guide to features of the Dyson-Schwinger equations [such as confinement and dynamical chiral symmetry breaking] and canvasses phenomenological applications to light meson and baryon properties in cold, sparse QCD. These provide the foundation for an extension to hot, dense QCD, which is probed via the introduction of the intensive thermodynamic variables: chemical potential and temperature. We describe order parameters whose evolution signals deconfinement and chiral symmetry restoration, and chronicle their use in demarcating the quark gluon...

  16. Wave propagation in equivalent continuums representing truss lattice materials

    Energy Technology Data Exchange (ETDEWEB)

    Messner, Mark C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Barham, Matthew I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kumar, Mukul [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Barton, Nathan R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-29

    Stiffness scales linearly with density in stretch-dominated lattice meta-materials offering the possibility of very light yet very stiff structures. Current additive manufacturing techniques can assemble structures consisting of these lattice materials, but the design of such structures will require accurate, efficient simulation techniques. Equivalent continuum models have several advantages over discrete truss models of stretch dominated lattices, including computational efficiency and ease of model construction. However, the development an equivalent model suitable for representing the dynamic response of a periodic truss is complicated by microinertial effects. This paper derives a dynamic equivalent continuum model for periodic truss structures and verifies it against detailed finite element simulations. The model must incorporate microinertial effects to accurately reproduce long-wavelength characteristics of the response such as anisotropic elastic soundspeeds. The formulation presented here also improves upon previous work by preserving equilibrium at truss joints for affine lattice deformation and by improving numerical stability by eliminating vertices in the effective yield surface.

  17. Antieigenvalue analysis for continuum mechanics, economics, and number theory

    Directory of Open Access Journals (Sweden)

    Gustafson Karl

    2016-01-01

    Full Text Available My recent book Antieigenvalue Analysis, World-Scientific, 2012, presented the theory of antieigenvalues from its inception in 1966 up to 2010, and its applications within those forty-five years to Numerical Analysis, Wavelets, Statistics, Quantum Mechanics, Finance, and Optimization. Here I am able to offer three further areas of application: Continuum Mechanics, Economics, and Number Theory. In particular, the critical angle of repose in a continuum model of granular materials is shown to be exactly my matrix maximum turning angle of the stress tensor of the material. The important Sharpe ratio of the Capital Asset Pricing Model is now seen in terms of my antieigenvalue theory. Euclid’s Formula for Pythagorean triples becomes a special case of my operator trigonometry.

  18. Continuum mechanical and computational aspects of material behavior

    Energy Technology Data Exchange (ETDEWEB)

    Fried, Eliot; Gurtin, Morton E.

    2000-02-10

    The focus of the work is the application of continuum mechanics to materials science, specifically to the macroscopic characterization of material behavior at small length scales. The long-term goals are a continuum-mechanical framework for the study of materials that provides a basis for general theories and leads to boundary-value problems of physical relevance, and computational methods appropriate to these problems supplemented by physically meaningful regularizations to aid in their solution. Specific studies include the following: the development of a theory of polycrystalline plasticity that incorporates free energy associated with lattice mismatch between grains; the development of a theory of geometrically necessary dislocations within the context of finite-strain plasticity; the development of a gradient theory for single-crystal plasticity with geometrically necessary dislocations; simulations of dynamical fracture using a theory that allows for the kinking and branching of cracks; computation of segregation and compaction in flowing granular materials.

  19. Continuum electrodynamics and the Abraham--Minkowski momentum controversy

    CERN Document Server

    Crenshaw, Michael E

    2015-01-01

    Continuum electrodynamics is an axiomatic formal theory based on the macroscopic Maxwell equations and the constitutive relations. We apply the formal theory to a thermodynamically closed system consisting of an antireflection coated block of dielectric situated in free-space and illuminated by a quasimonochromatic field. We show that valid theorems of the formal theory are proven false by relativity and by conservation laws. Then the axioms of the formal theory are proven false at a fundamental level of mathematical logic. We derive a new formal theory of continuum electrodynamics for macroscopic electric and magnetic fields in a four-dimensional flat non-Minkowski material spacetime in which the speed of light is c/n.

  20. Elucidating a Goal-Setting Continuum in Brain Injury Rehabilitation.

    Science.gov (United States)

    Hunt, Anne W; Le Dorze, Guylaine; Trentham, Barry; Polatajko, Helene J; Dawson, Deirdre R

    2015-08-01

    For individuals with brain injury, active participation in goal setting is associated with better rehabilitation outcomes. However, clinicians report difficulty engaging these clients in goal setting due to perceived or real deficits (e.g., lack of awareness). We conducted a study using grounded theory methods to understand how clinicians from occupational therapy facilitate client engagement and manage challenges inherent in goal setting with this population. Through constant comparative analysis, a goal-setting continuum emerged. At one end of the continuum, therapists embrace client-determined goals and enable clients to decide their own goals. At the other, therapists accept preset organization-determined goals (e.g., "the goal is discharge") and pay little attention to client input. Although all participants aspired to embrace client-determined goal setting, most felt powerless to do so within perceived organizational constraints. Views of advocacy and empowerment help to explain our findings and inform more inclusive practice.

  1. The virial theorem for the polarizable continuum model

    Energy Technology Data Exchange (ETDEWEB)

    Cammi, R., E-mail: roberto.cammi@unipr.it [Dipartimento di Chimica, Università di Parma, Parco Area delle Scienze 17/A, I-43100 Parma (Italy)

    2014-02-28

    The electronic virial theorem is extended to molecular systems within the framework of the Polarizable Continuum Model (PCM) to describe solvation effects. The theorem is given in the form of a relation involving the components of the energy (kinetic and potential) of a molecular solute and its electrostatic properties (potential and field) at the boundary of the cavity in the continuum medium. The virial theorem is also derived in the presence of the Pauli repulsion component of the solute-solvent interaction. Furthermore, it is shown that these forms of the PCM virial theorem may be related to the virial theorem of more simple systems as a molecule in the presence of fixed point charges, and as an atom in a spherical box with confining potential.

  2. The virial theorem for the Polarizable Continuum Model.

    Science.gov (United States)

    Cammi, R

    2014-02-28

    The electronic virial theorem is extended to molecular systems within the framework of the Polarizable Continuum Model (PCM) to describe solvation effects. The theorem is given in the form of a relation involving the components of the energy (kinetic and potential) of a molecular solute and its electrostatic properties (potential and field) at the boundary of the cavity in the continuum medium. The virial theorem is also derived in the presence of the Pauli repulsion component of the solute-solvent interaction. Furthermore, it is shown that these forms of the PCM virial theorem may be related to the virial theorem of more simple systems as a molecule in the presence of fixed point charges, and as an atom in a spherical box with confining potential.

  3. The Glymphatic-Lymphatic Continuum: Opportunities for Osteopathic Manipulative Medicine.

    Science.gov (United States)

    Hitscherich, Kyle; Smith, Kyle; Cuoco, Joshua A; Ruvolo, Kathryn E; Mancini, Jayme D; Leheste, Joerg R; Torres, German

    2016-03-01

    The brain has long been thought to lack a lymphatic drainage system. Recent studies, however, show the presence of a brain-wide paravascular system appropriately named the glymphatic system based on its similarity to the lymphatic system in function and its dependence on astroglial water flux. Besides the clearance of cerebrospinal fluid and interstitial fluid, the glymphatic system also facilitates the clearance of interstitial solutes such as amyloid-β and tau from the brain. As cerebrospinal fluid and interstitial fluid are cleared through the glymphatic system, eventually draining into the lymphatic vessels of the neck, this continuous fluid circuit offers a paradigm shift in osteopathic manipulative medicine. For instance, manipulation of the glymphatic-lymphatic continuum could be used to promote experimental initiatives for nonpharmacologic, noninvasive management of neurologic disorders. In the present review, the authors describe what is known about the glymphatic system and identify several osteopathic experimental strategies rooted in a mechanistic understanding of the glymphatic-lymphatic continuum.

  4. Topology and layout optimization of discrete and continuum structures

    Science.gov (United States)

    Bendsoe, Martin P.; Kikuchi, Noboru

    1993-01-01

    The basic features of the ground structure method for truss structure an continuum problems are described. Problems with a large number of potential structural elements are considered using the compliance of the structure as the objective function. The design problem is the minimization of compliance for a given structural weight, and the design variables for truss problems are the cross-sectional areas of the individual truss members, while for continuum problems they are the variable densities of material in each of the elements of the FEM discretization. It is shown how homogenization theory can be applied to provide a relation between material density and the effective material properties of a periodic medium with a known microstructure of material and voids.

  5. Continuum-limit scaling of overlap fermions as valence quarks

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, Krzysztof [Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Herdoiza, Gregorio; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2009-10-15

    We present the results of a mixed action approach, employing dynamical twisted mass fermions in the sea sector and overlap valence fermions, with the aim of testing the continuum limit scaling behaviour of physical quantities, taking the pion decay constant as an example. To render the computations practical, we impose for this purpose a fixed finite volume with lattice size L{approx}1.3 fm. We also briefly review the techniques we have used to deal with overlap fermions. (orig.)

  6. Radio continuum surveys and galaxy evolution: The AGN view

    OpenAIRE

    Smolcic, Vernesa

    2016-01-01

    Understanding how galaxies form in the early universe and their subsequent evolution through cosmic time is a major goal of modern astrophysics. Panchromatic look-back sky surveys significantly advanced the field in the past decades, and we are now entering an even more fruitful period - a 'golden age' of radio astronomy - with upgraded, and new facilities delivering an order of magnitude increase in sensitivity. An overview of recent developments in radio continuum sky surveys, focusing on t...

  7. The continuum discretized coupled-channels method and its applications

    CERN Document Server

    Yahiro, Masanobu; Matsumoto, Takuma; Minomo, Kosho

    2012-01-01

    This is a review on recent developments of the continuum discretized coupled-channels method (CDCC) and its applications to nuclear physics, cosmology and astrophysics, and nuclear engineering. The theoretical foundation of CDCC is shown, and a microscopic reaction theory for nucleus-nucleus scattering is constructed as an underlying theory of CDCC. CDCC is then extended to treat Coulomb breakup and four-body breakup. We also propose a new theory that makes CDCC applicable to inclusive reactions

  8. Advanced methods of continuum mechanics for materials and structures

    CERN Document Server

    Aßmus, Marcus

    2016-01-01

    This volume presents a collection of contributions on advanced approaches of continuum mechanics, which were written to celebrate the 60th birthday of Prof. Holm Altenbach. The contributions are on topics related to the theoretical foundations for the analysis of rods, shells and three-dimensional solids, formulation of constitutive models for advanced materials, as well as development of new approaches to the modeling of damage and fractures.

  9. Dust Continuum Observations of Protostars: Constraining Properties with Simulations

    CERN Document Server

    Offner, Stella S R

    2012-01-01

    The properties of unresolved protostars and their local environment (e.g., disk, envelope and outflow characteristics) are frequently inferred from spectral energy distributions (SEDs) through comparison with idealized model SEDs. However, if it is not possible to image a source and its environment directly, it is difficult to constrain and evaluate the accuracy of these derived properties. In this proceeding, I present a brief overview of the reliability of SED modeling by analyzing dust continuum synthetic observations of realistic simulations.

  10. Association of Efimov trimers from a three-atom continuum.

    Science.gov (United States)

    Machtey, Olga; Shotan, Zav; Gross, Noam; Khaykovich, Lev

    2012-05-25

    We develop an experimental technique for rf association of Efimov trimers from a three-atom continuum. We apply it to probe the lowest accessible Efimov energy level in bosonic lithium in the region where strong deviations from the universal behavior are expected, and provide a quantitative study of this effect. The position of the Efimov resonance at the atom-dimer threshold, measured using a different experimental technique, concurs with the rf association results.

  11. Lagrangian formulation of continuum with internal long-range interactions

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Based on a new definition of nonlocal variable,this paper establishes the Lagrangian formulation for continuum with internal long-range interactions.Distinguished from the existing theories,the nonlocal term in the Lagrangian formulation automatically satisfies the zero mean condition determined by the action and reaction law.By this formulation,elastic wave in a rod with the internal long-range interactions is investigated.The dispersion of the elastic wave is predicted.

  12. A Continuum Mechanical Approach to Geodesics in Shape Space

    Science.gov (United States)

    2010-01-01

    A CONTINUUM MECHANICAL APPROACH TO GEODESICS IN SHAPE SPACE By Benedikt Wirth Leah Bar Martin Rumpf and Guillermo Sapiro IMA Preprint Series # 2295...Benedikt Wirth† Leah Bar‡ Martin Rumpf† Guillermo Sapiro‡ †Institute for Numerical Simulation, University of Bonn, Germany ‡Department of Electrical and...mean curvature flow equation. Calc. Var., 3:253–271, 1995. [30] Siddharth Manay, Daniel Cremers , Byung-Woo Hong, Anthony J. Yezzi, and Stefano Soatto

  13. Elements of Success in Chicago Botanic Garden's Science Career Continuum.

    Science.gov (United States)

    Johnson, Katherine A

    2016-03-01

    The Science Career Continuum at the Chicago Botanic Garden is a model program for successfully encouraging youth from diverse backgrounds into STEM careers. This program has shown that when students are given an opportunity to participate in real scientific research under the mentorship of a caring professional over multiple years, they are more likely to go to college and pursue STEM careers than their peers. Journal of Microbiology & Biology Education.

  14. Capillarity-Driven Flows at the Continuum Limit

    OpenAIRE

    Vincent, Olivier; Szenicer, Alexandre; Stroock, Abraham D.

    2015-01-01

    We experimentally investigate the dynamics of capillary-driven flows at the nanoscale, using an original platform that combines nanoscale pores and microfluidic features. Our results show a coherent picture across multiple experiments including imbibition, poroelastic transient flows, and a drying-based method that we introduce. In particular, we exploit extreme drying stresses - up to 100 MPa of tension - to drive nanoflows and provide quantitative tests of continuum theories of fluid mechan...

  15. Nitrogen-induced absorption of oxygen in the Herzberg continuum

    Science.gov (United States)

    Shardanand, MR.

    1977-01-01

    Total absorption of O2 induced by collisions with N2 has been measured at room temperature in the Hersberg continuum using a one meter normal incidence grating monochromator. The enhanced absorption is ascribed to the formation of O2-O2 and O2-N2 dimers. The interaction constants for these dimers are determined and utilized to investigate their effect on the absorption of solar radiation in the stratosphere.

  16. Nutritional Vulnerability in Older Adults: A Continuum of Concerns

    OpenAIRE

    Porter Starr, Kathryn N.; McDonald, Shelley R.; Bales, Connie W.

    2015-01-01

    A nutritionally vulnerable older adult has a reduced physical reserve that limits the ability to mount a vigorous recovery in the face of an acute health threat or stressor. Often this vulnerability contributes to more medical complications, longer hospital stays, and increased likelihood of nursing home admission. We have characterized in this review the etiology of nutritional vulnerability across the continuum of the community, hospital, and long term care settings. Frail older adults may ...

  17. Globalization and Income Distribution: A Specific Factors Continuum Approach

    OpenAIRE

    Anderson, James E.

    2009-01-01

    Does globalization widen inequality or increase income risk? In the specific factors continuum model of this paper, globalization widens inequality, amplifying the positive (negative) premia for export (import- competing) sectors. Globalization amplifies the risk from idiosyncratic relative productivity shocks but reduces risk from aggregate shocks to absolute advantage, relative endowments and transfers. Aggregate-shock-induced income risk bears most heavily on the poorest specific factors, ...

  18. Polarizable Atomic Multipole Solutes in a Poisson-Boltzmann Continuum

    Science.gov (United States)

    Schnieders, Michael J.; Baker, Nathan A.; Ren, Pengyu; Ponder, Jay W.

    2008-01-01

    Modeling the change in the electrostatics of organic molecules upon moving from vacuum into solvent, due to polarization, has long been an interesting problem. In vacuum, experimental values for the dipole moments and polarizabilities of small, rigid molecules are known to high accuracy; however, it has generally been difficult to determine these quantities for a polar molecule in water. A theoretical approach introduced by Onsager used vacuum properties of small molecules, including polarizability, dipole moment and size, to predict experimentally known permittivities of neat liquids via the Poisson equation. Since this important advance in understanding the condensed phase, a large number of computational methods have been developed to study solutes embedded in a continuum via numerical solutions to the Poisson-Boltzmann equation (PBE). Only recently have the classical force fields used for studying biomolecules begun to include explicit polarization in their functional forms. Here we describe the theory underlying a newly developed Polarizable Multipole Poisson-Boltzmann (PMPB) continuum electrostatics model, which builds on the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field. As an application of the PMPB methodology, results are presented for several small folded proteins studied by molecular dynamics in explicit water as well as embedded in the PMPB continuum. The dipole moment of each protein increased on average by a factor of 1.27 in explicit water and 1.26 in continuum solvent. The essentially identical electrostatic response in both models suggests that PMPB electrostatics offers an efficient alternative to sampling explicit solvent molecules for a variety of interesting applications, including binding energies, conformational analysis, and pKa prediction. Introduction of 150 mM salt lowered the electrostatic solvation energy between 2–13 kcal/mole, depending on the formal charge of the protein, but had only a

  19. From discrete particles to continuum fields near a boundary

    OpenAIRE

    Weinhart, T.; Thornton, A R; Luding, S.; Bokhove, O

    2011-01-01

    An expression for the stress tensor near an external boundary of a discrete mechanical system is derived explicitly in terms of the constituents’ degrees of freedom and interaction forces. Starting point is the exact and general coarse graining formulation presented by Goldhirsch in [I.Goldhirsch, Gran.Mat., 12(3):239-252, 2010], which is consistent with the continuum equations everywhere but does not account for boundaries. Our extension accounts for the boundary interaction forces in a self...

  20. The Near-Ultraviolet Continuum of Late-Type Stars

    CERN Document Server

    Allende-Prieto, C; Allende-Prieto, Carlos; Lambert, David L

    2000-01-01

    Analyses of the near-ultraviolet continuum of late-type stars have led to controversial results regarding the performance of state-of-the-art model atmospheres. The release of the homogeneous IUE final archive and the availability of the high-accuracy Hipparcos parallaxes provide an opportunity to revisit this issue, as accurate stellar distances make it possible to compare observed absolute fluxes with the predictions of model atmospheres. The near-UV continuum is highly sensitive to Teff and [Fe/H], and once the gravity is constrained from the parallax, these parameters may be derived from the analysis of low-dispersion "long-wavelength" (2000-3000 A) IUE spectra for stars previously studied by Alonso et al. (1996; A&AS 117, 227) using the Infrared Flux Method (IRFM). A second comparison is carried out against the stars spectroscopically investigated by Gratton et al. (1996; A&A 314, 191). It is shown that there is a good agreement between Teffs obtained from the IRFM and from the near-UV continuum,...

  1. Defining the HIV pre-exposure prophylaxis care continuum

    Science.gov (United States)

    Nunn, Amy S.; Brinkley-Rubinstein, Lauren; Oldenburg, Catherine E.; Mayer, Kenneth H.; Mimiaga, Matthew; Patel, Rupa; Chan, Philip A.

    2017-01-01

    Pre-exposure prophylaxis (PrEP) is an effective HIV prevention strategy. There is little scientific consensus about how to measure PrEP program implementation progress. We draw on several years of experience in implementing PrEP programs and propose a PrEP continuum of care that includes: (1) identifying individuals at highest risk for contracting HIV, (2) increasing HIV risk awareness among those individuals, (3) enhancing PrEP awareness, (4) facilitating PrEP access, (5) linking to PrEP care, (6) prescribing PrEP, (7) initiating PrEP, (8) adhering to PrEP, and (9) retaining individuals in PrEP care. We also propose four distinct categories of PrEP retention in care that include being: (1) indicated for PrEP and retained in PrEP care, (2) indicated for PrEP and not retained in PrEP care, (3) no longer indicated for PrEP, and (4) lost to follow-up for PrEP care. This continuum of PrEP care creates a framework that researchers and practitioners can use to measure PrEP awareness, uptake, adherence, and retention. Understanding each point along the proposed continuum of PrEP care is critical for developing effective PrEP interventions and for measuring public health progress in PrEP program implementation. PMID:28060019

  2. Coupled continuum and molecular model of flow through fibrous filter

    Science.gov (United States)

    Zhao, Shunliu; Povitsky, Alex

    2013-11-01

    A coupled approach combining the continuum boundary singularity method (BSM) and the molecular direct simulation Monte Carlo (DSMC) is developed and validated using Taylor-Couette flow and the flow about a single fiber confined between two parallel walls. In the proposed approach, the DSMC is applied to an annular region enclosing the fiber and the BSM is employed in the entire flow domain. The parameters used in the DSMC and the coupling procedure, such as the number of simulated particles, the cell size, and the size of the coupling zone are determined by inspecting the accuracy of pressure drop obtained for the range of Knudsen numbers between zero and unity. The developed approach is used to study flowfield of fibrous filtration flows. It is observed that in the partial-slip flow regime, Kn ⩽ 0.25, the results obtained by the proposed coupled BSM-DSMC method match the solution by BSM combined with the heuristic partial-slip boundary conditions. For transition molecular-to-continuum Knudsen numbers, 0.25 pressure drop and velocity between these two approaches is significant. This difference increases with the Knudsen number that confirms the usefulness of coupled continuum and molecular methods in numerical modeling of transition low Reynolds number flows in fibrous filters.

  3. Identification of a transcriptional signature for the wound healing continuum.

    Science.gov (United States)

    Peake, Matthew A; Caley, Mathew; Giles, Peter J; Wall, Ivan; Enoch, Stuart; Davies, Lindsay C; Kipling, David; Thomas, David W; Stephens, Phil

    2014-01-01

    There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Microarray analysis of adult oral mucosal fibroblast (OMF), normal skin fibroblast (NF), and chronic wound fibroblast (CWF) at 0 and 6 hours post-serum stimulation was performed. Genes whose expression increases following serum exposure in the order OMF healing phenotype (the dysfunctional healing group), whereas genes with the converse pattern are potentially associated with a positive/preferential healing phenotype (the enhanced healing group). Sixty-six genes in the enhanced healing group and 38 genes in the dysfunctional healing group were identified. Overrepresentation analysis revealed pathways directly and indirectly associated with wound healing and aging and additional categories associated with differentiation, development, and morphogenesis. Knowledge of this wound healing continuum gene signature may in turn assist in the therapeutic assessment/treatment of a patient's wounds. © 2014 The Authors. Wound Repair and Regeneration published by Wiley Periodicals, Inc. on behalf of Wound Healing Society.

  4. Continuum mechanics beyond the second law of thermodynamics.

    Science.gov (United States)

    Ostoja-Starzewski, M; Malyarenko, A

    2014-11-08

    The results established in contemporary statistical physics indicating that, on very small space and time scales, the entropy production rate may be negative, motivate a generalization of continuum mechanics. On account of the fluctuation theorem, it is recognized that the evolution of entropy at a material point is stochastically (not deterministically) conditioned by the past history, with an increasing trend of average entropy production. Hence, the axiom of Clausius-Duhem inequality is replaced by a submartingale model, which, by the Doob decomposition theorem, allows classification of thermomechanical processes into four types depending on whether they are conservative or not and/or conventional continuum mechanical or not. Stochastic generalizations of thermomechanics are given in the vein of either thermodynamic orthogonality or primitive thermodynamics, with explicit models formulated for Newtonian fluids with, respectively, parabolic or hyperbolic heat conduction. Several random field models of the martingale component, possibly including spatial fractal and Hurst effects, are proposed. The violations of the second law are relevant in those situations in continuum mechanics where very small spatial and temporal scales are involved. As an example, we study an acceleration wavefront of nanoscale thickness which randomly encounters regions in the medium characterized by a negative viscosity coefficient.

  5. Filter length scale for continuum modeling of subgrid physics

    Science.gov (United States)

    Simeonov, Julian; Calantoni, Joseph

    2014-11-01

    Modeling the wide range of scales of geophysical processes with direct numerical simulations (DNS) is currently not feasible. It is therefore typical to explicitly resolve only the large energy-containing scales and to parameterize the unresolved small scales. One approach to separate the scales is by means of spatial filters and here we discuss practical considerations regarding the choice of a volume averaging scale L. We use a macroscopically homogeneous scalar field and quantify the smoothness of the filtered field using a noise metric, ν, defined by the standard deviation of the filtered field normalized by the domain-averaged value of the field. For illustration, we consider the continuum modeling of the particle phase in discrete element method (DEM) simulations and the salt fingers in DNS of double-diffusive convection. We find that ν2 follows an inverse power law dependence on L with an exponent and coefficients proportional to the domain-averaged field value. The empirical power law relation can aid in the development of continuum models from fully resolved simulations while also providing uncertainty estimates of the modeled continuum fields.

  6. Millimeter continuum observations of Galactic center giant molecular cloud cores

    Science.gov (United States)

    Lis, D. C.; Carlstrom, J. E.; Keene, Jocelyn

    1991-01-01

    Results are presented of observations of 1.3- and 0.8-mm continuum emission toward the cores of three Galactic center molecular clouds with ongoing massive star formation, Sagittarius B2, C, and D, which were made in order to study possible variations in the high-mass star formation rate per unit mass between the Galactic center and the disk. The luminosity-to-mass ratio, based on the mass estimates derived from the millimeter continuum emission, is used as a tracer of the high-mass star formation rate in GMC cores. The magnitude of errors involved in using millimeter continuum emission for determining the core mass is estimated through radiative transfer modeling. It is inferred from the present millimeter data, along with previously published far-infrared data, that the Sgr C and D cores are very similar in terms of mean dust optical depth and temperature. The luminosity-to-mass ratios derived for the Sgr C and D cores are found to be consistent with those of typical disk GMC cores with comparable far-infrared luminosities.

  7. A continuum three-zone model for swarms.

    Science.gov (United States)

    Miller, Jennifer M; Kolpas, Allison; Juchem Neto, Joao Plinio; Rossi, Louis F

    2012-03-01

    We present a progression of three distinct three-zone, continuum models for swarm behavior based on social interactions with neighbors in order to explain simple coherent structures in popular biological models of aggregations. In continuum models, individuals are replaced with density and velocity functions. Individual behavior is modeled with convolutions acting within three interaction zones corresponding to repulsion, orientation, and attraction, respectively. We begin with a variable-speed first-order model in which the velocity depends directly on the interactions. Next, we present a variable-speed second-order model. Finally, we present a constant-speed second-order model that is coordinated with popular individual-based models. For all three models, linear stability analysis shows that the growth or decay of perturbations in an infinite, uniform swarm depends on the strength of attraction relative to repulsion and orientation. We verify that the continuum models predict the behavior of a swarm of individuals by comparing the linear stability results with an individual-based model that uses the same social interaction kernels. In some unstable regimes, we observe that the uniform state will evolve toward a radially symmetric attractor with a variable density. In other unstable regimes, we observe an incoherent swarming state.

  8. Variational principles of continuum mechanics. Vol. 1. Fundamentals

    Energy Technology Data Exchange (ETDEWEB)

    Berdichevsky, Victor L. [Wayne State Univ., Detroit, MI (United States). Dept. of Mechanical Engineering

    2009-07-01

    The book reviews the two features of the variational approach: its use as a universal tool to describe physical phenomena and as a source for qualitative and quantitative methods of studying particular problems. Berdichevsky's work differs from other books on the subject in focusing mostly on the physical origin of variational principles as well as establishing their interrelations. For example, the Gibbs principles appear as a consequence of the Einstein formula for thermodynamic fluctuations rather than as the first principles of the theory of thermodynamic equilibrium. Mathematical issues are considered as long as they shed light on the physical outcomes and/or provide a useful technique for the direct study of variational problems. In addition, a thorough account of variational principles discovered in various branches of continuum mechanics is given. In this book, the first volume, the author covers the variational principles for systems with a finite number of degrees of freedom; the variational principles of thermodynamics; the basics of continuum mechanics; the variational principles for classical models of continuum mechanics, such as elastic and plastic bodies, and ideal and viscous fluids; and direct methods of calculus of variations. (orig.)

  9. Additive manufacturing of patient-specific tubular continuum manipulators

    Science.gov (United States)

    Amanov, Ernar; Nguyen, Thien-Dang; Burgner-Kahrs, Jessica

    2015-03-01

    Tubular continuum robots, which are composed of multiple concentric, precurved, elastic tubes, provide more dexterity than traditional surgical instruments at the same diameter. The tubes can be precurved such that the resulting manipulator fulfills surgical task requirements. Up to now the only material used for the component tubes of those manipulators is NiTi, a super-elastic shape-memory alloy of nickel and titan. NiTi is a cost-intensive material and fabrication processes are complex, requiring (proprietary) technology, e.g. for shape setting. In this paper, we evaluate component tubes made of 3 different thermoplastic materials (PLA, PCL and nylon) using fused filament fabrication technology (3D printing). This enables quick and cost-effective production of custom, patient-specific continuum manipulators, produced on site on demand. Stress-strain and deformation characteristics are evaluated experimentally for 16 fabricated tubes of each thermoplastic with diameters and shapes equivalent to those of NiTi tubes. Tubes made of PCL and nylon exhibit properties comparable to those made of NiTi. We further demonstrate a tubular continuum manipulator composed of 3 nylon tubes in a transnasal, transsphenoidal skull base surgery scenario in vitro.

  10. Robust dual-response optimization

    NARCIS (Netherlands)

    Yanikoglu, Ihsan; den Hertog, Dick; Kleijnen, J.P.C.

    2016-01-01

    This article presents a robust optimization reformulation of the dual-response problem developed in response surface methodology. The dual-response approach fits separate models for the mean and the variance and analyzes these two models in a mathematical optimization setting. We use metamodels esti

  11. Dual-Credit in Kentucky

    Science.gov (United States)

    Stephenson, Lisa G.

    2013-01-01

    Credit-based transition programs provide high school students with opportunities to jump start their college education. The Kentucky Community and Technical College System (KCTCS) offers college credit through dual-credit programs. While KCTCS dual-credit offerings have been successful in helping high school students start their college education…

  12. Dual-core Itanium Processor

    CERN Multimedia

    2006-01-01

    Intel’s first dual-core Itanium processor, code-named "Montecito" is a major release of Intel's Itanium 2 Processor Family, which implements the Intel Itanium architecture on a dual-core processor with two cores per die (integrated circuit). Itanium 2 is much more powerful than its predecessor. It has lower power consumption and thermal dissipation.

  13. Dual Card,Double Happiness

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    As Christmas Day and New Year Day draw near, why not treat yourself with a smart digital gizmo. Then, the Samsung Dual-card Cellphone is what you are longing for. Samsung B5712C, the first dual-card model released by Samsung,

  14. Asymmetry in Dual Language Practice

    Directory of Open Access Journals (Sweden)

    Audrey Amrein

    2000-01-01

    Full Text Available The capacity for dual-language programs to deliver specific benefits to students with different primary and secondary language skills continues to be debated. Individuals favoring dual language assert that as it relies upon a reciprocal approach, dual language students acquire dual language proficiency without the need for teachers to translate from one language to another. By utilizing and conserving the language skills that students bring, dual language students also gain cross-cultural understandings and an expanded opportunity to realize academic success in the future. Research that explores whether these programs meet the needs of monolingual and bilingual students is limited. The intent of this study is not to criticize dual language practice. Instead, it is to describe a newly implemented dual language immersion program that exists and operates in Phoenix, Arizona. In particular, this study examines the practices of dual language teachers at Leigh Elementary School and the challenges encountered as school personnel worked to provide students with different primary and secondary language skills increased opportunities to learn.

  15. Benefits of Dual Language Education

    Science.gov (United States)

    Wallstrum, Kiara

    2009-01-01

    The focus of this paper examines how dual language education (DLE) programs are valuable. The literature shows that children do much more than just thrive in a dual language environment. According to research, children who are bilingual are cognitively, academically, intellectually, socially and verbally more advantaged than their monolingual…

  16. NIKA 2: next-generation continuum/polarized camera at the IRAM 30 m telescope and its prototype

    CERN Document Server

    Ritacco, A; Adane, A; Ade, P; André, P; Beelen, A; Benoît, A; Bideaud, A; Billot, N; Bourrion, O; Calvo, M; Catalano, A; Coiffard, G; Comis, B; Désert, F -X; Doyle, S; Goupy, J; Kramer, C; Leclercq, S; Macías-Pérez, J F; Mauskopf, P; Maury, A; Mayet, F; Monfardini, A; Pajot, F; Pascale, E; Perotto, L; Pisano, G; Ponthieu, N; Rebolo-Iglesias, M; Revéret, V; Rodriguez, L; Ruppin, F; Savini, G; Schuster, K; Sievers, A; Triqueneaux, S; Tucker, C; Zylka, R

    2016-01-01

    NIKA 2 (New Instrument of Kids Array) is a next generation continuum and polarized instrument successfully installed in October 2015 at the IRAM 30 m telescope on Pico-Veleta (Granada, Spain). NIKA 2 is a high resolution dual-band camera, operating with frequency multiplexed LEKIDs (Lumped Element Kinetic Inductance Detectors) cooled at 100 mK. Dual color images are obtained thanks to the simultaneous readout of a 1020 pixels array at 2 mm and 1140 x 2 pixels arrays at 1.15 mm with a final resolution of 18 and 12 arcsec respectively, and 6.5 arcmin of Field of View (FoV). The two arrays at 1.15 mm allow us to measure the linear polarization of the incoming light. This will place NIKA 2 as an instrument of choice to study the role of magnetic fields in the star formation process. The NIKA experiment, a prototype for NIKA 2 with a reduced number of detectors (about 400 LEKIDs) and FoV (1.8 arcmin), has been successfully operated at the IRAM 30 telescope in several open observational campaigns. The performance o...

  17. Multiscale modeling of rapid granular flow with a hybrid discrete-continuum method

    CERN Document Server

    Chen, Xizhong; Li, Jinghai

    2015-01-01

    Both discrete and continuum models have been widely used to study rapid granular flow, discrete model is accurate but computationally expensive, whereas continuum model is computationally efficient but its accuracy is doubtful in many situations. Here we propose a hybrid discrete-continuum method to profit from the merits but discard the drawbacks of both discrete and continuum models. Continuum model is used in the regions where it is valid and discrete model is used in the regions where continuum description fails, they are coupled via dynamical exchange of parameters in the overlap regions. Simulation of granular channel flow demonstrates that the proposed hybrid discrete-continuum method is nearly as accurate as discrete model, with much less computational cost.

  18. Dual-horizon Peridynamics

    CERN Document Server

    Ren, Huilong; Cai, Yongchang; Rabczuk, Timon

    2015-01-01

    In this paper we develop a new Peridynamic approach that naturally includes varying horizon sizes and completely solves the "ghost force" issue. Therefore, the concept of dual-horizon is introduced to consider the unbalanced interactions between the particles with different horizon sizes. The present formulation is proved to fulfill both the balances of linear momentum and angular momentum. Neither the "partial stress tensor" nor the "`slice" technique are needed to ameliorate the ghost force issue in \\cite{Silling2014}. The consistency of reaction forces is naturally fulfilled by a unified simple formulation. The method can be easily implemented to any existing peridynamics code with minimal changes. A simple adaptive refinement procedure is proposed minimizing the computational cost. The method is applied here to the three Peridynamic formulations, namely bond based, ordinary state based and non-ordinary state based Peridynamics. Both two- and three- dimensional examples including the Kalthof-Winkler experi...

  19. Dual Criteria Decisions

    DEFF Research Database (Denmark)

    Andersen, Steffen; Harrison, Glenn W.; Lau, Morten Igel;

    2014-01-01

    The most popular models of decision making use a single criterion to evaluate projects or lotteries. However, decision makers may actually consider multiple criteria when evaluating projects. We consider a dual criteria model from psychology. This model integrates the familiar tradeoffs between...... risk and utility that economists traditionally assume, allowance for rank-dependent decision weights, and consideration of income thresholds. We examine the issues involved in full maximum likelihood estimation of the model using observed choice data. We propose a general method for integrating...... the multiple criteria, using the logic of mixture models, which we believe is attractive from a decision-theoretic and statistical perspective. The model is applied to observed choices from a major natural experiment involving intrinsically dynamic choices over highly skewed outcomes. The evidence points...

  20. Thermodynamic Analysis of Dual-Mode Scramjet Engine Operation and Performance

    Science.gov (United States)

    Riggins, David; Tacket, Regan; Taylor, Trent; Auslender, Aaron

    2006-01-01

    Recent analytical advances in understanding the performance continuum (the thermodynamic spectrum) for air-breathing engines based on fundamental second-law considerations have clarified scramjet and ramjet operation, performance, and characteristics. Second-law based analysis is extended specifically in this work to clarify and describe the performance characteristics for dual-mode scramjet operation in the mid-speed range of flight Mach 4 to 7. This is done by a fundamental investigation of the complex but predictable interplay between heat release and irreversibilities in such an engine; results demonstrate the flow and performance character of the dual mode regime and of dual mode transition behavior. Both analytical and computational (multi-dimensional CFD) studies of sample dual-mode flow-fields are performed in order to demonstrate the second-law capability and performance and operability issues. The impact of the dual-mode regime is found to be characterized by decreasing overall irreversibility with increasing heat release, within the operability limits of the system.

  1. SMA Continuum Survey of Circumstellar Disks in Serpens

    Science.gov (United States)

    Law, Charles; Ricci, Luca; Andrews, Sean M.; Wilner, David J.; Qi, Chunhua

    2017-06-01

    The lifetime of disks surrounding pre-main-sequence stars is closely linked to planet formation and provides information on disk dispersal mechanisms and dissipation timescales. The potential for these optically thick, gas-rich disks to form planets is critically dependent on how much dust is available to be converted into terrestrial planets and rocky cores of giant planets. For this reason, an understanding of how dust mass varies with key properties such as stellar mass, age, and environment is critical for understanding planet formation. Millimeter wavelength observations, in which the dust emission is optically thin, are required to study the colder dust residing in the disk’s outer regions and to measure disk dust masses. Hence, we have obtained SMA 1.3 mm continuum observations of 62 Class II sources with suspected circumstellar disks in the Serpens star-forming region (SFR). Relative to the well-studied Taurus SFR, Serpens allows us to probe the distribution of dust masses for disks in a much denser and more clustered environment. Only 13 disks were detected in the continuum with the SMA. We calculate the total dust masses of these disks and compare their masses to those of disks in Taurus, Lupus, and Upper Scorpius. We do not find evidence of diminished dust masses in Serpens disks relative to those in Taurus despite the fact that disks in denser clusters may be expected to contain less dust mass due to stronger and more frequent tidal interactions that can disrupt the outer regions of disks. However, considering the low detection fraction, we likely detected only bright continuum sources and a more sensitive survey of Serpens would help clarify these results.

  2. The South Carolina rural-urban HIV continuum of care.

    Science.gov (United States)

    Edun, Babatunde; Iyer, Medha; Albrecht, Helmut; Weissman, Sharon

    2016-12-16

    The HIV continuum of care model is widely used by various agencies to describe the HIV epidemic in stages from diagnosis through to virologic suppression. It identifies the various points at which persons living with HIV (PLWHIV) within a population fail to reach their next step in HIV care. The rural population in the Southern United States is disproportionally affected by the HIV epidemic. The purpose of this study was to examine these rural-urban disparities using the HIV care continuum model and determine at what stages these differences become apparent. PLWHIV aged 13 years and older in South Carolina (SC) were identified using data from the enhanced HIV/AIDS Reporting System. The percentages of PLWHIV linked to care, retained in care, and virologically suppressed were determined. Rural versus urban residence was determined using the Office of Management and Budget classification. There were 14,523 PLWHIV in SC at the end of 2012; 11,193 (77%) of whom were categorized as urban and 3305 (22%) as rural. There was no difference between urban and rural for those who had received any care: 64% versus 64% (p = .61); retention in care 53% versus 53% (p = .71); and virologic suppression 49% versus 48% (p = .35), respectively. The SC rural-urban HIV cascade represents the first published cascade of care model using rural versus urban residence. Although significant health care disparities exist between rural and urban residents, there were no major differences between rural and urban residents at the various stages of engagement in HIV care using the HIV continuum of care model.

  3. [Continuum based fast Fourier transform processing of infrared spectrum].

    Science.gov (United States)

    Liu, Qing-Jie; Lin, Qi-Zhong; Wang, Qin-Jun; Li, Hui; Li, Shuai

    2009-12-01

    To recognize ground objects with infrared spectrum, high frequency noise removing is one of the most important phases in spectrum feature analysis and extraction. A new method for infrared spectrum preprocessing was given combining spectrum continuum processing and Fast Fourier Transform (CFFT). Continuum was firstly removed from the noise polluted infrared spectrum to standardize hyper-spectra. Then the spectrum was transformed into frequency domain (FD) with fast Fourier transform (FFT), separating noise information from target information After noise eliminating from useful information with a low-pass filter, the filtered FD spectrum was transformed into time domain (TD) with fast Fourier inverse transform. Finally the continuum was recovered to the spectrum, and the filtered infrared spectrum was achieved. Experiment was performed for chlorite spectrum in USGS polluted with two kinds of simulated white noise to validate the filtering ability of CFFT by contrast with cubic function of five point (CFFP) in time domain and traditional FFT in frequency domain. A circle of CFFP has limited filtering effect, so it should work much with more circles and consume more time to achieve better filtering result. As for conventional FFT, Gibbs phenomenon has great effect on preprocessing result at edge bands because of special character of rock or mineral spectra, while works well at middle bands. Mean squared error of CFFT is 0. 000 012 336 with cut-off frequency of 150, while that of FFT and CFFP is 0. 000 061 074 with cut-off frequency of 150 and 0.000 022 963 with 150 working circles respectively. Besides the filtering result of CFFT can be improved by adjusting the filter cut-off frequency, and has little effect on working time. The CFFT method overcomes the Gibbs problem of FFT in spectrum filtering, and can be more convenient, dependable, and effective than traditional TD filter methods.

  4. Bacterial Biogeography across the Amazon River-Ocean Continuum

    Energy Technology Data Exchange (ETDEWEB)

    Doherty, Mary; Yager, Patricia L.; Moran, Mary Ann; Coles, Victoria J.; Fortunato, Caroline S.; Krusche, Alex V.; Medeiros, Patricia M.; Payet, Jérôme P.; Richey, Jeffrey E.; Satinsky, Brandon M.; Sawakuchi, Henrique O.; Ward, Nicholas D.; Crump, Byron C.

    2017-05-23

    Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ~675 km of the lower Amazon River mainstem, in the Tapajos River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2-2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity nearshore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and

  5. Characteristic dynamics near two coalescing eigenvalues incorporating continuum threshold effects

    Science.gov (United States)

    Garmon, Savannah; Ordonez, Gonzalo

    2017-06-01

    It has been reported in the literature that the survival probability P(t) near an exceptional point where two eigenstates coalesce should generally exhibit an evolution P (t ) ˜t2e-Γ t, in which Γ is the decay rate of the coalesced eigenstate; this has been verified in a microwave billiard experiment [B. Dietz et al., Phys. Rev. E 75, 027201 (2007)]. However, the heuristic effective Hamiltonian that is usually employed to obtain this result ignores the possible influence of the continuum threshold on the dynamics. By contrast, in this work we employ an analytical approach starting from the microscopic Hamiltonian representing two simple models in order to show that the continuum threshold has a strong influence on the dynamics near exceptional points in a variety of circumstances. To report our results, we divide the exceptional points in Hermitian open quantum systems into two cases: at an EP2A two virtual bound states coalesce before forming a resonance, anti-resonance pair with complex conjugate eigenvalues, while at an EP2B two resonances coalesce before forming two different resonances. For the EP2B, which is the case studied in the microwave billiard experiment, we verify that the survival probability exhibits the previously reported modified exponential decay on intermediate time scales, but this is replaced with an inverse power law on very long time scales. Meanwhile, for the EP2A the influence from the continuum threshold is so strong that the evolution is non-exponential on all time scales and the heuristic approach fails completely. When the EP2A appears very near the threshold, we obtain the novel evolution P (t ) ˜1 -C1√{t } on intermediate time scales, while further away the parabolic decay (Zeno dynamics) on short time scales is enhanced.

  6. Hybrid molecular–continuum methods: From prototypes to coupling software

    KAUST Repository

    Neumann, Philipp

    2014-02-01

    In this contribution, we review software requirements in hybrid molecular-continuum simulations. For this purpose, we analyze a prototype implementation which combines two frameworks-the Molecular Dynamics framework MarDyn and the framework Peano for spatially adaptive mesh-based simulations-and point out particular challenges of a general coupling software. Based on this analysis, we discuss the software design of our recently published coupling tool. We explain details on its overall structure and show how the challenges that arise in respective couplings are resolved by the software. © 2013 Elsevier Ltd. All rights reserved.

  7. Radio continuum surveys and galaxy evolution: The AGN view

    CERN Document Server

    Smolcic, Vernesa

    2016-01-01

    Understanding how galaxies form in the early universe and their subsequent evolution through cosmic time is a major goal of modern astrophysics. Panchromatic look-back sky surveys significantly advanced the field in the past decades, and we are now entering an even more fruitful period - a 'golden age' of radio astronomy - with upgraded, and new facilities delivering an order of magnitude increase in sensitivity. An overview of recent developments in radio continuum sky surveys, focusing on the physical properties and cosmic evolution of radio AGN since z~5 is presented here.

  8. Lessons in redesigning a quality program across the continuum.

    Science.gov (United States)

    Brown, Diane Storer; Church, Lauri; Heywood, Terry; Hills, John F; McCarthy, Sarah; Serway, Cindy

    2003-01-01

    The Kaiser Permanente North East Bay service area redesigned its quality program beginning in 1995, to better mirror how care was provided across the continuum. The old model had evolved over time, was based on departmental structure, and did not focus on all patient populations. The purpose of this article is to describe the redesign process, the quality model implemented, and future directions, with the hope that the lessons learned will provide other healthcare quality professionals some of the knowledge needed and, perhaps, the courage to "design" their quality programs.

  9. Bound and continuum vibrational states of the bifluoride anion

    Science.gov (United States)

    Špirko, V.; Šindelka, M.; Shirsat, R. N.; Leszczynski, J.

    2003-07-01

    The energies of the bound vibrational states and energy density spectra of the continuum vibrational states of FHF - are calculated, 'exactly' and 'adiabatically', using a new ab initio (CCSD(T)) potential energy surface. Statistical properties of the bound states are probed in terms of the density of states and nearest neighbor level spacing distributions (NNSD). Importantly, the approximate 'adiabatic' densities coincide nearly quantitatively with their 'exact' counterparts. A quantitative fitting of the NNSDs is achieved with a new empirical modification of the Wigner distribution.

  10. Photon pairs: Quantum chromodynamics continuum and the Higgs boson

    Indian Academy of Sciences (India)

    Edmond L Berger

    2007-11-01

    A new QCD calculation is summarized for the transverse momentum distribution of photon pairs produced by QCD subprocesses, including all-orders soft-gluon resummation valid at next-to-next-to-leading logarithmic accuracy. Resummation is needed to obtain reliable predictions in the range of transverse momentum where the cross-section is the largest. Results are compared with data from the Fermilab Tevatron and predictions are made for the large hadron collider. The QCD continuum is shown to have a softer spectrum than the Higgs boson signal at the LHC.

  11. The wasting continuum in heart failure: from sarcopenia to cachexia.

    Science.gov (United States)

    von Haehling, Stephan

    2015-11-01

    Sarcopenia (muscle wasting) and cachexia share some pathophysiological aspects. Sarcopenia affects approximately 20 %, cachexia cachexia means loss of muscle and fat tissue that leads to weight loss. The wasting continuum in HF implies that skeletal muscle is lost earlier than fat tissue and may lead from sarcopenia to cachexia. Both tissues require conservation, and therapies that stop the wasting process have tremendous therapeutic appeal. The present paper reviews the pathophysiology of muscle and fat wasting in HF and discusses potential treatments, including exercise training, appetite stimulants, essential amino acids, growth hormone, testosterone, electrical muscle stimulation, ghrelin and its analogues, ghrelin receptor agonists and myostatin antibodies.

  12. Ipertensione arteriosa, continuum cardiovascolare e ruolo clinico dei sartanii

    Directory of Open Access Journals (Sweden)

    Maurizio Destro

    2011-03-01

    Full Text Available The cardiovascular and cardiorenal continuum comprises the transition from cardiovascular risk factors to endothelial dysfunction and atherosclerosis, to chronic congestive heart failure, and-stage renal disease or premature death. RAAS (renin-angiotensin-aldosterone system is involved in all steps along this pathway. Data from clinical studies involving valsartan and other ARBs provide evidence of the reduction of risk of cardiovascular events, and end-organ damage in the heart, kidneys and brain. This paper summarizes the status on research of ARBs based on clinical trials and regulatory approval.

  13. Continuum of readiness for collaboration, ICWA compliance, and reducing disproportionality.

    Science.gov (United States)

    Lidot, Tom; Orrantia, Rose-Margaret; Choca, Miryam J

    2012-01-01

    From 2008-2010, a California Breakthrough Series Collaborative (BSC) addressed the disproportionality of African American and American Indian/Alaska Native (AI/AN) children in public child welfare services in partnership with the Annie E. Casey Foundation, Casey Family Program, the Child and Family Policy Institute of California, and the California Department of Social Services. The result was the development of the Continuum of Readiness, to be utilized by California counties to make strategic decisions to achieve Indian Child Welfare Act (ICWA) compliance and address AI/AN dis-proportionality through collaboration with tribes and urban Indian communities.

  14. Internet platforms for lifelong learning: a continuum of opportunity.

    Science.gov (United States)

    Sedory Holzer, Susan E; Kokemueller, Phillip

    2007-12-01

    Access to knowledge through the Internet has spawned a world of online learning, stimulating a new passion for lifelong learning in academia, professional environments, the workplace, and at home. This article takes a fresh look at the wide spectrum of opportunities for online medical education for physicians. We first explore a continuum of "e-learning" models and then look at the range of platforms used to support these systems. We will also look forward to the options likely to change e-learning in the near future and improve physician performance and patient outcomes.

  15. Physical analogy between continuum thermodynamics and classical mechanics.

    Science.gov (United States)

    Umantsev, Alex

    2004-01-01

    The main focus of this paper is the profound physical analogy between a continuum thermodynamical system, which evolves with relaxation under (possibly) nonisothermal conditions, and a classical mechanical system of a few interacting particles moving with dissipation in (possibly), time-dependent nonconservative fields. This analogy is applied to the problem of phase transitions in a one-dimensional thermodynamic system. The thermomechanical analogy stems from the validity of variational methods in mechanics and thermodynamics and allows for a different interpretation of the dynamical selection principle in the theory of pattern formation. This physical analogy is very helpful for understanding different nonlinear thermodynamic phenomena and for developing intuition in numerical simulations.

  16. Extragalactic radio continuum surveys and the transformation of radio astronomy

    Science.gov (United States)

    Norris, Ray P.

    2017-10-01

    Next-generation radio surveys are about to transform radio astronomy by discovering and studying tens of millions of previously unknown radio sources. These surveys will provide fresh insights for understanding the evolution of galaxies, measuring the evolution of the cosmic star-formation rate, and rivalling traditional techniques in the measurement of fundamental cosmological parameters. By observing a new volume of observational parameter space, they are also likely to discover unexpected phenomena. This Review traces the evolution of extragalactic radio continuum surveys from the earliest days of radio astronomy to the present, and identifies the challenges that must be overcome to achieve this transformational change.

  17. Continuum limit of discrete Sommerfeld problems on square lattice

    Indian Academy of Sciences (India)

    BASANT LAL SHARMA

    2017-05-01

    A low-frequency approximation of the discrete Sommerfeld diffraction problems, involving the scattering of a time harmonic lattice wave incident on square lattice by a discrete Dirichlet or a discrete Neumann half-plane, is investigated. It is established that the exact solution of the discrete model converges to the solution of the continuum model, i.e., the continuous Sommerfeld problem, in the discrete Sobolev space defined by Hackbusch. A proof of convergence has been provided for both types of boundary conditions when the imaginary part of incident wavenumber is positive.

  18. Evolution of states in a continuum migration model

    Science.gov (United States)

    Kondratiev, Yuri; Kozitsky, Yuri

    2017-03-01

    The Markov evolution of states of a continuum migration model is studied. The model describes an infinite system of entities placed in R^d in which the constituents appear (immigrate) with rate b(x) and disappear, also due to competition. For this model, we prove the existence of the evolution of states μ _0 mapsto μ _t such that the moments μ _t(N_Λ ^n) , nin N, of the number of entities in compact Λ subset R^d remain bounded for all t>0 . Under an additional condition, we prove that the density of entities and the second correlation function remain point-wise bounded globally in time.

  19. Encrypting Majorana fermion qubits as bound states in the continuum

    Science.gov (United States)

    Guessi, L. H.; Dessotti, F. A.; Marques, Y.; Ricco, L. S.; Pereira, G. M.; Menegasso, P.; de Souza, M.; Seridonio, A. C.

    2017-07-01

    We theoretically investigate a topological Kitaev chain connected to a double quantum-dot (QD) setup hybridized with metallic leads. In this system we observe the emergence of two striking phenomena: (i) a decrypted Majorana fermion (MF) qubit recorded over a single QD, which is detectable by means of conductance measurements due to the asymmetrical MF-qubit leaked state into the QDs; (ii) an encrypted qubit recorded in both QDs when the leakage is symmetrical. In such a regime, we have a cryptographylike manifestation, since the MF qubit becomes bound states in the continuum, which is not detectable in conductance experiments.

  20. From discrete elements to continuum fields: Extension to bidisperse systems

    Science.gov (United States)

    Tunuguntla, Deepak R.; Thornton, Anthony R.; Weinhart, Thomas

    2016-07-01

    Micro-macro transition methods can be used to, both, calibrate and validate continuum models from discrete data obtained via experiments or simulations. These methods generate continuum fields such as density, momentum, stress, etc., from discrete data, i.e. positions, velocity, orientations and forces of individual elements. Performing this micro-macro transition step is especially challenging for non-uniform or dynamic situations. Here, we present a general method of performing this transition, but for simplicity we will restrict our attention to two-component scenarios. The mapping technique, presented here, is an extension to the micro-macro transition method, called coarse-graining, for unsteady two-component flows and can be easily extended to multi-component systems without any loss of generality. This novel method is advantageous; because, by construction the obtained macroscopic fields are consistent with the continuum equations of mass, momentum and energy balance. Additionally, boundary interaction forces can be taken into account in a self-consistent way and thus allow for the construction of continuous stress fields even within one element radius of the boundaries. Similarly, stress and drag forces can also be determined for individual constituents of a multi-component mixture, which is critical for several continuum applications, e.g. mixture theory-based segregation models. Moreover, the method does not require ensemble-averaging and thus can be efficiently exploited to investigate static, steady and time-dependent flows. The method presented in this paper is valid for any discrete data, e.g. particle simulations, molecular dynamics, experimental data, etc.; however, for the purpose of illustration we consider data generated from discrete particle simulations of bidisperse granular mixtures flowing over rough inclined channels. We show how to practically use our coarse-graining extension for both steady and unsteady flows using our open-source coarse

  1. Continuum modeling for two-lane traffic flow

    Institute of Scientific and Technical Information of China (English)

    Haijun Huang; Tieqiao Tang; Ziyou Gao

    2006-01-01

    In this paper,we study the continuum modeling of traffic dynamics for two-lane freeways.A new dynamics model is proposed, which contains the speed gradient-based momentum equations derived from a car-following theory suited to two-lane traffic flow.The conditions for securing the linear stability of the new model are presented.Numerical tests are carried out and some nonequilibrium phenomena are observed, such as small disturbance instability,stop-andgo waves,local clusters and phase transition.

  2. Seyfert Galaxies: Radio Continuum Emission Properties and the Unification Scheme

    Indian Academy of Sciences (India)

    Veeresh Singh; Prajval Shastri; Ramana Athreya

    2011-12-01

    Seyfert galaxies are classified mainly into type 1 and type 2 depending on the presence and absence of broad permitted emission lines in their optical spectra, respectively. Unification scheme hypothesizes that the observed similarities and differences between the two Seyfert subtypes can be understood as due to the differing orientations of anisotropically distributed obscuring material having a torus-like geometry around the AGN. We investigate the radio continuum emission properties of a sample of Seyfert galaxies in the framework of the unification scheme.

  3. NREL Leads Energy Systems Integration, Continuum Magazine: Issue 4 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2013-04-01

    Continuum Magazine showcases NREL's latest and most impactful clean energy innovations. This issue, 'NREL Leads Energy Systems Integration' explores the discipline of energy systems integration, in particular the role of the laboratory's new, one-of-a-kind Energy System Integration Facility. NREL scientists, engineers, and analysts deeply understand the fundamental science and technologies underpinning major energy producing and consuming systems, as well as the transmission infrastructure and communications and data networks required to integrate energy systems at all scales.

  4. Numerical Poisson-Boltzmann Model for Continuum Membrane Systems.

    Science.gov (United States)

    Botello-Smith, Wesley M; Liu, Xingping; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray

    2013-01-01

    Membrane protein systems are important computational research topics due to their roles in rational drug design. In this study, we developed a continuum membrane model utilizing a level set formulation under the numerical Poisson-Boltzmann framework within the AMBER molecular mechanics suite for applications such as protein-ligand binding affinity and docking pose predictions. Two numerical solvers were adapted for periodic systems to alleviate possible edge effects. Validation on systems ranging from organic molecules to membrane proteins up to 200 residues, demonstrated good numerical properties. This lays foundations for sophisticated models with variable dielectric treatments and second-order accurate modeling of solvation interactions.

  5. Ring species as demonstrations of the continuum of species formation

    DEFF Research Database (Denmark)

    Pereira, Ricardo José Do Nascimento; Wake, David B.

    2015-01-01

    In the mid-20th century, Ernst Mayr (1942) and Theodosius Dobzhansky (1958) championed the significance of 'circular overlaps' or 'ring species' as the perfect demonstration of the gradual nature of species formation. As an ancestral species expands its range, wrapping around a geographic barrier...... resulted in restrictive gene flow relative to that observed around the ring, their results suggest that circular overlaps might be more common in nature than currently recognized in the literature. Most importantly, this work shows that the continuum of species formation that Mayr and Dobzhansky praised...

  6. The Elastodynamics of the Spacetime Continuum as a Framework for Strained Spacetime

    Directory of Open Access Journals (Sweden)

    Millette P. A.

    2013-01-01

    Full Text Available We derive the elastodynamics of the spacetime continuum by applying continuum me- chanical results to strained spacetime. Based on this model, a stress-strain relation is derived for the spacetime continuum. From the kinematic relations and the equilibrium dynamic equation of the spacetime continuum, we derive a series of wave equations: the displacement, dilatational, rotational and strain wave equations. Hence energy propa- gates in the spacetime continuum as wave-like deformations which can be decomposed into dilatations and distortions. Dilatations involve an invariant change in volume of the spacetime continuum which is the source of the associated rest-mass energy density of the deformation, while distortions correspond to a change of shape of the space- time continuum without a change in volume and are thus massless. The deformations propagate in the continuum by longitudinal and transverse wave displacements. This is somewhat reminiscent of wave-particle duality, with the transverse mode correspond- ing to the wave aspects and the longitudinal mode corresponding to the particle aspects. A continuity equation for deformations of the spacetime continuum is derived, where the gradient of the massive volume dilatation acts as a source term. The nature of the spacetime continuum volume force and the inhomogeneous wave equations need further investigation.

  7. A new small-package super-continuum light source for optical coherence tomography

    Science.gov (United States)

    Meissner, Sven; Cimalla, Peter; Fischer, Björn; Taudt, Christopher; Baselt, Tobias; Hartmann, Peter; Koch, Edmund

    2013-03-01

    Broadband light sources provide a significant benefit for optical coherence tomography (OCT) imaging concerning the axial resolution. Light sources with bandwidths over 200 nm result in an axial resolution up to 2 microns. Such broad band OCT imaging can be achieved utilizing super continuum (SC) light sources. The main important disadvantage of commercial SC light sources is the overall size and the high costs. Therefore, the use of SC light sources in small OCT setups and applications is limited. We present a new small housing and costeffective light source, which is suitable for OCT imaging. The used light source has dimensions of 110 x 160 x 60 mm and covers a wavelength range from 390 nm up to 2500 nm. The light source was coupled in a dual band OCT system. The light is guided into the interferometer and split in reference and sample beam. The superimposed signal is guided to the spectrometer unit, which consists of two spectrometers. This spectrometer system separates the light. One band centered at 800 nm with a full bandwidth of 176 nm and a second band centered at 1250 nm with a full spectral width of 300 nm was extracted. The 800 nm interference signal is detected by a silicon line scan camera and the 1250 nm signal by an indium gallium arsenide linear image sensor. In this test measurement a plastic foil was used as a sample, which is composed of several plastic film layers. Three dimensional images were acquired simultaneous with the dual band OCT setup. The images were acquired at an A-scan rate of 1 kHz. The 1 kHz A-line rate was chosen because so far the optical power of the light source is not optimal for high speed OCT imaging. The source provides 2 mW in the range of 390 nm to 800 nm and 25 mW in the range from 390 nm to 1650 nm. Furthermore, we coupled the light source by a 50:50 optical fiber coupler, which also reduces the overall optical power of the light source within the OCT setup. Nevertheless, we demonstrated that this new small

  8. Dual of QCD with One Adjoint Fermion

    DEFF Research Database (Denmark)

    Mojaza, Matin; Nardecchia, Marco; Pica, Claudio;

    2011-01-01

    We construct the magnetic dual of QCD with one adjoint Weyl fermion. The dual is a consistent solution of the 't Hooft anomaly matching conditions, allows for flavor decoupling and remarkably constitutes the first nonsupersymmetric dual valid for any number of colors. The dual allows to bound the...

  9. The Man of Dual Nationality.

    Science.gov (United States)

    Abe, Yoshio

    1985-01-01

    Presents an English translation of the first few pages, set in a Japanese internment camp in the U.S. during World War II, of a Japanese novel about the problems of dual nationality and personal identity. (KH)

  10. A Candidate Dual AGN at z=1.175

    CERN Document Server

    Barrows, R Scott; Madsen, Kristin; Harrison, Fiona; Assef, Roberto J; Comerford, Julia M; Cushing, Michael C; Fassnacht, Christopher D; Gonzalez, Anthony; Griffith, Roger; Hickox, Ryan; Kirkpatrick, J Davy; Lagattuta, David J

    2011-01-01

    The X-ray source CXOXBJ142607.6+353351 (CXOJ1426+35), which was identified in a 172 ks Chandra image in the Bootes field, shows double-peaked rest-frame optical/UV emission lines, separated by 0.69" (5.5 kpc) in the spatial dimension and by 690 km s^-1 in the velocity dimension. The high excitation lines and emission line ratios indicate both systems are ionized by an AGN continuum, and the double-peaked profile resembles that of candidate dual AGN. At a redshift of z=1.175, this source is the highest redshift candidate dual AGN yet identified. However, many sources have similar emission line profiles for which other interpretations are favored. We have analyzed the substantial archival data available in this field, as well as acquired near-infrared (NIR) adaptive optics (AO) imaging and NIR slit spectroscopy. The X-ray spectrum is hard, implying a column density of several 10^23 cm^-2. Though heavily obscured, the source is also one of the brightest in the field, with an absorption-corrected 2-10 keV luminos...

  11. The microglial "activation" continuum: from innate to adaptive responses

    Directory of Open Access Journals (Sweden)

    Nikolic Veljko

    2005-10-01

    Full Text Available Abstract Microglia are innate immune cells of myeloid origin that take up residence in the central nervous system (CNS during embryogenesis. While classically regarded as macrophage-like cells, it is becoming increasingly clear that reactive microglia play more diverse roles in the CNS. Microglial "activation" is often used to refer to a single phenotype; however, in this review we consider that a continuum of microglial activation exists, with phagocytic response (innate activation at one end and antigen presenting cell function (adaptive activation at the other. Where activated microglia fall in this spectrum seems to be highly dependent on the type of stimulation provided. We begin by addressing the classical roles of peripheral innate immune cells including macrophages and dendritic cells, which seem to define the edges of this continuum. We then discuss various types of microglial stimulation, including Toll-like receptor engagement by pathogen-associated molecular patterns, microglial challenge with myelin epitopes or Alzheimer's β-amyloid in the presence or absence of CD40L co-stimulation, and Alzheimer disease "immunotherapy". Based on the wide spectrum of stimulus-specific microglial responses, we interpret these cells as immune cells that demonstrate remarkable plasticity following activation. This interpretation has relevance for neurodegenerative/neuroinflammatory diseases where reactive microglia play an etiological role; in particular viral/bacterial encephalitis, multiple sclerosis and Alzheimer disease.

  12. State stability analysis for the fermionic projector in the continuum

    Energy Technology Data Exchange (ETDEWEB)

    Hoch, Stefan Ludwig

    2008-07-01

    The principle of the fermionic projector in the continuum gives an indication that there might be a deeper reason why elementary particles only appear with a few definite masses. In this thesis the existence of approximately state-stable configurations is shown. In order to achieve that, we make use of a variational principle for the fermionic projector in the continuum which contains certain contributions supported on the light cone. In a certain sense, these extra terms contain the structure of the underlying discrete spacetime. Lorentz invariant distributions and their convolutions are studied. Some of these are well-defined because the convolution integrals have compactly supported integrands. Other convolutions can be regularized such that the property of being ill-defined only plays a role on the light cone. These results are used to analyze the variational principle and to give criteria for state stability, which can be numerically analyzed. Some plots are presented to allow a decision about state stability and to show how possible configurations could look like. (orig.)

  13. Radio continuum JVLA observations of the dwarf galaxy Sextans A

    Science.gov (United States)

    Monkiewicz, Jacqueline A.; Powell, Devon; Dettmar, Ralf-Juergen; Bomans, Dominik; Bowman, Judd D.; Scannapieco, Evan

    2017-06-01

    We present 20-cm Jansky Very Large Array (JVLA) observations of the star-forming dwarf galaxy Sextans A. Located at the outer edge of the Local Group, with an oxygen abundance of less than one-tenth of the Solar abundance (12+log O/H = 7.49), Sextans A provides a nearby laboratory for the study of low-metallicity star formation processes. This galaxy is a weak source in the infrared, but exhibits evidence for vigorous star formation-powered outflows in ionized gas, including large-scale H-alpha shells and filaments up to a kpc in length. Sextans A has not previously been detected in radio continuum. The upgraded JVLA and WIDAR correlator provide enhanced sensitivity over previous studies. We resolve a 3.0 mJy (+/- 0.3 mJy) continuum source centered on the brightest star formation region in Sextans A. Using two relatively interference-free windows at 1.4 GHz and 1.85 GHz, we are able to measure the spectral slope of the detected emission. We estimate the non-thermal contribution and the strength of the galaxy's magnetic field. We discuss the impact of low metallicity on the reliability of the IR/radio relation.

  14. Packed bed heat storage: Continuum mechanics model and validation

    Science.gov (United States)

    Knödler, Philipp; Dreißigacker, Volker; Zunft, Stefan

    2016-05-01

    Thermal energy storage (TES) systems are key elements for various types of new power plant concepts. As possible cost-effective storage inventory option, packed beds of miscellaneous material come into consideration. However, high technical risks arise due to thermal expansion and shrinking of the packed bed's particles during cyclic thermal operation, possibly leading to material failure. Therefore, suitable tools for designing the heat storage system are mandatory. While particle discrete models offer detailed simulation results, the computing time for large scale applications is inefficient. In contrast, continuous models offer time-efficient simulation results but are in need of effective packed bed parameters. This work focuses on providing insight into some basic methods and tools on how to obtain such parameters and on how they are implemented into a continuum model. In this context, a particle discrete model as well as a test rig for carrying out uniaxial compression tests (UCT) is introduced. Performing of experimental validation tests indicate good agreement with simulated UCT results. In this process, effective parameters required for a continuous packed bed model were identified and used for continuum simulation. This approach is validated by comparing the simulated results with experimental data from another test rig. The presented method significantly simplifies subsequent design studies.

  15. Infinite N phase transitions in continuum Wilson loop operators

    CERN Document Server

    Narayanan, R

    2006-01-01

    We define smoothed Wilson loop operators on a four dimensional lattice and check numerically that they have a finite and nontrivial continuum limit. The continuum operators maintain their character as unitary matrices and undergo a phase transition at infinite N reflected by the eigenvalue distribution closing a gap in its spectrum when the defining smooth loop is dilated from a small size to a large one. If this large N phase transition belongs to a solvable universality class one might be able to calculate analytically the string tension in terms of the perturbative Lambda-parameter. This would be achieved by matching instanton results for small loops to the relevant large-N-universal function which, in turn, would be matched for large loops to an effective string theory. Similarities between our findings and known analytical results in two dimensional space-time indicate that the phase transitions we found only affect the eigenvalue distribution, but the traces of finite powers of the Wilson loop operators...

  16. Nebular Continuum and Line Emission in Stellar Population Synthesis Models

    Science.gov (United States)

    Byler, Nell; Dalcanton, Julianne J.; Conroy, Charlie; Johnson, Benjamin D.

    2017-05-01

    Accounting for nebular emission when modeling galaxy spectral energy distributions (SEDs) is important, as both line and continuum emissions can contribute significantly to the total observed flux. In this work, we present a new nebular emission model integrated within the Flexible Stellar Population Synthesis code that computes the line and continuum emission for complex stellar populations using the photoionization code Cloudy. The self-consistent coupling of the nebular emission to the matched ionizing spectrum produces emission line intensities that correctly scale with the stellar population as a function of age and metallicity. This more complete model of galaxy SEDs will improve estimates of global gas properties derived with diagnostic diagrams, star formation rates based on Hα, and physical properties derived from broadband photometry. Our models agree well with results from other photoionization models and are able to reproduce observed emission from H ii regions and star-forming galaxies. Our models show improved agreement with the observed H ii regions in the Ne iii/O ii plane and show satisfactory agreement with He ii emission from z = 2 galaxies, when including rotating stellar models. Models including post-asymptotic giant branch stars are able to reproduce line ratios consistent with low-ionization emission regions. The models are integrated into current versions of FSPS and include self-consistent nebular emission predictions for MIST and Padova+Geneva evolutionary tracks.

  17. Multi Texture Analysis of Colorectal Cancer Continuum Using Multispectral Imagery.

    Directory of Open Access Journals (Sweden)

    Ahmad Chaddad

    Full Text Available This paper proposes to characterize the continuum of colorectal cancer (CRC using multiple texture features extracted from multispectral optical microscopy images. Three types of pathological tissues (PT are considered: benign hyperplasia, intraepithelial neoplasia and carcinoma.In the proposed approach, the region of interest containing PT is first extracted from multispectral images using active contour segmentation. This region is then encoded using texture features based on the Laplacian-of-Gaussian (LoG filter, discrete wavelets (DW and gray level co-occurrence matrices (GLCM. To assess the significance of textural differences between PT types, a statistical analysis based on the Kruskal-Wallis test is performed. The usefulness of texture features is then evaluated quantitatively in terms of their ability to predict PT types using various classifier models.Preliminary results show significant texture differences between PT types, for all texture features (p-value < 0.01. Individually, GLCM texture features outperform LoG and DW features in terms of PT type prediction. However, a higher performance can be achieved by combining all texture features, resulting in a mean classification accuracy of 98.92%, sensitivity of 98.12%, and specificity of 99.67%.These results demonstrate the efficiency and effectiveness of combining multiple texture features for characterizing the continuum of CRC and discriminating between pathological tissues in multispectral images.

  18. Understanding the Continuum Spectra of Short Soft Gamma Repeater Bursts

    Science.gov (United States)

    Gogus, Ersin; Woods, Peter M.; Kouveliotou, Chryssa; Finger, Mark H.; Lenter, Geoffrey; Patel, Sandeep K.; Swank, Jean

    2006-01-01

    The spectra of short soft gamma repeater (SGR) bursts at photon energies above -15 keV are often well described by an optically thin thermal bremsstrahlung model (i.e., F(E) - E^-1 * exp(-E/kT) ) with kT=20-40 keV. However, the spectral shape burst continuum at lower photon energies (down to -2 keV) is not well established. It is important to better understand the SGR burst spectral properties at lower energies since inadequate description of the burst spectral continuum could lead to incorrect conclusions, such as existence of spectral lines. Here, we present detailed spectral investigations (in 2-200 keV) of 163 bursts from SGR 1806-20, all detected with Rossi X-ray Timing Explorer during the 2004 active episode that included the giant flare on 27 December 2004. We find that the great majority of burst spectra are well represented by the combination of a blackbody plus a OTTB models.

  19. Computational aspects of the continuum quaternionic wave functions for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Morais, J., E-mail: joao.pedro.morais@ua.pt

    2014-10-15

    Over the past few years considerable attention has been given to the role played by the Hydrogen Continuum Wave Functions (HCWFs) in quantum theory. The HCWFs arise via the method of separation of variables for the time-independent Schrödinger equation in spherical coordinates. The HCWFs are composed of products of a radial part involving associated Laguerre polynomials multiplied by exponential factors and an angular part that is the spherical harmonics. In the present paper we introduce the continuum wave functions for hydrogen within quaternionic analysis ((R)QHCWFs), a result which is not available in the existing literature. In particular, the underlying functions are of three real variables and take on either values in the reduced and full quaternions (identified, respectively, with R{sup 3} and R{sup 4}). We prove that the (R)QHCWFs are orthonormal to one another. The representation of these functions in terms of the HCWFs are explicitly given, from which several recurrence formulae for fast computer implementations can be derived. A summary of fundamental properties and further computation of the hydrogen-like atom transforms of the (R)QHCWFs are also discussed. We address all the above and explore some basic facts of the arising quaternionic function theory. As an application, we provide the reader with plot simulations that demonstrate the effectiveness of our approach. (R)QHCWFs are new in the literature and have some consequences that are now under investigation.

  20. Psychostimulants and cognition: a continuum of behavioral and cognitive activation.

    Science.gov (United States)

    Wood, Suzanne; Sage, Jennifer R; Shuman, Tristan; Anagnostaras, Stephan G

    2014-01-01

    Psychostimulants such as cocaine have been used as performance enhancers throughout recorded history. Although psychostimulants are commonly prescribed to improve attention and cognition, a great deal of literature has described their ability to induce cognitive deficits, as well as addiction. How can a single drug class be known to produce both cognitive enhancement and impairment? Properties of the particular stimulant drug itself and individual differences between users have both been suggested to dictate the outcome of stimulant use. A more parsimonious alternative, which we endorse, is that dose is the critical determining factor in cognitive effects of stimulant drugs. Herein, we review several popular stimulants (cocaine, amphetamine, methylphenidate, modafinil, and caffeine), outlining their history of use, mechanism of action, and use and abuse today. One common graphic depiction of the cognitive effects of psychostimulants is an inverted U-shaped dose-effect curve. Moderate arousal is beneficial to cognition, whereas too much activation leads to cognitive impairment. In parallel to this schematic, we propose a continuum of psychostimulant activation that covers the transition from one drug effect to another as stimulant intake is increased. Low doses of stimulants effect increased arousal, attention, and cognitive enhancement; moderate doses can lead to feelings of euphoria and power, as well as addiction and cognitive impairment; and very high doses lead to psychosis and circulatory collapse. This continuum helps account for the seemingly disparate effects of stimulant drugs, with the same drug being associated with cognitive enhancement and impairment.

  1. Evolving Human Alteration of the Carbon Cycle: the Watershed Continuum

    Science.gov (United States)

    Kaushal, S.; Delaney Newcomb, K.; Newcomer Johnson, T.; Pennino, M. J.; Smith, R. M.; Beaulieu, J. J.; Belt, K.; Grese, M.; Blomquist, J.; Duan, S.; Findlay, S.; Likens, G.; Mayer, P. M.; Murthy, S.; Utz, R.; Yepsen, M.

    2014-12-01

    Watersheds experiencing land development are constantly evolving, and their biogeochemical signatures are expected to evolve across both space and time in drainage waters. We investigate how land development influences spatial and temporal evolution of the carbon cycle from small streams to major rivers in the Eastern U.S. Along the watershed continuum, we show that there is spatial evolution in: (1) the amount, chemical form, and bioavailability of carbon; (2) carbon retention/release at the reach scale; and (3) ecosystem metabolism of carbon from headwaters to coastal waters. Over shorter time scales, the interaction between land use and climate variability alters magnitude and frequency of carbon "pulses" in watersheds. Amounts and forms of carbon pulses in agricultural and urban watersheds respond similarly to climate variability due to headwater alteration and loss of ecosystem services to buffer runoff and temperature changes. Over longer time scales, land use change has altered organic carbon concentrations in tidal waters of Chesapeake Bay, and there have been increased bicarbonate alkalinity concentrations in rivers throughout the Eastern U.S. due to human activities. In summary, our analyses indicates that the form and reactivity of carbon have evolved over space and time along the watershed continuum with major implications for downstream ecosystem metabolism, biological oxygen demand, carbon dioxide production, and river alkalinization.

  2. Fluctuation relation based continuum model for thermoviscoplasticity in metals

    Science.gov (United States)

    Roy Chowdhury, Shubhankar; Roy, Debasish; Reddy, J. N.; Srinivasa, Arun

    2016-11-01

    A continuum plasticity model for metals is presented from considerations of non-equilibrium thermodynamics. Of specific interest is the application of a fluctuation relation that subsumes the second law of thermodynamics en route to deriving the evolution equations for the internal state variables. The modelling itself is accomplished in a two-temperature framework that appears naturally by considering the thermodynamic system to be composed of two weakly interacting subsystems, viz. a kinetic vibrational subsystem corresponding to the atomic lattice vibrations and a configurational subsystem of the slower degrees of freedom describing the motion of defects in a plastically deforming metal. An apparently physical nature of the present model derives upon considering the dislocation density, which characterizes the configurational subsystem, as a state variable. Unlike the usual constitutive modelling aided by the second law of thermodynamics that merely provides a guideline to select the admissible (though possibly non-unique) processes, the present formalism strictly determines the process or the evolution equations for the thermodynamic states while including the effect of fluctuations. The continuum model accommodates finite deformation and describes plastic deformation in a yield-free setup. The theory here is essentially limited to face-centered cubic metals modelled with a single dislocation density as the internal variable. Limited numerical simulations are presented with validation against relevant experimental data.

  3. THE PHILOSOPHY - TOOL CONTINUUM: PROVIDING STRUCTURE TO INDUSTRIAL ENGINEERING CONCEPTS

    Directory of Open Access Journals (Sweden)

    L. Van Dyk

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Industrial Engineering concepts are often referred to as either a tool, technique, method, approach or philosophy. These terminologies can be positioned on a continuum according to their meaning as defined by the Oxford English dictionary (tools B techniques Bmethods B approaches B philosophies. The philosophy of Total Quality Management is used as example to show how the appropriate naming of Industrial Engineering concepts can enhance the understanding and application thereof. This continuum is used to show that although the philosophies of TQM and Scientific Management may differ, the same pool of tools and techniques are used by both of these philosophies.

    AFRIKAANSE OPSOMMING: Bedryfsingenieurs verwys dikwels na filosofiee, benaderings, metodes, tegnieke en gereedskap. Hierdie terminologiee kan kan op 'n kontinuum geposisioneer word na aanleiding van hulle woordeboekbetekenis (gereedskap f-t tegniek f-t metode f-t benadering f-t filosofie. Die filosofie .van Totale Kwaliteitsbeheer (TQM word as voorbeeld gebruik om te wys dat die gepaste benaming van Bedryfsingenieurskonsepte die begrip en toepassing daarvan verhoog . Hierdie kontinuum word gebruik om te wys dat, alhoewel die filosofie van TQM en Wetenskaplike Bestuur ("Scientific Management" verskil, dieselfde versameling vail gereedskap en tegnieke deur beide gebruik word.

  4. Health Communication and the HIV Continuum of Care.

    Science.gov (United States)

    Vermund, Sten H; Mallalieu, Elizabeth C; Van Lith, Lynn M; Struthers, Helen E

    2017-01-01

    Health communication is a broad term that applies to the fundamental need for practitioners, policy makers, patients, and community members to understand one another around health promotion and health care issues. Whether in a consultation between nurse and patient, a health clinic director's engagement with the health ministry, or a community campaign for encouraging HIV testing, all have critical health communication elements. When people's needs are not perceived by them to be addressed or clients/patients do not understand what is being communicated, they are unmotivated to engage. Health communication may be deployed at multiple levels to encourage positive behavior change and affect HIV treatment outcomes. As countries move to treatment for all as soon as possible after testing, health communication can help address significant losses at each stage of the HIV continuum of care, thereby contributing to achieving the 90-90-90 global treatment goals. This JAIDS supplement presents compelling studies that are anchored on the health communication exigencies in highly diverse HIV and AIDS contexts in low and middle income settings. Our special focus is health communication needs and challenges within the HIV continuum of care. We introduce the supplement with thumbnails summaries of the work presented by an experienced array of public health, behavioral, and clinical scientists.

  5. [Continuum, the continuing education platform based on a competency matrix].

    Science.gov (United States)

    Ochoa Sangrador, C; Villaizán Pérez, C; González de Dios, J; Hijano Bandera, F; Málaga Guerrero, S

    2016-04-01

    Competency-Based Education is a learning method that has changed the traditional teaching-based focus to a learning-based one. Students are the centre of the process, in which they must learn to learn, solve problems, and adapt to changes in their environment. The goal is to provide learning based on knowledge, skills (know-how), attitude and behaviour. These sets of knowledge are called competencies. It is essential to have a reference of the required competencies in order to identify the need for them. Their acquisition is approached through teaching modules, in which one or more skills can be acquired. This teaching strategy has been adopted by Continuum, the distance learning platform of the Spanish Paediatric Association, which has developed a competency matrix based on the Global Paediatric Education Consortium training program. In this article, a review will be presented on the basics of Competency-Based Education and how it is applied in Continuum. Copyright © 2015 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  6. Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics.

    Science.gov (United States)

    Petsev, Nikolai D; Leal, L Gary; Shell, M Scott

    2015-01-28

    We present a new multiscale simulation methodology for coupling a region with atomistic detail simulated via molecular dynamics (MD) to a numerical solution of the fluctuating Navier-Stokes equations obtained from smoothed dissipative particle dynamics (SDPD). In this approach, chemical potential gradients emerge due to differences in resolution within the total system and are reduced by introducing a pairwise thermodynamic force inside the buffer region between the two domains where particles change from MD to SDPD types. When combined with a multi-resolution SDPD approach, such as the one proposed by Kulkarni et al. [J. Chem. Phys. 138, 234105 (2013)], this method makes it possible to systematically couple atomistic models to arbitrarily coarse continuum domains modeled as SDPD fluids with varying resolution. We test this technique by showing that it correctly reproduces thermodynamic properties across the entire simulation domain for a simple Lennard-Jones fluid. Furthermore, we demonstrate that this approach is also suitable for non-equilibrium problems by applying it to simulations of the start up of shear flow. The robustness of the method is illustrated with two different flow scenarios in which shear forces act in directions parallel and perpendicular to the interface separating the continuum and atomistic domains. In both cases, we obtain the correct transient velocity profile. We also perform a triple-scale shear flow simulation where we include two SDPD regions with different resolutions in addition to a MD domain, illustrating the feasibility of a three-scale coupling.

  7. Microscopic and continuum descriptions of Janus motor fluid flow fields

    Science.gov (United States)

    Reigh, Shang Yik; Huang, Mu-Jie; Schofield, Jeremy; Kapral, Raymond

    2016-11-01

    Active media, whose constituents are able to move autonomously, display novel features that differ from those of equilibrium systems. In addition to naturally occurring active systems such as populations of swimming bacteria, active systems of synthetic self-propelled nanomotors have been developed. These synthetic systems are interesting because of their potential applications in a variety of fields. Janus particles, synthetic motors of spherical geometry with one hemisphere that catalyses the conversion of fuel to product and one non-catalytic hemisphere, can propel themselves in solution by self-diffusiophoresis. In this mechanism, the concentration gradient generated by the asymmetric catalytic activity leads to a force on the motor that induces fluid flows in the surrounding medium. These fluid flows are studied in detail through microscopic simulations of Janus motor motion and continuum theory. It is shown that continuum theory is able to capture many, but not all, features of the dynamics of the Janus motor and the velocity fields of the fluid. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  8. Asteroid-comet continuum objects in the solar system.

    Science.gov (United States)

    Hsieh, Henry H

    2017-07-13

    In this review presented at the Royal Society meeting, 'Cometary science after Rosetta', I present an overview of studies of small solar system objects that exhibit properties of both asteroids and comets (with a focus on so-called active asteroids). Sometimes referred to as 'transition objects', these bodies are perhaps more appropriately described as 'continuum objects', to reflect the notion that rather than necessarily representing actual transitional evolutionary states between asteroids and comets, they simply belong to the general population of small solar system bodies that happen to exhibit a continuous range of observational, physical and dynamical properties. Continuum objects are intriguing because they possess many of the properties that make classical comets interesting to study (e.g. relatively primitive compositions, ejection of surface and subsurface material into space where it can be more easily studied, and orbital properties that allow us to sample material from distant parts of the solar system that would otherwise be inaccessible), while allowing us to study regions of the solar system that are not sampled by classical comets.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).

  9. Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott [Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106-5080 (United States)

    2015-01-28

    We present a new multiscale simulation methodology for coupling a region with atomistic detail simulated via molecular dynamics (MD) to a numerical solution of the fluctuating Navier-Stokes equations obtained from smoothed dissipative particle dynamics (SDPD). In this approach, chemical potential gradients emerge due to differences in resolution within the total system and are reduced by introducing a pairwise thermodynamic force inside the buffer region between the two domains where particles change from MD to SDPD types. When combined with a multi-resolution SDPD approach, such as the one proposed by Kulkarni et al. [J. Chem. Phys. 138, 234105 (2013)], this method makes it possible to systematically couple atomistic models to arbitrarily coarse continuum domains modeled as SDPD fluids with varying resolution. We test this technique by showing that it correctly reproduces thermodynamic properties across the entire simulation domain for a simple Lennard-Jones fluid. Furthermore, we demonstrate that this approach is also suitable for non-equilibrium problems by applying it to simulations of the start up of shear flow. The robustness of the method is illustrated with two different flow scenarios in which shear forces act in directions parallel and perpendicular to the interface separating the continuum and atomistic domains. In both cases, we obtain the correct transient velocity profile. We also perform a triple-scale shear flow simulation where we include two SDPD regions with different resolutions in addition to a MD domain, illustrating the feasibility of a three-scale coupling.

  10. Space time as a continuum with a point defect

    CERN Document Server

    Tartaglia, A

    2006-01-01

    In cosmology it has become usual to try and explain observational data, such as the temperature distribution of the cosmic microwave background or the accelerated expansion of the universe, introducing new entities as dark matter and dark energy. Here we describe a different approach treating space time as a continuum endowed with properties similar to the ones of ordinary material continua, such as internal viscosity and strain distributions originated by defects in the texture. A Lagrangian modelled on the one valid for simple dissipative phenomena in fluids is build and used for empty space time. The internal "viscosity" is shown to correspond to a four-vector field. Using the known symmetry of the universe, assuming the vector field to be divergence-less and solving the Euler-Lagrange equation we obtain directly inflation and a phase of accelerated expansion of space time. The vector field is shown to be connected with the displacement vector field induced by a point defect in a four-dimensional continuum...

  11. Radio Continuum and Methanol Observations of DR21(OH)

    CERN Document Server

    Araya, Esteban D; Hofner, Peter; Linz, Hendrik

    2009-01-01

    We report high sensitivity sub-arcsecond angular resolution observations of the massive star forming region DR21(OH) at 3.6, 1.3, and 0.7 cm obtained with the Very Large Array. In addition, we conducted observations of CH3OH 44 GHz masers. We detected more than 30 new maser components in the DR21(OH) region. Most of the masers appear to trace a sequence of bow-shocks in a bipolar outflow. The cm continuum observations reveal a cluster of radio sources; the strongest emission is found toward the molecular core MM1. The radio sources in MM1 are located about 5" north of the symmetry center of the CH3OH outflow, and therefore, they are unlikely to be associated with the outflow. Instead, the driving source of the outflow is likely located in the MM2 core. Although based on circumstantial evidence, the radio continuum from MM1 appears to trace free-free emission from shock-ionized gas in a jet. The orientation of the putative jet in MM1 is approximately parallel to the CH3OH outflow and almost perpendicular to th...

  12. Topology Optimization of Continuum Structures with Local Stress Constraints

    DEFF Research Database (Denmark)

    Duysinx, Pierre; Bendsøe, Martin P

    1997-01-01

    We introduce an extension of current technologies for topology optimization of continuum structures which allows for treating local stress criteria. We first consider relevant stress criteria for porous composite materials, initially by studying the stress states of the so-called rank~2 layered m...... of the stress constraints is used. We describe the mathematical programming approach that is used to solve the numerical optimization problems, and show results for a number of example applications.......We introduce an extension of current technologies for topology optimization of continuum structures which allows for treating local stress criteria. We first consider relevant stress criteria for porous composite materials, initially by studying the stress states of the so-called rank~2 layered...... materials. Then, an empirical model is proposed for the power law materials (also called SIMP materials). In a second part, solution aspects of topology problems are considered. To deal with the so-called 'singularity' phenomenon of stress constraints in topology design, an $\\epsilon$ constraint relaxation...

  13. Variational principles of continuum mechanics. Vol. 2. Applications

    Energy Technology Data Exchange (ETDEWEB)

    Berdichevsky, Victor L. [Wayne State Univ., Detroit, MI (United States). Dept. of Mechanical Engineering

    2009-07-01

    The book reviews the two features of the variational approach: its use as a universal tool to describe physical phenomena and as a source for qualitative and quantitative methods of studying particular problems. Berdichevsky's work differs from other books on the subject in focusing mostly on the physical origin of variational principles as well as establishing their interrelations. For example, the Gibbs principles appear as a consequence of the Einstein formula for thermodynamic fluctuations rather than as the first principles of the theory of thermodynamic equilibrium. Mathematical issues are considered as long as they shed light on the physical outcomes and/or provide a useful technique for the direct study of variational problems. In addition, a thorough account of variational principles discovered in various branches of continuum mechanics is given. This book, the second volume, describes how the variational approach can be applied to constructing models of continuum media, such as the theory of elastic plates; shells and beams; shallow water theory; heterogeneous mixtures; granular materials; and turbulence. It goes on to apply the variational approach to asymptotical analysis of problems with small parameters, such as the derivation of the theory of elastic plates, shells and beams from three-dimensional elasticity theory; and the basics of homogenization theory. A theory of stochastic variational problems is considered in detail too, along with applications to the homogenization of continua with random microstructures. (orig.)

  14. The impact of the SKA on Galactic Radioastronomy: continuum observations

    CERN Document Server

    Umana, Grazia; Cerrigone, Luciano; Cesaroni, Riccardo; Zijlstra, Albert A; Hoare, Melvin; Weis, Kerstin; Beasley, Anthony J; Bomans, Dominik; Hallinan, Greg; Molinari, Sergio; Taylor, Russ; Testi, Leonardo; Thompson, Mark

    2014-01-01

    The SKA will be a state of the art radiotelescope optimized for both large area surveys as well as for deep pointed observations. In this paper we analyze the impact that the SKA will have on Galactic studies, starting from the immense legacy value of the all-sky survey proposed by the continuum SWG but also presenting some areas of Galactic Science that particularly benefit from SKA observations both surveys and pointed. The planned all-sky survey will be characterized by unique spatial resolution, sensitivity and survey speed, providing us with a wide-field atlas of the Galactic continuum emission. Synergies with existing, current and planned radio Galactic Plane surveys will be discussed. SKA will give the opportunity to create a sensitive catalog of discrete Galactic radio sources, most of them representing the interaction of stars at various stages of their evolution with the environment: complete census of all stage of HII regions evolution; complete census of late stages of stellar evolution such as PN...

  15. Coupling of nonlocal and local continuum models by the Arlequinapproach

    KAUST Repository

    Han, Fei

    2011-08-09

    The objective of this work is to develop and apply the Arlequin framework to couple nonlocal and local continuum mechanical models. A mechanically-based model of nonlocal elasticity, which involves both contact and long-range forces, is used for the \\'fine scale\\' description in which nonlocal interactions are considered to have non-negligible effects. Classical continuum mechanics only involving local contact forces is introduced for the rest of the structure where these nonlocal effects can be neglected. Both models overlap in a coupling subdomain called the \\'gluing area\\' in which the total energy is separated into nonlocal and local contributions by complementary weight functions. A weak compatibility is ensured between kinematics of both models using Lagrange multipliers over the gluing area. The discrete formulation of this specific Arlequin coupling framework is derived and fully described. The validity and limits of the technique are demonstrated through two-dimensional numerical applications and results are compared against those of the fully nonlocal elasticity method. © 2011 John Wiley & Sons, Ltd.

  16. Heterogeneous Atomistic-Continuum Methods for Dense Fluid Systems

    Science.gov (United States)

    Hadjiconstantinou, Nicolas; Patera, Anthony

    1997-08-01

    We present new results obtained using the formulation and numerical solution procedure for heterogeneous atomistic--continuum representations of fluid flows presented in [1]. The ingredients are, from the atomistic side, non-equilibrium molecular dynamics, and from the continuum side, finite element solution; the matching is provided by a classical procedure, the Schwarz alternating method with overlapping subdomains. The technique is applied to the flow of two immiscible fluids in a microscale channel. The problem "presents" a particular modelling challenge because of the stress singularity at the moving contact line which is usually relieved through ad hoc methods, the most popular of which is the assumption of slip close to the contact line. The Heterogeneous method properly addresses the problem by treating the region near the contact line with molecular dynamics. References 1. Hadjiconstantinou N., Patera, A.T., Proceedings of the Sixth International Conference on Discrete Models for Fluid Mechanics, To appear as a special edition of the International Journal of Modern Physics C.

  17. A continuum of compass spin models on the honeycomb lattice

    Science.gov (United States)

    Zou, Haiyuan; Liu, Bo; Zhao, Erhai; Liu, W. Vincent

    2016-05-01

    Quantum spin models with spatially dependent interactions, known as compass models, play an important role in the study of frustrated quantum magnetism. One example is the Kitaev model on the honeycomb lattice with spin-liquid (SL) ground states and anyonic excitations. Another example is the geometrically frustrated quantum 120° model on the same lattice whose ground state has not been unambiguously established. To generalize the Kitaev model beyond the exactly solvable limit and connect it with other compass models, we propose a new model, dubbed ‘the tripod model’, which contains a continuum of compass-type models. It smoothly interpolates the Ising model, the Kitaev model, and the quantum 120° model by tuning a single parameter {θ }\\prime , the angle between the three legs of a tripod in the spin space. Hence it not only unifies three paradigmatic spin models, but also enables the study of their quantum phase transitions. We obtain the phase diagram of the tripod model numerically by tensor networks in the thermodynamic limit. We show that the ground state of the quantum 120° model has long-range dimer order. Moreover, we find an extended spin-disordered (SL) phase between the dimer phase and an antiferromagnetic phase. The unification and solution of a continuum of frustrated spin models as outline here may be useful to exploring new domains of other quantum spin or orbital models.

  18. Lp-dual Quermassintegral sums

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper,we first introduce a concept of L_p-dual Quermassintegral sum function of convex bodies and establish the polar projection Minkowski inequality and the polar projection Aleksandrov-Fenchel inequality for L_p-dual Quermassintegral sums.Moreover,by using Lutwak’s width-integral of index i,we establish the L_p-Brunn-Minkowski inequality for the polar mixed projec- tion bodies.As applications,we prove some interrelated results.

  19. Dual pairs in fluid dynamics

    CERN Document Server

    Gay-Balmaz, François

    2010-01-01

    This paper is a rigorous study of the dual pair structure of the ideal fluid and the dual pair structure for the $n$-dimensional Camassa-Holm (EPDiff) equation, including the proofs of the necessary transitivity results. In the case of the ideal fluid, we show that a careful definition of the momentum maps leads naturally to central extensions of diffeomorphism groups such as the group of quantomorphisms and the Ismagilov central extension.

  20. DESIGN OF A DUAL KEYBOARD

    OpenAIRE

    V. Ragavi; G. Geetha

    2013-01-01

    The design of a computer keyboard with dual function is proposed. This computer keyboard called Dual Keyboard can function both as a normal keyboard and as a pressure sensitive keyboard. The proposed device has a switch that decides the function. The keyboard makes use of sensors placed beneath the keys to measure the pressure applied on the key by the user. This device has many applications. In this study, it is applied to mitigate Denial of Service (DoS) attack.

  1. Fast dual tomography

    Science.gov (United States)

    Carrion, Philip M.

    1990-09-01

    This paper can be considered as a continuation of the work by Carrion and Carneiro (1989), where a generalized approach to linearized inversion of geophysical data was developed. Their method allows one to incorporate virtually any constraints in the inversion and reformulate the problem in the dual space of Langrangian multipliers (see also Carrion, 1989a). The constrained tomography makes traveltime inversion robust: it automatically rejects “bad data” which correspond to solutions beyond the chosen constraints and allows one to start inversion with an arbitrary chosen initial model.In this paper, I will derive basic formulas for constrained tomographic imaging that can be used in such areas of geophysics as global mapping of the earth interior, exploration geophysics, etc. The method is fast: an example that will be shown in the paper took only 6 min. of VAX CPU time. Had the conventional least-squares matrix inversion been used it would have taken more than 10 hours of the CPU time to solve the same problem.

  2. Fast dual tomography

    Energy Technology Data Exchange (ETDEWEB)

    Carrion, P.M. (PPPG/UFBA - Campus Universitario da Federacao, Salvador-Bahia (Brazil))

    1990-09-01

    This paper can be considered as a continuation of the work by Carrion and Carneiro (1989), where a generalized approach to linearized inversion of geophysical data was developed. Their method allows one to incorporate virtually any constraints in the inversion and reformulate the problem in the dual space of Langrangian multipliers (see also Carrion, 1989a). The constrained tomography makes traveltime inversion robust: it automatically rejects bad data which correspond to solutions beyond the chosen constraints and allows one to start inversion with an arbitrary chosen initial model. In this paper, the author derives basic formulas for constrained tomographic imaging that can be used in such areas of geophysics as global mapping of the earth interior, exploration geophysics, etc. The method is fast: an example that will be shown in the paper took only 6 min. of VAX CPU time. Had the conventional least-squares matrix inversion been used it would have taken more than 10 hours of the CPU time to solve the same problem.

  3. Homogeneous M2 duals

    CERN Document Server

    Figueroa-O'Farrill, José

    2015-01-01

    Motivated by the search for new gravity duals to M2 branes with $N>4$ supersymmetry --- equivalently, M-theory backgrounds with Killing superalgebra $\\mathfrak{osp}(N|4)$ for $N>4$ --- we classify (except for a small gap) homogeneous M-theory backgrounds with symmetry Lie algebra $\\mathfrak{so}(n) \\oplus \\mathfrak{so}(3,2)$ for $n=5,6,7$. We find that there are no new backgrounds with $n=6,7$ but we do find a number of new (to us) backgrounds with $n=5$. All backgrounds are metrically products of the form $\\operatorname{AdS}_4 \\times P^7$, with $P$ riemannian and homogeneous under the action of $\\operatorname{SO}(5)$, or $S^4 \\times Q^7$ with $Q$ lorentzian and homogeneous under the action of $\\operatorname{SO}(3,2)$. At least one of the new backgrounds is supersymmetric (albeit with only $N=2$) and we show that it can be constructed from a supersymmetric Freund--Rubin background via a Wick rotation. Two of the new backgrounds have only been approximated numerically.

  4. Continuum Mechanics Based Bi-linear Shear Deformable Shell Element Using Absolute Nodal Coordinate Formulation

    Science.gov (United States)

    2014-03-07

    the convergent solution in the case of the continuum mechanics based bi- linear shear deformable ANCF shell element. 5.3 Slit Annular Plate Subjected...UNCLASSIFIED: Distribution Statement A. Approved for public release. #24515 CONTINUUM MECHANICS BASED BI- LINEAR SHEAR DEFORMABLE SHELL ELEMENT...MAR 2014 2. REPORT TYPE Technical Report 3. DATES COVERED 07-01-2014 to 04-03-2014 4. TITLE AND SUBTITLE CONTINUUM MECHANICS BASED BI- LINEAR

  5. A review on the application of modified continuum models in modeling and simulation of nanostructures

    Science.gov (United States)

    Wang, K. F.; Wang, B. L.; Kitamura, T.

    2016-02-01

    Analysis of the mechanical behavior of nanostructures has been very challenging. Surface energy and nonlocal elasticity of materials have been incorporated into the traditional continuum analysis to create modified continuum mechanics models. This paper reviews recent advancements in the applications of such modified continuum models in nanostructures such as nanotubes, nanowires, nanobeams, graphenes, and nanoplates. A variety of models for these nanostructures under static and dynamic loadings are mentioned and reviewed. Applications of surface energy and nonlocal elasticity in analysis of piezoelectric nanomaterials are also mentioned. This paper provides a comprehensive introduction of the development of this area and inspires further applications of modified continuum models in modeling nanomaterials and nanostructures.

  6. Bacterial Biogeography across the Amazon River-Ocean Continuum.

    Science.gov (United States)

    Doherty, Mary; Yager, Patricia L; Moran, Mary Ann; Coles, Victoria J; Fortunato, Caroline S; Krusche, Alex V; Medeiros, Patricia M; Payet, Jérôme P; Richey, Jeffrey E; Satinsky, Brandon M; Sawakuchi, Henrique O; Ward, Nicholas D; Crump, Byron C

    2017-01-01

    Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2-2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and

  7. Formative pluripotency: the executive phase in a developmental continuum.

    Science.gov (United States)

    Smith, Austin

    2017-02-01

    The regulative capability of single cells to give rise to all primary embryonic lineages is termed pluripotency. Observations of fluctuating gene expression and phenotypic heterogeneity in vitro have fostered a conception of pluripotency as an intrinsically metastable and precarious state. However, in the embryo and in defined culture environments the properties of pluripotent cells change in an orderly sequence. Two phases of pluripotency, called naïve and primed, have previously been described. In this Hypothesis article, a third phase, called formative pluripotency, is proposed to exist as part of a developmental continuum between the naïve and primed phases. The formative phase is hypothesised to be enabling for the execution of pluripotency, entailing remodelling of transcriptional, epigenetic, signalling and metabolic networks to constitute multi-lineage competence and responsiveness to specification cues.

  8. Continuum simulations of water flow in carbon nanotube membranes

    DEFF Research Database (Denmark)

    Popadić, A.; Walther, Jens Honore; Koumoutsakos, P-

    2014-01-01

    We propose the use of the Navier–Stokes equations subject to partial-slip boundary conditions to simulate water flows in Carbon NanoTube (CNT) membranes. The finite volume discretizations of the Navier–Stokes equations are combined with slip lengths extracted from molecular dynamics (MD) simulati......We propose the use of the Navier–Stokes equations subject to partial-slip boundary conditions to simulate water flows in Carbon NanoTube (CNT) membranes. The finite volume discretizations of the Navier–Stokes equations are combined with slip lengths extracted from molecular dynamics (MD...... that flows at nanoscale channels can be described by continuum solvers with proper boundary conditions that reflect the molecular interactions of the liquid with the walls of the nanochannel....

  9. Wave propagation in nanostructures nonlocal continuum mechanics formulations

    CERN Document Server

    Gopalakrishnan, Srinivasan

    2013-01-01

    Wave Propagation in Nanostructures describes the fundamental and advanced concepts of waves propagating in structures that have dimensions of the order of nanometers. The book is fundamentally based on non-local elasticity theory, which includes scale effects in the continuum model. The book predominantly addresses wave behavior in carbon nanotubes and graphene structures, although the methods of analysis provided in this text are equally applicable to other nanostructures. The book takes the reader from the fundamentals of wave propagation in nanotubes to more advanced topics such as rotating nanotubes, coupled nanotubes, and nanotubes with magnetic field and surface effects. The first few chapters cover the basics of wave propagation, different modeling schemes for nanostructures and introduce non-local elasticity theories, which form the building blocks for understanding the material provided in later chapters. A number of interesting examples are provided to illustrate the important features of wave behav...

  10. A continuum mechanical gradient theory with applications to fluid mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Silber, G.; Alizadeh, M.; Benderoth, G. [Fachhochschule Frankfurt am Main (Germany). Lab. fuer Materialwissenschaften; Trostel, R

    1998-11-01

    A gradient theory of grade two based on an axiomatic conception of a nonlocal continuum theory for materials of grade n is presented. The total stress tensor of rank two in the equation of linear momentum contains two higher stress tensors of rank two and three. In the case of isotropic materials both the tensor of rank two and three are tensor-valued functions of the second order strain rate tensor and its first gradient so that the equation of motion is of order four. The necessary boundary conditions for real boundaries are generated by using so-called porosity tensors. This theory is applied to two experiments. To a velocity profile of a turbulent Couette flow of water and a Poiseuille flow of a blood like suspension. On the basis of these experimental data the material and porosity coefficients are identified by numerical algorithms like evolution strategies. (orig.) 23 refs.

  11. Continuum and line emission of flares on red dwarf stars

    CERN Document Server

    Morchenko, Egor; Livshits, Moisey

    2015-01-01

    The emission spectrum has been calculated of a homogeneous pure hydrogen layer, which parameters are typical for a flare on a red dwarf. The ionization and excitation states were determined by the solution of steady-state equations taking into account the continuum and all discrete hydrogen levels. We consider the following elementary processes: electron-impact transitions, spontaneous and induced radiative transitions, and ionization by the bremsstrahlung and recombination radiation of the layer itself. The Biberman--Holstein approximation was used to calculate the scattering of line radiation. Asymptotic formulae for the escape probability are obtained for a symmetric line profile taking into account the Stark and Doppler effects. The approximation for the core of the H$-\\alpha$ line by a gaussian curve has been substantiated. The spectral intensity of the continuous spectrum, the intensity of the lines of the Balmer series and the magnitude of the Balmer jump have been calculated. The conditions have been ...

  12. Electron acceleration in a post-flare decimetric continuum source

    CERN Document Server

    Subramanian, P; Karlick'y, M; Sych, R; Sawant, H S; Ananthakrishnan, S; Subramanian, Prasad

    2007-01-01

    Aims: To calculate the power budget for electron acceleration and the efficiency of the plasma emission mechanism in a post-flare decimetric continuum source. Methods: We have imaged a high brightness temperature ($\\sim 10^{9}$K) post-flare source at 1060 MHz with the Giant Metrewave Radio Telescope (GMRT). We use information from these images and the dynamic spectrum from the Hiraiso spectrograph together with the theoretical method described in Subramanian & Becker (2006) to calculate the power input to the electron acceleration process. The method assumes that the electrons are accelerated via a second-order Fermi acceleration mechanism. Results: We find that the power input to the nonthermal electrons is in the range $3\\times 10^{25}$--$10^{26}$ erg/s. The efficiency of the overall plasma emission process starting from electron acceleration and culminating in the observed emission could range from $2.87\\times 10^{-9}$ to $2.38 \\times 10^{-8}$.

  13. Search for a continuum limit of the PMS phase

    CERN Document Server

    Ayyar, Venkitesh

    2016-01-01

    Previous studies of a simple four-fermion model with staggered fermions in 3D have shown the existence of an exotic quantum critical point, where one may be able to define a continuum limit of the Paramagnetic Strong Phase (or the PMS phase). We believe the existence of the critical point suggests a new mechanism for generating fermion masses. In this work we begin the search for this quantum critical point in 4D by extending the 3D model to 4D. Unlike in 3D, now we do find evidence for an intermediate spontaneously broken phase (FM phase) and are able compute the phase boundaries accurately. In terms of the bare coupling, the width of the intermediate region appears to be quite small.

  14. QCD thermodynamics with continuum extrapolated Wilson fermions II

    CERN Document Server

    Borsanyi, Szabolcs; Fodor, Zoltan; Holbling, Christian; Katz, Sandor D; Krieg, Stefan; Nogradi, Daniel; Szabo, Kalman K; Toth, Balint C; Trombitas, Norbert

    2015-01-01

    We continue our investigation of 2+1 flavor QCD thermodynamics using dynamical Wilson fermions in the fixed scale approach. Two additional pion masses, approximately 440 MeV and 285 MeV, are added to our previous work at 545 MeV. The simulations were performed at 3 or 4 lattice spacings at each pion mass. The renormalized chiral condensate, strange quark number susceptibility and Polyakov loop is obtained as a function of the temperature and we observe a decrease in the light chiral pseudo-critical temperature as the pion mass is lowered while the pseudo-critical temperature associated with the strange quark number susceptibility or the Polyakov loop is only mildly sensitive to the pion mass. These findings are in agreement with previous continuum results obtained in the staggered formulation.

  15. Ideal MHD Ballooning modes, shear flow and the stable continuum

    CERN Document Server

    Taylor, J B

    2012-01-01

    There is a well established theory of Ballooning modes in a toroidal plasma. The cornerstone of this is a local eigenvalue lambda on each magnetic surface - which also depends on the ballooning phase angle k. In stationary plasmas lambda(k) is required only near its maximum, but in rotating plasmas its average over k is required. Unfortunately in many case lambda(k) does not exist for some range of k, because the spectrum there contains only a stable continuum. This limits the application of the theory, and raises the important question of whether this "stable interval" gives rise to significant damping. This question is re-examined using a new, simplified, model - which leads to the conclusion that there is no appreciable damping at small shear flow. In particular, therefore, a small shear flow should not affect Ballooning mode stability boundaries.

  16. Invariant Gait Continuum Based on the Duty-Factor

    DEFF Research Database (Denmark)

    Fihl, Preben; Moeslund, Thomas B.

    2008-01-01

    In this paper we present a method to describe the continuum of human gait in an invariant manner. The gait description is based on the duty-factor which is adopted from the biomechanics literature. We generate a database of artificial silhouettes representing the three main types of gait, i.......e. walking, jogging, and running. By generating silhouettes from different camera angles we make the method invariant to camera viewpoint and to changing directions of movement. Silhouettes are extracted using the Code-book method and represented in a scale- and translation-invariant manner by using shape...... contexts and tangent orientations. Input silhouettes are matched to the database using the Hungarian method. We define a classifier based on the dissimilarity between the input silhouettes and the gait actions of the database. This classification achieves an overall recognition rate of 87.1% on a diverse...

  17. Growth limit of carbon onions – A continuum mechanical study

    DEFF Research Database (Denmark)

    Todt, Melanie; Bitsche, Robert; Hartmann, Markus A.

    2014-01-01

    The growth of carbon onions is simulated using continuum mechanical shell models. With this models it is shown that, if a carbon onion has grown to a critical size, the formation of an additional layer leads to the occurrence of a structural instability. This instability inhibits further growth...... of carbon onions and, thus, can be a reason for the limited size of such particles. The loss of stability is mainly evoked by van der Waals interactions between misfitting neighboring layers leading to self-equilibrating stress states in the layers due to mutual accommodation. The influence of the curvature...... model gives insight into mechanisms which are assumed to limit the size of carbon onions and can serve as basis for further investigations, e.g., of the formation of nanodiamonds in the center of carbon onions. © 2013 Elsevier Ltd. All rights reserved....

  18. Solitons in spiraling systems: a continuum model for dynamical phyllotaxis

    Energy Technology Data Exchange (ETDEWEB)

    Nisoli, Cristiano [Los Alamos National Laboratory

    2009-01-01

    A novel, protean, topological soliton has been shown to emerge in systems of repulsive particles in cylindrical geometries, whose statics is described by the number-theoretical objects of Phyllotaxis. We present a minimal and local continuum model that can explain many of the features of the phyllotactic soliton, such as speed, screw shift, energy transport and, for Wigner crystal on a nanotube, charge. The treatment applies just as well in general to solitons in spiraling systems. Unlike e.g. Sine-Gornon-like solitons, our soliton can exist between non degenerate structure, implies a power flow through the system, dynamics of the domains it separates, and possesses pulses, both static and dynamic. Its applications include from charge transfer in Wigner Crystals on nanotubes or A to B-DNA transitions.

  19. Nonlinear analysis of traffic jams in an anisotropic continuum model

    Institute of Scientific and Technical Information of China (English)

    Arvind Kumar Gupta; Sapna Sharma

    2010-01-01

    This paper presents our study of the nonlinear stability of a new anisotropic continuum traffic flow model in which the dimensionless parameter or anisotropic factor controls the non-isotropic character and diffusive influence. In order to establish traffic flow stability criterion or to know the critical parameters that lead, on one hand, to a stable response to perturbations or disturbances or, on the other hand, to an unstable response and therefore to a possible congestion, a nonlinear stability criterion is derived by using a wavefront expansion technique. The stability criterion is illustrated by numerical results using the finite difference method for two different values of anisotropic parameter. It is also been observed that the newly derived stability results are consistent with previously reported results obtained using approximate linearisation methods. Moreover, the stability criterion derived in this paper can provide more refined information from the perspective of the capability to reproduce nonlinear traffic flow behaviors observed in real traffic than previously established methodologies.

  20. A continuum model for current distribution in Rutherford cables

    CERN Document Server

    Akhmedov, A I; Breschi, M

    2001-01-01

    An analysis of eddy currents induced in flat Rutherford-type cables by external time dependent magnetic fields has been performed. The induced currents generate in turn a secondary magnetic field which has a longitudinal periodicity (periodic pattern). The dependence of the amplitude of the pattern on the history of the cable excitation has been investigated. The study has been carried out with two different models for the simulation of current distribution in Rutherford cables, namely a network model, based on a lumped parameters circuit and a "continuum" model, based on a distributed parameters circuit. We show the results of simulations of the current distribution in the inner cable of a short LHC dipole model in different powering conditions and compare them to experimental data. (12 refs).

  1. Continuum Random Combs and Scale Dependent Spectral Dimension

    CERN Document Server

    Atkin, Max R; Wheater, John F

    2011-01-01

    Numerical computations have suggested that in causal dynamical triangulation models of quantum gravity the effective dimension of spacetime in the UV is lower than in the IR. In this paper we develop a simple model based on previous work on random combs, which share some of the properties of CDT, in which this effect can be shown to occur analytically. We construct a definition for short and long distance spectral dimensions and show that the random comb models exhibit scale dependent spectral dimension defined in this way. We also observe that a hierarchy of apparent spectral dimensions may be obtained in the cross-over region between UV and IR regimes for suitable choices of the continuum variables. Our main result is valid for a wide class of tooth length distributions thereby extending previous work on random combs by Durhuus et al.

  2. Adhesive contact:from atomistic model to continuum model

    Institute of Scientific and Technical Information of China (English)

    Fan Kang-Qi; Jia Jian-Yuan; Zhu Ying-Min; Zhang Xiu-Yan

    2011-01-01

    Two types of Lennard-Jones potential are widely used in modeling adhesive contacts. However, the relationships between the parameters of the two types of Lennard-Jones potential are not well defined. This paper employs a selfconsistent method to derive the Lennard-Jones surface force law from the interatomic Lennard-Jones potential with emphasis on the relationships between the parameters. The effect of using correct parameters in the adhesion models is demonstrated in single sphere-flat contact via continuum models and an atomistic model. Furthermore, the adhesion hysteresis behaviour is investigated, and the S-shaped force-distance relation is revealed by the atomistic model. It shows that the adhesion hysteresis loop is generated by the jump-to-contact and jump-off-contact, which are illustrated by the S-shaped force-distance curve.

  3. Deconvolution closure for mesoscopic continuum models of particle systems

    CERN Document Server

    Panchenko, Alexander; Cooper, Kevin

    2011-01-01

    The paper introduces a general framework for derivation of continuum equations governing meso-scale dynamics of large particle systems. The balance equations for spatial averages such as density, linear momentum, and energy were previously derived by a number of authors. These equations are not in closed form because the stress and the heat flux cannot be evaluated without the knowledge of particle positions and velocities. We propose a closure method for approximating fluxes in terms of other meso-scale averages. The main idea is to rewrite the non-linear averages as linear convolutions that relate micro- and meso-scale dynamical functions. The convolutions can be approximately inverted using regularization methods developed for solving ill-posed problems. This yields closed form constitutive equations that can be evaluated without solving the underlying ODEs. We test the method numerically on Fermi-Pasta-Ulam chains with two different potentials: the classical Lennard-Jones, and the purely repulsive potenti...

  4. Observations of Microwave Continuum Emission from Air Shower Plasmas

    CERN Document Server

    Gorham, P W; Varner, G S; Beatty, J J; Connolly, A; Chen, P; Conde, M E; Gai, W; Hast, C; Hebert, C L; Miki, C; Konecny, R; Kowalski, J; Ng, J; Power, J G; Reil, K; Saltzberg, D; Stokes, B T; Walz, D

    2007-01-01

    We investigate a possible new technique for microwave measurements of ultra-high energy cosmic ray (UHECR) extensive air showers which relies on detection of expected continuum radiation in the microwave range, caused by free-electron collisions with neutrals in the tenuous plasma left after the passage of the shower. We performed an initial experiment at the AWA (Argonne Wakefield Accelerator) laboratory in 2003 and measured broadband microwave emission from air ionized via high energy electrons and photons. A follow-up experiment at SLAC (Stanford Linear Accelerator Center) in summer of 2004 confirmed the major features of the previous AWA observations with better precision and made additional measurements relevant to the calorimetric capabilities of the method. Prompted by these results we built a prototype detector using satellite television technology, and have made measurements indicating possible detection of cosmic ray extensive air showers. The method, if confirmed by experiments now in progress, cou...

  5. Ideal ballooning modes, shear flow and the stable continuum

    Science.gov (United States)

    Taylor, J. B.

    2012-11-01

    There is a well-established theory of ballooning modes in a toroidal plasma. The cornerstone of this is a local eigenvalue λ on each magnetic surface—which also depends on the ballooning phase angle k. In stationary plasmas, λ(k) is required only near its maximum, but in rotating plasmas its average over k is required. Unfortunately in many cases λ(k) does not exist for some range of k, because the spectrum there contains only a stable continuum. This limits the application of the theory, and raises the important question of whether this ‘stable interval’ gives rise to significant damping. This question is re-examined using a new, simplified, model—which leads to the conclusion that there is no appreciable damping at small shear flow. In particular, therefore, a small shear flow should not affect ballooning mode stability boundaries.

  6. Cognitive continuum theory in interprofessional healthcare: A critical analysis.

    Science.gov (United States)

    Parker-Tomlin, Michelle; Boschen, Mark; Morrissey, Shirley; Glendon, Ian

    2017-07-01

    Effective clinical decision making is among the most important skills required by healthcare practitioners. Making sound decisions while working collaboratively in interprofessional healthcare teams is essential for modern healthcare planning, successful interventions, and patient care. The cognitive continuum theory (CCT) is a model of human judgement and decision making aimed at orienting decision-making processes. CCT has the potential to improve both individual health practitioner, and interprofessional team understanding about, and communication of, clinical decision-making processes. Examination of the current application of CCT indicates that this theory could strengthen interprofessional team clinical decision making (CDM). However, further research is needed before extending the use of this theoretical framework to a wider range of interprofessional healthcare team processes. Implications for research, education, practice, and policy are addressed.

  7. A 45-MHz continuum survey of the northern hemisphere

    Science.gov (United States)

    Maeda, K.; Alvarez, H.; Aparici, J.; May, J.; Reich, P.

    We present a 45-MHz continuum survey in the declination range of +5 to +65 degrees in sets of maps in galactic and equatorial coordinates (epoch 1950). The observations were made at 46.5 MHz with a circular filled array of the Japanese Middle and Upper Atmosphere Radar (MU Radar) located at Shigaraki, Japan. The radar array consists of 475 crossed 3-element Yagis arranged within a circle of 103 m diameter, with a the half-power beam width of 3.6 degrees. In order to calibrate the data from the MU radar we used the Chilean 45-MHz survey which was made with an array of size comparable with that of the MU radar. The data processing was performed at the Maipu Radio Observatory, University of Chile, and this process brought the data to 45 MHz. The final maps were obtained at the Max-Plank-Institut fur Radioastronomie, Germany, using of the NOD2 program package.

  8. Do Large Abelian Monopole Loops Survive the Continuum Limit?

    CERN Document Server

    Grady, M

    1999-01-01

    An analysis of the monopole loop length distribution is performed in Wilson-action SU(2) lattice gauge theory. A pure power law in the inverse length is found, at least for loops of length, $l$, less than the linear lattice size $N$. This power shows a definite $\\beta$ dependence, passing 5 around $\\beta =2.9$, and appears to have very little finite lattice size dependence. It is shown that when this power exceeds 5, no loops any finite fraction of the lattice size will survive the infinite lattice limit. This is true for any reasonable size distribution for loops larger than N. The apparent lack of finite size dependence in this quantity would seem to indicate that abelian monopole loops large enough to cause confinement do not survive the continuum limit. Indeed they are absent for all $\\beta > 2.9$.

  9. Fractionalized spin-wave continuum in kagome spin liquids

    Science.gov (United States)

    Mei, Jia-Wei; Wen, Xiao-Gang

    Motivated by spin-wave continuum (SWC) observed in recent neutron scattering experiments in Herbertsmithite, we use Gutzwiller-projected wave functions to study dynamic spin structure factor S (q , ω) of spin liquid states on the kagome lattice. Spin-1 excited states in spin liquids are represented by Gutzwiller-projected two-spinon excited wave functions. We investigate three different spin liquid candidates, spinon Fermi-surface spin liquid (FSL), Dirac spin liquid (DSL) and random-flux spin liquid (RSL). FSL and RSL have low energy peaks in S (q , ω) at K points in the extended magnetic Brillouin zone, in contrast to experiments where low energy peaks are found at M points. There is no obviuos contradiction between DSL and neutron scattering measurements. Besides a fractionalized spin (i.e. spin-1/2), spinons in DSL carry a fractionalized crystal momentum which is potentially detectable in SWC in the neutron scattering measurements.

  10. A microstructure continuum approach to electromagneto-elastic conductors

    Science.gov (United States)

    Romeo, Maurizio

    2016-11-01

    A micromorphic continuum model of a deformable electromagnetic conductor is established introducing microdensities of bound and free charges. The conductive part of electric current consists of contributions due to free charges and microdeformation. Beside the conservation of charge, we derive suitable evolution equations for electric multipoles which are exploited to obtain the macroscopic form of Maxwell's equations. A constitutive model for electromagneto-elastic conductors is considered which allows for a natural characterization of perfect conductors independently on the form of the constitutive equation for the conduction current. A generalized Ohm's law is also derived for not ideal conductors which accounts for relaxation effects. The consequences of the linearized Ohm's law on the classic magnetic transport equation are shown.

  11. A continuum limit for the Kronig-Penney model

    Science.gov (United States)

    Colangeli, Matteo; Ndreca, Sokol; Procacci, Aldo

    2015-06-01

    We investigate the transmission properties of a quantum one-dimensional periodic system of fixed length L, with N barriers of constant height V and width λ and N wells of width δ. In particular, we study the behaviour of the transmission coefficient in the limit N → ∞, with L fixed. This is achieved by letting δ and λ both scale as 1/N, in such a way that their ratio γ = λ/δ is a fixed parameter characterizing the model. In this continuum limit, the multi-barrier system behaves as it were constituted by a unique barrier of constant height Eo = (γV)/(1 + γ). The analysis of the dispersion relation of the model shows the presence of forbidden energy bands at any finite N.

  12. Parsimonious evaluation of concentric-tube continuum robot equilibrium conformation.

    Science.gov (United States)

    Rucker, Daniel Caleb; Webster Iii, Robert J

    2009-09-01

    Dexterous at small diameters, continuum robots consisting of precurved concentric tubes are well-suited for minimally invasive surgery. These active cannulas are actuated by relative translations and rotations applied at the tube bases, which create bending via elastic tube interaction. An accurate kinematic model of cannula shape is required for applications in surgical and other settings. Previous models are limited to circular tube precurvatures, and neglect torsional deformation in curved sections. Recent generalizations account for arbitrary tube preshaping and bending and torsion throughout the cannula, providing differential equations that define cannula shape. In this paper, we show how to simplify these equations using Frenet-Serret frames. An advantage of this approach is the interpretation of torsional components of the preset tube shapes as "forcing functions" on the cannula's differential equations. We also elucidate a process for numerically solving the differential equations, and use it to produce simulations illustrating the implications of torsional deformation and helical tube shapes.

  13. Bound states in the continuum in open acoustic resonators

    CERN Document Server

    Lyapina, A A; Pilipchuk, A S; Sadreev, A F

    2015-01-01

    We consider bound states in the continuum (BSC) or embedded trapped modes in two- and three-dimensional acoustic axisymmetric duct-cavity structures. We demonstrate numerically that under variation of the length of the cavity multiple BSCs occur due to the Friedrich-Wintgen two-mode full destructive interference mechanism. The BSCs are detected by tracing the resonant widths to the points of the collapse of Fano resonances where one of the two resonant modes acquires infinite life-time. It is shown that the approach of the acoustic coupled mode theory cast in the truncated form of a two-mode approximation allows us to analytically predict the BSC frequencies and shape functions to a good accuracy in both two and three dimensions.

  14. Harnessing the Interaction Continuum for Subtle Assisted Living

    Directory of Open Access Journals (Sweden)

    Xavier Alamán

    2012-07-01

    Full Text Available People interact with each other in many levels of attention, intention and meaning. This Interaction Continuum is used daily to deal with different contexts, adapting the interaction to communication needs and available resources. Nevertheless, computer-supported interaction has mainly focused on the most direct, explicit and intrusive types of human to human Interaction such as phone calls, emails, or video conferences. This paper presents the results of exploring and exploiting the potentials of undemanding interaction mechanisms, paying special attention to subtle communication and background interaction. As we argue the benefits of this type of interaction for people with special needs, we present a theoretical framework to define it and propose a proof of concept based on Augmented Objects and a color codification mechanism. Finally, we evaluate and analyze the strengths and limitations of such approach with people with cognitive disabilities.

  15. Recent developments in evolutionary structural optimization (ESO) for continuum structures

    Science.gov (United States)

    Xie, Yi Min; Huang, Xiaodong

    2010-06-01

    Evolutionary Structural Optimization (ESO) and its later version bi-directional ESO (BESO) have gained widespread popularity among researchers in structural optimization and practitioners in engineering and architecture. However, there have also been many critical comments on various aspects of ESO/BESO. To address those criticisms, we have carried out extensive work to improve the original ESO/BESO algorithms in recent years. This paper summarizes some of the latest developments in the BESO method for topology optimization of continuum structures. Numerical results show that the ESO/BESO solutions agree well with those of other well-established topology optimization methods. It indicates that the current BESO method has great potential to become a robust and efficient design tool for practical applications in engineering and architecture.

  16. Nutritional Vulnerability in Older Adults: A Continuum of Concerns.

    Science.gov (United States)

    Porter Starr, Kathryn N; McDonald, Shelley R; Bales, Connie W

    2015-06-01

    A nutritionally vulnerable older adult has a reduced physical reserve that limits the ability to mount a vigorous recovery in the face of an acute health threat or stressor. Often this vulnerability contributes to more medical complications, longer hospital stays, and increased likelihood of nursing home admission. We have characterized in this review the etiology of nutritional vulnerability across the continuum of the community, hospital, and long term care settings. Frail older adults may become less vulnerable with strong, consistent, and individualized nutritional care. Interventions for the vulnerable older adult must take their nutritional needs into account to optimize resiliency in the face of the acute and/or chronic health challenges they will surely face in their life course.

  17. A tessellated continuum approach to thermal analysis: discontinuity networks

    Science.gov (United States)

    Jiang, C.; Davey, K.; Prosser, R.

    2017-01-01

    Tessellated continuum mechanics is an approach for the representation of thermo-mechanical behaviour of porous media on tessellated continua. It involves the application of iteration function schemes using affine contraction and expansion maps, respectively, for the creation of porous fractal materials and associated tessellated continua. Highly complex geometries can be produced using a modest number of contraction mappings. The associated tessellations form the mesh in a numerical procedure. This paper tests the hypothesis that thermal analysis of porous structures can be achieved using a discontinuous Galerkin finite element method on a tessellation. Discontinuous behaviour is identified at a discontinuity network in a tessellation; its use is shown to provide a good representation of the physics relating to cellular heat exchanger designs. Results for different cellular designs (with corresponding tessellations) are contrasted against those obtained from direct analysis and very high accuracy is observed.

  18. Continuum analysis of biological systems conserved quantities, fluxes and forces

    CERN Document Server

    Suraishkumar, G K

    2014-01-01

    This book addresses the analysis, in the continuum regime, of biological systems at various scales, from the cellular level to the industrial one. It presents both fundamental conservation principles (mass, charge, momentum and energy) and relevant fluxes resulting from appropriate driving forces, which are important for the analysis, design and operation of biological systems. It includes the concept of charge conservation, an important principle for biological systems that is not explicitly covered in any other book of this kind. The book is organized in five parts: mass conservation; charge conservation; momentum conservation; energy conservation; and multiple conservations simultaneously applied. All mathematical aspects are presented step by step, allowing any reader with a basic mathematical background (calculus, differential equations, linear algebra, etc.) to follow the text with ease. The book promotes an intuitive understanding of all the relevant principles and in so doing facilitates their applica...

  19. Continuum neural dynamics models for visual object identification

    Science.gov (United States)

    Singh, Vijay; Tchernookov, Martin; Nemenman, Ilya

    2013-03-01

    Visual object identification has remained one of the most challenging problems even after decades of research. Most of the current models of the visual cortex represent neurons as discrete elements in a largely feedforward network arrangement. They are generally very specific in the objects they can identify. We develop a continuum model of recurrent, nonlinear neural dynamics in the primary visual cortex, incorporating connectivity patterns and other experimentally observed features of the cortex. The model has an interesting correspondence to the Landau-DeGennes theory of a nematic liquid crystal in two dimensions. We use collective spatiotemporal excitations of the model cortex as a signal for segmentation of contiguous objects from the background clutter. The model is capable of suppressing clutter in images and filling in occluded elements of object contours, resulting in high-precision, high-recall identification of large objects from cluttered scenes. This research has been partially supported by the ARO grant No. 60704-NS-II.

  20. Bridging Atomistic/Continuum Scales in Solids with Moving Dislocations

    Institute of Scientific and Technical Information of China (English)

    TANG Shao-Qiang; LIU Wing K.; KARPOV Eduard G.; HOU Thomas Y.

    2007-01-01

    @@ We propose a multiscale method for simulating solids with moving dislocations. Away from atomistic subdomains where the atomistic dynamics are fully resolved, a dislocation is represented by a localized jump profile, superposed on a defect-free field. We assign a thin relay zone around an atomistic subdomain to detect the dislocation profile and its propagation speed at a selected relay time. The detection technique utilizes a lattice time history integral treatment. After the relay, an atomistic computation is performed only for the defect-free field. The method allows one to effectively absorb the fine scale fluctuations and the dynamic dislocations at the interface between the atomistic and continuum domains. In the surrounding region, a coarse grid computation is adequate.

  1. Lasing action from photonic bound states in continuum

    Science.gov (United States)

    Kodigala, Ashok; Lepetit, Thomas; Gu, Qing; Bahari, Babak; Fainman, Yeshaiahu; Kanté, Boubacar

    2017-01-01

    In 1929, only three years after the advent of quantum mechanics, von Neumann and Wigner showed that Schrödinger’s equation can have bound states above the continuum threshold. These peculiar states, called bound states in the continuum (BICs), manifest themselves as resonances that do not decay. For several decades afterwards the idea lay dormant, regarded primarily as a mathematical curiosity. In 1977, Herrick and Stillinger revived interest in BICs when they suggested that BICs could be observed in semiconductor superlattices. BICs arise naturally from Feshbach’s quantum mechanical theory of resonances, as explained by Friedrich and Wintgen, and are thus more physical than initially realized. Recently, it was realized that BICs are intrinsically a wave phenomenon and are thus not restricted to the realm of quantum mechanics. They have since been shown to occur in many different fields of wave physics including acoustics, microwaves and nanophotonics. However, experimental observations of BICs have been limited to passive systems and the realization of BIC lasers has remained elusive. Here we report, at room temperature, lasing action from an optically pumped BIC cavity. Our results show that the lasing wavelength of the fabricated BIC cavities, each made of an array of cylindrical nanoresonators suspended in air, scales with the radii of the nanoresonators according to the theoretical prediction for the BIC mode. Moreover, lasing action from the designed BIC cavity persists even after scaling down the array to as few as 8-by-8 nanoresonators. BIC lasers open up new avenues in the study of light-matter interaction because they are intrinsically connected to topological charges and represent natural vector beam sources (that is, there are several possible beam shapes), which are highly sought after in the fields of optical trapping, biological sensing and quantum information.

  2. Continuum kinetic and multi-fluid simulations of classical sheaths

    Science.gov (United States)

    Cagas, P.; Hakim, A.; Juno, J.; Srinivasan, B.

    2017-02-01

    The kinetic study of plasma sheaths is critical, among other things, to understand the deposition of heat on walls, the effect of sputtering, and contamination of the plasma with detrimental impurities. The plasma sheath also provides a boundary condition and can often have a significant global impact on the bulk plasma. In this paper, kinetic studies of classical sheaths are performed with the continuum kinetic code, Gkeyll, which directly solves the Vlasov-Maxwell equations. The code uses a novel version of the finite-element discontinuous Galerkin scheme that conserves energy in the continuous-time limit. The fields are computed using Maxwell equations. Ionization and scattering collisions are included; however, surface effects are neglected. The aim of this work is to introduce the continuum kinetic method and compare its results with those obtained from an already established finite-volume multi-fluid model also implemented in Gkeyll. Novel boundary conditions on the fluids allow the sheath to form without specifying wall fluxes, so the fluids and fields adjust self-consistently at the wall. The work presented here demonstrates that the kinetic and fluid results are in agreement for the momentum flux, showing that in certain regimes, a multi-fluid model can be a useful approximation for simulating the plasma boundary. There are differences in the electrostatic potential between the fluid and kinetic results. Further, the direct solutions of the distribution function presented here highlight the non-Maxwellian distribution of electrons in the sheath, emphasizing the need for a kinetic model. The densities, velocities, and the potential show a good agreement between the kinetic and fluid results. However, kinetic physics is highlighted through higher moments such as parallel and perpendicular temperatures which provide significant differences from the fluid results in which the temperature is assumed to be isotropic. Besides decompression cooling, the heat flux

  3. mHealth Education Applications Along the Cancer Continuum.

    Science.gov (United States)

    Davis, Sharon Watkins; Oakley-Girvan, Ingrid

    2015-06-01

    The majority of adults worldwide own a mobile phone, including those in under-resourced communities. Mobile health (mhealth) education technologies present a promising mechanism for improving cancer prevention, treatment, and follow-up. The purpose of this study was to summarize the literature related to mobile phone (mhealth) applications for patient education specific to cancer and identify current recommendations from randomized studies. In particular, we were interested in identifying mobile phone applications along the cancer continuum, from cancer prevention to survivorship. The authors identified 28 articles reporting on mobile applications for patients related to cancer. Articles were identified in all categories along the cancer continuum, including health professional involvement in application development. Of these, six involved direct patient education, and eight focused on improving patient/professional communication and patient self-management. However, only six of the studies were randomized interventions. The potential for mobile applications to help overcome the "health care gap" has not yet been realized in the studies from the USA that were reviewed for this paper. However, early recommendations are emerging that support the use of mHealth communications to change behaviors for cancer prevention, early detection, and symptom management and improved patient-provider communication. Recommendations include short messages, use of multiple modalities as patient characteristics dictate comfort with mHealth communication, and the inclusion of patients and health professionals to develop and test applications. Tailoring mHealth to particular cultures, languages, and ethnic groups may also represent a unique possibility to provide accessible information and education at minimal cost for under-resourced communities and individuals.

  4. Varieties of Voice-Hearing: Psychics and the Psychosis Continuum.

    Science.gov (United States)

    Powers, Albert R; Kelley, Megan S; Corlett, Philip R

    2017-01-01

    Hearing voices that are not present is a prominent symptom of serious mental illness. However, these experiences may be common in the non-help-seeking population, leading some to propose the existence of a continuum of psychosis from health to disease. Thus far, research on this continuum has focused on what is impaired in help-seeking groups. Here we focus on protective factors in non-help-seeking voice-hearers. We introduce a new study population: clairaudient psychics who receive daily auditory messages. We conducted phenomenological interviews with these subjects, as well as with patients diagnosed with a psychotic disorder who hear voices, people with a diagnosis of a psychotic disorder who do not hear voices, and matched control subjects (without voices or a diagnosis). We found the hallucinatory experiences of psychic voice-hearers to be very similar to those of patients who were diagnosed. We employed techniques from forensic psychiatry to conclude that the psychics were not malingering. Critically, we found that this sample of non-help-seeking voice hearers were able to control the onset and offset of their voices, that they were less distressed by their voice-hearing experiences and that, the first time they admitted to voice-hearing, the reception by others was much more likely to be positive. Patients had much more negative voice-hearing experiences, were more likely to receive a negative reaction when sharing their voices with others for the first time, and this was subsequently more disruptive to their social relationships. We predict that this sub-population of healthy voice-hearers may have much to teach us about the neurobiology, cognitive psychology and ultimately the treatment of voices that are distressing. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Thoracic applications of dual energy.

    Science.gov (United States)

    Remy-Jardin, Martine; Faivre, Jean-Baptiste; Pontana, Francois; Hachulla, Anne-Lise; Tacelli, Nunzia; Santangelo, Teresa; Remy, Jacques

    2010-01-01

    Recent technological advances in multidetector computed tomography (CT) have led to the introduction of dual-source CT, which allows acquisition of CT data at the same energy or at 2 distinct tube voltage settings during a single acquisition. The advantage of the former is improvement of temporal resolution, whereas the latter offers new options for CT imaging, allowing tissue characterization and functional analysis with morphologic evaluation. The most investigated application has been iodine mapping at pulmonary CT angiography. The material decomposition achievable opens up new options for recognizing substances poorly characterized by single-energy CT. Although it is too early to draw definitive conclusions on dual-energy CT applications, this article reviews the results already reported with the first generation of dual-source CT systems.

  6. The Association between Rural-Urban Continuum, Maternal Education and Adverse Birth Outcomes in Quebec, Canada

    Science.gov (United States)

    Auger, Nathalie; Authier, Marie-Andree; Martinez, Jerome; Daniel, Mark

    2009-01-01

    Context: Rural relative to urban area and low socioeconomic status (SES) are associated with adverse birth outcomes. Whether a graded association of increasing magnitude is present across the urban-rural continuum, accounting for SES, is unclear. We examined the association between rural-urban continuum, SES and adverse birth outcomes. Methods:…

  7. Possibilities of modeling masonry as a composite softening material: Interface modeling and anisotropic continuum modeling

    NARCIS (Netherlands)

    Lourenço, P.B.; Rots, J.G.

    1998-01-01

    Results of using recently developed material models for the analysis of masonry structures are shown. Both interface modeling, in which masonry components (units and joints) are represented, as continuum modeling, in which masonry is represented as a homogeneous continuum, are addressed. It is shown

  8. A Mathematical Analysis of Atomistic-to-Continuum (AtC) Multiscale Coupling Methods

    Energy Technology Data Exchange (ETDEWEB)

    Gunzburger, Max

    2013-11-13

    We have worked on several projects aimed at improving the efficiency and understanding of multiscale methods, especially those applicable to problems involving atomistic-to-continuum coupling. Activities include blending methods for AtC coupling and efficient quasi-continuum methods for problems with long-range interactions.

  9. An Apparent Redshift Dependence of Quasar Continuum: Implication for Cosmic Dust Extinction?

    CERN Document Server

    Xie, Xiaoyi; Shao, Zhengyi; Yin, Jun

    2015-01-01

    We investigate the luminosity and redshift dependence of the quasar continuum by means of composite spectrum using a large non-BAL radio-quiet quasar sample drawn from the Sloan Digital Sky Survey. Quasar continuum slopes in the UV-Opt band are measured at two different wavelength ranges, i.e., $\\alpha_{\

  10. Steering of Multisegment Continuum Manipulators Using Rigid-Link Modeling and FBG-Based Shape Sensing

    NARCIS (Netherlands)

    Roesthuis, Roy; Misra, Sarthak

    2016-01-01

    Accurate closed-loop control of continuum manipulators requires integration of both models that describe their motion and methods to evaluate manipulator shape. This work presents a model that approximates the continuous shape of a continuum manipulator by a serial chain of rigid links, connected by

  11. Three-dimensional Hybrid Continuum-Atomistic Simulations for Multiscale Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, S; Hornung, R; Garcia, A; Hadjiconstantinou, N

    2004-04-15

    We present an adaptive mesh and algorithmic refinement (AMAR) scheme for modeling multi-scale hydrodynamics. The AMAR approach extends standard conservative adaptive mesh refinement (AMR) algorithms by providing a robust flux-based method for coupling an atomistic fluid representation to a continuum model. The atomistic model is applied locally in regions where the continuum description is invalid or inaccurate, such as near strong flow gradients and at fluid interfaces, or when the continuum grid is refined to the molecular scale. The need for such ''hybrid'' methods arises from the fact that hydrodynamics modeled by continuum representations are often under-resolved or inaccurate while solutions generated using molecular resolution globally are not feasible. In the implementation described herein, Direct Simulation Monte Carlo (DSMC) provides an atomistic description of the flow and the compressible two-fluid Euler equations serve as our continuum-scale model. The AMR methodology provides local grid refinement while the algorithm refinement feature allows the transition to DSMC where needed. The continuum and atomistic representations are coupled by matching fluxes at the continuum-atomistic interfaces and by proper averaging and interpolation of data between scales. Our AMAR application code is implemented in C++ and is built upon the SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) framework developed at Lawrence Livermore National Laboratory. SAMRAI provides the parallel adaptive gridding algorithm and enables the coupling between the continuum and atomistic methods.

  12. Erratum: Continuum interpretation of the dynamical-triangulation formulation of quantum Einstein gravity

    Energy Technology Data Exchange (ETDEWEB)

    Smit, Jan [Institute for Theoretical Physics, University of Amsterdam,Science Park 904, P.O. Box 94485, 1090 GL, Amsterdam (Netherlands)

    2015-09-09

    An error in the numerical evaluation of the lattice-continuum conversion factor affects the magnitude of the continuum curvature in several plots. A corrected plot shows somewhat smaller systematic uncertainties. Another plot that would become less informative after correction is replaced by a more revealing one.

  13. Continuum contributions to dipole oscillator-strength sum rules for hydrogen in finite basis sets

    DEFF Research Database (Denmark)

    Oddershede, Jens; Ogilvie, John F.; Sauer, Stephan P. A.;

    2017-01-01

    Calculations of the continuum contributions to dipole oscillator sum rules for hydrogen are performed using both exact and basis-set representations of the stick spectra of the continuum wave function. We show that the same results are obtained for the sum rules in both cases, but that the conver...

  14. A continuum model for flow induced by metachronal coordination between beating cilia

    NARCIS (Netherlands)

    Hussong, J.; Breugem, W.-P.; Westerweel, J.

    2011-01-01

    In this numerical study we investigate the flow induced by metachronal coordination between beating cilia arranged in a densely packed layer by means of a continuum model. The continuum approach allows us to treat the problem as two-dimensional as well as stationary, in a reference frame moving with

  15. Towards a big crunch dual

    Energy Technology Data Exchange (ETDEWEB)

    Hertog, Thomas E-mail: hertog@vulcan2.physics.ucsb.edu; Horowitz, Gary T

    2004-07-01

    We show there exist smooth asymptotically anti-de Sitter initial data which evolve to a big crunch singularity in a low energy supergravity limit of string theory. This opens up the possibility of using the dual conformal field theory to obtain a fully quantum description of the cosmological singularity. A preliminary study of this dual theory suggests that the big crunch is an endpoint of evolution even in the full string theory. We also show that any theory with scalar solitons must have negative energy solutions. The results presented here clarify our earlier work on cosmic censorship violation in N=8 supergravity. (author)

  16. DUAL BAND MONOPOLE ANTENNA DESIGN

    Directory of Open Access Journals (Sweden)

    P. Jithu

    2013-06-01

    Full Text Available The WLAN and Bluetooth applications become popular in mobile devices, integrating GSM and ISM bands operation in one compact antenna, can reduce the size of mobile devices. Recently, lot many investigations are carried out in designing a dual band antennas with operating frequencies in GSM band and in ISM band for mobile devices. Printed monopoles are under this investigation. In this paper, dual-band printed monopoles are presented to operate at GSM band i.e. 900 MHz and ISM band i.e. 2.4 GHz. We intend to observe the antenna characteristics on the network analyzer and verify the theoretical results with the practical ones.

  17. DESIGN OF A DUAL KEYBOARD

    Directory of Open Access Journals (Sweden)

    V. Ragavi

    2013-01-01

    Full Text Available The design of a computer keyboard with dual function is proposed. This computer keyboard called Dual Keyboard can function both as a normal keyboard and as a pressure sensitive keyboard. The proposed device has a switch that decides the function. The keyboard makes use of sensors placed beneath the keys to measure the pressure applied on the key by the user. This device has many applications. In this study, it is applied to mitigate Denial of Service (DoS attack.

  18. Nuclearity for Dual Operator Spaces

    Indian Academy of Sciences (India)

    Zhe Dong; Jicheng Tao

    2010-02-01

    In this short paper, we study the nuclearity for the dual operator space $V^∗$ of an operator space . We show that $V^∗$ is nuclear if and only if $V^{∗∗∗}$ is injective, where $V^{∗∗∗}$ is the third dual of . This is in striking contrast to the situation for general operator spaces. This result is used to prove that $V^{∗∗}$ is nuclear if and only if is nuclear and $V^{∗∗}$ is exact.

  19. PREFACE: Continuum Models and Discrete Systems Symposia (CMDS-12)

    Science.gov (United States)

    Chakrabarti, Bikas K.

    2011-09-01

    The 12th International Symposium on Continuum Models and Discrete Systems (CMDS-12) (http://www.saha.ac.in/cmp/cmds.12/) took place at the Saha Institute of Nuclear Physics in Kolkata from 21-25 February 2011. Previous CMDS symposia were held in Kielce (Poland, 1975), Mont Gabriel (Canada, 1977), Freudenstadt (Federal Republic of Germany, 1979), Stockholm (Sweden, 1981), Nottingham (United Kingdom, 1985), Dijon (France, 1989), Paderborn (Germany, 1992), Varna (Bulgaria, 1995), Istanbul (Turkey, 1998), Shoresh (Israel, 2003) and Paris (France, 2007). The broad interdisciplinary character, limited number of participants (not exceeding 100) and informal and friendly atmosphere of these meetings has made them a well-acknowledged place to make highly fruitful contacts and exchange ideas, methods and results. The purpose of CMDS is to bring together scientists with different backgrounds who work on continuum theories of discrete mechanical and thermodynamical systems in the fields of mathematics, theoretical and applied mechanics, physics, material science, and engineering. The spirit of the CMDS meetings is to stimulate extensive and active interdisciplinary research. The International Scientific Committee members of this conference were: David J Bergman (Chairman CMDS 10), Tel Aviv University, Israel; Bikas K Chakrabarti (Chairman CMDS 12), Saha Institute of Nuclear Physics, India; Alex Hansen, Norwegian University of Science and Technology, Norway; Hans Jürgen Herrmann, Institute for Building Materials, ETH, Switzerland; Esin Inan (Chairman CMDS 9), Istanbul Technical University, Turkey; Dominique Jeulin (Chairman CMDS 11), Ecole des Mines de Paris, France; Frank Juelicher, Max-Planck-Institute for the Physics of Complex Systems, Germany; Hikaru Kawamura, University of Osaka, Japan; Graeme Milton, University of Utah, USA; Natalia Movchan, University of Liverpool, UK; and Ping Sheng, The Hong Kong University of Science and Technology, Hong Kong. At CMDS-12 the topics

  20. Beyond inhibition: a dual-process perspective to renew the exploration of binge drinking.

    Science.gov (United States)

    Lannoy, Séverine; Billieux, Joël; Maurage, Pierre

    2014-01-01

    Binge drinking is a widespread alcohol-consumption pattern in youth and is linked to cognitive consequences, mostly for executive functions. However, other crucial factors remain less explored in binge drinking and notably the emotional-automatic processes. Dual-process model postulates that addictive disorders are not only due to impaired reflective system (involved in deliberate behaviors), but rather to an imbalance between under-activated reflective system and over-activated affective-automatic one (involved in impulsive behaviors). This proposal has been confirmed in alcohol-dependence, but has not been tested in binge drinking. The observation of comparable impairments in binge drinking and alcohol-dependence led to the "continuum hypothesis," suggesting similar deficits across different alcohol-related disorders. In this perspective, applying the dual-process model to binge drinking might renew the understanding of this continuum hypothesis. A three-axes research agenda will be proposed, exploring: (1) the affective-automatic system in binge drinking; (2) the systems' interactions and imbalance in binge drinking; (3) the evolution of this imbalance in the transition between binge drinking and alcohol-dependence.

  1. Beyond inhibition: A dual-process perspective to renew the exploration of binge drinking.

    Directory of Open Access Journals (Sweden)

    Severine eLannoy

    2014-06-01

    Full Text Available Binge drinking is a widespread alcohol-consumption pattern in youth and is linked to cognitive consequences, mostly for executive functions. However, other crucial factors remain less explored in binge drinking and notably the emotional-automatic processes. Dual-process model postulates that addictive disorders are not only due to impaired reflective system (involved in deliberate behaviours, but rather to an imbalance between under-activated reflective system and over-activated affective-automatic one (involved in impulsive behaviours. This proposal has been confirmed in alcohol-dependence, but has not been tested in binge drinking. The observation of comparable impairments in binge-drinking and alcohol-dependence led to the continuum hypothesis, suggesting similar deficits across different alcohol-related disorders. In this perspective, applying the dual-process model to binge drinking might renew the understanding of this continuum hypothesis. A three-axes research agenda will be proposed, exploring: (1 the affective-automatic system in binge drinking; (2 the systems’ interactions and imbalance in binge drinking; (3 the evolution of this imbalance in the transition between binge drinking and alcohol-dependence.

  2. CARDIOVASCULAR ENDOCRINOLOGY Dual RAAS blockade has dual effects on outcome

    NARCIS (Netherlands)

    Heerspink, Hiddo J. Lambers; de Zeeuw, Dick

    Makani and colleagues report that dual blockade of the renin-angiotensin-aldosterone system is associated with harm despite previous studies showing that this approach decreases blood pressure and albuminuria. Do these results imply that we should abandon surrogate markers? Or should we become more

  3. Dual-band dual-polarized array for WLAN applications

    CSIR Research Space (South Africa)

    Steyn, JM

    2009-01-01

    Full Text Available ) simultaneously. The two linear polarizations have separate ports. The presented design is characterized by dual-band operation, reasonably good front-to-back ratios, average gains of 5.2 dBi and 6.2 dBi over the 2.4 and 5.2 GHz bands respectively, stable end...

  4. A constitutive model of soft tissue: From nanoscale collagen to tissue continuum

    KAUST Repository

    Tang, Huang

    2009-04-08

    Soft collagenous tissue features many hierarchies of structure, starting from tropocollagen molecules that form fibrils, and proceeding to a bundle of fibrils that form fibers. Here we report the development of an atomistically informed continuum model of collagenous tissue. Results from full atomistic and molecular modeling are linked with a continuum theory of a fiber-reinforced composite, handshaking the fibril scale to the fiber and continuum scale in a hierarchical multi-scale simulation approach. Our model enables us to study the continuum-level response of the tissue as a function of cross-link density, making a link between nanoscale collagen features and material properties at larger tissue scales. The results illustrate a strong dependence of the continuum response as a function of nanoscopic structural features, providing evidence for the notion that the molecular basis for protein materials is important in defining their larger-scale mechanical properties. © 2009 Biomedical Engineering Society.

  5. Evidence against the continuum structure underlying motivation measures derived from self-determination theory.

    Science.gov (United States)

    Chemolli, Emanuela; Gagné, Marylène

    2014-06-01

    Self-determination theory (SDT) proposes a multidimensional conceptualization of motivation in which the different regulations are said to fall along a continuum of self-determination. The continuum has been used as a basis for using a relative autonomy index as a means to create motivational scores. Rasch analysis was used to verify the continuum structure of the Multidimensional Work Motivation Scale and of the Academic Motivation Scale. We discuss the concept of continuum against SDT's conceptualization of motivation and argue against the use of the relative autonomy index on the grounds that evidence for a continuum structure underlying the regulations is weak and because the index is statistically problematic. We suggest exploiting the full richness of SDT's multidimensional conceptualization of motivation through the use of alternative scoring methods when investigating motivational dynamics across life domains.

  6. Generalized Continuum: from Voigt to the Modeling of Quasi-Brittle Materials

    Directory of Open Access Journals (Sweden)

    Jamile Salim Fuina

    2010-12-01

    Full Text Available This article discusses the use of the generalized continuum theories to incorporate the effects of the microstructure in the nonlinear finite element analysis of quasi-brittle materials and, thus, to solve mesh dependency problems. A description of the problem called numerically induced strain localization, often found in Finite Element Method material non-linear analysis, is presented. A brief historic about the Generalized Continuum Mechanics based models is presented, since the initial work of Voigt (1887 until the more recent studies. By analyzing these models, it is observed that the Cosserat and microstretch approaches are particular cases of a general formulation that describes the micromorphic continuum. After reporting attempts to incorporate the material microstructure in Classical Continuum Mechanics based models, the article shows the recent tendency of doing it according to assumptions of the Generalized Continuum Mechanics. Finally, it presents numerical results which enable to characterize this tendency as a promising way to solve the problem.

  7. A dynamic atomistic-continuum method for the simulation of crystalline materials

    CERN Document Server

    Huang Zhon Gy

    2002-01-01

    We present a coupled atomistic-continuum method for the modeling of defects and interface dynamics in crystalline materials. The method uses atomistic models such as molecular dynamics near defects and interfaces, and continuum models away from defects and interfaces. We propose a new class of matching conditions between the atomistic and the continuum regions. These conditions ensure the accurate passage of large-scale information between the atomistic and the continuum regions and at the same time minimize the reflection of phonons at the atomistic-continuum interface. They can be made adaptive by choosing appropriate weight functions. We present applications to dislocation dynamics, friction between two-dimensional crystal surfaces, and fracture dynamics. We compare results of the coupled method and of the detailed atomistic model.

  8. A dual method for maximum entropy restoration

    Science.gov (United States)

    Smith, C. B.

    1979-01-01

    A simple iterative dual algorithm for maximum entropy image restoration is presented. The dual algorithm involves fewer parameters than conventional minimization in the image space. Minicomputer test results for Fourier synthesis with inadequate phantom data are given.

  9. Sparsity and spectral properties of dual frames

    CERN Document Server

    Krahmer, Felix; Lemvig, Jakob

    2012-01-01

    We study sparsity and spectral properties of dual frames of a given finite frame. We show that any finite frame has a dual with no more than $n^2$ non-vanishing entries, where $n$ denotes the ambient dimension, and that for most frames no sparser dual is possible. Moreover, we derive an expression for the exact sparsity level of the sparsest dual for any given finite frame using a generalized notion of spark. We then study the spectral properties of dual frames in terms of singular values of the synthesis operator. We provide a complete characterization for which spectral patterns of dual frames are possible for a fixed frame. For many cases, we provide simple explicit constructions for dual frames with a given spectrum, in particular, if the constraint on the dual is that it be tight.

  10. Dual-Doppler Feasibility Study

    Science.gov (United States)

    Huddleston, Lisa L.

    2012-01-01

    When two or more Doppler weather radar systems are monitoring the same region, the Doppler velocities can be combined to form a three-dimensional (3-D) wind vector field thus providing for a more intuitive analysis of the wind field. A real-time display of the 3-D winds can assist forecasters in predicting the onset of convection and severe weather. The data can also be used to initialize local numerical weather prediction models. Two operational Doppler Radar systems are in the vicinity of Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS); these systems are operated by the 45th Space Wing (45 SW) and the National Weather Service Melbourne, Fla. (NWS MLB). Dual-Doppler applications were considered by the 45 SW in choosing the site for the new radar. Accordingly, the 45th Weather Squadron (45 WS), NWS MLB and the National Aeronautics and Space Administration tasked the Applied Meteorology Unit (AMU) to investigate the feasibility of establishing dual-Doppler capability using the two existing systems. This study investigated technical, hardware, and software requirements necessary to enable the establishment of a dual-Doppler capability. Review of the available literature pertaining to the dual-Doppler technique and consultation with experts revealed that the physical locations and resulting beam crossing angles of the 45 SW and NWS MLB radars make them ideally suited for a dual-Doppler capability. The dual-Doppler equations were derived to facilitate complete understanding of dual-Doppler synthesis; to determine the technical information requirements; and to determine the components of wind velocity from the equation of continuity and radial velocity data collected by the two Doppler radars. Analysis confirmed the suitability of the existing systems to provide the desired capability. In addition, it is possible that both 45 SW radar data and Terminal Doppler Weather Radar data from Orlando International Airport could be used to alleviate any

  11. Dual symmetry in a generalized Maxwell theory

    CERN Document Server

    Brandt, F T; McKeon, D G C

    2016-01-01

    We examine Podolsky's electrodynamics, which is noninvariant under the usual duality transformation. We deduce a generalization of Hodge's star duality, which leads to a dual gauge field and restores to a certain extent the dual symmetry. The model becomes fully dual symmetric asymptotically when it reduces to the Maxwell theory. We argue that this strict dual symmetry directly implies the existence of the basic invariants of the electromagnetic fields.

  12. Dual of QCD with One Adjoint Fermion

    CERN Document Server

    Mojaza, Matin; Pica, Claudio; Sannino, Francesco

    2011-01-01

    We construct the magnetic dual of QCD with one adjoint Weyl fermion. The dual is a consistent solution of the 't Hooft anomaly matching conditions, allows for flavor decoupling and remarkably constitutes the first nonsupersymmetric dual valid for any number of colors. The dual allows to bound the anomalous dimension of the Dirac fermion mass operator to be less than one in the conformal window.

  13. Quantum dynamics in continuum for proton transport—Generalized correlation

    Science.gov (United States)

    Chen, Duan; Wei, Guo-Wei

    2012-04-01

    As a key process of many biological reactions such as biological energy transduction or human sensory systems, proton transport has attracted much research attention in biological, biophysical, and mathematical fields. A quantum dynamics in continuum framework has been proposed to study proton permeation through membrane proteins in our earlier work and the present work focuses on the generalized correlation of protons with their environment. Being complementary to electrostatic potentials, generalized correlations consist of proton-proton, proton-ion, proton-protein, and proton-water interactions. In our approach, protons are treated as quantum particles while other components of generalized correlations are described classically and in different levels of approximations upon simulation feasibility and difficulty. Specifically, the membrane protein is modeled as a group of discrete atoms, while ion densities are approximated by Boltzmann distributions, and water molecules are represented as a dielectric continuum. These proton-environment interactions are formulated as convolutions between number densities of species and their corresponding interaction kernels, in which parameters are obtained from experimental data. In the present formulation, generalized correlations are important components in the total Hamiltonian of protons, and thus is seamlessly embedded in the multiscale/multiphysics total variational model of the system. It takes care of non-electrostatic interactions, including the finite size effect, the geometry confinement induced channel barriers, dehydration and hydrogen bond effects, etc. The variational principle or the Euler-Lagrange equation is utilized to minimize the total energy functional, which includes the total Hamiltonian of protons, and obtain a new version of generalized Laplace-Beltrami equation, generalized Poisson-Boltzmann equation and generalized Kohn-Sham equation. A set of numerical algorithms, such as the matched interface and

  14. Dual Enrollment for High School Students

    Science.gov (United States)

    Edwards, Linsey; Hughes, Katherine

    2011-01-01

    Dual enrollment programs allow high school students to enroll in college courses and potentially earn college credit. The term concurrent enrollment is sometimes used interchangeably with dual enrollment, and sometimes to refer to a particular model of dual enrollment. In some programs, students earn high school and college credit simultaneously;…

  15. Dual Enrollment in Spanish: One Working Model

    Science.gov (United States)

    Bloom, Melanie; Chambers, Laura

    2009-01-01

    Dual enrollment is now a nation-wide phenomenon as all 50 states currently offer some form of dual-enrollment program to secondary-school students (Karp, Bailey, Hughes, and Fermin 2005). However, dual enrollment itself is often difficult to define as programs vary from school to school (Jordan, Cavalluzzo, and Corallo 2006). Therefore, language…

  16. Sparsity and spectral properties of dual frames

    DEFF Research Database (Denmark)

    Krahmer, Felix; Kutyniok, Gitta; Lemvig, Jakob

    2013-01-01

    We study sparsity and spectral properties of dual frames of a given finite frame. We show that any finite frame has a dual with no more than $n^2$ non-vanishing entries, where $n$ denotes the ambient dimension, and that for most frames no sparser dual is possible. Moreover, we derive an expressio...

  17. Dual Enrollment in Spanish: One Working Model

    Science.gov (United States)

    Bloom, Melanie; Chambers, Laura

    2009-01-01

    Dual enrollment is now a nation-wide phenomenon as all 50 states currently offer some form of dual-enrollment program to secondary-school students (Karp, Bailey, Hughes, and Fermin 2005). However, dual enrollment itself is often difficult to define as programs vary from school to school (Jordan, Cavalluzzo, and Corallo 2006). Therefore, language…

  18. Pairs of dual periodic frames

    DEFF Research Database (Denmark)

    Christensen, Ole; Goh, Say Song

    2012-01-01

    is needed. The purpose of the present paper is to provide constructions of dual pairs of frames in the setting of the Hilbert space of periodic functions L2(0,2π). The frames constructed are given explicitly as trigonometric polynomials, which allows for an efficient calculation of the coefficients...

  19. Noncommutative Self-dual Gravity

    CERN Document Server

    García-Compéan, H; Ramírez, C; Sabido, M

    2003-01-01

    Starting from a self-dual formulation of gravity, we obtain a noncommutative theory of pure Einstein theory in four dimensions. In order to do that, we use Seiberg-Witten map. It is shown that the noncommutative torsion constraint is solved by the vanishing of commutative torsion. Finally, the noncommutative corrections to the action are computed up to second order.

  20. Design of dual pressure regulator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Soo; Kim, Kang Dae; Kim, Myoung Sub [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2008-07-01

    In this paper, we designed sandwich type pressure regulator for air pressure control system. As a result of research, we obtained several important conclusions. First, we decided theory of poppet valve and relief valve which are used in sandwich type pressure regulator, and then designed prototype of pressure regulator. Second, we organized circuit diagram of dual pressure regulator of air pressure control system.

  1. Dual Processing and Diagnostic Errors

    Science.gov (United States)

    Norman, Geoff

    2009-01-01

    In this paper, I review evidence from two theories in psychology relevant to diagnosis and diagnostic errors. "Dual Process" theories of thinking, frequently mentioned with respect to diagnostic error, propose that categorization decisions can be made with either a fast, unconscious, contextual process called System 1 or a slow, analytical,…

  2. Physical Health and Dual Diagnosis

    OpenAIRE

    Robson, Debbie; Keen, Sarah; Mauro, Pia

    2008-01-01

    The physical health of people with mental illness may be neglected for a variety of reasons. This paper looks at the common physical health problems experienced by people with a dual diagnosis of substance misuse and serious mental illness, and suggests ways of assessing and managing them.

  3. Continuum Limit of Total Variation on Point Clouds

    Science.gov (United States)

    García Trillos, Nicolás; Slepčev, Dejan

    2016-04-01

    We consider point clouds obtained as random samples of a measure on a Euclidean domain. A graph representing the point cloud is obtained by assigning weights to edges based on the distance between the points they connect. Our goal is to develop mathematical tools needed to study the consistency, as the number of available data points increases, of graph-based machine learning algorithms for tasks such as clustering. In particular, we study when the cut capacity, and more generally total variation, on these graphs is a good approximation of the perimeter (total variation) in the continuum setting. We address this question in the setting of Γ-convergence. We obtain almost optimal conditions on the scaling, as the number of points increases, of the size of the neighborhood over which the points are connected by an edge for the Γ-convergence to hold. Taking of the limit is enabled by a transportation based metric which allows us to suitably compare functionals defined on different point clouds.

  4. Continuum theory for cluster morphologies of soft colloids.

    Science.gov (United States)

    Kosmrlj, A; Pauschenwein, G J; Kahl, G; Ziherl, P

    2011-06-01

    We introduce a continuum description of the thermodynamics of colloids with a core-corona architecture. In the case of thick coronas, their overlap can be treated approximately by replacing the exact one-particle density distribution by a suitably shaped step profile, which provides a convenient way of modeling the spherical, columnar, lamellar, and inverted cluster morphologies predicted by numerical simulations and the more involved theories. We use the model to study monodisperse particles with the hard-core/square-shoulder pair interaction as the simplest representatives of the core-corona class. We derive approximate analytical expressions for the enthalpies of the cluster morphologies which offer a clear insight into the mechanisms at work, and we calculate the lattice spacing and the cluster size for all morphologies of the phase sequence as well as the phase-transition pressures. By comparing the results with the exact crystalline minimum-enthalpy configurations, we show that the accuracy of the theory increases with shoulder width. We discuss possible extensions of the theory that could account for the finite-temperature effects.

  5. Continuum damage modeling and simulation of hierarchical dental enamel

    Science.gov (United States)

    Ma, Songyun; Scheider, Ingo; Bargmann, Swantje

    2016-05-01

    Dental enamel exhibits high fracture toughness and stiffness due to a complex hierarchical and graded microstructure, optimally organized from nano- to macro-scale. In this study, a 3D representative volume element (RVE) model is adopted to study the deformation and damage behavior of the fibrous microstructure. A continuum damage mechanics model coupled to hyperelasticity is developed for modeling the initiation and evolution of damage in the mineral fibers as well as protein matrix. Moreover, debonding of the interface between mineral fiber and protein is captured by employing a cohesive zone model. The dependence of the failure mechanism on the aspect ratio of the mineral fibers is investigated. In addition, the effect of the interface strength on the damage behavior is studied with respect to geometric features of enamel. Further, the effect of an initial flaw on the overall mechanical properties is analyzed to understand the superior damage tolerance of dental enamel. The simulation results are validated by comparison to experimental data from micro-cantilever beam testing at two hierarchical levels. The transition of the failure mechanism at different hierarchical levels is also well reproduced in the simulations.

  6. Understanding Construction Workers’ Risk Decisions Using Cognitive Continuum Theory

    Directory of Open Access Journals (Sweden)

    Cindy L. Menches

    2016-09-01

    Full Text Available During the course of performing daily tasks, construction workers encounter numerous hazards, such as ladders that are too short to reach the work area, energized electrical lines, or inadequate fall protection. When a hazard is encountered, the worker must make a rapid decision about how to respond and whether to take or avoid the risk. The goal of this research was to construct a theory about the influence of decision cues on intuitive and deliberative decision-making in high-hazard construction environments. Drawing from Cognitive Continuum Theory, the study specifies a framework for understanding why and how construction workers make decisions that lead to taking or avoiding physical risks when they encounter daily hazards. A secondary aim of the research was to construct a set of hypotheses about how specific decision cues influence whether a worker is more likely to engage their intuitive impulses or to use careful deliberation when responding to a hazard. These hypotheses are described and the efficacy of the hypotheses was evaluated using cross-tabulations and nonparametric measures of association. While most of the associations between decision cues and decision mode (i.e., intuition or deliberation identified in this data set were generally modest, none of the associations were statistically zero, thus indicating that further research is warranted based on theoretical grounds. A rigorous program of theory testing is the next logical step to the research.

  7. Confinement on $R^{3}\\times S^{1}$: continuum and lattice

    CERN Document Server

    Ogilvie, Michael C

    2014-01-01

    There has been substantial progress in understanding confinement in a class of four-dimensional SU(N) gauge theories using semiclassical methods. These models have one or more compact directions, and much of the analysis is based on the physics of finite-temperature gauge theories. The topology $R^{3}\\times S^{1}$ has been most often studied, using a small compactification circumference $L$ such that the running coupling $g^{2}\\left(L\\right)$ is small. The gauge action is modified by a double-trace Polyakov loop deformation term, or by the addition of periodic adjoint fermions. The additional terms act to preserve $Z(N)$ symmetry and thus confinement. An area law for Wilson loops is induced by a monopole condensate. In the continuum, the string tension can be computed analytically from topological effects. Lattice models display similar behavior, but the theoretical analysis of topological effects is based on Abelian lattice duality rather than on semiclassical arguments. In both cases the key step is reducin...

  8. Neoclassical Simulation of Tokamak Plasmas using Continuum Gyrokinetc Code TEMPEST

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X Q

    2007-11-09

    We present gyrokinetic neoclassical simulations of tokamak plasmas with self-consistent electric field for the first time using a fully nonlinear (full-f) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five dimensional computational grid in phase space. The present implementation is a Method of Lines approach where the phase-space derivatives are discretized with finite differences and implicit backwards differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving gyrokinetic Poisson equation with self-consistent poloidal variation. With our 4D ({psi}, {theta}, {epsilon}, {mu}) version of the TEMPEST code we compute radial particle and heat flux, the Geodesic-Acoustic Mode (GAM), and the development of neoclassical electric field, which we compare with neoclassical theory with a Lorentz collision model. The present work provides a numerical scheme and a new capability for self-consistently studying important aspects of neoclassical transport and rotations in toroidal magnetic fusion devices.

  9. Spectral line and continuum radiation propagation in a clumpy medium

    CERN Document Server

    Conway, J E; Parra, R

    2004-01-01

    We discuss the propagation of spectral line and continuum radiation in a clumpy medium and give general expressions for the observed absorption or emission from a cloud population. We show that the affect of the medium clumpiness can usually be characterised by a single number multiplying the mean column opacity. Our result provides a simpler proof and generalisation of the result of Martin et al (1984). The formalism provides a simple way to understand the effects of clumping on molecular line profiles and ratios, for example how clumping effects the interpretation of 13CO(1-0) to 12CO(1-0) line ratios. It can also be used as a propagation operator in physical models of clumpy media where the incident radiation effects the spectral line emissivity. We are working to extend the formalism to the propagation of masers in a clumpy medium, but in this case there are special difficulties because formal expectation values are not characteristic of observations because they are biased by rare events.

  10. A continuum theory of surface piezoelectricity for nanodielectrics

    Science.gov (United States)

    Pan, XiaHui; Yu, ShouWen; Feng, XiQiao

    2011-04-01

    In this paper, a phenomenological continuum theory of surface piezoelectricity accounting for the linear superficial interplay between electricity and elasticity is formulated primarily for elastic dielectric materials. This theory is inspired by the physical idea that once completely relaxed, an insulating free dielectric surface will sustain a nontrivial spontaneous surface polarization in the normal direction together with a tangential self-equilibrated residual surface stress field. Under external loadings, the surface Helmholtz free energy density is identified as the characteristic function of such surfaces, with the in-plane strain tensor of surface and the surface free charge density as the independent state variables. New boundary conditions governing the surface piezoelectricity are derived through the variational method. The resulting concepts of charge-dependent surface stress and deformation-dependent surface electric field reflect the linear electromechanical coupling behavior of nanodielectric surfaces. As an illustrative example, an infinite radially polarizable piezoelectric nanotube with both inner and outer surfaces grounded is investigated. The novel phenomenon of possible surface-induced polarity inversion is predicted for thin enough nanotubes.

  11. Gamow-Teller strength in the continuum and quenching problem

    CERN Document Server

    Sakai, H; Okamura, H; Nonaka, T; Ohnishi, T; Yako, K; Sekiguchi, K; Fujita, S; Satou, Y; Otsu, H; Uesaka, T; Ishida, S; Sakamoto, N; Greenfield, M B; Hatanaka, K

    1999-01-01

    Differential cross sections at theta sub l sub a sub b = 0.0 deg. - 12.3 deg. and a complete set of polarization transfer observables at theta sub l sub a sub b = 0.0 deg. are measured for the sup 9 sup 0 Zr(p, n) reaction at T sub p = 295 MeV. A multipole decomposition (MD) technique is applied to the cross sections to extract partial cross sections sigma sub L with L = 0, 1, 2, and 3 contributions. A significant amount of sigma sub L sub = sub 0 is found in the highly excited continuum region. After subtracting the estimated iso-vector spin-monopole strength from sigma sub L sub = sub 0 , the Gamow-Teller (GT) strength B(GT) is deduced to be S subbeta sub - = SIGMA B(GT) = 28 +- 1.6 +- 5.4. The total spin transfer SIGMA(0 deg. ) which is independent of the nuclear reaction mechanisms such as the effective nucleon-nucleon interaction or distortions is derived from the complete set of polarization transfer observables. It is close to unity up to 50 MeV excitation indicating the strong spin-flip character of t...

  12. Continuum Simulations of Water Flow in Carbon Nanotube Membranes

    Science.gov (United States)

    Walther, J. H.; Popadic, A.; Koumoutsakos, P.; Praprotnik, M.

    2014-11-01

    We propose the use of the Navier-Stokes equations subject to partial-slip boundary conditions to simulate water flows in Carbon NanoTube (CNT) membranes. The finite volume discretisations of the Navier-Stokes equations are combined with slip lengths extracted from Molecular Dynamics (MD) simulations to predict the pressure losses at the CNT entrance as well as the enhancement of the flow rate in the CNT. The flow quantities calculated from the present hybrid approach are in excellent agreement with pure MD results while they are obtained at a fraction of the computational cost. The method enables simulations of system sizes and times well beyond the present capabilities of MD simulations. Our simulations provide an asymptotic flow rate enhancement and indicate that the pressure losses at the CNT ends can be reduced by reducing their curvature. More importantly, our results suggest that flows at nanoscale channels can be described by continuum solvers with proper boundary conditions that reflect the molecular interactions of the liquid with the walls of the nanochannel.

  13. Analysis of thermodiffusive cellular instabilities in continuum combustion fronts

    Science.gov (United States)

    Azizi, Hossein; Gurevich, Sebastian; Provatas, Nikolas

    2017-01-01

    We explore numerically the morphological patterns of thermodiffusive instabilities in combustion fronts with a continuum fuel source, within a range of Lewis numbers and ignition temperatures, focusing on the cellular regime. For this purpose, we generalize the recent model of Brailovsky et al. to include distinct process kinetics and reactant heterogeneity. The generalized model is derived analytically and validated with other established models in the limit of infinite Lewis number for zero-order and first-order kinetics. Cellular and dendritic instabilities are found at low Lewis numbers. These are studied using a dynamic adaptive mesh refinement technique that allows very large computational domains, thus allowing us to reduce finite-size effects that can affect or even preclude the emergence of these patterns. Our numerical linear stability analysis is consistent with the analytical results of Brailovsky et al. The distinct types of dynamics found in the vicinity of the critical Lewis number, ranging from steady-state cells to continued tip splitting and cell merging, are well described within the framework of thermodiffusive instabilities and are consistent with previous numerical studies. These types of dynamics are classified as "quasilinear" and characterized by low-amplitude cells that may be strongly affected by the mode selection mechanism and growth prescribed by the linear theory. Below this range of Lewis number, highly nonlinear effects become prominent and large-amplitude, complex cellular and seaweed dendritic morphologies emerge.

  14. Tracking Carbon along the Urban Watershed Continuum to Coastal Zones

    Science.gov (United States)

    Kaushal, S.

    2015-12-01

    Watersheds experiencing urbanization are constantly evolving in their structure and function, and their carbon cycle subsequently evolves across both space and time. We investigate how urbanization influences spatial and temporal evolution of the carbon cycle from small streams to major rivers in the Chesapeake Bay watershed using a variety of approaches such as stable isotopes, in situ water quality sensors, and remote sensing. Along the urban watershed continuum, we show that there is spatial evolution in: (1) the amount, chemical form, and reactivity of carbon, and (2) ecosystem metabolism and transformation of carbon sources from headwaters to coastal waters. Over shorter time scales, the interaction between land use and climate variability alters magnitude and sources of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) as revealed by stable isotopes and in situ sensors. Over longer time scales, land use change has altered particulate carbon transport in coastal waters and the evolution of river sediment plumes as suggested by remote sensing data. Furthermore, there are increased long-term bicarbonate alkalinity concentrations in streams and rivers, and we present new analytical approaches for studying river alkalinization due to human inputs and accelerated chemical weathering. In summary, urbanization alters carbon over space and time with major implications for downstream ecosystem metabolism, biological oxygen demand, carbon dioxide production, and river alkalinization.

  15. A Submillimeter Continuum Survey of Local Dust-obscured Galaxies

    Science.gov (United States)

    Lee, Jong Chul; Hwang, Ho Seong; Lee, Gwang-Ho

    2016-12-01

    We conduct a 350 μm dust continuum emission survey of 17 dust-obscured galaxies (DOGs) at z = 0.05-0.08 with the Caltech Submillimeter Observatory (CSO). We detect 14 DOGs with S 350 μm = 114-650 mJy and signal-to-noise > 3. By including two additional DOGs with submillimeter data in the literature, we are able to study dust content for a sample of 16 local DOGs, which consist of 12 bump and four power-law types. We determine their physical parameters with a two-component modified blackbody function model. The derived dust temperatures are in the range 57-122 K and 22-35 K for the warm and cold dust components, respectively. The total dust mass and the mass fraction of the warm dust component are 3-34 × 107 M ⊙ and 0.03%-2.52%, respectively. We compare these results with those of other submillimeter-detected infrared luminous galaxies. The bump DOGs, the majority of the DOG sample, show similar distributions of dust temperatures and total dust mass to the comparison sample. The power-law DOGs show a hint of smaller dust masses than other samples, but need to be tested with a larger sample. These findings support that the reason DOGs show heavy dust obscuration is not an overall amount of dust content, but probably the spatial distribution of dust therein.

  16. Hybrid Continuum and Molecular Modeling of Nano-scale Flows

    Science.gov (United States)

    Povitsky, Alex; Zhao, Shunliu

    2010-11-01

    A novel hybrid method combining the continuum approach based on boundary singularity method (BSM) and the molecular approach based on the direct simulation Monte Carlo (DSMC) is developed and then used to study viscous fibrous filtration flows in the transition flow regime, Kn>0.25. The DSMC is applied to a Knudsen layer enclosing the fiber and the BSM is employed to the entire flow domain. The parameters used in the DSMC and the coupling procedure, such as the number of simulated particles, the cell size and the size of the coupling zone are determined. Results are compared to the experiments measuring pressure drop and flowfield in filters. The optimal location of singularities outside of flow domain was determined and results are compared to those obtained by regularized Stokeslets. The developed hybrid method is parallelized by using MPI and extended to multi-fiber filtration flows. The multi-fiber filter flows considered are in the partial-slip and transition regimes. For Kn˜1, the computed velocity near fibers changes significantly that confirms the need of molecular methods in evaluation of the flow slip in transitional regime.

  17. Continuum model for chiral induced spin selectivity in helical molecules

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Ernesto [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France); Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); González-Arraga, Luis A. [IMDEA Nanoscience, Cantoblanco, 28049 Madrid (Spain); Finkelstein-Shapiro, Daniel; Mujica, Vladimiro [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); Berche, Bertrand [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France)

    2015-05-21

    A minimal model is exactly solved for electron spin transport on a helix. Electron transport is assumed to be supported by well oriented p{sub z} type orbitals on base molecules forming a staircase of definite chirality. In a tight binding interpretation, the spin-orbit coupling (SOC) opens up an effective π{sub z} − π{sub z} coupling via interbase p{sub x,y} − p{sub z} hopping, introducing spin coupled transport. The resulting continuum model spectrum shows two Kramers doublet transport channels with a gap proportional to the SOC. Each doubly degenerate channel satisfies time reversal symmetry; nevertheless, a bias chooses a transport direction and thus selects for spin orientation. The model predicts (i) which spin orientation is selected depending on chirality and bias, (ii) changes in spin preference as a function of input Fermi level and (iii) back-scattering suppression protected by the SO gap. We compute the spin current with a definite helicity and find it to be proportional to the torsion of the chiral structure and the non-adiabatic Aharonov-Anandan phase. To describe room temperature transport, we assume that the total transmission is the result of a product of coherent steps.

  18. Newtonized Orthogonal Matching Pursuit: Frequency Estimation Over the Continuum

    Science.gov (United States)

    Mamandipoor, Babak; Ramasamy, Dinesh; Madhow, Upamanyu

    2016-10-01

    We propose a fast sequential algorithm for the fundamental problem of estimating frequencies and amplitudes of a noisy mixture of sinusoids. The algorithm is a natural generalization of Orthogonal Matching Pursuit (OMP) to the continuum using Newton refinements, and hence is termed Newtonized OMP (NOMP). Each iteration consists of two phases: detection of a new sinusoid, and sequential Newton refinements of the parameters of already detected sinusoids. The refinements play a critical role in two ways: (1) sidestepping the potential basis mismatch from discretizing a continuous parameter space, (2) providing feedback for locally refining parameters estimated in previous iterations. We characterize convergence, and provide a Constant False Alarm Rate (CFAR) based termination criterion. By benchmarking against the Cramer Rao Bound, we show that NOMP achieves near-optimal performance under a variety of conditions. We compare the performance of NOMP with classical algorithms such as MUSIC and more recent Atomic norm Soft Thresholding (AST) and Lasso algorithms, both in terms of frequency estimation accuracy and run time.

  19. Lyman continuum leaking AGN in the SSA22 field

    CERN Document Server

    Micheva, Genoveva; Inoue, Akio K

    2016-01-01

    Subaru/SuprimeCam narrowband photometry of the SSA22 field reveals the presence of four Lyman continuum (LyC) candidates among a sample of 14 AGN. Two show offsets and likely have stellar LyC in nature or are foreground contaminants. The remaining two LyC candidates are Type I AGN. We argue that the average LyC escape fraction of high redshift quasars is not likely to be unity, as often assumed in the literature. From direct measurement we obtain the average LyC-to-UV flux density ratio and ionizing emissivity for a number of AGN classes and find it at least a factor of two lower than values obtained assuming f_esc = 1. Comparing to recent Ly{\\alpha} forest measurements, AGNs at redshift z\\sim3 make up at most \\sim20% and as little as 3% of the total ionizing budget. Our results suggest that AGNs are unlikely to dominate the ionization budget of the Universe at high redshifts.

  20. A continuum solvent model of the multipolar dispersion solvation energy.

    Science.gov (United States)

    Duignan, Timothy T; Parsons, Drew F; Ninham, Barry W

    2013-08-15

    The dispersion energy is an important contribution to the total solvation energies of ions and neutral molecules. Here, we present a new continuum model calculation of these energies, based on macroscopic quantum electrodynamics. The model uses the frequency dependent multipole polarizabilities of molecules in order to accurately calculate the dispersion interaction of a solute particle with surrounding water molecules. It includes the dipole, quadrupole, and octupole moment contributions. The water is modeled via a bulk dielectric susceptibility with a spherical cavity occupied by the solute. The model invokes damping functions to account for solute-solvent wave function overlap. The assumptions made are very similar to those used in the Born model. This provides consistency and additivity of electrostatic and dispersion (quantum mechanical) interactions. The energy increases in magnitude with cation size, but decreases slightly with size for the highly polarizable anions. The higher order multipole moments are essential, making up more than 50% of the dispersion solvation energy of the fluoride ion. This method provides an accurate and simple way of calculating the notoriously problematic dispersion contribution to the solvation energy. The result establishes the importance of using accurate calculations of the dispersion energy for the modeling of solvation.

  1. Aggregation patterns from nonlocal interactions: Discrete stochastic and continuum modeling

    KAUST Repository

    Hackett-Jones, Emily J.

    2012-04-17

    Conservation equations governed by a nonlocal interaction potential generate aggregates from an initial uniform distribution of particles. We address the evolution and formation of these aggregating steady states when the interaction potential has both attractive and repulsive singularities. Currently, no existence theory for such potentials is available. We develop and compare two complementary solution methods, a continuous pseudoinverse method and a discrete stochastic lattice approach, and formally show a connection between the two. Interesting aggregation patterns involving multiple peaks for a simple doubly singular attractive-repulsive potential are determined. For a swarming Morse potential, characteristic slow-fast dynamics in the scaled inverse energy is observed in the evolution to steady state in both the continuous and discrete approaches. The discrete approach is found to be remarkably robust to modifications in movement rules, related to the potential function. The comparable evolution dynamics and steady states of the discrete model with the continuum model suggest that the discrete stochastic approach is a promising way of probing aggregation patterns arising from two- and three-dimensional nonlocal interaction conservation equations. © 2012 American Physical Society.

  2. Developmental Coordination Disorder and cerebral palsy: categories or a continuum?

    Science.gov (United States)

    Pearsall-Jones, Jillian G; Piek, Jan P; Levy, Florence

    2010-10-01

    Developmental Coordination Disorder (DCD) is a movement disorder affecting between 1.7% and 6% of children aged 5-11 years. The Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition Text Revision codes DCD as an Axis I Clinical Disorder. If there is neurological involvement, as is the case for cerebral palsy, the movement disorder would be coded as an Axis III General Medical Condition. What little is known of the aetiology of DCD implicates neurological involvement. In a previous co-twin control study of monozygotic twins concordant and discordant for DCD, seven of the nine twins who met criteria for DCD on the McCarron Assessment of Neuromuscular Development experienced perinatal oxygen perfusion problems, while another experienced prenatal complications. This supported findings in an earlier study of a relationship between environmental factors and DCD, and strengthened the hypothesis that DCD and cerebral palsy have similar causal pathways and may fall on a continuum of movement disorder rather than being discrete categories. In the present paper, this hypothesis is tested by application of the nine principles identified by Sir Austin Bradford Hill as important when considering observed associations between two variables. Implications for prevention, clinical intervention, policy, and classification systems are discussed.

  3. The Optical-UV Continuum of a Sample of QSOs

    CERN Document Server

    Natali, F; Cristiani, S; La Franca, F

    1997-01-01

    The average optical-UV continuum shape of QSOs has been investigated using spectra of 62 QSOs having good relative photometric calibrations. The QSO spectra were extracted from two complete color selected samples in the magnitude intervals B ~ 16-20. The analysis was performed fitting power-law continua (f proportional to nu^(alpha)) in well defined rest-frame wavelength intervals after removing regions of the spectrum affected by strong emission lines or weak emission bumps. The average slope in the rest-frame optical-UV region 1200 - 5500 A shows a rapid change around the 3000 A emission bump with alpha=0.15 longward of it and alpha=-0.65 at shorter wavelengths. Although these average slopes have been obtained using spectra of QSOs with different luminosities and redshifts, there are no significant correlations of the average spectral index with these quantities. For a few QSOs in the sample we were able to measure the same softening of the spectral shape within the individual spectrum. These results have s...

  4. A contoured continuum surface force model for particle methods

    Science.gov (United States)

    Duan, Guangtao; Koshizuka, Seiichi; Chen, Bin

    2015-10-01

    A surface tension model is essential to simulate multiphase flows with deformed interfaces. This study develops a contoured continuum surface force (CCSF) model for particle methods. A color function that varies sharply across the interface to mark different fluid phases is smoothed in the transition region, where the local contour curvature can be regarded as the interface curvature. The local contour passing through each reference particle in the transition region is extracted from the local profile of the smoothed color function. The local contour curvature is calculated based on the Taylor series expansion of the smoothed color function, whose derivatives are calculated accurately according to the definition of the smoothed color function. Two schemes are proposed to specify the smooth radius: fixed scheme, where 2 ×re (re = particle interaction radius) is assigned to all particles in the transition region; and varied scheme, where re and 2 ×re are assigned to the central and edged particles in the transition region respectively. Numerical examples, including curvature calculation for static circle and ellipse interfaces, deformation of square droplet to a circle (2D and 3D), droplet deformation in shear flow, and droplet coalescence, are simulated to verify the CCSF model and compare its performance with those of other methods. The CCSF model with the fixed scheme is proven to produce the most accurate curvature and lowest parasitic currents among the tested methods.

  5. Electron affinities of uracil: microsolvation effects and polarizable continuum model.

    Science.gov (United States)

    Melicherčík, Miroslav; Pašteka, Lukáš F; Neogrády, Pavel; Urban, Miroslav

    2012-03-08

    We present adiabatic electron affinities (AEAs) and the vertical detachment energies (VDEs) of the uracil molecule interacting with one to five water molecules. Credibility of MP2 and DFT/B3LYP calculations is supported by comparison with available benchmark CCSD(T) data. AEAs and VDEs obtained by MP2 and DFT/B3LYP methods copy trends of benchmark CCSD(T) results for the free uracil and uracil-water complexes in the gas phase being by 0.20 - 0.28 eV higher than CCSD(T) values depending on the particular structure of the complex. AEAs and VDEs from MP2 are underestimated by 0.09-0.15 eV. For the free uracil and uracil-(H(2)O)(n) (n = 1,2,3,5) complexes, we also consider the polarizable continuum model (PCM) and discuss the importance of the microsolvation when combined with PCM. AEAs and VDEs of uracil and uracil-water complexes enhance rapidly with increasing relative dielectric constant (ε) of the solvent. Highest AEAs and VDEs of the U(H(2)O)(5) complexes from B3LYP with ε = 78.4 are 2.03 and 2.81 eV, respectively, utilizing the correction from CCSD(T). Specific structural features of the microsolvated uracil-(H(2)O)(n) complexes and their anions are preserved also upon considering PCM in calculations of AEAs and VDEs.

  6. A Submillimeter Continuum Survey of Local Dust-Obscured Galaxies

    CERN Document Server

    Lee, Jong Chul; Lee, Gwang-Ho

    2016-01-01

    We conduct a 350 micron dust continuum emission survey of 17 dust-obscured galaxies (DOGs) at z = 0.05-0.08 with the Caltech Submillimeter Observatory (CSO). We detect 14 DOGs with S_350 = 114-650 mJy and S/N > 3. By including two additional DOGs with submillimeter data in the literature, we are able to study dust contents for a sample of 16 local DOGs that consists of 12 bump and 4 power-law types. We determine their physical parameters with a two-component modified blackbody function model. The derived dust temperatures are in the range 57-122 K and 22-35 K for the warm and cold dust components, respectively. The total dust mass and the mass fraction of warm dust component are 3-34$\\times10^{7} M_\\odot$ and 0.03-2.52%, respectively. We compare these results with those of other submillimeter-detected infrared luminous galaxies. The bump DOGs, the majority of the DOG sample, show similar distributions of dust temperatures and total dust mass to the comparison sample. The power-law DOGs show a hint of smaller ...

  7. Lyman continuum leaking AGN in the SSA22 field

    Science.gov (United States)

    Micheva, Genoveva; Iwata, Ikuru; Inoue, Akio K.

    2017-02-01

    Subaru/SuprimeCam narrow-band photometry of the SSA22 field reveals the presence of four Lyman continuum (LyC) candidates among a sample of 14 active galactic nuclei (AGNs). Two show offsets and likely have stellar LyCin nature or are foreground contaminants. The remaining two LyC candidates are type I AGN. We argue that the average LyC escape fraction of high-redshift, low-luminosity AGN is not likely to be unity, as often assumed in the literature. From direct measurement we obtain the average LyC-to-UV flux density ratio and ionizing emissivity for a number of AGN classes and find it at least a factor of 2 lower than values obtained assuming fesc = 1. Comparing to recent Ly α forest measurements, AGNs at redshift z ˜ 3 make up at most ˜12 per cent and as little as ˜5 per cent of the total ionizing budget. Our results suggest that AGNs are unlikely to dominate the ionization budget of the Universe at high redshifts.

  8. Burnett-Cattaneo continuum theory for shock waves.

    Science.gov (United States)

    Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon

    2011-02-01

    We model strong shock-wave propagation, both in the ideal gas and in the dense Lennard-Jones fluid, using a refinement of earlier work, which accounts for the cold compression in the early stages of the shock rise by a nonlinear, Burnett-like, strain-rate dependence of the thermal conductivity, and relaxation of kinetic-temperature components on the hot, compressed side of the shock front. The relaxation of the disequilibrium among the three components of the kinetic temperature, namely, the difference between the component in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, is accomplished at a much more quantitative level by a rigorous application of the Cattaneo-Maxwell relaxation equation to a reference solution, namely, the steady shock-wave solution of linear Navier-Stokes-Fourier theory, along with the nonlinear Burnett heat-flux term. Our new continuum theory is in nearly quantitative agreement with nonequilibrium molecular-dynamics simulations under strong shock-wave conditions, using relaxation parameters obtained from the reference solution.

  9. Perspective on Continuum Modeling of Mesoscale/ Macroscale Phenomena

    Science.gov (United States)

    Bammann, D. J.

    The attempt to model or predict the inelastic response or permanent deformation and failure observed in metals dates back over 180 years. Various descriptions of the post elastic response of metals have been proposed from the fields of physics, materials science (metallurgy), engineering, mechanics, and applied mathematics. The communication between these fields has improved and many of the modeling efforts today involve concepts from most or all of these fields. Early engineering description of post yield response treated the material as perfectly plastic — the material continues to deform with zero additional increase in load. These models became the basis of the mathematical theory of plasticity and were extended to account for hardening, unloading, and directional hardening. In contradistinction, rheological models treated the finite deformation of a solid similar to the deformation of a viscous fluid. In many cases of large deformation, rheological models have provided both adequate and accurate information about the deformed shape of a metal during many manufacturing processes. The treatment of geometric defects in solid bodies initiated within the mathematical theory of elasticity, the dislocation, introduced as an incompatible "cut" in a continuum body. This resulted in a very large body of literature devoted to the linear elastic study of dislocations, dislocation structures, and their interactions, and has provided essential information in the understanding of the "state" of a deformed material.

  10. Accurate Sky Continuum Subtraction with Fibre-fed Spectrographs

    CERN Document Server

    Yang, Yanbin; Puech, Mathieu; Flores, Hector; Royer, Frederic; Disseau, Karen; Gonçalves, Thiago; Hammer, François; Cirasuolo, Michele; Evans, Chris; Causi, Gianluca Li; Maiolino, Roberto; Melo, Claudio

    2013-01-01

    Fibre-fed spectrographs now have throughputs equivalent to slit spectrographs. However, the sky subtraction accuracy that can be reached has often been pinpointed as one of the major issues associated with the use of fibres. Using technical time observations with FLAMES-GIRAFFE, two observing techniques, namely dual staring and cross beam-switching, were tested and the resulting sky subtraction accuracy reached in both cases was quantified. Results indicate that an accuracy of 0.6% on sky subtraction can be reached, provided that the cross beam-switching mode is used. This is very encouraging with regard to the detection of very faint sources with future fibre-fed spectrographs, such as VLT/MOONS or E-ELT/MOSAIC.

  11. Science Letters: A modified chlorophyll absorption continuum index for chlorophyll estimation

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-hua; HUANG Jing-feng; WANG Fu-min; WANG Xiu-zhen; YI Qiu-xiang; WANG Yuan

    2006-01-01

    There is increasing interest in using hyperspectral data for quantitative characterization of vegetation m spatial and temporal scopes. Many spectral indices are being developed to improve vegetation sensitivity by minimizing the background influence. The chlorophyll absorption continuum index (CACI) is such a measure to calculate the spectral continuum on which the analyses are based on the area of the troughs spanned by the spectral continuum. However, different values of CACI were obtained in this method because different positions of continuums were determined by different users. Furthermore, the sensitivity of CACI to agronomic parameters such as green leaf chlorophyll density (GLCD) has been reduced because the fixed positions of continuums are determined when the red edge shifted with the change in GLCD. A modified chlorophyll absorption continuum index (MCACI) is presented in this article. The red edge inflection point (REIP) replaces the maximum reflectance point (MRP) in near-infrared (NIR) shoulder on the CACI continuum. This MCACI has been proved to increase the sensitivity and predictive power of GLCD.

  12. Electromagnetically induced transparency for Lambda - like systems with a structured continuum

    CERN Document Server

    Raczynski, A; Zaremba, J; Zielinska-Kaniasty, S

    2005-01-01

    Electric susceptibility of a laser-dressed atomic medium is calculated for a model Lambda - like system including two lower states and a continuum structured by a presence of an autoionizing state or a continuum with a laser-induced structure. Depending on the strength of a control field it is possible to obtain a significant reduction of the light velocity in a narrow frequency window in the conditions of a small absorption. A smooth transition is shown between the case of a flat continuum and that of a discrete state serving as the upper state of a Lambda system.

  13. Continuum Navier-Stokes modelling of water flow past fullerene molecules

    Science.gov (United States)

    Walther, J. H.; Popadic, A.; Koumoutsakos, P.; Praprotnik, M.

    2015-11-01

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the computational cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently by continuum flow solvers, allowing for investigations into spatiotemporal scales inaccessible to atomistic simulations.

  14. A Four-Dimensional Continuum Theory of Space-Time and the Classical Physical Fields

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2007-10-01

    Full Text Available In this work, we attempt to describe the classical physical fields of gravity, electromagnetism, and the so-called intrinsic spin (chirality in terms of a set of fully geometrized constitutive equations. In our formalism, we treat the four-dimensional space-time continuum as a deformable medium and the classical fields as intrinsic stress and spin fields generated by infinitesimal displacements and rotations in the space-time continuum itself. In itself, the unifying continuum approach employed herein may suggest a possible unified field theory of the known classical physical fields.

  15. Collective Multipole excitations of exotic nuclei in relativistic continuum random phase approximation

    CERN Document Server

    Yang, Ding; Ma, Zhongyu

    2013-01-01

    Journal of Combinatorial Theory, Series B, 98(1):173-225, 2008n exotic nuclei are studied in the framework of a fully self-consistent relativistic continuum random phase approximation (RCRPA). In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function. Different from the cases in stable nuclei, there are strong low-energy excitations in neutron-rich nuclei and proton-rich nuclei. The neutron or proton excess pushes the centroid of the strength function to lower energies and increases the fragmentation of the strength distribution. The effect of treating the contribution of continuum exactly are also discussed.

  16. New 20-cm radio-continuum study of the Small Magellanic Cloud, part II: Point sources

    Directory of Open Access Journals (Sweden)

    Wong G.F.

    2011-01-01

    Full Text Available We present a new catalogue of radio-continuum sources in the field of the Small Magellanic Cloud (SMC. This catalogue contains sources previously not found in 2370 MHz (λ=13 cm with sources found at 1400 MHz (λ=20 cm and 843 MHz (λ=36 cm. 45 sources have been detected at 13 cm, with 1560 sources at 20 cm created from new high sensitivity and resolution radio-continuum images of the SMC at 20 cm from paper I. We also created a 36 cm catalogue to which we listed 1689 radio-continuum sources.

  17. Evaluation of mine scale longwall top Coal caving parameters using continuum analysis

    Institute of Scientific and Technical Information of China (English)

    Manoj Khanal; Deepak Adhikary; Rao Balusu

    2011-01-01

    A mine-scale analysis of Longwall Top Coal Caving (LTCC) is performed using a continuum mechanics finite element solver called COSFLOW.The uniqueness of COSFLOW is that it incorporates Cosserat continuum theory in its formulation for describing the load deformation of bedded rocks.It is shown that such a continuum based code is valuable for assessing the feasibility of introducing LTCC in any mine.Various LTCC parameters,for example chock convergences,top coal failure behavior,strata caving mechanism,abutment stresses and vertical stresses,were evaluated for a mine using COSFLOW.

  18. Non-classical solutions of a continuum model for rock descriptions

    Institute of Scientific and Technical Information of China (English)

    Mikhail A.Guzev

    2014-01-01

    The strain-gradient and non-Euclidean continuum theories are employed for construction of non-classical solutions of continuum models. The linear approximation of both models’ results in identical structures in terms of their kinematic and stress characteristics. The solutions obtained in this study exhibit a critical behaviour with respect to the external loading parameter. The conclusions are obtained based on an investigation of the solution for the scalar curvature in the non-Euclidean continuum theory. The proposed analysis enables us to use different theoretical approaches for description of rock critical behaviour under different loading conditions.

  19. Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre

    DEFF Research Database (Denmark)

    Chow, K.K.; Takushima, Y.; Lin, C.

    2006-01-01

    Flat super-continuum generation spanning over the whole telecommunication band using a passively modelocked fibre laser source at 1550 nm together with a dispersion-flattened nonlinear photoinc crystal fibre is demonstrated. Since the pulses propagate in the normal dispersion regime of the fibre...... only, linear frequency chirp is induced by self-phase modulation which leads to a flat super-continuum. By launching the compressed 170 fs modelocked pulses with an average power of 10 mW into the fibre, super-continuum over 185 nm with less than 5 dB fluctuation is obtained from the all...

  20. Dual leadership in a hospital practice

    DEFF Research Database (Denmark)

    Thude, Bettina Ravnborg; Thomsen, Svend Erik; Stenager, Egon

    2017-01-01

    in the hospital context and develops a categorizing tool for being able to distinguish dual leadership teams from each other. It is important to reveal if there are any indicators that can be used for optimising dual leadership teams in the health-care sector and in other organisations......., this study aims to analyse three different dual leadership pairs at a Danish hospital. Furthermore, this study develops a tool to characterize dual leadership teams from each other. Design/methodology/approach This is a qualitative study using semi-structured interviews. Six leaders were interviewed...... that power balance, personal relations and decision processes are important factors for creating efficient dual leaderships. The study develops a categorizing tool to use for further research or for organizations, to describe and analyse dual leaderships. Originality/value The study describes dual leadership...

  1. SR 97. Alternative models project. Stochastic continuum modelling of Aberg

    Energy Technology Data Exchange (ETDEWEB)

    Widen, H. [Kemakta AB, Stockholm (Sweden); Walker, D. [INTERA KB/DE and S (Sweden)

    1999-08-01

    As part of studies into the siting of a deep repository for nuclear waste, Swedish Nuclear Fuel and Waste Management Company (SKB) has commissioned the Alternative Models Project (AMP). The AMP is a comparison of three alternative modelling approaches to bedrock performance assessment for a single hypothetical repository, arbitrarily named Aberg. The Aberg repository will adopt input parameters from the Aespoe Hard Rock Laboratory in southern Sweden. The models are restricted to an explicit domain, boundary conditions and canister location to facilitate the comparison. The boundary conditions are based on the regional groundwater model provided in digital format. This study is the application of HYDRASTAR, a stochastic continuum groundwater flow and transport-modelling program. The study uses 34 realisations of 945 canister locations in the hypothetical repository to evaluate the uncertainty of the advective travel time, canister flux (Darcy velocity at a canister) and F-ratio. Several comparisons of variability are constructed between individual canister locations and individual realisations. For the ensemble of all realisations with all canister locations, the study found a median travel time of 27 years, a median canister flux of 7.1 x 10{sup -4} m/yr and a median F-ratio of 3.3 x 10{sup 5} yr/m. The overall pattern of regional flow is preserved in the site-scale model, as is reflected in flow paths and exit locations. The site-scale model slightly over-predicts the boundary fluxes from the single realisation of the regional model. The explicitly prescribed domain was seen to be slightly restrictive, with 6% of the stream tubes failing to exit the upper surface of the model. Sensitivity analysis and calibration are suggested as possible extensions of the modelling study.

  2. Characterization of fracture processes by continuum and discrete modelling

    Science.gov (United States)

    Kaliske, M.; Dal, H.; Fleischhauer, R.; Jenkel, C.; Netzker, C.

    2012-09-01

    A large number of methods to describe fracture mechanical features of structures on basis of computational algorithms have been developed in the past due to the importance of the topic. In this paper, current and promising numerical approaches for the characterization of fracture processes are presented. A fracture phenomenon can either be depicted by a continuum formulation or a discrete notch. Thus, starting point of the description is a micromechanically motivated formulation for the development of a local failure situation. A current, generalized method without any restriction to material modelling and loading situation in order to describe an existing crack in a structure is available through the material force approach. One possible strategy to simulate arbitrary crack growth is based on an adaptive implementation of cohesive elements in combination with the standard discretization of the body. In this case, crack growth criteria and the determination of the crack propagation direction in combination with the modification of the finite element mesh are required. The nonlinear structural behaviour of a fibre reinforced composite material is based on the heterogeneous microstructure. A two-scale simulation is therefore an appropriate and effective way to take into account the scale differences of macroscopic structures with microscopic elements. In addition, fracture mechanical structural properties are far from being sharp and deterministic. Moreover, a wide range of uncertainties influence the ultimate load bearing behaviour. Therefore, it is evident that the deterministic modelling has to be expanded by a characterization of the uncertainty in order to achieve a reliable and realistic simulation result. The employed methods are illustrated by numerical examples.

  3. Non-equilibrium stochastic dynamics in continuum: The free case

    Directory of Open Access Journals (Sweden)

    Y.Kondratiev

    2008-12-01

    Full Text Available We study the problem of identification of a proper state-space for the stochastic dynamics of free particles in continuum, with their possible birth and death. In this dynamics, the motion of each separate particle is described by a fixed Markov process M on a Riemannian manifold X. The main problem arising here is a possible collapse of the system, in the sense that, though the initial configuration of particles is locally finite, there could exist a compact set in X such that, with probability one, infinitely many particles will arrive at this set at some time t>0. We assume that X has infinite volume and, for each α���1, we consider the set Θα of all infinite configurations in X for which the number of particles in a compact set is bounded by a constant times the α-th power of the volume of the set. We find quite general conditions on the process M which guarantee that the corresponding infinite particle process can start at each configuration from Θα, will never leave Θα, and has cadlag (or, even, continuous sample paths in the vague topology. We consider the following examples of applications of our results: Brownian motion on the configuration space, free Glauber dynamics on the configuration space (or a birth-and-death process in X, and free Kawasaki dynamics on the configuration space. We also show that if X=Rd, then for a wide class of starting distributions, the (non-equilibrium free Glauber dynamics is a scaling limit of (non-equilibrium free Kawasaki dynamics.

  4. Phosphorus Dynamics along River Continuum during Typhoon Storm Events

    Directory of Open Access Journals (Sweden)

    Ming Fai Chow

    2017-07-01

    Full Text Available Information on riverine phosphorus (P dynamics during typhoon storm events remains scarce in subtropical regions. Thus, this study investigates the spatial and temporal dynamics of riverine phosphorus in a headwater catchment during three typhoon events. Continuous sampling (3 h intervals of stormwater samples and discharge data were conducted at five locations, which represent the upstream, transitional zone, and downstream areas of the main inflow river. The results revealed that the average event mean concentrations (EMCs for total dissolved phosphorus (TDP and particulate phosphorus (PP in the upstream catchment of Fei-Tsui reservoir were 15.66 μg/L and 11.94 μg/L, respectively. There was at least a 1.3-fold increase in flow-weighted concentrations of TDP and PP from the upper to lower reaches of the main stream. PP and TDP were transported either in clockwise or anticlockwise directions, depending on storm intensity and source. The transport of TDP was primarily regulated by the subsurface flow during the storm event. Soluble reactive phosphorus (SRP contributes more than 50% of the TDP load in moderate storms, while extreme storms supply a greater dissolved organic phosphorus (DOP load into the stream. TDP accounted for approximately 50% of TP load during typhoon storms. Mobilization of all P forms was observed from upstream to downstream of the river, except for DOP. A decrease of DOP load on passing downstream may reflect the change in phosphorus form along the river continuum. Peak discharge and antecedent dry days are correlated positively with P fluxes, indicating that river bank erosion and re-suspension of within-channel sediment are the dominant pathways of P during typhoon storm periods.

  5. Integrated Information Systems Across the Weather-Climate Continuum

    Science.gov (United States)

    Pulwarty, R. S.; Higgins, W.; Nierenberg, C.; Trtanj, J.

    2015-12-01

    The increasing demand for well-organized (integrated) end-to-end research-based information has been highlighted in several National Academy studies, in IPCC Reports (such as the SREX and Fifth Assessment) and by public and private constituents. Such information constitutes a significant component of the "environmental intelligence" needed to address myriad societal needs for early warning and resilience across the weather-climate continuum. The next generation of climate research in service to the nation requires an even more visible, authoritative and robust commitment to scientific integration in support of adaptive information systems that address emergent risks and inform longer-term resilience strategies. A proven mechanism for resourcing such requirements is to demonstrate vision, purpose, support, connection to constituencies, and prototypes of desired capabilities. In this presentation we will discuss efforts at NOAA, and elsewhere, that: Improve information on how changes in extremes in key phenomena such as drought, floods, and heat stress impact management decisions for resource planning and disaster risk reduction Develop regional integrated information systems to address these emergent challenges, that integrate observations, monitoring and prediction, impacts assessments and scenarios, preparedness and adaptation, and coordination and capacity-building. Such systems, as illustrated through efforts such as NIDIS, have strengthened the integration across the foundational research enterprise (through for instance, RISAs, Modeling Analysis Predictions and Projections) by increasing agility for responding to emergent risks. The recently- initiated Climate Services Information System, in support of the WMO Global Framework for Climate Services draws on the above models and will be introduced during the presentation.

  6. The Novice-Expert Continuum in Astronomy Knowledge

    Science.gov (United States)

    Bryce, T. G. K.; Blown, E. J.

    2012-03-01

    The nature of expertise in astronomy was investigated across a broad spectrum of ages and experience in China and New Zealand. Five hypotheses (capable of quantification and statistical analysis) were used to probe types of expertise identified by previous researchers: (a) domain-specific knowledge-skill in the use of scientific vocabulary and language and recognising relationships between concepts in linguistic and schematic forms; (b) higher-order theory in terms of conceptual structure and enriched scientific knowledge and reasoning; with an expectation of cultural similarity. There were 993 participants in all, age 3-80 years, including 68 junior school pupils; 68 pre-school pupils; 112 middle-school students; 109 high-school students; 79 physics undergraduates; 60 parents; 136 pre-service primary teachers; 131 pre-service secondary teachers; 72 primary teachers; 78 secondary teachers; 50 amateur astronomers and astronomy educators; and 30 astronomers and physicists; with approximately equal numbers of each group in both cultures; and of boys and girls in the case of children. For them, the methodology utilised Piagetian interviews with three media (verbal language, drawing, play-dough modelling), and for adults a questionnaire inviting responses in writing and drawing was used. The data from each group were categorised into ordinal scales and then analysed by means of Kolmogorov-Smirnov two-sample tests. The findings supported the hypotheses with evidence of all forms of expertise increasing with experience in both cultures (α level 0.05). The relative gains, overlaps and deficits in expertise across the novice-expert continuum are explored in detail.

  7. A double continuum hydrological model for glacier applications

    Science.gov (United States)

    de Fleurian, B.; Gagliardini, O.; Zwinger, T.; Durand, G.; Le Meur, E.; Mair, D.; Råback, P.

    2014-01-01

    The flow of glaciers and ice streams is strongly influenced by the presence of water at the interface between ice and bed. In this paper, a hydrological model evaluating the subglacial water pressure is developed with the final aim of estimating the sliding velocities of glaciers. The global model fully couples the subglacial hydrology and the ice dynamics through a water-dependent friction law. The hydrological part of the model follows a double continuum approach which relies on the use of porous layers to compute water heads in inefficient and efficient drainage systems. This method has the advantage of a relatively low computational cost that would allow its application to large ice bodies such as Greenland or Antarctica ice streams. The hydrological model has been implemented in the finite element code Elmer/Ice, which simultaneously computes the ice flow. Herein, we present an application to the Haut Glacier d'Arolla for which we have a large number of observations, making it well suited to the purpose of validating both the hydrology and ice flow model components. The selection of hydrological, under-determined parameters from a wide range of values is guided by comparison of the model results with available glacier observations. Once this selection has been performed, the coupling between subglacial hydrology and ice dynamics is undertaken throughout a melt season. Results indicate that this new modelling approach for subglacial hydrology is able to reproduce the broad temporal and spatial patterns of the observed subglacial hydrological system. Furthermore, the coupling with the ice dynamics shows good agreement with the observed spring speed-up.

  8. [Plant-microbe symbioses as an evolutionary continuum].

    Science.gov (United States)

    Provorov, N A

    2009-01-01

    In spite of enormous taxonomic, structural and functional diversity of plant-microbe interactions, they are characterized by a historical succession which allows us to consider different forms of symbioses as the components of an evolutionary continuum. Their ancestral form is represented by arbuscular mycorrhiza (AM) which originated at the outset of terrestrial flora evolution and constituted a key factor for the land colonization by plants. In the course of AM evolution the plant acquired a basal set of genes for regulating the performance of microbes which colonize the root tissues. Later, these genes were repeatedly reorganized to meet the involvement of novel mutualistic symbionts (N2-fixing bacteria, ectomycorrhizal fungi, endophytes and epiphytes) and pathogens into the symbiotic interactions. Form the microbial side, the evolutionary succession of mutualism and antagonism is restricted to the defensive symbioses formed by plants with the ergot fungi, Clavibacter, Bacillus and Pseudomonas bacteria. Involvement of the similar systems for symbiotic interactions may be related to convergent evolution in the distant microorganisms (adaptation to the conservative host defense/regulatory factors), to molecular mimicry (imitation of the mechanisms of interaction used by the more ancient symbionts) or to the horizontal gene transfer. The hypotheses of the successive substitution of symbionts is suggested to address the relationships between AM and N2-fixing nodular symbioses in dicotyledons plants. AM formation is considered as a source of preadaptations responsible for the substitution of glomalean fungi which occupied the plant symbiotic compartments by the actinomycetes Frankia (in Rosid I plants) which were exchanged for the more competitive root nodule bacteria (in legumes). The development of nutritional symbioses with microbes is considered as an ancestral function of plant roots which were later supplemented or substituted with the function of assimilating

  9. Anisotropy in finite continuum percolation: threshold estimation by Minkowski functionals

    Science.gov (United States)

    Klatt, Michael A.; Schröder-Turk, Gerd E.; Mecke, Klaus

    2017-02-01

    We examine the interplay between anisotropy and percolation, i.e. the spontaneous formation of a system spanning cluster in an anisotropic model. We simulate an extension of a benchmark model of continuum percolation, the Boolean model, which is formed by overlapping grains. Here we introduce an orientation bias of the grains that controls the degree of anisotropy of the generated patterns. We analyze in the Euclidean plane the percolation thresholds above which percolating clusters in x- and in y-direction emerge. Only in finite systems, distinct differences between effective percolation thresholds for different directions appear. If extrapolated to infinite system sizes, these differences vanish independent of the details of the model. In the infinite system, the uniqueness of the percolating cluster guarantees a unique percolation threshold. While percolation is isotropic even for anisotropic processes, the value of the percolation threshold depends on the model parameters, which we explore by simulating a score of models with varying degree of anisotropy. To which precision can we predict the percolation threshold without simulations? We discuss analytic formulas for approximations (based on the excluded area or the Euler characteristic) and compare them to our simulation results. Empirical parameters from similar systems allow for accurate predictions of the percolation thresholds (with deviations of  integral geometry provide, at least for the systems studied here, lower bounds that capture well the qualitative dependence of the percolation threshold on the system parameters (with deviations of 5 % –30 % ). As an outlook, we suggest further candidates for explicit and geometric approximations based on second moments of the so-called Minkowski functionals.

  10. A comparison of approaches in fitting continuum SEDs

    Institute of Scientific and Technical Information of China (English)

    Yao Liu; David Madlener; Sebastian Wolf; Hong-Chi Wang

    2013-01-01

    We present a detailed comparison of two approaches,the use of a precalculated database and simulated annealing (SA),for fitting the continuum spectral energy distribution (SED) of astrophysical objects whose appearance is dominated by surrounding dust.While pre-calculated databases are commonly used to model SED data,only a few studies to date employed SA due to its unclear accuracy and convergence time for this specific problem.From a methodological point of view,different approaches lead to different fitting quality,demand on computational resources and calculation time.We compare the fitting quality and computational costs of these two approaches for the task of SED fitting to provide a guide to the practitioner to find a compromise between desired accuracy and available resources.To reduce uncertainties inherent to real datasets,we introduce a reference model resembling a typical circumstellar system with 10 free parameters.We derive the SED of the reference model with our code MC3D at 78 logarithmically distributed wavelengths in the range [0.3 μm,1.3 mm] and use this setup to simulate SEDs for the database and SA.Our result directly demonstrates the applicability of SA in the field of SED modeling,since the algorithm regularly finds better solutions to the optimization problem than a precalculated database.As both methods have advantages and shortcomings,a hybrid approach is preferable.While the database provides an approximate fit and overall probability distributions for all parameters deduced using Bayesian analysis,SA can be used to improve upon the results returned by the model grid.

  11. Dual Mode Slotted Monopole Antenna

    Science.gov (United States)

    2017-01-05

    of 15 DUAL MODE SLOTTED MONOPOLE ANTENNA STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and used by...REFERENCE TO OTHER PATENT APPLICATIONS [0002] None. BACKGROUND OF THE INVENTION (1) Field of the Invention [0003] The present invention is directed...such as this that is capable of radiating at a different frequency below this cutoff. The present invention provides a means by which the overall

  12. Dual geometries and spacetime singularities

    CERN Document Server

    Quirós, I

    2000-01-01

    The concept of geometrical duality is disscused in the context of Brans-Dicke theory and extended to general relativity. It is shown, in some generic cases, that spacetime singularities that arise in usual Riemannian general relativity, may be avoided in its dual representation: Weyl-like general relativity, thus providing a singularity-free picture of the World that is physicaly equivalent to the canonical general relativistic one.

  13. Dual arm master controller concept

    Energy Technology Data Exchange (ETDEWEB)

    Kuban, D.P.; Perkins, G.S.

    1984-01-01

    The Advanced Servomanipulator (ASM) slave was designed with an anthropomorphic stance, gear/torque tube power drives, and modular construction. These features resulted in increased inertia, friction, and backlash relative to tape-driven manipulators. Studies were performed which addressed the human factors design and performance trade-offs associated with the corresponding master controller best suited for the ASM. The results of these studies, as well as the conceptual design of the dual arm master controller, are presented. 6 references, 3 figures.

  14. Dual targeting of peroxisomal proteins

    Directory of Open Access Journals (Sweden)

    Julia eAst

    2013-10-01

    Full Text Available Cellular compartmentalization into organelles serves to separate biological processes within the environment of a single cell. While some metabolic reactions are specific to a single organelle, others occur in more than one cellular compartment. Specific targeting of proteins to compartments inside of eukaryotic cells is mediated by defined sequence motifs. To achieve multiple targeting to different compartments cells use a variety of strategies. Here, we focus on mechanisms leading to dual targeting of peroxisomal proteins. In many instances, isoforms of peroxisomal proteins with distinct intracellular localization are encoded by separate genes. But also single genes can give rise to differentially localized proteins. Different isoforms can be generated by use of alternative transcriptional start sites, by differential splicing or ribosomal read-through of stop codons. In all these cases different peptide variants are produced, of which only one carries a peroxisomal targeting signal. Alternatively, peroxisomal proteins contain additional signals that compete for intracellular targeting. Dual localization of proteins residing in both the cytoplasm and in peroxisomes may also result from use of inefficient targeting signals. The recent observation that some bona fide cytoplasmic enzymes were also found in peroxisomes indicates that dual targeting of proteins to both the cytoplasm and the peroxisome might be more widespread. Although current knowledge of proteins exhibiting only partial peroxisomal targeting is far from being complete, we speculate that the metabolic capacity of peroxisomes might be larger than previously assumed.

  15. Dual Fluidized Bed Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-30

    The dual fluidized bed reactor is a recirculating system in which one half of the unit operates as a steam pyrolysis device for biomass. The pyrolysis occurs by introducing biomass and steam to a hot fluidized bed of inert material such as coarse sand. Syngas is produced during the pyrolysis and exits the top of the reactor with the steam. A crossover arm, fed by gravity, moves sand and char from the pyrolyzer to the second fluidized bed. This sand bed uses blown air to combust the char. The exit stream from this side of the reactor is carbon dioxide, water and ash. There is a second gravity fed crossover arm to return sand to the pyrolysis side. The recirculating action of the sand and the char is the key to the operation of the dual fluidized bed reactor. The objective of the project was to design and construct a dual fluidized bed prototype reactor from literature information and in discussion with established experts in the field. That would be appropriate in scale and operation to measure the relative performance of the gasification of biomass and low ranked coals to produce a high quality synthesis gas with no dilution from nitrogen or combustion products.

  16. Design of an As2Se3-based photonic quasi-crystal fiber with highly nonlinear and dual zero-dispersion wavelengths

    Science.gov (United States)

    Zhao, Tongtong; Lou, Shuqin; Su, Wei; Wang, Xin

    2016-01-01

    We propose an As2Se3-based highly nonlinear photonic quasi-crystal fiber with dual zero-dispersion wavelengths (ZDWs). Using a full-vector finite element method, the proposed fiber is optimized to obtain high nonlinear coefficient, low confinement loss and two zero-dispersion points by optimizing the structure parameters. Numerical results demonstrate that the proposed photonic quasi-crystal fiber (PQF) has dual ZDWs and the nonlinear coefficient up to 2600 W-1 km-1 within the wavelength range from 2 to 5.5 μm. Due to the introduction of the large air holes in the third ring of the proposed fiber, the ability of confining the fundamental mode field can be improved effectively and thus the low confinement loss can be obtained. The proposed PQF with high nonlinearity and dual ZDWs will have a number of potential applications in four-wave mixing, super-continuum generation, and higher-order dispersion effects.

  17. Numerical Modelling and Damage Assessment of Rotary Wing Aircraft Cabin Door Using Continuum Damage Mechanics Model

    Science.gov (United States)

    Boyina, Gangadhara Rao T.; Rayavarapu, Vijaya Kumar; V. V., Subba Rao

    2017-02-01

    The prediction of ultimate strength remains the main challenge in the simulation of the mechanical response of composite structures. This paper examines continuum damage model to predict the strength and size effects for deformation and failure response of polymer composite laminates when subjected to complex state of stress. The paper also considers how the overall results of the exercise can be applied in design applications. The continuum damage model is described and the resulting prediction of size effects are compared against the standard benchmark solutions. The stress analysis for strength prediction of rotary wing aircraft cabin door is carried out. The goal of this study is to extend the proposed continuum damage model such that it can be accurately predict the failure around stress concentration regions. The finite element-based continuum damage mechanics model can be applied to the structures and components of arbitrary configurations where analytical solutions could not be developed.

  18. Coupled 3D discrete-continuum numerical modeling of pile penetration in sand

    Institute of Scientific and Technical Information of China (English)

    Jian ZHOU; Qi-wei JIAN; Jiao ZHANG; Jian-jun GUO

    2012-01-01

    A coupled discrete-continuum simulation incorporating a 3D aspect and non-circular particles was performed to analyze soil-pile interactions during pile penetration in sand.A self-developed non-circular particle numerical simulation program was used which considered sand near the pile as interacted particles using a discrete element method; the sand away from the pile was simulated as a continuous medium exhibiting linear elastic behaviors.The domain analyzed was divided into two zones.Contact forces at the interface between the two zones were obtained from a discrete zone and applied to the continuum boundaries as nodal forces,while the interface velocities were obtained from the continuum zone and applied to the discrete boundaries.We show that the coupled discrete-continuum simulation can give a microscopic description of the pile penetration process without losing the discrete nature of the zone concerned,and may significantly improve computational efticiency.

  19. Low-lying continuum states of drip-line Oxygen isotopes

    CERN Document Server

    Tsukiyama, Koshiroh; Fujimoto, Rintaro

    2010-01-01

    Low-lying continuum states of exotic oxygen isotopes are studied, by introducing the Continuum-Coupled Shell Model (CCSM) characterized by an infinite wall placed very far and by an interaction for continuum coupling constructed in a close relation to realistic shell-model interaction. Neutron emission spectra from exotic oxygen isotopes are calculated by the doorway-state approach in heavy-ion multi-nucleon transfer reactions. The results agree with experiment remarkably well, as an evidence that the continuum effects are stronger than $\\sim$1 MeV, consistently with the shell evolution in exotic nuclei. The results by this CCSM doorway-state approach are compared with calculations on neutron-scattering resonance peaks made within the CCSM phase-shift approach and also with those obtained in the Gamow shell model, by taking the same interaction. Remarkable similarities in peak energies and certain differences in widths are then obtained.

  20. Monte Carlo Simulation Calculation of Critical Coupling Constant for Continuum \\phi^4_2

    OpenAIRE

    Loinaz, Will; Willey, R. S.

    1997-01-01

    We perform a Monte Carlo simulation calculation of the critical coupling constant for the continuum {\\lambda \\over 4} \\phi^4_2 theory. The critical coupling constant we obtain is [{\\lambda \\over \\mu^2}]_crit=10.24(3).