WorldWideScience

Sample records for dt laser fusion-fission

  1. Fusion--fission hybrid concepts for laser-induced fusion

    International Nuclear Information System (INIS)

    Maniscalco, J.

    1976-01-01

    Fusion-fission hybrid concepts are viewed as subcritical fission reactors driven and controlled by high-energy neutrons from a laser-induced fusion reactor. Blanket designs encompassing a substantial portion of the spectrum of different fission reactor technologies are analyzed and compared by calculating their fissile-breeding and fusion-energy-multiplying characteristics. With a large number of different fission technologies to choose from, it is essential to identify more promising hybrid concepts that can then be subjected to in-depth studies that treat the engineering safety, and economic requirements as well as the neutronic aspects. In the course of neutronically analyzing and comparing several fission blanket concepts, this work has demonstrated that fusion-fission hybrids can be designed to meet a broad spectrum of fissile-breeding and fusion-energy-multiplying requirements. The neutronic results should prove to be extremely useful in formulating the technical scope of future studies concerned with evaluating the technical and economic feasibility of hybrid concepts for laser-induced fusion

  2. Evaluation of DD and DT fusion fuel cycles for different fusion-fission energy systems

    International Nuclear Information System (INIS)

    Gohar, Y.

    1980-01-01

    A study has been carried out in order to investigate the characteristics of an energy system to produce a new source of fissile fuel for existing fission reactors. The denatured fuel cycles were used because it gives additional proliferation resistance compared to other fuel cycles. DT and DD fusion drivers were examined in this study with a thorium or uranium blanket for each fusion driver. Various fuel cycles were studied for light-water and heavy-water reactors. The cost of electricity for each energy system was calculated

  3. Critical masses of miniexplosion in fission-fusion hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Kaliski, S [Polska Akademia Nauk, Warsaw. Inst. Podstawowych Problemow Techniki

    1976-01-01

    The critical mass of the fissionable material subjected to the explosive compression and the action of the neutron stream originating from the process of D-T fusion in the spherical cavity was estimated. High energy recovery from the fissionable material was obtained and the energy of the laser pulse was minimized.

  4. Design study of laser fusion rocket

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Shoyama, Hidetoshi; Kanda, Yukinori

    1991-01-01

    A design study was made on a rocket powered by laser fusion. Dependence of its flight performance on target gain, driver repetition rate and fuel composition was analyzed to obtain optimal design parameters of the laser fusion rocket. The results indicate that the laser fusion rocket fueled with DT or D 3 He has the potential advantages over other propulsion systems such as fission rocket for interplanetary travel. (author)

  5. Study of DD versus DT fusion fuel cycles for different fusion-fission hybrid energy systems

    International Nuclear Information System (INIS)

    Gohar, Y.; Baker, C.C.

    1981-01-01

    A study was performed to investigate the characteristics of an energy system to produce fissile fuel for fission reactors. DD and DT fusion reactors were examined in this study with either a thorium or uranium blanket for each fusion reactor. Various fuel cycles were examined for light-water reactors including the denatured fuel cycles (which may offer proliferation resistance compared to other fuel cycles); these fuel cycles include a uranium fuel cycle with 239 Pu makeup, a thorium fuel cycle with 239 Pu makeup, a denatured uranium fuel cycle with 233 U makeup, and a denatured thorium fuel cycle with 233 U makeup. Four different blankets were considered for this study. The first two blankets have a tritium breeding capability for DT reactors. Lithium oxide (Li 2 O) was used for tritium breeding due to its high lithium density and high temperature capability; however, the use of Li 2 O may result in higher tritium inventories compared to other solid breeders

  6. Neutronics of Laser Fission-Fusion Systems

    International Nuclear Information System (INIS)

    Velarde, G.

    1976-01-01

    Neutronics of Fission-Fusion microsystems inertially confined by Lasers are analysed by transport calculation, both stationary (DTF, TIHOC) and time dependent (TDA, TIHEX), discussing the results obtained for the basic parameters of the fission process (multiplication factor, neutron generation time and Rossi-∞). (Author) 14 refs

  7. Neutronics of Laser Fission-Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Velarde, G

    1976-07-01

    Neutronics of Fission-Fusion microsystems inertially confined by Lasers are analysed by transport calculation, both stationary (DTF, TIHOC) and time dependent (TDA, TIHEX), discussing the results obtained for the basic parameters of the fission process (multiplication factor, neutron generation time and Rossi-{infinity}). (Author) 14 refs.

  8. Laser solenoid fusion--fission design

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Taussig, R.T.

    1976-01-01

    The dependence of breeding performance on system engineering parameters is examined for laser solenoid fusion-fission reactors. Reactor performance is found to be relatively insensitive to most of the engineering parameters, and compact designs can be built based on reasonable technologies. Point designs are described for the prototype series of reactors (mid-term technologies) and for second generation systems (advanced technologies). It is concluded that the laser solenoid has a good probability of timely application to fuel breeding needs

  9. Laser driven fusion fission hybrids

    International Nuclear Information System (INIS)

    Hansen, L.F.; Maniscalco, J.A.

    1977-11-01

    The role of the fusion-fission hybrid reactor (FFHR) as a fissile fuel and/or power producer is discussed. As long range options to supply the world energy needs, hybrid-fueled thermal-burner reactors are compared to liquid metal fast breeder reactors (LMFBR). A discussion of different fuel cycles (thorium, depleted uranium, and spent fuel) is presented in order to compare the energy multiplication, the production of fissile fuel, the laser efficiency and pellet gain requirements of the hybrid reactor. Lawrence Livermore Laboratory (LLL) has collaborated with Bechtel Corporation and with Westinghouse in two engineering design studies of laser fusion driven hybrid power plants. The hybrid designs which have resulted from these two studies are briefly described and analyzed by considering operational parameters, such as energy multiplication, power density, burn-up and plutonium production as a function time

  10. Control of a laser inertial confinement fusion-fission power plant

    Science.gov (United States)

    Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.

    2015-10-27

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  11. Birth to death analysis of the energy payback ratio and CO2 gas emission rates from coal, fission, wind, and DT-fusion electrical power plants

    International Nuclear Information System (INIS)

    White, Scott W.; Kulcinski, Gerald L.

    2000-01-01

    The amount of electrical energy produced over the lifetime of coal, LWR fission, UP fusion, and wind power plants is compared to the total amount of energy required to procure the fuel, build, operate, and decommission the power plants. The energy payback ratio varies from a low of 11 for coal plants to a high of 27 for DT-fusion plants. The magnitude of the energy investment and the source of the various energy inputs determine the CO 2 emission factor. This number varies from a low of 9 to a high of 974 tonnes of CO 2 per GW e h for DT-fusion and coal plants, respectively

  12. Issues for the electric utilities posed by DT tokamak fusion powerplants

    International Nuclear Information System (INIS)

    Roth, J.R.

    1990-01-01

    The DT tokamak is the mainline approach to magnetic fusion energy in all industrialized countries with a major commitment to fusion research. It achieved this status largely through historical accident and not as the result of considered choice among alternatives. After twenty-five years of intensive tokamak research, it is appropriate to ask whether the path down which the tokamak concept is leading the fusion community is the way to an acceptable powerplant for the electric utilities, or an aberration which should be replaced with an approach more promising in the long term. Issues surrounding the DT tokamak can be grouped in three broad areas: physics; safety/environmental; and engineering/economic. In addition to these problems, detailed engineering design studies of DT tokamak fusion powerplants over a twenty year period have revealed a number of additional problems. Most of thee are related to the presence of tritium and energetic neutron fluxes, which tend to make the cost of electricity of DT tokamaks higher than that of fossil or fission powerplants. These safety and economic issues of the DT tokamak powerplant also appear to be intractable, and have not been made to go away by twenty years of progressively more detailed and extensive engineering design studies

  13. Systems Modeling For The Laser Fusion-Fission Energy (LIFE) Power Plant

    International Nuclear Information System (INIS)

    Meier, W.R.; Abbott, R.; Beach, R.; Blink, J.; Caird, J.; Erlandson, A.; Farmer, J.; Halsey, W.; Ladran, T.; Latkowski, J.; MacIntyre, A.; Miles, R.; Storm, E.

    2008-01-01

    A systems model has been developed for the Laser Inertial Fusion-Fission Energy (LIFE) power plant. It combines cost-performance scaling models for the major subsystems of the plant including the laser, inertial fusion target factory, engine (i.e., the chamber including the fission and tritium breeding blankets), energy conversion systems and balance of plant. The LIFE plant model is being used to evaluate design trade-offs and to identify high-leverage R and D. At this point, we are focused more on doing self consistent design trades and optimization as opposed to trying to predict a cost of electricity with a high degree of certainty. Key results show the advantage of large scale (>1000 MWe) plants and the importance of minimizing the cost of diodes and balance of plant cost

  14. Fusion--fission hybrid reactors based on the laser solenoid

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Taussig, R.T.; Quimby, D.C.

    1976-01-01

    Fusion-fission reactors, based on the laser solenoid concept, can be much smaller in scale than their pure fusion counterparts, with moderate first-wall loading and rapid breeding capabilities (1 to 3 tonnes/yr), and can be designed successfully on the basis of classical plasma transport properties and free-streaming end-loss. Preliminary design information is presented for such systems, including the first wall, pulse coil, blanket, superconductors, laser optics, and power supplies, accounting for the desired reactor performance and other physics and engineering constraints. Self-consistent point designs for first and second generation reactors are discussed which illustrate the reactor size, performance, component parameters, and the level of technological development required

  15. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from a LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R = 1.0 to 3.0) requirements. These studies also indicate that masses on the order of 1.0 g at densities of rho greater than or equal to 500.0 g/cm 3 are required for a practical fusion-based fission product transmutation system

  16. Production of Medical isotope Technecium-99 from DT Fusion neutrons

    Science.gov (United States)

    Boguski, John; Gentile, Charles; Ascione, George

    2011-10-01

    High energy neutrons produced in DT fusion reactors have a secondary application for use in the synthesis of valuable man-made isotopes utilized in industry today. One such isotope is metastable Technecium-99 (Tc99m), a low energy gamma emitter used in ~ 85% of all medical imaging diagnostics. Tc99m is created through beta decay of Molybdenum-99 (Mo99), which itself has only a 66 hour half-life and must be created from a neutron capture by the widely available and stable isotope Molydenum-98. Current worldwide production of Tc99m occurs in just five locations and relies on obtaining the fission byproduct Mo99 from highly enriched Uranium reactors. A Tc99m generator using DT fusion neutrons, however, could potentially be operated at individual hospitals and medical facilities without the use of any fissile material. The neutron interaction of the DT neutrons with Molybdenum in a potential device geometry was modeled using Monte Carlo neutron transport code MCNP. Trial experiments were also performed to test the viability of using DT neutrons to create ample quantities of Tc99m. Modeling and test results will follow.

  17. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R=1.0 to 3.0) requirements

  18. Measurement of reaction cross sections of fission products induced by DT neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Daisuke; Murata, Isao; Takahashi, Akito [Osaka Univ., Suita (Japan)

    1998-03-01

    With the view of future application of fusion reactor to incineration of fission products, we have measured the {sup 129}I(n,2n){sup 128}I reaction cross section by DT neutrons with the activation method. The measured cross section was compared with the evaluated nuclear data of JENDL-3.2. From the result, it was confirmed that the evaluation overestimated the cross section by about 20-40%. (author)

  19. Inertial thermonuclear fusion by laser

    International Nuclear Information System (INIS)

    Watteau, J.P.

    1993-12-01

    The principles of deuterium tritium (DT) magnetic or inertial thermonuclear fusion are given. Even if results would be better with heavy ions beams, most of the results on fusion are obtained with laser beams. Technical and theoretical aspects of the laser fusion are presented with an extrapolation to the future fusion reactor. (A.B.). 34 refs., 17 figs

  20. Potential of incineration of long-life fission products from fission energy system by D-T and D-D fusion reactors

    International Nuclear Information System (INIS)

    Sekimoto, H.; Takashima, H.

    2001-01-01

    The incineration of LLFPs, all of which can not be incinerated with only the fast reactor without isotope separation is studied by employing the DT and DD fusion reactors. The requirement of production of tritium for the DT reactor is severe and the thickness of the blanket should be decreased considerably to incinerate the considerable amount of LLFPs. On the other hand the DD fusion reactor is free from the neutron economy constraint and can incinerate all LLFPs. The pure DD reactor can also show the excellent performance to reduce the first wall loading less than 1 MW/m 2 even for total LLFP incineration. By raising the wall loading to the design limit, the D-D reactor can incinerate the LLFPs from several fast reactors. When the fusion reactor is utilized as an energy producer, plasma confinement is very difficult problem, especially for the D-D reactor compared to the D-T reactor. However, when it is utilized as an incinerator of LLFP, this problem becomes considerably easier. Therefore, the incineration of LLFP is considered as an attractive subject for the D-D reactor. (author)

  1. Potential of incineration of long-life fission products from fission energy system by D-T and D-D fusion reactors

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Takashima, Hiroaki

    1999-01-01

    The incineration of LLFPs, all of which can not be incinerated with only the fast reactor without isotope separation is studied by employing the DT and DD fusion reactors. The requirement of production of tritium for the DT reactor is severe and the thickness of the blanket should be decreased considerably to incinerate the considerable amount of LLFPs. On the other hand the DD fusion reactor is free from the neutron economy constraint and can incinerate all LLFPs. The pure DD reactor can also show the excellent performance to reduce the first wall loading less than 1 MW/m 2 even for total LLFP incineration. By raising the wall loading to the design limit, the D-D reactor can incinerate the LLFPs from several fast reactors. When the fusion reactor is utilized as an energy producer, plasma confinement is very difficult problem, especially for the D-D reactor compared to the D-T reactor. However, when it is utilized as an incinerator of LLFP, this problem becomes considerably easier. Therefore, the incineration of LLFP is considered as an attractive subject for the D-D reactor. (author)

  2. Major features of a mirror fusion--fast fission hybrid reactor

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Burleigh, R.J.

    1974-01-01

    A conceptual design was made of a fusion-fission reactor. The fusion component is a D-T plasma confined by a pair of magnetic mirror coils in a Yin-Yang configuration and sustained by hot neutral beam injection. The neutrons from the fusion plasma drive the fission assembly which is composed of natural uranium carbide fuel rods clad with stainless steel and is cooled by helium. It was shown how the reactor can be built using essentially present day construction technology and how the uranium bearing blanket modules can be routinely changed to allow separation of the bred fissile fuel of which approximately 1200 kg of plutonium are produced each year along with the approximately 750 MW of electricity. (U.S.)

  3. Progress on the conceptual design of a mirror hybrid fusion--fission reactor

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Burleigh, R.J.

    1975-01-01

    A conceptual design study was made of a fusion-fission reactor for the purpose of producing fissile material and electricity. The fusion component is a D-T plasma confined by a pair of magnetic mirror coils in a Yin-Yang configuration and is sustained by neutral beam injection. The neutrons from the fusion plasma drive the fission assembly which is composed of natural uranium carbide fuel rods clad with stainless steel and helium cooled. It was shown conceptually how the reactor might be built using essentially present-day technology and how the uranium-bearing blanket modules can be routinely changed to allow separation of the bred fissile fuel

  4. Optimization of the fission--fusion hybrid concept

    International Nuclear Information System (INIS)

    Saltmarsh, M.J.; Grimes, W.R.; Santoro, R.T.

    1979-04-01

    One of the potentially attractive applications of controlled thermonuclear fusion is the fission--fusion hybrid concept. In this report we examine the possible role of the hybrid as a fissile fuel producer. We parameterize the advantages of the concept in terms of the performance of the fusion device and the breeding blanket and discuss some of the more troublesome features of existing design studies. The analysis suggests that hybrids based on deuterium--tritium (D--T) fusion devices are unlikely to be economically attractive and that they present formidable blanket technology problems. We suggest an alternative approach based on a semicatalyzed deuterium--deuterium (D--D) fusion reactor and a molten salt blanket. This concept is shown to emphasize the desirable features of the hybrid, to have considerably greater economic potential, and to mitigate many of the disadvantages of D--T-based systems

  5. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Kevin James [Univ. of California, Berkeley, CA (United States)

    2010-04-08

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 μm of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles

  6. Pellet design for a laser fusion reactor

    International Nuclear Information System (INIS)

    Thiessen, A.R.; Nuckolls, J.

    1974-01-01

    The requirements for laser fusion pellet design are discussed. Computer calculations are presented of a capsule consisting of a spherical solid drop of DT surrounded by a concentric shell of DT. Gains greater than 40 fold are achieved with laser energies of approximately 0.5 MJ, and peak powers of about 10 16 W. (U.S.)

  7. Sticking in muon catalyzed D-T fusion

    International Nuclear Information System (INIS)

    Petitjean, C.; Sherman, R.H.; Bossy, H.; Daniel, H.; Hartmann, F.J.; Neumann, W.; Schmidt, G.; Egidy, T. von

    1986-10-01

    The issue of μα sticking after muon catalyzed DT fusion is controversial, since a number of theoretical and experimental results came out recently with sticking values ω s varying over a large range. After a review of this situation, our measurements at SIN and methods of sticking analysis from neutron time structures are presented in detail. The important point is the correct understanding of the experimentally observed time distributions. At high density (liquid DT) we find, after correction for other fusion channels, for DT sticking ω s (0.45 +- 0.05)%, not dependent on tritium concentration c t and in accordance with our X-ray observations. At low density (DT gas, φ 3% - 8%) our preliminary result is 0.50 +- 0.10%, giving a ratio 1.1 +- 0.2 in agreement with conventional theories, but strongly disagreeing with the LAMPF experiment of S.E. Jones et al. Our result sets the maximum fusion output per muon to less than 220 +- 20. (author)

  8. Laser for fusion energy

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1995-01-01

    Solid state lasers have proven to be very versatile tools for the study and demonstration of inertial confinement fusion principles. When lasers were first contemplated to be used for the compression of fusion fuel in the late 1950s, the laser output energy levels were nominally one joule and the power levels were 10 3 watts (pulse duration's of 10 -3 sec). During the last 25 years, lasers optimized for fusion research have been increased in power to typically 100,000 joules with power levels approaching 10 14 watts. As a result of experiments with such lasers at many locations, DT target performance has been shown to be consistent with high gain target output. However, the demonstration of ignition and gain requires laser energies of several megajoules. Laser technology improvements demonstrated over the past decade appear to make possible the construction of such multimegajoule lasers at affordable costs. (author)

  9. Measurement of tritium production rate distribution for a fusion-fission hybrid conceptual reactor

    International Nuclear Information System (INIS)

    Wang Xinhua; Guo Haiping; Mou Yunfeng; Zheng Pu; Liu Rong; Yang Xiaofei; Yang Jian

    2013-01-01

    A fusion-fission hybrid conceptual reactor is established. It consists of a DT neutron source and a spherical shell of depleted uranium and hydrogen lithium. The tritium production rate (TPR) distribution in the conceptual reactor was measured by DT neutrons using two sets of lithium glass detectors with different thicknesses in the hole in the vertical direction with respect to the D + beam of the Cockcroft-Walton neutron generator in direct current mode. The measured TPR distribution is compared with the calculated results obtained by the three-dimensional Monte Carlo code MCNP5 and the ENDF/B-Ⅵ data file. The discrepancy between the measured and calculated values can be attributed to the neutron data library of the hydrogen lithium lack S(α, β) thermal scattering model, so we show that a special database of low-energy and thermal neutrons should be established in the physics design of fusion-fission hybrid reactors. (authors)

  10. First wall material damage induced by fusion-fission neutron environment

    Energy Technology Data Exchange (ETDEWEB)

    Khripunov, Vladimir, E-mail: Khripunov_VI@nrcki.ru

    2016-11-01

    Highlights: • The highest damage and gas production rates are experienced within the first wall materials of a hybrid fusion-fission system. • About ∼2 times higher dpa and 4–5 higher He appm are expected compared to the values distinctive for a pure fusion system at the same DT-neutron wall loading. • The specific nuclear heating may be increased by a factor of ∼8–9 due to fusion and fission neutrons radiation capture in metal components of the first wall. - Abstract: Neutronic performance and inventory analyses were conducted to quantify the damage and gas production rates in candidate materials when used in a fusion-fission hybrid system first wall (FW). The structural materials considered are austenitic SS, Cu-alloy and V- alloys. Plasma facing materials included Be, and CFC composite and W. It is shown that the highest damage rates and gas particles production in materials are experienced within the FW region of a hybrid similar to a pure fusion system. They are greatly influenced by a combined neutron energy spectrum formed by the two-component fusion-fission neutron source in front of the FW and in a subcritical fission blanket behind. These characteristics are non-linear functions of the fission neutron source intensity. Atomic displacement damage production rate in the FW materials of a subcritical system (at the safe subcriticality limit of ∼0.95 and the neutron multiplication factor of ∼20) is almost ∼2 times higher compared to the values distinctive for a pure fusion system at the same 14 MeV neutron FW loading. Both hydrogen (H) and helium (He) gas production rates are practically on the same level except of about ∼4–5 times higher He-production in austenitic and reduced activation ferritic martensitic steels. A proper simulation of the damage environment in hybrid systems is required to evaluate the expected material performance and the structural component residence times.

  11. Fast fission assisted ignition of thermonuclear microexplosions

    International Nuclear Information System (INIS)

    Winterberg, F.

    2006-01-01

    It is shown that the requirements for fast ignition of thermonuclear microexplosions can be substantially relaxed if the deuterium-tritium (DT) hot spot is placed inside a shell of U-238 (Th-232). An intense laser - or particle beam-projected into the shell leads to a large temperature gradient between the hot DT and the cold U-238 (Th-232), driving thermomagnetic currents by the Nernst effect, with magnetic fields large enough to entrap within the hot spot the α-particles of the DT fusion reaction. The fast fission reactions in the U-238 (Th-232) shell implode about 1/2 of the shell onto the DT, increasing its density and reaction rate. With the magnetic field generated by the Nernst effect, there is no need to connect the target to a large current carrying transmission line, as it is required for magnetized target fusion, solving the so-called ''stand off'' problem for thermonuclear microexplosions. (orig.)

  12. Mirror fusion--fission hybrids

    International Nuclear Information System (INIS)

    Lee, J.D.

    1978-01-01

    The fusion-fission concept and the mirror fusion-fission hybrid program are outlined. Magnetic mirror fusion drivers and blankets for hybrid reactors are discussed. Results of system analyses are presented and a reference design is described

  13. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martovetsky, N. N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Molvik, A. W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simonen, T. C. [Univ. of California, Berkeley, CA (United States)

    2011-05-13

    The achieved performance of the gas dynamic trap version of magnetic mirrors and today’s technology we believe are sufficient with modest further efforts for a neutron source for material testing (Q=Pfusion/Pinput~0.1). The performance needed for commercial power production requires considerable further advances to achieve the necessary high Q>>10. An early application of the mirror, requiring intermediate performance and intermediate values of Q~1 are the hybrid applications. The Axisymmetric Mirror has a number of attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, inherently steady-state operation, and the presence of the natural divertors in the form of end tanks. This level of physics performance has the virtue of low risk and only modest R&D needed and its simplicity promises economy advantages. Operation at Q~1 allows for relatively low electron temperatures, in the range of 4 keV, for the DT injection energy ~ 80 keV. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 35 m is discussed. Simple circular superconducting coils are based on today’s technology. The positive ion neutral beams are similar to existing units but designed for steady state. A brief qualitative discussion of three groups of physics issues is presented: axial heat loss, MHD stability in the axisymmetric geometry, microstability of sloshing ions. Burning fission reactor wastes by fissioning actinides (transuranics: Pu, Np, Am, Cm, .. or just minor actinides: Np, Am, Cm, …) in the hybrid will multiply fusion’s energy by a factor of ~10 or more and diminish the Q needed to less than 1 to overcome the cost of recirculating power for good economics. The economic value of destroying actinides by fissioning is rather low based on either the cost of long-term storage or even deep geologic disposal so most of the revenues of hybrids will come from electrical power. Hybrids that obtain revenues from

  14. Fusion-fission type collisions

    International Nuclear Information System (INIS)

    Oeschler, H.

    1980-01-01

    Three examples of fusion-fission type collisions on medium-mass nuclei are investigated whether the fragment properties are consistent with fission from equilibrated compound nuclei. Only in a very narrow band of angular momenta the data fulfill the necessary criteria for this process. Continuous evolutions of this mechnism into fusion fission and into a deep-inelastic process and particle emission prior to fusion have been observed. Based on the widths of the fragment-mass distributions of a great variety of data, a further criterion for the compound-nucleus-fission process is tentatively proposed. (orig.)

  15. Survey of the laser-solenoid fusion reactor

    International Nuclear Information System (INIS)

    Amherd, N.A.

    1975-09-01

    This report surveys the prospects for a laser-solenoid fusion reactor. A sample reactor and scaling laws are used to describe the concept's characteristics. Experimental results are reviewed, and the laser and magnet technologies that undergird the laser-solenoid concept are analyzed. Finally, a systems analysis of fusion power reactors is given, including a discussion of direct conversion and fusion-fission effects, to ascertain the system attributes of the laser-solenoid configuration

  16. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission

  17. Advances in laser solenoid fusion reactor design

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Quimby, D.C.

    1978-01-01

    The laser solenoid is an alternate fusion concept based on a laser-heated magnetically-confined plasma column. The reactor concept has evolved in several systems studies over the last five years. We describe recent advances in the plasma physics and technology of laser-plasma coupling. The technology advances include progress on first walls, inner magnet design, confinement module design, and reactor maintenance. We also describe a new generation of laser solenoid fusion and fusion-fission reactor designs

  18. Progress of laser fusion research

    International Nuclear Information System (INIS)

    Yamanaka, Chiyoe

    1988-01-01

    The history of the research on nuclear fusion utilizing laser is described. It started in USSR in 1968, but the full scale start of laser implosion nuclear fusion was in 1972. In Osaka University, nuclear fusion neutrons were detected with a solid deuterium target and the phenomenon of parametric abnormal absorption in laser plasma was found in 1971. The new type target for implosion nuclear fusion ''Canon ball'' was devised in 1975. The phenomenon of the abnormal transmission of laser beam through a thin metal film in a multiple film target was found in 1976, and named ''Osaka effect''. Also the development of lasers has been advanced, and in 1983, a largest glass laser in the world, Gekko 12, with 12 beams, 30 kJ output, 55 TW, was completed. The new target LHART was devised, which enabled the generation of 10 trillion D-T reaction neutrons. Due to the development of high power laser technology, the realization of the new design of fuel pellets, the evaluation of the data by computer simulation, and the realization of new plasma diagnostic method, the research on laser nuclear fusion has developed rapidly, and the attainment of break-even is expected in 1990s. The features of inertial nuclear fusion are enumerated. (Kako, I.)

  19. Net energy gain from DT fusion

    International Nuclear Information System (INIS)

    Buende, R.

    1985-01-01

    The net energy which can be gained from an energy raw material by means of a certain conversion system is deduced as the figure-of-merit which adequately characterizes the net energy balance of utilizing an energy source. This potential net energy gain is determined for DT fusion power plants. It is represented as a function of the degree of exploitation of the energy raw material lithium ore and is compared with the net energy which can be gained with LW and FBR power plants by exploiting uranium ore. The comparison clearly demonstrates the net energetic advantage of DT fusion. A sensitivity study shows that this holds even if the energy expenditure for constructing and operating is drastically increased

  20. Design of neutron streak camera for fusion diagnostics

    International Nuclear Information System (INIS)

    Wang, C.L.; Kalibjian, R.; Singh, M.S.

    1982-06-01

    The D-T burn time for advanced laser-fusion targets is calculated to be very short, 2 . Each fission fragment leaving the cathode generates 400 secondary electrons that are all < 20 eV. These electrons are focussed to a point with an extractor and an anode, and are then purified with an electrostatic deflector. The electron beam is streaked and detected with the standard streak camera techniques. Careful shielding is needed for x-rays from the fusion target and general background. It appears that the neutron streak camera can be a viable and unique tool for studying temporal history of fusion burns in D-T plasmas of a few keV ion temperature

  1. HYPERFUSE: a novel inertial confinement system utilizing hypervelocity projectiles for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs or 90 Sr. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n, 2n), (n, α), etc.) that convert the long lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product

  2. Tokamak Fusion Test Reactor D-T results

    International Nuclear Information System (INIS)

    Meade, D.M.

    1995-01-01

    Temperatures, densities and confinement of deuterium plasmas confined in tokamaks have been achieved within the last decade that are approaching those required for a D-T reactor. As a result, the unique phenomena present in a D-T reactor plasma (D-T plasma confinement, α confinement, α heating and possible α-driven instabilities) can now be studied in the laboratory. Recent experiments on the Tokamak Fusion Test Reactor (TFTR) have been the first magnetic fusion experiments to study plasmas with reactor fuel concentrations of tritium. The injection of about 20MW of tritium and 14MW of deuterium neutral beams into the TFTR produced a plasma with a T-to-D density ratio of about 1 and yielding a maximum fusion power of about 9.2MW. The fusion power density in the core of the plasma was about 1.8MWm -3 , approximating that expected in a D-T fusion reactor. A TFTR plasma with a T-to-D density ratio of about 1 was found to have about 20% higher energy confinement time than a comparable D plasma, indicating a confinement scaling with average ion mass A of τ E ∝A 0.6 . The core ion temperature increased from 30 to 37keV owing to a 35% improvement of ion thermal conductivity. Using the electron thermal conductivity from a comparable deuterium plasma, about 50% of the electron temperature increase from 9 to 10.6keV can be attributed to electron heating by the α particles. The approximately 5% loss of α particles, as observed on detectors near the bottom edge of the plasma, was consistent with classical first orbit loss without anomalous effects. Initial measurements have been made of the confined high energy α particles and the resultant α ash density. At fusion power levels of 7.5MW, fluctuations at the toroidal Alfven eigen-mode frequency were observed by the fluctuation diagnostics. However, no additional α loss due to the fluctuations was observed. (orig.)

  3. Experimental Investigation of Muon-Catalyzed $dt$ Fusion in Wide Ranges of $D/T$ Mixture Conditions

    CERN Document Server

    Bom, V R; Demin, D L; van Eijk, C W E; Faifman, M P; Filchenkov, V V; Golubkov, A N; Grafov, N N; Grishenchkin, S K; Gritsaj, K I; Klevtsov, V G; Konin, A D; Kuryakin, A V; Medved', S V; Musyaev, R K; Perevozchikov, V V; Rudenko, A I; Sadetsky, S M; Vinogradov, Yu I; Yukhimchuk, A A; Yukhimchuk, S A; Zinov, V G; Zlatoustovskii, S V

    2004-01-01

    A vast program of the experimental investigation of muon-catalyzed $dt$ fusion was performed at the JINR Phasotron. Parameters of the $dt$ cycle were obtained in a wide range of $D/T$ mixture conditions: temperatures of $20\\div 800$ K, densities of $0.2\\div1.2$ LHD and tritium concentrations of $15\\div 86\\%$. The results obtained are summarized.

  4. Conceptual fusion reactor designs based on the laser heat solenoid

    International Nuclear Information System (INIS)

    Steinhauer, L.C.

    1976-01-01

    The feasibility of the laser heated solenoid (LHS) as an approach to fusion and fusion-fission commercial power generation has been examined. The LHS concept is based on magnetic confinement of a long slender plasma column which is partly heated by the axially directed beam from a powerful long wavelength laser. As a pure fusion concept, the LHS configurations studied so far are characterized by fairly difficult engineering constraints, particularly on the magnet, a large laser, and a marginally acceptable system energy balance. As a fusion-fission system, however, the LHS is capable of a very attractive energy balance, has much more relaxed engineering constraints, requires a relatively modest laser, and as such holds great potential as a power generator and fissile fuel breeding scheme

  5. Hyper fuse: a novel inertial confinement system utilizing hypervelocity projectiles for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1979-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with a target in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs or 90 Sr. The 14 MeV fusion neutrons released during the pellet burn cause transmutation reactions [e.g., (n, 2n), (n, α), etc.] that convert the long lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product

  6. Self-sustaining nuclear pumped laser-fusion reactor experiment

    International Nuclear Information System (INIS)

    Boody, F.P.; Choi, C.K.; Miley, G.H.

    1977-01-01

    The features of a neutron feedback nuclear pumped (NFNP) laser-fusion reactor equipment were studied with the intention of establishing the feasibility of the concept. The NFNP laser-fusion concept is compared schematically to electrically pumped laser fusion. The study showed that, once a method of energy storage has been demonstrated, a self-sustaining fusion-fission hybrid reactor with a ''blanket multiplication'' of two would be feasible using nuclear pumped Xe F* excimer lasers having efficiencies of 1 to 2 percent and D-D-T pellets with gains of 50 to 100

  7. Present status of the EPFL (Swiss) fusion-fission experiment 'LOTUS'

    International Nuclear Information System (INIS)

    Haldy, P.A.; Frueh, R.; Ligou, J.; Schneeberger, J.P.; Kumar, A.

    1984-01-01

    The present status of the LOTUS project - a fusion-fission hybrid research facility under construction at the Ecole Polytechnique Federale de Lausanne (EPFL) Switzerland - is presented. Emphasis is places on the description of the facility and on the design studies of an initial blanket of the ''fission-suppressed'' type. The LOTUS facility consists of a parallelepiped-shaped blanket, occupying roughly a volume of 1 m 3 , driven by a sealed 14 MeV (D,T) neutron generator with a rated source strength of 5x10 12 n/s. The experiment is housed in a massive concrete shielding of 220 cm thick walls, which leaves an experimental test chamber of 360 cm by 240 cm lateral dimensions and a height of 300 cm. (orig.) [de

  8. Scoping studies of 233U breeding fusion fission hybrid

    International Nuclear Information System (INIS)

    Maniscalco, J.A.; Hansen, L.F.; Allen, W.O.

    1978-05-01

    Neutronic calculations have been carried out in order to design a laser fusion driven hybrid blanket which maximizes 233 U production per unit of thermal energy (greater than or equal to 1 kg/MW/sub T/-year) with acceptable fusion energy multiplication (M/sub F/ approximately 4). Two hybrid blankets, a thorium and a uranium-thorium blanket, are discussed in detail and their performance is evaluated by incorporating them into an existing hybrid design (the LLL/Bechtel design). The overall performance of the two laser fusion driven 233 U producers is discussed and estimates are given of (1) the number of equivalent thermal power fission reactors (LWR, HWR, SSCR and HTGR) that these fusion breeders can fuel, (2) their capital cost, and (3) the cost of electricity in the combined fusion breder-converter reactor scenario

  9. Scoping studies of 233U breeding fusion fission hybrid

    International Nuclear Information System (INIS)

    Maniscalco, J.A.; Hansen, L.F.; Allen, W.O.

    1978-01-01

    Neutronic calculations have been carried out in order to design a laser fusion driven hybrid blanket which maximizes 233 U production per unit of thermal energy (greater than or equal to 1 kg/MW/sub T/-year) with acceptable fusion energy multiplication (M/sub F/ approx. 4). Two hybrid blankets, a thorium and a uranium--thorium blanket, are discussed in detail and their performance is evaluated by incorporating them into an existing hybrid design (the LLL/Bechtel design). The overall performance of the two laser fusion driven 233 U producers is discussed and estimates are given of (1) the number of equivalent thermal power fission reactors (LWR, HWR, SSCR and HTGR) that these fusion breeders can fuel, (2) their capital cost, and (3) the cost of electricity in the combined fusion breeder-converter reactor scenario

  10. Commissioning of a DT fusion reactor without external supply of tritium

    International Nuclear Information System (INIS)

    Asaoka, Y.; Konishi, S.; Nishio, S.; Hiwatari, R.; Okano, K.; Yoshida, T.; Tomabechi, K.

    2001-01-01

    Commissioning of a DT fusion reactor without external supply of tritium is discussed. The DD reactions in a DT-oriented fusion reactor with external power injection by neutral beams produce tritium and neutrons. Tritium produced by the DD reaction together with that produced in the blanket by the 2.45 MeV neutron is re-circulated into the plasma. Then, the DT reaction rate increases gradually, as tritium concentration in plasma builds up towards the level of nominal operation. Time required to reach the nominal operational condition, i.e. 50 % tritium in plasma, is estimated with assumptions based on a model of fusion power plant. As a result, the start-up period of a DT fusion reactor without external supply of tritium is estimated to be approximately 55 days, with the plasma parameters of CREST having a high performance blanket and tritium processing systems. Major factors to determine the start-up period are DD and DT reaction rates, net tritium breeding gain of the plant and dead inventory in/on facing materials. Elimination of a constraint for fusion reactor deployment and operation without any tritium transportation in and out of plant through its entire life may be possible. (author)

  11. The prospect of laser fusion energy

    International Nuclear Information System (INIS)

    Yamanaka, C.

    2000-01-01

    The inertial confinement fusion research has developed remarkably in these 30 years, which enables us to scope the inertial fusion energy in the next century. The recent progress in the ICF is briefly reviewed. The GEKKO XII n d glass laser has succeeded to get the long cherished world's purpose that was to compress a D-T fuel up to 1000 times the normal density. The neutron yield was some what less than the expected value. The MJ laser system is under construction expecting to ignite and bum a fuel. The alternative way is to use a PW short pulse laser for the fast ignition. The inertial fusion energy strategy is described with economic overviews on IFE power plants. Various applications of IFE are summarized. (author)

  12. Comparison of the recently proposed super-Marx generator approach to thermonuclear ignition with the deuterium-tritium laser fusion-fission hybrid concept by the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Winterberg, F.

    2009-01-01

    The recently proposed super-Marx generator pure deuterium microdetonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser deuterium-tritium fusion-fission hybrid concept (LIFE). In a super-Marx generator, a large number of ordinary Marx generators charge up a much larger second stage ultrahigh voltage Marx generator from which for the ignition of a pure deuterium microexplosion an intense GeV ion beam can be extracted. Typical examples of the LIFE concept are a fusion gain of 30 and a fission gain of 10, making up a total gain of 300, with about ten times more energy released into fission as compared to fusion. This means the substantial release of fission products, as in fissionless pure fission reactors. In the super-Marx approach for the ignition of pure deuterium microdetonation, a gain of the same magnitude can, in theory, be reached. If feasible, the super-Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of thermonuclear microexplosions

  13. Fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-01-01

    This chapter discusses the range of characteristics attainable from hybrid reactor blankets; blanket design considerations; hybrid reactor designs; alternative fuel hybrid reactors; multi-purpose hybrid reactors; and hybrid reactors and the energy economy. Hybrid reactors are driven by a fusion neutron source and include fertile and/or fissile material. The fusion component provides a copious source of fusion neutrons which interact with a subcritical fission component located adjacent to the plasma or pellet chamber. Fissile fuel and/or energy are the main products of hybrid reactors. Topics include high F/M blankets, the fissile (and tritium) breeding ratio, effects of composition on blanket properties, geometrical considerations, power density and first wall loading, variations of blanket properties with irradiation, thermal-hydraulic and mechanical design considerations, safety considerations, tokamak hybrid reactors, tandem-mirror hybrid reactors, inertial confinement hybrid reactors, fusion neutron sources, fissile-fuel and energy production ability, simultaneous production of combustible and fissile fuels, fusion reactors for waste transmutation and fissile breeding, nuclear pumped laser hybrid reactors, Hybrid Fuel Factories (HFFs), and scenarios for hybrid contribution. The appendix offers hybrid reactor fundamentals. Numerous references are provided

  14. Material synergism fusion-fission

    International Nuclear Information System (INIS)

    Sankara Rao, K.B.; Raj, B.; Cook, I.; Kohyama, A.; Dudarev, S.

    2007-01-01

    In fission and fusion reactors the common features such as operating temperatures and neutron exposures will have the greatest impact on materials performance and component lifetimes. Developing fast neutron irradiation resisting materials is a common issue for both fission and fusion reactors. The high neutron flux levels in both these systems lead to unique materials problems like void swelling, irradiation creep and helium embitterment. Both fission and fusion rely on ferritic-martensitic steels based on 9%Cr compositions for achieving the highest swelling resistance but their creep strength sharply decreases above ∝ 823K. The use of oxide dispersion strengthened (ODS) alloys is envisaged to increase the operating temperature of blanket systems in the fusion reactors and fuel clad tubes in fast breeder reactors. In view of high operating temperatures, cyclic and steady load conditions and the long service life, properties like creep, low cycle fatigue,fracture toughness and creepfatigue interaction are major considerations in the selection of structural materials and design of components for fission and fusion reactors. Currently, materials selection for fusion systems has to be based upon incomplete experimental database on mechanical properties. The usage of fairly well developed databases, in fission programmes on similar materials, is of great help in the initial design of fusion reactor components. Significant opportunities exist for sharing information on technology of irradiation testing, specimen miniaturization, advanced methods of property measurement, safe windows for metal forming, and development of common materials property data base system. Both fusion and fission programs are being directed to development of clean steels with very low trace and tramp elements, characterization of microstructure and phase stability under irradiation, assessment of irradiation creep and swelling behaviour, studies on compatibility with helium and developing

  15. The fusion-fission hybrid

    International Nuclear Information System (INIS)

    Teller, E.

    1985-01-01

    As the history of the development of fusion energy shows, a sustained controlled fusion reaction is much more difficult to produce than rapid uncontrolled release of fusion energy. Currently, the ''magnetic bottle'' technique shows sufficient progress that it might applied for the commercial fuel production of /sup 233/U, suitable for use in fission reactors, by developing a fusion-fission hybrid. Such a device would consist of a fusion chamber core surrounded by a region containing cladded uranium pellets cooled by helium, with lithium salts also present to produce tritium to refuel the fusion process. Successful development of this hybrid might be possible within 10 y, and would provide both experience and funds for further development of controlled fusion energy

  16. Tritium Decontamination of TFTR D-T Graphite Tiles Employing Ultra Violet Light and a Nd:YAG Laser

    International Nuclear Information System (INIS)

    Gentile, C.A.; Skinner, C.H.; Young, K.M.; Ciebiera, L.

    1999-01-01

    The use of an ultra violet (UV) light source (wavelength = 172 nm) and a Nd:YAG Laser for the decontamination of the Tokamak Fusion Test Reactor (TFTR) deuterium-tritium (D-T) tiles will be investigated at the Princeton Plasma Physics Laboratory (PPPL). The development of this form of tritium decontamination may be useful for future D-T burning fusion devices which employ carbon plasma-facing components on the first wall. Carbon tiles retain hydrogen isotopes, and the in-situ tritium decontamination of carbon can be extremely important in maintaining resident in-vessel tritium inventory to a minimum. A test chamber has been designed and fabricated at PPPL. The chamber has the ability to be maintained under vacuum, be baked to 200 *C, and provides sample ports for gas analyses. Tiles from TFTR that have been exposed to D-T plasmas will be placed within the chamber and exposed to either an UV light source or the ND:YAG Laser. The experiment will determine the effectiveness of these two techniques for the removal of tritium. In addition, exposure rates and scan times for the UV light source and/or Nd:YAG Laser will be determined for tritium removal optimization from D-T tiles

  17. Hefei experimental hybrid fusion-fission reactor conceptual design

    International Nuclear Information System (INIS)

    Qiu Lijian; Luan Guishi; Xu Qiang

    1992-03-01

    A new concept of hybrid reactor is introduced. It uses JET-like(Joint European Tokamak) device worked at sub-breakeven conditions, as a source of high energy neutrons to induce a blanket fission of depleted uranium. The solid breeding material and helium cooling technique are also used. It can produce 100 kg of 239 Pu per year by partial fission suppressed. The energy self-sustained of the fusion core is not necessary. Plasma temperature is maintained by external 20 MW ICRF (ion cyclotron resonance frequency) and 10 MW ECRF (electron cyclotron resonance frequency) heating. A steady state plasma current at 1.5 Ma is driven by 10 MW LHCD (lower hybrid current driven). Plasma density will be kept by pellet injection. ICRF can produce a high energy tail in ion distribution function and lead to significant enhancement of D-T reaction rate by 2 ∼ 5 times so that the neutron source strength reaches to the level of 1 x 10 19 n/s. This system is a passive system. It's power density is 10 W/cm 3 and the wall loading is 0.6 W/cm 2 that is the lower limitation of fusion and fission technology. From the calculation of neutrons it could always be in sub-critical and has intrinsic safety. The radiation damage and neutron flux distribution on the first wall are also analyzed. According to the conceptual design the application of this type hybrid reactor earlier is feasible

  18. A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium

    International Nuclear Information System (INIS)

    Reed, Mark; Parker, Ronald R.; Forget, Benoit

    2012-01-01

    This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more

  19. A feasibility study of a linear laser heated solenoid fusion reactor. Final report

    International Nuclear Information System (INIS)

    Steinhauer, L.C.

    1976-02-01

    This report examines the feasibility of a laser heated solenoid as a fusion or fusion-fission reactor system. The objective of this study, was an assessment of the laser heated solenoid reactor concept in terms of its plasma physics, engineering design, and commercial feasibility. Within the study many pertinent reactor aspects were treated including: physics of the laser-plasma interaction; thermonuclear behavior of a slender plasma column; end-losses under reactor conditions; design of a modular first wall, a hybrid (both superconducting and normal) magnet, a large CO 2 laser system; reactor blanket; electrical storage elements; neutronics; radiation damage, and tritium processing. Self-consistent reactor configurations were developed for both pure fusion and fusion-fission designs, with the latter designed both to produce power and/or fissile fuels for conventional fission reactors. Appendix A is a bibliography with commentary of theoretical and experimental studies that have been directed at the laser heated solenoid

  20. Review on Recent Developments in Laser Driven Inertial Fusion

    Directory of Open Access Journals (Sweden)

    M. Ghoranneviss

    2014-01-01

    Full Text Available Discovery of the laser in 1960 hopes were based on using its very high energy concentration within very short pulses of time and very small volumes for energy generation from nuclear fusion as “Inertial Fusion Energy” (IFE, parallel to the efforts to produce energy from “Magnetic Confinement Fusion” (MCF, by burning deuterium-tritium (DT in high temperature plasmas to helium. Over the years the fusion gain was increased by a number of magnitudes and has reached nearly break-even after numerous difficulties in physics and technology had been solved. After briefly summarizing laser driven IFE, we report how the recently developed lasers with pulses of petawatt power and picosecond duration may open new alternatives for IFE with the goal to possibly ignite solid or low compressed DT fuel thereby creating a simplified reactor scheme. Ultrahigh acceleration of plasma blocks after irradiation of picosecond (PS laser pulses of around terawatt (TW power in the range of 1020 cm/s2 was discovered by Sauerbrey (1996 as measured by Doppler effect where the laser intensity was up to about 1018 W/cm2. This is several orders of magnitude higher than acceleration by irradiation based on thermal interaction of lasers has produced.

  1. Neutron spectrometer for DD/DT burning ratio measurement in fusion experimental reactor

    International Nuclear Information System (INIS)

    Asai, Keisuke; Naoi, Norihiro; Iguchi, Tetsuo; Watanabe, Kenichi; Kawarabayashi, Jun; Nishitani, Takeo

    2006-01-01

    The most feasible fuels for a fusion reactor are D (Deuterium) and T (Tritium). DD and/or DT fusion reaction or nuclear burning reaction provides two kinds of neutrons, DD neutron and DT neutron, respectively. DD/DT burning ratio, which can be estimated by DD/DT neutron ratio in the burning plasma, is essential for burn control, alpha particle emission rate monitoring and tritium fuel cycle estimation. Here we propose a new neutron spectrometer for the absolute DD/DT burning ratio measurement. The system consists of a Proton Recoil Telescope (PRT) and a Time-of-Flight (TOF) technique. We have conducted preliminary experiments with a prototype detector and a DT neutron beam (φ20 mm) at the Fusion Neutronics Source, Japan Atomic Energy Agency (JAEA), to assess its basic performance. The detection efficiency obtained by the experiment is consistent with the calculation results in PRT, and sufficient energy resolution for the DD/DT neutron discrimination has been achieved in PRT and TOF. The validity of the Monte Carlo calculation has also been confirmed by comparing the experimental results with the calculation results. The design consideration of this system for use in ITER (International Thermonuclear Experimental Reactor) has shown that this system is capable of monitoring the line-integrated DD/DT burning ratio for the plasma core line of sight with the required measurement accuracy of 20% in the upper 4 decades of the ITER operation (fusion power: 100 kW-700 MW). (author)

  2. Fusion barrier distributions and fission anisotropies

    International Nuclear Information System (INIS)

    Hinde, D.J.; Morton, C.R.; Dasgupta, M.; Leigh, J.R.; Lestone, J.P.; Lemmon, R.C.; Mein, J.C.; Newton, J.O.; Timmers, H.; Rowley, N.; Kruppa, A.T.

    1995-01-01

    Fusion excitation functions for 16,17 O+ 144 Sm have been measured to high precision. The extracted fusion barrier distributions show a double-peaked structure interpreted in terms of coupling to inelastic collective excitations of the target. The effect of the positive Q-value neutron stripping channel is evident in the reaction with 17 O. Fission and evaporation residue cross-sections and excitation functions have been measured for the reaction of 16 O+ 208 Pb and the fusion barrier distribution and fission anisotropies determined. It is found that the moments of the fusion l-distribution determined from the fusion and fission measurements are in good agreement. ((orig.))

  3. Advanced Computational Materials Science: Application to Fusion and Generation IV Fission Reactors (Workshop Report)

    Energy Technology Data Exchange (ETDEWEB)

    Stoller, RE

    2004-07-15

    The ''Workshop on Advanced Computational Materials Science: Application to Fusion and Generation IV Fission Reactors'' was convened to determine the degree to which an increased effort in modeling and simulation could help bridge the gap between the data that is needed to support the implementation of these advanced nuclear technologies and the data that can be obtained in available experimental facilities. The need to develop materials capable of performing in the severe operating environments expected in fusion and fission (Generation IV) reactors represents a significant challenge in materials science. There is a range of potential Gen-IV fission reactor design concepts and each concept has its own unique demands. Improved economic performance is a major goal of the Gen-IV designs. As a result, most designs call for significantly higher operating temperatures than the current generation of LWRs to obtain higher thermal efficiency. In many cases, the desired operating temperatures rule out the use of the structural alloys employed today. The very high operating temperature (up to 1000 C) associated with the NGNP is a prime example of an attractive new system that will require the development of new structural materials. Fusion power plants represent an even greater challenge to structural materials development and application. The operating temperatures, neutron exposure levels and thermo-mechanical stresses are comparable to or greater than those for proposed Gen-IV fission reactors. In addition, the transmutation products created in the structural materials by the high energy neutrons produced in the DT plasma can profoundly influence the microstructural evolution and mechanical behavior of these materials. Although the workshop addressed issues relevant to both Gen-IV and fusion reactor materials, much of the discussion focused on fusion; the same focus is reflected in this report. Most of the physical models and computational methods

  4. Tritium-assisted fusion breeders

    International Nuclear Information System (INIS)

    Greenspan, E.; Miley, G.H.

    1983-08-01

    This report undertakes a preliminary assessment of the prospects of tritium-assisted D-D fuel cycle fusion breeders. Two well documented fusion power reactor designs - the STARFIRE (D-T fuel cycle) and the WILDCAT (Cat-D fuel cycle) tokamaks - are converted into fusion breeders by replacing the fusion electric blankets with 233 U producing fission suppressed blankets; changing the Cat-D fuel cycle mode of operation by one of the several tritium-assisted D-D-based modes of operation considered; adjusting the reactor power level; and modifying the resulting plant cost to account for the design changes. Three sources of tritium are considered for assisting the D-D fuel cycle: tritium produced in the blankets from lithium or from 3 He and tritium produced in the client fission reactors. The D-D-based fusion breeders using tritium assistance are found to be the most promising economically, especially the Tritium Catalyzed Deuterium mode of operation in which the 3 He exhausted from the plasma is converted, by neutron capture in the blanket, into tritium which is in turn fed back to the plasma. The number of fission reactors of equal thermal power supported by Tritium Catalyzed Deuterium fusion breeders is about 50% higher than that of D-T fusion breeders, and the profitability is found to be slightly lower than that of the D-T fusion breeders

  5. Power balancing of multibeam laser fusion lasers

    International Nuclear Information System (INIS)

    Seka, W.; Morse, S.; Letzring, S.; Kremens, R.; Kessler, T.J.; Jaanimagi, P.; Keck, R.; Verdon, C.; Brown, D.

    1989-01-01

    The success of laser fusion depends to a good degree on the ability to compress the target to very high densities of ≥1000 times liquid DT. To achieve such compressions require that the irradiation nonuniformity must not exceed ∼1% rms over the whole time of the compression, particularly during the early phases of irradiation. The stringent requirements for the irradiation uniformity for laser fusion have been known for quite some time but until recently the energy balance was mistakenly equated to power balance. The authors describe their effort on energy balance and irradiation patterns on the target. They significantly improved the laser performance with respect to overall intensity distributions on target including the implementation of distributed (random) phase plates in each high power beam. However, the slightly varying performance of the third harmonic conversion crystals in the twenty-four beams of their laser system was generally compensated for by appropriately adjusted 1.054μm input laser energy. Computational analysis of the results of the recent high density campaign are shown

  6. Present status of laser driven fusion--fission energy systems

    International Nuclear Information System (INIS)

    Maniscalco, J.A.; Hansen, L.F.

    1978-01-01

    The potential of laser fusion driven hybrids to produce fissile fuel and/or electricity has been investigated in the laser program at the Lawrence Livermore Laboratory (LLL) for several years. Our earlier studies used neutronic methods of analysis to estimate hybrid performance. The results were encouraging, but it was apparent that a more accurate assessment of the hybrid's potential would require studies which treat the engineering, environmental, and economic issues as well as the neutronic aspects. More recently, we have collaborated with Bechtel and Westinghouse Corporations in two engineering design studies of laser fusion driven hybrid power plants. With Bechtel, we have been engaged in a joint effort to design a laser fusion driven hybrid which emphasizes fissile fuel production while the primary objective of our joint effort with Westinghouse has been to design a hybrid which emphasizes power production. The hybrid designs which have resulted from these two studies are briefly described and analyzed by considering their most important operational parameters

  7. Perspective on the fusion-fission energy concept

    International Nuclear Information System (INIS)

    Liikala, R.C.; Perry, R.T.; Teofilo, V.L.

    1978-01-01

    A concept which has potential for near-term application in the electric power sector of our energy economy is combining fusion and fission technology. The fusion-fission system, called a hybrid, is distinguished from its pure fusion counterpart by incorporation of fertile materials (uranium or thorium) in the blanket region of a fusion machine. The neutrons produced by the fusion process can be used to generate energy through fission events in the blanket or produce fuel for fission reactors through capture events in the fertile material. The performance requirements of the fusion component of hybrids is perceived as being less stringent than those for pure fusion electric power plants. The performance requirements for the fission component of hybrids is perceived as having been demonstrated or could be demonstrated with a modest investment of research and development funds. This paper presents our insights and observations of this concept in the context of why and where it might fit into the picture of meeting our future energy needs. A bibliography of hybrid research is given

  8. Suprathermal fusion reactions in laser-imploded D-T pellets. Applicability to pellet diagnosis and necessity of nuclear data

    International Nuclear Information System (INIS)

    Tabaru, Y.; Nakao, Y.; Kudo, K.; Nakashima, H.

    1995-01-01

    The suprathermal fusion reaction is examined on the basis of coupled transport/hydrodynamic calculation. We also calculate the energy spectrum of neutrons bursting from DT pellet. Because of suprathermal fusion and rapid pellet expansion, these neutrons contain fast components whose maximum energy reachs about 40 MeV. The pellet ρR diagnosis by the detection of suprathermal fusion neutrons is discussed. (author)

  9. Capabilities of a DT tokamak fusion neutron source for driving a spent nuclear fuel transmutation reactor

    International Nuclear Information System (INIS)

    Stacey, W.M.

    2001-01-01

    The capabilities of a DT fusion neutron source for driving a spent nuclear fuel transmutation reactor are characterized by identifying limits on transmutation rates that would be imposed by tokamak physics and engineering limitations on fusion neutron source performance. The need for spent nuclear fuel transmutation and the need for a neutron source to drive subcritical fission transmutation reactors are reviewed. The likely parameter ranges for tokamak neutron sources that could produce an interesting transmutation rate of 100s to 1000s of kg/FPY (where FPY stands for full power year) are identified (P fus ∼ 10-100 MW, β N ∼ 2-3, Q p ∼ 2-5, R ∼ 3-5 m, I ∼ 6-10 MA). The electrical and thermal power characteristics of transmutation reactors driven by fusion and accelerator spallation neutron sources are compared. The status of fusion development vis-a-vis a neutron source is reviewed. (author)

  10. Hybrid fission-fusion nuclear reactors

    International Nuclear Information System (INIS)

    Zucchetti, Massimo

    2011-01-01

    A fusion-fission hybrid could contribute to all components of nuclear power - fuel supply, electricity production, and waste management. The idea of the fusion-fission hybrid is many decades old. Several ideas, both new and revisited, have been investigated by hybrid proponents. These ideas appear to have attractive features, but they require various levels of advances in plasma science and fusion and nuclear technology. As a first step towards the development of hybrid reactors, fusion neutron sources can be considered as an option. Compact high-field tokamaks can be a candidate for being the neutron source in a fission-fusion hybrid, essentially due to their design characteristics, such as compact dimensions, high magnetic field, flexibility of operation. This study presents the development of a tokamak neutron source for a material testing facility using an Ignitor-based concept. The computed values show the potential of this neutron-rich device for fusion materials testing. Some full-power months of operation are sufficient to obtain relevant radiation damage values in terms of dpa. (Author)

  11. Physical Investigation for Neutron Consumption and Multiplication in Blanket Module of Fusion-Fission Hybrid Reactor

    International Nuclear Information System (INIS)

    Tariq Siddique, M.; Kim, Myung Hyun

    2014-01-01

    Fusion-fission hybrid reactor can be the first milestone of fusion technology and achievable in near future. It can provide operational experience for tritium recycling for pure fusion reactor and be used for incineration of high-level long-lived waste isotopes from existing fission power reactors. Hybrid reactor for waste transmutation (Hyb-WT) was designed and optimized to assess its otential for waste transmutation. ITER will be the first large scaled experimental tokamak facility for the testing of test blanket modules (TBM) which will layout the foundation for DEMO fusion power plants. Similarly hybrid test blanket module (HTBM) will be the foundation for rationality of fusion fission hybrid reactors. Designing and testing of hybrid blankets will lead to another prospect of nuclear technology. This study is initiated with a preliminary design concept of a hybrid test blanket module (HTBM) which would be tested in ITER. The neutrons generated in D-T fusion plasma are of high energy, 14.1 MeV which could be multiplied significantly through inelastic scattering along with fission in HTBM. In current study the detailed neutronic analysis is performed for the blanket module which involves the neutron growth and loss distribution within blanket module with the choice of different fuel and coolant materials. TRU transmutation and tritium breeding performance of HTBM is analyzed under ITER irradiation environment for five different fuel types and with Li and LiPb coolants. Simple box geometry with plate type TRU fuel is adopted so that it can be modelled with heterogeneous material geometry in MCNPX. Waste transmutation ratio (WTR) of TRUs and tritium breeding ration (TBR) is computed to quantify the HTBM performance. Neutron balance is computed in detail to analyze the performance parameters of HTBM. Neutron spectrum and fission to capture ratio in TRU fuel types is also calculated for detailed analysis of HTBM

  12. Physical Investigation for Neutron Consumption and Multiplication in Blanket Module of Fusion-Fission Hybrid Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tariq Siddique, M.; Kim, Myung Hyun [Kyung Hee Univ., Yongin (Korea, Republic of)

    2014-05-15

    Fusion-fission hybrid reactor can be the first milestone of fusion technology and achievable in near future. It can provide operational experience for tritium recycling for pure fusion reactor and be used for incineration of high-level long-lived waste isotopes from existing fission power reactors. Hybrid reactor for waste transmutation (Hyb-WT) was designed and optimized to assess its otential for waste transmutation. ITER will be the first large scaled experimental tokamak facility for the testing of test blanket modules (TBM) which will layout the foundation for DEMO fusion power plants. Similarly hybrid test blanket module (HTBM) will be the foundation for rationality of fusion fission hybrid reactors. Designing and testing of hybrid blankets will lead to another prospect of nuclear technology. This study is initiated with a preliminary design concept of a hybrid test blanket module (HTBM) which would be tested in ITER. The neutrons generated in D-T fusion plasma are of high energy, 14.1 MeV which could be multiplied significantly through inelastic scattering along with fission in HTBM. In current study the detailed neutronic analysis is performed for the blanket module which involves the neutron growth and loss distribution within blanket module with the choice of different fuel and coolant materials. TRU transmutation and tritium breeding performance of HTBM is analyzed under ITER irradiation environment for five different fuel types and with Li and LiPb coolants. Simple box geometry with plate type TRU fuel is adopted so that it can be modelled with heterogeneous material geometry in MCNPX. Waste transmutation ratio (WTR) of TRUs and tritium breeding ration (TBR) is computed to quantify the HTBM performance. Neutron balance is computed in detail to analyze the performance parameters of HTBM. Neutron spectrum and fission to capture ratio in TRU fuel types is also calculated for detailed analysis of HTBM.

  13. Laser induced photonuclear and fusion-reactions

    International Nuclear Information System (INIS)

    LoDato, V.A.

    1977-01-01

    The energy release from the fusion-fission pellets is demonstrated. It is shown that the coupling of the fusion-fission process is extremely efficient provided one can obtain the proper compression heating. The pellet of an outer core of (Li6D-Li6T) with an inner core of U238 is shown to be an efficient and practical fuel and can be ignited by the present generation of lasers to produce thermonuclear burn. The demonstration of the efficiency for photonuclear and photofission pellets is shown. However no suitable gamma ray source exists at present to initiate these processes. (orig.) [de

  14. Fusion-Fission Hybrid for Fissile Fuel Production without Processing

    Energy Technology Data Exchange (ETDEWEB)

    Fratoni, M; Moir, R W; Kramer, K J; Latkowski, J F; Meier, W R; Powers, J J

    2012-01-02

    Two scenarios are typically envisioned for thorium fuel cycles: 'open' cycles based on irradiation of {sup 232}Th and fission of {sup 233}U in situ without reprocessing or 'closed' cycles based on irradiation of {sup 232}Th followed by reprocessing, and recycling of {sup 233}U either in situ or in critical fission reactors. This study evaluates a third option based on the possibility of breeding fissile material in a fusion-fission hybrid reactor and burning the same fuel in a critical reactor without any reprocessing or reconditioning. This fuel cycle requires the hybrid and the critical reactor to use the same fuel form. TRISO particles embedded in carbon pebbles were selected as the preferred form of fuel and an inertial laser fusion system featuring a subcritical blanket was combined with critical pebble bed reactors, either gas-cooled or liquid-salt-cooled. The hybrid reactor was modeled based on the earlier, hybrid version of the LLNL Laser Inertial Fusion Energy (LIFE1) system, whereas the critical reactors were modeled according to the Pebble Bed Modular Reactor (PBMR) and the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) design. An extensive neutronic analysis was carried out for both the hybrid and the fission reactors in order to track the fuel composition at each stage of the fuel cycle and ultimately determine the plant support ratio, which has been defined as the ratio between the thermal power generated in fission reactors and the fusion power required to breed the fissile fuel burnt in these fission reactors. It was found that the maximum attainable plant support ratio for a thorium fuel cycle that employs neither enrichment nor reprocessing is about 2. This requires tuning the neutron energy towards high energy for breeding and towards thermal energy for burning. A high fuel loading in the pebbles allows a faster spectrum in the hybrid blanket; mixing dummy carbon pebbles with fuel pebbles enables a softer spectrum in

  15. Tomography of laser fusion plasmas

    International Nuclear Information System (INIS)

    Ceglio, N.M.

    1977-01-01

    Experimental programs exist in a number of laboratories throughout the world to test the feasibility of using powerful laser systems to drive the implosion of hydrogen isotope fuel to thermonuclear burn conditions. In a typical experiment multiple laser beams are focused onto a glass microshell (typically 50 μm to 200 μm diameter) filled with an equimolar D-T gas mixture. X-ray and particle emissions from the target provide important information about the hydrodynamic implosion of the glass shell and the associated compression and heating of the D-T fuel. Standard diagnostics for imaging such emissions are the grazing incidence reflection (GIR) x-ray microscope and the pinhole camera. Recently, a particular coded imaging technique, Zone Plate Coded Imaging (ZPCI), has been successfully used for x-ray and particle microscopy of laser fusion plasmas. ZPCI is highly attractive for investigating laser produced plasmas because it possesses a tomographic capability not shared by either the GIR or pinhole imaging techniques. This presentation provides a brief discussion of the tomographic potential of ZPCI. In addition, the first tomographic x-ray images (tomographic resolution approximately 74 μm) of a laser produced plasma are presented

  16. Neutron emission as a probe of fusion-fission and quasi-fission dynamics

    International Nuclear Information System (INIS)

    Hinde, D.J.

    1991-01-01

    Pre- and post scission neutron yeilds have been measured as a function of projectile mass, compound nucleus fissility, and fission mass-split and total kinetic energy (TKE) for 27 fusion-fission and quasi-fission reactions induced by beams of 16,18 O, 40 Ar and 64 Ni. A new method of interpretation of experimental pre-scission neutron multiplicities ν-pre and mean kinetic energies ε ν allows the extraction of fission time scales with much less uncertainty than previously, all fusion-fission results being consistent with a dynamical time scale of (35±15) x 10 -21 s for symmetric fission. All reactions show that ν-pre falls quite rapidly with increasing mass-asymmetry; evidence is presented that for fusion-fission reactions this is partly due to a reduction of the dynamical fission time scale with mass-asymmetry. For quasi-fission, the data indicate that the pre-scission multiplicity and mean neutron kinetic energy are very sensitive to the final mass-asymmetry, but that the time scale is virtually independent of mass-asymmetry. It is concluded that for fusion-fission there is no dependence of ν-pre on TKE, whilst for 64 Ni-induced quasi-fission reactions, a strong increase of ν-pre with decreasing TKE is observed, probably largely caused by neutron emission during the acceleration time of the fission fragments in these fast reactions. Interpretation of post-scission multiplicities in terms of fragment excitation energies leads to deduced time scales consistent with those determined from the pre-scission data. 54 refs., 17 tabs., 25 figs

  17. Consultancy on the potential of fusion/fission sub-critical neutron systems for energy production and transmutation. Working material

    International Nuclear Information System (INIS)

    2005-01-01

    possible activities to be implemented under IAEA aegis. The Consultancy examined existing experimental facilities and devices that could produce 14 MeV neutrons in the near future to permit the first concrete steps toward fusion-fission systems and how such a facility can become an integral part of the effort to develop sub-critical reactors, presently spearheaded by accelerator driven systems. In support of this effort, the Consultancy discussed and proposed a set of studies that permit future inter-comparison between various utilization and/or transmutation technologies, including accelerator driven systems and possible DT-plasma fusion devices for such application in the near future. The Consultancy recommended enhanced coordinated efforts for developing DT-plasma fusion driven sub-critical core designs. The main areas requiring enhanced research and technology development are nuclear data, forms and preparation of fuel, chemistry control, sub-critical core design, and systems integration

  18. Proceedings of the Second Fusion-Fission Energy Systems Review Meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-11-02

    The agenda of the meeting was developed to address, in turn, the following major areas: specific problem areas in nuclear energy systems for application of fusion-fission concepts; current and proposed fusion-fission programs in response to the identified problem areas; target costs and projected benefits associated with fusion-fission energy systems; and technical problems associated with the development of fusion-fission concepts. The greatest emphasis was placed on the characteristics of and problems, associated with fuel producing fusion-fission hybrid reactors.

  19. Tritium-management requirements for D-T fusion reactors (ETF, INTOR, FED)

    International Nuclear Information System (INIS)

    Finn, P.A.; Clemmer, R.G.; Misra, B.

    1981-10-01

    The successful operation of D-T fusion reactors will depend on the development of safe and reliable tritium-containment and fuel-recycle systems. The tritium handling requirements for D-T reactors were analyzed. The reactor facility was then designed from the viewpoint of tritium management. Recovery scenarios after a tritium release were generated to show the relative importance of various scenarios. A fusion-reactor tritium facility was designed which would be appropriate for all types of plants from the Engineering Test Facility (ETF), the International Tokamak Reactor (INTOR), and the Fusion Engineering Device (FED) to the full-scale power plant epitomized by the STARFIRE design

  20. Sensitivity of ICF ignition conditions to non-Maxwellian DT fusion reactivity

    International Nuclear Information System (INIS)

    Garbett, W. J.

    2013-01-01

    The hotspot ignition conditions in ICF are determined by considering the power balance between fusion energy deposition and energy loss terms. Uncertainty in any of these terms has potential to modify the ignition conditions, changing the optimum ignition capsule design. This paper considers the impact of changes to the DT fusion reaction rate due to non-thermal ion energy distributions. The DT fusion reactivity has been evaluated for a class of non-Maxwellian distributions representing a perturbation to the tail of a thermal distribution. The resulting reactivity has been used to determine hotspot ignition conditions as a function of the characteristic parameter of the modified distribution. (authors)

  1. Fusion performances and alpha heating in future JET D-T plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Balet, B; Cordey, J G; Gibson, A; Lomas, P; Stubberfield, P M; Thomas, P [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    The new pump divertor installed at JET should allow high performance pulses of a few seconds duration by both preventing the impurity influx and controlling the density evolution. The TRANSP code has been used in a predictive mode to assess the possible fusion performance of such plasmas fuelled with a 50:50 mixture of D and T, and the effect of alpha particles heating on Te and Ti. Several cases are considered: 50:50 D-T mix; 50:50 D-T mix, no C bloom; 50:50 D-T mix, VH phase, density control; 50:50 D-T mix, VH phase, density control, 6 Ma. The predictions show that if the the bloom and MHD instabilities can be controlled at higher plasma currents using a higher toroidal field to keep a reasonable beta value, then a higher fusion performance steady state plasma with Q{sub DT} superior to 2.5 should be possible. The alpha heating power of 4.9 MW would lead to a 74% increase in Te. 4 refs., 4 figs., 1 tab.

  2. Laser drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1983-01-01

    Inertial Confinement Fusion (ICF) is the technology that we are developing to access the vast stored energy potential of deuterium fuel located in the world's water supply. This form of fusion is accomplished by compressing and heating small volumes of D-T fuel to very high temperatures (greater than 100M 0 C) and to very high densities (greater than 1000 times the normal liquid density). Under these fuel conditions, a thermonuclear reaction can occur, leading to a net energy release compared to the energy used to heat the fuel initially. To accomplish the condition where fusion reactions begin, effective drivers are required. These are lasers or particle beam accelerators which can provide greater than 10 14 W/cm 2 over millimeter scale targets with an appropriately programmed intensity vs time. At present, we are using research lasers to obtain an understanding of the physics and engineering of fuel compression

  3. The LOFA analysis of fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Yu, Z.-C.; Xie, H.

    2014-01-01

    The fusion-fission hybrid energy reactor can produce energy, breed nuclear fuel, and handle the nuclear waste, etc, with the fusion neutron source striking the subcritical blanket. The passive safety system, consisting of passive residual heat removal system, passive safety injection system and automatic depressurization system, was adopted into the fusion-fission hybrid energy reactor in this paper. Modeling and nodalization of primary loop, passive core cooling system and partial secondary loop of the fusion-fission hybrid energy reactor using RELAP5 were conducted and LOFA (Loss of Flow Accident) was analyzed. The results of key transient parameters indicated that the PRHRs could mitigate the accidental consequence of LOFA effectively. It is also concluded that it is feasible to apply the passive safety system concept to fusion-fission hybrid energy reactor. (author)

  4. Laser fusion experiments at 2 TW. [Argus system; implosion of D-T filled glass microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Storm, E.K.; Ahlstrom, H.G.; Boyle, M.J.

    1976-10-01

    The Lawrence Livermore Laboratory Solid State Laser System, Arqus, has successfully performed laser implosion experiments at power levels exceeding 2 TW. D-T filled glass microspheres have been imploded to yield thermonuclear reaction products in excess of 5 x 10/sup 8/ per event. Neutron and ..cap alpha.. time-of-flight measurements indicate that D-T ion temperatures of approximately 5-6 keV and a density confinement time product (n tau) of approximately 1 x 10/sup 12/ were obtained in these experiments. Typically two 40J, 40 psec pulses of 1.06 ..mu..m light were focused on targets using 20 cm aperture f/1 lenses, producing intensities at the target in excess of 10/sup 16/ W/cm/sup 2/. An extensive array of diagnostics routinely monitored the laser performance and the laser target interaction process. Measurements of absorption and asymmetry in both the scattered light distribution and the ion blow off is evidence for non-classical absorption mechanisms and density scale heights of the order of 2 ..mu..m or less. The symmetry of the thermonuclear burn region is investigated by monitoring the ..cap alpha..-particle flux in several directions, and an experiment to image the thermonuclear burn region is in process. These experiments significantly extend our data base and our understanding of laser induced thermonuclear implosions and the basic laser plasma interaction physics from the 0.4 to 0.7 TW level of previous experiments.

  5. Fusion-fission dynamics

    International Nuclear Information System (INIS)

    Blocki, J.; Planeta, R.; Brzychczyk, J.; Grotowski, K.

    1992-01-01

    Classical dynamical calculations of the heavy ion induced fission processes have been performed for the reactions 40 Ar+ 141 Pr, 20 Ne+ 165 Ho and 12 C+ 175 Lu leading to the iridium like nucleus. As a result prescission lifetimes were obtained and compared with the experimental values. The comparison between the calculated and experimental lifetimes indicates that the one-body dissipation picture is much more relevant in describing the fusion-fission dynamics than the two-body one. (orig.)

  6. Pulsed fission/fusion hybrid engines

    International Nuclear Information System (INIS)

    Hudson, G.C.

    1979-01-01

    Research into high-thrust, high-specific impulse rocket engines using energy from nuclear reactions which has been conducted at this organization will be discussed. The engines are all conceptual in nature, yet are within the realization of conventional or near-term technology. The engine concepts under study at Foundation, Inc. are designed to obviate or minimize these negative effects of the ORION scheme. By using non-chemical triggers to initiate a non-breakeven fusion reaction at the core of a target composed of both fission and fusion fuel, it should be possible to employ the fusion neutrons thus produced to begin a fission reaction in U-235 or Pu-239. Since the density of the target can be increased by as much as a factor of 250 through compression of the pellet, the amount of fission material necessary to produce a critical mass can be greatly reduced. (This also means that the amount of fission products produced for a giventhrust level is also reduced from the ORION levels.) Coupling this eeffect to the large number of 14 MeV fusion neutrons produced early in the compression process and subsequently to the heating of some additional fusion fuel surrounding the critical mass leads to the very efficient burnup of the target. This insures both high yield from the target as well as low cost per MJ energy released. Finally, the use of such small pellets allows the scale of the energy released to be tailored to a level usable in rocket engines of a few tens of tons thrust level. (orig.) [de

  7. Laser fusion program at LASL. Progress report, January 1--June 30, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Stark, E.

    1976-11-01

    Progress in the development of high-energy short-pulse CO/sub 2/ laser systems for fusion research is reported. The Single-Beam System continued to be used in target experiments at a peak intensity of 7 x 10/sup 14/ W/cm/sup 2/, and the system was improved. The status of the Two-Beam System, on which target experiments have begun with 300-J, 1-ns pulses in one beam, is described. Construction and checkout of the Eight-Beam System are continuing. Further design studies for the High-Energy Gas Laser Facility and the initiation of a prototype program are reported. The rare-gas oxides and dimeric mercury were emphasized in investigations into new lasers for fusion research. Experimental kinetics studies, a study of heat-pipe containment of metal vapors, theoretical support, and optical-damage investigations are described. Significant experimental and theoretical results are reported on the question of wavelength-scaling in laser-plasma interaction physics. Studies of vacuum insulation as a means of preventing target preheat by hot electrons are also summarized. Analyses of the ponderomotive force in laser-plasma interactions and of the relationship between x-ray spectrum and suprathermal electron distribution are described. Improvements to the MCRAD and LASNEX design codes are outlined, and a LASNEX analysis of a target heated by laser-generated fast ions is discussed. Improved methods of screening, characterizing, and fabricating microballoons and more complex targets are described, and progress in applying uniform layers of DT ice on the inside of a microballoon is reported. Improvements in diagnostics include x-ray streak photographs, the fabrication of x-ray microscope systems, and x-ray film imaging. New results in our feasibility and systems studies are presented, including the wetted-wall and magnetically protected reactor concepts, the effect of ionized debris on cavity walls, the fusion-fission breeder concept, and the production of synthetic fuels by fusion

  8. Hemi-fused structure mediates and controls fusion and fission in live cells.

    Science.gov (United States)

    Zhao, Wei-Dong; Hamid, Edaeni; Shin, Wonchul; Wen, Peter J; Krystofiak, Evan S; Villarreal, Seth A; Chiang, Hsueh-Cheng; Kachar, Bechara; Wu, Ling-Gang

    2016-06-23

    Membrane fusion and fission are vital for eukaryotic life. For three decades, it has been proposed that fusion is mediated by fusion between the proximal leaflets of two bilayers (hemi-fusion) to produce a hemi-fused structure, followed by fusion between the distal leaflets, whereas fission is via hemi-fission, which also produces a hemi-fused structure, followed by full fission. This hypothesis remained unsupported owing to the lack of observation of hemi-fusion or hemi-fission in live cells. A competing fusion hypothesis involving protein-lined pore formation has also been proposed. Here we report the observation of a hemi-fused Ω-shaped structure in live neuroendocrine chromaffin cells and pancreatic β-cells, visualized using confocal and super-resolution stimulated emission depletion microscopy. This structure is generated from fusion pore opening or closure (fission) at the plasma membrane. Unexpectedly, the transition to full fusion or fission is determined by competition between fusion and calcium/dynamin-dependent fission mechanisms, and is notably slow (seconds to tens of seconds) in a substantial fraction of the events. These results provide key missing evidence in support of the hemi-fusion and hemi-fission hypothesis in live cells, and reveal the hemi-fused intermediate as a key structure controlling fusion and fission, as fusion and fission mechanisms compete to determine the transition to fusion or fission.

  9. Tensile property changes of metals and irradiated to low doses with fission, fusion and spallation neutrons

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Hamilton, M.L.; Sommer, W.F.; Ferguson, P.D.

    1992-01-01

    The objective of this work is to investigate the effects of the neutron energy spectrum in low dose irradiations on the microstructures and mechanical properties of metals. Radiation effects due to low doses of spallation neutrons are compared directly to those produced by fission and fusion neutrons. Yield stress changes of pure Cu, alumina-dispersion-strengthened Cu and AISI 316 stainless steel irradiated at 36-55 C in the Los Alamos Spallation Radiation Effects Facility (LASREF) are compared with earlier results of irradiations at 90 C using 14 MeV D-T fusion neutrons at the Rotating Target Neutron Source and fission reactor neutrons in the Omega West Reactor. At doses up to 0.04 displacements per atom (dpa), the yield stress changes due to the three quite different neutron spectra correlate well on the basis of dpa in the stainless steel and the Cu alloy. However, in pure Cu, the measured yield stress changes due to spallation neutrons were anomalously small and should be verified by additional irradiations. With the exception of pure Cu, the low dose, low temperature experiments reveal no fundamental differences in radiation hardening by fission, fusion or spallation neutrons when compared on the basis of dpa

  10. Revitalizing Fusion via Fission Fusion

    Science.gov (United States)

    Manheimer, Wallace

    2001-10-01

    Existing tokamaks could generate significant nuclear fuel. TFTR, operating steady state with DT might generate enough fuel for a 300 MW nuclear reactor. The immediate goals of the magnetic fusion program would necessarily shift from a study of advanced plasma regimes in larger sized devices, to mostly known plasmas regimes, but at steady state or high duty cycle operation in DT plasmas. The science and engineering of breeding blankets would be equally important. Follow on projects could possibly produce nuclear fuel in large quantity at low price. Although today there is strong opposition to nuclear power in the United States, in a 21st century world of 10 billion people, all of whom will demand a middle class life style, nuclear energy will be important. Concern over greenhouse gases will also drive the world toward nuclear power. There are studies indicating that the world will need 10 TW of carbon free energy by 2050. It is difficult to see how this can be achieved without the breeding of nuclear fuel. By using the thorium cycle, proliferation risks are minimized. [1], [2]. 1 W. Manheimer, Fusion Technology, 36, 1, 1999, 2.W. Manheimer, Physics and Society, v 29, #3, p5, July, 2000

  11. Fusion--fission energy systems, some utility perspectives

    International Nuclear Information System (INIS)

    Huse, R.A.; Burger, J.M.; Lotker, M.

    1974-01-01

    Some of the issues that are important in assessing fusion-- fission energy systems from a utility perspective are discussed. A number of qualitative systems-oriented observations are given along with some economic quantification of the benefits from fusion--fission hybrids and their allowed capital cost. (U.S.)

  12. Utilization of fission reactors for fusion engineering testing

    International Nuclear Information System (INIS)

    Deis, G.A.; Miller, L.G.

    1985-01-01

    Fission reactors can be used to conduct some of the fusion nuclear engineering tests identified in the FINESSE study. To further define the advantages and disadvantages of fission testing, the technical and programmatic constraints on this type of testing are discussed here. This paper presents and discusses eight key issues affecting fission utilization. Quantitative comparisons with projected fusion operation are made to determine the technical assets and limitations of fission testing. Capabilities of existing fission reactors are summarized and compared with technical needs. Conclusions are then presented on the areas where fission testing can be most useful

  13. ND:GLASS LASER DESIGN FOR LASER ICF FISSION ENERGY (LIFE)

    International Nuclear Information System (INIS)

    Caird, J.A.; Agrawal, V.; Bayramian, A.; Beach, R.; Britten, J.; Chen, D.; Cross, R.; Ebbers, C.; Erlandson, A.; Feit, M.; Freitas, B.; Ghosh, C.; Haefner, C.; Homoelle, D.; Ladran, T.; Latkowski, J.; Molander, W.; Murray, J.; Rubenchik, S.; Schaffers, K.; Siders, C.W.; Stappaerts, E.; Sutton, S.; Telford, S.; Trenholme, J.; Barty, C.J.

    2008-01-01

    We have developed preliminary conceptual laser system designs for the Laser ICF (Inertial Confinement Fusion) Fission Energy (LIFE) application. Our approach leverages experience in high-energy Nd:glass laser technology developed for the National Ignition Facility (NIF), along with high-energy-class diode-pumped solid-state laser (HEC-DPSSL) technology developed for the DOE's High Average Power Laser (HAPL) Program and embodied in LLNL's Mercury laser system. We present laser system designs suitable for both indirect-drive, hot spot ignition and indirect-drive, fast ignition targets. Main amplifiers for both systems use laser-diode-pumped Nd:glass slabs oriented at Brewster's angle, as in NIF, but the slabs are much thinner to allow for cooling by high-velocity helium gas as in the Mercury laser system. We also describe a plan to mass-produce pump-diode lasers to bring diode costs down to the order of $0.01 per Watt of peak output power, as needed to make the LIFE application economically attractive

  14. ROK-PRC Cooperation on Laser Fusion Energy

    International Nuclear Information System (INIS)

    Rhee, Yong Joo; Han, J. M.; Lee, S. M.; Nam, S. M.; Kwan, D. H.; Cha, Y. H.; Baek, S. H.

    2009-03-01

    International treaties on the reduction of green-house gases are now being established worldwide and Korea is supposed to join these treaties in a near future. Meanwhile the energy production via fission reactors proposed as a solution to this global environmental contamination has still inherent problems in that it also produces long-life radioactive nuclear waste in the long run, causing many serious social issues. Now the ultimate solution in this situation is believed to be the production of energy by the nuclear fusion reaction. In this project, the collaboration regarding high energy laser fusion has been carried out mainly at the Chinese facility such as ShengGuang II (SG II) laser facility, and ultrahigh intensity laser system of KAERI has been used for the small scale laser fusion and production of fast neutrons. Thomson scattering experiment to analyze the fusion plasma, opacity measurement to understand and develop the computer simulation techniques have been carried out at SG II facility, and experiments on implosion reaction which is basic to laser fusion as well as that of X-ray absorption and transmission have been done at the GEKKO XII facility of ILE, Japan. Satisfactory results both for Korea and China have been deduced by the strategy of project such that different approaches for high energy laser fusion and low energy laser fusion were applied. That is, Korean partner could get opportunities of doing experiments at the large laser facilities to get plasma diagnostic technologies and high density simulation technologies, besides the opportunity to participate in the K-C-J collaborative experiments of implosion and X-ray spectroscopy. And Chinese partner could solve their problem related to the laser fusion and neutron generation which were not successful even with their far high 300TW laser system

  15. Conceptual design of laser fusion reactor KOYO-fast

    International Nuclear Information System (INIS)

    Tomabechi, K.; Kozaki, Y.; Norimatsu, T.

    2006-01-01

    A conceptual design of the laser fusion reactor KOYO-F based on the fast ignition scheme is reported including the target design, the laser system and the design for chamber. A Yb-YAG ceramic laser operated at 200 K is the primary candidate for the compression laser and an OPCPA (optical parametric chirped pulse amplification) system is the one for the ignition laser. The chamber is basically a wet wall type but the fire position is vertically off-set to simplify the protection scheme of the ceiling. The target consists of foam insulated, cryogenic DT shells with a LiPb, reentrant guide-cone. (authors)

  16. Ultrasmooth plasma polymerized coatings for laser-fusion targets

    International Nuclear Information System (INIS)

    Letts, S.A.; Myers, D.W.; Witt, L.A.

    1980-01-01

    Coatings for laser fusion targets were deposited up to 135 μm thick by plasma polymerization onto 140 μm diameter DT filled glass microspheres. Ultrasmooth surfaces (no defect higher than 0.1 μm) were achieved by eliminating particulate contamination. Process generated particles were eliminated by determining the optimum operating conditions of power, gas flow, and pressure, and maintaining these conditions through feedback control. From a study of coating defects grown over known surface irregularities, a quantitative relationship between irregularity size, film thickness, and defect size was determined. This relationship was used to set standards for the maximum microshell surface irregularity tolerable in the production of hydrocarbon or fluorocarbon coated laser fusion targets

  17. Measurement of the X and gamma radiation after muon-catalyzed pd-, dd-, and dt-fusion

    International Nuclear Information System (INIS)

    Bossy, H.

    1987-01-01

    The muonic X radiation emitted after muon-catalyzed fusion of two hydrogen nuclei has been measured for the fusion reactions of pd, dd, and dt (p=proton, d=deuteron, t=triton). The quantum yields (per fusion) of the μHe(2-1) transition were evaluated to be 3.2(4)% (pd fusion), 1.6(2)% (dd fusion), and 0.21(5)% (dt fusion, preliminary value). The intensity ratios of the transitions μHe(3-1)/μHe(2-1) were found to be 0.052(5) (pd fusion) and 0.13(2) (dd fusion). The investigation of the gamma radiation intensities for pd fusion yielded excitement probabilities of the μHe atom. (orig.) [de

  18. Regulatory aspects of fusion power-lessons from fission plants

    International Nuclear Information System (INIS)

    Natalizio, A.; Brunnader, H.; Sood, S.K.

    1993-01-01

    Experience from fission reactors has shown the regulatory process for licensing a nuclear facility to be legalistic, lengthy, unpredictable, and costly. This experience also indicates that much of the regulatory debate is focused on safety margins, that is, the smaller the safety margins the bigger the regulatory debate and the greater the amount of proof required to satisfy the regulatory. Such experience suggests that caution and prudence guide the development of a regulatory regime for fusion reactors. Fusion has intrinsic safety and environmental advantages over fission, which should alleviate significantly, or even eliminate, the regulatory problems associated with fission. The absence of a criticality concern and the absence of fission products preclude a Chernobyl type accident from occurring in a fusion reactor. Although in a fusion reactor there are large inventories of radioactive products that can be mobilized, the total quantity is orders of magnitude smaller than in fission power reactors. The bulk of the radioactivity in a fusion reactor is either activation products in steel structures, or tritium fuel supplies safely stored in the form of a metal tritide in storage beds. The quantity of tritium that can be mobilized under accident conditions is much less than ten million curies. This compares very favorably with a fission product inventory greater than ten billion curies in a fission power reactor. Furthermore, in a fission reactor, all of the reactivity is contained in a steel vessel that is pressurized to about 150 atmospheres, whereas in a fusion reactor, the inventory of radioactive material is dispersed in different areas of the plant, such that it is improbable that a single event could give rise to the release of the entire inventory to the environment. With such significant intrinsic safety advantages there is no a priori need to make fusion requirements/regulations more demanding and more stringent than fission

  19. Conceptual design study for a laser fusion hybrid

    International Nuclear Information System (INIS)

    Maniscalco, J.A.

    1976-01-01

    Lawrence Livermore Laboratory and Bechtel Corporation have been involved in a joint effort to conceptually design a laser fusion hybrid reactor. The design which has evolved is a depleted-uranium fueled fast-fission blanket which produces fissile plutonium and electricity. A major objective of the design study was to evaluate the feasibility of producing fissile fuel with laser fusion. This feasibility evaluation was carried out by analyzing the integrated engineering performance of the complete conceptual design and by identifying the required laser/pellet performance. The performance of the laser fusion hybrid has also been compared to a typical fast breeder reactor. The results show that the laser fusion hybrid produces enough fissile material to fuel more than six light water reactors (LWRs) of equivalent thermal power while operating in a regime which requires an order of magnitude less laser and pellet performance than pure laser fusion. In comparison to a fast breeder reactor the hybrid produces 10 times more fissile fuel. An economic analysis of the design shows that the cost of electricity in a combined hybrid-LWR scenario increases by only 20 to 40 percent when the capital cost of the hybrid ranges from 2 to 3 times more than an LWR

  20. Conceptual design study for a laser fusion hybrid

    International Nuclear Information System (INIS)

    Maniscalco, J.A.

    1976-09-01

    Lawrence Livermore Laboratory and Bechtel Corporation have been involved in a joint effort to conceptually design a laser fusion hybrid reactor. The design which has evolved is a depleted-uranium fueled fast-fission blanket which produces fissile plutonium and electricity. A major objective of the design study was to evaluate the feasibility of producing fissile fuel with laser fusion. This feasibility evaluation was carried out by analyzing the integrated engineering performance of the complete conceptual design and by identifying the required laser/pellet performance. The performance of the laser fusion hybrid has also been compared to a typical fast breeder reactor. The results show that the laser fusion hybrid produces enough fissile material to fuel more than six light water reactors (LWR's) of equivalent thermal power while operating in a regime which requires an order of magnitude less laser and pellet performance than pure laser fusion. In comparison to a fast breeder reactor the hybrid produces 10 times more fissile fuel. An economic analysis of the design shows that the cost of electricity in a combined hybrid-LWR scenario is insensitive to the capital cost of the hybrid, increasing by only 20 to 40 percent when the capital cost of the hybrid ranges from 2 to 3 times more than an LWR

  1. Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system

    International Nuclear Information System (INIS)

    Zhou, Z.; Yang, Y.; Xu, H.

    2011-01-01

    This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.

  2. Updated comparison of economics of fusion reactors with advanced fission reactors

    International Nuclear Information System (INIS)

    Delene, J.G.

    1990-01-01

    The projected cost of electricity (COE) for fusion is compared with that from current and advanced nuclear fission and coal-fired plants. Fusion cost models were adjusted for consistency with advanced fission plants and the calculational methodology and cost factors follow guidelines recommended for cost comparisons of advanced fission reactors. The results show COEs of about 59--74 mills/kWh for the fusion designs considered. In comparison, COEs for future fission reactors are estimated to be in the 43--54 mills/kWh range with coal-fired plant COEs of about 53--69 mills/kWh ($2--3/GJ coal). The principal cost driver for the fusion plants relative to fission plants is the fusion island cost. Although the estimated COEs for fusion are greater than those for fission or coal, the costs are not so high as to preclude fusion's competitiveness as a safe and environmentally sound alternative

  3. The Tokamak Fusion Test Reactor D-T modifications and operations

    International Nuclear Information System (INIS)

    1992-01-01

    This Environmental Assessment (EA) was prepared in accordance with the National Environmental Policy Act (NEPA) of 1969, as amended, in support of the Department of Energy's proposal for the Tokamak Fusion Test Reactor (TFTR) D-T program. The objective of the proposed D-T program is to take the initial step in studying the effects of alpha particle heating and transport in a magnetic fusion device. These studies would enable the successful completion of the original TFTR program objectives, and would support the research and development needs of the Burning Plasma Experiment, BPX (formerly the Compact Ignition Tokamak (CIT)) and International Thermonuclear Experimental Reactor (ITER) in the areas of alpha particle physics, tritium retention, alpha particle diagnostic development, and tritium handling

  4. Laser-fusion research progress report, January--June 1976

    International Nuclear Information System (INIS)

    1976-08-01

    Three prototypical laser systems; iodine, and HF, are being developed. The iodine laser program is designed to delineate possible problem areas in the development of higher-power iodine lasers and to improve its efficiency to where net energy gain is possible using complex targets or hybrid, fusion-fission reactors. To provide data for the oxygen laser, studies are under way on excited-state production efficiencies, electron-beam device development, and low-pressure gain phenomena. In the HF-laser program, technology is being developed applicable to high-power, high-gain laser systems

  5. The Radiological and Thermal Characteristics of Fission Waste from a Deep-Burn Fusion-Fission Hybrid (LIFE) and Implications for Repository Performance

    International Nuclear Information System (INIS)

    Shaw, H.F.; Blink, J.; Farmer, J.; Latkowski, J.; Kramer, K.

    2009-01-01

    We are studying the use of a Laser Inertial-confinement Fusion Engine (LIFE) to drive a hybrid fusion-fission system that can generate electrical power and/or burn nuclear waste. The system uses the neutrons from laser driven ICF to produce tritium and to drive nuclear reactions in a subcritical fission blanket. The fusion neutron source obviates the need for a self-sustaining chain reaction in the fission blanket. Either fissile or fertile could be used as fission fuel, thus eliminating the need for isotopic enrichment. The 'driven' system potentially allows very high levels of burnup to be reached, extracting a large fraction of the available energy in the fission fuel without the need for reprocessing. In this note, we discuss the radionuclide inventory of a depleted uranium (DU) fuel burned to greater than 95% FIMA (Fissions per Initial heavy Metal Atom), the implications for thermal management of the resulting waste, and the implications of this waste for meeting the dose standards for releases from a geological repository for high-level waste. The fission waste discussed here would be that produced by a LIFE hybrid with a 500-MW fusion source. The fusion neutrons are multiplied and moderated by a sequence of concentric shells of materials before encountering the fission fuel, and fission in this region is largely due to thermal neutrons. The fission blanket consists of 40 metric tons (MT) of DU, assumed to be in the form of TRISO-like UOC fuel particles embedded in 2-cm-diameter graphite pebbles. (It is recognized that TRISO-based fuel may not reach the high burnup of the fertile fuel considered here, and other fuel options are being investigated. We postulate the existence of a fuel that can reach >95% FIMA so that the waste disposal implications of high burnup can be assessed.) The engine and plant design considered here would receive one load of fission fuel and produce ∼2 GWt of power (fusion + fission) over its 50- to 70-year lifetime. Neutron and

  6. Progress in direct-drive inertial confinement fusion research at the Laboratory for Laser Energetics

    International Nuclear Information System (INIS)

    McCrory, R.L.

    2002-01-01

    Significant theoretical and experimental progress towards the validation of direct-drive inertial confinement fusion (ICF) has been recently made at the Laboratory for Laser Energetics (LLE). Direct-drive ICF offers the potential for high-gain implosions and is a leading candidate for an inertial fusion energy power plant. LLE's base-line direct-drive ignition design for NIF is an 'all-DT' design that has a 1-D gain of ∼45. Recent calculations show that targets composed of foam shells, wicked with DT, can potentially achieve 1-D gains of ∼100. LLE experiments are conducted on the OMEGA 60-beam, 30-kJ, UV laser system. Beam smoothing of OMEGA includes 1-THz, 2-D SSD and polarization smoothing. Cryogenic D2 and plastic shell (warm) spherical targets and a comprehensive suite of x-ray, nuclear, charged particle and optical diagnostics are used in these experiments. Future experiments will use cryogenic DT targets. (author)

  7. Genetically Controlled Fusion, Exocytosis and Fission of Artificial Vesicles

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; De Lucrezia, Davide

    if a special class of viral proteins, termed fusogenic peptides, were added to the external medium. In the present work, we intend to develop genetically controlled fusion, fission and exocytosis of vesicles by the synthesis of peptides within vesicles. First, we enclosed synthesized peptides in vesicles...... to induce in a next step fusion of adjacent vesicles, fission and exocytosis of nested vesicles. Second, we will replace the peptides by an enclosed cell-free expression system to internally synthesize fusion peptides. To control the gene expression, different mechanisms are available, e.g. addition...... fusion, fission and exocytosis....

  8. Ultrasmooth plasma polymerized coatings for laser fusion targets

    International Nuclear Information System (INIS)

    Letts, S.A.; Myers, D.W.; Witt, L.A.

    1980-01-01

    Coatings for laser fusion were deposited up to 135μm thick by plasma polymerization onto 140 μm diameter DT filled glass microspheres. Ultrasmooth surfaces (no defect higher than 0.1 μm) were achieved by eliminating particulate contamination. Process generated particles were eliminated by determining the optimum operating conditions of power (20 watts), gas flow (0.3 sccm trans-2-butene, 10.0 sccm hydrogen), and pressure (75 millitorr), and maintaining these conditions through feedback control. From a study of coating defects grown over known surface irregularities, a quantitative relationship between irregularity size, film thickness, and defect size was determined. This relationship was used to set standards for the maximum microshell surface irregularity tolerable in the production of hydrocarbon or fluorocarbon coated laser fusion targets

  9. Molten Salt Fuel Version of Laser Inertial Fusion Fission Energy (LIFE)

    International Nuclear Information System (INIS)

    Moir, R.W.; Shaw, H.F.; Caro, A.; Kaufman, L.; Latkowski, J.F.; Powers, J.; Turchi, P.A.

    2008-01-01

    Molten salt with dissolved uranium is being considered for the Laser Inertial Confinement Fusion Fission Energy (LIFE) fission blanket as a backup in case a solid-fuel version cannot meet the performance objectives, for example because of radiation damage of the solid materials. Molten salt is not damaged by radiation and therefore could likely achieve the desired high burnup (>99%) of heavy atoms of 238 U. A perceived disadvantage is the possibility that the circulating molten salt could lend itself to misuse (proliferation) by making separation of fissile material easier than for the solid-fuel case. The molten salt composition being considered is the eutectic mixture of 73 mol% LiF and 27 mol% UF 4 , whose melting point is 490 C. The use of 232 Th as a fuel is also being studied. ( 232 Th does not produce Pu under neutron irradiation.) The temperature of the molten salt would be ∼550 C at the inlet (60 C above the solidus temperature) and ∼650 C at the outlet. Mixtures of U and Th are being considered. To minimize corrosion of structural materials, the molten salt would also contain a small amount (∼1 mol%) of UF 3 . The same beryllium neutron multiplier could be used as in the solid fuel case; alternatively, a liquid lithium or liquid lead multiplier could be used. Insuring that the solubility of Pu 3+ in the melt is not exceeded is a design criterion. To mitigate corrosion of the steel, a refractory coating such as tungsten similar to the first wall facing the fusion source is suggested in the high-neutron-flux regions; and in low-neutron-flux regions, including the piping and heat exchangers, a nickel alloy, Hastelloy, would be used. These material choices parallel those made for the Molten Salt Reactor Experiment (MSRE) at ORNL. The nuclear performance is better than the solid fuel case. At the beginning of life, the tritium breeding ratio is unity and the plutonium plus 233 U production rate is ∼0.6 atoms per 14.1 MeV neutron

  10. ND:GLASS LASER DESIGN FOR LASER ICF FISSION ENERGY (LIFE)

    Energy Technology Data Exchange (ETDEWEB)

    Caird, J A; Agrawal, V; Bayramian, A; Beach, R; Britten, J; Chen, D; Cross, R; Ebbers, C; Erlandson, A; Feit, M; Freitas, B; Ghosh, C; Haefner, C; Homoelle, D; Ladran, T; Latkowski, J; Molander, W; Murray, J; Rubenchik, S; Schaffers, K; Siders, C W; Stappaerts, E; Sutton, S; Telford, S; Trenholme, J; Barty, C J

    2008-10-28

    We have developed preliminary conceptual laser system designs for the Laser ICF (Inertial Confinement Fusion) Fission Energy (LIFE) application. Our approach leverages experience in high-energy Nd:glass laser technology developed for the National Ignition Facility (NIF), along with high-energy-class diode-pumped solid-state laser (HEC-DPSSL) technology developed for the DOE's High Average Power Laser (HAPL) Program and embodied in LLNL's Mercury laser system. We present laser system designs suitable for both indirect-drive, hot spot ignition and indirect-drive, fast ignition targets. Main amplifiers for both systems use laser-diode-pumped Nd:glass slabs oriented at Brewster's angle, as in NIF, but the slabs are much thinner to allow for cooling by high-velocity helium gas as in the Mercury laser system. We also describe a plan to mass-produce pump-diode lasers to bring diode costs down to the order of $0.01 per Watt of peak output power, as needed to make the LIFE application economically attractive.

  11. Muon catalyzed fusion - fission reactor driven by a recirculating beam

    International Nuclear Information System (INIS)

    Eliezer, S.; Tajima, T.; Rosenbluth, M.N.

    1986-01-01

    The recent experimentally inferred value of multiplicity of fusion of deuterium and tritium catalyzed by muons has rekindled interest in its application to reactors. Since the main energy expended is in pion (and consequent muon) productions, we try to minimize the pion loss by magnetically confining pions where they are created. Although it appears at this moment not possible to achieve energy gain by pure fusion, it is possible to gain energy by combining catalyzed fusion with fission blankets. We present two new ideas that improve the muon fusion reactor concept. The first idea is to combine the target, the converter of pions into muons, and the synthesizer into one (the synergetic concept). This is accomplished by injecting a tritium or deuterium beam of 1 GeV/nucleon into DT fuel contained in a magnetic mirror. The confined pions slow down and decay into muons, which are confined in the fuel causing little muon loss. The necessary quantity of tritium to keep the reactor viable has been derived. The second idea is that the beam passing through the target is collected for reuse and recirculated, while the strongly interacted portion of the beam is directed to electronuclear blankets. The present concepts are based on known technologies and on known physical processes and data. 29 refs., 6 figs., 4 tabs

  12. Progress in direct-drive inertial confinement fusion research at the laboratory for laser energetics

    International Nuclear Information System (INIS)

    McCrory, R.L.; Meyerhofer, D.D.; Loucks, S.J.

    2003-01-01

    Significant theoretical and experimental progress toward the validation of direct-drive inertial confinement fusion (ICF) has been made at the Laboratory for Laser Energetics (LLE). Direct-drive ICF offers the potential for high-gain implosions and is a leading candidate for an inertial fusion energy power plant. LLE's base-line direct-drive ignition design for the National Ignition Facility (NIF) is an 'all-DT' design that has a 1-D gain of ∼45 (∼30 when two-dimensional calculations are performed). The 'all-DT target' consists of a thin (∼3 μm) plastic shell enclosing a thick (∼330 μm) DT-ice layer. Recent calculations show that targets composed of foam shells, wicked with DT, can potentially achieve 1-D gains ∼100 at NIF energy levels (∼1.5 MJ). The addition of a 'picket' pulse to the beginning of the all-DT pulse shape reduces the target sensitivity to laser nonuniformities, increasing the potentially achievable gains. LLE experiments are conducted on the OMEGA 60-beam, 30-kJ, UV laser system. Beam smoothing includes 1-THz, 2-D SSD and polarization smoothing. Ignition-scaled cryogenic D 2 and plastic-shell spherical targets and a comprehensive suite of x-ray, nuclear, charged-particle, and optical diagnostics are used to understand the characteristics of the implosions. Recent cryogenic D 2 implosions with high adiabat (α ∼ 25) perform as predicted by one-dimensional (perfectly symmetric) simulations. Moderateconvergence- ratio (CR ∼ 15), high-adiabat (α ∼ 25), warm-capsule (surrogates for cryogenic capsules) implosions produce >30% of the 1-D predicted neutron yield and nearly 100% of the predicted fuel and shell areal densities. From a combination of x-ray, nuclear, and particle spectroscopy, a 'Lawson' fusion parameter (n i T i τi) of ∼7 x 10 20 m -3 keV was measured, the highest directly measured in inertial confinement fusion experiments to date. Estimates from cryogenic target performance give similar Lawson conditions. Future

  13. First wall studies of a laser-fusion hybrid reactor design

    International Nuclear Information System (INIS)

    Hovingh, J.

    1976-09-01

    The design of a first wall for a 20 MW thermonuclear power laser fusion hybrid reactor is presented. The 20 mm thick graphite first wall is located 3.5 m from the DT microexplosion with a thermonuclear yield of 10 MJ. Estimates of the energy deposition, temperature, stresses, and material vaporized from the first wall due to the interaction of the x-rays, charged particle debris, and reflected laser light with the graphite are presented, along with a brief description of the analytical methods used for these estimations. Graphite is a viable first wall material for inertially-confined fusion reactors, with lifetimes of a year possible

  14. Studies on muon cycling rates in muon catalyzed D-T fusion system with possible four-body muonic molecules formation

    International Nuclear Information System (INIS)

    Eskandri, M.R.; Hosini Motlagh, N.; Hataf, A.

    2000-01-01

    In recent studies, it is shown that the fusion rate for four-body molecules of ppμμ, ddμμ, ptμμ, pdμμ, dtμμ, ttμμ, is considerably larger than that of similar three-body molecules of ppμμ, ddμμ, ptμμ, pdμμ, dtμμ, ttμμ. It is shown that for dtμμ, fusion rate is R f (dt) ≅ 3 * 10 13 - 6 * * 10 13 S -1 which is 40 times higher than fusion rate of dtμμ molecule. In this paper we have looked for the effect of these molecules formation in muon catalyzed D-T fusion. The required data for all possible branches do not exist, so the main dtμμ branch are considered here. By choosing a variable value for dtμμ molecule formation rate and comparing obtained cycling rates with existing experimental values, the order of this parameter is evaluated to be ≅ 10 9 S -1 . Using obtained data in different conditions of D-T muon cycling rate calculations have shown that considering of four-body molecule formations in existing muon injection intensities do not make considerable change in three-body muonic molecule cycling rate

  15. Neutron transport-burnup code MCORGS and its application in fusion fission hybrid blanket conceptual research

    Science.gov (United States)

    Shi, Xue-Ming; Peng, Xian-Jue

    2016-09-01

    Fusion science and technology has made progress in the last decades. However, commercialization of fusion reactors still faces challenges relating to higher fusion energy gain, irradiation-resistant material, and tritium self-sufficiency. Fusion Fission Hybrid Reactors (FFHR) can be introduced to accelerate the early application of fusion energy. Traditionally, FFHRs have been classified as either breeders or transmuters. Both need partition of plutonium from spent fuel, which will pose nuclear proliferation risks. A conceptual design of a Fusion Fission Hybrid Reactor for Energy (FFHR-E), which can make full use of natural uranium with lower nuclear proliferation risk, is presented. The fusion core parameters are similar to those of the International Thermonuclear Experimental Reactor. An alloy of natural uranium and zirconium is adopted in the fission blanket, which is cooled by light water. In order to model blanket burnup problems, a linkage code MCORGS, which couples MCNP4B and ORIGEN-S, is developed and validated through several typical benchmarks. The average blanket energy Multiplication and Tritium Breeding Ratio can be maintained at 10 and 1.15 respectively over tens of years of continuous irradiation. If simple reprocessing without separation of plutonium from uranium is adopted every few years, FFHR-E can achieve better neutronic performance. MCORGS has also been used to analyze the ultra-deep burnup model of Laser Inertial Confinement Fusion Fission Energy (LIFE) from LLNL, and a new blanket design that uses Pb instead of Be as the neutron multiplier is proposed. In addition, MCORGS has been used to simulate the fluid transmuter model of the In-Zinerater from Sandia. A brief comparison of LIFE, In-Zinerater, and FFHR-E will be given.

  16. Fusion-fission dynamics and perspectives of future experiments

    International Nuclear Information System (INIS)

    Zagrebaev, V.I.; Itkis, M.G.; Oganessian, Yu.Ts.

    2003-01-01

    The paper is focused on reaction dynamics of superheavy-nucleus formation and decay at beam energies near the Coulomb barrier. The aim is to review the things we have learned from recent experiments on fusion-fission reactions leading to the formation of compound nuclei with Z ≥ 102 and from their extensive theoretical analysis. Major attention is paid to the dynamics of formation of very heavy compound nuclei taking place in strong competition with the process of fast fission (quasifission). The choice of collective degrees of freedom playing a fundamental role and finding the multidimensional driving potential and the corresponding dynamic equation regulating the whole process are discussed. A possibility of deriving the fission barriers of superheavy nuclei directly from performed experiments is of particular interest here. In conclusion, the results of a detailed theoretical analysis of available experimental data on the 'cold' and 'hot' fusion-fission reactions are presented. Perspectives of future experiments are discussed along with additional theoretical studies in this field needed for deeper understanding of the fusion-fission processes of very heavy nuclear systems

  17. Volume ignition of laser driven fusion pellets and double layer effects

    International Nuclear Information System (INIS)

    Cicchitelli, L.; Eliezer, S.; Goldsworthy, M.P.; Green, F.; Hora, H.; Ray, P.S.; Stening, R.J.; Szichman, H.

    1988-01-01

    The realization of an ideal volume compression of laser-irradiated fusion pellets opens the possibility for an alternative to spark ignition proposed for many years for inertial confinement fusion. A re-evaluation of the difficulties of the central spark ignition of laser driven pellets is given. The alternative volume compression theory, together with volume burn and volume ignition, have received less attention and are re-evaluated in view of the experimental verification generalized fusion gain formulas, and the variation of optimum temperatures derived at self-ignition. Reactor-level DT fusion with MJ-laser pulses and volume compression to 50 times the solid-state density are estimated. Dynamic electric fields and double layers at the surface and in the interior of plasmas result in new phenomena for the acceleration of thermal electrons to suprathermal electrons. Double layers also cause a surface tension which stabilizes against surface wave effects and Rayleigh-Taylor instabilities. (author)

  18. Fusion-fission dynamics

    International Nuclear Information System (INIS)

    Blocki, J.; Planeta, R.; Brzychczyk, J.; Grotowski, K.

    1991-04-01

    Classical dynamical calculations of the heavy ion induced fission process for the reactions 40 Ar+ 141 Pr, 20 Ne+ 165 Ho and 12 C+ 175 Lu leading to the iridium like nucleus have been performed. As a result prescission lifetimes were obtained and compared with the experimental values. The agreement between the calculated and experimental lifetimes indicates that the one-body dissipation picture is much more relevant in describing the fusion-fission dynamics than the two-body one. Somewhat bigger calculated times than the experimental ones in case of the C+Lu reaction at 16 MeV/nucleon may be a signal on the energy range applicability of the one-body dissipation model. (author)

  19. Temperature derivatives for fusion reactivity of D-D and D-T

    Energy Technology Data Exchange (ETDEWEB)

    Langenbrunner, James R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makaruk, Hanna Ewa [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-29

    Deuterium-tritium (D-T) and deuterium-deuterium (D-D) fusion reaction rates are observable using leakage gamma flux. A direct measurement of γ-rays with equipment that exhibits fast temporal response could be used to infer temperature, if the detector signal is amenable for taking the logarithmic time-derivative, alpha. We consider the temperature dependence for fusion cross section reactivity.

  20. 1978 source book for fusion--fission hybrid systems. Executive summary

    International Nuclear Information System (INIS)

    Crowley, J.H.; Pavlenco, G.F.; Kaminski, R.S.

    1978-12-01

    The 1978 Source Book for Fusion--Fission Hybrid Systems was prepared by United Engineers and Constructors Inc. for the U.S. Department of Energy and the Electric Power Research Institute. It reviews the current status of fusion--fission hybrid reactors, and presents the prevailing views of members of the fusion community on the RD and D timetable required for the development and commercialization of fusion--fission hybrids. The results presented are based on a review of related references as well as interviews with recognized experts in the field. Contributors from the academic and industrial communities are listed

  1. Polarization: A Must for Fusion

    Directory of Open Access Journals (Sweden)

    Guidal M.

    2012-10-01

    Full Text Available Recent realistic simulations confirm that the polarization of the fuel would improve significantly the DT fusion efficiency. We have proposed an experiment to test the persistence of the polarization in a fusion process, using a terawatt laser hitting a polarized HD target. The polarized deuterons heated in the plasma induced by the laser can fuse producing a 3He and a neutron in the final state. The angular distribution of the neutrons and the change in the corresponding total cross section are related to the polarization persistence. The experimental polarization of DT fuel is a technological challenge. Possible paths for Magnetic Confinement Fusion (MCF and for Inertial Confinement Fusion (ICF are reviewed. For MCF, polarized gas can be used. For ICF, cryogenic targets are required. We consider both, the polarization of gas and the polarization of solid DT, emphasizing the Dynamic Nuclear polarization (DNP of HD and DT molecules.

  2. Cold valleys in fusion and fission

    International Nuclear Information System (INIS)

    Misicu, S.

    2003-01-01

    The cold fission configuration after the preformation of the fragments resembles a short-lived dinuclear or quasi-molecular system. The most conceivable scission configuration is given by two fission fragments in touching with the symmetry axes aligned (pole-pole orientation). This conclusion was based on the simple argument that this configuration offers the optimal tunneling time, i.e. the difference between the Coulomb barrier and the decay energy Q is minimal. Other orientations are apparently precluded in cold spontaneous fission and should be regarded as quasi-fission doorways in the synthesis of superheavy elements by cold fusion. (orig.)

  3. On the safety of conceptual fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Okrent, D.; Badham, V.; Caspi, S.; Chan, C.K.; Ferrell, W.J.; Frederking, T.H.K.; Grzesik, J.; Lee, J.Y.; McKone, T.E.; Pomraning, G.C.; Ullman, A.Z.; Ting, T.D.; Kim, Y.I.

    1979-01-01

    A preliminary examination of some potential safety questions for conceptual fusion-fission hybrid reactors is presented in this paper. The study and subsequent analysis was largely based upon one design, a conceptual mirror fusion-fission reactor, operating on the deuterium-tritium plasma fusion fuel cycle and the uranium-plutonium fission fuel cycle. The major potential hazards were found to be: (a) fission products, (b) actinide elements, (c) induced radioactivity, and (d) tritium. As a result of these studies, it appears that highly reliable and even redundent decay heat removal must be provided. Loss of the ability to remove decay heat results in melting of fuel, with ultimate release of fission products and actinides to the containment. In addition, the studies indicate that blankets can be designed which will remain subcritical under extensive changes in both composition and geometry. Magnet safety and the effects of magnetic fields on thermal parameters were also considered. (Auth.)

  4. Spatially and temporally resolved x-ray emission from imploding laser fusion targets

    International Nuclear Information System (INIS)

    Attwood, D.T.; Coleman, L.W.; Boyle, M.J.; Phillion, D.W.; Swain, J.E.; Manes, K.R.; Larsen, J.T.

    1976-09-01

    The Livermore 15 psec x-ray streak camera has been used in conjunction with 6 μm diameter pinholes to record well resolved implosion histories of DT filled laser fusion targets. The space-time compression data provide clearly identified implosion velocities, typically 3 x 10 7 cm/sec for two-sided clamshell irradiation of a 70 μm/sup D/, .5 μm wall DT filled glass microshell. Single-sided irradiation results show hydrodynamic convergence at the target center, followed by an asymmetric but two-sided target disassembly. These experiments were performed at the two arm Janus Laser facility, which typically delivered a total of 0.4 TW in a 70 psec pulse for these experiments

  5. Fusion-fission in Ar-heavy nuclei collisions

    International Nuclear Information System (INIS)

    Zaric, Alexandre

    1984-01-01

    Fusion-fission products have been studied for three reactions: Ar + Au, Ar + Bi and Ar + U (5.25-7.5 MeV/u). By measuring symmetric fragmentation components (fission-like events), cross sections for fusion were deduced and compared with the prediction of static and dynamic models. With increasing projectile energy, the width of the mass distributions strongly increases for the two lighter systems. By contrast, for Ar + U it remains essentially constant at a very large value. These results clearly demonstrate that the large increase of the width of the mass distribution cannot be attributed simply to large values of the angular momentum. However, they can be explained by the occurrence of a different dissipative process, fast fission, which can be expected if there is no barrier to fission. For the reaction Ar + Au, the total kinetic-energy distributions were also studied in detail. In this case fast fission occurs only at high incident energy. The average total kinetic energy (TKE) was found to be constant with increasing energy. (author) [fr

  6. Cryogenic-laser-fusion target implosion studies performed with the OMEGA uv-laser system

    International Nuclear Information System (INIS)

    Marshall, F.J.; Letzring, S.A.; Verdon, C.P.; Skupsky, S.; Keck, R.L.; Knauer, J.P.; Kremens, R.L.; Bradley, D.K.; Kessler, T.; Delettrez, J.; and others.

    1989-01-01

    A series of direct-drive laser-fusion implosion experiments was performed on cryogenically cooled, DT-filled glass microballoons with the OMEGA 24-beam uv (351-nm) laser system. The targets consisted of glass microballoons having radii of 100 to 150 μm, wall thicknesses of 3 to 7 μm, filled with DT gas at pressures of 75 to 100 atm. The targets were cooled to below the freezing point of DT, in situ, by a cryogenic target system. The targets were irradiated by approximately 1 to 1.2 kJ of uv light in 650-ps Gaussian pulses. The on-target irradiation uniformity was enhanced for these experiments by the use of distributed phase plates, which brought the estimated irradiation nonuniformities to ∼12% (σ rms ). Target performance was diagnosed by an array of x-ray, plasma, and nuclear instruments. The measured target performance showed ∼70% absorption, thermonuclear yields of 10 6 to 10 8 neutrons, and final fuel areal densities of 20 to 40 mg/cm 2 for the optimum targets examined in these experiments. Fuel densities at the time of thermonuclear neutron production, inferred from direct measurements of the fuel areal density, were in the range of 20 to 50 g/cm 3 (100 to 200 times the density of liquid DT) for the optimum targets

  7. Power-balance analysis of muon-catalyzed fusion-fission hybrid reactor systems

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.

    1985-01-01

    A power-balance model of a muon-catalyzed fusion system in the context of a fission-fuel factory is developed and exercised to predict the required physics performance of systems competitive with either pure muon-catalyzed fusion systems or thermonuclear fusion-fission fuel factory hybrid systems

  8. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    International Nuclear Information System (INIS)

    Latkowski, J.F.; Kramer, K.J.; Abbott, R.P.; Morris, K.R.; DeMuth, J.; Divol, L.; El-Dasher, B.; Lafuente, A.; Loosmore, G.; Reyes, S.; Moses, G.A.; Fratoni, M.; Flowers, D.; Aceves, S.; Rhodes, M.; Kane, J.; Scott, H.; Kramer, R.; Pantano, C.; Scullard, C.; Sawicki, R.; Wilks, S.; Mehl, M.

    2010-01-01

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  9. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    Energy Technology Data Exchange (ETDEWEB)

    Latkowski, J F; Kramer, K J; Abbott, R P; Morris, K R; DeMuth, J; Divol, L; El-Dasher, B; Lafuente, A; Loosmore, G; Reyes, S; Moses, G A; Fratoni, M; Flowers, D; Aceves, S; Rhodes, M; Kane, J; Scott, H; Kramer, R; Pantano, C; Scullard, C; Sawicki, R; Wilks, S; Mehl, M

    2010-12-07

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  10. Fusion-fission hybrid studies in the United States

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Berwald, D.H.; Cheng, E.T.; Delene, J.G.; Jassby, D.L.

    1986-01-01

    Systems and conceptual design studies have been carried out on the following three hybrid types: (1) The fission-suppressed hybrid, which maximizes fissile material produced (Pu or 233 U) per unit of total nuclear power by suppressing the fission process and multiplying neutrons by (n,2n) reactions in materials like beryllium. (2) The fast-fission hybrid, which maximizes fissile material produced per unit of fusion power by maximizing fission of 238 U (Pu is produced) in which twice the fissile atoms per unit of fusion power (but only a third per unit of nuclear power) are made. (3) The power hybrid, which amplifies power in the blanket for power production but does not produce fuel to sell. All three types must sell electrical power to be economical

  11. Advanced nuclear fuel production by using fission-fusion hybrid reactor

    International Nuclear Information System (INIS)

    Al-Kusayer, T.A.; Sahin, S.; Abdulraoof, M.

    1993-01-01

    Efforts are made at the College of Engineering, King Saud University, Riyadh to lay out the main structure of a prototype experimental fusion and fusion-fission (hybrid) reactor blanket in cylindrical geometry. The geometry is consistent with most of the current fusion and hybrid reactor design concepts in respect of the neutronic considerations. Characteristics of the fusion chamber, fusion neutrons and the blanket are provided. The studies have further shown that 1 GWe fission-fusion reactor can produce up to 957 kg/year which is enough to fuel five light water reactors of comparable power. Fuel production can be increased further. 29 refs

  12. New Burnup Calculation System for Fusion-Fission Hybrid System

    International Nuclear Information System (INIS)

    Isao Murata; Shoichi Shido; Masayuki Matsunaka; Keitaro Kondo; Hiroyuki Miyamaru

    2006-01-01

    Investigation of nuclear waste incineration has positively been carried out worldwide from the standpoint of environmental issues. Some candidates such as ADS, FBR are under discussion for possible incineration technology. Fusion reactor is one of such technologies, because it supplies a neutron-rich and volumetric irradiation field, and in addition the energy is higher than nuclear reactor. However, it is still hard to realize fusion reactor right now, as well known. An idea of combination of fusion and fission concepts, so-called fusion-fission hybrid system, was thus proposed for the nuclear waste incineration. Even for a relatively lower plasma condition, neutrons can be well multiplied by fission in the nuclear fuel, tritium is thus bred so as to attain its self-sufficiency, enough energy multiplication is then expected and moreover nuclear waste incineration is possible. In the present study, to realize it as soon as possible with the presently proven technology, i.e., using ITER model with the achieved plasma condition of JT60 in JAEA, Japan, a new calculation system for fusion-fission hybrid reactor including transport by MCNP and burnup by ORIGEN has been developed for the precise prediction of the neutronics performance. The author's group already has such a calculation system developed by them. But it had a problem that the cross section libraries in ORIGEN did not have a cross section library, which is suitable specifically for fusion-fission hybrid reactors. So far, those for FBR were approximately used instead in the analysis. In the present study, exact derivation of the collapsed cross section for ORIGEN has been investigated, which means it is directly evaluated from calculated track length by MCNP and point-wise nuclear data in the evaluated nuclear data file like JENDL-3.3. The system realizes several-cycle calculation one time, each of which consists of MCNP criticality calculation, MCNP fixed source calculation with a 3-dimensional precise

  13. Correlation of DT and DD fusion neutron damage in silicon surface barrier detector

    International Nuclear Information System (INIS)

    Iida, Toshiyuki; Sueyoshi, Yasuhiro; Sunarno; Takahashi, Akito

    1994-01-01

    In order to examine the correlation of DT and DD fusion neutron damage in Si, a silicon surface barrier detector (Si-SBD) was irradiation with neutrons from a deuteron accelerator. The leakage current increased proportionally with neutron fluence, which determined the neutron damage constant for the Si-SBD. The correlation factor of the DT and DD neutron damage in the Si-SBD was determined from the ratio of the DT and DD neutron damage constants and was found to be 2.3. We also calculated the rate of DT and DD neutron displacement damage for Si by using the TRIM-90 computer program and actual data on neutron reactions in the Si-SBD. The correlation factor of DT and DD neutron damage from the calculation agreed with that from the Si-SBD irradiation experiment. (author)

  14. Fusion technology development: role of fusion facility upgrades and fission test reactors

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Deis, G.A.; Longhurst, G.R.; Miller, L.G.; Schmunk, R.E.

    1983-01-01

    The near term national fusion program is unlikely to follow the aggressive logic of the Fusion Engineering Act of 1980. Faced with level budgets, a large, new fusion facility with an engineering thrust is unlikely in the near future. Within the fusion community the idea of upgrading the existing machines (TFTR, MFTF-B) is being considered to partially mitigate the lack of a design data base to ready the nation to launch an aggressive, mission-oriented fusion program with the goal of power production. This paper examines the cost/benefit issues of using fusion upgrades to develop the technology data base which will be required to support the design and construction of the next generation of fusion machines. The extent of usefulness of the nation's fission test reactors will be examined vis-a-vis the mission of the fusion upgrades. The authors show that while fission neutrons will provide a useful test environment in terms of bulk heating and tritium breeding on a submodule scale, they can play only a supporting role in designing the integrated whole modules and systems to be used in a nuclear fusion machine

  15. Fusion technology development: role of fusion facility upgrades and fission test reactors

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Deis, G.A.; Miller, L.G.; Longhurst, G.R.; Schmunk, R.E.

    1983-01-01

    The near term national fusion program is unlikely to follow the aggressive logic of the Fusion Engineering Act of 1980. Faced with level budgets, a large, new fusion facility with an engineering thrust is unlikely in the near future. Within the fusion community the idea of upgrading the existing machines (TFTR, MFTF-B) is being considered to partially mitigate the lack of a design data base to ready the nation to launch an aggressive, mission-oriented fusion program with the goal of power production. This paper examines the cost/benefit issues of using fusion upgrades to develop the technology data base which will be required to support the design and construction of the next generation of fusion machines. The extent of usefulness of the nation's fission test reactors will be examined vis-a-vis the mission of the fusion upgrades. We will show that while fission neutrons will provide a useful test environment in terms of bulk heating and tritium breeding on a submodule scale, they can play only a supporting role in designing the integrated whole modules and systems to be used in a nuclear fusion machine

  16. Characterization of the fusion-fission process in light nuclear systems

    International Nuclear Information System (INIS)

    Anjos, R.M. dos.

    1992-01-01

    Fusion cross sections measurements of highly damped processes and elastic scattering were performed for the 16, 17, 18 O + 10, 11 B and 19 F + 9 Be, in the incident energy interval 22 ≤ E LAB ≤ 64 MeV. Evidences are presented that highly damped binary processes observed in these systems are originated from a fusion-fission process rather than a dinuclear ''orbiting'' mechanism. The relative importance of the fusion-fission process in these very light systems is demonstrated both by the experimental results, which indicate a statistically balanced compound nucleus fission process occurrence, and theoretical calculations. (L.C.J.A.)

  17. Advanced fission and fossil plant economics-implications for fusion

    International Nuclear Information System (INIS)

    Delene, J.G.

    1994-01-01

    In order for fusion energy to be a viable option for electric power generation, it must either directly compete with future alternatives or serve as a reasonable backup if the alternatives become unacceptable. This paper discusses projected costs for the most likely competitors with fusion power for baseload electric capacity and what these costs imply for fusion economics. The competitors examined include advanced nuclear fission and advanced fossil-fired plants. The projected costs and their basis are discussed. The estimates for these technologies are compared with cost estimates for magnetic and inertial confinement fusion plants. The conclusion of the analysis is that fusion faces formidable economic competition. Although the cost level for fusion appears greater than that for fission or fossil, the costs are not so high as to preclude fusion's potential competitiveness

  18. Review of fission-fusion pellet designs and inertial confinement system studies at EIR

    Energy Technology Data Exchange (ETDEWEB)

    Seifriz, W [Eidgenoessisches Inst. fuer Reaktorforschung, Wuerenlingen (Switzerland)

    1978-01-01

    The article summarizes the work done so far at the Swiss Federal Institute for Reactor Research (EIR) in the field of the inertial confinement fusion technique. The following subjects are reviewed: a) fission fusion pellet designs using fissionable triggers, b) uranium tampered pellets, c) tampered pellets recycling unwanted actinide wastes from fission reactors in beam-driven micro-explosion reactors, and d) symbiotic fusion/fission reactor studies.

  19. Progress in direct-drive laser fusion using GEKKO XII/PW facility

    International Nuclear Information System (INIS)

    Yamanaka, T.

    2002-01-01

    Extensive studies have been carried out for the fast-ignitor laser fusion which can provide one of the most feasible short tracks in the fusion energy development. We have upgraded the heating laser up to 1 PW(500 J/500 fs) and have started comprehensive studies on the transport of high current relativistic electron beam in the dense plasma. Substantial heating of the core plasma up to 1 keV is expected with implosion plasma produced by the Gekko XII laser. We have experimentally obtained for the first time all parameters to decide the growth rate of Rayleigh-Taylor instability using the HIPER irradiation system which can generate ablation pressure up to 60 Mbar and newly developed advanced x-ray diagnostic tools. We have proposed the FIREX (Fast Ignitor Realization Experiment) program for demonstrating the proof-of-principle of fast ignitor scheme. By the irradiation of ∼10 kJ/2-10 ps laser onto a DT core plasma formed by the GEKKO-XII, we are aiming at temperature of >8 keV and the fusion gain near unity. (author)

  20. Comparative energetics of three fusion-fission symbiotic nuclear reactor systems

    International Nuclear Information System (INIS)

    Gordon, C.W.; Harms, A.A.

    1975-01-01

    The energetics of three symbiotic fusion-fission nuclear reactor concepts are investigated. The fuel and power balances are considered for various values of systems parameters. The results from this analysis suggest that symbiotic fusion-fission systems are advantageous from the standpoint of economy and resource utilization. (Auth.)

  1. Neutronic performance of a fusion-fission hybrid reactor designed for fuel enrichment for LWRs

    International Nuclear Information System (INIS)

    Yapici, H.; Baltacioglu, E.

    1997-01-01

    In this study, the breeding performance of a fission hybrid reactor was analyzed to provide fissile fuel for Light Water Reactors (LWR) as an alternative to the current methods of gas diffusion and gas centrifuge. LWR fuel rods containing UO 2 or ThO 2 fertile material were located in the fuel zone of the blanket and helium gas or Flibe (Li 2 BeF 4 ) fluid was used as coolant. As a result of the analysis, according to fusion driver (D,T and D,D) and the type of coolant the enrichment of 3%-4% were achieved for operation periods of 12 and 36 months in case of fuel rods containing UO 2 , respectively and for operation periods of 18 and 48 months in case of fuel rods containing ThO 2 , respectively. Depending on the type of fusion driver, coolant and fertile fuel, varying enrichments of between 3% and 8.9% were achieved during operation period of four years

  2. Determination of relative krypton fission product yields from 14 MeV neutron induced fission of 238U at the National Ignition Facility.

    Science.gov (United States)

    Edwards, E R; Cassata, W S; Velsko, C A; Yeamans, C B; Shaughnessy, D A

    2016-11-01

    Precisely-known fission yield distributions are needed to determine a fissioning isotope and the incident neutron energy in nuclear security applications. 14 MeV neutrons from DT fusion at the National Ignition Facility induce fission in depleted uranium contained in the target assembly hohlraum. The fission yields of Kr isotopes (85m, 87, 88, and 89) are measured relative to the cumulative yield of 88 Kr and compared to previously tabulated values. The results from this experiment and England and Rider are in agreement, except for the 85m Kr/ 88 Kr ratio, which may be the result of incorrect nuclear data.

  3. Fusion energy research with lasers, direct drive targets, and dry wall chambers

    International Nuclear Information System (INIS)

    Sethian, J.D.; Obenschain, S.P.; Myers, M.

    2003-01-01

    We are carrying out a coordinated, focused effort to develop Laser Inertial Fusion Energy. The key components are developed in concert with one another and the science and engineering issues are addressed concurrently. Significant progress has been made in this program: We are evaluating target designs that show it could be possible to achieve the high gains (>100) needed for a practical fusion system. These have a low density CH foam that is wicked with solid DT, and over coated with a thin high-Z layer. Significant advances have been made with the two types of laser are being developed: Krypton Fluoride (KrF) gas lasers and Diode Pumped Solid State Lasers (DPPSL). Both have the potential to meet the fusion energy requirements for rep-rate, efficiency, durability and cost. This paper also presents the advances in development of chamber operating windows (target survival plus no wall erosion), final optics (aluminum at grazing incidence has high reflectivity and exceeds required laser damage threshold), target fabrication (advanced foams and high Z overcoats), and target injection (new facility for target injection and tracking studies). (author)

  4. Some safety studies for conceptual fusion--fission hybrid reactors. Final report

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Okrent, D.

    1978-07-01

    The objective of this study was to make a preliminary examination of some potential safety questions for conceptual fusion-fission hybrid reactors. The study and subsequent analysis was largely based upon reference to one design, a conceptual mirror fusion-fission reactor, operating on the deuterium-tritium plasma fusion fuel cycle and the uranium-plutonium fission fuel cycle. The blanket is a fast-spectrum, uranium carbide, helium cooled, subcritical reactor, optimized for the production of fissile fuel. An attempt was made to generalize the results wherever possible

  5. Dynamic treatment of fission and fusion in two dimensions

    International Nuclear Information System (INIS)

    Nazareth, R.A.M.S.

    1977-01-01

    The barrier penetrability in two dimensions for nuclear fusion and fission phenomena is studied. The equations of fission static trajectories (minimum potential) in Hofmann formalism are derived and the influence of inertia parameters on the penetrability is verified. For fusion case, a realistic potential for exactly penetrability calculation is proposed. The transverse momentum to the fusion and the unidimensional calculation in classical approximation by choose the trajectory which turn into maximum the penetrability are considered. The exact penetrability is compared with calculation in the classical approximation which takes in account the possibility of appearing discontinuity in the barrier along of fusion pathway. (M.C.K.) [pt

  6. What can we learn about heavy ion fusion by studying fission angular distributions

    International Nuclear Information System (INIS)

    Back, B.B.

    1984-01-01

    Determinations of complete fusion reactions leading to fissionable systems are associated with problems of separating fragments from quasi-fission reactions from those arising from fission of the completely fused system. Inferring complete fusion cross sections from the minute cross sections for the evaporation residue channel is hampered by the insufficient knowledge of the branching ratio for neutron emission and fission in the decay sequence of the completely fused system. From a quantitative analysis of the fragment angular distributions it is, however, possible under certain assumptions to deduce the relative contribution of complete fusion and quasi-fission. It is found that the complete fusion process is hindered for heavy projectiles. The excess radial energy over the interaction barrier needed to induce fusion with heavy projectiles is determined in several cases and systematic trends are presented

  7. The role of the dinuclear system in the processes of nuclear fusion, quasi-fission, fission and cluster formation

    International Nuclear Information System (INIS)

    Volkov, V.V.

    1999-01-01

    The nuclear fusion, quasi-fission, fission and cluster formation in an excited nucleus are considered as the processes of the formation and evolution of the dinuclear system. This approach allows one to reveal new aspects of nuclear fusion, to show that quasi-fission plays an important role in nuclear reactions used to synthesise superheavy elements. A qualitative picture is given of the fission process of an excited nucleus and an important role of cluster formation in this process is shown

  8. Preliminary neutronics calculation of fusion-fission hybrid reactor breeding spent fuel assembly

    International Nuclear Information System (INIS)

    Ma Xubo; Chen Yixue; Gao Bin

    2013-01-01

    The possibility of using the fusion-fission hybrid reactor breeding spent fuel in PWR was preliminarily studied in this paper. According to the fusion-fission hybrid reactor breeding spent fuel characteristics, PWR assembly including fusion-fission hybrid reactor breeding spent fuel was designed. The parameters such as fuel temperature coefficient, moderator temperature coefficient and their variation were investigated. Results show that the neutron properties of uranium-based assembly and hybrid reactor breeding spent fuel assembly are similar. The design of this paper has a smaller uniformity coefficient of power at the same fissile isotope mass percentage. The results will provide technical support for the future fusion-fission hybrid reactor and PWR combined with cycle system. (authors)

  9. Enhanced fuel production in thorium fusion hybrid blankets utilizing uranium multipliers

    International Nuclear Information System (INIS)

    Pitulski, R.H.; Chapin, D.L.; Klevans, E.

    1979-01-01

    The multiplication of 14 MeV D-T fusion neutrons via (n,2n), (n,3n), and fission reactions by 238 U is well known and established. This study consistently evaluates the effectiveness of a depleted (tails) UO 2 multiplier on increasing the production of 233 U and tritium in a thorium/lithium fusion--fission hybrid blanket. Nuclear performance is evaluated as a function of exposure and zone thickness

  10. Method for nondestructive fuel assay of laser fusion targets

    Science.gov (United States)

    Farnum, Eugene H.; Fries, R. Jay

    1976-01-01

    A method for nondestructively determining the deuterium and tritium content of laser fusion targets by counting the x rays produced by the interaction of tritium beta particles with the walls of the microballoons used to contain the deuterium and tritium gas mixture under high pressure. The x rays provide a direct measure of the tritium content and a means for calculating the deuterium content using the initial known D-T ratio and the known deuterium and tritium diffusion rates.

  11. The existence and characterization of self-sustaining multiplicative fusion and fission reaction chains

    International Nuclear Information System (INIS)

    Harms, A.A.; Heindler, M.

    1980-01-01

    The mathematical-physical similarities and differences between fusion and fission multiplication processes are investigated. It is shown that advanced fusion cycles can sustain excursion tendencies which are essentially analogous to conventional fission cycles. The result that fission excursions are unbounded and that fusion excursions eventually attain an asymptote represents a significant distinction between these fundamental self-sustaining nuclear multiplicative chains. (Auth.)

  12. Isochoric heating of DT fuels through PW-laser-produced proton beams

    International Nuclear Information System (INIS)

    Maynard, G.; Barriga-Carrasco, M.D.

    2005-01-01

    Laser Proton Source (LPS) can generate short bunch of energetic protons with a nearly zero initial emittance. It is thus expected that LPS can deposit a very high density of energy inside dense matter, in particular, in the context of fast ignition of an inertial fusion target. We investigate here one of the factors that can limit the density of deposited energy. It concerns the transverse diffusion, occurring during the transport between the LPS and DT. As the rear surface of LPS should be efficiently protected, the proton along its path has to interact with a substantial amount of high-Z material. Therefore the induced transverse dispersion can become significant. The transport of the proton beam inside a plasma target is calculated using a numerical code, which main features are presented

  13. Isochoric heating of DT fuels through PW-laser-produced proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, G. [Laboratoire de Physique des Gaz et des Pasmas, CNRS UMR8578, bat. 210, Universite Paris XI, F-91405, Orsay (France)]. E-mail: gilles.maynard@pgp.u-psud.fr; Barriga-Carrasco, M.D. [Laboratoire de Physique des Gaz et des Pasmas, CNRS UMR8578, bat. 210, Universite Paris XI, F-91405, Orsay (France)

    2005-05-21

    Laser Proton Source (LPS) can generate short bunch of energetic protons with a nearly zero initial emittance. It is thus expected that LPS can deposit a very high density of energy inside dense matter, in particular, in the context of fast ignition of an inertial fusion target. We investigate here one of the factors that can limit the density of deposited energy. It concerns the transverse diffusion, occurring during the transport between the LPS and DT. As the rear surface of LPS should be efficiently protected, the proton along its path has to interact with a substantial amount of high-Z material. Therefore the induced transverse dispersion can become significant. The transport of the proton beam inside a plasma target is calculated using a numerical code, which main features are presented.

  14. Evaluations of fusion-fission (hybrid) concepts: market penetration analysis for fusion-fission hybrids. Part A

    International Nuclear Information System (INIS)

    Engel, R.L.; Deonigi, D.E.

    1976-01-01

    This report summarizes findings of the fusion-fission studies conducted for the Electric Power Research Institute by Battelle, Pacific Northwest Laboratories. This particular study focused on the evaluation of fissile material producing hybrids. Technical results of the evaluation of actinide burning are presented in a companion volume, Part B

  15. Fission fragment simulation of fusion neutron radiation effects on bulk mechanical properties

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; Mitchell, J.B.; Guinan, M.W.; Stuart, R.N.; Borg, R.J.

    1976-01-01

    This research demonstrates the feasibility of using homogeneously-generated fission fragments to simulate high-fluence fusion neutron damage in niobium tensile specimens. This technique makes it possible to measure radiation effects on bulk mechanical properties at high damage states, using conveniently short irradiation times. The primary knock-on spectrum for a fusion reactor is very similar to that produced by fission fragments, and nearly the same ratio of gas atoms to displaced atoms is produced in niobium. The damage from fission fragments is compared to that from fusion neutrons and fission reactor neutrons in terms of experimentally measured yield strength increase, transmission electron microscopy (TEM) observations, and calculated damage energies

  16. Method for nondestructive fuel assay of laser fusion targets

    International Nuclear Information System (INIS)

    Farnum, E.H.; Fries, R.J.

    1976-01-01

    A method is described for nondestructively determining the deuterium and tritium content of laser fusion targets by counting the x rays produced by the interaction of tritium beta particles with the walls of the microballoons used to contain the deuterium and tritium gas mixture under high pressure. The x rays provide a direct measure of the tritium content and a means for calculating the deuterium content using the initial known D-T ratio and the known deuterium and tritium diffusion rates

  17. Opimization of fusion-driven fissioning systems

    International Nuclear Information System (INIS)

    Chapin, D.L.; Mills, R.G.

    1976-01-01

    Potential advantages of hybrid or fusion/fission systems can be exploited in different ways. With selection of the 238 U-- 239 Pu fuel cycle, we show that the system has greatest value as a power producer. Numerical examples of relative revenue from power production vs. 239 Pu production are discussed, and possible plant characteristics described. The analysis tends to show that the hybrid may be more economically attractive than pure fusion systems

  18. Design and fabrication of foam-insulated cryogenic target for wet-wall laser fusion reactor

    International Nuclear Information System (INIS)

    Norimatsu, T.; Takeda, T.; Nagai, K.; Mima, K.; Yamanaka, T.

    2003-01-01

    A foam insulated cryogenic target was proposed for use in a future laser fusion reactor with a wet wall. This scheme can protect the solid DT layer from melting due to surface heating by adsorption of metal vapor without significant reduction in the target gain. Design spaces for the injection velocity and the acceptable vapor pressure in the reactor are discussed. Basic technology to fabricate such structure was demonstrated by emulsion process. Concept of a cryogenic fast-ignition target with a gold guiding cone was proposed together with direct injection filling of liquid DT. (author)

  19. Symbiosis of near breeder HTR's with hybrid fusion reactors

    International Nuclear Information System (INIS)

    Seifritz, W.

    1978-07-01

    In this contribution to INFCE a symbiotic fusion/fission reactor system, consisting of a hybrid beam-driven micro-explosion fusion reactor (HMER) and associated high-temperature gas-cooled reactors (HTR) with a coupled fuel cycle, is proposed. This system is similar to the well known Fast Breeder/Near Breeder HTR symbiosis except that the fast fission breeder - running on the U/Pu-cycle in the core and the axial blankets and breeding the surplus fissile material as U-233 in its radial thorium metal or thorium oxide blankets - is replaced by a hybrid micro-explosion DT fusion reactor

  20. A comparison of fusion breeder/fission client and fission breeder/fission client systems for electrical energy production

    International Nuclear Information System (INIS)

    Land, R.J.; Parish, T.A.

    1983-01-01

    A parametric study that evaluated the economic performance of breeder/client systems is described. The linkage of the breeders to the clients was modelled using the stockpile approach to determine the system doubling time. Since the actual capital costs of the breeders are uncertain, a precise prediction of the cost of a breeder was not attempted. Instead, the breakeven capital cost of a breeder relative to the capital cost of a client reactor was established by equating the cost of electricity from the breeder/client system to the cost of a system consisting of clients alone. Specific results are presented for two breeder/client systems. The first consisted of an LMFBR with LWR clients. The second consisted of a DT fusion reactor (with a 238 U fission suppressed blanket) with LWR clients. The economics of each system was studied as a function of the cost of fissile fuel from a conventional source. Generally, the LMFBR/LWR system achieved relatively small breakeven capital cost ratios; the maximum ratio computed was 2.2 (achieved at approximately triple current conventional fissile material cost). The DTFR/LWR system attained a maximum breakeven capital cost ratio of 4.5 (achieved at the highest plasma quality (ignited device) and triple conventional fissile cost)

  1. Role of fission-reactor-testing capabilities in the development of fusion technology

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Deis, G.A.; Longhurst, G.R.; Miller, L.G.; Schmunk, R.E.; Takata, M.L.; Watts, K.D.

    1981-01-01

    Testing of fusion materials and components in fission reactors will be increasingly important in the future due to the near-term lack of fusion engineering test devices, and the long-term high demand for testing when fusion reactors become available. Fission testing is capable of filling many gaps in fusion reactor design information, and thus should be aggressively pursued. EG and G Idaho has investigated the application of fission testing in three areas, which are discussed in this paper. First, we investigated radiation damage to magnet insulators. This work is now continuing with the use of an improved test capsule. Second, a study was performed which indicated that a fission-suppressed hybrid blanket module could be effectively tested in a reactor such as the Engineering Test Reactor (ETR), closely reproducing the predicted performance in a fusion environment. Finally, we explored a conceptual design for a fission-based Integrated Test Facility (ITF), which can accommodate entire First Wall/Blanket (FW/B) modules for testing in a nuclear environment, simultaneously satisfying many of the FW/B test requirements. This ITF can provide a cyclic neutron/gamma flux, as well as the necessary module support functions

  2. Nuclear structure in cold rearrangement processes in fission and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, P.

    1998-11-01

    In fission and fusion of heavy nuclei large numbers of nucleons are rearranged at a scale of excitation energy very small compared to the binding energy of the nuclei. The energies involved are less than 40 MeV at nuclear temperatures below 1.5 MeV. The shapes of the configurations in the rearrangement of a binary system into a monosystem in fusion, or vice versa in fission, change their elongations by as much as 8 fm, the radius of the monosystem. The dynamics of the reactions macroscopically described by a potential energy surface, inertia parameters, dissipation, and a collision energy is strongly modified by the nuclear structure of the participating nuclei. Experiments showing nuclear structure effects in fusion and fission of the heaviest nuclei are reviewed. The reaction kinematics and the multitude of isotopes involved are investigated by detector techniques and by recoil spectrometers. The advancement of the latter allows to find very small reaction branches in the range of 10{sup -5} to 10{sup -10}. The experiments reveal nuclear structure effects in all stages of the rearrangement processes. These are discussed pointing to analogies in fusion and fission on the microscopic scale, notwithstanding that both processes macroscopically are irreversible. Heavy clusters, as 132Sn, 208Pb, nuclei with closed shell configurations N=82,126, Z=50,82 survive in large parts of the nuclear rearrangement. They determine the asymmetry in the mass distribution of low energy fission, and they allow to synthesise superheavy elements, until now up to element 112. Experiments on the cold rearrangement in fission and fusion are presented. Here, in the range of excitation energies below 12 MeV the phenomena are observed most convincingly. (orig.)

  3. Neutronics issues in fusion-fission hybrid reactor design

    International Nuclear Information System (INIS)

    Liu Chengan

    1995-01-01

    The coupled neutron and γ-ray transport equations and nuclear number density equations, and its computer program systems concerned in fusion-fission hybrid reactor design are briefly described. The current status and focal point for coming work of nuclear data used in fusion reactor design are explained

  4. Fission-suppressed hybrid reactor: the fusion breeder

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Coops, M.S.

    1982-12-01

    Results of a conceptual design study of a 233 U-producing fusion breeder are presented. The majority of the study was devoted to conceptual design and evaluation of a fission-suppressed blanket and to fuel cycle issues such as fuel reprocessing, fuel handling, and fuel management. Studies in the areas of fusion engineering, reactor safety, and economics were also performed

  5. Influence of laser induced hot electrons on the threshold for shock ignition of fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Colaïtis, A.; Ribeyre, X.; Le Bel, E.; Duchateau, G.; Nicolaï, Ph.; Tikhonchuk, V. [Centre Lasers Intenses et Applications, Université de Bordeaux - CNRS - CEA, UMR 5107,351 Cours de la Libération, 33400 Talence (France)

    2016-07-15

    The effects of Hot Electrons (HEs) generated by the nonlinear Laser-Plasma Interaction (LPI) on the dynamics of Shock Ignition Inertial Confinement Fusion targets are investigated. The coupling between the laser beam, plasma dynamics and hot electron generation and propagation is described with a radiative hydrodynamics code using an inline model based on Paraxial Complex Geometrical Optics [Colaïtis et al., Phys. Rev. E 92, 041101 (2015)]. Two targets are considered: the pure-DT HiPER target and a CH-DT design with baseline spike powers of the order of 200–300 TW. In both cases, accounting for the LPI-generated HEs leads to non-igniting targets when using the baseline spike powers. While HEs are found to increase the ignitor shock pressure, they also preheat the bulk of the imploding shell, notably causing its expansion and contamination of the hotspot with the dense shell material before the time of shock convergence. The associated increase in hotspot mass (i) increases the ignitor shock pressure required to ignite the fusion reactions and (ii) significantly increases the power losses through Bremsstrahlung X-ray radiation, thus rapidly cooling the hotspot. These effects are less prominent for the CH-DT target where the plastic ablator shields the lower energy LPI-HE spectrum. Simulations using higher laser spike powers of 500 TW suggest that the CH-DT capsule marginally ignites, with an ignition window width significantly smaller than without LPI-HEs, and with three quarters of the baseline target yield. The latter effect arises from the relation between the shock launching time and the shell areal density, which becomes relevant in presence of a LPI-HE preheating.

  6. Prospects for alternative Fusion Fuels

    International Nuclear Information System (INIS)

    Glancy, J.

    1986-01-01

    The author has worked on three different magnetic confinement concepts for alternate fusion fueled reactors: tokamaks; tanden mirrors, and reversed field pinches. The focus of this article is on prospects for alternate fusion fuels as the author sees them relative to the other choices: increased numbers of coal plants, fission reactors, renewables, and D-T fusion. Discussion is limited on the consideration of alternate fusion fuels to the catalyzed deuterium-deuterium fuel cycle. Reasons for seeking an alternate energy source are cost, a more secure fuel supply, environmental impact and safety. The technical risks associated with development of fusion are examined briefly

  7. Laser fusion overview

    International Nuclear Information System (INIS)

    Nuckolls, J.

    1976-01-01

    Because of recent breakthroughs in the target area, and in the glass laser area, the scientific feasibility of laser fusion--and of inertial fusion--may be demonstrated in the early 1980's. Then the development in that time period of a suitable laser (or storage ring or other driving source) would make possible an operational inertial fusion reactor in this century. These are roughly the same time scales as projected by the Tokamak magnetic confinement approach. It thus appears that the 15-20 year earlier start by magnetic confinement fusion may be overcome. Because inertial confinement has been demonstrated, and inertial fusion reactors may operate on smaller scales than Tokamaks, laser fusion may have important technical and economic advantages

  8. Measuring sticking and stripping in muon catalyzed dt fusion with multilayer thin films

    International Nuclear Information System (INIS)

    Fujiwara, M.C.; Bailey, J.M.; Beer, G.A.

    1995-12-01

    The authors propose a direct measurement of muon sticking to alpha particles in muon catalyzed dt fusion at a high density. Exploiting the features of a multilayer thin film target developed at TRIUMF, the sticking is determined directly by detection of charged fusion products. Experimental separation of initial ticking and stripping may become possible for the first time. Monte Carlo simulations, as well as preliminary results of test measurements are described

  9. TFTR DT preparation project status

    Energy Technology Data Exchange (ETDEWEB)

    Perry, E.D.; Dudek, L.E.

    1993-11-01

    The Tokamak Fusion Test Reactor (TFTR) research program is preparing to commence the first high power Deuterium-Tritium (DT) experiments of the US Fusion Program. Hardware upgrades to TFTR required for DT operations have been completed. This paper discusses these hardware preparations.

  10. Shiva and Nova: progress of laser fusion at Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.

    1979-01-01

    Over the last several years we have made significant progress in the understanding of the laser plasma interaction through the use of new diagnostic instrumentation and techniques. We have also implemented the Shiva system and operated the world's most complex laser system and produced significant target data. In the implosion experiments with the Shiva system, we have archieved densities greater than 100 x liquid density of DT. The significance of this result is that we have had to overcome the questions of achieving a spherically symmetric implosion and obviating the problem of Rayleigh-Taylor instability. We see no major obstacle in the future to attaining the densities appropriate to efficient burn of microfusion pellets for application to fusion reactors. Further, we have identified a laser system which may provide the architecture required for a fusion reactor driver and we have an agressive on going program to investigate this option for a fusion reactor driver. In addition, our Systems Studies Program has identified a reactor configuration which solves many of the important problems associated with laser fusion reactors. This is not to say that a question of the configuration of an inertial confinement fusion reactor has been settled but rather that there is a very attractive possibility and one which can be used to judge other possibilities and grade them with respect to their performance compared to the Hylife reaction chamber. Thus we hold great hope for the possibility of inertial confinement fusion as an eventual energy source to provide energy for the world

  11. Tritium chemistry in fission and fusion reactors

    International Nuclear Information System (INIS)

    Roth, E.; Masson, M.; Briec, M.

    1986-09-01

    We are interested in the behaviour of tritium inside the solids where it is generated both in the case of fission nuclear reactor fuel elements, and in that of blankets of future fusion reactor. In the first case it is desirable to be able to predict whether tritium will be found in the hulls or in the uranium oxide, and under what chemical form, in order to take appropriate steps for it's removal in reprocessing plants. In fusion reactors breeding large amounts of tritium and burning it in the plasma should be accomplished in as short a cycle as possible in order to limit inventories that are associated with huge activities. Mastering the chemistry of every step is therefore essential. Amounts generated are not of the same order of magnitude in the two cases studied. Ternary fissions produce about 66 10 13 Bq (18 000 Ci) per year of tritium in a 1000 MWe fission generator, i.e., about 1.8 10 10 Bq (0.5 Ci) per day per ton of fuel

  12. Energy for the long run: fission or fusion

    International Nuclear Information System (INIS)

    Kulcinski, G.L.; Kessler, G.; Holdren, J.; Haefele, W.

    1979-01-01

    The alternatives of the most likely and controversial long-range energy sources, fusion and fast-breeder fission, are compared in several areas: potential biological and social hazards, costs of research and development, capital costs, technical complexity, and time factors. It is concluded that from biological and social hazards standpoint, fusion is preferable to fast-breeder fission reactors; however, the LMFBR has already passed on the threshold of scientific and engineering feasibility. It is pointed out that LMFBR should not be compared with short-term energy sources, e.g. coal or oil, but should be compared only with other long-term energy sources, e.g. other types of breeder reactors

  13. Fusion-fission energy systems evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept.

  14. Fusion-fission energy systems evaluation

    International Nuclear Information System (INIS)

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept

  15. Analytic description of the fusion and fission processes through compact quasi-molecular shapes

    International Nuclear Information System (INIS)

    Royer, G.; Normand, C.; Druet, E.

    1997-01-01

    Recent studies have shown that the characteristics of the entrance and exit channels through compact quasi-molecular shapes are compatible with the experimental data on fusion, fission and cluster radioactivity when the deformation energy is determined within a generalized liquid drop model. Analytic expressions allowing to calculate rapidly the main characteristics of this deformation path through necked shapes with quasi-spherical ends are presented now; namely formulas for the fusion and fission barrier heights, the fusion barrier radius, the symmetric fission barriers and the proximity energy. (author)

  16. Some applications of fission-based testing capabilities in the development of fusion technology

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Deis, G.A.; Longhurst, G.R.; Masson, L.S.; Miller, L.G.; Schmunk, R.E.; Takata, M.L.; Watts, K.D.

    1981-10-01

    The testing of fusion materials and components in fission reactors will be increasingly important in the future due to the near-term lack of fusion engineering test devices, and the long-term high demand for fusion testing when they do become available. Fission testing is capable of filling many gaps in fusion reactor design information, and should be aggressively pursued. EG and G Idaho has investigated the application of fission testing in three areas, which are discussed in this paper. First, work was performed on the irradiation of magnet insulators. This work is continuing with an improved test environment. Second, a study was performed which indicated that a fission-suppressed hybrid blanket module could be effectively tested in a reactor such as the Engineering Test Reactor (ETR), closely reproducing the predicted performance in a fusion environment. Finally, a conceptual design is presented for a fission-based Integrated Test Facility (ITF), which can accommodate entire wall/blanket (FW/B) modules for testing in a nuclear environment, simultaneously satisfying many of the FW/B test requirements. This ITF can provide a cyclic neutron/gamma flux, as well as the necessary module support functions

  17. CO2-laser fusion

    International Nuclear Information System (INIS)

    Stark, E.E. Jr.

    1978-01-01

    The basic concept of laser fusion is described, with a set of requirements on the laser system. Systems and applications concepts are presented and discussed. The CO 2 laser's characteristics and advantages for laser fusion are described. Finally, technological issues in the development of CO 2 laser systems for fusion applications are discussed

  18. An economic parametric analysis of the synthetic fuel produced by a fusion-fission complex

    International Nuclear Information System (INIS)

    Tai, A.S.; Krakowski, R.A.

    1980-01-01

    A simple analytic model is used to examine economic constraints of a fusion-fission complex in which a portion of a thermal energy is used for producing synthetic fuel (synfuel). Since the values of many quantities are not well-known, a parametric analysis has been carried out for testing the sensitivity of the synfuel production cost in relation to crucial economic and technological quantities (investment costs of hybrid and synfuel plants, energy multiplication of the fission blanket, recirculating power fraction of the fusion driver, etc.). In addition, a minimum synfuel selling price has been evaluated, from which the fission-fusion-synfuel complex brings about a higher economic benefit than does the fusion-fission hybrid entirely devoted to fissile-fuel and electricity generation. This paper describes the energy flow diagram of fusion-fission synfuel concept, express the revenue-to-cost formulation and the breakeven synfuel selling price. The synfuel production cost given by the model is evaluated within a range of values of crucial parameters. Assuming an electric cost of 2.7 cents/kWh, an annual investment cost per energy unit of 4.2 to 6 $/FJ for the fusion-fission complex and 1.5 to 3 $/GJ for the synfuel plant, the synfuel production cost lies between 6.5 and 8.5 $/GJ. These production costs can compete with those evaluated for other processes. The study points out a potential use of the fusion-fission hybrid reactor for other than fissile-fuel and electricity generation. (orig.) [de

  19. On the absolute calibration of a DT fusion neutron yield diagnostic

    Directory of Open Access Journals (Sweden)

    Ruiz C.L.

    2013-11-01

    Full Text Available Recent advances in Inertial Confinement Fusion (ICF experiments at Lawrence Livermore National Laboratory's National Ignition Facility (NIF have underscored the need for accurate total yield measurements of DT neutrons because yield measurements provide a measure of the predicted performance of the experiments. Future gas-puff DT experiments at Sandia National Laboratory's Z facility will also require similar measurements. For ICF DT experiments, the standard technique for measuring the neutron (14.1 MeV yield, counts the activity (counts/minute induced in irradiated copper samples. This activity occurs by the 63Cu(n,2n62Cu reaction where 62Cu decays by positrons (β+ with a half-life of 9.67 minutes. The calibrations discussed here employ the associated-particle method (APM, where the α (4He particles from the T(d,n4He reaction are measured to infer neutron fluxes on a copper sample. The flux induces 62Cu activity, measured in a coincidence counting system. The method leads to a relationship between a DT neutron yield and copper activity known as the F-factor. The goal in future experiments is to apply this calibration to measure the yield at NIF with a combined uncertainty approaching 5%.

  20. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    International Nuclear Information System (INIS)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed

  1. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

  2. Measurement and analysis of thorium fission rate in a polyethylene shell with a D-T neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Lei [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Yang, Yiwei, E-mail: winfield1920@126.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Liu, Zhujun [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Department of Nuclear Engineering and Technology, Sichuan University, Chengdu 610065,China (China); Liu, Rong, E-mail: liurongzy@163.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Jiang, Li; Wang, Mei [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-12-15

    Highlights: • Associated angular dependencies of the source neutron energy and intensity was given. • Two sets of fission yields from evaluated libraries were considered and applied. • Calculated results employing ENDF/B-VII.0 agreed with the experimental ones best. • Small discrepancies exist between thorium fission cross section evaluated libraries. - Abstract: In order to validate the {sup 232}Th fission cross section, an integral experiment was carried out using the activation method in a polyethylene shell with a D-T neutron source. Thorium samples were arranged in the 0° direction to the incident D{sup +} beam. The {sup 232}Th fission rate was determined by measuring the 151.195 keV characteristic γ ray emitted from the fission fragment {sup 85m}Kr, and the experimental uncertainties were about 5.3%. MCNP calculation results employing ENDF/B-VII.0, JENDL-3.3, JENDL-4.0 libraries are in good agreement with that of experiments within uncertainties except that employing ENDF/B-VII.1 (∼6.5%). The experiment results can be used to re-evaluate the {sup 232}Th fission cross section.

  3. Genetically controlled fusion, exocytosis and fission of artificial vesicles-a roadmap

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; de Lucrezia, Davide

    2011-01-01

    were shown to fuse if a special class of viral proteins, termed fusogenic peptides, were added to the external medium (Nomura et al. 2004). In the present work, we intend to develop genetically controlled fusion, fission and exocytosis of vesicles by the synthesis of peptides within vesicles. First, we...... enclosed synthesized peptides in vesicles to induce in a next step fusion of adjacent vesicles, fission and exocytosis of nested vesicles. Second, we will replace the peptides by an enclosed cell-free expression system to internally synthesize fusion peptides. To control the gene expression, different...

  4. Fusion--fission hybrid reactors: a capsule introduction

    International Nuclear Information System (INIS)

    Holdren, J.P.

    1977-01-01

    A short introduction to fusion-fission hybrid systems is provided touching on (a) basic technological characteristics; (b) potential applications; (c) relevance of environmental considerations in the development rationale for hybrids. References to the more technical literature are supplied

  5. Next generation laser optics for a hybrid fusion-fission power plant

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, C J; Latkowski, J T; Schaffers, K I

    2009-09-10

    The successful completion of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL), followed by a campaign to achieve ignition, creates the proper conditions to begin exploring what development work remains to construct a power plant based on Inertial Confinement Fusion (ICF) technology. Fundamentally, two distinct NIF laser properties must be overcome. The repetition rate must increase from a shot every four hours to several shots per second. Additionally, the efficiency of converting electricity to laser light must increase by 20x to roughly 10 percent. Solid state diode pumped lasers, commercially available for table top applications, have adequate repetition rates and power conversion efficiencies, however, they operate at a tiny fraction of the required energy for an ICF power plant so would need to be scaled in energy and aperture. This paper describes the optics and coatings that would be needed to support this type of laser architecture.

  6. Relativistic self focussing of laser beams at fast ignitor inertial fusion with volume ignition

    International Nuclear Information System (INIS)

    Osman, F.; Castillo, R.; Hora, H.

    1999-01-01

    The alternative to the magnetic confinement fusion is inertial fusion energy mostly using lasers as drivers for compression and heating of pellets with deuterium and tritium fuel. Following the present technology of lasers with pulses of some megajoules energy and nanosecond duration, a power station for very low cost energy production (and without the problems of well erosion of magnetic confinement) could be available within 15 to 20 years. For the pellet compression, the scheme of spark ignition was mostly applied but its numerous problems with asymmetries and instabilities may be overcome by the alternative scheme of high gain volume ignition. This is a well established option of inertial fusion energy with lasers where a large range of possible later improvements is implied with respect to laser technology or higher plasma compression leading to energy production of perhaps five times below the present lowest level cost from fission reactors. A further improvement may be possible by the recent development of lasers with picosecond pulse duration using the fast igniter scheme which may reach even higher fusion gains with laser pulse energies of some 100 kilojoules

  7. Fission--fusion systems: classification and critique

    International Nuclear Information System (INIS)

    Lidsky, L.M.

    1974-01-01

    A useful classification scheme for hybrid systems is described and some common features that the scheme makes apparent are pointed out. The early history of fusion-fission systems is reviewed. Some designs are described along with advantages and disadvantages of each. The extension to low and moderate Q devices is noted. (U.S.)

  8. Study of α-particle multiplicity in 16O+196Pt fusion-fission reaction

    International Nuclear Information System (INIS)

    Kapoor, K.; Kumar, A.; Bansal, N.

    2016-01-01

    Study of dynamics of fusion-fission reaction is one of the interesting parts of heavy-ion-induced nuclear reaction. Extraction of fission time scales using different probes is of central importance for understanding the dynamics of fusion-fission process. In the past, extensive theoretical and experimental efforts have been made to understand the various aspects of the heavy ion induced fusion-fission reactions. Compelling evidences have been obtained from the earlier studies that the fission decay of hot nuclei is protracted process i.e. slowed down relative to the expectations of the standard statistical model, and large dynamical delays are required due to this hindrance. Nuclear dissipation is assumed to be responsible for this delay and more light particles are expected to be emitted during the fission process. One of neutron multiplicity measurements have been performed for the 16,18 O+ 194,198 Pt populating the CN 210,212,214,216 Rn and observed fission delay due to nuclear viscosity. In order to have complete understanding for the dynamics of 212 Rn nucleus, we measured the charged particle multiplicity for 16 O+ 196 Pt system. Study of charged particles will give us more information about the emitter in comparison to neutrons as charged particles faces Coulomb barrier and are more sensitive probe for understanding the dynamics of fusion-fission reactions. In the present work, we are reporting some of the preliminary results of charged particle multiplicity

  9. Laser fusion

    International Nuclear Information System (INIS)

    Eliezer, S.

    1982-02-01

    In this paper, the physics of laser fusion is described on an elementary level. The irradiated matter consists of a dense inner core surrounded by a less dense plasma corona. The laser radiation is mainly absorbed in the outer periphery of the plasma. The absorbed energy is transported inward to the ablation surface where plasma flow is created. Due to this plasma flow, a sequence of inward going shock waves and heat waves are created, resulting in the compression and heating of the core to high density and temperature. The interaction physics between laser and matter leading to thermonuclear burn is summarized by the following sequence of events: Laser absorption → Energy transport → Compression → Nuclear Fusion. This scenario is shown in particular for a Nd:laser with a wavelength of 1 μm. The wavelength scaling of the physical processes is also discussed. In addition to the laser-plasma physics, the Nd high power pulsed laser is described. We give a very brief description of the oscillator, the amplifiers, the spatial filters, the isolators and the diagnostics involved. Last, but not least, the concept of reactors for laser fusion and the necessary laser system are discussed. (author)

  10. Production and evaluation of cytotoxic effects of DT386-BR2 fusion protein as a novel anti-cancer agent.

    Science.gov (United States)

    Shafiee, Fatemeh; Rabbani, Mohammad; Jahanian-Najafabadi, Ali

    2016-11-01

    The aim of this study was to produce a fusion protein consisting of the catalytic and translocation domains of diphtheria toxin fused to BR2, a cancer specific cell penetrating peptide, and evaluation of its cytotoxic effects for targeted eradication of cancer cells. For this purpose, The DT386-BR2 structure was predicted using Modeller 9.14 and the best predicted model was selected based on the minimum DOPE score. A synthetic gene encoding DT386-BR2 was cloned in pET28a expression vector, expressed and purified by affinity chromatography. SDS-PAGE and Western blotting confirmed the expression of the DT386-BR2 fusion protein by revealing a band of about 47kDa after the induction of the expression. Finally, the purified protein was subjected to MTT assay for evaluation of its cyto-lethal effects on cancer and normal cell lines. Statistical analysis showed significant reduction in survival percent of HeLa and MCF-7 cancer cells in comparison to negative control (PBS), while the cytotoxic effect was not significant on the normal cells, i.e. HUVEC and HEK 293. The IC50 of DT386-BR2 for HeLa and MCF-7 was about 0.55 and 2.08μg/ml, respectively. In conclusion, the production and purification of DT386-BR2 fusion protein was successfully achieved and its cytotoxic effects on the studied cancer cell lines was established. The promising cytotoxic effects of this newly constructed fusion protein made it a suitable candidate for targeted therapy of cancer, and further in vitro and in vivo studies on this fusion protein is underway. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Heavy cluster in cold nuclear rearrangements in fusion and fission

    International Nuclear Information System (INIS)

    Armbruster, P.

    1997-01-01

    The experimental evidence for the appearance of cluster aspects in the dynamics of large rearrangements processes, as fusion and fission, is presented. Clusters in the sense as used in the following are strongly bound, doubly magic neutron rich nuclei as 48 Ca 28 , 78 Ni 50 , 132 Sn 82 , and 208 Pb 126 , the spherical nuclei Z=114 - 126 and N=184, and nuclei with closed shells N=28, 50, 82, and 126, and Z=28, 50, and 82. As with increasing nucleon numbers, the absolute shell corrections to the binding energies increase, the strongest effects are to be observed for the higher shells. The 132 cluster manifests itself in low energy fission (Faissner, H. and Wildermuth, K. Nucl. Phys., 58 (1964) 177). The 208 Pb cluster gave the new radioactivity (Rose, M.J. and Jones G.A., Nature, 307 (1984) 245) and the first superheavy elements (SHE) (Armbruster P., Ann. Rev. Nucl. Part. Sci., 35 (1985) 135-94; Munzenberg, G. Rep. Progr. Phys., 51 (1988) 57). The paper discuss experiments concerning the stability of clusters to intrinsic excitation energy in fusion and fission (Armbruster, P. Lect. Notes Phys., 158 (1982) 1). and the manifestation of clusters in the fusion entrance channel (Armbruster, P., J. Phys. Soc. Jpn., 58 (1989) 232). The importance of compactness of the clustering system seems to be equally decisive in fission and fusion. Finally, it s covered the importance of clusters for the production of SHEs)

  12. Fusion-fission of superheavy nuclei at low excitation energies

    International Nuclear Information System (INIS)

    Itkis, M.G.; Oganesyan, Yu.Ts.; Kozulin, E.M.

    2000-01-01

    The process of fusion-fission of superheavy nuclei with Z = 102 -122 formed in the reactions with 22 Ne, 26 Mg, 48 Ca, 58 Fe and 86 Kr ions at energies near and below the Coulomb barrier has been studied. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR) using a time-of-flight spectrometer of fission fragments CORSET and a neutron multi-detector DEMON. As a result of the experiments, mass and energy distributions of fission fragments, fission and quasi-fission cross sections, multiplicities of neutrons and gamma-rays and their dependence on the mechanism of formation and decay of compound superheavy systems have been studied

  13. On fusion/fission chain reactions in the Fleischmann-Pons cold fusion experiment

    International Nuclear Information System (INIS)

    Anghaie, S.; Froelich, P.; Monkhorst, H.J.

    1990-01-01

    In this paper the possibility of fusion/fission chain reactions following d-d source reactions in electrochemical cold fusion experiments have been investigated. The recycling factors for the charged particles in fusion reactions with consumable nuclei deuteron, 6 Li nd 7 Li, are estimated. It is concluded that, based on the established nuclear fusion cross sections and electronic stopping power, the recycling factor is four to five orders of magnitude less than required for close to critical conditions. It is argued that the cross generation of charged particles by neutrons does not play a significant role in this process, even if increased densities at the surface of electrodes do occur

  14. Static aspects of the fission and fusion of liquid 3He drops

    International Nuclear Information System (INIS)

    Guilleumas, M.; Barranco, M.; Pi, M.

    1992-01-01

    Using an effective 3 He- 3 He interaction, the fission and fusion of 3 He drops have been investigated from a static point of view. The calculations show that a fission barrier develops for these neutral systems, and that their saddle configurations are rather elongate. The transition from oblate to prolate shapes as a function of the angular momentum L, as well as critical values for fission and fusion are discussed for some selected cases. A kind of proximity potential can be extracted from the drop-drop interaction potentials. (author) 33 refs.; 9 figs

  15. Laser fusion experiments, facilities and diagnostics at Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.

    1980-02-01

    The progress of the LLL Laser Fusion Program to achieve high gain thermonuclear micro-explosions is discussed. Many experiments have been successfully performed and diagnosed using the large complex, 10-beam, 30 TW Shiva laser system. A 400 kJ design of the 20-beam Nova laser has been completed. The construction of the first phase of this facility has begun. New diagnostic instruments are described which provide one with new and improved resolution, information on laser absorption and scattering, thermal energy flow, suprathermal electrons and their effects, and final fuel conditions. Measurements were made on the absorption and Brillouin scattering for target irradiations at both 1.064 μm and 532 nm. These measurements confirm the expected increased absorption and reduced scattering at the shorter wavelength. Implosion experiments have been performed which have produced final fuel densities over the range of 10x to 100x liquid DT density

  16. Comparison of DT neutron production codes MCUNED, ENEA-JSI source subroutine and DDT

    Energy Technology Data Exchange (ETDEWEB)

    Čufar, Aljaž, E-mail: aljaz.cufar@ijs.si [Reactor Physics Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Lengar, Igor; Kodeli, Ivan [Reactor Physics Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Milocco, Alberto [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Sauvan, Patrick [Departamento de Ingeniería Energética, E.T.S. Ingenieros Industriales, UNED, C/Juan del Rosal 12, 28040 Madrid (Spain); Conroy, Sean [VR Association, Uppsala University, Department of Physics and Astronomy, PO Box 516, SE-75120 Uppsala (Sweden); Snoj, Luka [Reactor Physics Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia)

    2016-11-01

    Highlights: • Results of three codes capable of simulating the accelerator based DT neutron generators were compared on a simple model where only a thin target made of mixture of titanium and tritium is present. Two typical deuteron beam energies, 100 keV and 250 keV, were used in the comparison. • Comparisons of the angular dependence of the total neutron flux and spectrum as well as the neutron spectrum of all the neutrons emitted from the target show general agreement of the results but also some noticeable differences. • A comparison of figures of merit of the calculations using different codes showed that the computational time necessary to achieve the same statistical uncertainty can vary for more than 30× when different codes for the simulation of the DT neutron generator are used. - Abstract: As the DT fusion reaction produces neutrons with energies significantly higher than in fission reactors, special fusion-relevant benchmark experiments are often performed using DT neutron generators. However, commonly used Monte Carlo particle transport codes such as MCNP or TRIPOLI cannot be directly used to analyze these experiments since they do not have the capabilities to model the production of DT neutrons. Three of the available approaches to model the DT neutron generator source are the MCUNED code, the ENEA-JSI DT source subroutine and the DDT code. The MCUNED code is an extension of the well-established and validated MCNPX Monte Carlo code. The ENEA-JSI source subroutine was originally prepared for the modelling of the FNG experiments using different versions of the MCNP code (−4, −5, −X) and was later extended to allow the modelling of both DT and DD neutron sources. The DDT code prepares the DT source definition file (SDEF card in MCNP) which can then be used in different versions of the MCNP code. In the paper the methods for the simulation of the DT neutron production used in the codes are briefly described and compared for the case of a

  17. Preliminary Evaluation of the Adequacy of Lithium Resources of the World and China for D-T Fusion Reactors

    Science.gov (United States)

    Wang, Yongliang; Ni, Muyi; Jiang, Jieqiong; Wu, Yican; FDS-Team

    2012-07-01

    This paper studied the adequacy of the World and China lithium resources, considering the most promising uses in the future, involving nuclear fusion and electric-vehicles. The lithium recycle model for D-T fusion power plant and electric-vehicles, and the logistic growth prediction model of the primary energy for the World and China were constructed. Based on these models, preliminary evaluation of lithium resources adequacy of the World and China for D-T fusion reactors was presented under certain assumptions. Results show that: a. The world terrestrial reserves of lithium seems too limited to support a significant D-T power program, but the lithium reserves of China are relatively abundant, compared with the world case. b. The lithium resources contained in the oceans can be called the “permanent" energy. c. The change in 6Li enrichment has no obvious effect on the availability period of the lithium resources using FDS-II (Liquid Pb-17Li breeder blanket) type of reactors, but it has a stronger effect when PPCS-B (Solid Li4 SiO4 ceramics breeder blanket) is used.

  18. An optimized symbiotic fusion and molten-salt fission reactor system

    International Nuclear Information System (INIS)

    Blinkin, V.L.; Novikov, V.M.

    A symbiotic fusion-fission reactor system which breeds nuclear fuel is discussed. In the blanket of the controlled thermonuclear reactor (CTR) uranium-233 is generated from thorium, which circulates in the form of ThF 4 mixed with molten sodium and beryllium fluorides. The molten-salt fission reactor (MSR) burns up the uranium-233 and generates tritium for the fusion reactor from lithium, which circulates in the form of LiF mixed with BeF 2 and 233 UF 4 through the MSR core. With a CTR-MSR thermal power ratio of 1:11 the system can produce electrical energy and breed fuel with a doubling time of 4-5 years. The system has the following special features: (1) Fuel reprocessing is much simpler and cheaper than for contemporary fission reactors; reprocessing consists simply in continuous removal of 233 U from the salt circulating in the CTR blanket by the fluorination method and removal of xenon from the MSR fuel salt by gas scavenging; the MSR fuel salt is periodically exchanged for fresh salt and the 233 U is then removed from it; (2) Tritium is produced in the fission reactor, which is a much simpler system than the fusion reactor; (3) The CTR blanket is almost ''clean''; no tritium is produced in it and fission fragment activity does not exceed the activity induced in the structural materials; (4) Almost all the thorium introduced into the CTR blanket can be used for producing 233 U

  19. Inertial fusion and energy production

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1982-01-01

    Inertial-confinement fusion (ICF) is a technology for releasing nuclear energy from the fusion of light nuclei. For energy production, the most reactive hydrogen isotopes (deuterium (D) and tritium (T)) are commonly considered. The energy aplication requires the compression of a few milligrams of a DT mixture to great density, approximately 1000 times its liquid-state density, and to a high temperature, nearly 100 million 0 K. Under these conditions, efficient nuclear-fusion reactions occur, which can result in over 30% burn-up of the fusion fuel. The high density and temperature can be achieved by focusing very powerful laser or ion beams onto the target. The resultant ablation of the outer layers of the target compresses the fuel in the target, DT ignition occurs, and burn-up of the fuel results as the thermonuclear burn wave propagates outward. The DT-fuel burn-up occurs in about 199 picoseconds. On this short time scale, inertial forces are sufficiently strong to prevent target disassembly before fuel burn-up occurs. The energy released by the DT fusion is projected to be several hundred times greater than the energy delivered by the driver. The present statuds of ICF technology is described

  20. Civilian applications of laser fusion

    International Nuclear Information System (INIS)

    Maniscalco, J.; Blink, J.; Buntzen, R.; Hovingh, J.; Meier, W.; Monsler, M.; Walker, P.

    1978-01-01

    The commercial aspects of laser fusion were evaluated in an attempt to relate the end products (neutrons and energy) to significant commercial applications. We have found that by far the largest markets and highest payoffs for laser fusion are associated with electric power production. Hence, much of this report evaluates the prospects of producing commercial electricity with laser fusion. To this end, we have described in detail a new and promising laser fusion concept--the liquid lithium waterfall reactor. In addition, we have taken the most attractive features from our laser fusion studies and used them to compare laser fusion to other long-range sources of energy (breeder reactors and solar energy). It is our contention that all three sources of electrical energy should be developed to the point where the final selections are primarily based on economic competitiveness. The other potential applications of laser fusion (fissile fuel production, synthetic fuel production, actinide burning, and propulsion) are also discussed, and our preliminary plan for the engineering development of laser fusion is presented

  1. Review of the safety concept for fusion reactor concepts and transferability of the nuclear fission regulation to potential fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, Juergen; Weller, Arthur; Wolf, Robert [Max-Planck-Institut fuer Plasmaphysik (IPP), Garching (Germany); Jin, Xue Zhou; Boccaccini, Lorenzo V.; Stieglitz, Robert; Carloni, Dario [Karlsruher Institute fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany); Pistner, Christoph [Oeko-Institut e.V., Darmstadt (Germany); Herb, Joachim [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Koeln (Germany)

    2016-01-15

    This paper summarizes the current state of the art in science and technology of the safety concept for future fusion power plants (FPPs) and examines the transferability of the current nuclear fission regulation to the concepts of future fusion power plants. At the moment there exist only conceptual designs of future fusion power plants. The most detailed concepts with regards to safety aspects were found in the European Power Plant Conceptual Study (PPCS). The plant concepts discussed in the PPCS are based on magnetic confinement of the plasma. The safety concept of fusion power plants, which has been developed during the last decades, is based on the safety concepts of installations with radioactive inventories, especially nuclear fission power plants. It applies the concept of defence in depth. However, there are specific differences between the implementations of the safety concepts due to the physical and technological characteristics of fusion and fission. It is analysed whether for fusion a safety concept is required comparable to the one of fission. For this the consequences of a purely hypothetical release of large amounts of the radioactive inventory of a fusion power plant and a fission power plant are compared. In such an event the evacuation criterion outside the plant is exceeded by several orders of magnitude for a fission power plant. For a fusion power plant the expected radiological consequences are of the order of the evacuation criterion. Therefore, a safety concept is also necessary for fusion to guarantee the confinement of the radioactive inventory. The comparison between the safety concepts for fusion and fission shows that the fundamental safety function ''confinement of the radioactive materials'' can be transferred directly in a methodical way. For a fusion power plant this fundamental safety function is based on both, physical barriers as well as on active retention functions. After the termination of the fusion

  2. DT fusion neutron irradiation of ORNL magnesium oxide crystals and BNL--LASL superconductor wires

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1978-01-01

    The DT fusion neutron irradiation of two ORNL magnesium oxide crystals and eleven BNL-LASL superconductor wires is described. The sample position and neutron dose record are given. The maximum neutron fluence on any sample was 2.16 x 10 16 neutrons/cm 2

  3. Nuclear science experiments with a bright neutron source from fusion reactions on the OMEGA Laser System

    Science.gov (United States)

    Forrest, C. J.; Knauer, J. P.; Schroeder, W. U.; Glebov, V. Yu.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Sickles, M.; Stoeckl, C.; Szczepanski, J.

    2018-04-01

    Subnanosecond impulses of 1013 to 1014 neutrons, produced in direct-drive laser inertial confinement fusion implosions, have been used to irradiate deuterated targets at the OMEGA Laser System (Boehly et al., 1997). The target compounds include heavy water (D2O) and deuterated benzene (C6D6). Yields and energy spectra of neutrons from D(n,2n)p to study the breakup reaction have been measured at a forward angle of θlab = 3 .5∘ ± 3.5° with a sensitive, high-dynamic-range neutron time-of-flight spectrometer to infer the double-differential breakup cross section d2 σ/dE d Ω for 14-MeV D-T fusion neutrons.

  4. Neutron dosimetry for radiation damage in fission and fusion reactors

    International Nuclear Information System (INIS)

    Smith, D.L.

    1979-01-01

    The properties of materials subjected to the intense neutron radiation fields characteristic of fission power reactors or proposed fusion energy devices is a field of extensive current research. These investigations seek important information relevant to the safety and economics of nuclear energy. In high-level radiation environments, neutron metrology is accomplished predominantly with passive techniques which require detailed knowledge about many nuclear reactions. The quality of neutron dosimetry has increased noticeably during the past decade owing to the availability of new data and evaluations for both integral and differential cross sections, better quantitative understanding of radioactive decay processes, improvements in radiation detection technology, and the development of reliable spectrum unfolding procedures. However, there are problems caused by the persistence of serious integral-differential discrepancies for several important reactions. There is a need to further develop the data base for exothermic and low-threshold reactions needed in thermal and fast-fission dosimetry, and for high-threshold reactions needed in fusion-energy dosimetry. The unsatisfied data requirements for fission reactor dosimetry appear to be relatively modest and well defined, while the needs for fusion are extensive and less well defined because of the immature state of fusion technology. These various data requirements are examined with the goal of providing suggestions for continued dosimetry-related nuclear data research

  5. Direct-Drive Inertial Fusion Research at the University of Rochester's Laboratory for Laser Energetics: A Review

    International Nuclear Information System (INIS)

    McCrory, R.L.; Meyerhofer, D.D.; Loucks, S.J.; Skupsky, S.; Bahr, R.E.; Betti, R.; Boehly, T.R.; Craxton, R.S.; Collins, T.J.B.; Delettrez, J.A.; Donaldson, W.R.; Epstein, R.; Fletcher, K.A.; Freeman, C.; Frenje, J.A.; Glebov, V.Yu.; Goncharov, V.N.; Harding, D.R.; Jaanimagi, P.A.; Keck, R.L.; Kelly, J.H.; Kessler, T.J.; Kilkenny, J.D.; Knauer, J.P.; Li, C.K.; Lund, L.D.; Marozas, J.A.; McKenty, P.W.; Marshall, F.J.; Morse, S.F.B.; Padalino, S.; Petrasso, R.D.; Radha, P.B.; Regan, S.P.; Roberts, S.; Sangster, T.C.; Seguin, F.H.; Seka, W.; Smalyuk, V.A.; Soures, J.M.; Stoeckl, C.; Thorp, K.A.; Yaakobi, B.; Zuegel, J.D.

    2010-01-01

    This paper reviews the status of direct-drive inertial confinement fusion (ICF) research at the University of Rochester's Laboratory for Laser Energetics (LLE). LLE's goal is to demonstrate direct-drive ignition on the National Ignition Facility (NIF) by 2014. Baseline 'all-DT' NIF direct-drive ignition target designs have been developed that have a predicted gain of 45 (1-D) at a NIF drive energy of ∼1.6 MJ. Significantly higher gains are calculated for targets that include a DT-wicked foam ablator. This paper also reviews the results of both warm fuel and initial cryogenic-fuel spherical target implosion experiments carried out on the OMEGA UV laser. The results of these experiments and design calculations increase confidence that the NIF direct-drive ICF ignition goal will be achieved.

  6. Systems study of tokamak fusion--fission reactors

    International Nuclear Information System (INIS)

    Tenney, F.H.; Bathke, C.G.; Price, W.G. Jr.; Bohlke, W.H.; Mills, R.G.; Johnson, E.F.; Todd, A.M.M.; Buchanan, C.H.; Gralnick, S.L.

    1978-11-01

    This publication reports the results of a two to three year effort at a systematic analysis of a wide variety of tokamak-driven fissioning blanket reactors, i.e., fusion--fission hybrids. It addresses the quantitative problems of determining the economically most desirable mix of the two products: electric power and fissionable fuel and shows how the price of electric power can be minimized when subject to a variety of constraints. An attempt has been made to avoid restricting assumptions, and the result is an optimizing algorithm that operates in a six-dimensional parameter space. Comparisons are made on sets of as many as 100,000 distinct machine models, and the principal results of the study have been derived from the examination of several hundred thousand possible reactor configurations

  7. Laser fusion program overview

    International Nuclear Information System (INIS)

    Emmett, J.L.

    1977-01-01

    This program is structured to proceed through a series of well defined fusion milestones to proof of the scientific feasibility, of laser fusion with the Shiva Nova system. Concurrently, those key technical areas, such as advanced lasers, which are required to progress beyond proof of feasibility, are being studied. We have identified and quantified the opportunities and key technical issues in military applications, such as weapons effects simulations, and in civilian applications, such as central-station electric power production. We summarize the current status and future plans for the laser fusion program at LLL, emphasizing the civilian applications of laser fusion

  8. Measurement of loss of DT fusion products using scintillator detectors in TFTR

    International Nuclear Information System (INIS)

    Darrow, D.S.; Herrmann, H.W.; Johnson, D.W.; Marsala, R.J.; Palladino, R.W.; Zweben, S.J.

    1995-03-01

    A poloidal array of MeV ion loss probes previously used to measure DD fusion product loss has been upgraded to measure the loss of alpha particles from DT plasmas in TFTR. The following improvements to the system have been made in preparation for the use of tritium in TFTR: (1) relocation of detectors to a neutronshielded enclosure in the basement to reduce neutron-induced background signals; (2) replacement of ZnS:Cu (P31) scintillators in the probes with the Y 3 Al 5 0 12 :Ce(P46) variety to minimize damage and assure linearity at the fluxes anticipated from DT plasmas; and (3) shielding of the fiber optic bundles which carry the fight from the probes to the detectors to reduce neutron- and gamma-induced light within them. In addition to the above preparations, the probes have been absolutely calibrated for alpha particles by using the Van de Graaf accelerator at Los Alamos National Laboratory. Alpha particle losses from DT plasmas have been observed, and losses at the detector 901 below the midplane are consistent with first orbit loss

  9. Laser fusion: an overview

    International Nuclear Information System (INIS)

    Boyer, K.

    1975-01-01

    The laser fusion concept is described along with developments in neodymium and carbon dioxide lasers. Fuel design and fabrication are reviewed. Some spin-offs of the laser fusion program are discussed. (U.S.)

  10. Advanced lasers for fusion

    International Nuclear Information System (INIS)

    Krupke, W.F.; George, E.V.; Haas, R.A.

    1979-01-01

    Laser drive systems' performance requirements for fusion reactors are developed following a review of the principles of inertial confinement fusion and of the technical status of fusion research lasers (Nd:glass; CO 2 , iodine). These requirements are analyzed in the context of energy-storing laser media with respect to laser systems design issues: optical damage and breakdown, medium excitation, parasitics and superfluorescence depumping, energy extraction physics, medium optical quality, and gas flow. Three types of energy-storing laser media of potential utility are identified and singled out for detailed review: (1) Group VI atomic lasers, (2) rare earth solid state hybrid lasers, and (3) rare earth molecular vapor lasers. The use of highly-radiative laser media, particularly the rare-gas monohalide excimers, are discussed in the context of short pulse fusion applications. The concept of backward wave Raman pulse compression is considered as an attractive technique for this purpose. The basic physics and device parameters of these four laser systems are reviewed and conceptual designs for high energy laser systems are presented. Preliminary estimates for systems efficiencies are given. (Auth.)

  11. Civilian applications of laser fusion

    International Nuclear Information System (INIS)

    Maniscalco, J.; Blink, J.; Buntzen, R.; Hovingh, J.; Meier, W.; Monsler, M.; Walker, P.

    1977-01-01

    The commercial aspects of laser fusion were evaluated in an attempt to relate the end products (neutrons and energy) to significant commercial applications. It was found that by far the largest markets and highest payoffs for laser fusion are associated with electric power production. Hence, much of this report evaluates the prospects of producing commercial electricity with laser fusion. To this end, we have described in detail a new and promising laser fusion concept--the liquid lithium waterfall reactor. In addition, we have taken the most attractive features from our laser studies and used them to compare laser fusion to other long-range sources of energy (breeder reactors and solar energy). It is our contention that all three sources of electrical energy should be developed to the point where the final selections are primarily based on economic competitiveness. The other potential applications of laser fusion (fissile fuel production, synthetic fuel production, actinide burning, and propulsion) are also discussed, and our preliminary plan for the engineering development of laser fusion is presented

  12. Civilian applications of laser fusion

    Energy Technology Data Exchange (ETDEWEB)

    Maniscalco, J.; Blink, J.; Buntzen, R.; Hovingh, J.; Meier, W.; Monsler, M.; Walker, P.

    1977-11-17

    The commercial aspects of laser fusion were evaluated in an attempt to relate the end products (neutrons and energy) to significant commercial applications. It was found that by far the largest markets and highest payoffs for laser fusion are associated with electric power production. Hence, much of this report evaluates the prospects of producing commercial electricity with laser fusion. To this end, we have described in detail a new and promising laser fusion concept--the liquid lithium waterfall reactor. In addition, we have taken the most attractive features from our laser studies and used them to compare laser fusion to other long-range sources of energy (breeder reactors and solar energy). It is our contention that all three sources of electrical energy should be developed to the point where the final selections are primarily based on economic competitiveness. The other potential applications of laser fusion (fissile fuel production, synthetic fuel production, actinide burning, and propulsion) are also discussed, and our preliminary plan for the engineering development of laser fusion is presented.

  13. Inertial fusion energy; L'energie de fusion inertielle

    Energy Technology Data Exchange (ETDEWEB)

    Decroisette, M.; Andre, M.; Bayer, C.; Juraszek, D. [CEA Bruyeres-le-Chatel, Dir. des Systemes d' Information (CEA/DIF), 91 (France); Le Garrec, B. [CEA Centre d' Etudes Scientifiques et Techniques d' Aquitaine, 33 - Le Barp (France); Deutsch, C. [Paris-11 Univ., 91 - Orsay (France); Migus, A. [Institut d' Optique Centre scientifique, 91 - Orsay (France)

    2005-07-01

    We first recall the scientific basis of inertial fusion and then describe a generic fusion reactor with the different components: the driver, the fusion chamber, the material treatment unit, the target factory and the turbines. We analyse the options proposed at the present time for the driver and for target irradiation scheme giving the state of art for each approach. We conclude by the presentation of LMJ (laser Megajoule) and NIF (national ignition facility) projects. These facilities aim to demonstrate the feasibility of laboratory DT ignition, first step toward Inertial Fusion Energy. (authors)

  14. Economic regimes for fission--fusion energy systems

    International Nuclear Information System (INIS)

    Deonigi, D.E.

    1974-01-01

    The objectives of this hybrid fusion-fission economic regimes study are to: (1) define the target costs to be met, (2) define the optimum fissile/electrical production ratio for hybrid blankets, (3) discover synergistic configurations, and (4) define the windows of economic hybrid design having desirable cost/benefit ratios. (U.S.)

  15. Fusability and fissionability in 86Kr induced reactions near and below the fusion barrier

    International Nuclear Information System (INIS)

    Reisdorf, W.; Hessberger, F.P.; Hildenbrand, K.D.; Hofmann, S.; Muenzenberg, G.; Schmidt, K.H.; Schneider, W.F.W.; Suemmerer, K.; Wirth, G.; Kratz, J.V.; Schlitt, K.; Sahm, C.C.

    1985-04-01

    Evaporation-residue excitation functions for the reactions 86 Kr + sup(70,76)Ge, sup(92,100)Mo, sup(99,102,104)Ru have been measured using activation methods and the velocity filter SHIP. The data span the region from well below the fusion barrier up to and beyond the energy where limitation by fission competition takes place. The data are shown to be compatible with the concept of complete fusion followed by the statistical decay of the equilibrated compound nucleus. Information on both the fusion probability at and below the fusion threshold and the fissionability of the compound nuclei formed is extracted. The model dependence of the extracted fission barriers is discussed in detail. In analogy to studies involving lighter projectiles, strong correlations between the low-energy nuclear-structure properties of the nuclei and the subbarrier fusion probability are found. A relative shift of the fusion barrier to higher energies, that increases with the number of valence neutrons in the target nuclei, is observed. (orig.)

  16. Determination of the pr of laser fusion targets using the α-particle TOF technique

    International Nuclear Information System (INIS)

    Slivinsky, V.W.; Lent, E.; Shay, H.D.; Manes, K.R.

    1975-01-01

    A computer code was written to describe the alpha particle energy loss. The problem of a symmetric compression of the DT gas by an exploding microsphere is analyzed. The code calculates the energy spectrum of a Gaussian distribution of alpha particles after passing through the compressed gas and the exploded glass. The calculations are being used to determine design parameters for diagnostic instruments for measuring charged particle energy distributions from laser fusion targets

  17. Optimization of the Expression of DT386-BR2 Fusion Protein in Escherichia coli using Response Surface Methodology.

    Science.gov (United States)

    Shafiee, Fatemeh; Rabbani, Mohammad; Jahanian-Najafabadi, Ali

    2017-01-01

    The aim of this study was to determine the best condition for the production of DT386-BR2 fusion protein, an immunotoxin consisting of catalytic and translocation domains of diphtheria toxin fused to BR2, a cancer specific cell penetrating peptide, for targeted eradication of cancer cells, in terms of the host, cultivation condition, and culture medium. Recombinant pET28a vector containing the codons optimized for the expression of the DT386-BR2 gene was transformed to different strains of Escherichia coli ( E. coli BL21 DE3, E. coli Rosetta DE3 and E. coli Rosetta-gami 2 DE3), followed by the induction of expression using 1 mM IPTG. Then, the strain with the highest ability to produce recombinant protein was selected and used to determine the best expression condition using response surface methodology (RSM). Finally, the best culture medium was selected. Densitometry analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the expressed fusion protein showed that E. coli Rosetta DE3 produced the highest amounts of the recombinant fusion protein when quantified by 1 mg/ml bovine serum albumin (178.07 μg/ml). Results of RSM also showed the best condition for the production of the recombinant fusion protein was induction with 1 mM IPTG for 2 h at 37°C. Finally, it was established that terrific broth could produce higher amounts of the fusion protein when compared to other culture media. In this study, we expressed the recombinant DT386-BR2 fusion protein in large amounts by optimizing the expression host, cultivation condition, and culture medium. This fusion protein will be subjected to purification and evaluation of its cytotoxic effects in future studies.

  18. Optimization of the Expression of DT386-BR2 Fusion Protein in Escherichia coli using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Fatemeh Shafiee

    2017-01-01

    Full Text Available Background: The aim of this study was to determine the best condition for the production of DT386-BR2 fusion protein, an immunotoxin consisting of catalytic and translocation domains of diphtheria toxin fused to BR2, a cancer specific cell penetrating peptide, for targeted eradication of cancer cells, in terms of the host, cultivation condition, and culture medium. Materials and Methods: Recombinant pET28a vector containing the codons optimized for the expression of the DT386-BR2 gene was transformed to different strains of Escherichia coli (E. coli BL21 DE3, E. coli Rosetta DE3 and E. coli Rosetta-gami 2 DE3, followed by the induction of expression using 1 mM IPTG. Then, the strain with the highest ability to produce recombinant protein was selected and used to determine the best expression condition using response surface methodology (RSM. Finally, the best culture medium was selected. Results: Densitometry analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the expressed fusion protein showed that E. coli Rosetta DE3 produced the highest amounts of the recombinant fusion protein when quantified by 1 mg/ml bovine serum albumin (178.07 μg/ml. Results of RSM also showed the best condition for the production of the recombinant fusion protein was induction with 1 mM IPTG for 2 h at 37°C. Finally, it was established that terrific broth could produce higher amounts of the fusion protein when compared to other culture media. Conclusion: In this study, we expressed the recombinant DT386-BR2 fusion protein in large amounts by optimizing the expression host, cultivation condition, and culture medium. This fusion protein will be subjected to purification and evaluation of its cytotoxic effects in future studies.

  19. Neutron rich clusters and the dynamics of fission and fusion

    International Nuclear Information System (INIS)

    Armbruster, P.

    1988-07-01

    In this lecture I want to discuss experimental evidence for the appearance of cluster aspects in the dynamics of large rearrangement processes, as fusion and fission. Clusters in the sense as used in my lecture are the strongly bound doubly magic nuclei as 20 Ca 28 48 , 28 Ni 50 78 , 132 50 Sn 82 , and 208 82 Pb 126 and the superheavy nucleus 298 114 184 . Two of these nuclei, 78 Ni and 298 114 have not yet been identified. I discuss first the experimental findings from heavy element production. Then I cover the stability of cluster aspects to intrinsic excitation energy in fusion and fission. (orig./HSI)

  20. The scaling of economic and performance parameters of DT and advanced fuel fusion reactors

    International Nuclear Information System (INIS)

    Roth, J.R.

    1983-01-01

    In this study, the plasma stability index beta and the fusion power density in the plasma were treated as independent variables to determine how they influenced three economic performance parameters of fusion reactors burning the DT and four advanced fusion fuel cycles. The economic/performance parameters included the total power produced per unit length of reactor; the mass per unit length, and the specific mass in kilograms/kilowatt. The scaling of these parameters with beta and fusion power density was examined for a common set of engineering assumptions on the allowable wall loading limits, the maximum magnetic field existing in the plasma, average blanket mass density, etc. It was found that the power per unit length decreased as the plasma power density and beta increased. This is a consequence of the fact that the first wall is a bottleneck in the energy flow from the plasma to the generating equipment, and the wall power flux will exceed wall loading limits if the plasma radius exceeds a critical value. If one wished to build an engineering test reactor which produced a burning plasma at the lowest possible initial cost, and without regard to whether such a reactor would ultimately produce the cheapest power, then one would minimize the mass per unit length. The mass per unit length decreases with increasing plasma power density and beta, with the DT reaction being the most expensive at a fixed plasma power density (because of its thicker blanket), and the least expensive at a fixed value of beta, at least up to values of beta of 50%. The specific mass, in kg/kw, which is a rough measure of the cost of the power generated by the reactor, shows an opposite trend. It increases with increasing plasma power density and beta. At a given plasma power density and low beta, the DT reaction gives the lowest specific mass, but at a fixed beta above 10%, the advanced fuel cycles have the lowest specific mass

  1. Polarization: A must for fusion

    Directory of Open Access Journals (Sweden)

    Didelez J.-P.

    2013-11-01

    Full Text Available The complete polarization of DT fuel would increase the fusion reactivity by 50% in magnetic as well as in inertial confinements. The persistence of polarization in a fusion process could be tested, using a terawatt laser hitting a polarized HD target. The polarized deuterons heated in the plasma induced by the laser can fuse producing a 3He and a neutron in the final state. The angular distribution of the emitted neutrons and the change in the corresponding total Cross Section (CS can sign the polarization persistence. The polarization of solid H2, D2 or T2 Hydrogen isotopes is very difficult. However, it has been possible to polarize HD, a hetero-molecular form of Hydrogen, by static polarization, at very low temperature and very high field. The radioactivity of DT molecules forbids there high polarization by the static method, therefore one has to develop the Dynamic Nuclear Polarization (DNP by RF transitions. The DNP of HD has been investigated in the past. The magnetic properties of HD and DT molecules are very similar, it is therefore expected that any polarization result obtained with HD could be extrapolated to DT.

  2. Fusion-fission dynamics and synthesis of the superheavy elements

    International Nuclear Information System (INIS)

    Abe, Yasuhisa

    2003-01-01

    Experiments of fusion-fission reactions clarify that the life time of nuclear fission is much longer than that expected from Bohr-Wheeler formula from the measurements of multiplicities of neutrons, gamma rays etc. emitted prior scission, and thereby appear to require a dynamical treatment of the process. Following the pioneering work by Kramers with the dissipation- fluctuation dynamics, the fissioning degree of freedom is described with the viewpoint of Brownian motion under incessant interactions with the heat bath particles, i.e., with nucleons in thermal equilibrium, in the present case. In the dynamical description the fission width is no more constant in time, but has a transient feature, as well as the reduction factor, the so-called Kramers factor. Both result in a longer life time, consistent with anomalous multiplicities measured. In the fusion process, Coulomb barriers play a crucial role in lighter heavy ion systems, but in very heavy systems it is known that there exists a hindrance in fusion. That is, the Coulomb barrier is not enough for determination of fusion probability, but an extra-energy above the barrier height is required for the system to fuse. This is understood by the properties of the Liquid Drop Model. After overcoming the Coulomb barrier, the ions touch with each other. But the united system, i.e., the pear-shaped configuration is located outside of the conditional saddle point or of the ridgeline. Therefore, in order to form the spherical compound nucleus, the system has to overcome one more barrier. Naturally, in such a situation, the kinetic energy carried in by the incident projectile has been more or less dissipated, i.e., the composite system is heated up. Thus, the shape evolution toward the spherical shape or toward the re-separation can be considered as a Brownian motion with the heat bath inside. The present author et al. have proposed the two-step model for fusion of massive heavy-ion systems where the fusion probability is

  3. Interspecies Ion Diffusion Studies using DT, DT(3He), and DT(H) Implosions

    Science.gov (United States)

    Kim, Y.; Herrmann, H. W.; Schmitt, M. J.; Kagan, G.; McEvoy, A. M.; Hoffman, N. M.; Gales, S.; Leatherland, A.; Gatu Johnson, M.; Frenje, J.; Glevov, V. Yu; Forrest, C.

    2015-11-01

    Anomalous ICF yield degradation has been observed from gas fills containing mixtures (i.e., D(3He), DT(3He), D(Ar), and even DT). Interspecies ion diffusion theory has been suggested as a possible cause resulting from gradient-driven diffusion (i.e., pressure, electric potential, and temperature) which forces lower mass ions away from core and higher mass ions toward core. The theory predicts hydrogen addition to deuterium or tritium should result in increased yield compared to expected yield, which is opposite to 3He addition. At Omega laser facility, we have tested hydro-equivalent fills of DT, DT(3He), and DT(H) with the assumption that same fuel mass and particle pressure will provide identical convergence. Preliminary results verify a factor of 2 yield reduction relative to scaling when 3He added to DT. At DT(H) case, however, no significant yield degradation or a slight yield enhancement was observed which agrees with the interspecies ion diffusion theory. Detailed experiment results and simulation are needed to confirm the initial observation.

  4. Nuclear irradiation parameters of beryllium under fusion, fission and IFMIF irradiation conditions

    International Nuclear Information System (INIS)

    Fischer, U.; Chen, Y.; Leichtle, D.; Simakov, S.; Moeslang, A.; Vladimirov, P.

    2004-01-01

    A computational analysis is presented of the nuclear irradiation parameters for Beryllium under irradiation in typical neutron environments of fission and fusion reactors, and of the presently designed intense fusion neutron source IFMIF. The analysis shows that dpa and Tritium production rates at fusion relevant levels can be achieved with existing high flux fission reactors while the achievable Helium production is too low. The resulting He-Tritium and He/dpa ratios do not meet typical fusion irradiation conditions. Irradiation simulations in the medium flux test modules of the IFMIF neutron source facility were shown to be more suitable to match fusion typical irradiation conditions. To achieve sufficiently high production rates it is suggested to remove the creep-fatigue testing machine together with the W spectra shifter plate and move the tritium release module upstream towards the high flux test module. (author)

  5. Commercial application of laser fusion

    International Nuclear Information System (INIS)

    Booth, L.A.

    1976-01-01

    The fundamentals of laser-induced fusion, some laser-fusion reactor concepts, and attendant means of utilizing the thermonuclear energy for commercial electric power generation are discussed. Theoretical fusion-pellet microexplosion energy release characteristics are described and the effects of pellet design options on pellet-microexplosion characteristics are discussed. The results of analyses to assess the engineering feasibility of reactor cavities for which protection of cavity components is provided either by suitable ablative materials or by diversion of plasmas by magnetic fields are presented. Two conceptual laser-fusion electric generating stations, based on different laser-fusion reactor concepts, are described

  6. Activation Inventories after Exposure to DD/DT Neutrons in Safety Analysis of Nuclear Fusion Installations.

    Science.gov (United States)

    Stankunas, Gediminas; Cufar, Aljaz; Tidikas, Andrius; Batistoni, Paola

    2017-11-23

    Irradiations with 14 MeV fusion neutrons are planned at Joint European Torus (JET) in DT operations with the objective to validate the calculation of the activation of structural materials in functional materials expected in ITER and fusion plants. This study describes the activation and dose rate calculations performed for materials irradiated throughout the DT plasma operation during which the samples of real fusion materials are exposed to 14 MeV neutrons inside the JET vacuum vessel. Preparatory activities are in progress during the current DD operations with dosimetry foils to measure the local neutron fluence and spectrum at the sample irradiation position. The materials included those used in the manufacturing of the main in-vessel components, such as ITER-grade W, Be, CuCrZr, 316 L(N) and the functional materials used in diagnostics and heating systems. The neutron-induced activities and dose rates at shutdown were calculated by the FISPACT code, using the neutron fluxes and spectra that were provided by the preceding MCNP neutron transport calculations. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Fusion-Fission hybrid reactors and nonproliferation

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-09-01

    New options for the development of the nuclear energy economy which might become available by a successful development of fusion-breeders or fusion-fission hybrid power reactors, identified and their nonproliferative attributes are discussed. The more promising proliferation-resistance ettributes identified include: (1) Justification for a significant delay in the initiation of fuel processing, (2) Denaturing the plutonium with 238 Pu before its use in power reactors of any kind, and (3) Making practical the development of denatured uranium fuel cycles and, in particular, denaturing the uranium with 232 U. Fuel resource utilization, time-table and economic considerations associated with the use of fusion-breeders are also discussed. It is concluded that hybrid reactors may enable developing a nuclear energy economy which is more proliferation resistant than possible otherwise, whileat the same time, assuring high utilization of t he uranium and thorium resources in an economically acceptable way. (author)

  8. Construction of a large laser fusion system

    International Nuclear Information System (INIS)

    Hurley, C.A.

    1977-01-01

    Construction of a large laser fusion machine is nearing completion at the Lawrence Livermore Laboratory (LLL). Shiva, a 20-terawatt neodymium doped glass system, will be complete in early 1978. This system will have the high power needed to demonstrate significant thermonuclear burn. Shiva will irradiate a microscopic D-T pellet with 20 separate laser beams arriving simultaneously at the target. This requires precise alignment, and stability to maintain alignment. Hardware for the 20 laser chains is composed of 140 amplifiers, 100 spatial filters, 80 isolation stages, 40 large turning mirrors, and a front-end splitter system of over 100 parts. These are mounted on a high stability, three dimensional spaceframe which serves as an optical bench. The mechanical design effort, spanning approximately 3 years, followed a classic engineering evolution. The conceptual design phase led directly to system optimization through cost and technical tradeoffs. Additional manpower was then required for detailed design and specification of hardware and fabrication. Design of long-lead items was started early in order to initiate fabrication and assembly while the rest of the design was completed. All components were ready for assembly and construction as fiscal priorities and schedules permitted

  9. New approach to description of fusion-fission dynamics in super-heavy element formation

    International Nuclear Information System (INIS)

    Zagrebaev, V.I.

    2002-01-01

    A new mechanism of the fusion-fission process for a heavy nuclear system is proposed, which takes place in the (A 1 , A 2 ) space, where A 1 and A 2 are two nuclei, surrounded by a certain number of shared nucleons ΔA. The nuclei A 1 and A 2 gradually lose (or acquire) their individualities with increasing (or decreasing) a number of collectivized nucleons ΔA. The driving potential in the (A 1 , A 2 ) space is derived, which allows the calculation of both the probability of the compound nucleus formation and the mass distribution of fission and quasi-fission fragments in heavy ion fusion reactions. The cross sections of super-heavy element formation in the 'hot' and 'cold' fusion reactions have been calculated up to Z CN =118. (author)

  10. Burn-up calculation of fusion-fission hybrid reactor using thorium cycle

    International Nuclear Information System (INIS)

    Shido, S.; Matsunaka, M.; Kondo, K.; Murata, I.; Yamamoto, Y.

    2006-01-01

    A burn-up calculation system has been developed to estimate performance of blanket in a fusion-fission hybrid reactor which is a fusion reactor with a blanket region containing nuclear fuel. In this system, neutron flux is calculated by MCNP4B and then burn-up calculation is performed by ORIGEN2. The cross-section library for ORIGEN2 is made from the calculated neutron flux and evaluated nuclear data. The 3-dimensional ITER model was used as a base fusion reactor. The nuclear fuel (reprocessed plutonium as the fission materials mixed with thorium as the fertile materials), transmutation materials (minor actinides and long-lived fission products) and tritium breeder were loaded into the blanket. Performances of gas-cooled and water-cooled blankets were compared with each other. As a result, the proposed reactor can meet the requirement for TBP and power density. As far as nuclear waste incineration is concerned, the gas-cooled blanket has advantages. On the other hand, the water cooled-blanket is suited to energy production. (author)

  11. Roles of plasma neutron source reactor in development of fusion reactor engineering: Comparison with fission reactor engineering

    International Nuclear Information System (INIS)

    Hirayama, Shoichi; Kawabe, Takaya

    1995-01-01

    The history of development of fusion power reactor has come to a turning point, where the main research target is now shifting from the plasma heating and confinement physics toward the burning plasma physics and reactor engineering. Although the development of fusion reactor system is the first time for human beings, engineers have experience of development of fission power reactor. The common feature between them is that both are plants used for the generation of nuclear reactions for the production of energy, nucleon, and radiation on an industrial scale. By studying the history of the development of the fission reactor, one can find the existence of experimental neutron reactors including irradiation facilities for fission reactor materials. These research neutron reactors played very important roles in the development of fission power reactors. When one considers the strategy of development of fusion power reactors from the points of fusion reactor engineering, one finds that the fusion neutron source corresponds to the neutron reactor in fission reactor development. In this paper, the authors discuss the roles of the plasma-based neutron source reactors in the development of fusion reactor engineering, by comparing it with the neutron reactors in the history of fission power development, and make proposals for the strategy of the fusion reactor development. 21 refs., 6 figs

  12. Fusion and fission of atomic clusters: recent advances

    DEFF Research Database (Denmark)

    Obolensky, Oleg I.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2005-01-01

    We review recent advances made by our group in finding optimized geometries of atomic clusters as well as in description of fission of charged small metal clusters. We base our approach to these problems on analysis of multidimensional potential energy surface. For the fusion process we have...... developed an effective scheme of adding new atoms to stable cluster geometries of larger clusters in an efficient way. We apply this algorithm to finding geometries of metal and noble gas clusters. For the fission process the analysis of the potential energy landscape calculated on the ab initio level...... of theory allowed us to obtain very detailed information on energetics and pathways of the different fission channels for the Na^2+_10 clusters....

  13. Nuclear dynamics in heavy ion induced fusion-fission reactions

    International Nuclear Information System (INIS)

    Kapoor, S.S.

    1992-01-01

    Heavy ion induced fission and fission-like reactions evolve through a complex nuclear dynamics encountered in the medium energy nucleus-nucleus collisions. In the recent years, measurements of the fragment-neutron and fragment-charged particle angular correlations in heavy ion induced fusion-fission reactions, have provided new information on the dynamical times of nuclear deformations of the initial dinuclear complex to the fission saddle point and the scission point. From the studies of fragment angular distributions in heavy ion induced fission it has been possible to infer the relaxation times of the dinuclear complex in the K-degree of freedom and our recent measurements on the entrance channel dependence of fragment anisotropies have provided an experimental signature of the presence of fissions before K-equilibration. This paper reviews recent experimental and theoretical status of the above studies with particular regard to the questions relating to dynamical times, nuclear dissipation and the effect of nuclear dissipation on the K-distributions at the fission saddle in completely equilibrated compound nucleus. (author). 19 refs., 9 figs

  14. Investigation on cryogenic laser fusion targets: fabrication, characterization, and transport. Annual report, December 1, 1978-November 30, 1979

    International Nuclear Information System (INIS)

    Kim, K.

    1979-01-01

    The research has been directed toward fabrication, characterization, and positioning of cryogenic shell laser fusion targets, with particular emphasis on the development of a scheme which would allow for continuous fabrication, inspection, and delivery of the targets. Specifically, progress has been made in the following areas: (1) Fabrication of a uniform spherical shell of DT-condensate using a cold-wall target-freezing-cell. (2) Fabrication of a uniform spherical shell of liquid DT using a room-temperature wall target-freezing-cell. (3) Support-free cryogenic target fabrication using cold-gas-levitation. (4) Continuous fabrication of cryogenic targets using free-fall method. (5) Automatic characterization of DT-layer uniformity. (6) Sorting of DT-filled glass microshells using an interference microscope. (7) Development of an a-c interference microscope for accurate characterization of moving targets. (8) Development of a machine which is capable of producing a continuous stream of uniform DT spheres of controllable sizes. (9) Theoretical study on the behavior of liquid hydrogen contained in a spherical shell

  15. Studies on the robustness of shock-ignited laser fusion targets

    International Nuclear Information System (INIS)

    Atzeni, S; Schiavi, A; Marocchino, A

    2011-01-01

    Several aspects of the sensitivity of a shock-ignited inertial fusion target to variation of parameters and errors or imperfections are studied by means of one-dimensional and two-dimensional numerical simulations. The study refers to a simple all-DT target, initially proposed for fast ignition (Atzeni et al 2007 Phys. Plasmas 7 052702) and subsequently shown to be also suitable for shock ignition (Ribeyre et al 2009 Plasma Phys. Control. Fusion 51 015013). It is shown that the growth of both Richtmyer-Meshkov and Rayleigh-Taylor instability (RTI) at the ablation front is reduced by laser pulses with an adiabat-shaping picket. An operating window for the parameters of the ignition laser spike is described; the threshold power depends on beam focusing and synchronization with the compression pulse. The time window for spike launch widens with beam power, while the minimum spike energy is independent of spike power. A large parametric scan indicates good tolerance (at the level of a few percent) to target mass and laser power errors. 2D simulations indicate that the strong igniting shock wave plays an important role in reducing deceleration-phase RTI growth. Instead, the high hot-spot convergence ratio (ratio of initial target radius to hot-spot radius at ignition) makes ignition highly sensitive to target mispositioning.

  16. On the energy gain enhancement of DT+D3He fuel configuration in nuclear fusion reactor driven by heavy ion beams

    Directory of Open Access Journals (Sweden)

    S Khoshbinfar

    2016-09-01

    Full Text Available It is expected that advanced fuels be employed in the second generation of nuclear fusion reactors. Theoretical calculations show that in such a fuel, a high plasma temperature about 100 keV is a requisite for reaction rate improvement of nuclear fusion. However, creating such a temporal condition requires a more powerful driver than we have today. Here, introducing an optimal fuel configuration consisting of DT and D-3He layers, suitable for inertial fusion reactors and driven by heavy ion beams, the optimal energy gain conditions have been simulated and derived for 1.3 MJ system. It was found that, in this new fuel configuration, the ideal energy gain, is 22 percent more comparing with energy gain in corresponding single DT fuel layer. Moreover, the inner DT fuel layer contributed as an ignition trigger, while the outer D3He fuel acts as particle and radiation shielding as well as fuel layer.

  17. Laser fusion

    International Nuclear Information System (INIS)

    Key, M.H.; Oxford Univ.

    1990-04-01

    The use of lasers to drive implosions for the purpose of inertially confined fusion is an area of intense activity where progress compares favourably with that made in magnetic fusion and there are significant prospects for future development. In this brief review the basic concept is summarised and the current status is outlined both in the area of laser technology and in the most recent results from implosion experiments. Prospects for the future are also considered. (author)

  18. Inertial fusion energy

    International Nuclear Information System (INIS)

    Decroisette, M.; Andre, M.; Bayer, C.; Juraszek, D.; Le Garrec, B.; Deutsch, C.; Migus, A.

    2005-01-01

    We first recall the scientific basis of inertial fusion and then describe a generic fusion reactor with the different components: the driver, the fusion chamber, the material treatment unit, the target factory and the turbines. We analyse the options proposed at the present time for the driver and for target irradiation scheme giving the state of art for each approach. We conclude by the presentation of LMJ (laser Megajoule) and NIF (national ignition facility) projects. These facilities aim to demonstrate the feasibility of laboratory DT ignition, first step toward Inertial Fusion Energy. (authors)

  19. Maintenance of fission and fusion reactors. 10. workshop on fusion reactor engineering

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    This report contains copies of OHP presented at the title meeting. The presented topics are as follows, maintenance of nuclear power plants and ITER, exchange of shroud in BWR type reactors, deterioration of fission and fusion reactor materials, standards of pressure vessels, malfunction diagnosis method with neural network. (J.P.N.)

  20. Mirror hybrid (fusion--fission) reactor

    International Nuclear Information System (INIS)

    Bender, D.J.; Lee, J.D.; Neef, W.S.; Devoto, R.S.; Galloway, T.R.; Fink, J.H.; Schultz, K.R.; Culver, D.; Rao, S.

    1977-10-01

    The reference mirror hybrid reactor design performed by LLL and General Atomic is summarized. The reactor parameters have been chosen to minimize the cost of producing fissile fuel for consumption in fission power reactors. As in the past, we have emphasized the use of existing technology where possible and a minimum extrapolation of technology otherwise. The resulting reactor may thus be viewed as a comparatively near-term goal of the fusion program, and we project improved performance for the hybrid in the future as more advanced technology becomes available

  1. Environmental life cycle assessment of high temperature nuclear fission and fusion biomass gasification plants

    International Nuclear Information System (INIS)

    Takeda, Shutaro; Sakurai, Shigeki; Kasada, Ryuta; Konishi, Satoshi

    2017-01-01

    The authors propose nuclear biomass gasification plant as an advancement of conventional gasification plants. Environmental impacts of both fission and fusion plants were assessed through life cycle assessment. The result suggested the reduction of green-house gas emissions would be as large as 85.9% from conventional plants, showing a potential for the sustainable future for both fission and fusion plants. (author)

  2. Determination of extra-push energies for fusion from differential fission cross-section measurements

    International Nuclear Information System (INIS)

    Ramamurthy, V.S.; Kapoor, S.S.

    1993-01-01

    Apparent discrepancies between values of extra-push energies for fusion of two heavy nuclei derived through measurements of fusion evaporation residue cross sections and of differential fission cross sections have been reported by Keller et al. We show here that with the inclusion of the recently proposed preequilibrium fission decay channel in the analysis, there is no inconsistency between the two sets of data in terms of the deduced extra-push energies

  3. Brief review of the fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Tenney, F.H.

    1977-01-01

    Much of the conceptual framework of present day fusion-fission hybrid reactors is found in the original work of the early 1950's. Present day motivations for development are quite different. The role of the hybrid reactor is discussed as well as the current activities in the development program

  4. The fusion of dt{mu}, tt{mu} and dd{mu} molecules in three-layer arrangement including deuterium degrader and moderator

    Energy Technology Data Exchange (ETDEWEB)

    Gheisari, R. [Physics Department, Persian Gulf University, Bushehr 75169 (Iran)

    2010-09-15

    Muon dynamics and forced chemical confinement fusion in three-layer arrangement consisting of the H/T, D{sub 2} (the degrader and moderator) and D/T fusion layers are investigated with a new kinetic model. Point kinematic equations are numerically solved to calculate the numbers of dt{mu}, tt{mu} and dd{mu} chain reactions. We show that the {mu}-cycling coefficient X{sub c} approximately equals 156, at optimal condition. Our model and results are in contradiction with beliefs of Mahdavi and Zanganeh. Our model is confirmed by recent experiment where was performed for the hydrogen mixture. (author)

  5. Coatings for laser fusion

    International Nuclear Information System (INIS)

    Lowdermilk, W.H.

    1981-01-01

    Optical coatings are used in lasers systems for fusion research to control beam propagation and reduce surface reflection losses. The performance of coatings is important in the design, reliability, energy output, and cost of the laser systems. Significant developments in coating technology are required for future lasers for fusion research and eventual power reactors

  6. DT fusion neutron irradiation of BPNL niobium nickel and 316 stainless steel at 1750C

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1977-01-01

    The DT fusion neutron irradiation at 175 0 C of 17 niobium wires, one niobium foil, 14 316 stainless steel wires, one 316 stainless steel foil, nine nickel wires, and two nickel foils from BPNL is described. The sample position, beam-on time, neutron dose record, and neutron fluence are given

  7. Fission, fusion and the energy crisis

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, S E [Aston Univ., Birmingham (UK)

    1980-01-01

    The subject is covered in chapters, entitled: living on capital (energy reserves and consumption forecasts); the atom and its nucleus, mass and energy; fission and the bomb; the natural uranium reactor; enriched reactors; control and safety; long-term economics (the breeder reactions and nuclear fuel reserves); short-term economics (cost per kilowatt hour); national nuclear power programmes; nuclear power and the environment (including reprocessing, radioactive waste management, public relations); renewable energy sources; the fusion programme; summary and comment.

  8. Laser-induced nuclear fusion

    International Nuclear Information System (INIS)

    Jablon, Claude

    1977-01-01

    Research programs on laser-induced thermonuclear fusion in the United States, in Europe and in USSR are reviewed. The principle of the fusion reactions induced is explained, together with the theoretical effects of the following phenomena: power and type of laser beams, shape and size of the solid target, shock waves, and laser-hydrodynamics coupling problems [fr

  9. Concept of DT fuel cycle for a fusion neutron source DEMO-FNS

    Energy Technology Data Exchange (ETDEWEB)

    Ananyev, Sergey S., E-mail: Ananyev_SS@nrcki.ru; Spitsyn, Alexander V.; Kuteev, Boris V.

    2016-11-01

    Highlights: • We presented the concept of a deuterium-tritium fuel cycle of stationary thermonuclear reactor. • Data of fuel cycles for nuclear facility (DEMO-FNS) with 2 variants of the fuel mixture for NBI system are presented. • The amount of tritium which is required for operation of DEMO-FNS is estimated. - Abstract: The paper describes the concept of a deuterium-tritium fuel cycle of a steady-state thermonuclear reactor with a fusion power over 10 MW. Parameters of fuel cycle for nuclear facility (JET scale) with different types of fuel mixtures for neutral beam injection system are presented. Optimization of fuel cycle characteristics was aimed at reducing flows and inventory of hydrogen isotopes and tritium in fuel cycle subsystems. The calculations were carried out using computer code TC-FNS to estimate tritium distribution in fusion reactor systems and components of “tritium plant”. The code enables calculations of tritium flows and inventory in the tokamak systems. Calculations of tritium flows and accumulation have been carried out for two different cases of the fuel mixture for neutral beam injection (NBI) system. The amounts of tritium which is required for operation of all fuel cycle systems in two different cases of the fuel mixture for NBI are 0.45 “” kg (D:T = 1:0) and 0.9 kg (D:T = 1:1) respectively.

  10. Dynamics of the fusion reaction in the dtμ- system

    International Nuclear Information System (INIS)

    Belyaev, V.B.; Revai, J.; Zubarev, A.L.

    1988-08-01

    A dynamical scheme based on the (td,αn) two-channel model is derived for the description of the fusion reaction in the dtμ - system. Special attention is paid to the correct specification of the final states. Several possibilities are pointed out for the systematic improvement of the sudden approximation for the sticking coefficient. It seems to be useful to outline a general formulation of these processes which would allow a clear comparison of existing approaches. The lack of satisfactory agreement between experimental and theoretical values of the sticking coefficient is a further argument in favour of the programme. (R.P.) 10 refs

  11. Conceptual design of a fusion-fission hybrid reactor for transmutation of high level nuclear waste

    International Nuclear Information System (INIS)

    Qiu, L.J.; Wu, Y.C.; Yang, Y.W.; Wu, Y.; Luan, G.S.; Xu, Q.; Guo, Z.J.; Xiao, B.J.

    1994-01-01

    To assess the feasibility of the transmutation of long-lived radioactive waste using fusion-fission hybrid reactors, we are studying all the possible types of blanket, including a comparison of the thermal and fast neutron spectrum blankets. Conceptual designs of a small tokamak hybrid blanket with small inventory of actinides and fission products are presented. The small inventory of wastes makes the system safer. The small hybrid reactor system based on a fusion core with experimental parameters to be realized in the near future can effectively transmute actinides and fission products at a neutron wall loading of 1MWm -2 . An innovative energy system is also presented, including a fusion driver, fuel breeder, high level waste transmuter, fission reactor and so on. An optimal combination of all types of reactor is proposed in the system. ((orig.))

  12. Investigating the foil-generated deuteron beam interaction with a DT target in degenerate and classical plasma

    Science.gov (United States)

    Mehrangiz, M.; Ghasemizad, A.

    2017-06-01

    Deuteron fast ignition of a conically guided pre-compressed DT fuel is investigated. For this purpose, the acceleration of the deuterated thin foil by the intense laser beam is evaluated. The acceleration values and the number of foil-generated deuterons are calculated in terms of the laser pulse duration. Using the created deuterons as the fast ignitors, we investigate the fast ignition scheme by comparing fully degenerate, partial degenerate and classical types of DT plasma. The total energy gain of deuterons "beam fusion" is calculated to show the efficiency of beam reactions in increasing fusion rate. Besides, the stopping time and stopping range of incident deuterons are evaluated. Our numerical results indicate that degeneracy increases the beam-target collisions. Thus, it prepares the ignition situation sooner than the classical plasma. Moreover, the number of generated deuterons and their acceleration depend on the foil thickness and laser parameters. We show that when a 4ps laser with intensity of 10^{19} W/cm^2 focused onto a 20μm foil, 35× 10^{15} deuterons are generated. Moreover, under our analysis, in order to have a practicable fast ignition, 18% of the laser energy is necessary to convert into a deuteron driver.

  13. Tunneling process in heavy-ion fusion and fission

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kondratyev, V.; Bonasera, A.

    1998-10-01

    We present a model towards the many-body description of sub-barrier fusion and spontaneous fission based on the semiclassical Vlasov equation and the Feynman path integral method. We define suitable collective variables from the Vlasov solution and use the imaginary time technique for the dynamics below the Coulomb barrier. (author)

  14. Utility market penetration assessment of fusion-fission hybrids

    International Nuclear Information System (INIS)

    Jensen, B.K.; Nour, N.E.; Piascik, T.M.

    1981-01-01

    The objective of this paper is to describe the utility generation expansion evaluation procedure and to present the results of a fusion-fission hybrid market penetration assessment in a model of a typical utility system. The analysis addresses the key factors and tradeoffs affecting the utility's evaluation of generation alternatives

  15. A Fusion Neutron Source for Materials and Subcomponent Development and Qualification

    Science.gov (United States)

    Simonen, Thomas

    2010-11-01

    The magnetic-mirror based Gas Dynamic Trap (GDT) device in Novosibirsk Russia is developing the physics basis for a compact DT Neutron Source (DTNS) for fusion materials and subcomponent development as well as a driver for a fusion-fission driver for nuclear waste burn-up. The efficiency of this concept depends on electron temperature. This paper describes past experimental results as well as methods and prospects to further increase the electron temperature.

  16. TFTR D-T results

    International Nuclear Information System (INIS)

    Meade, D.M.

    1994-01-01

    Temperatures, densities and confinement of deuterium plasmas confined in tokamaks have been achieved within the last decade that are approaching those required for a D-T reactor. As a result, the unique phenomena present in a D-T reactor plasma (D-T plasma confinement, alpha confinement, alpha heating and possible alpha driven instabilities) can now be studied in the laboratory. Recent experiments on the Tokamak Fusion Test Reactor (TFTR) have been the first magnetic fusion experiments to study plasmas with reactor fuel concentrations of tritium. The injection of ∼ 20 MW of tritium and 14 MW of deuterium neutral beams into the TFTR produced a plasma with a T/D density ratio of ∼1 and yielded a maximum fusion power of ∼ 9.2 MW. The fusion power density in the core of the plasma was ∼ 1.8 MW m -3 approximating that expected in a D-T fusion reactor. A TFTR plasma with T/D density ratio of ∼ 1 was found to have ∼ 20% higher energy confinement time than a comparable D plasma, indicating a confinement scaling with average ion mass, A, of τ E ∼ A 0.6 . The core ion temperature increased from 30 keV to 37 keV due to a 35% improvement of ion thermal conductivity. Using the electron thermal conductivity from a comparable deuterium plasma, about 50% of the electron temperature increase from 9 keV to 10.6 keV can be attributed to electron heating by the alpha particles. The ∼ 5% loss of alpha particles, as observed on detectors near the bottom edge of the plasma, was consistent with classical first orbit loss without anomalous effects. Initial measurements have been made of the confined energetic alphas and the resultant alpha ash density. At fusion power levels of 7.5 MW, fluctuations at the Toroidal Alfven Eigenmode frequency were observed by the fluctuation diagnostics. However, no additional alpha loss due to the fluctuations was observed

  17. Synergies in the design and development of fusion and generation IV fission reactors

    International Nuclear Information System (INIS)

    Bogusch, E.; Carre, F.; Knebel, J.; Aoto, K.

    2007-01-01

    Future fusion reactors or systems and Generation IV fission reactors are designed and developed in worldwide programmes mostly involving the same partners to investigate and assess their potential for realisation and contribution to meet the future energy needs beyond 2030. Huge scientific and financial effort is necessary to meet these objectives. First programmes have been launched in Generation IV International Forum (GIF) for fission and in the Broader Approach for fusion reactor system development. Except the physics basis for the energy source, future fusion and fission reactors, in particular those with fast neutron core face similar design issues and development needs. Therefore the call for the identification of synergies became evident. Beyond ITER cooled by water, future fusion reactors or systems will be designed for helium and liquid metal cooling and higher temperatures similar to those proposed for some of the six fission reactor concepts in GIF with their diverse coolants. Beside materials developments which are not discussed in this paper, design and performance of components and systems related to the diverse coolants including lifetime and maintenance aspects might offer significant potentials for synergies. Furthermore, the use of process heat for applications in addition to electricity production as well as their safety approaches might create synergistic design and development programmes. Therefore an early identification of possible synergies in the relevant programmes should be endorsed to minimise the effort for future power plants in terms of investments and resources. In addition to a general overview of a possible synergistic work programme which promotes the interaction between fusion and fission programmes towards an integrated organisation of their design and R and D programmes, some specific remarks will be given for joint design tools, numerical code systems and joint experiments in support of common technologies. (orig.)

  18. Synergies in the design and development of fusion and generation IV fission reactors

    International Nuclear Information System (INIS)

    Bogusch, E.; Carre, F.; Knebel, J.U.; Aoto, K.

    2008-01-01

    Future fusion reactor and Generation IV fission reactor systems are designed and developed in worldwide programmes to investigate and assess their potential for realisation and contribution to the future energy needs beyond 2030 mostly involving the same partners. Huge scientific and financial effort is necessary to meet these objectives. First programmes have been launched in Generation IV International Forum (GIF) for fission and in the Broader Approach for fusion reactor system development. Except for the physics basis for the energy source, future fusion and fission reactors, in particular those with fast neutron core, face similar design issues and development needs. Therefore, the call for the identification of synergies became evident. Beyond ITER cooled by water, future fusion reactor systems will be designed for high-temperature helium and liquid metal cooling but also water including supercritical water and molten salt similar to those proposed for some of the six fission reactor concepts in GIF with their diverse coolants. Beside materials developments which are not discussed in this paper, design and performance of components and systems related to the diverse coolants including lifetime and maintenance aspects might offer significant potentials for synergies. Furthermore, the use of process heat for applications in addition to electricity production as well as their safety approaches can create synergistic design and development programmes. Therefore, an early identification of possible synergies in the relevant programmes should be endorsed to minimise the effort for future power plants in terms of investments and resources. In addition to a general overview of a possible synergistic work programme which promotes the interaction between fusion and fission programmes towards an integrated organisation of their design and R and D programmes, some specific remarks will be given for joint design tools, numerical code systems and joint experiments in

  19. Fiscal year 1976 DT fusion neutron irradiations and dosimetry at the LLL rotating target neutron source

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1977-01-01

    The DT fusion neutron irradiation of 319 samples during 19 irradiation periods (beam-on time of more than 1026 hours) is described. Experiments from 24 individuals representing 11 institutions are summarized. The numbers of the UCID dosimetry reports detailing each of the irradiations are given

  20. A comparison of microstructures in copper irradiated with fission, fusion, and spallation neutrons

    International Nuclear Information System (INIS)

    Muroga, T.; Heinisch, H.L.; Sommer, W.F.; Ferguson, P.D.

    1992-01-01

    The objective of this work is to investigate the effects of the neutron energy spectrum in low dose irradiations on the microstructure and mechanical properties of metals. The microstructures of pure copper irradiated to low doses at 36-90 C with spallation neutrons, fusion neutrons and fission neutrons are compared. The defect cluster densities for the spallation and fusion neutrons are very similar when compared on the basis of displacements per atom (dpa). In both cases, the density increases in proportion to the square root of the dpa. The difference in defect density between fusion neutrons and fission neutrons corresponds with differences observed in data on yield stress changes

  1. Alternate laser fusion drivers

    International Nuclear Information System (INIS)

    Pleasance, L.D.

    1979-11-01

    One objective of research on inertial confinement fusion is the development of a power generating system based on this concept. Realization of this goal will depend on the availability of a suitable laser or other system to drive the power plant. The primary laser systems used for laser fusion research, Nd 3+ : Glass and CO 2 , have characteristics which may preclude their use for this application. Glass lasers are presently perceived to be incapable of sufficiently high average power operation and the CO 2 laser may be limited by and issues associated with target coupling. These general perceptions have encouraged a search for alternatives to the present systems. The search for new lasers has been directed generally towards shorter wavelengths; most of the new lasers discovered in the past few years have been in the visible and ultraviolet region of the spectrum. Virtually all of them have been advocated as the most promising candidate for a fusion driver at one time or another

  2. Commercial applications of inertial confinement fusion

    International Nuclear Information System (INIS)

    Booth, L.A.; Frank, T.G.

    1977-05-01

    This report describes the fundamentals of inertial-confinement fusion, some laser-fusion reactor (LFR) concepts, and attendant means of utilizing the thermonuclear energy for commercial electric power generation. In addition, other commercial energy-related applications, such as the production of fissionable fuels, of synthetic hydrocarbon-based fuels, and of process heat for a variety of uses, as well as the environmental and safety aspects of fusion energy, are discussed. Finally, the requirements for commercialization of laser fusion technologies are described

  3. Neutron irradiation facilities for fission and fusion reactor materials studies

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.

    1985-01-01

    The successful development of energy-conversion machines based upon nuclear fission or fusion reactors is critically dependent upon the behavior of the engineering materials used to construct the full containment and primary heat extraction systems. The development of radiation damage-resistant materials requires irradiation testing facilities which reproduce, as closely as possible, the thermal and neutronic environment expected in a power-producing reactor. The Oak Ridge National Laboratory (ORNL) reference core design for the Center for Neutron Research (CNR) reactor provides for instrumented facilities in regions of both hard and mixed neutron spectra, with substantially higher fluxes than are currently available. The benefits of these new facilities to the development of radiation damage resistant materials are discussed in terms of the major US fission and fusion reactor programs

  4. Cryogenic implications for DT

    International Nuclear Information System (INIS)

    Souers, P.C.

    1977-10-01

    Cryogenic hydrogen data is being compiled for magnetic fusion engineering. Many physical properties of DT can be extrapolated from H 2 and D 2 values. The phase diagram properties of the D 2 -DT-T 2 mixture are being measured. Three properties which will be greatly affected by tritium should be measured. In order of their perceived importance, they are: (1) solid thermal conductivity, (2) solid mechanical strength, and (3) gaseous electrical conductivity. The most apparent need for DT data is in Tokomak fuel pellet injection. Cryopumping and distillation applications are also considered

  5. Materials compatibility considerations for a fusion-fission hybrid reactor design

    International Nuclear Information System (INIS)

    DeVan, J.H.; Tortorelli, P.F.

    1983-01-01

    The Tandem Mirror Hybrid Reactor is a fusion reactor concept that incorporates a fission-suppressed breeding blanket for the production of 233 U to be used in conventional fission power reactors. The present paper reports on compatibility considerations related to the blanket design. These considerations include solid-solid interactions and liquid metal corrosion. Potential problems are discussed relative to the reference blanket operating temperature (490 0 C) and the recycling time of breeding materials (<1 year)

  6. Investigation on fabrication and positioning of cryogenic shell laser fusion targets. Annual report, October 1, 1977--November 30, 1978

    International Nuclear Information System (INIS)

    Kim, K.

    1978-01-01

    The research has been directed toward fabrication and positioning of cryogenic shell laser fusion targets, with particular emphasis on the development of a scheme which would allow for continuous fabrication, inspection, and delivery of the targets. Specifically, progress has been made in each of the following areas: (1) fabrication of a uniform layer of solid DT inside a glass microshell using a combination of helium gas jets and a heater wire; (2) levitation-freezing of a DT-filled glass microshell as a method for fabricating and positioning a cryogenic shell target; (3) a target fabrication system intended for continuous fabrication, inspection, and delivery of cryogenic targets; and (4) development of diagnostics for inspection, recording, and analysis of a solid DT layer inside a glass microshell, and for observing the parameters controlling the target freezing process

  7. The development of laser fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Mima, Kunioki [Osaka Univ., Suita (Japan). Inst. of Laser Engineering

    1998-11-01

    Laser fusion research started soon after the invention of laser. In 1972, the research was declassified and nuclear fusion by laser inplosion was proposed by J. Nuckolls. Since then, 26 years has passed and laser implosion experiments demonstrated 1000 times solid density compression. By the demonstration of 1000 times solid density, the mission of the laser fusion research shifted from `implosion physics` to `ignition and high gain`, namely demonstration of fusion output of 100 times input laser energy. By the recent developments of laser technology, ultra intense laser became available and opened up a new ignition scheme which is called `Fast Ignition`. The technology for the diode pumped solid state laser (DPSSL) is developed toward a laser driver for reactor. U.S. and France are constructing MJ lasers for demonstrating ignition and burn and Osaka University is investigating the fast ignition and the equivalent plasma of confinement (EPOC) toward high gain. (author)

  8. The development of laser fusion research

    International Nuclear Information System (INIS)

    Mima, Kunioki

    1998-01-01

    Laser fusion research started soon after the invention of laser. In 1972, the research was declassified and nuclear fusion by laser inplosion was proposed by J. Nuckolls. Since then, 26 years has passed and laser implosion experiments demonstrated 1000 times solid density compression. By the demonstration of 1000 times solid density, the mission of the laser fusion research shifted from 'implosion physics' to 'ignition and high gain', namely demonstration of fusion output of 100 times input laser energy. By the recent developments of laser technology, ultra intense laser became available and opened up a new ignition scheme which is called 'Fast Ignition'. The technology for the diode pumped solid state laser (DPSSL) is developed toward a laser driver for reactor. U.S. and France are constructing MJ lasers for demonstrating ignition and burn and Osaka University is investigating the fast ignition and the equivalent plasma of confinement (EPOC) toward high gain. (author)

  9. Determination of procedures for transmutation of fission product wastes by fusion neutrons. Volume 2. Final report

    International Nuclear Information System (INIS)

    Lang, G.P.

    1980-12-01

    This study is concerned with the engineering aspects of the transmutation of fission products utilizing neutrons generated in fusion reactors. It is assumed that fusion reactors, although not yet developed, will be available around the turn of the century. Therefore, early studies of this type are appropriate as a guide to the large amount of further investigations that will be needed to fully evaluate this concept. Not all of the radioactive products from light water reactors can be economically transmuted, but it appears that the most hazardous can. This requires that fission-product wastes must first be separated into a number of fractions, and in some instances this must be accomplished with extremely high separation factors. A review of current commercial separation processes and of promising methods that are now in the laboratory stage indicate that the necessary processes can most likely be developed but will require an active and sustained development program. Current fusion reactor concepts were examined as to their suitability for transmuting the separated fission wastes. It was concluded that the long-lived fission products were most amenable to transmutation. The medium-lived fission products, Cs-137 and Sr-90, require higher neutron fluxes than are available in the most developed fusion reactor concepts. Concepts which are less developed may eventually be adaptable as transmuters of these fission products

  10. Multispecies exclusion process with fusion and fission of rods: A model inspired by intraflagellar transport

    Science.gov (United States)

    Patra, Swayamshree; Chowdhury, Debashish

    2018-01-01

    We introduce a multispecies exclusion model where length-conserving probabilistic fusion and fission of the hard rods are allowed. Although all rods enter the system with the same initial length ℓ =1 , their length can keep changing, because of fusion and fission, as they move in a step-by-step manner towards the exit. Two neighboring hard rods of lengths ℓ1 and ℓ2 can fuse into a single rod of longer length ℓ =ℓ1+ℓ2 provided ℓ ≤N . Similarly, length-conserving fission of a rod of length ℓ'≤N results in two shorter daughter rods. Based on the extremum current hypothesis, we plot the phase diagram of the model under open boundary conditions utilizing the results derived for the same model under periodic boundary condition using mean-field approximation. The density profile and the flux profile of rods are in excellent agreement with computer simulations. Although the fusion and fission of the rods are motivated by similar phenomena observed in intraflagellar transport (IFT) in eukaryotic flagella, this exclusion model is too simple to account for the quantitative experimental data for any specific organism. Nevertheless, the concepts of "flux profile" and "transition zone" that emerge from the interplay of fusion and fission in this model are likely to have important implications for IFT and for other similar transport phenomena in long cell protrusions.

  11. Fission: An object lesson for fusion

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1988-01-01

    The development of a new, and possibly hazardous, long-range energy source is beset with two political problems (as well as the many technical ones): survival and public acceptance. By survival I mean continuing support, year after year, of a very expensive enterprise whose promise always seems greater than its achievement: can this support continue long enough to allow the promised goal to be achieved. By survival I mean continuing support, year after year, of a very expensive enterprise whose promise always seems greater than its achievement: can this support continue long enough to allow the promised goal to be achieved. By public acceptance, I mean the reaction the reaction of the public to the new energy source, assuming that it achieves its technological goals. Both of these problems have been faced by fission power : I propose to describe the experiences of fission in confronting these issues in the hope that they might be dealt with more deftly by fusion. My account will be anecdotal and personal

  12. Joint ICFRM-14 (14. international conference on fusion reactor materials) and IAEA satellite meeting on cross-cutting issues of structural materials for fusion and fission applications. PowerPoint presentations

    International Nuclear Information System (INIS)

    2009-01-01

    The Conference was devoted to the challenges in the development of new materials for advanced fission, fusion and hybrid reactors. The topics discussed include fuels and materials research under the high neutron fluence; post-irradiation examination; development of radiation resistant structural materials utilizing fission research reactors; core materials development for the advanced fuel cycle initiative; qualification of structural materials for fission and fusion reactor systems; application of charged particle accelerators for radiation resistance investigations of fission and fusion structural materials; microstructure evolution in structural materials under irradiation; ion beams and ion accelerators

  13. Nuclear data for structural materials of fission and fusion reactors

    International Nuclear Information System (INIS)

    Goulo, V.

    1989-06-01

    The document presents the status of nuclear reaction theory concerning optical model development, level density models and pre-equilibrium and direct processes used in calculation of neutron nuclear data for structural materials of fission and fusion reactors. 6 refs

  14. Review of Battelle-Northwest technical studies on fusion--fission (hybrid) energy systems

    International Nuclear Information System (INIS)

    Liikala, R.C.; Leonard, B.R. Jr.; Wolkenhauer, W.C.; Aase, D.T.

    1974-01-01

    A variety of studies conducted over the past few years and the principal results of these studies are summarized. Studies of power producing hybrids, the use of fusion neutrons for transmutation of radioactive wastes, and the evaluation of the most likely combinations of fusion and fission technologies are discussed. (U.S.)

  15. Estimated refractive index and solid density of DT, with application to hollow-microsphere laser targets

    International Nuclear Information System (INIS)

    Briggs, C.K.; Tsugawa, R.T.; Hendricks, C.D.; Souers, P.C.

    1975-01-01

    The literature values for the 0.55-μm refractive index N of liquid and gaseous H 2 and D 2 are combined to yield the equation (N - 1) = [(3.15 +- 0.12) x 10 -6 ]rho, where rho is the density in moles per cubic meter. This equation can be extrapolated to 300 0 K for use on DT in solid, liquid, and gas phases. The equation is based on a review of solid-hydrogen densities measured in bulk and also by diffraction methods. By extrapolation, the estimated densities and 0.55-μm refractive indices for DT are given. Radiation-induced point defects could possibly cause optical absorption and a resulting increased refractive index in solid DT and T 2 . The effect of the DT refractive index in measuring glass and cryogenic DT laser targets is also described

  16. Advantages of Production of New Fissionable Nuclides for the Nuclear Power Industry in Hybrid Fusion-Fission Reactors

    Science.gov (United States)

    Tsibulskiy, V. F.; Andrianova, E. A.; Davidenko, V. D.; Rodionova, E. V.; Tsibulskiy, S. V.

    2017-12-01

    A concept of a large-scale nuclear power engineering system equipped with fusion and fission reactors is presented. The reactors have a joint fuel cycle, which imposes the lowest risk of the radiation impact on the environment. The formation of such a system is considered within the framework of the evolution of the current nuclear power industry with the dominance of thermal reactors, gradual transition to the thorium fuel cycle, and integration into the system of the hybrid fusion-fission reactors for breeding nuclear fuel for fission reactors. Such evolution of the nuclear power engineering system will allow preservation of the existing structure with the dominance of thermal reactors, enable the reprocessing of the spent nuclear fuel (SNF) with low burnup, and prevent the dangerous accumulation of minor actinides. The proposed structure of the nuclear power engineering system minimizes the risk of radioactive contamination of the environment and the SNF reprocessing facilities, decreasing it by more than one order of magnitude in comparison with the proposed scheme of closing the uranium-plutonium fuel cycle based on the reprocessing of SNF with high burnup from fast reactors.

  17. Conceptual design of a fission-based integrated test facility for fusion reactor components

    International Nuclear Information System (INIS)

    Watts, K.D.; Deis, G.A.; Hsu, P.Y.S.; Longhurst, G.R.; Masson, L.S.; Miller, L.G.

    1982-01-01

    The testing of fusion materials and components in fission reactors will become increasingly important because of lack of fusion engineering test devices in the immediate future and the increasing long-term demand for fusion testing when a fusion reactor test station becomes available. This paper presents the conceptual design of a fission-based Integrated Test Facility (ITF) developed by EG and G Idaho. This facility can accommodate entire first wall/blanket (FW/B) test modules such as those proposed for INTOR and can also accommodate smaller cylindrical modules similar to those designed by Oak Ridge National laboratory (ORNL) and Westinghouse. In addition, the facility can be used to test bulk breeder blanket materials, materials for tritium permeation, and components for performance in a nuclear environment. The ITF provides a cyclic neutron/gamma flux as well as the numerous module and experiment support functions required for truly integrated tests

  18. Fusion reactor cost reductions by employing non-nuclear grade components

    International Nuclear Information System (INIS)

    Bourque, R.F.; Maya, I.; Schultz, K.R.; Sonn, D.L.; Wise, R.K.

    1987-09-01

    The Cascade inertial confinement fusion reactor fits the requirements of low radioactive inventories and inherent safety and is therefore a candidate for non-nuclear construction throughout. This reactor consists of a rotating blanket of ceramic granules that absorb the energy from D-T target explosions occurring along the rotational axis. Laser energy is beamed in axially from both ends. Two cost estimates were made for an 815 MWe Cascade power plant. One was based on an ''all conventional'' plant, which is constructed and costed using well-established, conventional fossil power plant methods. The second was a ''nuclear plus conventional'' design, constructed and costed using a combination of fossil and fission reactor plant methods and standards that would be typical of advanced fission reactors. The total capital requirements for the ''all conventional'' construction plant were estimated in 1985 dollars at $1490 M, including indirect costs. Similarly, the ''nuclear plus conventional'' construction plant was estimated at $1940 M. The savings of $450 M (23%) represents strictly the difference between Cascade ICF power plants designed and constructed to nuclear safety-related requirements versus all non-nuclear. This example clearly shows that, if fusion plants can take advantage of low activation materials and inherent safety features to eliminate the need for nuclear-related expenses, then such plants may have economic advantages over nuclear-grade systems. 13 refs., 1 fig., 5 tabs

  19. The controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2014-01-01

    After some generalities on particle physics, and on fusion and fission reactions, the author outlines that the fission reaction is easier to obtain than the fusion reaction, evokes the fusion which takes place in stars, and outlines the difficulty to manage and control this reaction: one of its application is the H bomb. The challenge is therefore to find a way to control this reaction and make it a steady and continuous source of energy. The author then presents the most promising way: the magnetic confinement fusion. He evokes its main issues, the already performed experiments (tokamak), and gives a larger presentation of the ITER project. Then, he evokes another way, the inertial confinement fusion, and the two main experimental installations (National Ignition Facility in Livermore, and the Laser Megajoule in Bordeaux). Finally, he gives a list of benefits and drawbacks of an industrial nuclear fusion

  20. Thermal safety analysis for pebble bed blanket fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Wei Renjie

    1998-01-01

    Pebble bed blanket hybrid reactor may have more advantages than slab element blanket hybrid reactor in nuclear fuel production and nuclear safety. The thermo-hydraulic calculations of the blanket in the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor developed in China are carried out using the Code THERMIX and auxiliary code. In the calculations different fuel pebble material and steady state, depressurization and total loss of flow accident conditions are included. The results demonstrate that the conceptual design of the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor with dump tank is feasible and safe enough only if the suitable fuel pebble material is selected and the suitable control system and protection system are established. Some recommendations for due conceptual design are also presented

  1. Prospect of laser fusion power generation

    International Nuclear Information System (INIS)

    Nakai, Sadao

    1998-01-01

    Inertial fusion ignition, burn and energy gain are expected to be achieved within the first decade of next century with new Megajoule laser facilities which are under construction in the USA and France. Fusion reactor design studies indicate that Inertial Fusion Energy(IFE) power plants are technically feasible and have attractive safety and environmental features. The recent progress on implosion physics and relevant technologies require us to consider a strategic approach toward IFE development. The design study for a laser fusion power plant KOYO has been conducted as a joint program of universities, national laboratories and industries in Japan and also with international collaborations. The progress of high power laser technology gives us feasible project toward a laser driven IFE Power Plant. The technical breakthrough in the field of diode pumped solid state laser (DPSSL) has opened wide application of power laser to industrial technologies. Laser fusion energy development will be proceeded jointly with industrial photonics research and development. International collaborations are also promoted for efficient progress and activation of R and D on advanced technologies which are required for IFE and also useful for modern industries. (author). 7 refs., 1 tab., 7 figs

  2. Analytic, empirical and delta method temperature derivatives of D-D and D-T fusion reactivity formulations, as a means of verification

    Energy Technology Data Exchange (ETDEWEB)

    Langenbrunner, James R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Booker, Jane M. [Booker Scientific, Fredericksburg, TX (United States)

    2017-07-21

    We examine the derivatives with respect to temperature, for various deuterium-tritium (DT) and deuterium-deuterium (D-D) fusion-reactivity formulations. Langenbrunner and Makaruk [1] had studied this as a means of understanding the time and temperature domain of reaction history measured in dynamic fusion experiments. Presently, we consider the temperature derivative dependence of fusion reactivity as a means of exercising and verifying the consistency of the various reactivity formulations.

  3. Storage and Containment of Nuclear Targets for Pulsed Fission-Fusion Testing

    Data.gov (United States)

    National Aeronautics and Space Administration — The combined fission-fusion fuel target is the heart of an engine concept that can open the solar system to fast and efficient human exploration. This is a unique...

  4. Physics of laser fusion. Volume III. High-power pulsed lasers

    International Nuclear Information System (INIS)

    Holzrichter, J.F.; Eimerl, D.; George, E.V.; Trenholme, J.B.; Simmons, W.W.; Hunt, J.T.

    1982-09-01

    High-power pulsed lasers can deliver sufficient energy on inertial-confinement fusion (ICF) time scales (0.1 to 10 ns) to heat and compress deuterium-tritium fuel to fusion-reaction conditions. Several laser systems have been examined, including Nd:glass, CO 2 , KrF, and I 2 , for their ICF applicability. A great deal of developmental effort has been applied to the Nd:glass laser and the CO 2 gas laser systems; these systems now deliver > 10 4 J and 20 x 10 12 W to ICF targets. We are constructing the Nova Nd:glass laser at LLNL to provide > 100 kJ and > 100 x 10 12 W of 1-μm radiation for fusion experimentation in the mid-1980s. For ICF target gain > 100 times the laser input, we expect that the laser driver must deliver approx. 3 to 5 MJ of energy on a time scale of 10 to 20 ns. In this paper we review the technological status of fusion-laser systems and outline approaches to constructing high-power pulsed laser drivers

  5. Inertial-confinement-fusion targets

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1982-01-01

    Much of the research in laser fusion has been done using simple ball on-stalk targets filled with a deuterium-tritium mixture. The targets operated in the exploding pusher mode in which the laser energy was delivered in a very short time (approx. 100 ps or less) and was absorbed by the glass wall of the target. The high energy density in the glass literally exploded the shell with the inward moving glass compressing the DT fuel to high temperatures and moderate densities. Temperatures achieved were high enough to produce DT reactions and accompanying thermonuclear neutrons and alpha particles. The primary criteria imposed on the target builders were: (1) wall thickness, (2) sphere diameter, and (3) fuel in the sphere

  6. Consultancy to review and finalize the IAEA publication 'Compendium on the use of fusion/fission hybrids for the utilization and transmutation of actinides and long-lived fission products'. Working material

    International Nuclear Information System (INIS)

    2004-01-01

    In addition to the traditional fission reactor research, fusion R and D activities are becoming of interest also to nuclear fission power development. There is renewed interest in utilizing fusion neutrons, Heavy Liquid Metals, and molten salts for innovative systems (energy production and transmutation). Indeed, for nuclear power development to become sustainable as a long-term energy option, innovative fuel cycle and reactor technologies will have to be developed to solve the problems of resource utilization and long-lived radioactive waste management. In this context Member States clearly expressed the need for comparative assessments of various transmutation reactors. Both the fusion and fission communities are currently investigating the potential of innovative reactor and fuel cycle strategies that include a fusion/fission system. The attention is mainly focused on substantiating the potential advantages of such systems: utilization and transmutation of actinides and long-lived fission products, intrinsic safety features, enhanced proliferation resistance, and fuel breeding capabilities. An important aspect of the ongoing activities is the comparison with the accelerator driven subcritical system (spallation neutron source), which is the other main option for producing excess neutrons. Apart from comparative assessments, knowledge preservation is another subject of interest to the Member States: the goal, applied to fusion/fission systems, is to review the status of, and to produce a 'compendium' of past and present achievements in this area

  7. Laser fusion and precision engineering

    International Nuclear Information System (INIS)

    Nakai, Sadao

    1989-01-01

    The development of laser nuclear fusion energy for attaining the self supply of energy in Japan and establishing the future perspective as the nation is based in the wide fields of high level science and technology. Therefore to its promotion, large expectation is placed as the powerful traction for the development of creative science and technology which are particularly necessary in Japan. The research on laser nuclear fusion advances steadily in the elucidation of the physics of pellet implosion which is its basic concept and compressed plasma parameters. In September, 1986, the number of neutron generation 10 13 , and in October, 1988, the high density compression 600 times as high as solid density have been achieved. Based on these results, now the laser nuclear fusion is in the situation to begin the attainment of ignition condition for nuclear fusion and the realization of break even. The optical components, high power laser technology, fuel pellet production, high resolution measurement, the simulation of implosion using a supercomputer and so on are closely related to precision engineering. In this report, the mechanism of laser nuclear fusion, the present status of its research, and the basic technologies and precision engineering are described. (K.I.)

  8. Cluster expression in fission and fusion in high-dimensional macroscopic-microscopic calculations

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Ichikawa, Takatoshi; Moller, Peter; Sierk, Arnold J.

    2004-01-01

    We discuss the relation between the fission-fusion potential-energy surfaces of very heavy nuclei and the formation process of these nuclei in cold-fusion reactions. In the potential-energy surfaces, we find a pronounced valley structure, with one valley corresponding to the cold-fusion reaction, the other to fission. As the touching point is approached in the cold-fusion entrance channel, an instability towards dynamical deformation of the projectile occurs, which enhances the fusion cross section. These two 'cluster effects' enhance the production of superheavy nuclei in cold-fusion reactions, in addition to the effect of the low compound-system excitation energy in these reactions. Heavy-ion fusion reactions have been used extensively to synthesize heavy elements beyond actinide nuclei. In order to proceed further in this direction, we need to understand the formation process more precisely, not just the decay process. The dynamics of the formation process are considerably more complex than the dynamics necessary to interpret the spontaneous-fission decay of heavy elements. However, before implementing a full dynamical description it is useful to understand the basic properties of the potential-energy landscape encountered in the initial stages of the collision. The collision process and entrance-channel landscape can conveniently be separated into two parts, namely the early-stage separated system before touching and the late-stage composite system after touching. The transition between these two stages is particularly important, but not very well understood until now. To understand better the transition between the two stages we analyze here in detail the potential energy landscape or 'collision surface' of the system both outside and inside the touching configuration of the target and projectile. In Sec. 2, we discuss calculated five-dimensional potential-energy landscapes inside touching and identify major features. In Sec. 3, we present calculated

  9. Laser fusion experiments at LLL

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrom, H.G.

    1980-06-16

    These notes present the experimental basis and status for laser fusion as developed at LLL. Two other chapters, one authored by K.A. Brueckner and the other by C. Max, present the theoretical implosion physics and laser plasma interaction physics. The notes consist of six sections. The first is an introductory section which provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future.

  10. Laser fusion experiments at LLL

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.

    1980-01-01

    These notes present the experimental basis and status for laser fusion as developed at LLL. Two other chapters, one authored by K.A. Brueckner and the other by C. Max, present the theoretical implosion physics and laser plasma interaction physics. The notes consist of six sections. The first is an introductory section which provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future

  11. Technology assessment of laser-fusion power production

    International Nuclear Information System (INIS)

    Booth, L.A.; Frank, T.G.

    1976-01-01

    The inherent features of laser-induced fusion, some laser-fusion reactor concepts, and attendant means of utilizing the thermonuclear energy for commercial electric power generation are discussed. Theoretical fusion-pellet microexplosion energy release characteristics are described and the effects of pellet design options on pellet-microexplosion characteristics are discussed. The results of analyses to assess the engineering feasibility of reactor cavities for which protection of cavity components is provided either by suitable ablative materials or by diversion of plasmas by magnetic fields are presented. Two conceptual laser-fusion electric generating stations, based on different laser-fusion reactor concepts, are described. Technology developments for ultimate commercial application are outlined

  12. Theoretical study of inertial confinement: model development and analyses of laser induced fusion by implosion of D--T pellets

    International Nuclear Information System (INIS)

    Davis, E.C.

    1977-01-01

    An accurate account of the spherical effects was included in all calculations; as two distinct plasma plume shells were included to obtain improved accuracy in the analysis; as an exact solution to the spherically symmetric laser intensity equation was derived; and as a more realistic physical model was employed for the absorption of the laser beam as it traverses the plasma plume region. Moreover, the complete space--time history of the pulsed laser-driven thermonuclear reaction wave and fusion energy yields was explicitly calculated. This is in direct contrast to the average or total values reported in earlier work. The space--time histories provide a valuable insight into the reaction wave's progression through the pellet

  13. DT fusion neutron irradiation of LLL Nb3Sn and LLL superconductor wires at 4.20K

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1977-01-01

    The DT fusion neutron irradiation of one LLL superconductor wire and one LLL Nb 3 Sn foil at 4.2 0 K is described. The sample position, beam-on time, and neutron dose record are given. The results from two ''profile'' dosimetry foils measuring the lateral variation in neutron flux are included

  14. Neutron analysis of a hybrid system fusion-fission

    International Nuclear Information System (INIS)

    Dorantes C, J. J.; Francois L, J. L.

    2011-11-01

    The use of energy at world level implies the decrease of natural resources, reduction of fossil fuels, in particular, and a high environmental impact. In view of this problem, an alternative is the energy production for nuclear means, because up to now is one of the less polluting energy; however, the nuclear fuel wastes continue being even a problem without being solved. For the above mentioned this work intends the creation of a device that incorporates the combined technologies of fission and nuclear fusion, called Nuclear Hybrid Reactor Fusion-Fission (HRFF). The HRFF has been designed theoretically with base in experimental fusion reactors in different parts of the world like: United States, Russia, Japan, China and United Kingdom, mainly. The hybrid reactor model here studied corresponds at the Compact Nuclear Facility Source (CNFS). The importance of the CNFS resides in its feasibility, simple design, minor size and low cost; uses deuterium-tritium like main source of neutrons, and as fuel can use the spent fuel of conventional nuclear reactors, such as the current light water reactors. Due to the high costs of experimental research, this work consists on simulating in computer a proposed model of CNFS under normal conditions of operation, to modify the arrangement of the used fuel: MOX and IMF, to analyze the obtained results and to give final conclusions. In conclusion, the HRFF can be a versatile system for the management of spent fuel of light water reactors, so much for the possibility of actinides destruction, like for the breeding of fissile material. (Author)

  15. Physics of laser fusion. Volume II. Diagnostics of experiments on laser fusion targets at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrom, H.G.

    1982-01-01

    These notes present the experimental basis and status for laser fusion as developed at LLNL. There are two other volumes in this series: Vol. I, by C.E. Max, presents the theoretical laser-plasma interaction physics; Vol. III, by J.F. Holzrichter et al., presents the theory and design of high-power pulsed lasers. A fourth volume will present the theoretical implosion physics. The notes consist of six sections. The first, an introductory section, provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLNL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLNL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future.

  16. Physics of laser fusion. Volume II. Diagnostics of experiments on laser fusion targets at LLNL

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.

    1982-01-01

    These notes present the experimental basis and status for laser fusion as developed at LLNL. There are two other volumes in this series: Vol. I, by C.E. Max, presents the theoretical laser-plasma interaction physics; Vol. III, by J.F. Holzrichter et al., presents the theory and design of high-power pulsed lasers. A fourth volume will present the theoretical implosion physics. The notes consist of six sections. The first, an introductory section, provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLNL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLNL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future

  17. Fission-fusion correlations for swelling and microstructure in stainless steels: effect of the helium-to-displacement-per-atom ratio

    International Nuclear Information System (INIS)

    Odette, G.R.; Maziaz, P.J.; Spitznagel, J.A.

    1981-01-01

    The initial irradiated structural materials data base for fusion applications will be developed in fission reactors. Hence, this data may need to be adjusted using physically-based procedures to represent behavior in fusion environments, viz. - fission-fusion correlations. Such correlation should reflect a sound mechanistic understanding, and be verified in facilities which most closely simulate fusion conditions. In this paper we review the effects of only one of a number of potentially significant damage variables, the helium to displacement per atom ratio, on microstructural evolution in austenitic stainless steels. Dual-ion and helium preinjection data are analyzed to provide mechanistic guidance; these results appear to be qualitatively consistent with a more detailed comparison made between fast (EBR-II) and mixed (HFIR) spectrum neutron data for a single heat of 20% cold-worked 316 stainless steel. These two fission environments bound fusion (He/dpa ratios. A model calibrated to the fission reactor data is used to extrapolate to fusion conditions. Both the theory and broad empirical observation suggest that helium to dpa ratios have both a qualitative and quantitative influence on microstructural evolution; and that the very high and low ratios found in HFIR and EBR-II may not result in behavior which brackets intermediate fusion conditions

  18. Comparison of environmental impact of waste disposal from fusion, fission and coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Frey, Bruno [Fichtner GmbH und Co. KG, Stuttgart (Germany)

    2011-08-15

    The radiotoxic hazard of waste from fusion power plants has been compared with that of fission power and radioactive trace elements in coal ash within some research programs such as SEAFP and SEIF. Within another program, in 2005 a Power Plant Conceptual Study (PPCS) has been finalized investigating 4 fusion power plant models A to D. In this paper, the radiotoxicity of model B is compared with a fission power plant, concentrating on the production of wastes. The hazard of the respective masses of enriched uranium before use in a fission power plant and coal ash of a power plant generating the same amount of electricity are used as benchmarks. It is evident that the development of ingestion and inhalation hazard of the PPCS model B is different from the results of earlier studies because of different assumptions on material impurities and other constraints. An important aspect is the presence of actinides in fusion power plant waste. (orig.)

  19. Development scenario for laser fusion

    International Nuclear Information System (INIS)

    Maniscalco, J.A.; Hovingh, J.; Buntzen, R.R.

    1976-01-01

    This scenario proposes establishment of test and engineering facilities to (1) investigate the technological problems associated with laser fusion, (2) demonstrate fissile fuel production, and (3) demonstrate competitive electrical power production. Such facilities would be major milestones along the road to a laser-fusion power economy. The relevant engineering and economic aspects of each of these research and development facilities are discussed. Pellet design and gain predictions corresponding to the most promising laser systems are presented for each plant. The results show that laser fusion has the potential to make a significant contribution to our energy needs. Beginning in the early 1990's, this new technology could be used to produce fissile fuel, and after the turn of the century it could be used to generate electrical power

  20. Influence of differences in the proton and neutron distributions on nuclear fusion and fission; Infuence de la difference entre les distributions de protons et de neutrons dans le noyau sur les processus de fusion et de fission

    Energy Technology Data Exchange (ETDEWEB)

    Dobrowolski, A

    2006-04-15

    This thesis work is centred on some essential ingredients of a theoretical description of the reaction dynamics of the nuclear fusion and fission process, such as the interaction potential between projectile and target nuclei for fusion and the deformation energy landscape in a multidimensional space for the fission process. We have in particular evaluated the importance of the difference between the neutron and proton density distributions on these 2 processes. The fusion potential between the two interacting nuclei is obtained through the nucleon densities, determined in a self-consistent way through semiclassical density variational calculations for a given effective nucleon-nucleon effective interaction of the Skyrme type. These fusion barriers can then be used in a Langevin formalism to evaluation fusion cross sections. For the fission process it turns out to be essential to allow for the large variety of shapes which appear between the nuclear ground state and the the scission configuration. We show that a shape parametrisation taking into account elongation, as well as possible neck formation, left-right asymmetry and non-axiality allows a precise description of this phenomena in the framework of the macroscopic-microscopic approach. We are thus able to enrich the expression of the liquid-drop type energy through a term which describes the variation of the nuclear energy due to a deformation difference between the proton and neutron distribution. The resulting reduction of the fission barriers is only of the order of one MeV but this can easily cause a change in the fission cross-section by an order of magnitude and thus plays a capital role for the stability of super-heavy of exotic nuclei. (author)

  1. Fission multipliers for D-D/D-T neutron generators

    International Nuclear Information System (INIS)

    Lou, T.P.; Vujic, J.L.; Koivunoro, H.; Reijonen, J.; Leung, K.-N.

    2003-01-01

    A compact D-D/D-T fusion based neutron generator is being designed at the Lawrence Berkeley National Laboratory to have a potential yield of 10 12 D-D n/s and 10 14 D-T n/s. Because of its high neutron yield and compact size (∼20 cm in diameter by 4 cm long), this neutron generator design will be suitable for many applications. However, some applications required higher flux available from nuclear reactors and spallation neutron sources operated with GeV proton beams. In this study, a subcritical fission multiplier with k eff of 0.98 is coupled with the compact neutron generators in order to increase the neutron flux output. We have chosen two applications to show the gain in flux due to the use of fission multipliers--in-core irradiation and out-of-core irradiation. For the in-core irradiation, we have shown that a gain of ∼25 can be achieved in a positron production system using D-T generator. For the out-of-core irradiation, a gain of ∼17 times is obtained in Boron Neutron Capture Therapy (BNCT) using a D-D neutron generator. The total number of fission neutrons generated by a source neutron in a fission multiplier with k eff is ∼50. For the out-of-core irradiation, the theoretical maximum net multiplication is ∼30 due to the absorption of neutrons in the fuel. A discussion of the achievable multiplication and the theoretical multiplication will be presented in this paper

  2. Laser fusion

    International Nuclear Information System (INIS)

    Ashby, D.E.T.F.

    1976-01-01

    A short survey is given on laser fusion its basic concepts and problems and the present theoretical and experimental methods. The future research program of the USA in this field is outlined. (WBU) [de

  3. Tritium contamination experience in an operational D-T fusion reactor

    International Nuclear Information System (INIS)

    Gentile, C.A.; Ascione, G.

    1994-01-01

    During December 1993, the Tokamak Fusion Test Reactor (TFTR) injected a mixture of deuterium and tritium in the TFTR vacuum vessel for the purpose of creating D-T plasmas. The tritium used in these D-T plasmas was stored, delivered and processed in the TFTR tritium facility that includes the tritium vault, waste handling area, clean-up area, and gas holding tank room. During this time period, several components in the tritium process system were found to have tritium leaks which led to tritium deposition on process skids, components and floor area. Radiological surveys of surfaces contaminated with tritium oxide indicate a decrease in surface contamination in time (on the order of 12 to 36 hours) as the result of room ventilation. In instances where the facility HVAC system was maintained in the purge mode, a dramatic decrease in surface contamination was observed. Areas contaminated with tritium oxide (> 16.6 Bq/100 cm 2 ) were found to be clean ( 2 ) after several hours of continuous purging by the facility HVAC system. In instances where relative humidity was not decreased, the tritium surface contamination was found to be attenuated. During the months of December 1993, January and February 1994 tritium leaking components were either replaced, redesigned or repaired. During this time period, data were collected in the form of contamination surveys, real time tritium monitor output, and HVAC configuration indicating the correlation of purge ventilation leading to a decrease in tritium oxide surface contamination

  4. Absolute calibration of TFTR neutron detectors for D-T plasma operation

    International Nuclear Information System (INIS)

    Jassby, D.L.; Johnson, L.C.; Roquemore, A.L.; Strachan, J.D.; Johnson, D.W.; Medley, S.S.; Young, K.M.

    1995-03-01

    The two most sensitive TFTR fission-chamber detectors were absolutely calibrated in situ by a D-T neutron generator (∼5 x 10 7 n/s) rotated once around the torus in each direction, with data taken at about 45 positions. The combined uncertainty for determining fusion neutron rates, including the uncertainty in the total neutron generator output (±9%), counting statistics, the effect of coil coolant, detector stability, cross-calibration to the current mode or log Campbell mode and to other fission chambers, and plasma position variation, is about ±13%. The NE-451 (ZnS) scintillators and 4 He proportional counters that view the plasma in up to 10 collimated sightlines were calibrated by scanning. the neutron generator radially and toroidally in the horizontal midplane across the flight tubes of 7 cm diameter. Spatial integration of the detector responses using the calibrated signal per unit chord-integrated neutron emission gives the global neutron source strength with an overall uncertainty of ±14% for the scintillators and ±15% for the 4 He counters

  5. Tritium monitoring within the reactor hall of a DT fusion reactor

    International Nuclear Information System (INIS)

    Jalbert, R.A.

    1983-01-01

    Monitoring the reactor hall atmosphere of DT-fueled fusion reactors will probably be performed with conventional ion chamber and proportional counter instruments modified as necessry to deal with the background radiation. Background includes external neutron and gamma radiation and internal beta-gamma radiation from the activated atmosphere. Although locating instruments in remote areas of the reactor hall and adding local shielding and electronic compensation may be feasible, placing the instruments in accessible low-background areas outside of the reactor hall and doing remote sampling is preferable and solves most of the radiation problems. The remaining problem of the activated atmosphere may be solved by recently developed instruments in conjunction with the use of semi-permeable membranes currently under development and evaluation

  6. Reprocessing free nuclear fuel production via fusion fission hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Kotschenreuther, Mike, E-mail: mtk@mail.utexas.edu [Intitute for Fusion Studies, University of Texas at Austin (United States); Valanju, Prashant; Mahajan, Swadesh [Intitute for Fusion Studies, University of Texas at Austin (United States)

    2012-05-15

    Fusion fission hybrids, driven by a copious source of fusion neutrons can open qualitatively 'new' cycles for transmuting nuclear fertile material into fissile fuel. A totally reprocessing-free (ReFree) Th{sup 232}-U{sup 233} conversion fuel cycle is presented. Virgin fertile fuel rods are exposed to neutrons in the hybrid, and burned in a traditional light water reactor, without ever violating the integrity of the fuel rods. Throughout this cycle (during breeding in the hybrid, transport, as well as burning of the fissile fuel in a water reactor) the fissile fuel remains a part of a bulky, countable, ThO{sub 2} matrix in cladding, protected by the radiation field of all fission products. This highly proliferation-resistant mode of fuel production, as distinct from a reprocessing dominated path via fast breeder reactors (FBR), can bring great acceptability to the enterprise of nuclear fuel production, and insure that scarcity of naturally available U{sup 235} fuel does not throttle expansion of nuclear energy. It also provides a reprocessing free path to energy security for many countries. Ideas and innovations responsible for the creation of a high intensity neutron source are also presented.

  7. Reprocessing free nuclear fuel production via fusion fission hybrids

    International Nuclear Information System (INIS)

    Kotschenreuther, Mike; Valanju, Prashant; Mahajan, Swadesh

    2012-01-01

    Fusion fission hybrids, driven by a copious source of fusion neutrons can open qualitatively “new” cycles for transmuting nuclear fertile material into fissile fuel. A totally reprocessing-free (ReFree) Th 232 –U 233 conversion fuel cycle is presented. Virgin fertile fuel rods are exposed to neutrons in the hybrid, and burned in a traditional light water reactor, without ever violating the integrity of the fuel rods. Throughout this cycle (during breeding in the hybrid, transport, as well as burning of the fissile fuel in a water reactor) the fissile fuel remains a part of a bulky, countable, ThO 2 matrix in cladding, protected by the radiation field of all fission products. This highly proliferation-resistant mode of fuel production, as distinct from a reprocessing dominated path via fast breeder reactors (FBR), can bring great acceptability to the enterprise of nuclear fuel production, and insure that scarcity of naturally available U 235 fuel does not throttle expansion of nuclear energy. It also provides a reprocessing free path to energy security for many countries. Ideas and innovations responsible for the creation of a high intensity neutron source are also presented.

  8. Near-barrier Fusion Evaporation and Fission of 28Si+174Yb and 32S+170Er

    Science.gov (United States)

    Wang, Dongxi; Lin, Chengjian; Jia, Huiming; Ma, Nanru; Sun, Lijie; Xu, Xinxing; Yang, Lei; Yang, Feng; Zhang, Huanqiao; Bao, Pengfei

    2017-11-01

    Fusion evaporation residues and fission fragments have been measured, respectively, at energies around the Coulomb barrier for the 28Si+174Yb and 32S+170Er systems forming the same compound nucleus 202Po. The excitation function of fusion evaporation, fission as well as capture reactions were deduced. Coupled-channels analyses reveal that couplings to the deformations of targets and the two-phonon states of projectiles contribute much to the enhancement of capture cross sections at sub-barrier energies. The mass and total kinetic energy of fission fragments were deduced by the time-difference method assuming full momentum transfer in a two-body kinematics. The mass-energy and mass-angle distributions were obtained and no obvious quasi-fission components were observed in this bombarding energy range. Further, mass distributions of fission fragments were fitted to extract their widths. Results show that the mass widths decrease monotonically with decreasing energy, but might start to increase when Ec.m./VB < 0.95 for both systems.

  9. Fusion reactors as a future energy source

    International Nuclear Information System (INIS)

    Seifritz, W.

    A detailed update of fusion research concepts is given. Discussions are given for the following areas: (1) the magnetic confinement principle, (2) UWMAK I: conceptual design for a fusion reactor, (3) the inertial confinement principle, (4) the laser fusion power plant, (5) electron-induced fusion, (6) the long-term development potential of fusion reactors, (7) the symbiosis between fusion and fission reactors, (8) fuel supply for fusion reactors, (9) safety and environmental impact, and (10) accidents, and (11) waste removal and storage

  10. Laser fusion experiments at 2 TW

    International Nuclear Information System (INIS)

    Storm, E.K.; Ahlstrom, H.G.; Boyle, M.J.

    1976-01-01

    The Lawrence Livermore Laboratory Solid State Laser System, Argus, has successfully performed laser implosion experiments at power levels exceeding 2 TW. D-T filled glass microspheres have been imploded to yield thermonuclear reaction products in excess of 5 x 10 8 per event. Neutron and α time-of-flight measurements indicate that D-T ion temperatures of approximately 5 to 6 keV and a density confinement time product (n tau) of approximately 1 x 10 12 were obtained in these experiments. Typically two 40J, 40 psec pulses of 1.06 μm light were focused on targets using 20 cm aperture f/l lenses, producing intensities at the target in excess of 10 16 W/cm 2 . An extensive array of diagnostics routinely monitored the laser performance and the laser target interaction process. Measurements of absorption and asymmetry in both the scattered light distribution and the ion blow off is evidence for non-classical absorption mechanisms and density scale heights of the order of 2 μm or less. The symmetry of the thermonuclear burn region is investigated by monitoring the α-particle flux in several directions, and an experiment to image the thermonuclear burn region is in process. These experiments significantly extend our data base and our understanding of laser induced thermonuclear implosions and the basic laser plasma interaction physics from the 0.4 to 0.7 TW level of previous experiments

  11. Laser fusion experiments at 2 TW

    International Nuclear Information System (INIS)

    Storm, E.K.; Ahlstrom, H.G.; Boyle, M.J.

    1976-01-01

    The Lawrence Livermore Laboratory Solid State Laser System, Arqus, has successfully performed laser implosion experiments at power levels exceeding 2 TW. D-T filled glass microspheres have been imploded to yield thermonuclear reaction products in excess of 5 x 10 8 per event. Neutron and α time-of-flight measurements indicate that D-T ion temperatures of approximately 5-6 keV and a density confinement time product (n tau) of approximately 1 x 10 12 were obtained in these experiments. Typically two 40J, 40 psec pulses of 1.06 μm light were focused on targets using 20 cm aperture f/1 lenses, producing intensities at the target in excess of 10 16 W/cm 2 . An extensive array of diagnostics routinely monitored the laser performance and the laser target interaction process. Measurements of absorption and asymmetry in both the scattered light distribution and the ion blow off is evidence for non-classical absorption mechanisms and density scale heights of the order of 2 μm or less. The symmetry of the thermonuclear burn region is investigated by monitoring the α-particle flux in several directions, and an experiment to image the thermonuclear burn region is in process. These experiments significantly extend our data base and our understanding of laser induced thermonuclear implosions and the basic laser plasma interaction physics from the 0.4 to 0.7 TW level of previous experiments

  12. Overview of Fusion-Fission Hybrid Reactor Design Study in China

    International Nuclear Information System (INIS)

    Huang Jinhua; Feng Kaiming; Deng Baiquan; Deng, P.Zh.; Zhang Guoshu; Hu Gang; He Kaihui; Wu Yican; Qiu Lijian; Huang Qunying; Xiao Bingjia; Liu Xiaoping; Chen Yixue; Kong, M.H.

    2002-01-01

    The motivation for developing fusion-fission hybrid reactors is discussed in the context of electricity power requirements by 2050 in China. A detailed conceptual design of the Fusion Experimental Breeder (FEB) was developed from 1986-1995. The FEB has a subignited tokamak fusion core with a major radius of 4.0 m, a fusion power of 145 MW, and a fusion energy gain Q of 3. Based on this, an engineering outline design study of the FEB, FEB-E, has been performed. This design study is a transition from conceptual to engineering design in this research. The main results beyond that given in the detailed conceptual design are included in this paper, namely, the design studies of the blanket, divertor, test blanket, and tritium and environment issues. In-depth analyses have been performed to support the design. Studies of related advanced concepts such as the waste transmutation blanket concept and the spherical tokamak core concept are also presented

  13. Fusion-Fission Transmutation Scheme-Efficient destruction of nuclear waste

    International Nuclear Information System (INIS)

    Kotschenreuther, M.; Valanju, P.M.; Mahajan, S.M.; Schneider, E.A.

    2009-01-01

    A fusion-assisted transmutation system for the destruction of transuranic nuclear waste is developed by combining a subcritical fusion-fission hybrid assembly uniquely equipped to burn the worst thermal nonfissile transuranic isotopes with a new fuel cycle that uses cheaper light water reactors for most of the transmutation. The center piece of this fuel cycle, the high power density compact fusion neutron source (100 MW, outer radius <3 m), is made possible by a new divertor with a heat-handling capacity five times that of the standard alternative. The number of hybrids needed to destroy a given amount of waste is an order of magnitude below the corresponding number of critical fast-spectrum reactors (FRs) as the latter cannot fully exploit the new fuel cycle. Also, the time needed for 99% transuranic waste destruction reduces from centuries (with FR) to decades

  14. Compression of an Applied Bz field by a z-pinch onto a Tamped DT Fiber for Inertial Confinement Fusion

    Science.gov (United States)

    Nash, Tom

    2009-11-01

    Simulations of a z-pinch compressing an applied 100 kG Bz field onto an on-axis DT fiber tamped with beryllium show the field reaching over 100 MG in the tamp, sufficient to confine DT alpha particles and to form a thermal barrier. The barrier allows the DT plasma to burn at a rho*r value as low as 0.045 g/cm^2, and at temperatures over 50 keV for a 63 MA drive current. Driving currents between 21 and 63 MA are considered with cryogenic DT fiber diameters between 600 μm and 1.6 mm. Pinch implosion times are 120 ns with a peak implosion velocity of 35 cm/μs. 1D simulations are of a foil pinch, but for improved stability we propose a nested wire-array. Simulated fusion yields with this system scale as the sixth power of the current, with burn fractions scaling as the fourth power of the current. At 63 MA the simulated yield is 521 MJ from 4.2 mg/cm of DT with a 37% burn fraction at a rho*r of only 0.18 g/cm^2.

  15. Lasers and particle beam for fusion and strategic defense

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    This special issue of the Journal of Fusion Energy consists of the edited transscripts of a symposium on the applications of laser and particle beams to fusion and strategic defense. Its eleven papers discuss these topics: the Strategic Defense Initiative; accelerators for heavy ion fusion; rf accelerators for fusion and strategic defense; Pulsed power, ICF, and the Strategic Defense Initiative; chemical lasers; the feasibility of KrF lasers for fusion; the damage resistance of coated optic; liquid crystal devices for laser systems; fusion neutral-particle beam research and its contribution to the Star Wars program; and induction linacs and free electron laser amplifiers for ICF devices and directed-energy weapons

  16. Radiolytic production of chemical fuels in fusion reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Fish, J D

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered.

  17. Radiolytic production of chemical fuels in fusion reactor systems

    International Nuclear Information System (INIS)

    Fish, J.D.

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered

  18. Number-Theory in Nuclear-Physics in Number-Theory: Non-Primality Factorization As Fission VS. Primality As Fusion; Composites' Islands of INstability: Feshbach-Resonances?

    Science.gov (United States)

    Siegel, Edward

    2011-10-01

    Numbers: primality/indivisibility/non-factorization versus compositeness/divisibility /factor-ization, often in tandem but not always, provocatively close analogy to nuclear-physics: (2 + 1)=(fusion)=3; (3+1)=(fission)=4[=2 × 2]; (4+1)=(fusion)=5; (5 +1)=(fission)=6[=2 × 3]; (6 + 1)=(fusion)=7; (7+1)=(fission)=8[= 2 × 4 = 2 × 2 × 2]; (8 + 1) =(non: fission nor fusion)= 9[=3 × 3]; then ONLY composites' Islands of fusion-INstability: 8, 9, 10; then 14, 15, 16,... Could inter-digit Feshbach-resonances exist??? Applications to: quantum-information/computing non-Shore factorization, millennium-problem Riemann-hypotheses proof as Goodkin BEC intersection with graph-theory ``short-cut'' method: Rayleigh(1870)-Polya(1922)-``Anderson'' (1958)-localization, Goldbach-conjecture, financial auditing/accounting as quantum-statistical-physics;... abound!!!

  19. Outline of cold nuclear fusion reaction

    International Nuclear Information System (INIS)

    Tachikawa, Enzo

    1991-01-01

    In 2010, as the total supply capacity of primary energy, 666 million liter is anticipated under the measures of thorough energy conservation. The development of energy sources along the energy policy based on environment preservation, safety, the quantity of resources and economy is strongly demanded. The nuclear power generation utilizing nuclear fission has been successfully carried out. As the third means of energy production, the basic research and technical development have been actively advanced on the energy production utilizing nuclear fusion reaction. The main object of the nuclear fusion research being advanced now is D-D reaction and D-T reaction. In order to realize low temperature nuclear fusion reaction, muon nuclear fusion has been studied so far. The cold nuclear fusion reaction by the electrolysis of heavy water has been reported in 1989, and its outline is ixplained in this report. The trend of the research on cold nuclear fusion is described. But the possibility of cold nuclear fusion as an energy source is almost denied. (K.I.)

  20. Calculations of the Auger deexcitation rate of the dtμ within the muonic quasi-molecule, [(dtμ)dee

    International Nuclear Information System (INIS)

    Armour, E.A.G.; Lewis, D.M.; Hara, S.

    1993-01-01

    A key process in muon catalysed fusion is the deexcitation of the dtμ within the resonant muonic quasi-molecule [(dtμ)dee], by emission of an Auger electron. The dtμ in the quasi-molecule is initially in a weakly bound excited state with J = 1 and v = 1. In this paper, calculations taking full account of the molecular nature of the quasi-molecule are carried out of the rate of the dominant deexcitation to the state with J = 0 and v = 1. (orig.)

  1. Fusion energy from the Moon for the twenty-first century

    International Nuclear Information System (INIS)

    Kulcinski, G.L.; Cameron, E.N.; Santarius, J.F.; Sviatoslavsky, I.N.; Wittenberg, L.J.; Schmitt, H.H.

    1992-01-01

    It is shown in this paper that the D-He-3 fusion fuel cycle is not only credible from a physics standpoint, but that its breakeven and ignition characteristics could be developed on roughly the same time schedule as the DT cycle. It was also shown that the extremely low fraction of power in neutrons, the lack of significant radioactivity in the reactants, and the potential for very high conversion efficiencies, can result in definite advantages for the D-He-3 cycle with respect to DT fusion and fission reactors in the twenty-first century. More specifically, the D-He-3 cycle can accomplish the following: (1) eliminate the need for deep geologic waste burial facilities and the wastes can qualify for Class A, near-surface land burial; (2) allow inherently safe reactors to be built that, under the worst conceivable accident, cannot cause a civilian fatality or result in a significant (greater than 100 mrem) exposure to a member of the public; (3) reduce the radiation damage levels to a point where no scheduled replacement of reactor structural components is required, i.e., full reactor lifetimes (approximately 30 FPY) can be credibly claimed; (4) increase the reliability and availability of fusion reactors compared to DT systems because of the greatly reduced radioactivity, the low neutron damage, and the elimination of T breeding; and (5) greatly reduce the capital costs of fusion power plants (compared to DT systems) by as much as 50 percent and present the potential for a significant reduction on the COE. The concepts presented in this paper tie together two of the most ambitious high-technology endeavors of the twentieth century: the development of controlled thermonuclear fusion for civilian power applications and the utilization of outer space for the benefit of mankind on Earth

  2. Multi-terawatt fusion laser systems

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1993-01-01

    The evolution of laser fusion systems started with a description of the basic principles of the laser in 1959, then a physical demonstration showing 1000 Watts of peak optical power in 1961 to the present systems that deliver 10 14 watts of peak optical power, are presented. Physical limits to large systems are reviewed: thermal limits, material stress limits, structural limits and stability, parasitic coupling, measurement precision and diagnostics. The various steps of the fusion laser-system development process are then discussed through an historical presentation. 3 figs., 8 refs

  3. Study of transfer induced fission and fusion-fission reactions for 28 Si + 232 Th system at 340 MeV

    International Nuclear Information System (INIS)

    Prete, G.; Rizzi, V.; Fioretto, E.; Cinausero, M.; Shetty, D.V.; Pesente, S.; Brondi, A.; La Rana, G.; Moro, R.; Vardaci, E.; Boiano, A.; Ordine, A.; Gelli, N.; Lucarelli, F.; Bortignon, P.F.; Saxena, A.; Nayak, B.K.; Biswas, D.C.; Choudhury, R.K.; Kapoor, R.S.

    2001-01-01

    and fusion-fission reactions. We have extracted the ratio of yield of transfer induced fission events to the singles yield of transfer products observed at grazing angle for different Z of ejectiles (PLF). It is seen that transfer induced fission yield increases with increasing Z transfer up to DZ = 4 and then becomes flat and starts to decrease for higher Z-transfers. This may indicate the onset of other processes which inhibit the fission; projectile break-up may be responsible for lowering the transfer of excitation energy and angular momentum to the fissioning system or the evaporation of charged particles may promptly reduce the excitation energy of the compound system which survive fission. This has been investigated looking at PLF in coincidence with protons, a particles, fission and target-like fragments. We have also analyzed the neutron energy spectra for the fusion-fission reaction obtained after correcting for the neutron detector efficiency. Fourteen laboratory neutron energy spectra for various fission-neutron correlation angles were simultaneously fitted with three moving sources. The results show a post- and pre-scission temperature of about 1.0 MeV and 2.24 MeV respectively, comparable to that observed in others low energy measurements and consistent with the compound nuclear excitation energy of 218 MeV, assuming a level density parameter a =A/8 MeV-1. (Author)

  4. Calculations to support JET neutron yield calibration: Modelling of neutron emission from a compact DT neutron generator

    Science.gov (United States)

    Čufar, Aljaž; Batistoni, Paola; Conroy, Sean; Ghani, Zamir; Lengar, Igor; Milocco, Alberto; Packer, Lee; Pillon, Mario; Popovichev, Sergey; Snoj, Luka; JET Contributors

    2017-03-01

    At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium-tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle-energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.

  5. Calculations to support JET neutron yield calibration: Modelling of neutron emission from a compact DT neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Čufar, Aljaž, E-mail: aljaz.cufar@ijs.si [Reactor Physics Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Batistoni, Paola [ENEA, Department of Fusion and Nuclear Safety Technology, I-00044 Frascati, Rome (Italy); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Conroy, Sean [Uppsala University, Department of Physics and Astronomy, PO Box 516, SE-75120 Uppsala (Sweden); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Ghani, Zamir [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Lengar, Igor [Reactor Physics Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Milocco, Alberto; Packer, Lee [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Pillon, Mario [ENEA, Department of Fusion and Nuclear Safety Technology, I-00044 Frascati, Rome (Italy); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Popovichev, Sergey [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Snoj, Luka [Reactor Physics Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2017-03-01

    At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium–tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle–energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.

  6. Current trends in laser fusion driver and beam combination laser system using stimulated Brillouin scattering phase conjugate mirrors for a fusion driver

    International Nuclear Information System (INIS)

    Kong, Hong Jin

    2008-01-01

    Laser fusion energy (LFE) is well known as one of the promising sources if clean energy for mankind. Laser fusion researches have been actively progressed, since Japan and the Soviet Union as well as USA developed ultrahigh power lasers at the beginning of 1970s. At present in USA, NIF (National Ignition Facility), which is the largest laser fusion facility in the world, is under construction and will be completed in 2008. Japan as a leader of the laser fusion research has developed a high energy and high power laser system, Gekko XII, and is under contemplation of FIREX projects for the fast ignition. China also has SG I, II lasers for performing the fusion research, and SG III is under construction as a next step. France is also constructing LMJ (Laser countries, many other developed countries in Europe, such as Russia, Germany, UK, and so on, have their own high energy laser systems for the fusion research. In Korea, the high power laser development started with SinMyung laser in KAIST in 1994, and KLF (KAERI Laser Facility) of KAERI was recently completed in 2007. For the practical use of laser fusion energy, the laser driver should be operated with a high repetition rate around 10Hz. Yet, current high energy laser systems, Such as NIF, Gekko XII, and etc., can be operated with only several shots per day. Some researchers have developed their own techniques to reduce the thermal loads of the laser material, by using laser diodes as pump sources and ceramic laser materials with high thermal energy scaling up for the real fusion driver. For this reason, H. J. Kong et al. proposed the beam combination laser system using stimulated Brillouin scattering phase conjugate mirrors (SBS PCMs) for a fusion driver. Proposed beam combination has many advantages for energy scaling up; it is composed by simple optical systems with small amount of components, there is no interaction between neighbored sub beams, the SBS PCMs can be used for a high energy beam reflection with

  7. Tritium contamination experience in an operational D-T fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, C.A.; Ascione, G. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Anderson, J.L. [Los Alamos National Lab., NM (United States)] [and others

    1994-09-01

    During December 1993, the Tokamak Fusion Test Reactor (TFTR) injected a mixture of deuterium and tritium in the TFTR vacuum vessel for the purpose of creating D-T plasmas. The tritium used in these D-T plasmas was stored, delivered and processed in the TFTR tritium facility that includes the tritium vault, waste handling area, clean-up area, and gas holding tank room. During this time period, several components in the tritium process system were found to have tritium leaks which led to tritium deposition on process skids, components and floor area. Radiological surveys of surfaces contaminated with tritium oxide indicate a decrease in surface contamination in time (on the order of 12 to 36 hours) as the result of room ventilation. In instances where the facility HVAC system was maintained in the purge mode, a dramatic decrease in surface contamination was observed. Areas contaminated with tritium oxide (> 16.6 Bq/100 cm{sup 2}) were found to be clean (< 16.6 Bq/100 cm{sub 2}) after several hours of continuous purging by the facility HVAC system. In instances where relative humidity was not decreased, the tritium surface contamination was found to be attenuated. During the months of December 1993, January and February 1994 tritium leaking components were either replaced, redesigned or repaired. During this time period, data were collected in the form of contamination surveys, real time tritium monitor output, and HVAC configuration indicating the correlation of purge ventilation leading to a decrease in tritium oxide surface contamination.

  8. Design windows of laser fusion power plants and conceptual design of laser-diode pumped slab laser

    International Nuclear Information System (INIS)

    Kozaki, Y.; Eguchi, T.; Izawa, Y.

    1999-01-01

    An analysis of the design space available to laser fusion power plants has been carried out, in terms of design key parameters such as target gain, laser energy and laser repetition rate, the number of fusion react ion chambers, and plant size. The design windows of economically attractive laser fusion plants is identified with the constraints of key design parameters and the cost conditions. Especially, for achieving high repetition rate lasers, we have proposed and designed a diode-pumped solid-state laser driver which consists of water-cooled zig-zag path slab amplifiers. (author)

  9. High-energy krypton fluoride lasers for inertial fusion.

    Science.gov (United States)

    Obenschain, Stephen; Lehmberg, Robert; Kehne, David; Hegeler, Frank; Wolford, Matthew; Sethian, John; Weaver, James; Karasik, Max

    2015-11-01

    Laser fusion researchers have realized since the 1970s that the deep UV light from excimer lasers would be an advantage as a driver for robust high-performance capsule implosions for inertial confinement fusion (ICF). Most of this research has centered on the krypton-fluoride (KrF) laser. In this article we review the advantages of the KrF laser for direct-drive ICF, the history of high-energy KrF laser development, and the present state of the art and describe a development path to the performance needed for laser fusion and its energy application. We include descriptions of the architecture and performance of the multi-kilojoule Nike KrF laser-target facility and the 700 J Electra high-repetition-rate KrF laser that were developed at the U.S. Naval Research Laboratory. Nike and Electra are the most advanced KrF lasers for inertial fusion research and energy applications.

  10. Progress of laser nuclear fusion research

    International Nuclear Information System (INIS)

    Shiraga, Hiroyuki

    2017-01-01

    This paper describes the principle and features of nuclear fusion using laser, as well as its basic concepts such as high-temperature / high-density implosion system and fast ignition of fuel. At present, researches aiming at nuclear fusion ignition have been developing. As the current state of researches, this paper reviews the situations of FIREX (Fast Ignition Realization Experiment) project of Japan focusing on direct irradiation implosion and fast ignition system, as well as NIF (National Ignition Facility) project of the U.S. aiming at ignition combustion based on indirect irradiation implosion and central ignition system. In collaboration with the National Institute for Fusion Science, Osaka University started FIREX-1 project in 2003. It built a heating laser LFEX of 10 kJ/1 to 10ps, and started an implosion/heating integration experiment in 2009. Currently, it is developing experiment to achieve heating to 5 keV. At NIF, the self-heating of central sparks via energy of α particles generated in the nuclear fusion reaction has been realized. This paper also overviews R and D issues surrounding the lasers for reactors for use in laser nuclear fusion power generators. (A.O.)

  11. Muon cycling rate in D/T mixture including doubly muonic molecule formation

    Directory of Open Access Journals (Sweden)

    M. R. Eskandari

    2002-06-01

    Full Text Available   In the present work, the fundamental behavior of four body molecule formations of pt μμ , pd μμ , dt μμ , tt μμ , and pp μμ in a D/T fusion are considered. Their higher fusion rate, specially the available data for dt μμ , encouraged us to study the muon cycling rate in D/T fusion in the temperature range of (100-1400 K, density and deuterium-tritium concentration ratio. For this purpose, various values for the doubly muonic molecule formation are chosen and with the comparison to the experimental results, the doubly muonic formation rate of 109 s-1 is predicted theoretically. Our calculated cycling rate has shown that having not considered the doubly muonic formation in previous calculations had made no serious changes in the previously calculated values.

  12. Nuclear fusion and fission, and related technologies department: 2007 progress report

    International Nuclear Information System (INIS)

    2007-12-01

    ENEA continues to contribute to broadening plasma physics knowledge as well as to developing the relevant technologies in the framework of the EURATOM-ENEA Association for fusion. This report describes the 2007 research activities carried out by the ENEA Fusion Research Group of the Nuclear Fusion and Fission, and Related Technologies Department (FPN). Other ENEA research groups also contributed to the activities. The following fields were addressed: magnetically confined nuclear fusion (physics and technology), superconductivity and inertial fusion. Planning of the 2007 fusion activities took into account the different scenarios determined by the new organisation of the European programme based on the start of ITER construction. The establishment of the ITER International Organisation and the European Domestic Agency (Fusion for Energy) required a new organisational scheme. This has implied not only the implementation of a more project oriented structure but also the need to launch the constitution of a consortium agreement between the Associations in order to cope with the needs for the design and construction of the components of ITER that require specific know-how, e.g., diagnostics and test blanket module

  13. Physics of fusion-fuel cycles

    International Nuclear Information System (INIS)

    McNally, J.R. Jr.

    1981-01-01

    The evaluation of nuclear fusion fuels for a magnetic fusion economy must take into account the various technological impacts of the various fusion fuel cycles as well as the relative reactivity and the required β's and temperatures necessary for economic steady-state burns. This paper will review some of the physics of the various fusion fuel cycles (D-T, catalyzed D-D, D- 3 He, D- 6 Li, and the exotic fuels: 3 He 3 He and the proton-based fuels such as P- 6 Li, P- 9 Be, and P- 11 B) including such items as: (1) tritium inventory, burnup, and recycle, (2) neutrons, (3) condensable fuels and ashes, (4) direct electrical recovery prospects, (5) fissile breeding, etc. The advantages as well as the disadvantages of the different fusion fuel cycles will be discussed. The optimum fuel cycle from an overall standpoint of viability and potential technological considerations appears to be catalyzed D-D, which could also support smaller relatively clean, lean-D, rich- 3 He satellite reactors as well as fission reactors

  14. Use of system code to estimate equilibrium tritium inventory in fusion DT machines, such as ARIES-AT and components testing facilities

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Merrill, B.

    2014-01-01

    Highlights: • With the use of a system code, tritium burn-up fraction (f burn ) can be determined. • Initial tritium inventory for steady state DT machines can be estimated. • f burn of ARIES-AT, CFETR and FNSF-AT are in the range of 1–2.8%. • Respective total tritium inventories of are 7.6 kg, 6.1 kg, and 5.2 kg. - Abstract: ITER is under construction and will begin operation in 2020. This is the first 500 MW fusion class DT device, and since it is not going to breed tritium, it will consume most of the limited supply of tritium resources in the world. Yet, in parallel, DT fusion nuclear component testing machines will be needed to provide technical data for the design of DEMO. It becomes necessary to estimate the tritium burn-up fraction and corresponding initial tritium inventory and the doubling time of these machines for the planning of future supply and utilization of tritium. With the use of a system code, tritium burn-up fraction and initial tritium inventory for steady state DT machines can be estimated. Estimated tritium burn-up fractions of FNSF-AT, CFETR-R and ARIES-AT are in the range of 1–2.8%. Corresponding total equilibrium tritium inventories of the plasma flow and tritium processing system, and with the DCLL blanket option are 7.6 kg, 6.1 kg, and 5.2 kg for ARIES-AT, CFETR-R and FNSF-AT, respectively

  15. Cryogenic distillation: a fuel enrichment system for near-term tokamak-type D-T fusion reactors

    International Nuclear Information System (INIS)

    Misra, B.; Davis, J.F.

    1980-02-01

    The successful operation and economic viability of deuterium-tritium- (D-T-) fueled tokamak-type commercial power fusion reactors will depend to a large extent on the development of reliable tritium-containment and fuel-recycle systems. Of the many operating steps in the fuel recycle scheme, separation or enrichment of the isotropic species of hydrogen by cryogenic distillation is one of the most important. A parametric investigation was carried out to study the effects of the various operating conditions and the composition of the spent fuel on the degree of separation. A computer program was developed for the design and analysis of a system of interconnected distillation columns for isotopic separation such that the requirements of near-term D-T-fueled reactors are met. The analytical results show that a distillation cascade consisting of four columns is capable of reprocessing spent fuel varying over a wide range of compositions to yield reinjection-grade fuel with essentially unlimited D/T ratio

  16. Concept evaluation of nuclear fusion driven symbiotic energy systems

    International Nuclear Information System (INIS)

    Renier, J.P.; Hoffman, T.J.

    1979-01-01

    This paper analyzes systems based on D-T and semi-catalyzed D-D fusion-powered U233 breeders. Two different blanket types were used: metallic thorium pebble-bed blankets with a batch reprocessing mode and a molten salt blanket with on-line continuous or batch reprocessing. All fusion-driven blankets are assumed to have spherical geometries, with a 85% closure. Neutronics depletion calculations were performed with a revised version of the discrete ordinates code XSDRN-PM, using multigroup (100 neutron, 21 gamma-ray groups) coupled cross-section libraries. These neutronics calculations are coupled with a scenario optimization and cost analysis code. Also, the fusion burn was shaped so as to keep the blanket maximum power density below a preset value, and to improve the performance of the fusion-driven systems. The fusion-driven symbiotes are compared with LMFBR-driven energy systems. The nuclear fission breeders that were used as drivers have parameters characteristic of heterogeneous, oxide LMFBRs. They are net plutonium users - the plutonium is obtained from the discharges of LWRs - and U233 is bred in the fission breeder thorium blankets. The analyses of the symbiotic energy systems were performed at equilibrium, at maximum rate of grid expansion, and for a given nuclear power demand

  17. Fusion pumped laser

    Science.gov (United States)

    Pappas, D.S.

    1987-07-31

    The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.

  18. Fusion or Fission: The Destiny of Mitochondria In Traumatic Brain Injury of Different Severities.

    Science.gov (United States)

    Di Pietro, Valentina; Lazzarino, Giacomo; Amorini, Angela Maria; Signoretti, Stefano; Hill, Lisa J; Porto, Edoardo; Tavazzi, Barbara; Lazzarino, Giuseppe; Belli, Antonio

    2017-08-23

    Mitochondrial dynamics are regulated by a complex system of proteins representing the mitochondrial quality control (MQC). MQC balances antagonistic forces of fusion and fission determining mitochondrial and cell fates. In several neurological disorders, dysfunctional mitochondria show significant changes in gene and protein expression of the MQC and contribute to the pathophysiological mechanisms of cell damage. In this study, we evaluated the main gene and protein expression involved in the MQC in rats receiving traumatic brain injury (TBI) of different severities. At 6, 24, 48 and 120 hours after mild TBI (mTBI) or severe TBI (sTBI), gene and protein expressions of fusion and fission were measured in brain tissue homogenates. Compared to intact brain controls, results showed that genes and proteins inducing fusion or fission were upregulated and downregulated, respectively, in mTBI, but downregulated and upregulated, respectively, in sTBI. In particular, OPA1, regulating inner membrane dynamics, cristae remodelling, oxidative phosphorylation, was post-translationally cleaved generating differential amounts of long and short OPA1 in mTBI and sTBI. Corroborated by data referring to citrate synthase, these results confirm the transitory (mTBI) or permanent (sTBI) mitochondrial dysfunction, enhancing MQC importance to maintain cell functions and indicating in OPA1 an attractive potential therapeutic target for TBI.

  19. Fiscal year 1976T (add-on quarter) DT fusion neutron irradiations and dosimetry at the LLL rotating target neutron source

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1977-01-01

    The DT fusion neutron irradiation of more than 90 samples during seven irradiation periods (beam-on time of more than 430.9 hours) is described. Experiments from 15 individuals representing six institutions are summarized. The numbers of UCID dosimetry reports detailing each of the irradiations is given

  20. Influence of fusion dynamics on fission observables: A multidimensional analysis

    Science.gov (United States)

    Schmitt, C.; Mazurek, K.; Nadtochy, P. N.

    2018-01-01

    An attempt to unfold the respective influence of the fusion and fission stages on typical fission observables, and namely the neutron prescission multiplicity, is proposed. A four-dimensional dynamical stochastic Langevin model is used to calculate the decay by fission of excited compound nuclei produced in a wide set of heavy-ion collisions. The comparison of the results from such a calculation and experimental data is discussed, guided by predictions of the dynamical deterministic HICOL code for the compound-nucleus formation time. While the dependence of the latter on the entrance-channel properties can straigthforwardly explain some observations, a complex interplay between the various parameters of the reaction is found to occur in other cases. A multidimensional analysis of the respective role of these parameters, including entrance-channel asymmetry, bombarding energy, compound-nucleus fissility, angular momentum, and excitation energy, is proposed. It is shown that, depending on the size of the system, apparent inconsistencies may be deduced when projecting onto specific ordering parameters. The work suggests the possibility of delicate compensation effects in governing the measured fission observables, thereby highlighting the necessity of a multidimensional discussion.

  1. Development of thin foil Faraday collector as a lost alpha particle diagnostic for high yield D-T tokamak fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Van Belle, P; Jarvis, O N; Sadler, G J [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Cecil, F E [Colorado School of Mines, Golden, CO (United States)

    1994-07-01

    Alpha particle confinement is necessary for ignition of a D-T tokamak fusion plasma and for first wall protection. Due to high radiation backgrounds and temperatures, scintillators and semiconductor detectors may not be used to study alpha particles which are lost to the first wall during the D-T programs on JET and ITER. An alternative method of charged particle spectrometry capable of operation in these harsh environments, is proposed: it consists of thin foils of electrically isolated conductors with the flux of alpha particles determined by the positive current flowing from the foils. 2 refs., 3 figs.

  2. Simulation of fusion first-wall environment in a fission reactor

    International Nuclear Information System (INIS)

    Hassanein, A.M.; Kulcinski, G.L.; Longhurst, G.R.

    1982-01-01

    A novel concept to produce a realistic simulation of a fusion first-wall test environment has been proposed recently. This concept takes advantage of the (/eta/, α) reaction in 59 Ni to produce a high internal helium content in the metal while using the 3 He (/eta/, /rho/)T reaction in the gas surrounding the specimen to produce an external heat and particle flux. Models to calculate heat flux, erosion rate, implantation, and damage rate to the walls of the test module are presented. Preliminary results show that a number of important fusion technology issues could be tested experimentally in a fission reactor such as the Engineering Test Reactor

  3. A review of the prospects for fusion power generation

    International Nuclear Information System (INIS)

    Hall, R.S.; Blow, S.; Clarke, R.H.; Tozer, B.A.; Whittingham, A.C.; Bending, R.C.

    1975-07-01

    The physics and engineering problems of both magnetically and inertially (laser) confined fusion systems are reviewed. The materials problems of the two systems are discussed, and their safety implications analysed. A short discussion is given of the possibilities and problems of a hybrid fission/fusion system. (U.K.)

  4. Prospects for toroidal fusion reactors

    International Nuclear Information System (INIS)

    Sheffield, J.; Galambos, J.D.

    1994-01-01

    Work on the International Thermonuclear Experimental Reactor (ITER) tokamak has refined understanding of the realities of a deuterium-tritium (D-T) burning magnetic fusion reactor. An ITER-like tokamak reactor using ITER costs and performance would lead to a cost of electricity (COE) of about 130 mills/kWh. Advanced tokamak physics to be tested in the Toroidal Physics Experiment (TPX), coupled with moderate components in engineering, technology, and unit costs, should lead to a COE comparable with best existing fission systems around 60 mills/kWh. However, a larger unit size, ∼2000 MW(e), is favored for the fusion system. Alternative toroidal configurations to the conventional tokamak, such as the stellarator, reversed-field pinch, and field-reversed configuration, offer some potential advantage, but are less well developed, and have their own challenges

  5. Conceptual design of a hybrid fusion-fission reactor with intrinsic safety and optimized energy productivity

    International Nuclear Information System (INIS)

    Talebi, Hosein; Sadat Kiai, S.M.

    2017-01-01

    Highlights: • Designing a high yield and feasible Dense Plasma Focus for driving the reactor. • Presenting a structural method to design the dual layer cylindrical blankets. • Finding, the blanket production energy, in terms of its geometrical and material parameters. • Designing a subcritical blanket with optimization of energy amplification in detail. - Abstract: A hybrid fission-fusion reactor with a Dense Plasma Focus (DPF) as a fusion core and the dual layer fissionable blanket as the energy multiplier were conceptually designed. A cylindrical DPF, energized by a 200 kJ bank energy, is considered to produce fusion neutron, and these neutrons drive the subcritical fission in the surrounding blankets. The emphasis has been placed on the safety and energy production with considering technical and economical limitations. Therefore, the k eff-t of the dual cylindrical blanket was defined and mathematically, specified. By applying the safety criterion (k eff-t ≤ 0.95), the geometrical and material parameters of the blanket optimizing the energy amplification were obtained. Finally, MCNPX code has been used to determine the detailed dimensions of the blankets and fuel rods.

  6. Some thoughts on the muon catalyzed fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, H.

    1986-01-01

    The design of the muon catalyzed fusion reactor is discussed. Some of the engineering challenges and critical research areas such as ..pi../sup -/ meson transport, beam entry single crystal window and coherent x-ray for stripping the muon from ..cap alpha.. particle, are considered. In order to reduce the tritium inventory and neutron wall loading, use of the laser technique for manipulating the d-t mixture is considered. The heterogeneous d-t mixture using the droplet or jet is discussed. 39 refs., 6 figs.

  7. To follow or not? How animals in fusion-fission societies handle conflicting information during group decision-making.

    Science.gov (United States)

    Merkle, Jerod A; Sigaud, Marie; Fortin, Daniel

    2015-08-01

    When group members possess differing information about the environment, they may disagree on the best movement decision. Such conflicts result in group break-ups, and are therefore a fundamental driver of fusion-fission group dynamics. Yet, a paucity of empirical work hampers our understanding of how adaptive evolution has shaped plasticity in collective behaviours that promote and maintain fusion-fission dynamics. Using movement data from GPS-collared bison, we found that individuals constantly associated with other animals possessing different spatial knowledge, and both personal and conspecific information influenced an individual's patch choice decisions. During conflict situations, bison used group familiarity coupled with their knowledge of local foraging options and recently sampled resource quality when deciding to follow or leave a group - a tactic that led to energy-rewarding movements. Natural selection has shaped collective behaviours for coping with social conflicts and resource heterogeneity, which maintain fusion-fission dynamics and play an essential role in animal distribution. © 2015 John Wiley & Sons Ltd/CNRS.

  8. Development of our laser fusion integration simulation

    International Nuclear Information System (INIS)

    Li, J.; Zhai, C.; Li, S.; Li, X.; Zheng, W.; Yong, H.; Zeng, Q.; Hang, X.; Qi, J.; Yang, R.; Cheng, J.; Song, P.; Gu, P.; Zhang, A.; An, H.; Xu, X.; Guo, H.; Cao, X.; Mo, Z.; Pei, W.; Jiang, S.; Zhu, S. P.

    2013-01-01

    In the target design of the Inertial Confinement Fusion (ICF) program, it is common practice to apply radiation hydrodynamics code to study the key physical processes happening in ICF process, such as hohlraum physics, radiation drive symmetry, capsule implosion physics in the radiation-drive approach of ICF. Recently, many efforts have been done to develop our 2D integrated simulation capability of laser fusion with a variety of optional physical models and numerical methods. In order to effectively integrate the existing codes and to facilitate the development of new codes, we are developing an object-oriented structured-mesh parallel code-supporting infrastructure, called JASMIN. Based on two-dimensional three-temperature hohlraum physics code LARED-H and two-dimensional multi-group radiative transfer code LARED-R, we develop a new generation two-dimensional laser fusion code under the JASMIN infrastructure, which enable us to simulate the whole process of laser fusion from the laser beams' entrance into the hohlraum to the end of implosion. In this paper, we will give a brief description of our new-generation two-dimensional laser fusion code, named LARED-Integration, especially in its physical models, and present some simulation results of holhraum. (authors)

  9. Survey of Materials for Fusion Fission Hybrid Reactors Vol 1 Rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph Collin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Chemistry Materials and Life Sciences Directorate

    2007-07-03

    Materials for fusion-fission hybrid reactors fall into several broad categories, including fuels, blanket and coolant materials, cladding, structural materials, shielding, and in the specific case of inertial-confinement fusion systems, laser and optical materials. This report surveys materials in all categories of materials except for those required for lasers and optics. Preferred collants include two molten salt mixtures known as FLIBE (Li2BeF4) and FLINABE (LiNaBeF4). In the case of homogenous liquid fuels, UF4 can be dissolved in these molten salt mixtures. The transmutation of lithium in this coolant produces very corrosive hydrofluoric acid species (HF and TF), which can rapidly degrade structural materials. Broad ranges of high-melting radiation-tolerant structural material have been proposed for fusion-fission reactor structures. These include a wide variety of steels and refractory alloys. Ferritic steels with oxide-dispersion strengthening and graphite have been given particular attention. Refractory metals are found in Groups IVB and VB of the periodic table, and include Nb, Ta, Cr, Mo, and W, as serve as the basis of refractory alloys. Stable high-melting composites and amorphous metals may also be useful. Since amorphous metals have no lattice structure, neutron bombardment cannot dislodge atoms from lattice sites, and the materials would be immune from this specific mode of degradation. The free energy of formation of fluorides of the alloying elements found in steels and refractory alloys can be used to determine the relative stability of these materials in molten salts. The reduction of lithium transmutation products (H+ and T+) drives the electrochemical corrosion process, and liberates aggressive fluoride ions that pair with ions formed from dissolved structural materials. Corrosion can be suppressed through the use of metallic Be and Li, though the molten salt becomes laden with colloidal suspensions of Be and Li corrosion

  10. Laser fusion systems for industrial process heat. Third semiannual report

    International Nuclear Information System (INIS)

    Bates, F.J.; Denning, R.S.; Dykhuizen, R.C.; Goldthwaite, W.H.; Kok, K.D.; Skelton, J.C.

    1979-01-01

    This report concentrates not only on the design of the laser fusion system but also on the cost of this system and the costs of alternative sources of energy that are expected to be in competition with the laser fusion system. The absolute values of the cost of the laser fusion system are limited by the estimates of the cost of the components and subsystems making up the laser fusion energy station. The method used in calculating costs of the laser fusion and alternative systems are laid out in detail

  11. Thermonuclear fusion plasma produced by lasers

    International Nuclear Information System (INIS)

    Yamanaka, C.; Yokoyama, M.; Nakai, S.; Sasaki, T.; Yoshida, K.; Matoba, M.; Yamabe, C.; Tschudi, T.; Yamanaka, T.; Mizui, J.; Yamaguchi, N.; Nishikawa, K.

    1975-01-01

    Recently, much attention has been focused on laser fusion schemes using high-density plasmas produced by implosion. Scientific-feasibility laser-fusion experiments are now in time. But the physics of interaction between laser and plasma, the high-compression technique and the development of high-power lasers are still important problems to be solved if laser fusion is to make some progress. In the field of laser-plasma coupling, experiments were carried out in which hydrogen and deuterium sticks were bombarded by laser beams; in these experiments, a glass-laser system, LETKKO-I, with an energy of 50 J in a nanosecond pulse, and a double-discharge TEA CO 2 laser system with an energy of 100 J in a 100-ns pulse were used. A decrease in reflectivity occurred at a laser intensity one order of magnitude higher than the parametric-instability threshold. Self-phase modulation of scattered light due to modulational instability was found. A Brillouin-backscattering isotope effect due to the hydrogen and deuterium plasma has also been observed in the red-side part of the SHG-light. Preliminary compression experiments have been carried out using a glass-laser system LETKKO-II, with an energy of 250-1000 J in a ns-pulse. A hologram has been used to study shock waves in the plasma due to the SHG-light converted from the main laser beam. Development of high-power lasers has been promoted, such as disc-glass lasers, E-beam CO 2 lasers and excimer lasers. (author)

  12. Laser solenoid: an alternate use of lasers in fusion power

    International Nuclear Information System (INIS)

    Rose, P.H.

    1977-01-01

    A unique laser assisted fusion approach is under development at Mathematical Sciences Northwest, Inc. (MSNW). This approach captures one of the most developed aspects of high energy laser technology, the efficient, large, scalable, pulsed electron beam initiated, electric discharge, CO 2 infrared laser. This advanced technology is then combined with the simple geometry of a linear magnetic confinement system. The laser solenoid concept will be described, current work and experimental progress will be discussed, and the technological problems of building such a system will be assessed. Finally a comparison will be made of the technology and economics for the laser solenoid and alternative fusion approaches

  13. Workshop summaries for the third US/USSR symposium on fusion-fission reactors

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1979-07-01

    Workshop summaries on topics related to the near-term development requirements for fusion-fission (hybrid) reactors are presented. The summary topics are as follows: (1) external factors, (2) plasma engineering, (3) ICF hybrid reactors, (4) blanket design, (5) materials and tritium, and (6) blanket engineering development requirements

  14. ANNETTE Project: Contributing to The Nuclearization of Fusion

    Science.gov (United States)

    Ambrosini, W.; Cizelj, L.; Dieguez Porras, P.; Jaspers, R.; Noterdaeme, J.; Scheffer, M.; Schoenfelder, C.

    2018-01-01

    The ANNETTE Project (Advanced Networking for Nuclear Education and Training and Transfer of Expertise) is well underway, and one of its work packages addresses the design, development and implementation of nuclear fusion training. A systematic approach is used that leads to the development of new training courses, based on identified nuclear competences needs of the work force of (future) fusion reactors and on the current availability of suitable training courses. From interaction with stakeholders involved in the ITER design and construction or the JET D-T campaign, it became clear that the lack of nuclear safety culture awareness already has an impact on current projects. Through the collaboration between the European education networks in fission (ENEN) and fusion (FuseNet) in the ANNETTE project, this project is well positioned to support the development of nuclear competences for ongoing and future fusion projects. Thereby it will make a clear contribution to the realization of fusion energy.

  15. ANNETTE Project: Contributing to The Nuclearization of Fusion

    Directory of Open Access Journals (Sweden)

    Ambrosini W.

    2018-01-01

    Full Text Available The ANNETTE Project (Advanced Networking for Nuclear Education and Training and Transfer of Expertise is well underway, and one of its work packages addresses the design, development and implementation of nuclear fusion training. A systematic approach is used that leads to the development of new training courses, based on identified nuclear competences needs of the work force of (future fusion reactors and on the current availability of suitable training courses. From interaction with stakeholders involved in the ITER design and construction or the JET D-T campaign, it became clear that the lack of nuclear safety culture awareness already has an impact on current projects. Through the collaboration between the European education networks in fission (ENEN and fusion (FuseNet in the ANNETTE project, this project is well positioned to support the development of nuclear competences for ongoing and future fusion projects. Thereby it will make a clear contribution to the realization of fusion energy.

  16. Energy deposition in liquid metals for D-T, D-D and T-T fusion sources

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.; Zahakaylo, D.

    1983-01-01

    The nuclear performance of candidate liquid metals: lithium, lead, sodium, potassiu, Na(22%) K(78%), Na(56%) K(44%), is estimated with respect to their neutron and gamma-ray heat deposition rates. Three different neutron sources are considered: DT, DD and TT fusion neutrons. This is intended for the cooling of inertial confinement cavities using fusion pellets with internal tritrium breeding that will possibly eliminate the need to breed tritium in a lithium blanket. Compared to lithium with respect to neutron and gamma energy generation, blanket multiplication and pumping power, it appears that the considered metals can be used only if the environmental and safety advantages from the reduction of the tritium inventory and the avoidance of lithium, outweight the lithium advantages in higher energy production and lower pumping requirement by one to two orders of magnitude. (orig.) [de

  17. The laser thermonuclear fusion

    International Nuclear Information System (INIS)

    Coutant, J.; Dautray, R.; Decroisette, M.; Watteau, J.P.

    1987-01-01

    Principle of the thermonuclear fusion by inertial confinement: required characteristics of the deuterium-tritium plasma and of the high power lasers to be used Development of high power lasers: active media used; amplifiers; frequency conversion; beam quality; pulse conditioning; existing large systems. The laser-matter interaction: collision and collective interaction of the laser radiation with matter; transport of the absorbed energy; heating and compression of deuterium-tritium; diagnoses and their comparison with the numerical simulation of the experiment; performances. Conclusions: difficulties to overcome; megajoule lasers; other energy source: particles beams [fr

  18. Cluster fusion-fission dynamics in the Singapore stock exchange

    Science.gov (United States)

    Teh, Boon Kin; Cheong, Siew Ann

    2015-10-01

    In this paper, we investigate how the cross-correlations between stocks in the Singapore stock exchange (SGX) evolve over 2008 and 2009 within overlapping one-month time windows. In particular, we examine how these cross-correlations change before, during, and after the Sep-Oct 2008 Lehman Brothers Crisis. To do this, we extend the complete-linkage hierarchical clustering algorithm, to obtain robust clusters of stocks with stronger intracluster correlations, and weaker intercluster correlations. After we identify the robust clusters in all time windows, we visualize how these change in the form of a fusion-fission diagram. Such a diagram depicts graphically how the cluster sizes evolve, the exchange of stocks between clusters, as well as how strongly the clusters mix. From the fusion-fission diagram, we see a giant cluster growing and disintegrating in the SGX, up till the Lehman Brothers Crisis in September 2008 and the market crashes of October 2008. After the Lehman Brothers Crisis, clusters in the SGX remain small for few months before giant clusters emerge once again. In the aftermath of the crisis, we also find strong mixing of component stocks between clusters. As a result, the correlation between initially strongly-correlated pairs of stocks decay exponentially with average life time of about a month. These observations impact strongly how portfolios and trading strategies should be formulated.

  19. Calculation of high-dimensional fission-fusion potential-energy surfaces in the SHE region

    International Nuclear Information System (INIS)

    Moeller, Peter; Sierk, Arnold J.; Ichikawa, Takatoshi; Iwamoto, Akira

    2004-01-01

    We calculate in a macroscopic-microscopic model fission-fusion potential-energy surfaces relevant to the analysis of heavy-ion reactions employed to form heavy-element evaporation residues. We study these multidimensional potential-energy surfaces both inside and outside the touching point.Inside the point of contact we define the potential on a multi-million-point grid in 5D deformation space where elongation, merging projectile and target spheroidal shapes, neck radius and projectile/target mass asymmetry are independent shape variables. The same deformation space and the corresponding potential-energy surface also describe the shape evolution from the nuclear ground-state to separating fragments in fission, and the fast-fission trajectories in incomplete fusion.For separated nuclei we study the macroscopic-microscopic potential energy, that is the ''collision surface'' between a spheroidally deformed target and a spheroidally deformed projectile as a function of three coordinates which are: the relative location of the projectile center-of-mass with respect to the target center-of-mass and the spheroidal deformations of the target and the projectile. We limit our study to the most favorable relative positions of target and projectile, namely that the symmetry axes of the target and projectile are collinear

  20. Use of system code to estimate equilibrium tritium inventory in fusion DT machines, such as ARIES-AT and components testing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C., E-mail: wongc@fusion.gat.com [General Atomics, San Diego, CA (United States); Merrill, B. [Idaho National Laboratory, Idaho Falls, ID (United States)

    2014-10-15

    Highlights: • With the use of a system code, tritium burn-up fraction (f{sub burn}) can be determined. • Initial tritium inventory for steady state DT machines can be estimated. • f{sub burn} of ARIES-AT, CFETR and FNSF-AT are in the range of 1–2.8%. • Respective total tritium inventories of are 7.6 kg, 6.1 kg, and 5.2 kg. - Abstract: ITER is under construction and will begin operation in 2020. This is the first 500 MW{sub fusion} class DT device, and since it is not going to breed tritium, it will consume most of the limited supply of tritium resources in the world. Yet, in parallel, DT fusion nuclear component testing machines will be needed to provide technical data for the design of DEMO. It becomes necessary to estimate the tritium burn-up fraction and corresponding initial tritium inventory and the doubling time of these machines for the planning of future supply and utilization of tritium. With the use of a system code, tritium burn-up fraction and initial tritium inventory for steady state DT machines can be estimated. Estimated tritium burn-up fractions of FNSF-AT, CFETR-R and ARIES-AT are in the range of 1–2.8%. Corresponding total equilibrium tritium inventories of the plasma flow and tritium processing system, and with the DCLL blanket option are 7.6 kg, 6.1 kg, and 5.2 kg for ARIES-AT, CFETR-R and FNSF-AT, respectively.

  1. Premises for use of fusion systems for actinide waste incineration

    International Nuclear Information System (INIS)

    Taczanowski, S.

    2007-01-01

    more economic devices. Yet, perhaps even more important advantages of the FDI system are: well homogeneous heating distribution and - first of all - reduced load of the First Wall (FW) with 14 MeV neutrons i.e. the main source of radiation damage. Simultaneously, the alpha yield from plasma to materials directly exposed to (e.g. the FW) is reduced, whereas the neutron yield attenuation reduces the gas production, DPA and the induced activity. Though instead of D-T neutrons the fission ones appear, but are much softer (below gas production thresholds) and in a much lesser number (ca.1/3). The performed calculations show that the plasma Q can be lessened to about 1 and the 14 MeV neutron yield even by a factor of ca. 30. Finally, it is emphasised that though the radiotoxicity gathered in the FDI system alone is larger than that in a fusion system free of fission waste, yet the whole radiotoxicity of the symbiotic nuclear energy system, i.e. consisted of a Fusion Driven incinerator of transuranics (Pu, Np and Am) received from associated Light Water Reactors is to be lower. In conclusion, the picture of hybrid option of fusion presented herewith as a means to solve the problems of both fission and fusion based nuclear energy should facilitate the development and then launching of the fusion power

  2. The Role of Combined ICRF and NBI Heating in JET Hybrid Plasmas in Quest for High D-T Fusion Yield

    Directory of Open Access Journals (Sweden)

    Mantsinen Mervi

    2017-01-01

    Full Text Available Combined ICRF and NBI heating played a key role in achieving the world-record fusion yield in the first deuterium-tritium campaign at the JET tokamak in 1997. The current plans for JET include new experiments with deuterium-tritium (D-T plasmas with more ITER-like conditions given the recently installed ITER-like wall (ILW. In the 2015-2016 campaigns, significant efforts have been devoted to the development of high-performance plasma scenarios compatible with ILW in preparation of the forthcoming D-T campaign. Good progress was made in both the inductive (baseline and the hybrid scenario: a new record JET ILW fusion yield with a significantly extended duration of the high-performance phase was achieved. This paper reports on the progress with the hybrid scenario which is a candidate for ITER longpulse operation (∼1000 s thanks to its improved normalized confinement, reduced plasma current and higher plasma beta with respect to the ITER reference baseline scenario. The combined NBI+ICRF power in the hybrid scenario was increased to 33 MW and the record fusion yield, averaged over 100 ms, to 2.9x1016 neutrons/s from the 2014 ILW fusion record of 2.3x1016 neutrons/s. Impurity control with ICRF waves was one of the key means for extending the duration of the high-performance phase. The main results are reviewed covering both key core and edge plasma issues.

  3. Simulations of fusion chamber dynamics and first wall response in a Z-pinch driven fusion–fission hybrid power reactor (Z-FFR)

    Energy Technology Data Exchange (ETDEWEB)

    Qi, J.M., E-mail: qjm06@sina.com [Laboratory of Advanced Nuclear Energy (LANE), Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999 (China); Center for Fusion Energy Science and Technology (CFEST), China Academy of Engineering Physics, Mianyang 621999 (China); Wang, Z., E-mail: wangz_es@caep.cn [Laboratory of Advanced Nuclear Energy (LANE), Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999 (China); Center for Fusion Energy Science and Technology (CFEST), China Academy of Engineering Physics, Mianyang 621999 (China); Chu, Y.Y., E-mail: chuyanyun@caep.cn [Laboratory of Advanced Nuclear Energy (LANE), Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999 (China); Center for Fusion Energy Science and Technology (CFEST), China Academy of Engineering Physics, Mianyang 621999 (China); Li, Z.H., E-mail: lee_march@sina.com [Laboratory of Advanced Nuclear Energy (LANE), Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999 (China)

    2016-03-15

    Highlights: • Z-FFR utilizes DT neutrons to drive a sub-critical fission blanket to produce energy. • A metal shell and Ar gas are employed in the fusion chamber for shock mitigation. • Massive materials can effectively mitigate the thermal heats on the chamber wall. • The W-coated Zr-alloy first wall exhibits good viability as a long-lived component. - Abstract: In a Z-pinch driven fusion–fission hybrid power reactor (Z-FFR), the fusion target will produce enormous energy of ∼1.5 GJ per pulse at a frequency of 0.1 Hz. Almost 20% of the fusion energy yield, approximately 300 MJ, is released in forms of pulsed X-rays. To prevent the first wall from fatal damages by the intense X-rays, a thin spherical metal shell and rare Ar buffer gas are introduced to mitigate the transient X-ray bursts. Radiation hydrodynamics in the fusion chamber were investigated by MULTI-1D simulations, and the corresponding thermal and mechanical loads on the first wall were also obtained. The simulations indicated that by optimizing the design parameters of the metal shell and Ar buffer gas, peak power flux of the thermal heats on the first wall could be mitigated to less than 10{sup 4} W/cm{sup 2} within a time scale of several milliseconds, while peak overpressures of the mechanical loads varying from 0.6 to 0.7 MPa. In addition, the thermomechanical response in a W–coated Zr-alloy first wall was performed by FWDR1D calculations using the derived thermal and mechanical loads as inputs. The temperature and stress fields were analyzed, and the corresponding elastic strains were conducted for primary lifetime estimations by using the Coffin–Manson relationships of both W and Zr-alloy. It was shown that the maximum temperature rises and stresses in the first wall were less than 50 K and 130 MPa respectively, and lifetime of the first wall would be in excess of 10{sup 9} cycles. The chamber exhibits good viability as a long-lived component to sustain the Z-FFR conceptual

  4. Inertial fusion energy with krypton fluoride lasers

    International Nuclear Information System (INIS)

    Sethian, J.D.

    2010-01-01

    Complete text of publication follows. We are developing the science and technologies needed for a practical fusion energy source using high energy krypton fluoride (KrF) lasers. The physics basis for this work is a family of simulations that exploit the unique advantages of KrF lasers. KrF lasers provide uniform enough laser light to illuminate the capsule directly, greatly improving the laser-target coupling efficiency, as well as simplifying the target design. KrF's shorter wavelength allows higher ablation pressures and helps suppress laser-plasma instabilities. These advantages are being demonstrated on the NRL Nike KrF laser facility. A particularly promising approach is shock ignition, in which a high intensity laser pulse drives an intense shock at peak compression. Simulations with experimentally benchmarked codes predict a 1 MJ KrF laser can produce 200 MJ of pure fusion energy. We have similarly advanced the laser technology. We have developed a KrF laser, using technologies that scale to a reactor beamline, that fires 5 times per second for long duration runs and is projected be efficient enough for a reactor. The science and the technology for the key components are developed at the same time as part of a coherent system. A multi-institutional team from industry, national labs, and universities has developed credible solutions for these components. This includes methods to fabricate the spherical pellets on mass production basis, a means to repetitively inject the capsules into the chamber and precisely hit them with the laser, scaled tests to develop the laser optics, and designs for the reaction vessel. Based on these advances NRL and its collaborators have formulated a three stage plan that could lead to practical fusion energy on a much faster time scale than currently believed. Stage I develops full scale components: a laser beam line, target factory and injector, and chamber technologies. Stage II is the Fusion Test Facility (FTF). Simulations

  5. Fission-fusion and lineal effect: aspects of the population structure of the Semai Senoi of Malaysia.

    Science.gov (United States)

    Fix, A G

    1975-09-01

    Analysis of histories and genealogies from seven relatively unacculturated, swidden-farming Semai settlements shows that the composition of local groups fluctuates through time. This instability is similar to a pattern which Neel and his colleagues have suggested is typical of primitive society, the fission-fusion model. In addition, the individuals comprising Semai fission groups are kinsmen which implies that the number of independent genomes represented is markedly less than the number of individual migrants (the lineal effect). Fission groups may form new villages or fuse with an established settlement. In either case, the genetic effects of such migration are more pronounced than would be expected on the basis of founder effect or random migration. Despite several conspicuous differences in social organization between the Semai and the South American Indians (e.g., bilateral vs. unilineal descent) whose population structure provided the empirical basis for the fission-fusion, lineal effect model, the basic similarities are striking. The Semai case thus lends support to the proposition that this pattern may be of some generality in technologically primitive populations.

  6. Laser Fusion: status, future, and tritium control

    International Nuclear Information System (INIS)

    Coyle, P.E.

    1978-11-01

    At Livermore the 10 kJ, 20 to 30 TW Shiva facility is now operational and producing regular new fusion results. Design work has begun on a 200 to 300 TW laser designed to carry the program through the first breakeven demonstration experiments in the mid-1980's. Confidence in reaching this goal is based on the significant progress we have made in state-of-the-art, high-power Nd:glass laser technology, in experimental laser fusion and laser plasma interaction physics, and in theoretical and analytical computer codes which reliably model and predict experimental results. For all of these experiments, a variety of fusion targets are being fabricated in the laboratory, and the control and handling of tritium is now a regular and routine part of ongoing inertial fusion experiments. Target design with gains of about 1000 have been studied and the means to mass produce such pellets at low cost are also being developed

  7. Laser requirements for a laser fusion energy power plant

    Institute of Scientific and Technical Information of China (English)

    Stephen; E.Bodner; Andrew; J.Schmitt; John; D.Sethian

    2013-01-01

    We will review some of the requirements for a laser that would be used with a laser fusion energy power plant, including frequency, spatial beam smoothing, bandwidth, temporal pulse shaping, efficiency, repetition rate, and reliability. The lowest risk and optimum approach uses a krypton fluoride gas laser. A diode-pumped solid-state laser is a possible contender.

  8. Repetitive laser fusion experiment and operation using a target injection system

    International Nuclear Information System (INIS)

    Nishimura, Yasuhiko; Komeda, Osamu; Mori, Yoshitaka

    2017-01-01

    Since 2008, a collaborative research project on laser fusion development based on a high-speed ignition method using repetitive laser has been carried out with several collaborative research institutes. This paper reports the current state of operation of high repetition laser fusion experiments, such as target introduction and control based on a target injection system that allows free falling under 1 Hz, using a high repetition laser driver that has been under research and development, as well as the measurement of targets that freely fall. The HAMA laser driver that enabled high repetition fusion experiments is a titanium sapphire laser using a diode-pumped solid-state laser KURE-I of green light output as a driver pump light source. In order to carry out high repetition laser fusion experiments, the target injection device allows free falling of deuterated polystyrene solid sphere targets of 1 mm in diameter under 1 Hz. The authors integrated the developed laser and injection system, and succeeded first in the world in making the nuclear fusion reaction continuously by hitting the target to be injected with laser, which is essential technology for future laser nuclear fusion reactor. In order to realize repetition laser fusion experiments, stable laser, target synchronization control, and target position measurement technologies are indispensable. (A.O.)

  9. Preliminary design and neutronic analysis of a laser fusion driven actinide waste burning hybrid reactor

    International Nuclear Information System (INIS)

    Berwald, D.H.; Duderstadt, J.J.

    1979-01-01

    The laser fusion driven actinide waste burner (LDAB) system investigated uses partitioned fission power reactor generated actinide wastes dissolved in a molten tin alloy as feed material (or fuel). A novel fuel processing concept based on the high-temperature precipitation of ''actinide--nitrides'' from a liquid tin solution is proposed. This concept will allow for fission product removal to be performed entirely within the device at high burnup. No attempt has been made to optimize this system, but potential performance is impressive. The equilibrium LDAB design consumes 7.6 MT/y of actinide waste. This corresponds to the waste output from 136 light water reactors [1000 MW (electric)]. The mean life of an actinide atom in the LDAB is only 4.5 y; and actinides, once charged to the LDAB, might be reprocessed fewer times during irradiation than in previously proposed systems

  10. Alpha particle loss in the TFTR DT experiments

    International Nuclear Information System (INIS)

    Zweben, S.J.; Darrow, D.S.; Herrmann, H.W.

    1995-01-01

    Alpha particle loss was measured during the TFTR DT experiments using a scintillator detector located at the vessel bottom in the ion grad-B drift direction. The DT alpha particle loss to this detector was consistent with the calculated first-orbit loss over the whole range of plasma current I=0.6-2.7 MA. In particular, the alpha particle loss rate per DT neutron did not increase significantly with fusion power up to 10.7 MW, indicating the absence of any new ''collective'' alpha particle loss processes in these experiments

  11. Safety analysis on tokamak helium cooling slab fuel fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Wei Renjie; Jian Hongbing

    1992-01-01

    The thermal analyses for steady state, depressurization and total loss of flow in the tokamak helium cooling slab fuel element fusion-fission hybrid reactor are presented. The design parameters, computed results of HYBRID program and safety evaluation for conception design are given. After all, it gives some recommendations for developing the design

  12. Design and cost evaluation of generic magnetic fusion reactor using the D-D fuel cycle

    International Nuclear Information System (INIS)

    Shannon, T.E.

    1988-01-01

    A fusion reactor systems code has been developed to evaluate the economic potential of power generation from a toroidal magnetic fusion reactor using deuterium-deuterium (D-D) fuel. A method similar to that developed by J. Sheffield, of the Oak Ridge National Laboratory, for deuterium-tritium (D-T) fuel was used to model the generic aspects of magnetic fusion reactors. The results of the systems study and cost evaluation show that the cost of electricity produced by a D-D reactor is two times higher than that produced by an equivalent D-T reactor design. The significant finding of the study is that the cost ratio between the D-D and D-T systems can potentially be reduced to 1.5 by improved engineering design and even lower by better physics performance. The absolute costs for both systems at this level are close to the costs for nuclear fission and fossil fuel plants. A design for a magnet reinforced with advanced composite materials is presented as an example of an engineering improvement that could reduce the cost of electricity produced by both reactors. However, since the magnets in the D-D reactor are much larger than in the K-T reactor, the cost ratio of the two systems is significantly reduced

  13. Energetics of semi-catalyzed-deuterium, light-water-moderated, fusion-fission toroidal reactors

    International Nuclear Information System (INIS)

    Jassby, D.L.; Towner, H.H.; Greenspan, E.; Schneider, A.; Misolovin, A.; Gilai, D.

    1978-07-01

    The semi-catalyzed-deuterium Light-Water Hybrid Reactor (LWHR) comprises a lithium-free light-water-moderated blanket with U 3 Si fuel driven by a deuterium-based fusion-neutron source, with complete burn-up of the tritium but almost no burn-up of the helium-3 reaction product. A one-dimensional model for a neutral-beam-driven tokamak plasma is used to determine the operating modes under which the fusion energy multiplication Q/sub p/ can be equal to or greater than 0.5. Thermonuclear, beam-target, and energetic-ion reactions are taken into account. The most feasible operating conditions for Q/sub p/ approximately 0.5 are tau/sub E/ = 2 to 4 x 10 14 cm -3 s, = 10 to 20 keV, and E/sub beam/ = 500 to 1000 keV, with approximately 40% of the fusion energy produced by beam-target reactions. Illustrative parameters of LWHRs are compared with those of an ignited D-T reactor

  14. Control of TFTR during DT operations

    International Nuclear Information System (INIS)

    Pearson, G.G.; Alling, P.D.; Blanchard, W.; Camp, R.A.; Hawryluk, R.J.; Hosea, J.C.; Nagy, A.

    1995-01-01

    Since beginning routine D-T operations in December, 1993, there have been more than 500 DT plasmas and approximately 600,000 Ci of tritium processed through TFTR culminating in greater than 10 MW of fusion power produced in a single discharge in November, 1994. These performance levels were achieved while maintaining the highest levels of personnel and equipment safety. Prior to D-T operations, a Chain of Command structure and a TFTR Shift Supervisor (TFTRSS) position were developed for centralized control of the facility with all subsystems reporting to this position. A comprehensive surveillance system was incorporated such that the TFTR SS could easily review the operational readiness of subsystems for D-T operations. A TFTR SS Station was constructed to facilitate monitoring and control of TFTR. This station includes a camera system, FAX, a networked personal computer, a computerized tritium monitor and control system and a hardware interlock system. In the transition from D-D to D-T operations, TFTR's procedures were reviewed/revised and a number of additional procedures developed for control of activities at the facility. This paper details the equipment, administrative and organizational configurations used for controlling TFTR during D-T operations

  15. Induced-Fission Imaging of Nuclear Material

    International Nuclear Information System (INIS)

    Hausladen, Paul; Blackston, Matthew A.; Mullens, James Allen; McConchie, Seth M.; Mihalczo, John T.; Bingham, Philip R.; Ericson, Milton Nance; Fabris, Lorenzo

    2010-01-01

    This paper presents initial results from development of the induced-fission imaging technique, which can be used for the purpose of measuring or verifying the distribution of fissionable material in an unopened container. The technique is based on stimulating fissions in nuclear material with 14 MeV neutrons from an associated-particle deuterium-tritium (D-T) generator and counting the subsequent induced fast fission neutrons with an array of fast organic scintillation detectors. For each source neutron incident on the container, the neutron creation time and initial trajectory are known from detection of the associated alpha particle of the d + t → α + n reaction. Many induced fissions will lie along (or near) the interrogating neutron path, allowing an image of the spatial distribution of prompt induced fissions, and thereby fissionable material, to be constructed. A variety of induced-fission imaging measurements have been performed at Oak Ridge National Laboratory with a portable, low-dose D-T generator, including single-view radiographic measurements and three-dimensional tomographic measurements. Results from these measurements will be presented along with the neutron transmission images that have been performed simultaneously. This new capability may have applications to a number of areas in which there may be a need to confirm the presence or configuration of nuclear materials, such as nuclear material control and accountability, quality assurance, treaty confirmation, or homeland security applications.

  16. Confinement inertial fusion. Power reactors of nuclear fusion by lasers

    International Nuclear Information System (INIS)

    Velarde, G.; Ahnert, C.; Aragones, J.M.; Leira, G; Martinez-Val, J.M.

    1980-01-01

    The energy crisis and the need of the nuclear fusion energy are analized. The nuclear processes in the laser interation with the ablator material are studied, as well as the thermohydrodinamic processes in the implossion, and the neutronics of the fusion. The fusion reactor components are described and the economic and social impact of its introduction in the future energetic strategies.(author)

  17. Measurements of TFTR D-T radiation shielding efficiency

    International Nuclear Information System (INIS)

    Kugel, H.W.; Ascione, G.; Elwood, S.; Gilbert, J.; Ku, L.P.; Levine, J.; Rule, K.; Azziz, N.; Goldhagen, P.; Hajnal, F.

    1994-11-01

    Measurements of neutron and gamma dose-equivalents were performed in the Test Cell, at the outer Test Cell wall, in nearby work areas, and out to the nearest property lines at a distance of 180 m. Argon ionization chambers, moderated 3 He proportional counters, and fission chamber detectors were used to obtain measurements of neutron and gamma dose-equivalents per D-T neutron during individual TFTR discharges. These measured neutron and gamma D-T dose-equivalents per TFTR neutron characterize the effects of local variations in material density resulting from the complex asymmetric site geometry. The measured dose-equivalents per TFTR D-T neutron and the cumulative neutron production were used to determine that the planned annual TFTR neutron production of 1 x 10 21 D-T neutrons is consistent with the design objective of limiting the total dose-equivalent at the property line, from all radiation sources and pathways, to less than 10 mrem per year

  18. Materials degradation in fission reactors: Lessons learned of relevance to fusion reactor systems

    International Nuclear Information System (INIS)

    Was, Gary S.

    2007-01-01

    The management of materials in power reactor systems has become a critically important activity in assuring the safe, reliable and economical operation of these facilities. Over the years, the commercial nuclear power reactor industry has faced numerous 'surprises' and unexpected occurrences in materials. Mitigation strategies have sometimes solved one problem at the expense of creating another. Other problems have been solved successfully and have motivated the development of techniques to foresee problems before they occur. This paper focuses on three aspects of fission reactor experience that may benefit future fusion systems. The first is identification of parameters and processes that have had a large impact on the behavior of materials in fission systems such as temperature, dose rate, surface condition, gradients, metallurgical variability and effects of the environment. The second is the development of materials performance and failure models to provide a basis for assuring component integrity. Last is the development of proactive materials management programs that identify and pre-empt degradation processes before they can become problems. These aspects of LWR experience along with the growing experience with materials in the more demanding advanced fission reactor systems form the basis for a set of 'lessons learned' to aid in the successful management of materials in fusion reactor systems

  19. Computer simulation of superthermal transport for laser fusion

    International Nuclear Information System (INIS)

    Kershaw, D.S.

    1979-01-01

    The relativistic multigroup diffusion equations describing superthermal electron transport in laser fusion plasmas were derived in an earlier UCRL. A successful numerical scheme based on these equations which is now being used to model laser fusion experiments is described

  20. Physics of high performance JET plasmas in D-T

    International Nuclear Information System (INIS)

    2001-01-01

    JET has recently operated with deuterium-tritium (D-T) mixtures, carried out an ITER physics campaign in hydrogen, deuterium, D-T and tritium, installed the Mark IIGB ''Gas Box'' divertor fully by remote handling and started physics experiments with this more closed divertor. The D-T experiments set records for fusion power (16.1 MW), ratio of fusion power to plasma input power (0.62, and 0.95±0.17 if a similar plasma could be obtained in steady-state) and fusion duration (4 MW for 4 s). A large scale tritium supply and processing plant, the first of its kind, allowed the repeated use of the 20 g tritium on site to supply 99.3 g of tritium to the machine. The H-mode threshold power is significantly lower in D-T, but the global energy confinement time is practically unchanged (no isotope effect). Dimensionless scaling ''Wind Tunnel'' experiments in D-T extrapolate to ignition with ITER parameters. The scaling is close to gyroBohm, but the mass dependence is not correct. Separating the thermal plasma energy into core and pedestal contributions could resolve this discrepancy (leading to proper gyroBohm scaling for the core) and also account for confinement degradation at high density and at high radiated power. Four radio frequency heating schemes have been tested successfully in D-T, showing good agreement with calculations. Alpha particle heating has been clearly observed and is consistent with classical expectations. Internal transport barriers have been established in optimised magnetic shear discharges for the first time in D-T and steady-state conditions have been approached with simultaneous internal and edge transport barriers. First results with the newly installed Mark IIGB divertor show that the in/out symmetry of the divertor plasma can be modified using differential gas fuelling, that optimised shear discharges can be produced, and that krypton gas puffing is effective in restoring L-mode edge conditions and establishing an internal transport barrier in

  1. Physics of high performance jet plasmas in D-T

    International Nuclear Information System (INIS)

    1999-01-01

    JET has recently operated with deuterium-tritium (D-T) mixtures, carried out an ITER physics campaign in hydrogen, deuterium, D-T and tritium, installed the Mark IIGB 'Gas Box' divertor fully by remote handling and started physics experiments with this more closed divertor. The D-T experiments set records for fusion power (16.1 MW), ratio of fusion power to plasma input power (0.62, and 0.95±0.17 if a similar plasma could be obtained in steady-state) and fusion duration (4 MW for 4 s). A large scale tritium supply and processing plant, the first of its kind, allowed the repeated use of the 20 g tritium on site to supply 99.3 g of tritium to the machine. The H-mode threshold power is significantly lower in D-T, but the global energy confinement time is practically unchanged (no isotope effect). Dimensionless scaling 'Wind Tunnel' experiments in D-T extrapolate to ignition with ITER parameters. The scaling is close to gyroBohm, but the mass dependence is not correct. Separating the thermal plasma energy into core and pedestal contributions could resolve this discrepancy (leading to proper gyroBohm scaling for the core) and also account for confinement degradation at high density and at high radiated power. Four radio frequency heating schemes have been tested successfully in D-T, showing good agreement with calculations. Alpha particle heating has been clearly observed and is consistent with classical expectations. Internal transport barriers have been established in optimised magnetic shear discharges for the first time in D-T and steady-state conditions have been approached with simultaneous internal and edge transport barriers. First results with the newly installed Mark IIGB divertor show that the in/out symmetry of the divertor plasma can be modified using differential gas fuelling, that optimised shear discharges can be produced, and that krypton gas puffing is effective in restoring L-mode edge conditions and establishing an internal transport barrier in such

  2. System model for analysis of the mirror fusion-fission reactor

    International Nuclear Information System (INIS)

    Bender, D.J.; Carlson, G.A.

    1977-01-01

    This report describes a system model for the mirror fusion-fission reactor. In this model we include a reactor description as well as analyses of capital cost and blanket fuel management. In addition, we provide an economic analysis evaluating the cost of producing the two hybrid products, fissile fuel and electricity. We also furnish the results of a limited parametric analysis of the modeled reactor, illustrating the technological and economic implications of varying some important reactor design parameters

  3. Development of Portable Pulsed Neutron Generators Utilizing a D-T or D-D Fusion Reaction

    International Nuclear Information System (INIS)

    Nishimura, Kazuya; Miake, Yoshinobu; Kato, Michio; Rintsu, Yukou

    2001-01-01

    Prototypes of sealed neutron tubes in a D-T or D-D fusion reaction for logging while drilling (LWD) were developed; then operational tests were performed to check their functional properties. One of the prototypes passed most of the specified conditions for using LWD. Further studies were needed to put a sealed neutron tube into practical use. For applications to other fields, such as an in situ calibration source for neutron detector efficiencies and an in situ calibration source for fusion systems, a sealed neutron tube is needed to have higher-intensity neutron output and a long life. Thus, the performance of the ion source used in the neutron tube is improved to obtain high gas utilization efficiencies or low-pressure operation with high ionization efficiencies. The characteristics of the new ion sources used in the foregoing sealed neutron tube are discussed in terms of preliminary tests. The aforementioned performances are obtained

  4. Laser-heated solenoid fusion

    International Nuclear Information System (INIS)

    Vlases, G.C.

    1977-01-01

    Since the suggestion by Dawson, Hertzberg, and Kidder that high-energy CO 2 lasers could be used to heat magnetically confined plasma columns to thermonuclear temperatures, a great deal of theoretical and experimental work has been performed. In this paper we first review the experiments on the basic laser-plasma interaction phenomena, in which lasers with energies up to 1 kJ have been used to produce plasmas at n/sub e/ greater than 10 18 and T/sub e/ greater than 200 eV. The second part reviews fusion reactor studies based on the laser solenoid

  5. Laser induced fusion - theoretical aspects

    International Nuclear Information System (INIS)

    Lawande, S.V.; Gunye, M.R.

    1979-01-01

    The theoretical aspects of thermonuclear fusion induced by laser are discussed. After outlining the basic features and the energetics of laser fusion in the chapter 1, various non-linear mechanisms responsible for an enhanced absorption of laser energy into the plasma and the stimulated scattering processes which hinder the absorption are discussed in the second chapter on laser plasma interactions. The third chapter on gas dynamics and the shock phenomena presents the mathematical formulation of the compression to high densities of the core of the pellet for its implosion. A hydrodynamic model developed to stimulate the evolution of laser heated symmetric plasma is outlined in the chapter four on numerichigly relativistic noninteracting particles, regular bouncing states may occur at high densities, or at high temperatures. The latter case is considered in details for the collapse phase of a hot universe; lepton pair creation may completely decelerate the collapse of a hot hadronic plasma, provided the observational parameters, the Hubble constant Hsub(deg), the matter parameter Ωsub(deg) and the deceleration parameter qsub(deg) satisfy certain constraint conditions

  6. DT simulation of ICRF heated supershots in TFTR using TRANSP

    International Nuclear Information System (INIS)

    Goldfinger, R.C.; Batchelor, D.B.; Phillips, C.K.; Budny, R.; Hammett, G.W.; Hosea, J.C.; McCune, D.M.; Stevens, J.E.; Wilson, J.R.

    1993-01-01

    The principal goal of ion cyclotron range of frequency (ICRF) heating on the Tokamak Fusion Test Reactor (TFTR) is to enhance plasma performance during the deuterium-tritium (DT) physics phase of operations. Strongly centralized ICRF heating may play a critical role in obtaining high Q DT and high β α operation in TFTR, as well as in future fusion reactors. ICRF heating of a dilute minority species leads to the formation of an energetic ion population that, in turn, provides strong central electron heating. The corresponding rise in the central electron temperature translates into an increase in the slowing-down time of either neutral beam or alpha particles in the discharge. Preliminary DT simulations of the experimental results in deuterium-deuterium (DD) plasmas performed with the TRANSP code are presented in this paper

  7. Physics of Fission and Fusion for the Diagnostics and Monitoring of the Deadliest Illness of Mankind

    Science.gov (United States)

    Saxena, Arjun

    2015-03-01

    The physics of fission and fusion has been well known for the past several decades. It has been used primarily for destructive purposes (e. g., nuclear armaments) with both processes. However for peaceful purposes, e. g., generation of energy, only fission has been used, but not yet fusion. It is also well known that the deadliest illness of mankind is the group of illnesses called mental illnesses. A large segment of the world population is afflicted by them causing more loss of human lives, destruction of families, businesses and overall economy than all the other illnesses combined. Despite outstanding advancements in medical research and huge investments, unfortunately no diagnostic techniques have yet been found which can characterize the patient's mental illness. Consequently, no quantitative monitoring techniques are available to evaluate the efficacy of the various medicines used to treat the patients, and to develop them in the pharmaceutical labs. The purpose of this paper is to apply the constructive aspects of fission and fusion to identify the missing links in the diagnosis and treatment of mental illnesses. Each patient is a unique human being, not a disease or a group of symptoms. This makes it even more difficult to treat the patients suffering from mental illnes

  8. The Fukushima nuclear disaster and its effects on media framing of fission and fusion energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Luisa; Horta, Ana; Pereira, Sergio; Delicado, Ana [Institute of Social Sciences of the University of Lisbon, Av. Prof. Anibal de Bettencourt, 9 1600-189 Lisbon (Portugal)

    2015-07-01

    This paper presents results of a comparison of media coverage of fusion and fission energy technologies in three countries (Germany, Spain and Portugal) and in the English language international print media addressing transnational elite, from 2008 to 2012. The analysis showed that the accident in Fukushima in March 2010 did not have significant impact on media framing of nuclear fusion in the major part of print media under investigation. In fact, fusion is clearly dissociated from traditional nuclear (fission) energy and from nuclear accidents. It tends to be portrayed as a safe, clean and unlimited source of energy, although less credited when confronted with research costs, technological feasibility and the possibility to be achieved in a reasonable period of time. On the contrary, fission is portrayed as a hazardous source of energy, expensive when compared to research costs of renewables, hardly a long-term energy option, susceptible to contribute to the proliferation of nuclear weapons or rogue military use. Fukushima accident was consistently discussed in the context of safety problems of nuclear power plants and in many cases appeared not as an isolated event but rather as a reminder of previous nuclear disasters such as Three Miles Island and Chernobyl. (authors)

  9. The Fukushima nuclear disaster and its effects on media framing of fission and fusion energy technologies

    International Nuclear Information System (INIS)

    Schmidt, Luisa; Horta, Ana; Pereira, Sergio; Delicado, Ana

    2015-01-01

    This paper presents results of a comparison of media coverage of fusion and fission energy technologies in three countries (Germany, Spain and Portugal) and in the English language international print media addressing transnational elite, from 2008 to 2012. The analysis showed that the accident in Fukushima in March 2010 did not have significant impact on media framing of nuclear fusion in the major part of print media under investigation. In fact, fusion is clearly dissociated from traditional nuclear (fission) energy and from nuclear accidents. It tends to be portrayed as a safe, clean and unlimited source of energy, although less credited when confronted with research costs, technological feasibility and the possibility to be achieved in a reasonable period of time. On the contrary, fission is portrayed as a hazardous source of energy, expensive when compared to research costs of renewables, hardly a long-term energy option, susceptible to contribute to the proliferation of nuclear weapons or rogue military use. Fukushima accident was consistently discussed in the context of safety problems of nuclear power plants and in many cases appeared not as an isolated event but rather as a reminder of previous nuclear disasters such as Three Miles Island and Chernobyl. (authors)

  10. Positron annihilation lifetime measurements of vanadium alloy and F82H irradiated with fission and fusion neutrons

    International Nuclear Information System (INIS)

    Sato, K.; Inoue, K.; Yoshiie, T.; Xu, Q.; Wakai, E.; Kutsukake, C.; Ochiai, K.

    2009-01-01

    V-4Cr-4Ti, F82H, Ni and Cu were irradiated with fission and fusion neutrons at room temperature and 473 K. Defect structures were analyzed and compared using positron annihilation lifetime measurement, and microstructural evolution was discussed. The mean lifetime of positrons (the total amount of residual defects) increased with the irradiation dose. The effect of cascade impact was detected in Ni at room temperature. The size and the number of vacancy clusters were not affected by the displacement rate in the fission neutron irradiation at 473 K for the metals studied. The vacancy clusters were not formed in V-4Cr-4Ti irradiated at 473 K in the range of 10 -6 -10 -3 dpa. In F82H irradiated at 473 K, the defect evolution was prevented by pre-existing defects. The mean lifetime of positrons in fission neutron irradiation was longer than that in fusion neutron irradiation in V-4Cr-4Ti at 473 K. It was interpreted that more closely situated subcascades were formed in the fusion neutron irradiation and subcascades interacted with each other, and consequently the vacancy clusters did not grow larger.

  11. Development of Laser Based Plasma Diagnostics for Fusion Research on NSTX-U

    Science.gov (United States)

    Barchfeld, Robert Adam

    Worldwide demand for power, and in particular electricity, is growing. Increasing population, expanding dependence on electrical devices, as well as the development of emerging nations, has created significant challenges for the power production. Compounding the issue are concerns over pollution, natural resource supplies, and political obstacles in troubled parts of the world. Many believe that investment in renewable energy will solve the expected energy crisis; however, renewable energy has many shortfalls. Consequently, additional sources of energy should be explored to provide the best options for the future. Electricity from fusion power offers many advantages over competing technologies. It can potentially produce large amounts of clean energy, without the serious concerns of fission power plant safety and nuclear waste. Fuel supplies for fusion are plentiful. Fusion power plants can be operated as needed, without dependence on location, or local conditions. However, there are significant challenges before fusion can be realized. Many factors currently limit the effectiveness of fusion power, which prevents a commercial power plant from being feasible. Scientists in many countries have built, and operate, experimental fusion plants to study the fusion process. The leading examples are magnetic confinement reactors known as tokamaks. At present, reactor gain is near unity, where the fusion power output is nearly the same as the power required to operate the reactor. A tenfold increase in gain is what reactors such as ITER hope to achieve, where 50 MW will be used for plasma heating, magnetic fields, and so forth, with a power output of 500 MW. Before this can happen, further research is required. Loss of particle and energy confinement is a principal cause of low performance; therefore, increasing confinement time is key. There are many causes of thermal and particle transport that are being researched, and the prime tools for conducting this research are

  12. Dynamical fission life-times deduced from gamma-ray emission observed in the fusion-fission reaction : Ne-20 on Bi-209.

    NARCIS (Netherlands)

    vanderPloeg, H; Bacelar, JCS; Buda, A; Dioszegi, [No Value; vantHof, G; vanderWoude, A

    1996-01-01

    The gamma-ray emission spectra between 4 and 20 MeV have been measured for the fusion-fission reactions Ne-20 on Bi-209 --> Np-229* at beam energies 150, 186 and 220 MeV. In addition for the latter experiment the angular dependence of the gamma-ray emission with respect to the spin axis has been

  13. μ CF Study of D/T and H/D/T Mixtures in Homogeneous and Inhomogeneous Medium, and Comparison of Their Fusion Yields

    Science.gov (United States)

    Eskandari, M. R.; Faghihi, F.; Gheisari, R.

    Muon reactivation coefficient are determined for muonic He (He = 42He = α , He = 23 He = h) for up to six (n = 1, 2, 3, ..., 6) states of formation and at temperature Tp = 100 eV and for various relative ion densities. In the next decade it may be possible to explore new conditions for further energy gain in muon catalyzed fusion system, μ CF, using nonuniform (temperature and density) plasma states. Here, we have considered a model for inhomogeneous μ CF for mixtures of D/T and H/D/T. Using coupled dynamical equations it is shown that the neutrons yield per muon injection, Yn (neutrons/muon), in the dt branch of an inhomogeneous H/D/T mixture is at least 2.24 times higher than similar homogeneous systems and this rate for a D/T mixture is 1.92. Also, we have compared the neutron yield in the dt branch of homogeneous D/T and H/D/T mixtures (temperature range T = 300-800 K, and density φ = 1 LHD). It is shown that Yn(D/T)/Yn(H/D/T) = 1.32, which is in good agreement with recently measured experimental values. In other words our calculations show that the addition of protonium to a D/T mixture leads to a significant decrease in the cycling rate for the physical conditions described herein.

  14. The plant efficiency of fusion power stations

    International Nuclear Information System (INIS)

    Darvas, J.; Foerster, S.

    1976-01-01

    Due to the circulating energy, lower efficiencies are to be expected with fusion power plants than with nuclear fission power plants. According to the systems analysis, the mirror machine is not very promising as a power plant. The plant efficiency of the laser fusion strongly depends on the laser efficiency about which one can only make speculative statements at present. The Tokamak requires a relatively low circulating energy and is certainly able to compete regarding efficiency as long as the consumption time can be kept large (> 100 sec) and the dead time between the power pulses small ( [de

  15. Direct-drive laser-fusion in the US

    International Nuclear Information System (INIS)

    McCrory, R.L.; Soures, J.M.; Audebert, P.

    1986-01-01

    Direct-drive experiments at the University of Rochester's Laboratory for Laser Energetics (LLE) and the Naval Research Laboratory (NRL) are presently addressing issues in pellet compression and heating: efficiency of coupling of laser energy to the target and the coupling of absorbed energy to the fuel, drive uniformity, hydrodynamic stability, preheat arising from laser plasma instabilities and x-rays, and target diagnostics. The 24-beam, 2500-Joule, 351 nm OMEGA laser system at LLE has been used in an experimental effort to achieve high compressed DT fuel densities. Detailed hydrodynamic computer simulations at NRL predict that the growth rate of the ablative Rayleigh-Taylor instability is less than the classical values. Recent Rayleigh-Taylor experiments ar NRL are testing these predictions

  16. Comparison of material irradiation conditions for fusion, spallation, stripping and fission neutron sources

    International Nuclear Information System (INIS)

    Vladimirov, P.; Moeslang, A.

    2004-01-01

    Selection and development of materials capable of sustaining irradiation conditions expected for a future fusion power reactor remain a big challenge for material scientists. Design of other nuclear facilities either in support of the fusion materials testing program or for other scientific purposes presents a similar problem of irradiation resistant material development. The present study is devoted to an evaluation of the irradiation conditions for IFMIF, ESS, XADS, DEMO and typical fission reactors to provide a basis for comparison of the data obtained for different material investigation programs. The results obtained confirm that no facility, except IFMIF, could fit all user requirements imposed for a facility for simulation of the fusion irradiation conditions

  17. Research Needs for Fusion-Fission Hybrid Systems. Report of the Research Needs Workshop (ReNeW) Gaithersburg, Maryland, September 30 - October 2, 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-09-30

    Largely in anticipation of a possible nuclear renaissance, there has been an enthusiastic renewal of interest in the fusion-fission hybrid concept, driven primarily by some members of the fusion community. A fusion-fission hybrid consists of a neutron-producing fusion core surrounded by a fission blanket. Hybrids are of interest because of their potential to address the main long-term sustainability issues related to nuclear power: fuel supply, energy production, and waste management. As a result of this renewed interest, the U.S. Department of Energy (DOE), with the participation of the Office of Fusion Energy Sciences (OFES), Office of Nuclear Energy (NE), and National Nuclear Security Administration (NNSA), organized a three-day workshop in Gaithersburg, Maryland, from September 30 through October 2, 2009. Participants identified several goals. At the highest level, it was recognized that DOE does not currently support any R&D in the area of fusion-fission hybrids. The question to be addressed was whether or not hybrids offer sufficient promise to motivate DOE to initiate an R&D program in this area. At the next level, the workshop participants were asked to define the research needs and resources required to move the fusion-fission concept forward. The answer to the high-level question was given in two ways. On the one hand, when viewed as a standalone concept, the fusion-fission hybrid does indeed offer the promise of being able to address the sustainability issues associated with conventional nuclear power. On the other hand, when participants were asked whether these hybrid solutions are potentially more attractive than contemplated pure fission solutions (that is, fast burners and fast breeders), there was general consensus that this question could not be quantitatively answered based on the known technical information. Pure fission solutions are based largely on existing both fusion and nuclear technology, thereby prohibiting a fair side-by-side comparison

  18. Simulations of alpha parameters in a TFTR DT supershot with high fusion power

    International Nuclear Information System (INIS)

    Budny, R.V.; Bell, M.G.; Janos, A.C.

    1995-07-01

    A TFTR supershot with a plasma current of 2.5 MA, neutral beam heating power of 33.7 MW, and a peak DT fusion power of 7.5 MW is studied using the TRANSP plasma analysis code. Simulations of alpha parameters such as the alpha heating, pressure, and distributions in energy and v parallel /v are given. The effects of toroidal ripple and mixing of the fast alpha particles during the sawteeth observed after the neutral beam injection phase are modeled. The distributions of alpha particles on the outer midplane are peaked near forward and backward v parallel /v. Ripple losses deplete the distributions in the vicinity of v parallel /v ∼-0.4. Sawtooth mixing of fast alpha particles is computed to reduce their central density and broaden their width in energy

  19. On the possibility of D-3He fusion based on fast - ignition inertial confinement scheme

    International Nuclear Information System (INIS)

    Nakao, Y.; Hegi, K.; Ohmura, T.; Katsube, M.; Kudo, K.; Johzaki, T.; Ohta, M.

    2007-01-01

    compressed fuel were assumed as ρ R D T = 4 g/cm 2 , ρ R t otal 12 g/cm 2 and 0.2 keV. The coupling efficiencies of implosion and heating lasers were respectively taken as 10% and 30%. The work shows that it is possible to obtain sufficient target gains (∼60) with realistic driver energy below 10 MJ (∼8 MJ for implosion plus ∼0.3 MJ for heating). Crucial role of DT fusion neutrons in the D 3 He main fuel heating was clarified. The possibility to reduce the amount of DT igniter will be discussed. References: [1]. T. Honda, Y. Nakao, Y. Hnada, K. Kudo, H. Nakashima, Nucl. Fusion, 31, 851 (1991) ; Y. Nakao, T. Honda, H. Nakashima, Y. Honda, K. Kudo, Fusion Technol., 20, 66 (1992). [2]. H. Nakashima, M. Shinohara, Y. Wakuta, T. Honda, Y. Nakao, H. Takabe, Laser Part. Beams, 11, 137 (1993). [3]. M. Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S.C. Wilks, J. Woodworth, E.M. Campbell, M.D. Perry, R.J. Mason, Phys. Plasmas, 1, 1626 (1944). {4]. M. Murakami, H. Nagatomo, H. Azechi, F. Ogando, M. Perlado, S. Eliezer, Nucl. Fusion, 46, 99 (2006). [5]. T. Johzaki, K. Mima, Y. Nakao, H. Nagatomo, A. Sunahara, Proc. of 3rd Int. Conf. on Inertial Fusion Sciences and Applications, Monterey, 2003, edited by B.A. Hammel, et al. (LLNL, 2004), p. 474

  20. Inertial fusion: strategy and economic potential

    International Nuclear Information System (INIS)

    Nuckolls, J.H.

    1983-01-01

    Inertial fusion must demonstrate that the high target gains required for practical fusion energy can be achieved with driver energies not larger than a few megajoules. Before a multi-megajoule scale driver is constructed, inertial fusion must provide convincing experimental evidence that the required high target gains are feasible. This will be the principal objective of the NOVA laser experiments. Implosions will be conducted with scaled targets which are nearly hydrodynamically equivalent to the high gain target implosions. Experiments which demonstrate high target gains will be conducted in the early nineties when multi-megajoule drivers become available. Efficient drivers will also be demonstrated by this time period. Magnetic fusion may demonstrate high Q at about the same time as inertial fusion demonstrates high gain. Beyond demonstration of high performance fusion, economic considerations will predominate. Fusion energy will achieve full commercial success when it becomes cheaper than fission and coal. Analysis of the ultimate economic potential of inertial fusion suggests its costs may be reduced to half those of fission and coal. Relative cost escalation would increase this advantage. Fusions potential economic advantage derives from two fundamental properties: negligible fuel costs and high quality energy (which makes possible more efficient generation of electricity)

  1. Disentangling association patterns in fission-fusion societies using African buffalo as an example

    Science.gov (United States)

    Cross, P.C.; Lloyd-Smith, James O.; Getz, W.M.

    2005-01-01

    A description of the social network of a population aids us in understanding dispersal, the spread of disease, and genetic structure in that population. Many animal populations can be classified as fission–fusion societies, whereby groups form and separate over time. Examples discussed in the literature include ungulates, primates and cetaceans (Lott and Minta, 1983, Whitehead et al., 1991, Henzi et al., 1997, Christal et al., 1998 and Chilvers and Corkeron, 2002). In this study, we use a heuristic simulation model to illustrate potential problems in applying traditional techniques of association analysis to fission–fusion societies and propose a new index of association: the fission decision index (FDI). We compare the conclusions resulting from traditional methods with those of the FDI using data from African buffalo, Syncerus caffer, in the Kruger National Park. The traditional approach suggested that the buffalo population was spatially and temporally structured into four different ‘herds’ with adult males only peripherally associated with mixed herds. Our FDI method indicated that association decisions of adult males appeared random, but those of other sex and age categories were nonrandom, particularly when we included the fission events associated with adult males. Furthermore, the amount of time that individuals spent together was only weakly correlated with their propensity to remain together during fission events. We conclude with a discussion of the applicability of the FDI to other studies.

  2. Reactor concepts for laser fusion

    International Nuclear Information System (INIS)

    Meier, W.R.; Maniscalco, J.A.

    1977-07-01

    Scoping studies were initiated to identify attractive reactor concepts for producing electric power with laser fusion. Several exploratory reactor concepts were developed and are being subjected to our criteria for comparing long-range sources of electrical energy: abundance, social costs, technical feasibility, and economic competitiveness. The exploratory concepts include: a liquid-lithium-cooled stainless steel manifold, a gas-cooled graphite manifold, and fluidized wall concepts, such as a liquid lithium ''waterfall'', and a ceramic-lithium pellet ''waterfall''. Two of the major reactor vessel problems affecting the technical feasibility of a laser fusion power plant are: the effects of high-energy neutrons and cyclical stresses on the blanket structure and the effects of x-rays and debris from the fusion microexplosion on the first-wall. The liquid lithium ''waterfall'' concept is presented here in more detail as an approach which effectively deals with these damaging effects

  3. Estimates of fission barrier heights for neutron-deficient Po to Ra nuclei produced in fusion reactions

    Directory of Open Access Journals (Sweden)

    Sagaidak Roman

    2017-01-01

    Full Text Available The cross section data for fission and evaporation residue production in fusion reactions leading to nuclei from Po to Ra have been considered in a systematic way in the framework of the conventional barrier-passing (fusion model coupled with the statistical model. The cross section data obtained in very asymmetric projectile-target combinations can be described within these models rather well with the adjusted model parameters. In particular, one can scale and fix the macroscopic (liquid-drop fission barrier heights (FBHs for nuclei involved in the de-excitation of compound nuclei produced in the reactions. The macroscopic FBHs for nuclei from Po to Ra have been derived in the framework of such analysis and compared with the predictions of various theoretical models.

  4. Fission fragment excited laser system

    Science.gov (United States)

    McArthur, David A.; Tollefsrud, Philip B.

    1976-01-01

    A laser system and method for exciting lasing action in a molecular gas lasing medium which includes cooling the lasing medium to a temperature below about 150 K and injecting fission fragments through the lasing medium so as to preferentially excite low lying vibrational levels of the medium and to cause population inversions therein. The cooled gas lasing medium should have a mass areal density of about 5 .times. 10.sup.-.sup.3 grams/square centimeter, relaxation times of greater than 50 microseconds, and a broad range of excitable vibrational levels which are excitable by molecular collisions.

  5. The ties that bind: genetic relatedness predicts the fission and fusion of social groups in wild African elephants.

    Science.gov (United States)

    Archie, Elizabeth A; Moss, Cynthia J; Alberts, Susan C

    2006-03-07

    Many social animals live in stable groups. In contrast, African savannah elephants (Loxodonta africana) live in unusually fluid, fission-fusion societies. That is, 'core' social groups are composed of predictable sets of individuals; however, over the course of hours or days, these groups may temporarily divide and reunite, or they may fuse with other social groups to form much larger social units. Here, we test the hypothesis that genetic relatedness predicts patterns of group fission and fusion among wild, female African elephants. Our study of a single Kenyan population spans 236 individuals in 45 core social groups, genotyped at 11 microsatellite and one mitochondrial DNA (mtDNA) locus. We found that genetic relatedness predicted group fission; adult females remained with their first order maternal relatives when core groups fissioned temporarily. Relatedness also predicted temporary fusion between social groups; core groups were more likely to fuse with each other when the oldest females in each group were genetic relatives. Groups that shared mtDNA haplotypes were also significantly more likely to fuse than groups that did not share mtDNA. Our results suggest that associations between core social groups persist for decades after the original maternal kin have died. We discuss these results in the context of kin selection and its possible role in the evolution of elephant sociality.

  6. Development of High Intensity D-T fusion NEutron Generator (HINEG)

    Science.gov (United States)

    Wu, Yican; Liu, Chao; Song, Gang; Wang, Yongfeng; Li, Taosheng; Jiang, Jieqiong; Song, Yong; Ji, Xiang

    2017-09-01

    A high intensity D-T fusion neutron generator (HINEG) is keenly needed for the research and development (R&D) of nuclear technology and safety of the advanced nuclear energy system, especially for the radiation protection and shielding. The R&D of HINEG includes two phases: HINEG-I and HINEG-II. HINEG-I is designed to have both the steady beam and pulsed beam. The neutron yield of the steady beam is up to 1012 n/s. The width of pulse neutron beam is less than 1.5 ns. HINEG-I is used for the basic neutronics study, such as measurement of nuclear data, validation of neutronics methods and software, validation of radiation protection and so on. HINEG-II aims to generate a high neutron yield of 1013 n/s neutrons by adopting high speed rotating tritium target system integrated with jet/spray array enhanced cooling techniques, and can further upgrade to obtain neutron yield of 1014 1015n/s by using of accelerators-array in a later stage. HINEG-II can be used for fundamentals research of nuclear technology including mechanism of materials radiation damage and neutronics performance of components, radiation shielding as well as other nuclear technology applications.

  7. JEFF 3.1.2 - Joint evaluated nuclear data library for fission and fusion applications - February 2012 (DVD)

    International Nuclear Information System (INIS)

    2012-02-01

    The Joint Evaluated Fission and Fusion File (JEFF) project is a collaboration between NEA Data Bank member countries. The JEFF library combines the efforts of the JEFF and EFF/EAF Working Groups to produce a common sets of evaluated nuclear data, mainly for fission and fusion applications. The JEFF-3.1.2 version, released in February 2012, contains a number of different data types, including neutron and proton interaction data, radioactive decay data, fission yields, and thermal scattering law data. Currently, JEFF-3.1.2 data are available in ENDF-6 format (neutron library) from the Web. This new release is an update from JEFF-3.1.1 which concerns 115 material files from the general purpose incident neutron library which have been modified since JEFF-3.1.1. Modifications include: Hf isotopes: 6 new Hf evaluations have replaced previous ones; Gamma production data from neutron capture (MF=6 MT=102) has been added to 89 fission products (FP) evaluations; 47 of these FP have been replaced by ENDF-B/VII.0 evaluations, with gamma data added in this release. Corrections from JEFF-Beta feedback have been incorporated for 15 materials. Corrections that solve NJOY covariance processing problems and JANIS warnings have been made to 6 files. This DVD contains: - General purpose incident neutron data in ENDF-6 and ACE formats; - Activation data; - Thermal scattering data; - Incident proton data; - Radioactive decay data; - Neutron-induced fission yields data; - Spontaneous fission yields data

  8. Towards abundant and pollution-free energy. Laser nuclear fusion

    International Nuclear Information System (INIS)

    Robieux, J.

    2008-01-01

    This book shows that it is now practically certain that by the year 2080 laser nuclear fusion will allow to produce an abundant and relatively cheap energy. Thanks to this energy, it will be possible to convert a mixture of CO 2 , H 2 and water into an automotive fuel or a food product. Laser nuclear fusion will use deuterium as fuel and thus oil and gas will become useless. Also, thanks to this new energy source, global warming and starvation will be overcome. The laser fusion concept was introduced by J. Robieux in 1962 just after the discovery of the laser. This idea was immediately accepted and sustained by the French President De Gaulle. The research on laser fusion was initially undertaken at the Marcoussis research centre from the Compagnie Generale d'Electricite (General Electricity Company - CGE). In 1967, the lasers built at Marcoussis were 30 times more powerful than any other laser in the rest of world. A cooperation with the USA started at that time and is still going on today. In 1969, the CEA centre of Limeil realized the world premiere experiments of laser fusion. This book presents the historical aspects and the state-of-the-art of this technology today. It is written in two parts, the first part does not require any scientific knowledge and is accessible to everybody, while the second part can be understood only by readers having a basic scientific background. (J.S.)

  9. Theory of high density laser fusion

    International Nuclear Information System (INIS)

    Zimmerman, G.B.; Nuckolls, J.H.

    1975-01-01

    A basic laser fusion scheme is presented. Some of its subtleties are described and the theoretical difficulties which now appear to be the major obstacles are considered. Interpretations of some recent laser compression experiments are given. (U.S.)

  10. Energy by nuclear fusion

    International Nuclear Information System (INIS)

    Buende, R.; Daenner, W.; Herold, H.; Raeder, J.

    1976-12-01

    This report reviews the state of knowledge in a number of fields of fusion research up to autumn 1976. Section 1 gives a very brief presentation of the elementary fusion reactions, the energies delivered by them and the most basic energy balances leading to Lawson-type diagrams. Section 2 outlines the reserves and cost of lithium and deuterium, gives estimates of the total energy available from DT fusion and comments on production technology, availlability and handling of the fuels. In section 3 a survey is given of the different concepts of magnetic confinement (stellarators, tokamaks, toroidal pinches, mirror machines, two-component plasmas), of confinement by walls, gas blankets and imploding liners and, finally, of the concepts of interial confinement (laser fusion, beam fusion). The reactors designed or outlined on the basis of the tokamak, high-β, mirror, and laser fusion concepts are presented in section 4, which is followed in section 5 by a discussion of the key problems of fusion power plants. The present-day knowledge of the cost structure of fusion power plants and the sensitivity of this structure with respect to the physical and technical assumptions made is analysed in section 6. Section 7 and 8 treat the aspects of safety and environment. The problems discussed include the hazard potentials of different designs (radiological, toxicological, and with respect to stored energies), release of radioactivity, possible kinds of malfunctioning, and the environmental impact of waste heat, radiation and radioactive waste (orig.) [de

  11. Measurement of TFTR D-T radiation shielding efficiency

    International Nuclear Information System (INIS)

    Kugel, H.W.; Ascione G.; Elwood, S.

    1994-01-01

    High power D-T fusion reactor designs presently exhibit complex geometric and material density configurations. Simulations of the radiation shielding required for safe operation and full compliance with all regulatory requirements must include sufficient margin to accommodate uncertainties in material properties and distributions, uncertainties in the final configurations, and uncertainties in approximations employing the homogenization of complex geometries. Measurements of radiation shielding efficiency performed in a realistic D-T tokamak environment can provide empirical guidance for simulating safe, efficient, and cost effective shielding systems for future high power fusion reactors. In this work, the authors present the results of initial measurements of the TFTR radiation shielding efficiency during high power D-T operations with record neutron yields. The TFTR design objective is to limit the total dose-equivalent at the nearest PPPL property lines from all radiation pathways to 10 mrem per calendar year. Compliance with this design objective over a calendar year requires measurements in the presence of typical site backgrounds of about 80 mrem per year

  12. R and D toward highly repetitive laser fusion demonstration

    International Nuclear Information System (INIS)

    Satoh, Nakahiro; Matsukado, Koji; Watari, Takeshi; Sekine, Takashi; Takeuchi, Yasuki; Kawashima, Toshiyuki

    2017-01-01

    Hamamatsu Photonics conducts research on a unique continuous neutron generation method by integrating and utilizing elemental technologies such as laser, target, and measurement for laser nuclear fusion research. In addition, in collaboration with the Graduate School for the Creation of New Photonics Industries, Toyota Motor Corporation, and others, it is conducting research on laser fusion. As a high power laser of element technology, it constructed an ultrahigh intensity laser system by combining glass slab laser KURE-I and ultrahigh intensity femtosecond laser MATSU-I equipped with titanium sapphire transmitter, and achieved a peak output of 20 TW, It plans to further increase this to 100 TW. As other element technologies, it is also considering nuclear fusion fuel - target technology and light - high energy particle measurement technology. Regarding the demonstration of continuous generation of laser fusion neutrons, it performed 100 times of continuous laser beam irradiation at 1 Hz, and actually measured the number of neutrons generated. It measured 4.5x10 4 pieces of neutrons on average (maximum 10 5 ) with a frequency of 98%. Since 100% of neutron generation should occur in principle, in the future it will be necessary to enhancing laser collecting intensity and to improve solid particle number density in order to put this process into practical use as a neutron source. (A.O.)

  13. Interplay between parametric instabilities in fusion - relevant laser plasmas

    International Nuclear Information System (INIS)

    Huller, St.

    2003-01-01

    The control of parametric instabilities plays an important role in laser fusion. They are driven by the incident laser beams in the underdense plasma surrounding a fusion capsule and hinder the absorption process of incident laser light which is necessary to heat the fusion target. Due to its high intensity and power, the laser light modifies the plasma density dynamically, such that two or more parametric instabilities compete, in particular stimulated Brillouin scattering and the filamentation instability. The complicated interplay between these parametric instabilities is studied in detail by developing an adequate model accompanied by numerical simulations with multidimensional codes. The model is applied to generic and to smoothed laser beams, which are necessary to limit parametric instabilities, with parameters close to experimental conditions. (author)

  14. The search for solid state fusion lasers

    International Nuclear Information System (INIS)

    Weber, M.J.

    1989-04-01

    Inertial confinement fusion (ICF) research puts severe demands on the laser driver. In recent years large, multibeam Nd:glass lasers have provided a flexible experimental tool for exploring fusion target physics because of their high powers, variable pulse length and shape, wavelength flexibility using harmonic generation, and adjustable that Nd:glass lasers can be scaled up to provide a single-phase, multi-megajoule, high-gain laboratory microfusion facility, and gas-cooled slab amplifiers with laser diode pump sources are viable candidates for an efficient, high repetition rate, megawatt driver for an ICF reactor. In both applications requirements for energy storage and energy extraction drastically limit the choice of lasing media. Nonlinear optical effects and optical damage are additional design constraints. New laser architectures applicable to ICF drivers and possible laser materials, both crystals and glasses, are surveyed. 20 refs., 2 figs

  15. Technical measurement of small fission gas inventory in fuel rod with laser puncturing system

    International Nuclear Information System (INIS)

    Kim, Hee Moon; Kim, Sung Ryul; Lee, Byoung Oon; Yang, Yong Sik; Baek, Sang Ryul; Song, Ung Sup

    2012-01-01

    The fission gas release cause degradation of fuel rod. It influences fuel temperature and internal pressure due to low thermal conductivity. Therefore, fission gas released to internal void of fuel rod must be measured with burnup. To measure amount of fission gas, fuel rod must be punctured by a steel needle in a closed chamber. Ideal gas law(PV=nRT) is applied to obtain atomic concentration(mole). Steel needle type is good for large amount of fission gas such as commercial spent fuel rod. But, some cases with small fuel rig in research reactor for R/D program are not available to use needle type because of large chamber volume. The laser puncturing technique was developed to solve measurement of small amount of fission gas. This system was very rare equipment in other countries. Fine pressure gage and strong vacuum system were installed, and the chamber volume was reduced at least. Fiber laser was used for easy operation

  16. Development of DEMO-FNS tokamak for fusion and hybrid technologies

    Science.gov (United States)

    Kuteev, B. V.; Azizov, E. A.; Alexeev, P. N.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.

    2015-07-01

    The history of fusion-fission hybrid systems based on a tokamak device as an extremely efficient DT-fusion neutron source has passed through several periods of ample research activity in the world since the very beginning of fusion research in the 1950s. Recently, a new roadmap of the hybrid program has been proposed with the goal to build a pilot hybrid plant (PHP) in Russia by 2030. Development of the DEMO-FNS tokamak for fusion and hybrid technologies, which is planned to be built by 2023, is the key milestone on the path to the PHP. This facility is in the phase of conceptual design aimed at providing feasibility studies for a full set of steady state tokamak technologies at a fusion energy gain factor Q ˜ 1, fusion power of ˜40 MW and opportunities for testing a wide range of hybrid technologies with the emphasis on continuous nuclide processing in molten salts. This paper describes the project motivations, its current status and the key issues of the design.

  17. Investigations and calculations toward increasing the efficiency of muon catalyzed fusion

    International Nuclear Information System (INIS)

    Monkhorst, H.J.

    1989-11-01

    A brief summary of results during this report period is given. Some of the topics investigated includes: (1) calculations of sticking fractions and d-t fusion from dtμ(JV) states, (2) ddμ sticking fractions, (3) the reactivation coefficient in d-t fusion, (4) fusion rates for all XYμ(JV)(JV=0,1), (5) nuclear effects on energy shifts and fusion rates for (J=O) states of dtμ, (6) and some comments on cold fusion

  18. $\\beta$-delayed fission, laser spectroscopy and shape-coexistence studies with radioactive At beams

    CERN Multimedia

    We propose to study the $\\beta$-delayed fission, laser spectroscopy and radioactive decay of the newly available pure beams of neutron-deficient and neutron-rich astatine (Z=85) isotopes. The fission probability and the fission fragment distribution of the even-even isotopes $^{194,196}$Po following the $\\beta$-decay of the isotopes $^{194,196}$At will be studied with the Windmill setup. In-source laser spectroscopy will be performed on the entire astatine isotopic chain, using a combination of the Windmill setup, ISOLTRAP MR-ToF and ISOLDE Faraday. Radioactive decay data will be acquired at the Windmill setup throughout those studies and contribute to the global understanding of the phenomenon of shape coexistence in the neutron-deficient lead region.

  19. Inner-membrane proteins PMI/TMEM11 regulate mitochondrial morphogenesis independently of the DRP1/MFN fission/fusion pathways.

    Science.gov (United States)

    Rival, Thomas; Macchi, Marc; Arnauné-Pelloquin, Laetitia; Poidevin, Mickael; Maillet, Frédéric; Richard, Fabrice; Fatmi, Ahmed; Belenguer, Pascale; Royet, Julien

    2011-03-01

    Mitochondria are highly dynamic organelles that can change in number and morphology during cell cycle, development or in response to extracellular stimuli. These morphological dynamics are controlled by a tight balance between two antagonistic pathways that promote fusion and fission. Genetic approaches have identified a cohort of conserved proteins that form the core of mitochondrial remodelling machineries. Mitofusins (MFNs) and OPA1 proteins are dynamin-related GTPases that are required for outer- and inner-mitochondrial membrane fusion respectively whereas dynamin-related protein 1 (DRP1) is the master regulator of mitochondrial fission. We demonstrate here that the Drosophila PMI gene and its human orthologue TMEM11 encode mitochondrial inner-membrane proteins that regulate mitochondrial morphogenesis. PMI-mutant cells contain a highly condensed mitochondrial network, suggesting that PMI has either a pro-fission or an anti-fusion function. Surprisingly, however, epistatic experiments indicate that PMI shapes the mitochondria through a mechanism that is independent of drp1 and mfn. This shows that mitochondrial networks can be shaped in higher eukaryotes by at least two separate pathways: one PMI-dependent and one DRP1/MFN-dependent.

  20. Mechanical technology unique to laser fusion experimental systems

    International Nuclear Information System (INIS)

    Hurley, C.A.

    1980-01-01

    Hardware design for laser fusion experimental machines has led to a combination of engineering technologies that are critical to the successful operation of these machines. These large opto-mechanical systems are dependent on extreme cleanliness, accommodation to efficient maintenance, and high stability. These three technologies are the primary mechanical engineering criteria for laser fusion devices

  1. Laser fusion research with GEKKO XII and PW laser system at Osaka

    International Nuclear Information System (INIS)

    Izawa, Y.; Mima, K.; Azechi, H.; Fujioka, S.; Fujita, H.; Fujimoto, Y.; Jitsuno, T.; Johzaki, Y.; Kitagawa, Y.; Kodama, R.; Kondo, K.; Miyanaga, N.; Nagai, K.; Nagatomo, H.; Nakai, M.; Nishihara, K.; Nishimura, H.; Norimatsu, T.; Shiraga, H.; Shigemori, K.; Sunahara, A.; Tanaka, K.A.; Tsubakimoto, K.; Nakao, Y.; Norreys, P.; Sakagami, H.

    2005-01-01

    Fast heating of the compressed core plasma up to 500eV has been successfully demonstrated by injecting a 400J/0.6ps PW laser into a compressed CD shell through a hollow gold cone. According to this result, we started the FIREX (Fast Ignition Realization Experiment) project toward demonstrating the ignition of the highly compressed DT fuel by the high energy PW laser heating. A new heating laser LFEX (Laser for Fast Ignition Experiment) is under construction. In this paper the progresses in the experimental studies on scientific issues related to fast ignition and the integrated code development toward the FIREX will be reported. Research results on implosion hydrodynamics, Rayleigh-Taylor instability growth and a new stabilization mechanism are also reported. (author)

  2. Code of a Tokamak Fusion Energy Facility ITER

    International Nuclear Information System (INIS)

    Yasuhide Asada; Kenzo Miya; Kazuhiko Hada; Eisuke Tada

    2002-01-01

    The technical structural code for ITER (International Thermonuclear Experimental Fusion Reactor) and, as more generic applications, for D-T burning fusion power facilities (hereafter, Fusion Code) should be innovative because of their quite different features of safety and mechanical components from nuclear fission reactors, and the necessity of introducing several new fabrication and examination technologies. Introduction of such newly developed technologies as inspection-free automatic welding into the Fusion Code is rationalized by a pilot application of a new code concept of s ystem-based code for integrity . The code concept means an integration of element technical items necessary for construction, operation and maintenance of mechanical components of fusion power facilities into a single system to attain an optimization of the total margin of these components. Unique and innovative items of the Fusion Code are typically as follows: - Use of non-metals; - Cryogenic application; - New design margins on allowable stresses, and other new design rules; - Use of inspection-free automatic welding, and other newly developed fabrication technologies; - Graded approach of quality assurance standard to cover radiological safety-system components as well as non-safety-system components; - Consideration on replacement components. (authors)

  3. KrF laser development for fusion energy

    International Nuclear Information System (INIS)

    Wolford, Matthew F.; Sethian, John D.; Myers, Matthew C.; Giuliani, John L.; Obenschain, Stephen P.; Hegeler, Frank

    2013-01-01

    The United States Naval Research Laboratory is developing an electron beam pumped krypton fluoride laser technology for a direct drive inertial fusion energy power plant. The repetitively pulsed krypton fluoride laser technology being developed meets the fusion energy requirements for laser beam quality, wavelength, and repetition rate. The krypton fluoride laser technology is projected, based on experiments, to meet the requirements for wall plug efficiency and durability. The projected wall plug efficiency based on experiments is greater than 7 percent. The Electra laser using laser triggered gas switches has conducted continuous operation for 90,000 shots at 2.5 Hertz operation (ten hours). The Electra laser has achieved greater than 700 Joules per pulse at 1 and 2.5 Hertz repetition rate. The comparison of krypton fluoride laser performance with krypton fluoride kinetics code shows good agreement for pulse shape and laser yield. Development and operation of a durable pulse power system with solid state switches has achieved a continuous run of 11 million pulses into a resistive load at 10 Hz. (author)

  4. Laser-induced fusion of human embryonic stem cells with optical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Chen Shuxun; Wang Xiaolin; Sun Dong [Department of Mechanical and Biomedical Engineering, City University of Hong Kong (Hong Kong); Cheng Jinping; Han Cheng, Shuk [Department of Biology and Chemistry, City University of Hong Kong (Hong Kong); Kong, Chi-Wing [Stem Cell and Regenerative Medicine Consortium, and Departments of Medicine and Physiology, LKS Faculty of Medicine, University of Hong Kong (Hong Kong); Li, Ronald A. [Stem Cell and Regenerative Medicine Consortium, and Departments of Medicine and Physiology, LKS Faculty of Medicine, University of Hong Kong (Hong Kong); Center of Cardiovascular Research, Mount Sinai School of Medicine, New York, New York 10029 (United States)

    2013-07-15

    We report a study on the laser-induced fusion of human embryonic stem cells (hESCs) at the single-cell level. Cells were manipulated by optical tweezers and fused under irradiation with pulsed UV laser at 355 nm. Successful fusion was indicated by green fluorescence protein transfer. The influence of laser pulse energy on the fusion efficiency was investigated. The fused products were viable as gauged by live cell staining. Successful fusion of hESCs with somatic cells was also demonstrated. The reported fusion outcome may facilitate studies of cell differentiation, maturation, and reprogramming.

  5. Laser microsampling method for determination of retained fission gas in irradiated nuclear fuels

    International Nuclear Information System (INIS)

    Graczyk, D.G.; Bandyopadhyay, G.; Gehl, S.M.; Hughes, J.P.; Goodspeed, H.T.

    1979-10-01

    A small ruby laser adapted to fire through a microscope is used to release fission gases from specific sites on a plane surface of an irradiated fuel specimen. Interaction of the focused laser pulse with the specimen surface results in a conical crater from which sampled material has been vaporized; the crater is surrounded by a heat-affected zone in which intergranular fracture and grain separation allow release of grain-boundary gases. Procedures for measuring the amount of krypton-85 released by laser heating and the volume of material from which the release occurred are presented. The data obtained may be used to obtain local krypton fission-gas concentrations and the intragranular/intergranular distribution

  6. Helios, a 20 TW CO2 laser fusion facility

    International Nuclear Information System (INIS)

    Ladish, J.S.

    1979-01-01

    Since June 1978 the Los Alamos Scientific Laboratory's Helios CO 2 laser fusion facility has been committed to an experimental target program to investigate the feasibility of laser produced inertial confinement fusion. This system is briefly described, and preliminary experimental results are reported

  7. First evidence of collective alpha particle effect on TAE modes in the TFTR D-T experiment

    International Nuclear Information System (INIS)

    Wong, K.L.; Schmidt, G.; Batha, S.H.

    1995-08-01

    The alpha particle effect on the excitation of toroidal Alfven eigenmodes (TAE) was investigated in deuterium-tritium (d-t) plasmas in the Tokamak Fusion Test Reactor (TFTR). RF power was used to position the plasma near the instability threshold, and the alpha particle effect was inferred from the reduction of RF power threshold for TAE instability in d-t plasmas. Initial calculations indicate that the alpha particles contribute 10--30% of the total drive in a d-t plasma with 3 MW of peak fusion power

  8. Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma

    International Nuclear Information System (INIS)

    Labaune, C.; Baccou, C.; Loisel, G.; Yahia, V.; Depierreux, S.; Goyon, C.; Rafelski, J.

    2013-01-01

    The advent of high-intensity-pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high-energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments. (authors)

  9. Fission Detection Using the Associated Particle Technique

    International Nuclear Information System (INIS)

    R.P. Keegan; J.P. Hurley; J.R. Tinsley; R. Trainham; S.C. Wilde

    2008-01-01

    A beam of tagged 14 MeV neutrons from the deuterium-tritium (DT) reaction is used to induce fission in a target composed of depleted uranium. The generator yield is 10 7 neutrons/second radiated into a 4 x 4 in. NaI detectors are used for gamma-ray detection. The fission process is known to produce multiple gamma-rays and neutrons. Triple coincidences (α-γ-γ) are measured as a function of neutron flight time up to 90 ns after fission, where the α-particle arises from the DT reaction. A sudden increase in the triple coincidence rate at the location of the material is used to localize and detect fission in the interrogated target. Comparisons are made with experiment runs where lead, tungsten, and iron were used as target materials. The triple coincidence response profile from depleted uranium is noted to be different to those observed from the other target materials. The response from interrogation targets composed of fissile material is anticipated to be even more unique than that observed from depleted uranium

  10. Fusion option to dispose of spent nuclear fuel and transuranic elements

    International Nuclear Information System (INIS)

    Gohar, Y.

    2000-01-01

    The fusion option is examined to solve the disposition problems of the spent nuclear fuel and the transuranic elements. The analysis of this report shows that the top rated solution, the elimination of the transuranic elements and the long-lived fission products, can be achieved in a fusion reactor. A 167 MW of fusion power from a D-T plasma for sixty years with an availability factor of 0.75 can transmute all the transuranic elements and the long-lived fission products of the 70,000 tons of the US inventory of spent nuclear fuel generated up to the year 2015. The operating time can be reduced to thirty years with use of 334 MW of fusion power, a system study is needed to define the optimum time. In addition, the fusion solution eliminates the need for a geological repository site, which is a major advantage. Meanwhile, such utilization of the fusion power will provide an excellent opportunity to develop fusion energy for the future. Fusion blankets with a liquid carrier for the transuranic elements can achieve a transmutation rate for the transuranic elements up to 80 kg/MW.y of fusion power with k eff of 0.98. In addition, the liquid blankets have several advantages relative to the other blanket options. The energy from this transmutation is utilized to produce revenue for the system. Molten salt (Flibe) and lithium-lead eutectic are identified as the most promising liquids for this application, both materials are under development for future fusion blanket concepts. The Flibe molten salt with transuranic elements was developed and used successfully as nuclear fuel for the molten salt breeder reactor in the 1960's

  11. Miniature proportional counter for compression measurements of laser-fusion targets

    International Nuclear Information System (INIS)

    Lane, S.M.; Dellis, J.H.; Bennett, C.K.; Campbell, E.M.

    1981-10-01

    Direct drive laser fusion targets consisting of DT gas encapsulated in glass microshells produce 14.1 MeV neutrons that can interact with silicon-28 nuclei in the glass to produce a 2.2 minute aluminum-28 activity. From the number of 28 Al nuclei created and the neutron yield, the compressed glass areal density can be found. To determine the number of activated atoms created, we collect approximately one-half of the target debris on a thin metal foil which is transferred to our beta-gamma coincidence detector. This detector consists of a 25 cm x 25 cm NaI(Tl) crystal having a 5 cm x 15 cm well. We have recently built a miniature proportional counter that fits into this well and is used to detect beta particles. It is constructed of .025 cm thick copper and has nine separate chambers through which methane flows. The coincidence background is 0.14 cpm and the measured beta efficiency is 45%. We are now building a .0125 cm thick counter made of aluminum having a predicted efficiency of > 90%

  12. Inertial-confinement fusion with lasers

    International Nuclear Information System (INIS)

    Betti, R.; Hurricane, O. A.

    2016-01-01

    The quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications to national security and basic sciences. The U.S. is arguably the world leader in the inertial con fment approach to fusion and has invested in large facilities to pursue it with the objective of establishing the science related to the safety and reliability of the stockpile of nuclear weapons. Even though significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion

  13. Short-Term Forecasting of Taiwanese Earthquakes Using a Universal Model of Fusion-Fission Processes

    NARCIS (Netherlands)

    Cheong, S.A.; Tan, T.L.; Chen, C.-C.; Chang, W.-L.; Liu, Z.; Chew, L.Y.; Sloot, P.M.A.; Johnson, N.F.

    2014-01-01

    Predicting how large an earthquake can be, where and when it will strike remains an elusive goal in spite of the ever-increasing volume of data collected by earth scientists. In this paper, we introduce a universal model of fusion-fission processes that can be used to predict earthquakes starting

  14. Optical coatings for laser fusion applications

    International Nuclear Information System (INIS)

    Lowdermilk, W.H.; Milam, D.; Rainer, F.

    1980-01-01

    Lasers for fusion experiments use thin-film dielectric coatings for reflecting, antireflecting and polarizing surface elements. Coatings are most important to the Nd:glass laser application. The most important requirements of these coatings are accuracy of the average value of reflectance and transmission, uniformity of amplitude and phase front of the reflected or transmitted light, and laser damage threshold. Damage resistance strongly affects the laser's design and performance. The success of advanced lasers for future experiments and for reactor applications requires significant developments in damage resistant coatings for ultraviolet laser radiation

  15. Economic requirements for competitive laser fusion power production

    International Nuclear Information System (INIS)

    Hogan, W.J.; Meier, W.R.

    1986-01-01

    An economic model of a laser fusion commercial power plant is used to identify the design and operating regimes of the driver, target and reaction chamber that will result in economic competitiveness with future fission and coal plants. The authors find that, for a plant with a net power of 1 GW/sub e/, the cost of the driver must be less than $0.4 to 0.6 B, and the recirculating power fraction must be less than 25%. Target gain improvements at low driver energy are the most beneficial but also the most difficult to achieve. The optimal driver energy decreases with increasing target technology. The sensitivity of the cost of electricity to variations in cost and performance parameters decreases with increasing target technology. If chamber pulse rates of a few Hz can be achieved, then gains of 80-100 are sufficient, and higher pulse rates do not help much. Economic competitiveness becomes more difficult with decreasing plant size. Finally, decreasing the cost of the balance of plant has the greatest beneficial effect on economic competitiveness

  16. Free electron laser as a fusion driver

    International Nuclear Information System (INIS)

    Prosnitz, D.; Schlitt, L.

    1981-01-01

    The Free Electron Laser (FEL) is shown to be a potentially attractive solution to the problem of finding a suitable short wavelength fusion driver. The design of a 3 MJ, 250 nm FEL fusion driver is discussed

  17. Inertial fusion by laser

    International Nuclear Information System (INIS)

    Dautray, R.; Watteau, J.-P.

    1980-01-01

    Following a brief historical survey of research into the effects of interaction of laser with matter, the principles of fusion by inertial confinement are described and the main parameters and possible levels given. The development of power lasers is then discussed with details of performances of the main lasers used in various laboratories, and with an assessment of the respective merits of neodymium glass, carbon dioxide or iodine lasers. The phenomena of laser radiation and its interaction with matter is then described, with emphasis on the results of experiments concerned with target implosion with the object of compressing and heating the mixture of heavy hydrogen and tritium to be ignited. Finally, a review is made of future possibilities opened up by the use of large power lasers which have recently become operational or are being constructed, and the ground still to be covered before a reactor can be produced [fr

  18. Inertial confinement fusion with direct electric generation by magnetic flux comparession

    International Nuclear Information System (INIS)

    Lasche, G.P.

    1983-01-01

    A high-power-density laser-fusion-reactor concept in investigated in which directed kinetic enery imparted to a large mass of liquid lithium--in which the fusion target is centrally located--is maximized. In turn, this kinetic energy is converted directly to electricity with, potentially, very high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the concept maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall can be many orders of magnitude less than is typical of D-T fusion reactor concepts

  19. How much laser power can propagate through fusion plasma?

    International Nuclear Information System (INIS)

    Lushnikov, Pavel M; Rose, Harvey A

    2006-01-01

    Propagation of intense laser beams is crucial for inertial confinement fusion, which requires precise beam control to achieve the compression and heating necessary to ignite the fusion reaction. The National Ignition Facility (NIF), where fusion will be attempted, is now under construction. Control of intense beam propagation may be ruined by laser beam self-focusing. We have identified the maximum laser beam power that can propagate through fusion plasma without significant self-focusing and have found excellent agreement with recent experimental data. This maximum is determined by the collective forward stimulated Brillouin scattering instability which suggests a way to increase the maximum power by appropriate choice of plasma composition with implication for NIF designs. Our theory also leads to the prediction of anti-correlation between beam spray and backscatter and therefore raises the possibility of indirect control of backscatter through manipulation of plasma ionization state or acoustic damping. We find a simple expression for laser intensity at onset of enhanced beam angular divergence (beam spray)

  20. Development of laser technology in Research Center of Laser Fusion

    International Nuclear Information System (INIS)

    Zheng Wanguo; Deng Ying; Zhou Wei

    2013-01-01

    This paper reviews the progress in the construction of SG-Ⅲ laser facility, integrated Testbed and XG-Ⅲ laser facility and that in the upgrade of the prototype of SG-Ⅲ, and the development in assembling and installing technology, and the achievements in maintaining cleanliness project and metrology in Laser Fusion Research Center, China Academy of Engineering Physics in China in 2012. (authors)

  1. The fusion-fission process in the reaction {sup 34}S+{sup 186}W near the interaction barrier

    Energy Technology Data Exchange (ETDEWEB)

    Harca, I. M. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, (FLNR JINR) Dubna, Russia and Faculty of Physics, University of Bucharest - P.O. Box MG 11, RO 77125, Bucharest-Magurele (Romania); Dmitriev, S.; Itkis, J.; Kozulin, E. M.; Knyazheva, G.; Loktev, T.; Novikov, K. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, (FLNR JINR) Dubna (Russian Federation); Azaiez, F.; Gottardo, A.; Matea, I.; Verney, D. [IPN, CNRS/IN2P3, Univ. Paris-Sud, 91405 Orsay (France); Chubarian, G. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Hanappe, F. [Universite Libre de Bruxelles (ULB), Bruxelles (Belgium); Piot, J.; Schmitt, C. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Trzaska, W. H. [Accelerator Laboratory of University of Jyväskylä (JYFL), Jyväskylä (Finland); Vardaci, E. [Dipartamento di Scienze Fisiche and INFN (INFN-Na), Napoli (Italy)

    2015-02-24

    The reaction {sup 34}S+{sup 186}W at E{sub lab}=160 MeV was investigated with the aim of diving into the features of the fusion-fission process. Gamma rays in coincidence with binary reaction fragments were measured using the high efficiency gamma-ray spectrometer ORGAM at the TANDEM Accelerator facility of I.P.N., Orsay, and the time-of-flight spectrometer for fission fragments (FF) registration CORSET of the Flerov Laboratory of Nuclear Reactions (FLNR), Dubna. The coupling of the ORGAM and CORSET setups offers the unique opportunity of extracting details for characterizing the fusion-fission process and gives information regarding production of neutron-rich heavy nuclei. The FF–γ coincidence method is of better use then the γ – γ coincidence method when dealing with low statistic measurements and also offers the opportunity to precisely correct the Dopler shift for in-flight emitted gamma rays. Evidence of symmetric and asymmetric fission modes were observed in the mass and TKE distributions, occurring due to shell effects in the fragments. Coincident measurements allow for discrimination between the gamma rays by accepting a specific range within the mass distribution of the reaction products. Details regarding the experimental setup, methods of processing the acquisitioned data and preliminary results are presented.

  2. Fusion-fission of heavy systems

    International Nuclear Information System (INIS)

    Rivet, M.F.; Alami, R.; Borderie, B.; Fuchs, H.; Gardes, D.; Gauvin, H.

    1988-01-01

    The influence of the entrance channel on fission processes was studied by forming the same composite system by two different target-projectile combinations ( 40 Ar + 209 Bi and 56 Fe + 187 Re, respectively). Compound nucleus fission and quasi fission were observed and the analysis was performed in the framework of the extra-extra-push model, which provides a qualitative interpretation of the results; limits for the extra-extra-push threshold are given, but problems with quantitative predictions for the extra-push are noted. (orig.)

  3. Development of High Intensity D-T fusion NEutron Generator (HINEG

    Directory of Open Access Journals (Sweden)

    Wu Yican

    2017-01-01

    Full Text Available A high intensity D-T fusion neutron generator (HINEG is keenly needed for the research and development (R&D of nuclear technology and safety of the advanced nuclear energy system, especially for the radiation protection and shielding. The R&D of HINEG includes two phases: HINEG-I and HINEG-II. HINEG-I is designed to have both the steady beam and pulsed beam. The neutron yield of the steady beam is up to 1012 n/s. The width of pulse neutron beam is less than 1.5 ns. HINEG-I is used for the basic neutronics study, such as measurement of nuclear data, validation of neutronics methods and software, validation of radiation protection and so on. HINEG-II aims to generate a high neutron yield of 1013 n/s neutrons by adopting high speed rotating tritium target system integrated with jet/spray array enhanced cooling techniques, and can further upgrade to obtain neutron yield of 1014~1015n/s by using of accelerators-array in a later stage. HINEG-II can be used for fundamentals research of nuclear technology including mechanism of materials radiation damage and neutronics performance of components, radiation shielding as well as other nuclear technology applications.

  4. Fusion breeder: its potential role and prospects

    International Nuclear Information System (INIS)

    Lee, J.D.

    1981-01-01

    The fusion breeder is a concept that utilizes 14 MeV neutrons from D + T → n(14.1 MeV) + α(3.5 MeV) fusion reactions to produce more fuel than the tritium (T) needed to sustain the fusion process. This excess fuel production capacity is used to produce fissile material (Pu-239 or U-233) for subsequent use in fission reactors. We are concentrating on a class of blankets we call fission suppressed. The blanket is the region surrounding the fusion plasma in which fusion neutrons interact to produce fuel and heat. The fission-suppressed blanket uses non-fission reactions (mainly (n,2n) or (n,n't)) to generate excess neutrons for the production of net fuel. This is in contrast to the fast fission class of blankets which use (n,fiss) reactions to generate excess neutrons. Fusion reactors with fast fission blankets are commony known as fusion-fission hybrids because they combine fusion and fission in the same device

  5. Radiological safety design considerations for a laser-fusion facility

    International Nuclear Information System (INIS)

    Singh, M.S.

    1977-01-01

    Detailed neutronics and photonics calculations have been performed for analyzing prompt and residual radiations and required shielding associated with the design of a laser-fusion facility with a nominal yield of 10 19 neutrons per D--T burn pulse. The standard Livermore Monte Carlo codes and nuclear data cross section libraries were used in calculations. The Bateman equation was used to calculate the accumulation and decay of radionuclide chain products. A number of activation sensitivity experiments were conducted and the results were found to be in very good agreement within 10 percent of those calculated. It has been found that neutron yields of 2 x 10 19 per day can be conducted continuously if the reactor chamber is Kevlar-epoxy or silica, the primary shield is 0.60-m of water immediately on the chamber, and the building concrete is 1.80 m thick. These precautions result in dose equivalents below the primary protection limits inside the target room after a few hours of cool-down per each 10 19 pulse, 10 percent of the primary protection limits immediately outside the target room, and 1 percent of the natural background level at the nearest site boundary

  6. Fusion-fission hybrid design with analysis of direct enrichment and non-proliferation features (the SOLASE-H study)

    International Nuclear Information System (INIS)

    Conn, R.W.; Abdel-Khalik, S.I.; Moses, G.A.; Kulcinski, G.L.; Larsen, E.; Maynard, C.W.; Magheb, M.M.H.; Sviatolslavsky, I.N.; Vogelsang, W.F.; Wolfer, W.G.

    1981-01-01

    The role of a fusion-fission hybrid in the context of a nuclear economy with and without reprocessing is examined. An inertial confinement fusion driver is assumed and a consistent set of reactor parameters are developed. The form of the driver is not critical, however, to the general concepts. The use of the hybrid as a fuel factory within a secured fuel production and reprocessing center is considered. Either the hybrid or a low power fission reactor can be used to mildly irradiate fuel prior to shipment to offsite reactors thereby rendering the fuel resistant to diversion. A simplified economic analysis indicates a hybrid providing fuel to 10 fission reactors of equal thermal power is insensitive to the recirculating power fraction provided reprocessing is permitted. If reprocessing is not allowed, the hybrid can be used to directly enrich light water reactor fuel bundles fabricated initially from fertile fuel (either ThO 2 or 238 UO 2 ). A detailed neutronic analysis indicates such direct enrichments is feasible but the support ratio for 233 U or 239 Pu production is only 2, making such an approach highly sensitive to the hybrid cost. The hybrid would have to produce considerable net power for economic feasibility in this case. Inertial confinement fusion performance requirements for hybrid application are also examined and an integrated design, SOLASE-H, is described based upon the direct enrichment concept. (orig.)

  7. Predation risk shapes social networks in fission-fusion populations.

    Directory of Open Access Journals (Sweden)

    Jennifer L Kelley

    Full Text Available Predation risk is often associated with group formation in prey, but recent advances in methods for analysing the social structure of animal societies make it possible to quantify the effects of risk on the complex dynamics of spatial and temporal organisation. In this paper we use social network analysis to investigate the impact of variation in predation risk on the social structure of guppy shoals and the frequency and duration of shoal splitting (fission and merging (fusion events. Our analyses revealed that variation in the level of predation risk was associated with divergent social dynamics, with fish in high-risk populations displaying a greater number of associations with overall greater strength and connectedness than those from low-risk sites. Temporal patterns of organisation also differed according to predation risk, with fission events more likely to occur over two short time periods (5 minutes and 20 minutes in low-predation fish and over longer time scales (>1.5 hours in high-predation fish. Our findings suggest that predation risk influences the fine-scale social structure of prey populations and that the temporal aspects of organisation play a key role in defining social systems.

  8. Predation Risk Shapes Social Networks in Fission-Fusion Populations

    Science.gov (United States)

    Kelley, Jennifer L.; Morrell, Lesley J.; Inskip, Chloe; Krause, Jens; Croft, Darren P.

    2011-01-01

    Predation risk is often associated with group formation in prey, but recent advances in methods for analysing the social structure of animal societies make it possible to quantify the effects of risk on the complex dynamics of spatial and temporal organisation. In this paper we use social network analysis to investigate the impact of variation in predation risk on the social structure of guppy shoals and the frequency and duration of shoal splitting (fission) and merging (fusion) events. Our analyses revealed that variation in the level of predation risk was associated with divergent social dynamics, with fish in high-risk populations displaying a greater number of associations with overall greater strength and connectedness than those from low-risk sites. Temporal patterns of organisation also differed according to predation risk, with fission events more likely to occur over two short time periods (5 minutes and 20 minutes) in low-predation fish and over longer time scales (>1.5 hours) in high-predation fish. Our findings suggest that predation risk influences the fine-scale social structure of prey populations and that the temporal aspects of organisation play a key role in defining social systems. PMID:21912627

  9. In pursuit of fusion; ARGUS laser system at Livermore

    International Nuclear Information System (INIS)

    Simmons, W.W.

    1976-01-01

    The ARGUS laser facility has been developed to achieve significant laser fusion milestones; high density (greater than 10 g/cm 3 ) implosions, high temperature (greater than 10 KeV) implosions, and high yield from advanced target designs. The ARGUS laser, central to this facility is a twin-beam, 20 cm output aperture, Nd:glass solid state laser capable of delivering greater than 3 TW of power to laser fusion targets. At the present time, ARGUS is fully operational, and has produced up to 10 9 neutrons in selected target irradiation experiments. The performance of this facility is described

  10. Laser-fusion targets for reactors

    International Nuclear Information System (INIS)

    Nuckolls, J.H.; Thiessen, A.R.

    1987-01-01

    This patent describes a target having a centrally located substantially spherically configured quantity of solid fuel for implosion by a pulse of laser energy and having no material therein with a Z of over about 13. The improvement consists of: means in spaced apart and non-contiguous relationship surrounding the fuel for at least providing an atmosphere about the fuel for ensuring electron transport around the fuel and enhancing subsequent implosion symmetry of the fuel, the fuel being configured as a hollow shell; the means consisting of at least one outer layer of substantially solid atmosphere forming material having a Z of 1-13. The atmosphere forms material comprising a shell positioned about the fuel defining a space therebetween, the space being filled with He, the fuel and the shell of atmosphere forming material being each composed of DT, the layer of atmosphere forming material being impacted and at least partially exploded by at least one separate and distinct laser prepulse to produce the atmosphere about the fuel prior to implosion of the fuel by the pulse of laser energy

  11. Stability time of a DT-filled cryogenic ICF target in a high vacuum environment

    International Nuclear Information System (INIS)

    Ebey, P.S.; Hoffer, J.K.

    1998-01-01

    Following the successful pressure loading with DT of a thin-walled plastic inertial fusion target shell (such as those designed for use at the OMEGA facility at the University of Rochester's Laboratory for Laser Energetics (UR/LLE)), continual care must be taken to safeguard the shell from being exposed to unacceptable pressure differentials across its wall. In particular, once the DT has been condensed into a liquid or solid phase and the outside pressure has been reduced, the target must be maintained below some upper cutoff temperature such that the vapor pressure of the DT is below the bursting pressure for the shell. Through the process of β-decay the DT self-heats, but while the shell is in a high vacuum environment (P much-lt 0.8 Pa (6 mtorr) for the OMEGA layering sphere) there is only a negligible heat loss mechanism. This will cause the temperature to increase. A calculation has been done to estimate the rate of temperature increase of the loaded target under high vacuum conditions. A functional form for calculating the target's temperature increase given its starting temperature is presented. An overall result is that under high vacuum conditions the DT changes from a solid at 10 K to a liquid at 37 K (T c = 39.4 K) in about 19 minutes. This holding time is significantly less if the initial temperature is higher, the initial state is liquid, or the upper allowed temperature is lower. Simplifying assumptions which were made and their impact on interpreting the results of this calculation are discussed

  12. Neutronics analysis of water-cooled energy production blanket for a fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Jiang Jieqiong; Wang Minghuang; Chen Zhong; Qiu Yuefeng; Liu Jinchao; Bai Yunqing; Chen Hongli; Hu Yanglin

    2010-01-01

    Neutronics calculations were performed to analyse the parameters of blanket energy multiplication factor (M) and tritium breeding ratio (TBR) in a fusion-fission hybrid reactor for energy production named FDS (Fusion-Driven hybrid System)-EM (Energy Multiplier) blanket. The most significant and main goal of the FDS-EM blanket is to achieve the energy gain of about 1 GWe with self-sustaining tritium, i.e. the M factor is expected to be ∼90. Four different fission materials were taken into account to evaluate M in subcritical blanket: (i) depleted uranium, (ii) natural uranium, (iii) enriched uranium, and (iv) Nuclear Waste (transuranic from 33 000 MWD/MTU PWR (Pressurized Water Reactor) and depleted uranium) oxide. These calculations and analyses were performed using nuclear data library HENDL (Hybrid Evaluated Nuclear Data Library) and a home-developed code VisualBUS. The results showed that the performance of the blanket loaded with Nuclear Waste was most attractive and it could be promising to effectively obtain tritium self-sufficiency and a high-energy multiplication.

  13. Inertial confinement fusion: present status and future potential

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1984-01-01

    Power from inertial confinement fusion holds much promise for society. This paper points out many of the benefits relative to combustion of hydrocarbon fuels and fission power. Potential problems are also identified and put in perspective. The progress toward achieving inertial fusion power is described and results of recent work at the Lawrence Livermore National Laboratory are presented. Key phenomenological uncertainties are described and experimental goals for the Nova laser system are given. Several ICF reactor designs are discussed

  14. Thermonuclear fusion by laser

    International Nuclear Information System (INIS)

    Delpech, J.-F.; Fabre, Edouard.

    1978-01-01

    This paper is intended to describe the principle of inetia containment by laser and the research effort undertaken for this purpose. After having enumerated the principal thermonuclear reactions useful for fusion, the authors derive the rhoR criterion that characterizes inertia containment, as well as the Lawson criterion in the case of magnetic containment. The main physics problems involved in inertia containment by laser are enunciated and the article ends with a review of means resorted to in France and abroad for studying this problem. This review also reports C.N.R.S. bustling in this field, within the scope of competence of G.I.L.M. (Groupement de Recherches Coordonnees sur l'Interaction Laser-Matiere = Group for coordinated investigation of matter-laser interaction) established in Paris at the Ecole Polytechnique [fr

  15. Proceedings of a specialists' meeting on neutron activation cross sections for fission and fusion energy applications

    International Nuclear Information System (INIS)

    Wagner, M.; Vonach, H.

    1990-01-01

    These proceedings of a specialists' meeting on neutron activation cross sections for fission and fusion energy applications are divided into 4 sessions bearing on: - data needs: 4 conferences - experimental work: 11 conferences - theoretical work: 4 conferences - evaluation work: 5 conferences

  16. Tritium Removal by Laser Heating and Its Application to Tokamaks

    International Nuclear Information System (INIS)

    Skinner, C.H.; Gentile, C.A.; Guttadora, G.; Carpe, A.; Langish, S.; Young, K.M.; Nishi, M.; Shu, W.

    2001-01-01

    A novel laser heating technique has recently been applied to removing tritium from carbon tiles that had been exposed to deuterium-tritium (DT) plasmas in the Tokamak Test Fusion Reactor (TFTR). A continuous wave neodymium laser, of power up to 300 watts, was used to heat the surface of the tiles. The beam was focused to an intensity, typically 8 kW/cm 2 , and rapidly scanned over the tile surface by galvanometer-driven scanning mirrors. Under the laser irradiation, the surface temperature increased dramatically, and temperatures up to 2,300 degrees C were recorded by an optical pyrometer. Tritium was released and circulated in a closed-loop system to an ionization chamber that measured the tritium concentration. Most of the tritium (up to 84%) could be released by the laser scan. This technique appears promising for tritium removal in a next-step DT device as it avoids oxidation, the associated deconditioning of the plasma facing surfaces, and the expense of processing large quantities of tritium oxide. Some engineering aspects of the implementation of this method in a next-step fusion device will be discussed

  17. Laser development for laser fusion applications research. Progress report, October 1977--March 1978

    International Nuclear Information System (INIS)

    1978-06-01

    Research progress is reported on three laser programs being developed for the commercialization of laser-fusion energy. The lasers include iodine, hydrogen fluoride and Group VI atoms (e.g., O, S, Se, Te)

  18. Lawrence Livermore National Laboratory laser-fusion program

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.

    1982-01-01

    The goals of the Laser-Fusion Program at Lawrence Livermore National Laboratory are to produce well-diagnosed, high-gain, laser-driven fusion explosions in the laboratory and to exploit this capability for both military applications and for civilian energy production. In the past year we have made significant progress both theoretically and experimentally in our understanding of the laser interaction with both directly coupled and radiation-driven implosion targets and their implosion dynamics. We have made significant developments in fabricating the target structures. Data from the target experiments are producing important near-term physics results. We have also continued to develop attractive reactor concepts which illustrate ICF's potential as an energy producer

  19. Integral test of International Reactor Dosimetry and Fusion File with Li{sub 2}O assembly and DT neutron source at JAEA/FNS

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Satoshi, E-mail: sato.satoshi92@jaea.go.jp [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken (Japan); Kwon, Saerom; Ohta, Masayuki [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken (Japan); Ochiai, Kentaro [Japan Atomic Energy Agency, Rokkasho-mura, Kamikita-gun, Aomori-ken (Japan); Konno, Chikara [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken (Japan)

    2016-11-01

    In order to validate a new library of dosimetry cross section data, International Reactor Dosimetry and Fusion File release 1.0 (IRDFF 1.0), not only for DT neutrons but also for neutrons with energy of less than 14 MeV, we perform an integral test with a Li{sub 2}O rectangular assembly of 60.7 cm in thickness and a DT neutron source at JAEA/FNS. We place a lot of activation foils at depths of 10.1 cm and 30.4 cm for measurements of dosimetry reaction rates in small space along the central axis in the assembly, measure decay gamma-rays from the activation foils with high-purity Ge detectors after the DT neutron irradiation by the foil activation technique, and deduce a variety of dosimetry reaction rates. We calculate the reaction rates by using a Monte Carlo code MCNP5-1.40 and the nuclear data library ENDF/B-VII.1 with the IRDFF-v.1.05 as the response functions for the dosimetry reactions. The calculation results generally show good agreements with the measured ones, and it can be confirmed that most of the data in IRDFF-v.1.05 are valid for the neutron field in the Li{sub 2}O assembly with the DT neutrons.

  20. Inertial confinement fusion and related topics

    International Nuclear Information System (INIS)

    Starodub, A. N.

    2007-01-01

    The current state of different approaches (laser fusion, light and heavy ions, electron beam) to the realization of inertial confinement fusion is considered. From comparative analysis a conclusion is made that from the viewpoint of physics, technology, safety, and economics the most realistic way to future energetics is an electric power plant based on a hybrid fission-fusion reactor which consists of an external source of neutrons (based on laser fusion) and a subcritical two-cascade nuclear blanket, which yields the energy under the action of 14 MeV neutrons. The main topics on inertial confinement fusion such as the energy driver, the interaction between plasmas and driver beam, the target design are discussed. New concept of creation of a laser driver for IFE based on generation and amplification of radiation with controllable coherence is reported. The performed studies demonstrate that the laser based on generation and amplification of radiation with controllable coherence (CCR laser) has a number of advantages as compared to conventional schemes of lasers. The carried out experiments have shown a possibility of suppression of small-scale self-focusing, formation of laser radiation pulses with required characteristics, simplification of an optical scheme of the laser, good matching of laser-target system and achievement of homogeneous irradiation and high output laser energy density without using traditional correcting systems (phase plates, adaptive optics, space filters etc.). The results of the latest experiments to reach ultimate energy characteristics of the developed laser system are also reported. Recent results from the experiments aimed at studying of the physical processes in targets under illumination by the laser with controllable coherence of radiation are presented and discussed, especially such important laser-matter interaction phenomena as absorption and scattering of the laser radiation, the laser radiation harmonic generation, X

  1. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Sessler, A.M.

    1980-01-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion-source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at. (Auth.)

  2. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Sessler, A.M.

    1980-07-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at

  3. Design optimization of single-main-amplifier KrF laser-fusion systems

    International Nuclear Information System (INIS)

    Harris, D.B.; Pendergrass, J.H.

    1985-01-01

    KrF lasers appear to be a very promising laser fusion driver for commercial applications. The Large Amplifier Module for the Aurora Laser System at Los Alamos is the largest KrF laser in the world and is currently operating at 5 kJ with 10 to 15 kJ eventually expected. The next generation system is anticipated to be a single-main-amplifier system that generates approximately 100 kJ. This paper examines the cost and efficiency tradeoffs for a complete single-main-amplifier KrF laser fusion experimental facility. It has been found that a 7% efficient $310/joule complete laser-fusion system is possible by using large amplifier modules and high optical fluences

  4. Comparison of nuclear irradiation parameters of fusion breeder materials in high flux fission test reactors and a fusion power demonstration reactor

    International Nuclear Information System (INIS)

    Fischer, U.; Herring, S.; Hogenbirk, A.; Leichtle, D.; Nagao, Y.; Pijlgroms, B.J.; Ying, A.

    2000-01-01

    Nuclear irradiation parameters relevant to displacement damage and burn-up of the breeder materials Li 2 O, Li 4 SiO 4 and Li 2 TiO 3 have been evaluated and compared for a fusion power demonstration reactor and the high flux fission test reactor (HFR), Petten, the advanced test reactor (ATR, INEL) and the Japanese material test reactor (JMTR, JAERI). Based on detailed nuclear reactor calculations with the MCNP Monte Carlo code and binary collision approximation (BCA) computer simulations of the displacement damage in the polyatomic lattices with MARLOWE, it has been investigated how well the considered HFRs can meet the requirements for a fusion power reactor relevant irradiation. It is shown that a breeder material irradiation in these fission test reactors is well suited in this regard when the neutron spectrum is well tailored and the 6 Li-enrichment is properly chosen. Requirements for the relevant nuclear irradiation parameters such as the displacement damage accumulation, the lithium burn-up and the damage production function W(T) can be met when taking into account these prerequisites. Irradiation times in the order of 2-3 full power years are necessary for the HFR to achieve the peak values of the considered fusion power Demo reactor blanket with regard to the burn-up and, at the same time, the dpa accumulation

  5. Helical-type device and laser fusion. Rivals for tokamak-type device at n-fusion development in Japan

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Under the current policy on the research and development of nuclear fusion in Japan, as enunciated by the Atomic Energy Commission of Japan, the type of a prototype fusion reactor will be chosen after 2020 from tokamak, helical or some other type including the inertial confinement fusion using lasers. A prototype fusion reactor is the next step following the tokamak type International Thermonuclear Experimental Reactor (ITER). With the prototype reactor, the feasibility as a power plant will be examined. At present the main research and development of nuclear fusion in Japan are on tokamak type, which have been promoted by Japan Atomic Energy Research Institute (JAERI). As for the other types of nuclear fusion, researches have been carried out on the helical type in Kyoto University and National Institute for Fusion Science (NIFS), the mirror type in Tsukuba University, the tokamak type using superconductive coils in Kyushu University, and the laser fusion in Osaka University. The features and the present state of research and development of the Large Helical Device and the laser fusion which is one step away from the break-even condition are reported. (K.I.)

  6. Requirements and new materials for fusion laser systems

    International Nuclear Information System (INIS)

    Stokowski, S.E.; Weber, M.J.; Saroyan, R.A.; Hagen, W.F.

    1977-10-01

    Higher focusable power in neodymium glass fusion lasers can be obtained through the use of new materials with lower nonlinear index (n 2 ) and better energy storage capabilities than the presently employed silicate glass. Silicate, phosphate, fluorophosphate, and beryllium fluoride glasses are discussed in terms of fusion laser requirements, particularly those for the proposed Nova laser. Examples of the variation in spectroscopic and optical properties obtainable with compositional changes are given. Results of a system evaluation of potential laser materials show that fluorophosphate glasses have many of the desired properties for use in Nova. These glasses are now being cast in large sizes (30-cm diameter) and will be tested in prototype amplifiers in 1978

  7. Requirements and new materials for fusion laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Stokowski, S.E.; Weber, M.J.; Saroyan, R.A.; Hagen, W.F.

    1977-10-01

    Higher focusable power in neodymium glass fusion lasers can be obtained through the use of new materials with lower nonlinear index (n/sub 2/) and better energy storage capabilities than the presently employed silicate glass. Silicate, phosphate, fluorophosphate, and beryllium fluoride glasses are discussed in terms of fusion laser requirements, particularly those for the proposed Nova laser. Examples of the variation in spectroscopic and optical properties obtainable with compositional changes are given. Results of a system evaluation of potential laser materials show that fluorophosphate glasses have many of the desired properties for use in Nova. These glasses are now being cast in large sizes (30-cm diameter) and will be tested in prototype amplifiers in 1978.

  8. Inertial fusion with ultra-powerful lasers

    International Nuclear Information System (INIS)

    Tabak, M.; Hammer, J.; Glinsky, M.; Kruer, W.; Wilks, S.; Woodworth, J.; Campbell, E.M.; Perry, M.D.; Mason, R.

    1993-10-01

    Ultra-high intensity lasers can be used to ignite ICF capsules with a few tens of kilojoules of light and can lead to high gain with as little as 100 kilojoules of incident laser light. We propose a scheme with three phases. First, a capsule is imploded as in the conventional approach to inertial fusion to assemble a high density fuel configuration. Second, a hole is bored through capsule corona composed of ablated material, pushing critical density close to the high density core of the capsule, by employing the ponderomotive force associated with high intensity laser light. Finally, the fuel is ignited by suprathermal electrons, produced in the high intensity laser plasma interactions, which propagate from critical density to this high density core. This paper reviews two models of energy gain in ICF capsules and explains why ultra-high intensity lasers allow access to the model producing the higher gains. This new scheme also drastically reduces the difficulty of the implosion and thereby allows lower quality fabrication and less stringent beam quality and symmetry requirements from the implosion driver. The difficulty of the fusion scheme is transferred to the technological difficulty of producing the ultra-high-intensity laser and of transporting this energy to the fuel

  9. Non-electrical uses of thermal energy generated in the production of fissile fuel in fusion--fission reactors: a comparative economic parametric analysis for a hybrid with or without synthetic fuel production

    International Nuclear Information System (INIS)

    Tai, A.S.; Krakowski, R.A.

    1979-01-01

    A parametric analysis has been carried out for testing the sensitivity of the synfuel production cost in relation to crucial economic and technologic quantities (investment costs of hybrid and synfuel plant, energy multiplication of the fission blanket, recirculating power fraction of the fusion driver, etc.). In addition, a minimum synfuel selling price has been evaluated, from which the fission--fusion--synfuel complex brings about a higher economic benefit than does the fusion--fission hybrid entirely devoted to fissile-fuel and electricity generation. Assuming an electricity cost of 2.7 cents/kWh, an annual investment cost per power unit of 4.2 to 6 $/GJ (132 to 189 k$/MWty) for the fission--fusion complex and 1.5 to 3 $/GJ (47 to 95 k$/MWty) for the synfuel plant, the synfuel production net cost (i.e., revenue = cost) varies between 6.5 and 8.6 $/GJ. These costs can compete with those obtained by other processes (natural gas reforming, resid partial oxidation, coal gasification, nuclear fission, solar electrolysis, etc.). This study points out a potential use of the fusion--fission hybrid other than fissile-fuel and electricity generation

  10. Soft x-ray streak camera for laser fusion applications

    International Nuclear Information System (INIS)

    Stradling, G.L.

    1981-04-01

    This thesis reviews the development and significance of the soft x-ray streak camera (SXRSC) in the context of inertial confinement fusion energy development. A brief introduction of laser fusion and laser fusion diagnostics is presented. The need for a soft x-ray streak camera as a laser fusion diagnostic is shown. Basic x-ray streak camera characteristics, design, and operation are reviewed. The SXRSC design criteria, the requirement for a subkilovolt x-ray transmitting window, and the resulting camera design are explained. Theory and design of reflector-filter pair combinations for three subkilovolt channels centered at 220 eV, 460 eV, and 620 eV are also presented. Calibration experiments are explained and data showing a dynamic range of 1000 and a sweep speed of 134 psec/mm are presented. Sensitivity modifications to the soft x-ray streak camera for a high-power target shot are described. A preliminary investigation, using a stepped cathode, of the thickness dependence of the gold photocathode response is discussed. Data from a typical Argus laser gold-disk target experiment are shown

  11. Simulations of DT experiments in TFTR

    International Nuclear Information System (INIS)

    Budny, R.; Bell, M.G.; Biglari, H.; Bitter, M.; Bush, C.; Cheng, C.Z.; Fredrickson, E.; Grek, B.; Hill, K.W.; Hsuan, H.; Janos, A.; Jassby, D.L.; Johnson, D.; Johnson, L.C.; LeBlanc, B.; McCune, D.C.; Mikkelsen, D.R.; Park, H.; Ramsey, A.T.; Sabbagh, S.A.; Scott, S.; Schivell, J.; Strachan, J.D.; Stratton, B.C.; Synakowski, E.; Taylor, G.; Zarnstorff, M.C.; Zweben, S.J.

    1991-12-01

    A transport code (TRANSP) is used to simulate future deuterium-tritium experiments (DT) in TFTR. The simulations are derived from 14 TFTR DD discharges, and the modeling of one supershot is discussed in detail to indicate the degree of accuracy of the TRANSP modeling. Fusion energy yields and α-particle parameters are calculated, including profiles of the α slowing down time, average energy, and of the Alfven speed and frequency. Two types of simulations are discussed. The main emphasis is on the DT equivalent, where an equal mix of D and T is substituted for the D in the initial target plasma, and for the D O in the neutral-beam injection, but the other measured beam and plasma parameters are unchanged. This simulation does not assume that α heating will enhance the plasma parameters, or that confinement will increase with T. The maximum relative fusion yield calculated for these simulations is Q DT ∼ 0.3, and the maximum α contribution to the central toroidal β is β α (0) ∼ 0.5%. The stability of toroidicity-induced Alfven eigenmodes (TAE) and kinetic ballooning modes (KBM) is discussed. The TAE mode is predicted to become unstable for some of the equivalent simulations, particularly after the termination of neutral beam injection. In the second type of simulation, empirical supershot scaling relations are used to project the performance at the maximum expected beam power. The MHD stability of the simulations is discussed

  12. Activation and Radiation Damage Behaviour of Russian Structural Materials for Fusion Reactors in the Fission and Fusion Reactors

    International Nuclear Information System (INIS)

    Blokhin, A.; Demin, N.; Chernov, V.; Leonteva-Smirnova, M.; Potapenko, M.

    2006-01-01

    Various structural low (reduced) activated materials have been proposed as a candidate for the first walls-blankets of fusion reactors. One of the main problems connected with using these materials - to minimise the production of long-lived radionuclides from nuclear transmutations and to provide with good technological and functional properties. The selection of materials and their metallurgical and fabrication technologies for fusion reactor components is influenced by this factor. Accurate prediction of induced radioactivity is necessary for the development of the fusion reactor materials. Low activated V-Ti-Cr alloys and reduced activated ferritic-martensitic steels are a leading candidate material for fusion first wall and blanket applications. At the present time a range of compositions and an impurity level are still being investigated to better understand the sensitive of various functional and activation properties to small compositional variations and impurity level. For the two types of materials mentioned above (V-Ti-Cr alloys and 9-12 % Cr f/m steels) and manufactured in Russia (Russia technologies) the analysis of induced activity, hydrogen and helium-production as well as the accumulation of such elements as C, N, O, P, S, Zn and Sn as a function of irradiation time was performed. Materials '' were irradiated '' by fission (BN-600, BOR-60) and fusion (Russian DEMO-C Reactor Project) typical neutron spectra with neutron fluency up to 10 22 n/cm 2 and the cooling time up to 1000 years. The calculations of the transmutation of elements and the induced radioactivity were carried out using the FISPACT inventory code, and the different activation cross-section libraries like the ACDAM, FENDL-2/A and the decay data library FENDL-2/D. It was shown that the level of impurities controls a long-term behaviour of induced activity and contact dose rate for materials. From this analysis the concentration limits of impurities were obtained. The generation of gas

  13. Application of the INS facility as a high-flux benchmark for neutron dosimetry and for radiation damage studies in D--T fusion spectra

    International Nuclear Information System (INIS)

    Dierckx, R.; Emigh, C.R.

    1977-01-01

    An Intense Neutron Source facility (INS), is presently under construction at the Los Alamos Scientific Laboratory. This facility is being built by the Energy Research and Development Administration for the radiation damage program in magnetic fusion energy. The facility will contain two D-T neutron sources, both producing about 10 15 primary 14-MeV neutrons per second on a continuous basis. One source will be used to produce a ''pure'' 14-MeV spectrum while the other will be surrounded by a multiplying blanket converter to produce a fusion-like spectrum with a total of about 10 16 neutrons per second

  14. First measurements of dtμ-cycle characteristics in liquid H/D/T mixture

    International Nuclear Information System (INIS)

    Averin, Yu.P.; Balin, D.V.; Bom, V.R.

    1998-01-01

    The muon catalyzed fusion in dense triple mixture of hydrogen isotopes has been investigated for the first time. The experimental method is based on the registration of neutrons from dtμ fusions by a full absorption detectors in 4π geometry. The measurements have been performed in H/D/T mixture at T = 22 K and φ ≅ 1.1 LHD at four sets of isotope concentrations. The basic parameters of dtμ cycle (neutron yield, cycling rate and total sticking) in H/D/T mixtures are presented and discussed

  15. Application of optical tweezers and excimer laser to study protoplast fusion

    Science.gov (United States)

    Kantawang, Titirat; Samipak, Sompid; Limtrakul, Jumras; Chattham, Nattaporn

    2015-07-01

    Protoplast fusion is a physical phenomenon that two protoplasts come in contact and fuse together. Doing so, it is possible to combine specific genes from one protoplast to another during fusion such as drought resistance and disease resistance. There are a few possible methods to induce protoplast fusion, for example, electrofusion and chemical fusion. In this study, chemical fusion was performed with laser applied as an external force to enhance rate of fusion and observed under a microscope. Optical tweezers (1064 nm with 100X objective N.A. 1.3) and excimer laser (308 nm LMU-40X-UVB objective) were set with a Nikon Ti-U inverted microscope. Samples were prepared by soaking in hypertonic solution in order to induce cell plasmolysis. Elodea Canadensis and Allium cepa plasmolysed leaves were cut and observed under microscope. Concentration of solution was varied to induce difference turgor pressures on protoplasts pushing at cell wall. Free protoplasts in solution were trapped by optical tweezers to study the effect of Polyethylene glycol (PEG) solution. PEG was diluted by Ca+ solution during the process to induced protoplast cell contact and fusion. Possibility of protoplast fusion by excimer laser was investigated and found possible. Here we report a novel tool for plant cell fusion using excimer laser. Plant growth after cell fusion is currently conducted.

  16. Present status and future prospects for direct drive laser fusion

    International Nuclear Information System (INIS)

    Bodner, S.E.

    1986-01-01

    If one assumes that the best short wavelength laser will have an efficiency of 5--7%, and if one assumes that reasonable cost electricity requires that the product of laser efficiency and pellet gain be greater than 10--15, then pellet grains for laser fusion must be at least 150--300. The only laser fusion concept with any potential for energy applications then seems to be directly driven targets with moderately thin shells and 1/4 micron KrF laser light. This direct drive concept has potential pellet energy gains of 200--300

  17. Factors affecting potential market penetration of laser fusion power plants

    International Nuclear Information System (INIS)

    Deonigi, D.E.; Fraley, D.W.

    1979-08-01

    A mini-model has been constructed to estimate the optimal size of laser fusion power plants and to estimate the allowable cost of the first such plant in relation to the next best alternative. In estimating the costs of laser fusion, the mini-model incorporates such factors as market penetration, learning, economies of scale, system size, transmission costs, reserve requirements, development and licensing costs and site costs. The results of the mini-model simulations indicate that the optimal laser fusion plant size is approximately 3 GWe; risk considerations unincorporated in the mini-model suggest an optimal size closer to 2.5 GWe

  18. Nuclear Fusion Effects Induced in Intense Laser-Generated Plasmas

    Directory of Open Access Journals (Sweden)

    Lorenzo Torrisi

    2013-01-01

    Full Text Available Deutered polyethylene (CD2n thin and thick targets were irradiated in high vacuum by infrared laser pulses at 1015W/cm2 intensity. The high laser energy transferred to the polymer generates plasma, expanding in vacuum at supersonic velocity, accelerating hydrogen and carbon ions. Deuterium ions at kinetic energies above 4 MeV have been measured by using ion collectors and SiC detectors in time-of-flight configuration. At these energies the deuterium–deuterium collisions may induce over threshold fusion effects, in agreement with the high D-D cross-section valuesaround 3 MeV energy. At the first instants of the plasma generation, during which high temperature, density and ionacceleration occur, the D-D fusions occur as confirmed by the detection of mono-energetic protonsand neutrons with a kinetic energy of 3.0 MeV and 2.5 MeV, respectively, produced by the nuclear reaction. The number of fusion events depends strongly on the experimental set-up, i.e. on the laser parameters (intensity, wavelength, focal spot dimension, target conditions (thickness, chemical composition, absorption coefficient, presence of secondary targets and used geometry (incidence angle, laser spot, secondary target positions.A number of D-D fusion events of the order of 106÷7 per laser shot has been measured.

  19. Mitochondrial fusion and fission proteins as novel therapeutic targets for treating cardiovascular disease

    OpenAIRE

    Ong, Sang-Bing; Kalkhoran, Siavash Beikoghli; Cabrera-Fuentes, Hector A.; Hausenloy, Derek?J.

    2015-01-01

    The past decade has witnessed a number of exciting developments in the field of mitochondrial dynamics - a phenomenon in which changes in mitochondrial shape and movement impact on cellular physiology and pathology. By undergoing fusion and fission, mitochondria are able to change their morphology between elongated interconnected networks and discrete fragmented structures, respectively. The cardiac mitochondria, in particular, have garnered much interest due to their unique spatial arrangeme...

  20. Dynamic of fission and quasi-fission revealed by pre-scission neutron evaporation

    International Nuclear Information System (INIS)

    Hinde, D.J.

    1991-06-01

    The dependence of pre-scission neutron multiplicities (ν-pre) on the mass-split and total kinetic energy (TKE) in fusion-fission and quasi-fission has been measured for a wide range of projectile-target combinations. the data indicate that the fusion-fission time scale is shorter for asymmetric splits than for symmetric splits, whilst there is no dependence on TKE. For quasi-fission reactions induced using 64 Ni projectiles, ν-pre falls rapidly with increasing TKE, indicating that these neutrons are emitted near to or after scission. A new interpretation of both neutron multiplicities and mean energies (the neutron clock-thermometer) allows the extraction of time scales with much less uncertainty than previously, and also gives information about the deformation from which the neutrons are emitted. 15 refs., 13 figs

  1. Advanced laser fusion target fabrication research and development proposal

    International Nuclear Information System (INIS)

    Stupin, D.M.; Fries, R.J.

    1979-05-01

    A research and development program is described that will enable the fabrication of 10 6 targets/day for a laser fusion prototype power reactor in 2007. We give personnel and cost estimates for a generalized laser fusion target that requires the development of several new technologies. The total cost of the program between 1979 and 2007 is $362 million in today's dollars

  2. Laser fusion experiments at the Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.

    1975-01-01

    A short review is given of some of the important dates in the experimental fusion program at Livermore. A few of the parameters of the laser systems which are being used for these experiments are mentioned. Some information about specialized diagnostics which have been developed at the Livermore Laboratory for these experiments is described. The focusing arrangements for each of the systems are discussed. Experiments both on planar targets and on targets for laser fusion are described

  3. Fusion-fission probabilities, cross sections, and structure notes of superheavy nuclei

    International Nuclear Information System (INIS)

    Kowal, Michał; Cap, Tomasz; Jachimowicz, Piotr; Skalski, Janusz; Siwek-Wilczyńska, Krystyna; Wilczyński, Janusz

    2016-01-01

    Fusionfission probabilities in the synthesis of heaviest elements are discussed in the context of the latest experimental reports. Cross sections for superheavy nuclei are evaluated using the “Fusion by Diffusion” (FBD) model. Predictive power of this approach is shown for experimentally known Lv and Og isotopes and predictions given for Z = 119, 120. Ground state and saddle point properties as masses, shell corrections, pairing energies, and deformations necessary for cross-section estimations are calculated systematically within the multidimensional microscopic-macroscopic method based on the deformed Woods-Saxon single-particle potential. In the frame of the FBD approach predictions for production of elements heavier than Z = 118 are not too optimistic. For this reason, and because of high instability of superheavy nuclei, we comment on some structure effects, connected with the K-isomerism phenomenon which could lead to a significant increase in the stability of these systems.

  4. SOLASE: a conceptual laser fusion reactor design

    International Nuclear Information System (INIS)

    Conn, R.W.; Abdel-Khalik, S.I.; Moses, G.A.

    1977-12-01

    The SOLASE conceptual laser fusion reactor has been designed to elucidate the technological problems posed by inertial confinement fusion reactors. This report contains a detailed description of all aspects of the study including the physics of pellet implosion and burn, optics and target illumination, last mirror design, laser system analysis, cavity design, pellet fabrication and delivery, vacuum system requirements, blanket design, thermal hydraulics, tritium analysis, neutronics calculations, radiation effects, stress analysis, shield design, reactor and plant building layout, maintenance procedures, and power cycle design. The reactor is designed as a 1000 MW/sub e/ unit for central station electric power generation

  5. SOLASE: a conceptual laser fusion reactor design

    International Nuclear Information System (INIS)

    Conn, R.W.; Abdel-Khalik, S.I.; Moses, G.A.

    1977-12-01

    The SOLASE conceptual laser fusion reactor has been designed to elucidate the technological problems posed by inertial confinement fusion ractors. This report contains a detailed description of all aspects of the study including the physics of pellet implosion and burn, optics and target illumination, last mirror design, laser system analysis, cavity design, pellet fabrication and delivery, vacuum system requirements, blanket design, thermal hydraulics, tritium analysis, neutronics calculations, radiation effects, stress analysis, shield design, reactor and plant building layout, maintenance procedures, and power cycle design. The reactor is designed as a 1000 MW/sub e/ unit for central station electric power generation

  6. Nuclear fusion

    International Nuclear Information System (INIS)

    Al-zaelic, M.M.

    2013-01-01

    Nuclear fusion can be relied on to solve the global energy crisis if the process of limiting the heat produced by the fusion reaction (Plasma) is successful. Currently scientists are progressively working on this aspect whereas there are two methods to limit the heat produced by fusion reaction, the two methods are auto-restriction using laser beam and magnetic restriction through the use of magnetic fields and research is carried out to improve these two methods. It is expected that at the end of this century the nuclear fusion energy will play a vital role in overcoming the global energy crisis and for these reasons, acquiring energy through the use of nuclear fusion reactors is one of the most urge nt demands of all mankind at this time. The conclusion given is that the source of fuel for energy production is readily available and inexpensive ( hydrogen atoms) and whole process is free of risks and hazards, especially to general health and the environment . Nuclear fusion importance lies in the fact that energy produced by the process is estimated to be about four to five times the energy produced by nuclear fission. (author)

  7. First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Guler Nevzat

    2013-11-01

    Full Text Available Inertial Confinement Fusion experiments at the National Ignition Facility (NIF are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT filled cryogenic plastic (CH capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13–15 MeV and downscattered (10–12 MeV neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.

  8. First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility

    Science.gov (United States)

    Guler, Nevzat; Aragonez, Robert J.; Archuleta, Thomas N.; Batha, Steven H.; Clark, David D.; Clark, Deborah J.; Danly, Chris R.; Day, Robert D.; Fatherley, Valerie E.; Finch, Joshua P.; Gallegos, Robert A.; Garcia, Felix P.; Grim, Gary; Hsu, Albert H.; Jaramillo, Steven A.; Loomis, Eric N.; Mares, Danielle; Martinson, Drew D.; Merrill, Frank E.; Morgan, George L.; Munson, Carter; Murphy, Thomas J.; Oertel, John A.; Polk, Paul J.; Schmidt, Derek W.; Tregillis, Ian L.; Valdez, Adelaida C.; Volegov, Petr L.; Wang, Tai-Sen F.; Wilde, Carl H.; Wilke, Mark D.; Wilson, Douglas C.; Atkinson, Dennis P.; Bower, Dan E.; Drury, Owen B.; Dzenitis, John M.; Felker, Brian; Fittinghoff, David N.; Frank, Matthias; Liddick, Sean N.; Moran, Michael J.; Roberson, George P.; Weiss, Paul; Buckles, Robert A.; Cradick, Jerry R.; Kaufman, Morris I.; Lutz, Steve S.; Malone, Robert M.; Traille, Albert

    2013-11-01

    Inertial Confinement Fusion experiments at the National Ignition Facility (NIF) are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic (CH) capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI) diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13-15 MeV) and downscattered (10-12 MeV) neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.

  9. Laser diode pumped ND: Glass slab laser for inertial fusion energy

    International Nuclear Information System (INIS)

    Yamanaka, M.; Kanabe, T.; Matsui, H.

    2001-01-01

    As a first step of a driver development for the inertial fusion energy, we are developing a laser-diode-pumped zig-zag Nd:glass slab laser amplifier system HALNA 10 (High Average-power Laser for Nuclear-fusion Application) which can generate an output of 10 J per pulse at 1053 nm in 10 Hz operation. The water-cooled zig-zag Nd:glass slab is pumped from both sides by 803-nm AlGaAs laser-diode(LD) module; each LD module has an emitting area of 420 mm x 10 mm and two LD modules generated in total 218 (max.) kW peak power with 2.6kW/cm 2 peak intensity at 10 Hz repetition rate. We have obtained in a preliminary experiment a 8.5 J output energy at 0.5 Hz with beam quality of 2 times diffraction limited far-field pattern, which nearly confirmed our conceptual design. (author)

  10. Electron beam pumped KrF lasers for fusion energy

    International Nuclear Information System (INIS)

    Sethian, J.D.; Friedman, M.; Giuliani, J.L. Jr.; Lehmberg, R.H.; Obenschain, S.P.; Kepple, P.; Wolford, M.; Hegeler, F.; Swanekamp, S.B.; Weidenheimer, D.; Welch, D.; Rose, D.V.; Searles, S.

    2003-01-01

    In this paper, we describe the development of electron beam pumped KrF lasers for inertial fusion energy. KrF lasers are an attractive driver for fusion, on account of their demonstrated very high beam quality, which is essential for reducing imprint in direct drive targets; their short wavelength (248 nm), which mitigates the growth of plasma instabilities; and their modular architecture, which reduces development costs. In this paper we present a basic overview of KrF laser technology as well as current research and development in three key areas: electron beam stability and transport; KrF kinetics and laser propagation; and pulsed power. The work will be cast in context of the two KrF lasers at the Naval Research Laboratory, The Nike Laser (5 kJ, single shot), and The Electra Laser (400-700 J repetitively pulsed)

  11. Fluid mechanics of fusion lasers. Final technical report

    International Nuclear Information System (INIS)

    Shwartx, J.; Golik, R.J.; Merkle, C.L.; Ausherman, D.R.; Fishman, E.

    1978-04-01

    The primary objective of this study is to define the fluid mechanical requirements for a repetitively-pulsed high energy laser that may be used as a driver in an inertial confinement fusion system designed for electric power generation. Emphasis was placed on defining conceptual designs of efficient laser flow systems that are capable of conserving gas and minimizing operating power requirements. The development of effective pressure wave suppression concepts to produce acceptable beam quality for fusion applications was also considered

  12. The Sustainable Nuclear Future: Fission and Fusion E.M. Campbell Logos Technologies

    Science.gov (United States)

    Campbell, E. Michael

    2010-02-01

    Global industrialization, the concern over rising CO2 levels in the atmosphere and other negative environmental effects due to the burning of hydrocarbon fuels and the need to insulate the cost of energy from fuel price volatility have led to a renewed interest in nuclear power. Many of the plants under construction are similar to the existing light water reactors but incorporate modern engineering and enhanced safety features. These reactors, while mature, safe and reliable sources of electrical power have limited efficiency in converting fission power to useful work, require significant amounts of water, and must deal with the issues of nuclear waste (spent fuel), safety, and weapons proliferation. If nuclear power is to sustain its present share of the world's growing energy needs let alone displace carbon based fuels, more than 1000 reactors will be needed by mid century. For this to occur new reactors that are more efficient, versatile in their energy markets, require minimal or no water, produce less waste and more robust waste forms, are inherently safe and minimize proliferation concerns will be necessary. Graphite moderated, ceramic coated fuel, and He cooled designs are reactors that can satisfy these requirements. Along with other generation IV fast reactors that can further reduce the amounts of spent fuel and extend fuel resources, such a nuclear expansion is possible. Furthermore, facilities either in early operations or under construction should demonstrate the next step in fusion energy development in which energy gain is produced. This demonstration will catalyze fusion energy development and lead to the ultimate development of the next generation of nuclear reactors. In this presentation the role of advanced fission reactors and future fusion reactors in the expansion of nuclear power will be discussed including synergies with the existing worldwide nuclear fleet. )

  13. Block-free optical quantum Banyan network based on quantum state fusion and fission

    International Nuclear Information System (INIS)

    Zhu Chang-Hua; Meng Yan-Hong; Quan Dong-Xiao; Zhao Nan; Pei Chang-Xing

    2014-01-01

    Optical switch fabric plays an important role in building multiple-user optical quantum communication networks. Owing to its self-routing property and low complexity, a banyan network is widely used for building switch fabric. While, there is no efficient way to remove internal blocking in a banyan network in a classical way, quantum state fusion, by which the two-dimensional internal quantum states of two photons could be combined into a four-dimensional internal state of a single photon, makes it possible to solve this problem. In this paper, we convert the output mode of quantum state fusion from spatial-polarization mode into time-polarization mode. By combining modified quantum state fusion and quantum state fission with quantum Fredkin gate, we propose a practical scheme to build an optical quantum switch unit which is block free. The scheme can be extended to building more complex units, four of which are shown in this paper. (general)

  14. Method for mounting laser fusion targets for irradiation

    Science.gov (United States)

    Fries, R. Jay; Farnum, Eugene H.; McCall, Gene H.

    1977-07-26

    Methods for preparing laser fusion targets of the ball-and-disk type are disclosed. Such targets are suitable for irradiation with one or two laser beams to produce the requisite uniform compression of the fuel material.

  15. Advanced lasers for fusion applications

    International Nuclear Information System (INIS)

    Krupke, W.F.

    1978-11-01

    Projections indicate that MJ/MW laser systems, operating with efficiencies in escess of 1 percent, are required to drive laser fusion power reactors. Moreover, a premium in pellet performance is anticipated as the wavelength of the driver laser system is decreased. Short wavelength laser systems based on atomic selenium (lambda = 0.49μ), terbium molcular vapors (0.55μ), thulium doped dielectric solids (0.46μ), and on pulse compressions of KrF excimer laser radiaton (0.27μ) have been proposed and studied for this purpose. The technological scalability and efficiency of each of these systems is examined in this paper. All of these systems are projected to meet minimum systems requirements. Amont them, the pulse-compressed KrF system is projected to have the highest potential efficiency (6%) and the widest range of systems design options

  16. Pre-Amplifier Module for Laser Inertial Confinement Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Heebner, J E; Bowers, M W

    2008-02-06

    The Pre-Amplifier Modules (PAMs) are the heart of the National Ignition Facility (NIF), providing most of the energy gain for the most energetic laser in the world. Upon completion, NIF will be the only laboratory in which scientists can examine the fusion processes that occur inside stars, supernovae, and exploding nuclear weapons and that may someday serve as a virtually inexhaustible energy source for electricity. Consider that in a fusion power plant 50 cups of water could provide the energy comparable to 2 tons of coal. Of paramount importance for achieving laser-driven fusion ignition with the least energy input is the synchronous and symmetric compression of the target fuel--a condition known as laser power balance. NIF's 48 PAMs thus must provide energy gain in an exquisitely stable and consistent manner. While building one module that meets performance requirements is challenging enough, our design has already enabled the construction and fielding of 48 PAMs that are stable, uniform, and interchangeable. PAM systems are being tested at the University of Rochester's Laboratory for Laser Energetics, and the Atomic Weapons Enterprise of Great Britain has purchased the PAM power system.

  17. Liquid metal coolants for fusion-fission hybrid system: A neutronic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Renato V.A.; Velasquez, Carlos E.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L., E-mail: claubia@nuclear.ufmg.br [Universidade de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Barros, Graiciany P. [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Based on a work already published by the UFMG Nuclear Engineering Department, it was suggested to use different coolant materials in a fusion-fission system after a fuel burnup simulation, including that one used in reference work. The goal is to compare the neutron parameters, such as the effect multiplication factor and actinide amounts in transmutation layer, for each used coolant and find the best(s) coolant material(s) to be applied in the considered system. Results indicate that the lead and lead-bismuth coolant are the most suitable choices to be applied to cool the system. (author)

  18. Fusion reactor pumped laser

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1988-01-01

    A nuclear pumped laser is described comprising: a toroidal fusion reactor, the reactor generating energetic neutrons; an annular gas cell disposed around the outer periphery of the reactor, the cell including an annular reflecting mirror disposed at the bottom of the cell and an annular output window disposed at the top of the cell; a gas lasing medium disposed within the annular cell for generating output laser radiation; neutron reflector material means disposed around the annular cell for reflecting neutrons incident thereon back into the gas cell; neutron moderator material means disposed between the reactor and the gas cell and between the gas cell and the neutron reflector material for moderating the energy of energetic neutrons from the reactor; converting means for converting energy from the moderated neutrons to energy pumping means for pumping the gas lasing medium; and beam compactor means for receiving output laser radiation from the annular output window and generating a single output laser beam therefrom

  19. Progress of research and development of nuclear fusion and development of large nuclear fusion device technology

    International Nuclear Information System (INIS)

    1994-01-01

    In the last several years, the results of tokamak experiments were conspicuous, and the progress of plasma confinement performance, transport mechanism, divertors and impurities, helium transport and exhaust, electric current drive, magnetic field ripple effect and high speed particle transport and DT experiment are reported. The other confinement methods than tokamak, the related theories and reactor technology are described. The conceptual design of ITER was carried out by the cooperation of Japan, USA, EC and the former USSR. The projects of developing nuclear fusion in various countries, the design and the required research and development of ITER, the reconstruction and the required research and development of JT-60, JET and TFTR, the design and the required research and development of large helical device, the state of research and development of laser nuclear fusion and inversion magnetic field pinch nuclear fusion, the activities and roles of industrial circles in large nuclear fusion device technology, and the long term perspective of the technical development of nuclear fusion are described. (K.I.)

  20. Non-thermal DT yield with (D)T ICRH heating in JET

    International Nuclear Information System (INIS)

    Cottrell, G.A.; Bhatnagar, V.P.; Bures, M.; Hellsten, T.; Jacquinot, J.; Start, D.F.H.

    1989-01-01

    Projections of the (D)T fusion yield expected during fundamental ICRH heating of D in JET tritium plasmas are presented. The highest fusion multiplication factor, Q (≡P fus /P r.f. ), is achieved for a relatively high plasma density (n e0 > 5 x 10 19 m -3 ) and minority concentration ratio n D /n T ≅ 20-40% with dipole antenna (k || ∼ 7 m -1 ). The latter reduces mode conversion and maximizes the r.f. power coupled to the minority ions. We have used ray-tracing and global wave ICRH codes to calculate power deposition profiles; 80% is cyclotron damped by deuterium and 17% is coupled directly to electrons via TTMP and Landau damping. With launched r.f. power P r.f. = 12 MW deposited ∼ 0.3 m off-axis, we predict fusion powers P fus up to ∼ 8 MW for a range of JET plasmas with achieved plasma pressure N e0 T e0 - 6 x 10 20 keV m -3 and Z eff = 2. Projecting to P r.f. = 25 MW, P fus increases to 17 MW with Z eff = 2. (author)