WorldWideScience

Sample records for drying dissipative patterns

  1. Patterns and Interfaces in Dissipative Dynamics

    CERN Document Server

    Pismen, L.M

    2006-01-01

    Spontaneous pattern formation in nonlinear dissipative systems far from equilibrium is a paradigmatic case of emergent behaviour associated with complex systems. It is encountered in a great variety of settings, both in nature and technology, and has numerous applications ranging from nonlinear optics through solid and fluid mechanics, physical chemistry and chemical engineering to biology. Nature creates its variety of forms through spontaneous pattern formation and self-assembly, and this strategy is likely to be imitated by future biomorphic technologies. This book is a first-hand account by one of the leading players in this field, which gives in-depth descriptions of analytical methods elucidating the complex evolution of nonlinear dissipative systems, and brings the reader to the forefront of current research. The introductory chapter on the theory of dynamical systems is written with a view to applications of its powerful methods to spatial and spatio-temporal patterns. It is followed by two chapters t...

  2. Dissipative parametric modulation instability and pattern formation in nonlinear optical systems

    Science.gov (United States)

    Perego, A. M.; Tarasov, N.; Churkin, D. V.; Turitsyn, S. K.; Staliunas, K.

    2016-04-01

    We present the essential features of the dissipative parametric instability, in the universal complex Ginzburg- Landau equation. Dissipative parametric instability is excited through a parametric modulation of frequency dependent losses in a zig-zag fashion in the spectral domain. Such damping is introduced respectively for spectral components in the +ΔF and in the -ΔF region in alternating fashion, where F can represent wavenumber or temporal frequency depending on the applications. Such a spectral modulation can destabilize the homogeneous stationary solution of the system leading to growth of spectral sidebands and to the consequent pattern formation: both stable and unstable patterns in one- and in two-dimensional systems can be excited. The dissipative parametric instability provides an useful and interesting tool for the control of pattern formation in nonlinear optical systems with potentially interesting applications in technological applications, like the design of mode- locked lasers emitting pulse trains with tunable repetition rate; but it could also find realizations in nanophotonics circuits or in dissipative polaritonic Bose-Einstein condensates.

  3. Self-Organized Patterns in Gas-Discharge: Particle-Like Behaviour and Dissipative Solitons

    International Nuclear Information System (INIS)

    Purwins, H.-G.

    2008-01-01

    The understanding of self-organise patterns in spatially extended nonlinear dissipative systems (SOPs) is one of the most challenging subjects in modern natural sciences. In the last 20 years it turned out that research in the field of low temperature gas-discharge can help to obtain insight into important aspect of SOPs. At the same time, due to the practical relevance of plasma systems one might expect interesting applications. In the present paper the focus is on self-organised filamentary patterns in planar dc and ac systems with high ohmic and dielectric barrier, respectively. - In the discharge plane of these systems filaments show up as spots which are also referred to as dissipative solitons (DSs). In many respect experimentally detected DSs exhibit particle-like behaviour. Among other things, isolated stationary or travelling DSs, stationary, travelling or rotating 'molecules' and various kinds of many-body systems have been observed. Also scattering, generation and annihilation of DSs are frequent phenomena. - At least some of these patterns can be described quantitatively in terms of a drift diffusion model. It is also demonstrated that a simple reaction diffusion model allows for an intuitive understanding of many of the observed phenomena. At the same time this model is the basis for a theoretical foundation of the particle picture and the experimentally observed universal behaviour of SOPs. - Finally some hypothetical applications are discussed

  4. NMR spin relaxation in proteins: The patterns of motion that dissipate power to the bath

    Science.gov (United States)

    Shapiro, Yury E.; Meirovitch, Eva

    2014-04-01

    We developed in recent years the two-body coupled-rotator slowly relaxing local structure (SRLS) approach for the analysis of NMR relaxation in proteins. The two bodies/rotators are the protein (diffusion tensor D1) and the spin-bearing probe, e.g., the 15N-1H bond (diffusion tensor, D2), coupled by a local potential (u). A Smoluchowski equation is solved to yield the generic time correlation functions (TCFs), which are sums of weighted exponentials (eigenmodes). By Fourier transformation one obtains the generic spectral density functions (SDFs) which underlie the experimental relaxation parameters. The typical paradigm is to characterize structural dynamics in terms of the best-fit values of D1, D2, and u. Additional approaches we pursued employ the SRLS TCFs, SDFs, or eigenmodes as descriptors. In this study we develop yet another perspective. We consider the SDF as function of the angular velocity associated with the fluctuating fields underlying NMR relaxation. A parameter called j-fraction, which represents the relative contribution of eigenmode, i, to a given value of the SDF function at a specific frequency, ω, is defined. j-fraction profiles of the dominant eigenmodes are derived for 0 ≤ ω ≤ 1012 rad/s. They reveal which patterns of motion actuate power dissipation at given ω-values, what are their rates, and what is their relative contribution. Simulations are carried out to determine the effect of timescale separation, D1/D2, axial potential strength, and local diffusion axiality. For D1/D2 ≤ 0.01 and strong local potential of 15 kBT, power is dissipated by global diffusion, renormalized (by the strong potential) local diffusion, and probe diffusion on the surface of a cone (to be called cone diffusion). For D1/D2 = 0.1, power is dissipated by mixed eigenmodes largely of a global-diffusion-type or cone-diffusion-type, and a nearly bare renormalized-local-diffusion eigenmode. For D1/D2 > 0.1, most eigenmodes are of a mixed type. The analysis is

  5. Dissipative neurodynamics in perception forms cortical patterns that are stabilized by vortices

    Science.gov (United States)

    Freeman, Walter J.; Vitiello, Giuseppe

    2009-06-01

    In the engagement of the brain with its environment, large-scale neural interactions in brain dynamics create a mesoscopic order parameter, which is evaluated by measuring brain waves (electrocorticogram, ECoG). Such large-scale interactions emerge from the background activity of the brain that is sustained by mutual excitation in cortical populations and manifest in spatiotemporal patterns of neural activity. Band pass filtering reveals beats in ECoG power that recur at theta rates (3-7 Hz) as null spikes in log10 power. The order parameter transiently approaches zero, and the microscopic activity is both disordered and symmetric. As the null spikes terminate, the order parameter resurges and imposes a mesoscopic spatial pattern of ECoG amplitude modulation that then governs the microscopic gamma activity and retrieves the memory of a stimulus. The brain waves reveal a spatial pattern of phase modulation in the form of a cone. The dissipative many-body model of brain dynamics describes these phase cones as vortices, which are initiated by the null spikes, and which stabilize the amplitude modulated patterns embedded in the turbulent neural noise from which they emerge.

  6. NMR spin relaxation in proteins: The patterns of motion that dissipate power to the bath

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Yury E., E-mail: eva.meirovitch@biu.ac.il, E-mail: yuryeshapiro@gmail.com; Meirovitch, Eva, E-mail: eva.meirovitch@biu.ac.il, E-mail: yuryeshapiro@gmail.com [The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900-02 (Israel)

    2014-04-21

    We developed in recent years the two-body coupled-rotator slowly relaxing local structure (SRLS) approach for the analysis of NMR relaxation in proteins. The two bodies/rotators are the protein (diffusion tensor D{sub 1}) and the spin-bearing probe, e.g., the {sup 15}N−{sup 1}H bond (diffusion tensor, D{sub 2}), coupled by a local potential (u). A Smoluchowski equation is solved to yield the generic time correlation functions (TCFs), which are sums of weighted exponentials (eigenmodes). By Fourier transformation one obtains the generic spectral density functions (SDFs) which underlie the experimental relaxation parameters. The typical paradigm is to characterize structural dynamics in terms of the best-fit values of D{sub 1}, D{sub 2}, and u. Additional approaches we pursued employ the SRLS TCFs, SDFs, or eigenmodes as descriptors. In this study we develop yet another perspective. We consider the SDF as function of the angular velocity associated with the fluctuating fields underlying NMR relaxation. A parameter called j-fraction, which represents the relative contribution of eigenmode, i, to a given value of the SDF function at a specific frequency, ω, is defined. j-fraction profiles of the dominant eigenmodes are derived for 0 ≤ ω ≤ 10{sup 12} rad/s. They reveal which patterns of motion actuate power dissipation at given ω-values, what are their rates, and what is their relative contribution. Simulations are carried out to determine the effect of timescale separation, D{sub 1}/D{sub 2}, axial potential strength, and local diffusion axiality. For D{sub 1}/D{sub 2} ≤ 0.01 and strong local potential of 15 k{sub B}T, power is dissipated by global diffusion, renormalized (by the strong potential) local diffusion, and probe diffusion on the surface of a cone (to be called cone diffusion). For D{sub 1}/D{sub 2} = 0.1, power is dissipated by mixed eigenmodes largely of a global-diffusion-type or cone-diffusion-type, and a nearly bare renormalized

  7. Print-to-pattern dry film photoresist lithography

    International Nuclear Information System (INIS)

    Garland, Shaun P; Murphy, Terrence M Jr; Pan, Tingrui

    2014-01-01

    Here we present facile microfabrication processes, referred to as print-to-pattern dry film photoresist (DFP) lithography, that utilize the combined advantages of wax printing and DFP to produce micropatterned substrates with high resolution over a large surface area in a non-cleanroom setting. The print-to-pattern methods can be performed in an out-of-cleanroom environment making microfabrication much more accessible to minimally equipped laboratories. Two different approaches employing either wax photomasks or wax etchmasks from a solid ink desktop printer have been demonstrated that allow the DFP to be processed in a negative tone or positive tone fashion, respectively, with resolutions of 100 µm. The effect of wax melting on resolution and as a bonding material was also characterized. In addition, solid ink printers have the capacity to pattern large areas with high resolution, which was demonstrated by stacking DFP layers in a 50 mm × 50 mm woven pattern with 1 mm features. By using an office printer to generate the masking patterns, the mask designs can be easily altered in a graphic user interface to enable rapid prototyping. (technical note)

  8. A matrix sensitive gas chromatography method for the analysis of pymetrozine in red pepper: application to dissipation pattern and PHRL.

    Science.gov (United States)

    Jang, Jin; Rahman, Md Musfiqur; Ko, Ah-Young; Abd El-Aty, A M; Park, Jong-Hyouk; Cho, Soon-Kil; Shim, Jae-Han

    2014-03-01

    A gas chromatography (GC) method for the analysis of pymetrozine was developed after utilizing matrix enhancement effect of pymetrozine to nitrogen phosphorus detector (NPD). Samples were extracted with acetonitrile and purified through primary secondary amine (PSA) and C18 dispersive sorbent. Matrix-matched calibration curve prepared after spiking standard pymetrozine across the studied range of concentrations (0.003-1.0mg/L) into blank red pepper extract was excellent with a determination coefficients (R(2))=1. Recovery studies were carried out at three concentration levels (0.04, 0.4, and 2.0mg/kg, n=3) and the rates were ranged between 77.2% and 109.1%, with relative standard deviations ranged from 1.3% to 16.4%. The developed method was applied to field samples to characterize the dissipation pattern, half life, and pre-harvest residue limits (PHRL). The dissipation rates of the analyte were ascribed to first-order kinetics with half-life of 2.7 and 2.5days for recommended and double the recommended doses. From the PHRL curve, we could predict that if the residue level of pymetrozine is below the 1.23mg/kg at 10days or 0.71mg/kg at 7days before harvest, then the residues will be below the maximum residue limits (MRL=0.2mg/kg) established by the Korea Food and Drug Administration (KFDA). Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Standing crop dry matter accumulation and quality patterns of ...

    African Journals Online (AJOL)

    Nine-week production curves and quality values of eight subtropical pasture species were studied under supplemental spray irrigation to characterize their productive capacity, periodicity and quality.All species exhibited a slow dry matter regrowth rate for two to three weeks after defoliation to 7,5 or 10 cm height. Thereafter ...

  10. Non-equilibrium thermodynamical description of rhythmic motion patterns of active systems: a canonical-dissipative approach.

    Science.gov (United States)

    Dotov, D G; Kim, S; Frank, T D

    2015-02-01

    We derive explicit expressions for the non-equilibrium thermodynamical variables of a canonical-dissipative limit cycle oscillator describing rhythmic motion patterns of active systems. These variables are statistical entropy, non-equilibrium internal energy, and non-equilibrium free energy. In particular, the expression for the non-equilibrium free energy is derived as a function of a suitable control parameter. The control parameter determines the Hopf bifurcation point of the deterministic active system and describes the effective pumping of the oscillator. In analogy to the equilibrium free energy of the Landau theory, it is shown that the non-equilibrium free energy decays as a function of the control parameter. In doing so, a similarity between certain equilibrium and non-equilibrium phase transitions is pointed out. Data from an experiment on human rhythmic movements is presented. Estimates for pumping intensity as well as the thermodynamical variables are reported. It is shown that in the experiment the non-equilibrium free energy decayed when pumping intensity was increased, which is consistent with the theory. Moreover, pumping intensities close to zero could be observed at relatively slow intended rhythmic movements. In view of the Hopf bifurcation underlying the limit cycle oscillator model, this observation suggests that the intended limit cycle movements were actually more similar to trajectories of a randomly perturbed stable focus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Analytical approach, dissipation pattern and risk assessment of pesticide residue in green leafy vegetables: A comprehensive review.

    Science.gov (United States)

    Farha, Waziha; Abd El-Aty, A M; Rahman, Md Musfiqur; Jeong, Ji Hoon; Shin, Ho-Chul; Wang, Jing; Shin, Sung Shik; Shim, Jae-Han

    2018-01-01

    The category of 'leafy vegetables' comprises a wide range of plants, including cabbage, lettuce, leeks, spinach, Swiss chard and kale, and it forms a significant component of the human diet. Typically, leafy vegetables are low in calories and fat, are great sources of vitamins, protein, dietary fibre and minerals (including iron, calcium, and nitrates), and are rich in phytochemicals. To counter the impact of pests on vegetables, a broad variety of pesticides are used. Because of their large surface areas, leafy vegetables are expected to have high residual pesticide levels. As such, a sound analytical approach is needed to detect and quantify residue levels that are equal to or lower than the maximum residue limits, thus rendering the products safe for consumption. Overall, leafy vegetables consumed raw (after a tap water wash only), boiled or steamed contribute 2% of total vegetable consumption globally, and they might have a comparatively greater influence on health than cereal ingestion. Consequently, in this review paper, we highlight the importance of leafy vegetables, the pesticides that are commonly used on them and various analytical techniques, including sample preparation, extraction, clean-up and final detection. The effects on dissipation patterns, pre-harvest residue limits and safety/risks imposed by various pesticides are also reviewed and discussed. In conclusion, environmentally friendly extraction methods coupled with high-throughput techniques with greater reproducibility and lower uncertainty are needed for quantifying residues in leafy vegetables at very low concentrations. Commercial and household food preparation, such as washing, peeling, blanching and cooking are effective in removing most of the pesticide residues that are loosely attached on vegetables. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Gecko Adhesion on Wet and Dry Patterned Substrates.

    Directory of Open Access Journals (Sweden)

    Alyssa Y Stark

    Full Text Available Perhaps one of the most astounding characteristics of the gecko adhesive system is its versatility. Geckos can locomote across complex substrates in a variety of conditions with apparent ease. In contrast, many of our synthetic pressure sensitive adhesives fail on substrates that are dirty, wet or rough. Although many studies have investigated the effect of environmental challenges on performance, the interaction of multiple, potentially compromising variables is studied less often. Here we focus on substrate structure and surface water, both of which are highly relevant to the biological system and to synthetic design. To do this we utilized a highly controlled, patterned substrate (Sharklet®, by Sharklet® Technologies Inc.. This allowed us to test independently and jointly the effects of reduced surface area substrates, with a defined pattern, on adhesion in both air and water. Our results show that adhesion is not significantly impaired in air, whereas surface area and pattern significantly affect adhesion in water. These findings highlight the need to study multiple parameters that are relevant to the gecko adhesive system to further improve our understanding of the biological system and to design better, more versatile synthetics.

  13. Energy dissipators

    National Research Council Canada - National Science Library

    Vischer, D. L; Hager, Willi H; Hager, W. H

    1995-01-01

    .... the book comprises chapters in farious fields such as hydraulic jump, stilling basins, ski jumps and plunge pools but introduces also a general account on various methods of dissipation, as well...

  14. Seasonal Patterns of Dry Deposition at a High-Elevation Site in the Colorado Rocky Mountains

    Science.gov (United States)

    Oldani, Kaley M.; Mladenov, Natalie; Williams, Mark W.; Campbell, Cari M.; Lipson, David A.

    2017-10-01

    In the Colorado Rocky Mountains, high-elevation barren soils are deficient in carbon (C) and phosphorus (P) and enriched in nitrogen (N). The seasonal variability of dry deposition and its contributions to alpine elemental budgets is critical to understanding how dry deposition influences biogeochemical cycling in high-elevation environments. In this 2 year study, we evaluated dry and wet deposition inputs to the Niwot Ridge Long Term Ecological Research (NWT LTER) site in the Colorado Rocky Mountains. The total organic C flux in wet + dry (including soluble and particulate C) deposition was >30 kg C ha-1 yr-1 and represents a substantial input for this C-limited environment. Our side-by-side comparison of dry deposition collectors with and without marble insert indicated that the insert improved retention of dry deposition by 28%. Annual average dry deposition fluxes of water-soluble organic carbon (4.25 kg C ha-1 yr-1) and other water-soluble constituents, including ammonium (0.16 kg NH4+ha-1 yr-1), nitrate (1.99 kg NO3- ha-1 yr-1), phosphate (0.08 kg PO43- ha-1 yr-1), and sulfate (1.20 kg SO42- ha-1 yr-1), were comparable to those in wet deposition, with highest values measured in the summer. Backward trajectory analyses implicate air masses passing through the arid west and Four Corners, USA, as dominant source areas for dry deposition, especially in spring months. Synchronous temporal patterns of deposition observed at the NWT LTER site and a distant Rocky Mountain National Park Clean Air Status and Trends Network site indicate that seasonal dry deposition patterns are regional phenomena with important implications for the larger Rocky Mountain region.

  15. Do competitive interactions in dry heathlands explain plant abundance patterns and species coexistence?

    DEFF Research Database (Denmark)

    Ransijn, Johannes; Damgaard, Christian; Schmidt, Inger K

    2015-01-01

    Plant community patterns in space and time may be explained by the interactions between competing plant species. The presented study investigates this in a nutrient and species poor ecosystem. The study presents a methodology for inferring competitive interactions from yearly vegetation inventories...... and uses this to assess the outcome of competitive interactions and to predict community patterns and dynamics in a Northwest-European dry heathland. Inferred competitive interactions from five consecutive years of measurements in permanent vegetation frames at a single dry heathland site were used...... to predict the community dynamics of C. vulgaris and D. flexuosa. This was compared with the observed plant community structure at 198 Danish dry heathland sites. Interspecific competition will most likely lead to competitive exclusion of D. flexuosa at the observed temporal and spatial scale...

  16. Dissipation Pattern, Processing Factors, and Safety Evaluation for Dimethoate and Its Metabolite (Omethoate in Tea (Camellia Sinensis.

    Directory of Open Access Journals (Sweden)

    Rong Pan

    Full Text Available Residue levels of dimethoate and its oxon metabolite (omethoate during tea planting, manufacturing, and brewing were investigated using a modified QuEChERS sample preparation and gas chromatography. Dissipation of dimethoate and its metabolite in tea plantation followed the first-order kinetic with a half-life of 1.08-1.27 d. Tea manufacturing has positive effects on dimethoate dissipation. Processing factors of dimethoate are in the range of 2.11-2.41 and 1.41-1.70 during green tea and black tea manufacturing, respectively. Omethoate underwent generation as well as dissipation during tea manufacturing. Sum of dimethoate and omethoate led to a large portion of 80.5-84.9% transferring into tea infusion. Results of safety evaluation indicated that omethoate could bring higher human health risk than dimethoate due to its higher hazard quotient by drinking tea. These results would provide information for the establishment of maximum residue limit and instruction for the application of dimethoate formulation on tea crop.

  17. Dissipation Pattern, Processing Factors, and Safety Evaluation for Dimethoate and Its Metabolite (Omethoate) in Tea (Camellia Sinensis)

    Science.gov (United States)

    Pan, Rong; Chen, Hong-Ping; Zhang, Ming-Lu; Wang, Qing-Hua; Jiang, Ying; Liu, Xin

    2015-01-01

    Residue levels of dimethoate and its oxon metabolite (omethoate) during tea planting, manufacturing, and brewing were investigated using a modified QuEChERS sample preparation and gas chromatography. Dissipation of dimethoate and its metabolite in tea plantation followed the first-order kinetic with a half-life of 1.08–1.27 d. Tea manufacturing has positive effects on dimethoate dissipation. Processing factors of dimethoate are in the range of 2.11–2.41 and 1.41–1.70 during green tea and black tea manufacturing, respectively. Omethoate underwent generation as well as dissipation during tea manufacturing. Sum of dimethoate and omethoate led to a large portion of 80.5–84.9% transferring into tea infusion. Results of safety evaluation indicated that omethoate could bring higher human health risk than dimethoate due to its higher hazard quotient by drinking tea. These results would provide information for the establishment of maximum residue limit and instruction for the application of dimethoate formulation on tea crop. PMID:26406463

  18. Effects of Seed Proportion and Planting Pattern on Dry Matter Yield ...

    African Journals Online (AJOL)

    Panicum coloratum (PC) and Stylosanthes guianensis (SG) mixed pasture was established to assess the effect of seed proportion and planting pattern on Dry Matter Yield (DMY), compatibility and nutrient content of the mixed stand. Seeds of PC and SG were mixed as 50%PC+50% SG and 25% PC+75% SG and sown in ...

  19. Pattern of bone loss in dry Mandibles of individuals who died before ...

    African Journals Online (AJOL)

    Pattern of bone loss in dry Mandibles of individuals who died before 1957. ... The total mean bone loss for all teeth was 2.51 (SD 1.15) with a range of 0.85-5.80. ... Thus susceptibility to periodontal disease is evident in a small proportion of individuals even in populations not exposed to modern diet and formal dental ...

  20. Effect of heat source on the growth of dendritic drying patterns

    Indian Academy of Sciences (India)

    2015-02-05

    Feb 5, 2015 ... Shining a tightly-focussed but low-powered laser beam on an absorber dispersed in a biological fluid gives rise to spectacular growth of dendritic patterns. These result from localized drying of the fluid because of efficient absorption and conduction of optical energy by the absorber. We have carried out ...

  1. Domain patterns and hysteresis in phase-transforming solids: analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation

    Czech Academy of Sciences Publication Activity Database

    DeSimone, A.; Kružík, Martin

    2013-01-01

    Roč. 8, č. 2 (2013), s. 481-499 ISSN 1556-1801 R&D Projects: GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985556 Keywords : hysteresis * shape memory Subject RIV: BA - General Mathematics Impact factor: 0.952, year: 2013 http://library.utia.cas.cz/separaty/2013/MTR/kruzik-domain patterns and hysteresis in phase-transforming solids analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation.pdf

  2. [Effects of irrigation and planting pattern on winter wheat water consumption characteristics and dry matter production].

    Science.gov (United States)

    Dong, Hao; Chen, Yu-Hai; Zhou, Xun-Bo

    2013-07-01

    Taking high-yield winter wheat cultivar 'Jimai 22' as test material, a field experiment was conducted in 2008-2010 to study the effects of different irrigation and planting modes on the water consumption characteristics and dry matter accumulation and distribution of winter wheat. Three planting patterns (uniform row, wide-narrow row, and furrow) and four irrigation schedules (no irrigation, W0; irrigation at jointing stage, W1; irrigation at jointing and anthesis stages, W2; and irrigation at jointing, anthesis, and milking stages, W3; with 60 mm per irrigation) were installed. With increasing amount of irrigation, the total water consumption and the ratio of irrigation water to total water consumption under different planting patterns all increased, while the soil water consumption and its ratio to total water consumption decreased significantly. As compared with W0, the other three irrigation schedules had a higher dry matter accumulation after anthesis and a higher grain yield, but a lower water use efficiency (WUE). Under the same irrigation schedules, furrow pattern had higher water consumption ratio, grain yield, and WUE. Taking the grain yield and WUE into consideration, furrow pattern combined with irrigation at jointing and anthesis stages would be the optimal water-saving and planting modes for the winter wheat production in North China Plain.

  3. Vegetation patterns of dry grasslands and rocky grounds on Vidlič Mountain (southeastern Serbia

    Directory of Open Access Journals (Sweden)

    Marković Marija

    2015-01-01

    Full Text Available This paper studies vegetation patterns of dry grasslands and rocky grounds on the limestone terrain of Mt. Vidlič, which borders the southern edge of the Balkans Mountain in Serbia, known as Stara planina. Having conducted field research, we presented the obtained results in the form of a phytosociological table. Dry grassland and rocky ground vegetation belongs to the familiar alliances of Festucion valesiacae (Festuco-Brometea and Seslerion rigidae (Festuco-Seslerietea. Phytosociological data were analyzed using cluster analysis and evaluation of biodiversity indices. The stands of dry grasslands and rocky grounds were classified according to their floristic composition. Altitude proved to be the major factor in their grouping by floristic similarity. In other words, there is an increase in biodiversity with an increasing altitude. The importance of dry grasslands and rocky grounds of Mt.Vidlič lies primarily in their role in erosion control, but their diversity makes them an important source of medicinal herbs and grazing land. [Projekat Ministarstva nauke Republike Srbije, br. OI 171025, br. OI 173029 i br. TR 31070

  4. Diversity patterns, environmental drivers and changes in vegetation composition in dry inter-Andean valleys

    DEFF Research Database (Denmark)

    Quintana, Catalina; Girardello, Marco; Barfod, Anders

    2016-01-01

    Aims We studied diversity, patterns of endemism and turnover of vegetation composition in dry inter-Andean valleys (DIAVs) where little is known about the influence of the abiotic drivers controlling plant species composition and occurrences, and the life forms that contribute most to α- and β......-diversity correlated with latitude? (iii) what are the major environmental drivers controlling spatial patterns in species composition and occurrence? Methods We established 63 transects of 5 × 100 m in areas with DIAV vegetation, impacted as little as possible by human activities. In each transect, all mature trees...... results further highlight the influence of disturbance, water availability and low temperature on plant species composition and occurrence. We also found significant, contrasting patterns in responses to environmental drivers, when analyzing our data separately by life form. Our results show...

  5. Mixed-Severity Fire Fosters Heterogeneous Spatial Patterns of Conifer Regeneration in a Dry Conifer Forest

    Directory of Open Access Journals (Sweden)

    Sparkle L. Malone

    2018-01-01

    Full Text Available We examined spatial patterns of post-fire regenerating conifers in a Colorado, USA, dry conifer forest 11–12 years following the reintroduction of mixed-severity fire. We mapped and measured all post-fire regenerating conifers, as well as all other post-fire regenerating trees and all residual (i.e., surviving trees, in three 4-ha plots following the 2002 Hayman Fire. Residual tree density ranged from 167 to 197 trees ha−1 (TPH, and these trees were clustered at distances up to 30 m. Post-fire regenerating conifers, which ranged in density from 241 to 1036 TPH, were also clustered at distances up to at least 30 m. Moreover, residual tree locations drove post-fire regenerating conifer locations, with the two showing a pattern of repulsion. Topography and post-fire sprouting tree species locations further drove post-fire conifer regeneration locations. These results provide a foundation for anticipating how the reintroduction of mixed-severity fire may affect long-term forest structure, and also yield insights into how historical mixed-severity fire may have regulated the spatially heterogeneous conditions commonly described for pre-settlement dry conifer forests of Colorado and elsewhere.

  6. Systems with small dissipation

    CERN Document Server

    Braginsky, V B; Panov, V I

    1985-01-01

    Introduction ; mechanical oscillators with small dissipation ; electromagnetic resonators with small dissipation ; high-quality electromagnetic resonators in physical experiments ; mechanical oscillators in physical experiments

  7. Spatial stabilization and intensification of moistening and drying rate patterns under future climate change

    Science.gov (United States)

    Chavaillaz, Yann; Joussaume, Sylvie; Bony, Sandrine; Braconnot, Pascale

    2016-08-01

    Precipitation projections are usually presented as the change in precipitation between a fixed current baseline and a particular time in the future. However, upcoming generations will be affected in a way probably more related to the moving trend in precipitation patterns, i.e. to the rate and the persistence of regional precipitation changes from one generation to the next, than to changes relative to a fixed current baseline. In this perspective, we propose an alternative characterization of the future precipitation changes predicted by general circulation models, focusing on the precipitation difference between two subsequent 20-year periods. We show that in a business-as-usual emission pathway, the moistening and drying rates increase by 30-40 %, both over land and ocean. As we move further over the twenty-first century, more regions exhibit a significant rate of precipitation change, while the patterns become geographically stationary and the trends persistent. The stabilization of the geographical rate patterns that occurs despite the acceleration of global warming can be physically explained: it results from the increasing contribution of thermodynamic processes compared to dynamic processes in the control of precipitation change. We show that such an evolution is already noticeable over the last decades, and that it could be reversed if strong mitigation policies were quickly implemented. The combination of intensification and increasing persistence of precipitation rate patterns may affect the way human societies and natural ecosystems adapt to climate change, especially in the Mediterranean basin, in Central America, in South Asia and in the Arctic.

  8. 18O Spatial Patterns of Vein Xylem Water, Leaf Water, and Dry Matter in Cotton Leaves

    Science.gov (United States)

    Gan, Kim Suan; Wong, Suan Chin; Yong, Jean Wan Hong; Farquhar, Graham Douglas

    2002-01-01

    Three leaf water models (two-pool model, Péclet effect, and string-of-lakes) were assessed for their robustness in predicting leaf water enrichment and its spatial heterogeneity. This was achieved by studying the 18O spatial patterns of vein xylem water, leaf water, and dry matter in cotton (Gossypium hirsutum) leaves grown at different humidities using new experimental approaches. Vein xylem water was collected from intact transpiring cotton leaves by pressurizing the roots in a pressure chamber, whereas the isotopic content of leaf water was determined without extracting it from fresh leaves with the aid of a purpose-designed leaf punch. Our results indicate that veins have a significant degree of lateral exchange with highly enriched leaf water. Vein xylem water is thus slightly, but progressively enriched in the direction of water flow. Leaf water enrichment is dependent on the relative distances from major veins, with water from the marginal and intercostal regions more enriched and that next to veins and near the leaf base more depleted than the Craig-Gordon modeled enrichment of water at the sites of evaporation. The spatial pattern of leaf water enrichment varies with humidity, as expected from the string-of-lakes model. This pattern is also reflected in leaf dry matter. All three models are realistic, but none could fully account for all of the facets of leaf water enrichment. Our findings acknowledge the presence of capacitance in the ground tissues of vein ribs and highlight the essential need to incorporate Péclet effects into the string-of-lakes model when applying it to leaves. PMID:12376664

  9. (18)O spatial patterns of vein xylem water, leaf water, and dry matter in cotton leaves.

    Science.gov (United States)

    Gan, Kim Suan; Wong, Suan Chin; Yong, Jean Wan Hong; Farquhar, Graham Douglas

    2002-10-01

    Three leaf water models (two-pool model, Péclet effect, and string-of-lakes) were assessed for their robustness in predicting leaf water enrichment and its spatial heterogeneity. This was achieved by studying the (18)O spatial patterns of vein xylem water, leaf water, and dry matter in cotton (Gossypium hirsutum) leaves grown at different humidities using new experimental approaches. Vein xylem water was collected from intact transpiring cotton leaves by pressurizing the roots in a pressure chamber, whereas the isotopic content of leaf water was determined without extracting it from fresh leaves with the aid of a purpose-designed leaf punch. Our results indicate that veins have a significant degree of lateral exchange with highly enriched leaf water. Vein xylem water is thus slightly, but progressively enriched in the direction of water flow. Leaf water enrichment is dependent on the relative distances from major veins, with water from the marginal and intercostal regions more enriched and that next to veins and near the leaf base more depleted than the Craig-Gordon modeled enrichment of water at the sites of evaporation. The spatial pattern of leaf water enrichment varies with humidity, as expected from the string-of-lakes model. This pattern is also reflected in leaf dry matter. All three models are realistic, but none could fully account for all of the facets of leaf water enrichment. Our findings acknowledge the presence of capacitance in the ground tissues of vein ribs and highlight the essential need to incorporate Péclet effects into the string-of-lakes model when applying it to leaves.

  10. Deep UV patterning of acrylic masters for molding biomimetic dry adhesives

    Science.gov (United States)

    Sameoto, D.; Menon, C.

    2010-11-01

    We present a novel fabrication method for the production of biomimetic dry adhesives that allows enormous variation in fiber shapes and sizes. The technology is based on deep-UV patterning of commercial acrylic with semi-collimated light available from germicidal lamps, and combined careful processing conditions, material selection and novel developer choices to produce relatively high-aspect-ratio fibers with overhanging caps on large areas. These acrylic fibers are used as a master mold for subsequent silicone rubber negative mold casting. Because the bulk acrylic demonstrates little inherent adhesion to silicone rubbers, the master molds created in this process do not require any surface treatments to achieve high-yield demolding of interlocked structures. Multiple polymers can be cast from silicone rubber negative molds and this process could be used to structure smart materials on areas over multiple square feet. Using direct photopatterning of acrylic allows many of the desired structures for biomimetic dry adhesives to be produced with relative ease compared to silicon-based molding processes, including angled fibers and hierarchical structures. Optimized fiber shapes for a variety of polymers can be produced using this process, and adhesion measurements on a well-characterized polyurethane, ST-1060, are used to determine the effect of fiber geometry on adhesion performance.

  11. Deep UV patterning of acrylic masters for molding biomimetic dry adhesives

    International Nuclear Information System (INIS)

    Sameoto, D; Menon, C

    2010-01-01

    We present a novel fabrication method for the production of biomimetic dry adhesives that allows enormous variation in fiber shapes and sizes. The technology is based on deep-UV patterning of commercial acrylic with semi-collimated light available from germicidal lamps, and combined careful processing conditions, material selection and novel developer choices to produce relatively high-aspect-ratio fibers with overhanging caps on large areas. These acrylic fibers are used as a master mold for subsequent silicone rubber negative mold casting. Because the bulk acrylic demonstrates little inherent adhesion to silicone rubbers, the master molds created in this process do not require any surface treatments to achieve high-yield demolding of interlocked structures. Multiple polymers can be cast from silicone rubber negative molds and this process could be used to structure smart materials on areas over multiple square feet. Using direct photopatterning of acrylic allows many of the desired structures for biomimetic dry adhesives to be produced with relative ease compared to silicon-based molding processes, including angled fibers and hierarchical structures. Optimized fiber shapes for a variety of polymers can be produced using this process, and adhesion measurements on a well-characterized polyurethane, ST-1060, are used to determine the effect of fiber geometry on adhesion performance

  12. Dry limit to photosynthesis and cyanobacterial spatial pattern in the Atacama Desert

    Science.gov (United States)

    Warren-Rhodes, K. A.; Pointing, S. B.; Ewing, S.; Lacap, D.; Gomez-Silva, B.; Amundson, R.; Friedmann, E. I.; McKay, C. P.

    2005-12-01

    Hypolithic autotrophs inhabit translucent rocks in the world`'s most extreme hot and cold deserts. Across a rainfall gradient in the Atacama, we measured a three-fold decline in the molecular diversity of cyanobacterial communities and a drop in their abundance from 28% in relatively wet sites to 0.08% in the driest core. Like plants, hypoliths appear to exhibit traits of self-organized patchiness (aggregated spatial patterns) that tightly correlate with rainfall. Rare cyanobacteria in the core live slowly (3,200 y turnover times) and survive in spatially isolated patches of self-augmented fertility, with the dry limit to their survival occurring at ~Mars but may have existed in rare oases in the past. The spatial distributions of terrestrial desert microbes should be considered in the remote search for life on Mars.

  13. Inhalation performance of physically mixed dry powders evaluated with a simple simulator for human inspiratory flow patterns.

    Science.gov (United States)

    Hira, Daiki; Okuda, Tomoyuki; Kito, Daisuke; Ishizeki, Kazunori; Okada, Toyoko; Okamoto, Hirokazu

    2010-10-01

    To construct a simple simulator reproducing human inspiratory flow patterns and use it to evaluate the inhalation performance of active ingredient particle-carrier particle systems (physically mixed dry powders). Inspiratory flow patterns were collected and analyzed using a flow recorder. The simulator was constructed using an airtight container, a valve, and a connecting tube. Several of the patterns reproduced by the simulator were compared with those recorded. In addition, the influence of inspiratory flow on the inhalation performance of physically mixed dry powders composed of salbutamol sulfate (SS) and coarse lactose monohydrate was investigated using a twin-stage liquid impinger (TSLI) equipped with the simulator. Human inspiratory flow patterns could be characterized by three parameters: inspiratory flow volume (area under the flow rate-time curve (AUC)), flow increase rate (FIR), and peak flow rate (PFR). The patterns could be reproduced using the simulator. Testing with the simulator in vitro revealed that PFR, but not FIR or AUC, greatly affected the inhalation performance of physically mixed dry powders. The simulator is simple to construct and can schematically reproduce human inspiratory flow patterns. Testing with a TSLI and the simulator is useful to evaluate dry powder formulations for clinical application.

  14. Pharmaceutical aerosols deposition patterns from a Dry Powder Inhaler: Euler Lagrangian prediction and validation.

    Science.gov (United States)

    Ravi Kannan, Ravishekar; Przekwas, A J; Singh, Narender; Delvadia, Renishkumar; Tian, Geng; Walenga, Ross

    2017-04-01

    This study uses Computational Fluid Dynamics (CFD) to predict, analyze and validate the deposition patterns in a human lung for a Budesonide drug delivered from the Novolizer Dry Powder Inhaler device. We used a test case of known deposition patterns to validate our computational Euler Lagrangian-based deposition predictions. Two different lung models are used: (i) a basic ring-less trachea model and (ii) an advanced Human Zygote5 model. Unlike earlier attempts, the current simulations do not include the device in the computational domain. This greatly reduces the computational effort. To mimic the device, we model the inlet particle jet stream from the device as a spray entering the mouth in a conical fashion. Deposition studies in the various lung regions were performed. We were able to computationally predict and then demonstrate the enhanced deposition in the tracheal and first generation rings/ridges. The enhanced vorticity creation due to the ring structure and the geometrical design contributes to larger deposition in the Zygote5 model. These are in accord with existing data, unlike the ring-less model. Our validated results indicate the need to (i) introduce the ridges in the experimental casts and the CFD surface meshes to be anatomically consistent and obtain physiologically consistent depositions; (ii) introduce a factor to account for the recirculating lighter particles in empirical models. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. Pattern and process of prescribed fires influence effectiveness at reducing wildfire severity in dry coniferous forests

    Science.gov (United States)

    Arkle, Robert S.; Pilliod, David S.; Welty, Justin L.

    2012-01-01

    We examined the effects of three early season (spring) prescribed fires on burn severity patterns of summer wildfires that occurred 1–3 years post-treatment in a mixed conifer forest in central Idaho. Wildfire and prescribed fire burn severities were estimated as the difference in normalized burn ratio (dNBR) using Landsat imagery. We used GIS derived vegetation, topography, and treatment variables to generate models predicting the wildfire burn severity of 1286–5500 30-m pixels within and around treated areas. We found that wildfire severity was significantly lower in treated areas than in untreated areas and significantly lower than the potential wildfire severity of the treated areas had treatments not been implemented. At the pixel level, wildfire severity was best predicted by an interaction between prescribed fire severity, topographic moisture, heat load, and pre-fire vegetation volume. Prescribed fire severity and vegetation volume were the most influential predictors. Prescribed fire severity, and its influence on wildfire severity, was highest in relatively warm and dry locations, which were able to burn under spring conditions. In contrast, wildfire severity peaked in cooler, more mesic locations that dried later in the summer and supported greater vegetation volume. We found considerable evidence that prescribed fires have landscape-level influences within treatment boundaries; most notable was an interaction between distance from the prescribed fire perimeter and distance from treated patch edges, which explained up to 66% of the variation in wildfire severity. Early season prescribed fires may not directly target the locations most at risk of high severity wildfire, but proximity of these areas to treated patches and the discontinuity of fuels following treatment may influence wildfire severity and explain how even low severity treatments can be effective management tools in fire-prone landscapes.

  16. Quantum dissipation, scattering and tunneling

    International Nuclear Information System (INIS)

    Eleuterio, S.M.; Vilela Mendes, R.

    1984-01-01

    A quantization technique for dissipative systems is used to discuss one dimensional problems including tunneling with dissipation, capture in dissipative potential wells and quantum coherence. (orig.)

  17. Patterns of genetic variation across altitude in three plant species of semi-dry grasslands.

    Directory of Open Access Journals (Sweden)

    Thomas Hahn

    Full Text Available Environmental gradients caused by altitudinal gradients may affect genetic variation within and among plant populations and inbreeding within populations. Populations in the upper range periphery of a species may be important source populations for range shifts to higher altitude in response to climate change. In this study we investigate patterns of population genetic variation at upper peripheral and lower more central altitudes in three common plant species of semi-dry grasslands in montane landscapes.In Briza media, Trifolium montanum and Ranunculus bulbosus genetic diversity, inbreeding and genetic relatedness of individuals within populations and genetic differentiation among populations was characterized using AFLP markers. Populations were sampled in the Swiss Alps at 1800 (upper periphery of the study organisms and at 1200 m a.s.l. Genetic diversity was not affected by altitude and only in B. media inbreeding was greater at higher altitudes. Genetic differentiation was slightly greater among populations at higher altitudes in B. media and individuals within populations were more related to each other compared to individuals in lower altitude populations. A similar but less strong pattern of differentiation and relatedness was observed in T. montanum, while in R. bulbosus there was no effect of altitude. Estimations of population size and isolation of populations were similar, both at higher and lower altitudes.Our results suggest that altitude does not affect genetic diversity in the grassland species under study. Genetic differentiation of populations increased only slightly at higher elevation, probably due to extensive (historic gene flow among altitudes. Potentially pre-adapted genes might therefore spread easily across altitudes. Our study indicates that populations at the upper periphery are not genetically depauperate or isolated and thus may be important source populations for migration under climate change.

  18. Dissipation of Tidal Energy

    Science.gov (United States)

    2002-01-01

    The moon's gravity imparts tremendous energy to the Earth, raising tides throughout the global oceans. What happens to all this energy? This question has been pondered by scientists for over 200 years, and has consequences ranging from the history of the moon to the mixing of the oceans. Richard Ray at NASA's Goddard Space Flight Center, Greenbelt, Md. and Gary Egbert of the College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Ore. studied six years of altimeter data from the TOPEX/Poseidon satellite to address this question. According to their report in the June 15 issue of Nature, about 1 terawatt, or 25 to 30 percent of the total tidal energy dissipation, occurs in the deep ocean. The remainder occurs in shallow seas, such as on the Patagonian Shelf. 'By measuring sea level with the TOPEX/Poseidon satellite altimeter, our knowledge of the tides in the global ocean has been remarkably improved,' said Richard Ray, a geophysicist at Goddard. The accuracies are now so high that this data can be used to map empirically the tidal energy dissipation. (Red areas, above) The deep-water tidal dissipation occurs generally near rugged bottom topography (seamounts and mid-ocean ridges). 'The observed pattern of deep-ocean dissipation is consistent with topographic scattering of tidal energy into internal motions within the water column, resulting in localized turbulence and mixing', said Gary Egbert an associate professor at OSU. One important implication of this finding concerns the possible energy sources needed to maintain the ocean's large-scale 'conveyor-belt' circulation and to mix upper ocean heat into the abyssal depths. It is thought that 2 terawatts are required for this process. The winds supply about 1 terawatt, and there has been speculation that the tides, by pumping energy into vertical water motions, supply the remainder. However, all current general circulation models of the oceans ignore the tides. 'It is possible that properly

  19. Phytogeographical patterns of dry forests sensu stricto in northern Minas Gerais State, Brazil.

    Science.gov (United States)

    Arruda, Daniel M; Ferreira-Júnior, Walnir G; Duque-Brasil, Reinaldo; Schaefer, Carlos E R

    2013-01-01

    The Deciduous Complex that occurs in northern Minas Gerais State, Brazil, raises questions about the floristic affinities of these formations in relation to neighboring phytogeographical domains. Little is known about the identity of the seasonal forest formations that comprise this complex, or about its relationships to abiotic components, such as soils, topography and climate. This study aimed to recognize the patterns of floristic similarity of all studied fragments of dry forest of northern Minas Gerais with soil and climate attributes, based on the available database. Cluster analysis indicated the existence of two floristic groups that had clear associations with either the Koppen's BSh (semi-arid) or Aw (seasonal tropical) climates. Likewise, the subdivisions of these groups showed clear associations with the dominant soil classes in the region. The Red-Yellow Latosol is the dominant soil classes in the BSh climatic domain, seconded by alluvial areas associated with Fluvic Neosols. The Aw domain comprised a much varied set of soils: Nitosols, Argisols, Cambisols and Litholic Neosols, most derived from the Bambuí limestone/slate formation. The ecotonal nature of northern Minas Gerais State provides a complex interaction between the flora of neighboring phytogeographical domains. This, allied to pedogeomorphological factors, allowed a better understanding of the effects of late Quaternary climate changes for the Deciduous Complex evolution. We conclude that the Latosols under present-day semi-arid climates (BSh) are relicts of former wetter climates, during which humid forest (semideciduous) expansion took place. Later, these semideciduous forests were subjected to a much drier climate, when selection for deciduousness led to the present-days Deciduous Complex scenario.

  20. Environmental, land cover and land use constraints on the distributional patterns of anurans: Leptodacylus species (Anura, Leptodactylidae from Dry Chaco

    Directory of Open Access Journals (Sweden)

    Regina Gabriela Medina

    2016-11-01

    Full Text Available Subtropical dry forests are among the most vulnerable biomes to land transformation at a global scale. Among them, the Dry Chaco suffers an accelerated change due to agriculture expansion and intensification. The Dry Chaco ecoregion is characterized by high levels of endemisms and species diversity, which are the result of a variety of climates and reliefs, allowing a wide variety of environments. The amphibian group exhibits a high richness in the Dry Chaco, which has been barely studied in relation to land cover changes. We used ecological niche models (ENMs to assess the potential geographic distribution of 10 Leptodactylus species (Anura, Leptodactylidae, which are mainly distributed within the Dry Chaco. We characterized these distributions environmentally, analyzed their overlap with land cover classes, and assessed their diversity of ecoregions. Also, we evaluated how these species potential distribution is affected by the transformation of land, and quantified the proportional area of the potential distribution in protected areas. We found that temperature seasonality is the main constraint to the occurrence of the species studied, whose main habitats are savannas, grasslands and croplands. The main threats to these species are the effects of climate change over spatial patterns of seasonality, which could affect their breeding and reproduction mode; the loss of their natural habitat; the exposure to contaminants used by intensive agriculture and their underrepresentation in protected areas.

  1. Diverse patterns of stored water use among saplings in seasonally dry tropical forests.

    Science.gov (United States)

    Wolfe, Brett T; Kursar, Thomas A

    2015-12-01

    Tree species in seasonally dry tropical forests likely vary in their drought-survival mechanisms. Drought-deciduousness, which reduces water loss, and low wood density, which may permit dependence on stored water, are considered key traits. For saplings of six species at two distinct sites, we studied these and two associated traits: the seasonal amount of water released per stem volume ("water released") and the hydraulic capacitance of the stem (C). Two deciduous species with low stem density, Cavanillesia platanifolia and Bursera simaruba, had high C and high dry-season stem water potential (Ψ(stem)), but differed in dry-season water released. C. platanifolia did not use stored water during the dry season whereas B. simaruba, in a drier forest, released stored water. In both, water released was highest while flushing leaves, suggesting that stored water supports leaf flushing. In contrast, two deciduous species with intermediate stem density, Annona hayesii and Genipa americana, had intermediate C, low dry-season Ψ(stem), and high seasonal change in water released. Meanwhile, two evergreen species with intermediate stem density, Cojoba rufescens and Astronium graveolens, had relatively low C, low dry-season Ψ(stem), and intermediate seasonal change in water released. Thus, at least three, distinct stored-water-use strategies were observed. Additionally, bark relative water content (RWC) decreased along with Ψ(stem) during the dry season while xylem RWC did not change, suggesting that bark-stored water buffers Ψ(stem) seasonally. Together these results suggest that seasonal use of stored water and change in Ψ(stem) are associated with functional groups that are characterized by combinations of deciduousness and stem density.

  2. Patterned surfaces in the drying of films composed of water, polymer, and alcohol.

    Science.gov (United States)

    Fichot, Julie; Heyd, Rodolphe; Josserand, Christophe; Chourpa, Igor; Gombart, Emilie; Tranchant, Jean-Francois; Saboungi, Marie-Louise

    2012-12-01

    A study of the complex drying dynamics of polymeric mixtures with optical microscopy and gravimetric measurement is presented. Droplet formation is observed, followed by a collapse that leads to the residual craters in the dried film. The process is followed in situ under well-defined temperature and hygrometric conditions to determine the origin and nature of these droplets and craters. The drying process is usually completed within 1 h. The observations are explained using a simple diffusion model based on experimental results collected from mass and optical measurements as well as Raman confocal microspectrometry. Although the specific polymeric mixtures used here are of interest to the cosmetic industry, the general conclusions reached can apply to other polymeric aqueous solutions with applications to commercial and artistic painting.

  3. The principle of 'maximum energy dissipation': a novel thermodynamic perspective on rapid water flow in connected soil structures.

    Science.gov (United States)

    Zehe, Erwin; Blume, Theresa; Blöschl, Günter

    2010-05-12

    Preferential flow in biological soil structures is of key importance for infiltration and soil water flow at a range of scales. In the present study, we treat soil water flow as a dissipative process in an open non-equilibrium thermodynamic system, to better understand this key process. We define the chemical potential and Helmholtz free energy based on soil physical quantities, parametrize a physically based hydrological model based on field data and simulate the evolution of Helmholtz free energy in a cohesive soil with different populations of worm burrows for a range of rainfall scenarios. The simulations suggest that flow in connected worm burrows allows a more efficient redistribution of water within the soil, which implies a more efficient dissipation of free energy/higher production of entropy. There is additional evidence that the spatial pattern of worm burrow density at the hillslope scale is a major control of energy dissipation. The pattern typically found in the study is more efficient in dissipating energy/producing entropy than other patterns. This is because upslope run-off accumulates and infiltrates via the worm burrows into the dry soil in the lower part of the hillslope, which results in an overall more efficient dissipation of free energy.

  4. Contrasting pattern of methanotrophs in dry tropical forest soils: effect of soil nitrogen, carbon and moisture.

    Science.gov (United States)

    Singh, J S; Kashyap, A K

    2007-01-01

    Population dynamics of methane-oxidizing bacteria (MOB) was measured for 2 consecutive years for four forest and one savanna sites in seasonally dry tropical regions of India. The soils were nutrient-poor and well drained. These sites differed in vegetational cover and physico-chemical features of soils. There were significant differences in MOB population size during the 2 years (mean 0.40 and 0.48 x 10(5) cells g(-1) dry soil), and at different sites (mean 0.38-0.59 x 10(5) cells g(-1) dry soil). The mean population size of MOB was higher (Pmoisture and MOB population size during summer (the driest period) and a negative relation during the rest of the year. The number of MOB was consistently higher for the Kotwa hill base site than rest of the sites having higher soil organic C and total N. The results suggested that in seasonally dry tropical forests the moisture, C and N status of the soil regulates the population size of MOB (methanotrophs) in the long term.

  5. Plant diversity patterns in neotropical dry forests and their conservation implications

    Science.gov (United States)

    K. Banda-R; A. Delgado-Salinas; K. G. Dexter; R. Linares-Palomino; A. Oliveira-Filho; D. Prado; M. Pullan; C. Quintana; R. Riina; G. M. Rodriguez M.; J. Weintritt; P. Acevedo-Rodriguez; J. Adarve; E. Alvarez; A. Aranguren B.; J. C. Arteaga; G. Aymard; A. Castano; N. Ceballos-Mago; A. Cogollo; H. Cuadros; F. Delgado; W. Devia; H. Duenas; L. Fajardo; A. Fernandez; M. A. Fernandez; J. Franklin; E. H. Freid; L. A. Galetti; R. Gonto; R. Gonzalez-M.; R. Graveson; E. H. Helmer; A. Idarraga; R. Lopez; H. Marcano-Vega; O. G. Martinez; H. M. Maturo; M. McDonald; K. McLaren; O. Melo; F. Mijares; V. Mogni; D. Molina; N. d. P. Moreno; J. M. Nassar; D. M. Neves; L. J. Oakley; M. Oatham; A. R. Olvera-Luna; F. F. Pezzini; O. J. R. Dominguez; M. E. Rios; O. Rivera; N. Rodriguez; A. Rojas; T. Sarkinen; R. Sanchez; M. Smith; C. Vargas; B. Villanueva; R. T. Pennington

    2016-01-01

    Seasonally dry tropical forests are distributed across Latin America and the Caribbean and are highly threatened, with less than 10% of their original extent remaining in many countries. Using 835 inventories covering 4660 species of woody plants, we show marked floristic turnover among inventories and regions, which may be higher than...

  6. Spatial patterns of goose grubbing suggest elevated grubbing in dry habitats linked to early snowmelt

    Directory of Open Access Journals (Sweden)

    Åshild Ø. Pedersen

    2013-05-01

    Full Text Available The western Palaearctic tundra is a breeding habitat for large populations of European geese. After their arrival in spring, pink-footed geese (Anser brachyrhynchus forage extensively on below-ground plant parts, using a feeding technique called grubbing that has substantial impact on the tundra vegetation. Previous studies have shown a high frequency of grubbing in lowland fen vegetation. In the present study, we examined the occurrence of grubbing in other habitat types on Spitsbergen, in the Arctic archipelago of Svalbard. Goose grubbing was surveyed along 19 altitudinal transects, going from the valley bottom to altitudes dominated by scree. Grubbing was more frequent in the wet habitat type at low altitudes compared to the drier habitat type at higher altitudes. For the dry habitat type, a higher frequency of grubbing was found in study plots with a south-east facing exposure where snowmelt is expected to be early. This suggests that pink-footed geese primarily use dry vegetation types for grubbing when they are snow-free in early spring and the availability of snow-free patches of the preferred wet vegetation types in the lowlands is limited. Dry vegetation types have poorer recovery rates from disturbance than wet ones. Sites with early snowmelt and dry vegetation types may therefore be at greater risk of long-term habitat degradation. We conclude that the high growth rate of the Svalbard-breeding pink-footed goose population suggests that increasing impacts of grubbing can be expected and argue that a responsible monitoring of the effects on the tundra ecosystem is crucial.

  7. Anisotropic dissipation in lattice metamaterials

    Directory of Open Access Journals (Sweden)

    Dimitri Krattiger

    2016-12-01

    Full Text Available Plane wave propagation in an elastic lattice material follows regular patterns as dictated by the nature of the lattice symmetry and the mechanical configuration of the unit cell. A unique feature pertains to the loss of elastodynamic isotropy at frequencies where the wavelength is on the order of the lattice spacing or shorter. Anisotropy may also be realized at lower frequencies with the inclusion of local resonators, especially when designed to exhibit directionally non-uniform connectivity and/or cross-sectional geometry. In this paper, we consider free and driven waves within a plate-like lattice−with and without local resonators−and examine the effects of damping on the isofrequency dispersion curves. We also examine, for free waves, the effects of damping on the frequency-dependent anisotropy of dissipation. Furthermore, we investigate the possibility of engineering the dissipation anisotropy by tuning the directional properties of the prescribed damping. The results demonstrate that uniformly applied damping tends to reduce the intensity of anisotropy in the isofrequency dispersion curves. On the other hand, lattice crystals and metamaterials are shown to provide an excellent platform for direction-dependent dissipation engineering which may be realized by simple changes in the spatial distribution of the damping elements.

  8. Dissipative relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Imshennik, V.S.; Morozov, Yu.I.

    1989-01-01

    Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova

  9. Home range use and movement patterns of non-native feral goats in a tropical island montane dry landscape.

    Directory of Open Access Journals (Sweden)

    Mark W Chynoweth

    Full Text Available Advances in wildlife telemetry and remote sensing technology facilitate studies of broad-scale movements of ungulates in relation to phenological shifts in vegetation. In tropical island dry landscapes, home range use and movements of non-native feral goats (Capra hircus are largely unknown, yet this information is important to help guide the conservation and restoration of some of the world's most critically endangered ecosystems. We hypothesized that feral goats would respond to resource pulses in vegetation by traveling to areas of recent green-up. To address this hypothesis, we fitted six male and seven female feral goats with Global Positioning System (GPS collars equipped with an Argos satellite upload link to examine goat movements in relation to the plant phenology using the Normalized Difference Vegetation Index (NDVI. Movement patterns of 50% of males and 40% of females suggested conditional movement between non-overlapping home ranges throughout the year. A shift in NDVI values corresponded with movement between primary and secondary ranges of goats that exhibited long-distance movement, suggesting that vegetation phenology as captured by NDVI is a good indicator of the habitat and movement patterns of feral goats in tropical island dry landscapes. In the context of conservation and restoration of tropical island landscapes, the results of our study identify how non-native feral goats use resources across a broad landscape to sustain their populations and facilitate invasion of native plant communities.

  10. Groundwater removal near heat dissipating waste packages

    International Nuclear Information System (INIS)

    Manteufel, R.D.

    1996-01-01

    The thermohydrologic environment of heat-dissipating nuclear waste packages in a subsurface repository is affected by ventilation of the facility prior to permanent closure. Heat dissipated by the waste will raise the temperature of host rock and vaporize groundwater. Ventilation will remove some heat and water vapor from the subsurface, creating a desiccated region surrounding the waste packages. The resulting hot, dry environment will tend to favorably extend the containment time of the waste. This work evaluates the transient temperature field near emplacement drifts and predicts the extent of rock dryout and removal of groundwater. For two hypothetical ventilation schemes with 30-yr-old fuel and repository loading of 40 metric tons of uranium (MTU) per acre, about 4 to 5 m of rock surrounding the drifts are predicted to be dried during the preclosure period

  11. Graphene heat dissipating structure

    Science.gov (United States)

    Washburn, Cody M.; Lambert, Timothy N.; Wheeler, David R.; Rodenbeck, Christopher T.; Railkar, Tarak A.

    2017-08-01

    Various technologies presented herein relate to forming one or more heat dissipating structures (e.g., heat spreaders and/or heat sinks) on a substrate, wherein the substrate forms part of an electronic component. The heat dissipating structures are formed from graphene, with advantage being taken of the high thermal conductivity of graphene. The graphene (e.g., in flake form) is attached to a diazonium molecule, and further, the diazonium molecule is utilized to attach the graphene to material forming the substrate. A surface of the substrate is treated to comprise oxide-containing regions and also oxide-free regions having underlying silicon exposed. The diazonium molecule attaches to the oxide-free regions, wherein the diazonium molecule bonds (e.g., covalently) to the exposed silicon. Attachment of the diazonium plus graphene molecule is optionally repeated to enable formation of a heat dissipating structure of a required height.

  12. Space dissipative structures

    International Nuclear Information System (INIS)

    Chernousenko, V.M.; Kuklin, V.M.; Panachenko, I.P.; Vorob'yov, V.M.

    1990-01-01

    This paper reports on a wide spectrum of oscillations that is excited due to the evolution instabilities, being in a weak above-threshold state, in the inequilibrium media with decaying spectrum. In this case the pumping, whose part is played by an intensive wave or occupation inversion in the active medium, synchronized the phases of excited modes and, thus, forms the space dissipative structure of the field. In dissipative nonlinear media with nondecaying spectrum the space structures, formed due to the development of instability, experience small-scale hexagonal modulation

  13. Dry-plasma-free chemical etch technique for variability reduction in multi-patterning (Conference Presentation)

    Science.gov (United States)

    Kal, Subhadeep; Mohanty, Nihar; Farrell, Richard A.; Franke, Elliott; Raley, Angelique; Thibaut, Sophie; Pereira, Cheryl; Pillai, Karthik; Ko, Akiteru; Mosden, Aelan; Biolsi, Peter

    2017-04-01

    Scaling beyond the 7nm technology node demands significant control over the variability down to a few angstroms, in order to achieve reasonable yield. For example, to meet the current scaling targets it is highly desirable to achieve sub 30nm pitch line/space features at back-end of the line (BEOL) or front end of line (FEOL); uniform and precise contact/hole patterning at middle of line (MOL). One of the quintessential requirements for such precise and possibly self-aligned patterning strategies is superior etch selectivity between the target films while other masks/films are exposed. The need to achieve high etch selectivity becomes more evident for unit process development at MOL and BEOL, as a result of low density films choices (compared to FEOL film choices) due to lower temperature budget. Low etch selectivity with conventional plasma and wet chemical etch techniques, causes significant gouging (un-intended etching of etch stop layer, as shown in Fig 1), high line edge roughness (LER)/line width roughness (LWR), non-uniformity, etc. In certain circumstances this may lead to added downstream process stochastics. Furthermore, conventional plasma etches may also have the added disadvantage of plasma VUV damage and corner rounding (Fig. 1). Finally, the above mentioned factors can potentially compromise edge placement error (EPE) and/or yield. Therefore a process flow enabled with extremely high selective etches inherent to film properties and/or etch chemistries is a significant advantage. To improve this etch selectivity for certain etch steps during a process flow, we have to implement alternate highly selective, plasma free techniques in conjunction with conventional plasma etches (Fig 2.). In this article, we will present our plasma free, chemical gas phase etch technique using chemistries that have high selectivity towards a spectrum of films owing to the reaction mechanism ( as shown Fig 1). Gas phase etches also help eliminate plasma damage to the

  14. Patterns of loss and regeneration of tropical dry forest in Madagascar: the social institutional context.

    Science.gov (United States)

    Elmqvist, Thomas; Pyykönen, Markku; Tengö, Maria; Rakotondrasoa, Fanambinantsoa; Rabakonandrianina, Elisabeth; Radimilahy, Chantal

    2007-05-02

    Loss of tropical forests and changes in land-use/land-cover are of growing concern worldwide. Although knowledge exists about the institutional context in which tropical forest loss is embedded, little is known about the role of social institutions in influencing regeneration of tropical forests. In the present study we used Landsat images from southern Madagascar from three different years (1984, 1993 and 2000) and covering 5500 km(2), and made a time-series analysis of three distinct large-scale patterns: 1) loss of forest cover, 2) increased forest cover, and 3) stable forest cover. Institutional characteristics underlying these three patterns were analyzed, testing the hypothesis that forest cover change is a function of strength and enforcement of local social institutions. The results showed a minor decrease of 7% total forest cover in the study area during the whole period 1984-2000, but an overall net increase of 4% during the period 1993-2000. The highest loss of forest cover occurred in a low human population density area with long distances to markets, while a stable forest cover occurred in the area with highest population density and good market access. Analyses of institutions revealed that loss of forest cover occurred mainly in areas characterized by insecure property rights, while areas with well-defined property rights showed either regenerating or stable forest cover. The results thus corroborate our hypothesis. The large-scale spontaneous regeneration dominated by native endemic species appears to be a result of a combination of changes in precipitation, migration and decreased human population and livestock grazing pressure, but under conditions of maintained and well-defined property rights. Our study emphasizes the large capacity of a semi-arid system to spontaneously regenerate, triggered by decreased pressures, but where existing social institutions mitigate other drivers of deforestation and alternative land-use.

  15. Patterns of loss and regeneration of tropical dry forest in Madagascar: the social institutional context.

    Directory of Open Access Journals (Sweden)

    Thomas Elmqvist

    Full Text Available Loss of tropical forests and changes in land-use/land-cover are of growing concern worldwide. Although knowledge exists about the institutional context in which tropical forest loss is embedded, little is known about the role of social institutions in influencing regeneration of tropical forests. In the present study we used Landsat images from southern Madagascar from three different years (1984, 1993 and 2000 and covering 5500 km(2, and made a time-series analysis of three distinct large-scale patterns: 1 loss of forest cover, 2 increased forest cover, and 3 stable forest cover. Institutional characteristics underlying these three patterns were analyzed, testing the hypothesis that forest cover change is a function of strength and enforcement of local social institutions. The results showed a minor decrease of 7% total forest cover in the study area during the whole period 1984-2000, but an overall net increase of 4% during the period 1993-2000. The highest loss of forest cover occurred in a low human population density area with long distances to markets, while a stable forest cover occurred in the area with highest population density and good market access. Analyses of institutions revealed that loss of forest cover occurred mainly in areas characterized by insecure property rights, while areas with well-defined property rights showed either regenerating or stable forest cover. The results thus corroborate our hypothesis. The large-scale spontaneous regeneration dominated by native endemic species appears to be a result of a combination of changes in precipitation, migration and decreased human population and livestock grazing pressure, but under conditions of maintained and well-defined property rights. Our study emphasizes the large capacity of a semi-arid system to spontaneously regenerate, triggered by decreased pressures, but where existing social institutions mitigate other drivers of deforestation and alternative land-use.

  16. Concentration-discharge patterns in a small urban headwater stream in a seasonally dry water-limited tropical environment

    Science.gov (United States)

    Gwenzi, Willis; Chinyama, Shyleen R.; Togarepi, Sydney

    2017-07-01

    The simplicity of the hydrochemical stationarity concept renders it attractive for partitioning solutes between geogenic and anthropogenic sources. The current study used a small urban headwater stream in a seasonally dry environment to address two research questions: (1) What concentration (C)-discharge (Q) patterns exist in small urban headwater streams?; and (2) Do the C-Q patterns persist across C-Q metrics and temporal scales? Four C-Q metrics were tested: concentration-discharge (C-Q), concentration-cumulative discharge (C-ΣQ), load (L)-discharge (L-Q) and normalized concentration-normalized discharge (NC-NQ). C-Q and NC-NQ revealed discharge-invariant behaviour for Ca, two linear relationships with threshold-like transitions from negative to positive slopes for Mg, K and Na, and positive linear relationships for Fe, Pb and PO43-. The threshold-like transitions with distinct breakpoints were more apparent in C-ΣQ patterns for all solutes. These patterns are consistent with three hypotheses: (1) negative linear to zero slope relationships indicate dilution followed by discharge-invariant behaviour (Ca); (2) negative to positive linear relationships (Mg, K and Na) point to dilution followed by solute enrichment or flushing; and (3) positive to negative linear relationships (Pb, Fe and PO43-) suggest initial solute mobilization followed by dilution. The three dominant behaviours were robust across weekly, fortnightly and monthly timescales. Significant linear L-Q relationships were observed for all solutes, suggesting that loads can be predicted from discharge. Our findings suggest that C-Q relationships are highly dynamic, and multiple processes control streamflow hydrochemistry at different times depending on antecedent discharge. The application of multiple C-Q metrics provided additional insights not apparent by using a single metric. The insights are critical to understanding of catchment hydrology and conceptual representation of hydrochemical processes

  17. Dissipative distributed systems

    NARCIS (Netherlands)

    Willems, JC; Djaferis, TE; Schick, IC

    2000-01-01

    A controllable distributed dynamical system described by a system of linear constant-coefficient partial differential equations is said to be conservative if for compact support trajectories the integral of the supply rate is zero. It is said to be dissipative if this integral is non-negative. The

  18. Collective variables and dissipation

    International Nuclear Information System (INIS)

    Balian, R.

    1984-09-01

    This is an introduction to some basic concepts of non-equilibrium statistical mechanics. We emphasize in particular the relevant entropy relative to a given set of collective variables, the meaning of the projection method in the Liouville space, its use to establish the generalized transport equations for these variables, and the interpretation of dissipation in the framework of information theory

  19. Transient chaotic transport in dissipative drift motion

    Energy Technology Data Exchange (ETDEWEB)

    Oyarzabal, R.S. [Pós-Graduação em Ciências/Física, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Szezech, J.D. [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Batista, A.M., E-mail: antoniomarcosbatista@gmail.com [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Souza, S.L.T. de [Departamento de Física e Matemática, Universidade Federal de São João del Rei, 36420-000, Ouro Branco, MG (Brazil); Caldas, I.L. [Instituto de Física, Universidade de São Paulo, 05315-970, São Paulo, SP (Brazil); Viana, R.L. [Departamento de Física, Universidade Federal do Paraná, 81531-990, Curitiba, PR (Brazil); Sanjuán, M.A.F. [Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid (Spain)

    2016-04-22

    Highlights: • We consider a situation for which a chaotic transient is present in the dynamics of the two-wave model with damping. • The damping in plasma models can be a way for study a realistic behavior of confinement due the collisional effect. • The escape time as a function of the damping obey a power-law scaling. • We have made a qualitative transport analysis with a simple model that can be useful for more complete models. • We have shown that the pattern of the basin of attraction depends on the damping parameter. - Abstract: We investigate chaotic particle transport in magnetised plasmas with two electrostatic drift waves. Considering dissipation in the drift motion, we verify that the removed KAM surfaces originate periodic attractors with their corresponding basins of attraction. We show that the properties of the basins depend on the dissipation and the space-averaged escape time decays exponentially when the dissipation increases. We find positive finite time Lyapunov exponents in dissipative drift motion, consequently the trajectories exhibit transient chaotic transport. These features indicate how the transient plasma transport depends on the dissipation.

  20. Early dissipation and viscosity

    OpenAIRE

    Bozek, Piotr

    2008-01-01

    We consider dissipative phenomena due to the relaxation of an initial anisotropic local pressure in the fireball created in relativistic heavy-ion collisions, both for the Bjorken boost-invariant case and for the azimuthally symmetric radial expansion with boost-invariance. The resulting increase of the entropy can be counterbalanced by a suitable retuning of the initial temperature. An increase of the transverse collective flow is observed. The influence of the shear viscosity on the longitu...

  1. Expression patterns of conjunctival mucin 5AC and aquaporin 5 in response to acute dry eye stress.

    Directory of Open Access Journals (Sweden)

    Dhruva Bhattacharya

    Full Text Available The relationship between aquaporin (AQP 5 and mucin (MUC 5AC in the conjunctiva was investigated in response to acute dry eye (DE stress. A mixed-mechanism rabbit DE model, in which the main lacrimal gland, Harderian gland, and nictitating membrane were resected, was further explored in this study. Conjunctival impression cytology specimens were harvested before excision (BE and up to 3 months after excision (AE in 8 (16 eyes male New Zealand White rabbits, and immunoblotting was employed to assess the expression of AQP5 and MUC5AC. It was observed that AQP5 and MUC5AC showed a positive, synchronous expression pattern with progressive upregulation at protein level up to 2 months AE. At 3 months, the expression of both proteins decreased, but was still higher than that of BE. Such a synchronous relationship was further observed in mouse conjunctiva epithelium primary cells under hyperosmotic condition. Moreover, the co-immunoprecipitation of AQP5 and MUC5AC suggested a possible physical interaction between the two molecules. Our data indicates that conjunctival AQP5 and MUC5AC act synchronously in response to acute DE stress.

  2. Attractors of dissipative structure in three dissipative fluids

    International Nuclear Information System (INIS)

    Kondoh, Yoshiomi

    1993-10-01

    A general theory with use of auto-correlations for distributions is presented to derive that realization of coherent structures in general dissipative dynamic systems is equivalent to that of self-organized states with the minimum dissipation rate for instantaneously contained energy. Attractors of dissipative structure are shown to be given by eigenfunctions for dissipative dynamic operators of the dynamic system and to constitute the self-organized and self-similar decay phase. Three typical examples applied to incompressible viscous fluids, to incompressible viscous and resistive magnetohydrodynamic (MHD) fluids and to compressible resistive MHD plasmas are presented to lead to attractors in the three dissipative fluids and to describe a common physical picture of self-organization and bifurcation of the dissipative structure. (author)

  3. Power Dissipation in Division

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    2008-01-01

    A few classes of algorithms to implement division in hardware have been used over the years: division by digit-recurrence, by reciprocal approximation by iterative methods and by polynomial approximation. Due to the differences in the algorithms, a comparison among their implementation in terms o...... of performance and precision is sometimes hard to make. In this work, we use power dissipation and energy consumption as metrics to compare among those different classes of algorithms. There are no previous works in the literature presenting such a comparison....

  4. Mode-locking via dissipative Faraday instability.

    Science.gov (United States)

    Tarasov, Nikita; Perego, Auro M; Churkin, Dmitry V; Staliunas, Kestutis; Turitsyn, Sergei K

    2016-08-09

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system-spectrally dependent losses-achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering.

  5. Wave equations with time-dependent dissipation II. Effective dissipation

    Science.gov (United States)

    Wirth, Jens

    This article is intended to present a construction of structural representations of solutions to the Cauchy problem for wave equations with time-dependent dissipation above scaling. These representations are used to give estimates of the solution and its derivatives based on L(R), q⩾2. The article represents the second part within a series. In [Jens Wirth, Wave equations with time-dependent dissipation I. Non-effective dissipation, J. Differential Equations 222 (2) (2006) 487-514] weak dissipations below scaling were discussed.

  6. Dissipative Axial Inflation

    CERN Document Server

    Notari, Alessio

    2016-12-22

    We analyze in detail the background cosmological evolution of a scalar field coupled to a massless abelian gauge field through an axial term $\\frac{\\phi}{f_\\gamma} F \\tilde{F}$, such as in the case of an axion. Gauge fields in this case are known to experience tachyonic growth and therefore can backreact on the background as an effective dissipation into radiation energy density $\\rho_R$, which which can lead to inflation without the need of a flat potential. We analyze the system, for momenta $k$ smaller than the cutoff $f_\\gamma$, including numerically the backreaction. We consider the evolution from a given static initial condition and explicitly show that, if $f_\\gamma$ is smaller than the field excursion $\\phi_0$ by about a factor of at least ${\\cal O} (20)$, there is a friction effect which turns on before that the field can fall down and which can then lead to a very long stage of inflation with a generic potential. In addition we find superimposed oscillations, which would get imprinted on any kind of...

  7. Dissipative structures in magnetorotational turbulence

    Science.gov (United States)

    Ross, Johnathan; Latter, Henrik N.

    2018-03-01

    Via the process of accretion, magnetorotational turbulence removes energy from a disk's orbital motion and transforms it into heat. Turbulent heating is far from uniform and is usually concentrated in small regions of intense dissipation, characterised by abrupt magnetic reconnection and higher temperatures. These regions are of interest because they might generate non-thermal emission, in the form of flares and energetic particles, or thermally process solids in protoplanetary disks. Moreover, the nature of the dissipation bears on the fundamental dynamics of the magnetorotational instability (MRI) itself: local simulations indicate that the large-scale properties of the turbulence (e.g. saturation levels, the stress-pressure relationship) depend on the short dissipative scales. In this paper we undertake a numerical study of how the MRI dissipates and the small-scale dissipative structures it employs to do so. We use the Godunov code RAMSES and unstratified compressible shearing boxes. Our simulations reveal that dissipation is concentrated in ribbons of strong magnetic reconnection that are significantly elongated in azimuth, up to a scale height. Dissipative structures are hence meso-scale objects, and potentially provide a route by which large scales and small scales interact. We go on to show how these ribbons evolve over time — forming, merging, breaking apart, and disappearing. Finally, we reveal important couplings between the large-scale density waves generated by the MRI and the small-scale structures, which may illuminate the stress-pressure relationship in MRI turbulence.

  8. Secondary forest succession in a tropical dry forest: patterns of development across a 50-year chronosequence in lowland Bolivia

    Science.gov (United States)

    Deborah K. Kennard

    2002-01-01

    Stand structure, species richness and population structures of tree species were characterized in 12 stands representing 50 y of succession following slash-and-burn agriculture in a tropical dry forest in lowland Bolivia. Estimates of tree species richness, canopy cover and basal area reached or surpassed 75% of mature forest levels in the 5-, 8-, and 23-y-old stands...

  9. Home range use and movement patterns of non-native feral goats in a tropical island montane dry landscape

    Science.gov (United States)

    Mark W. Chynoweth; Christopher A. Lepczyk; Creighton M. Litton; Steven C. Hess; James R. Kellner; Susan Cordell; Lalit Kumar

    2015-01-01

    Advances in wildlife telemetry and remote sensing technology facilitate studies of broad-scale movements of ungulates in relation to phenological shifts in vegetation. In tropical island dry landscapes, home range use and movements of non-native feral goats (Capra hircus) are largely unknown, yet this information is important to help guide the...

  10. Tidal dissipation in the subsurface ocean of Enceladus

    Science.gov (United States)

    Matsuyama, I.; Hay, H.; Nimmo, F.; Kamata, S.

    2017-12-01

    Icy satellites of the outer solar system have emerged as potential habitable worlds due to the presence of subsurface oceans. As a long-term energy source, tidal heating in these oceans can influence the survivability of subsurface oceans, and the thermal, rotational, and orbital evolution of these satellites. Additionally, the spatial and temporal variation of tidal heating has implications for the interior structure and spacecraft observations. Previous models for dissipation in thin oceans are not generally applicable to icy satellites because either they ignore the presence of an overlying solid shell or use a thin shell membrane approximation. We present a new theoretical treatment for tidal dissipation in thin oceans with overlying shells of arbitrary thickness and apply it to Enceladus. The shell's resistance to ocean tides increases with shell thickness, reducing tidal dissipation as expected. Both the magnitude of energy dissipation and the resonant ocean thicknesses decrease as the overlying shell thickness increases, as previously shown using a membrane approximation. In contrast to previous work based on the traditional definition of the tidal quality factor, Q, our new definition is consistent with higher energy dissipation for smaller Q, and introduces a lower limit on Q. The dissipated power and tides are not in phase with the forcing tidal potential due to the delayed ocean response. The phase lag depends on the Rayleigh friction coefficient and ocean and shell thicknesses, which implies that phase lag observations can be used to constrain these parameters. Eccentricity heating produces higher dissipation near the poles, while obliquity heating produces higher dissipation near the equator, in contrast to the dissipation patterns in the shell. The time-averaged surface distribution of tidal heating can generate lateral shell thickness variations, providing an additional constraint on the Rayleigh friction coefficient. Explaining the endogenic power

  11. Dissipative Effect and Tunneling Time

    Directory of Open Access Journals (Sweden)

    Samyadeb Bhattacharya

    2011-01-01

    Full Text Available The quantum Langevin equation has been studied for dissipative system using the approach of Ford et al. Here, we have considered the inverted harmonic oscillator potential and calculated the effect of dissipation on tunneling time, group delay, and the self-interference term. A critical value of the friction coefficient has been determined for which the self-interference term vanishes. This approach sheds new light on understanding the ion transport at nanoscale.

  12. Dissipative Strong-Field Electrodynamics

    OpenAIRE

    Gruzinov, Andrei

    2007-01-01

    A dissipative Lorentz-covariant Ohm's law which uses only the electromagnetic degrees of freedom is proposed. For large conductivity, Maxwell equations equipped with this Ohm's law reduce to the equations of Force-Free Electrodynamics (FFE) with small dissipative corrections, but only in the regions where the ideal FFE 4-current is space-like. This might indicate that the pulsar emission comes primarily from the magnetic separartrix.

  13. Facile organization of colloidal particles into large, perfect one- and two-dimensional arrays by dry manual assembly on patterned substrates.

    Science.gov (United States)

    Khanh, Nguyen Nguyen; Yoon, Kyung Byung

    2009-10-14

    The ability to rapidly and reproducibly assemble colloidal particles into large (>mm) one- (1D) and two-dimensional (2D) single crystals with perfect control of the particle networking pattern would open a new world rich with high quality novel materials, technologies, and sciences. However, current methods rely on self-assembly of colloidal particles in solution (wet self-assembly), which intrinsically makes the assembly of the colloidal particles into defect-free large 1D and 2D single crystals difficult. We now demonstrate a new paradigm of colloidal particle organization into 1D and 2D single crystals, a process we call 'dry manual assembly on nanolithographically patterned substrates', which enables facile and rapid organization of colloidal particles in dry states into 1D and 2D single crystals in the centimeter or larger scales with a well-defined particle networking pattern. We believe that this novel methodology will serve as a key to open a new era of particle organization.

  14. Inhalable Spray-Freeze-Dried Powder with L-Leucine that Delivers Particles Independent of Inspiratory Flow Pattern and Inhalation Device.

    Science.gov (United States)

    Otake, Hiroko; Okuda, Tomoyuki; Hira, Daiki; Kojima, Haruyoshi; Shimada, Yasuhiro; Okamoto, Hirozazu

    2016-04-01

    The purpose of this study was to develop inhalable particles that can reach deep into the lungs efficiently independent of inhalation patterns of patients and inhalation devices. We prepared porous particles including L-leucine (Leu), a dispersive agent, by a spray-freeze-drying (SFD) method and examined the influence of inspiratory flow patterns and inhalation devices with various inhalation resistances. Four types of SFD powder with different Leu contents (0-10%) were prepared. Scanning electron microscopy and laser diffraction were used to measure the morphology and size distribution of the powders. In-vitro inhalation characteristics were determined using a twin-stage liquid impinger equipped with an inspiratory flow pattern simulator. The effects of Leu on the adhesion force and electrostatic property of the particles were evaluated. The inhalation performance of the powders was improved by the addition of Leu. The powders with Leu showed a high inhalation performance regardless of inspiratory flow patterns and devices. The addition of Leu decreased the adhesion force and increased the surface potential of the powders. The SFD particles with Leu showed high inhalation performance regardless of the inhalation patterns and devices, which was attributed to the decreased adhesion force between particles and increased dispersibility.

  15. Dissipative systems in a non-dissipative framework

    Science.gov (United States)

    Das, Umapada; Saha, Aparna; Ghosh, Subrata; Talukdar, Benoy

    2013-06-01

    Dissipative systems do not have a natural space in the variational formulation of mechanics. We introduce a change of variables such that in the transformed frame the dissipative Newtonian equations mimic those for conservative systems. We present solutions of (a) a linearly damped harmonic oscillator, (b) the corresponding quadratically damped system, (c) a modified Emden-type equation and (d) a generalized Emden equation using their first integrals and deal with the corresponding inverse variational problem to derive Lagrangian and Hamiltonian representations. We confirm that, as opposed to the original damped equations, the reduced equations can be solved by the use of Hamilton-Jacobi theory.

  16. Using Multi-Temporal Remote Sensing Data to Analyze the Spatio-Temporal Patterns of Dry Season Rice Production in Bangladesh

    Science.gov (United States)

    Shew, A. M.; Ghosh, A.

    2017-10-01

    Remote sensing in the optical domain is widely used in agricultural monitoring; however, such initiatives pose a challenge for developing countries due to a lack of high quality in situ information. Our proposed methodology could help developing countries bridge this gap by demonstrating the potential to quantify patterns of dry season rice production in Bangladesh. To analyze approximately 90,000 km2 of cultivated land in Bangladesh at 30 m spatial resolution, we used two decades of remote sensing data from the Landsat archive and Google Earth Engine (GEE), a cloud-based geospatial data analysis platform built on Google infrastructure and capable of processing petabyte-scale remote sensing data. We reconstructed the seasonal patterns of vegetation indices (VIs) for each pixel using a harmonic time series (HTS) model, which minimizes the effects of missing observations and noise. Next, we combined the seasonality information of VIs with our knowledge of rice cultivation systems in Bangladesh to delineate rice areas in the dry season, which are predominantly hybrid and High Yielding Varieties (HYV). Based on historical Landsat imagery, the harmonic time series of vegetation indices (HTS-VIs) model estimated 4.605 million ha, 3.519 million ha, and 4.021 million ha of rice production for Bangladesh in 2005, 2010, and 2015 respectively. Fine spatial scale information on HYV rice over the last 20 years will greatly improve our understanding of double-cropped rice systems, current status of production, and potential for HYV rice adoption in Bangladesh during the dry season.

  17. Dissipativity analysis of the base isolated benchmark structure with magnetorheological fluid dampers

    International Nuclear Information System (INIS)

    Erkus, Baris; Johnson, Erik A

    2011-01-01

    This paper investigates the dissipativity and performance characteristics of the semiactive control of the base isolated benchmark structure with magnetorheological (MR) fluid dampers. Previously, the authors introduced the concepts of dissipativity and dissipativity indices in the semiactive control of structures with smart dampers and studied the dissipativity characteristics of simple structures with idealized dampers. To investigate the effects of semiactive controller dissipativity characteristics on the overall performance of the base isolated benchmark building, a clipped optimal control strategy with a linear quadratic Gaussian (LQG) controller and a 20 ton MR fluid damper model is used. A cumulative index is proposed for quantifying the overall dissipativity of a control system with multiple control devices. Two control designs with different dissipativity and performance characteristics are considered as the primary controller in clipped optimal control. Numerical simulations reveal that the dissipativity indices can be classified into two groups that exhibit distinct patterns. It is shown that the dissipativity indices identify primary controllers that are more suitable for application with MR dampers and provide useful information in the semiactive design process that complements other performance indices. The computational efficiency of the proposed dissipativity indices is verified by comparing computation times

  18. Dissipative effects in Multilevel Systems

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, A I [Department of Physics and Astronomy, Open University, Milton Keynes MK7 6AA (United Kingdom); Schirmer, S G [Department of Applied Maths and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA (United Kingdom)

    2007-11-15

    Dissipation is sometimes regarded as an inevitable and regrettable presence in the real evolution of a quantum system. However, the effects may not always be malign, although often non-intuitive and may even be beneficial. In this note we we display some of these effects for N-level systems, where N = 2,3,4. We start with an elementary introduction to dissipative effects on the Bloch Sphere, and its interior, the Bloch Ball, for a two-level system. We describe explicitly the hamiltonian evolution as well as the purely dissipative dynamics, in the latter case giving the t {yields} {infinity} limits of the motion. This discussion enables us to provide an intuitive feeling for the measures of control-reachable states. For the three-level case we discuss the impossibility of isolating a two-level (qubit) subsystem; this is a Bohm-Aharonov type consequence of dissipation. We finally exemplify the four-level case by giving constraints on the decay of two-qubit entanglement.

  19. Contrasting patterns of leaf trait variation among and within species during tropical dry forest succession in Costa Rica.

    Science.gov (United States)

    Derroire, Géraldine; Powers, Jennifer S; Hulshof, Catherine M; Cárdenas Varela, Luis E; Healey, John R

    2018-01-10

    A coordinated response to environmental drivers amongst individual functional traits is central to the plant strategy concept. However, whether the trait co-ordination observed at the global scale occurs at other ecological scales (especially within species) remains an open question. Here, for sapling communities of two tropical dry forest types in Costa Rica, we show large differences amongst traits in the relative contribution of species turnover and intraspecific variation to their directional changes in response to environmental changes along a successional gradient. We studied the response of functional traits associated with the leaf economics spectrum and drought tolerance using intensive sampling to analyse inter- and intra-specific responses to environmental changes and ontogeny. Although the overall functional composition of the sapling communities changed during succession more through species turnover than through intraspecific trait variation, their relative contributions differed greatly amongst traits. For instance, community mean specific leaf area changed mostly due to intraspecific variation. Traits of the leaf economics spectrum showed decoupled responses to environmental drivers and ontogeny. These findings emphasise how divergent ecological mechanisms combine to cause great differences in changes of individual functional traits over environmental gradients and ecological scales.

  20. Patterns of plant functional variation and specialization along secondary succession and topography in a tropical dry forest

    Science.gov (United States)

    Sanaphre-Villanueva, Lucía; Dupuy, Juan Manuel; Andrade, José Luis; Reyes-García, Casandra; Jackson, Paula C.; Paz, Horacio

    2017-05-01

    Long-term human disturbance of tropical forests may favor generalist plant species leading to biotic homogenization. We aimed to a) assess if generalist species dominate across different successional ages and topographical positions in a tropical dry forest with a long history of human disturbance, b) to characterize functional traits associated with generalist and specialist species, and c) to assess if a predominance of generalists leads to a homogeneous functional structure across the landscape. We used a multinomial model of relative abundances to classify 118 woody species according to their successional/topographic habitat. Three species were classified as secondary-forest specialists, five as mature-forest specialists, 35 as generalists, and 75 as too rare to classify. According to topography, six species were hill specialists, eight flat-site specialists, 35 generalists, and 70 too rare. Generalists dominated across the landscape. Analysis of 14 functional traits from 65 dominant species indicated that generalists varied from acquisitive strategies of light and water early in succession to conservative strategies in older forests and on hills. Long-term human disturbance may have favored generalist species, but this did not result in functional homogenization. Further analyses considering other functional traits, and temporal and fine-scale microenvironmental variation are needed to better understand community assembly.

  1. The relationship of meteorological patterns with changes in floristic richness along a large elevational gradient in a seasonally dry region of southern Mexico

    Science.gov (United States)

    Salas-Morales, Silvia H.; Meave, Jorge A.; Trejo, Irma

    2015-12-01

    Globally, climate is a fundamental driver of plant species' geographical distributions, yet we still lack a good understanding of climatic variation on tropical mountains and its consequences for elevational floristic patterns. In a seasonally dry region of southern Mexico, we analysed meteorological patterns along a large elevational gradient (0-3670 m a.s.l.) and examined their relationship with changes in floristic richness. Meteorological patterns were characterised using two data sources. First, climatic information was extracted from cartography and records from a few existing meteorological stations. Additionally, air temperature and humidity were recorded hourly during 1 year with data loggers, at sites representing 200-m elevation increments. Floristic information was extracted from a database containing 10,124 records of plant collections, and organized in 200-m elevational belts. Climatic charts distinguished three climate types along the gradient, all with marked rainfall seasonality, but these bore little correspondence with the information obtained with the data loggers. Mean annual air temperature decreased with increasing elevation (lapse rate of 0.542 °C 100 m-1). Thermal oscillation was minimum around 1400 m and increased towards both extremes of the gradient. Relative humidity opposed this pattern, with maxima between 800 and 1800 m, decreasing towards the highest elevations. An analysis of temperature frequency distributions revealed meteorological features undetectable from the annual or monthly means of this variable; despite an overall gradual transition of the proportions of time recorded at different temperatures, some changes did not conform to this pattern. The first discontinuity occurred between 1000-1200 m, where dominant temperatures shifted abruptly; also noticeable was an abrupt increase of the proportion of time elapsed at 0.1-10 °C between 2400 and 2600 m. Air temperature appears to be the most influential climatic factor

  2. Effect of different Planting Pattern of Wheat (Triticum aestivum and Bean (Vicia faba on Grain Yield, Dry Matter Production and Weed Biomass

    Directory of Open Access Journals (Sweden)

    Hamdollah ESKANDARI

    2010-12-01

    Full Text Available An experiment was conducted in University of London, Kent, UK during the year 2003. The aim of experiment was to investigate the effects of planting pattern on performance of wheat and bean intercrops. A complete randomized block design with four replications was employed to compare the treatments. Treatments included wheat sole crop (W, Bean sole crop (B, within row intercropping (M1, row intercropping (M2 and mix cropping (M3. The density of intercropping was according to replacement design (one wheat replaced by three bean plants. The results showed that total dry matter achieved by intercrops was significantly higher than those achieved by either wheat or bean sole crop. Regarding to weed control, intercrops were more effective than sole crops, especially bean sole crop. Crops performance in terms dry weight, height and percentage of leaf, stem pod and ear was affected by cropping systems depending on crop species, where wheat showed more changes compared to bean . Grain yield, harvest index and thousand grain weights of wheat were decreased in intercropping while bean had reduction only in grain yield.

  3. Patterns of forest composition and their long term environmental drivers in the tropical dry forest transition zone of southern Africa

    Directory of Open Access Journals (Sweden)

    Vera De Cauwer

    2016-09-01

    Full Text Available Background Tropical dry forests cover less than 13 % of the world’s tropical forests and their area and biodiversity are declining. In southern Africa, the major threat is increasing population pressure, while drought caused by climate change is a potential threat in the drier transition zones to shrub land. Monitoring climate change impacts in these transition zones is difficult as there is inadequate information on forest composition to allow disentanglement from other environmental drivers. Methods This study combined historical and modern forest inventories covering an area of 21,000 km2 in a transition zone in Namibia and Angola to distinguish late succession tree communities, to understand their dependence on site factors, and to detect trends in the forest composition over the last 40 years. Results The woodlands were dominated by six tree species that represented 84 % of the total basal area and can be referred to as Baikiaea - Pterocarpus woodlands. A boosted regression tree analysis revealed that late succession tree communities are primarily determined by climate and topography. The Schinziophyton rautanenii and Baikiaea plurijuga communities are common on slightly inclined dune or valley slopes and had the highest basal area (5.5 – 6.2 m2 ha−1. The Burkea africana - Guibourtia coleosperma and Pterocarpus angolensis – Dialium englerianum communities are typical for the sandy plateaux and have a higher proportion of smaller stems caused by a higher fire frequency. A decrease in overall basal area or a trend of increasing domination by the more drought and cold resilient B. africana community was not confirmed by the historical data, but there were significant decreases in basal area for Ochna pulchra and the valuable fruit tree D. englerianum. Conclusions The slope communities are more sheltered from fire, frost and drought but are more susceptible to human expansion. The community with the important timber tree P

  4. Response of Surface Soil Hydrology to the Micro-Pattern of Bio-Crust in a Dry-Land Loess Environment, China.

    Science.gov (United States)

    Wei, Wei; Yu, Yun; Chen, Liding

    2015-01-01

    The specific bio-species and their spatial patterns play crucial roles in regulating eco-hydrologic process, which is significant for large-scale habitat promotion and vegetation restoration in many dry-land ecosystems. Such effects, however, are not yet fully studied. In this study, 12 micro-plots, each with size of 0.5 m in depth and 1 m in length, were constructed on a gentle grassy hill-slope with a mean gradient of 8° in a semiarid loess hilly area of China. Two major bio-crusts, including mosses and lichens, had been cultivated for two years prior to the field simulation experiments, while physical crusts and non-crusted bare soils were used for comparison. By using rainfall simulation method, four designed micro-patterns (i.e., upper bio-crust and lower bare soil, scattered bio-crust, upper bare soil and lower bio-crust, fully-covered bio-crust) to the soil hydrological response were analyzed. We found that soil surface bio-crusts were more efficient in improving soil structure, water holding capacity and runoff retention particularly at surface 10 cm layers, compared with physical soil crusts and non-crusted bare soils. We re-confirmed that mosses functioned better than lichens, partly due to their higher successional stage and deeper biomass accumulation. Physical crusts were least efficient in water conservation and erosion control, followed by non-crusted bare soils. More importantly, there were marked differences in the efficiency of the different spatial arrangements of bio-crusts in controlling runoff and sediment generation. Fully-covered bio-crust pattern provides the best option for soil loss reduction and runoff retention, while a combination of upper bio-crust and lower bare soil pattern is the least one. These findings are suggested to be significant for surface-cover protection, rainwater infiltration, runoff retention, and erosion control in water-restricted and degraded natural slopes.

  5. Analysis of phononic bandgap structures with dissipation

    DEFF Research Database (Denmark)

    Andreassen, Erik; Jensen, Jakob Søndergaard

    2013-01-01

    We study wave propagation in periodic materials with dissipation using two different formulations. An ω(k)-formulation yields complex frequency solutions for nonvanishing dissipation whereas a k(ω)-formulation leads to complex wave numbers. For small (realistic) levels of material dissipation and...

  6. Kinetic approach to relativistic dissipation

    Science.gov (United States)

    Gabbana, A.; Mendoza, M.; Succi, S.; Tripiccione, R.

    2017-08-01

    Despite a long record of intense effort, the basic mechanisms by which dissipation emerges from the microscopic dynamics of a relativistic fluid still elude complete understanding. In particular, several details must still be finalized in the pathway from kinetic theory to hydrodynamics mainly in the derivation of the values of the transport coefficients. In this paper, we approach the problem by matching data from lattice-kinetic simulations with analytical predictions. Our numerical results provide neat evidence in favor of the Chapman-Enskog [The Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, U.K., 1970)] procedure as suggested by recent theoretical analyses along with qualitative hints at the basic reasons why the Chapman-Enskog expansion might be better suited than Grad's method [Commun. Pure Appl. Math. 2, 331 (1949), 10.1002/cpa.3160020403] to capture the emergence of dissipative effects in relativistic fluids.

  7. Magnetic topology, nonequilibrium, and dissipation

    International Nuclear Information System (INIS)

    Parker, E.N.

    1985-01-01

    Static equilibrium of a magnetic field throughout a large volume of highly conducting fluid requires a degree of topological symmetry that is generally lacking in nature. The dynamical nonequilibrium of the magnetic topologies in the real world forms current sheets across which there is active reconnection of the field, dissipating the energy of the magnetic strains and reducing the fields toward simpler forms. The magnetic fields in astronomical settings are generally subject to continual straining by the convection within their parent body. The work done on the field by the convection appears in the energy of the small-scale strains, and is soon dissipated by the reconnection. The intense heating of the tenuous outer atmosphere of stars by this mechanism appears to be responsible for most of the X-ray emission of ordinary stars

  8. Anisotropy dissipation in quantum cosmology

    International Nuclear Information System (INIS)

    Calzetta, E.; Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires, Argentina)

    1991-01-01

    We study the issue of decoherence and dissipation in the wave function of the Universe for a Bianchi type-I universe with classical and quantum matter. We obtain a coarse-grained description by tracing over the matter degrees of freedom. Provided that for small universes the wave function of the universe is concentrated on a neighborhood of the isotropic configuration, then the coarse-grained density matrix of the universe will show an even more marked peak around isotropy for large universes. In this sense we can say that, while decoherence makes the reduced density matrix of the universe diagonal, dissipation causes the universe to be isotropic with a high probability for large radii

  9. Collisionless dissipation of Langmuir turbulence

    International Nuclear Information System (INIS)

    Erofeev, V.I.

    2002-01-01

    An analysis of two experimental observations of Langmuir wave collapse is performed. The corresponding experimental data are shown to give evidence against the collapse. The physical reason for preventing the collapses is found to be the nonresonant electron diffusion in momentums. In this process, plasma thermal electrons are efficiently heated at the expense of wave energy, and intense collisionless wave dissipation takes place. The basic reason of underestimation of this phenomenon in traditional theory is shown to be the substitution of real plasma by a plasma probabilistic ensemble. A theory of nonresonant electron diffusion in a single collisionless plasma is developed. It is shown that corresponding collisionless wave dissipation may arrest spectral energy transfer towards small wave numbers

  10. Nuclear Dissipation from Fission Time

    International Nuclear Information System (INIS)

    Gontchar, I.; Morjean, M.; Basnary, S.

    2000-01-01

    Fission times, pre-scission neutron multiplicities and GDR pre-scission γ-ray multiplicities measured for uranium or thorium nuclei formed with temperatures T ∼ 1.8 MeV have been compared with calculations performed with CDSM2, a two-dimensional dynamical model combined with a statistical one. Among the three experimental approaches considered, fission times give access to the most precise pieces of information on nuclear dissipation at high excitation energy. For the temperature range under consideration, an agreement between the model and data is achieved if one-body dissipation is used with a strength factor k red ∼ 0.45 ± 0.10 applied to the wall term for the mononuclear configuration. (authors)

  11. Dissipative control for singular impulsive dynamical systems

    Directory of Open Access Journals (Sweden)

    Li Yang

    2012-04-01

    Full Text Available The aim of this work is to study the dissipative control problem for singular impulsive dynamical systems. We start by introducing the impulse to the singular systems, and give the definition of the dissipation for singular impulsive dynamical systems. Then we discuss the dissipation of singular impulsive dynamical systems, we obtain some sufficient and necessary conditions for dissipation of these systems by solving some linear matrix inequalities (LMIs. By using this method, we design a state feedback controller to make the closed-loop system dissipative. At last, we testify the feasibility of the method by a numerical example.

  12. Associations between forest fragmentation patterns and geneticstructure in Pfrimer’s Parakeet (Pyrrhura pfrimeri), an endangered endemic to central Brazil’s dry forests

    Science.gov (United States)

    Haig, Susan M.; Miller, Leonard F.; Bianchi, Carlos; Mullins, Thomas D.

    2012-01-01

    When habitat becomes fragmented, populations of species may become increasingly isolated. In the absence of habitat corridors, genetic structure may develop and populations risk reductions in genetic diversity from increased genetic drift and inbreeding. Deforestation of the Cerrado biome of Brazil, particularly of the dry forests within the Parana˜ River Basin, has incrementally occurred since the 1970s and increased forest fragmentation within the region. We performed landscape genetic analyses of Pfrimer’s parakeet (Pyrrhura pfrimeri), a globally endangered endemic to the region, to determine if forest fragmentation patterns were associated with genetic structuring in this species. We used previously generated satellite imagery that identified the locations of Parana˜ River Basin forest fragments in 1977, 1993/94, and 2008. Behavioral data quantifying the affinity of Pfrimer’s parakeet for forest habitat was used to parameterize empirically derived landscape conductance surfaces. Though genetic structure was observed among Pfrimer’s parakeet populations, no association between genetic and geographic distance was detected. Likewise, least cost path lengths, circuit theorybased resistance distances, and a new measure of least cost path length complexity could not be conclusively associated with genetic structure patterns. Instead, a new quantity that encapsulated connection redundancy from the 1977 forest fragmentation data provided the clearest associations with pairwise genetic differentiation patterns (Jost’s D: r = 0.72, P = 0.006; FST: r = 0.741, P = 0.001). Our analyses suggest a 35-year or more lag between deforestation and its effect on genetic structure. Because 66 % of the Parana˜ River Basin has been deforested since 1977, we expect that genetic structure will increase substantially among Pfrimer’s Parakeet populations in the future, especially if fragmentation continues at its current pace.

  13. Designing Biomimetic, Dissipative Material Systems

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, Anna C. [Univ. of Pittsburgh, PA (United States). Chemical Engineering Dept.; Whitesides, George M. [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology; Brinker, C. Jeffrey [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering. Dept. of Chemistry. Dept. of Molecular Genetics and Microbiology. Center for Micro-Engineered Materials; Aranson, Igor S. [UChicago, LLC., Argonne, IL (United States); Chaikin, Paul [New York Univ. (NYU), NY (United States). Dept. of Physics; Dogic, Zvonimir [Brandeis Univ., Waltham, MA (United States). Dept. of Physics; Glotzer, Sharon [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering. Dept. of Materials Science and Engineering. Dept. of Macromolecular Science and Engineering Physics; Hammer, Daniel [Univ. of Pennsylvania, Philadelphia, PA (United States). School of Engineering and Applied Science; Irvine, Darrell [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering and Biological Engineering; Little, Steven R. [Univ. of Pittsburgh, PA (United States). Chemical Engineering Dept.; Olvera de la Cruz, Monica [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Parikh, Atul N. [Univ. of California, Davis, CA (United States). Dept. of Biomedical Engineering. Dept. of Chemical Engineering and Materials Science; Stupp, Samuel [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering. Dept. of Chemistry. Dept. of Medicine. Dept. of Biomedical Engineering; Szostak, Jack [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology

    2016-01-21

    Throughout human history, new materials have been the foundation of transformative technologies: from bronze, paper, and ceramics to steel, silicon, and polymers, each material has enabled far-reaching advances. Today, another new class of materials is emerging—one with both the potential to provide radically new functions and to challenge our notion of what constitutes a “material”. These materials would harvest, transduce, or dissipate energy to perform autonomous, dynamic functions that mimic the behaviors of living organisms. Herein, we discuss the challenges and benefits of creating “dissipative” materials that can potentially blur the boundaries between living and non-living matter.

  14. Patterns of nectar production and composition, and morphology of floral nectaries in Helicteres guazumifolia and Helicteres baruensis (Sterculiaceae: two sympatric species from the Costa Rican tropical dry forest

    Directory of Open Access Journals (Sweden)

    Loretta Goldberg

    2009-11-01

    Full Text Available Helicteres guazumifolia Kunth and Helicteres baruensis Jacq. (Sterculiaceae are two sympatric species of shrubs common along the North Western tropical dry forest of Costa Rica. i recorded their nectar production within a 24 hour cycle. i also describe the morphology of extrafloral nectaries with scanning electron microscopy. in H. guazumifolia secretion was restricted to the first day of flower life span, shortly after anthesis (0600 hr - 1800 hr. Flowers secreted on average 15.63 ±8.45 µl (N=409. Nectar is composed of three main sugars: sucrose, fructose and glucose (mainly sucrose. A total of 17 free amino acids were identified: mainly proline, arginine, threonine and tyrosine, with a concentration above 70 Ng/µl. values were different for H. baruensis. Nectar secretion was confined to the second day after anthesis, starting at 1600 hr and ending at 0600 hr the following day. Flowers secreted on average 77.03 ±64.99 µl (N=163 of nectar. Nectar is also composed of three main sugars; however, it showed a tendency to be hexose-rich, having more fructose and glucose than sucrose. There were also 17 free amino acids, mainly proline, alanine, tyrosine, arginine and threonine. Patterns of nectar production are different between the two species for timing, and for amount and composition of nectar secretion. Rev. Biol. Trop. 57 (Suppl. 1: 161-177. Epub 2009 November 30.

  15. Non-dissipative shapable sheet

    Science.gov (United States)

    Oppenheimer, Naomi; Witten, Thomas

    2014-03-01

    A sheet of paper that has been crumpled and flattened retains some amount of shapability that a bare, uncrumpled, sheet does not have: when deformed by external forces, it retains the deformed shape after the forces are removed. Using a frustrated two dimensional lattice of springs, we show that such shapability can be attained in a non-dissipative system. Numerical investigations suggest an extensive number of bistable energy minima using several variants of this scheme. The numerical sheet can be bent into a nearly-closed cylinder that holds its shape. We verify that the deformed shape is locally stable and compare its bending modulus in the deformed state with that in the initial flat state. We investigate the threshold for non-elastic deformation using various kinds of forcing.

  16. Dissipation and leaching of 14C-monocrotophos in soil columns

    International Nuclear Information System (INIS)

    Vig, K.; Singh, D.K.; Agarwal, H.C.

    2001-01-01

    Dissipation and leaching of 14 C-monocrotophos was studied in the field. Two sets of PVC cylinders were used - one set received only 14 C monocrotophos and the other received 14 C-monocrotophos along with dimethoate, deltamethrin, endosulfan, cypermethrin and 1.06 mg unlabelled monocrotophos. Both setups showed a similar pattern of dissipation with a half-life of 277.2 days. Leaching of monocrotophos was observed into the 30cm soil layer. (author)

  17. Quantum dissipation of a simple conservative system

    International Nuclear Information System (INIS)

    Ibeh, G. J.; Mshelia, E. D.

    2014-01-01

    A model of quantum dissipative system is presented. Here dissipation of energy is demonstrated as based on the coupling of a free translational motion of a centre of mass to a harmonic oscillator. The two-dimensional arrangement of two coupled particles of different masses is considered.

  18. Observed eddy dissipation in the Agulhas Current

    CSIR Research Space (South Africa)

    Braby, L

    2016-08-01

    Full Text Available Channel and south of Madagascar dissipate as they approach the Agulhas Current. By tracking the offshore position of the current core and its velocity at 30°S in relation to eddies, it is demonstrated that eddy dissipation occurs through a transfer...

  19. Low moduli elastomers with low viscous dissipation

    DEFF Research Database (Denmark)

    Bejenariu, Anca Gabriela; Yu, Liyun; Skov, Anne Ladegaard

    2012-01-01

    A controlled reaction schema for addition curing silicones leads to both significantly lower elastic modulus and lower viscous dissipation than for the chemically identical network prepared by the traditional reaction schema.......A controlled reaction schema for addition curing silicones leads to both significantly lower elastic modulus and lower viscous dissipation than for the chemically identical network prepared by the traditional reaction schema....

  20. Robust dissipativity for uncertain impulsive dynamical systems

    Directory of Open Access Journals (Sweden)

    Liu Bin

    2003-01-01

    Full Text Available We discuss the robust dissipativity with respect to the quadratic supply rate for uncertain impulsive dynamical systems. By employing the Hamilton-Jacobi inequality approach, some sufficient conditions of robust dissipativity for this kind of system are established. Finally, we specialize the obtained results to the case of uncertain linear impulsive dynamical systems.

  1. Dissipative Solitons that Cannot be Trapped

    International Nuclear Information System (INIS)

    Pardo, Rosa; Perez-Garcia, Victor M.

    2006-01-01

    We show that dissipative solitons in systems with high-order nonlinear dissipation cannot survive in the presence of trapping potentials of the rigid wall or asymptotically increasing type. Solitons in such systems can survive in the presence of a weak potential but only with energies out of the interval of existence of linear quantum mechanical stationary states

  2. Material Systems for Blast-Energy Dissipation

    Energy Technology Data Exchange (ETDEWEB)

    James Schondel; Henry S. Chu

    2010-10-01

    Lightweight panels have been designed to protect buildings and vehicles from blast pressures by activating energy dissipation mechanisms under the influence of blast loading. Panels were fabricated which featured a variety of granular materials and hydraulic dissipative deformation mechanisms and the test articles were subjected to full-scale blast loading. The force time-histories transmitted by each technology were measured by a novel method that utilized inexpensive custom-designed force sensors. The array of tests revealed that granular materials can effectively dissipate blast energy if they are employed in a way that they easily crush and rearrange. Similarly, hydraulic dissipation can effectively dissipate energy if the panel features a high fraction of porosity and the panel encasement features low compressive stiffness.

  3. Third sound dissipation at a point contact

    International Nuclear Information System (INIS)

    Ellis, F M; Eddinger, J D

    2009-01-01

    Third sound on a planar geometry at low temperatures is characterized by a rapidly diminishing thermal dissipation. Direct mechanical dissipation is limited to that associated with defects in the system. This includes interaction with pinned vortices, critical flow at surface defect sites, and unintentional acoustic coupling. Dissipation of this latter type is possible in the parallel plate geometry of capacitively detected third sound. We calculate the coupling of a third sound wave across a contacting bridge to a parallel plane, and investigate the energy transfer out of the wave and flow properties of the film in the vicinity of the contact. The presence of various mirror waves on the contacting plane is also considered. Experimental dissipation is observed in both geometries and it is shown that a single contact is capable of accounting for the dissipation as well as an unusually low observed critical velocity.

  4. Uncontrollable dissipative systems: observability and embeddability

    Science.gov (United States)

    Karikalan, Selvaraj; Belur, Madhu N.; Athalye, Chirayu D.; Razak, Rihab Abdul

    2014-01-01

    The theory of dissipativity is well developed for controllable systems. A more appropriate definition of dissipativity in the context of uncontrollable systems is in terms of the existence of a storage function, namely a function such that, along every system trajectory, its rate of change at each time instant is at most the power supplied to the system at that time. However, even when the supplied power is expressible in terms of just the external variables, the dissipativity property for uncontrollable systems crucially hinges on whether or not the storage function depends on variables unobservable/hidden from the external variables: this paper investigates the key aspects of both cases, and also proposes another intuitive definition of dissipativity. These three definitions are compared: we show that drawbacks of one definition are addressed by another. Dealing first with observable storage functions, under the conditions that no two uncontrollable poles add to zero and that dissipativity is strict as frequency tends to infinity, we prove that the dissipativities of a system and its controllable part are equivalent. We use the behavioural approach for formalising key notions: a system behaviour is the set of all system trajectories. We prove that storage functions have to be unobservable for 'lossless' uncontrollable systems. It is known, however, that unobservable storage functions result in certain 'fallacious' examples of lossless systems. We propose an intuitive definition of dissipativity: a system/behaviour is called dissipative if it can be embedded in a controllable dissipative superbehaviour. We prove embeddability results and use them to resolve the fallacy in the example termed 'lossless' due to unobservable storage functions. We next show that, quite unreasonably, the embeddability definition admits behaviours that are both strictly dissipative and strictly antidissipative. Drawbacks of the embeddability definition in the context of RLC circuits are

  5. Energy dissipation in biomolecular machines

    Energy Technology Data Exchange (ETDEWEB)

    Lervik, Anders

    2012-07-01

    thermodynamic efficiency is found to be low (< 13 %) in all cases for the experimental conditions considered, which means that a large amount of the energy released from the ATP-hydrolysis is dissipated as heat. A complementary molecular dynamics study targeted on a bilayer for which the protein shows a relatively large efficiency (compared to other bilayers) shows that membrane deformation and large efficiency are not mutually exclusive. Overall, this thesis highlights the usefulness of the mesoscopic non-equilibrium thermodynamic framework applied to molecular machines and energy transduction and dissipation in these. The main result is that the mesoscopic nonequilibrium thermodynamic framework is applicable to molecular pumps and can be extended to include heat effects. This framework is general and can be applied to other molecular machines as well. Further, the results also support the notion that the calcium pump may contribute to non-shivering thermogenesis in certain tissues.(Author)

  6. Dissipative structures and biological rhythms

    Science.gov (United States)

    Goldbeter, Albert

    2017-10-01

    Sustained oscillations abound in biological systems. They occur at all levels of biological organization over a wide range of periods, from a fraction of a second to years, and with a variety of underlying mechanisms. They control major physiological functions, and their dysfunction is associated with a variety of physiological disorders. The goal of this review is (i) to give an overview of the main rhythms observed at the cellular and supracellular levels, (ii) to briefly describe how the study of biological rhythms unfolded in the course of time, in parallel with studies on chemical oscillations, (iii) to present the major roles of biological rhythms in the control of physiological functions, and (iv) the pathologies associated with the alteration, disappearance, or spurious occurrence of biological rhythms. Two tables present the main examples of cellular and supracellular rhythms ordered according to their period, and their role in physiology and pathophysiology. Among the rhythms discussed are neural and cardiac rhythms, metabolic oscillations such as those occurring in glycolysis in yeast, intracellular Ca++ oscillations, cyclic AMP oscillations in Dictyostelium amoebae, the segmentation clock that controls somitogenesis, pulsatile hormone secretion, circadian rhythms which occur in all eukaryotes and some bacteria with a period close to 24 h, the oscillatory dynamics of the enzymatic network driving the cell cycle, and oscillations in transcription factors such as NF-ΚB and tumor suppressors such as p53. Ilya Prigogine's concept of dissipative structures applies to temporal oscillations and allows us to unify within a common framework the various rhythms observed at different levels of biological organization, regardless of their period and underlying mechanism.

  7. Dry Etching

    DEFF Research Database (Denmark)

    Stamate, Eugen; Yeom, Geun Young

    2016-01-01

    for the higher processing rates in FPDs, high-density plasma processing tools that can handle larger-area substrate uniformly are more intensively studied especially for the dry etching of polysilicon thin films. In the case of FPD processing, the current substrate size ranges from 730 × 920 mm (fourth...... etching requirements, and advantages of dry etching over wet processing. Current status and future trends are also presented....

  8. Phenomenological approaches of dissipative heavy ion collisions

    International Nuclear Information System (INIS)

    Ngo, C.

    1983-09-01

    These lectures describe the properties of dissipative heavy ion collisions observed in low bombarding energy heavy ion reactions. These dissipative collisions are of two different types: fusion and deep inelastic reactions. Their main experimental properties are described on selected examples. It is shown how it is possible to give a simple interpretation to the data. A large number of phenomenological models have been developped to understand dissipative heavy ion collisions. The most important are those describing the collision by classical mechanics and friction forces, the diffusion models, and transport theories which merge both preceding approaches. A special emphasis has been done on two phenomena observed in dissipative heavy ion collisions: charge equilibratium for which we can show the existence of quantum fluctuations, and fast fission which appears as an intermediate mechanism between deep inelastic reactions and compound nucleus formation [fr

  9. Dissipation effects in mechanics and thermodynamics

    Science.gov (United States)

    Güémez, J.; Fiolhais, M.

    2016-07-01

    With the discussion of three examples, we aim at clarifying the concept of energy transfer associated with dissipation in mechanics and in thermodynamics. The dissipation effects due to dissipative forces, such as the friction force between solids or the drag force in motions in fluids, lead to an internal energy increase of the system and/or to heat transfer to the surroundings. This heat flow is consistent with the second law, which states that the entropy of the universe should increase when those forces are present because of the irreversibility always associated with their actions. As far as mechanics is concerned, the effects of the dissipative forces are included in Newton’s equations as impulses and pseudo-works.

  10. Minimum dissipative relaxed states in toroidal plasmas

    Indian Academy of Sciences (India)

    organised equi- librium in RFP and tokamak by a deterministic approach to incompressible dissipative magnetohydrodynamics. In an earlier work Kondoh [8] formulated an energy principle including the edge plasma effects for a slightly resistive MHD ...

  11. Noise and dissipation in magnetoelectronic nanostructures

    NARCIS (Netherlands)

    Foros, J.; Brataas, A.; Bauer, G.E.W.; Tserkovnyak, Y.

    2009-01-01

    The interplay between current and magnetization fluctuations and dissipation in layered-ferromagnetic-normal-metal nanostructures is investigated. We use scattering theory and magnetoelectronic circuit theory to calculate charge and spin-current fluctuations. Via the spin-transfer torque,

  12. Characterizing pesticide dissipation in food crops

    DEFF Research Database (Denmark)

    Fantke, Peter; Juraske, R.; Jolliet, O.

    2013-01-01

    Ingestion of residues via consumption of food crops is the predominant exposure route of the general population toward pesticides. However, pesticide dissipation in crops constitutes a main source of uncertainty in estimating residues in harvested crop parts and subsequent human exposure. Neverth......Ingestion of residues via consumption of food crops is the predominant exposure route of the general population toward pesticides. However, pesticide dissipation in crops constitutes a main source of uncertainty in estimating residues in harvested crop parts and subsequent human exposure....... Nevertheless, dissipation is a key mechanism in models assessing pesticide distribution in the cropenvironment and the magnitude of residues in harvest. We provide a consistent framework for characterizing pesticide dissipation in food crops for use in modeling approaches applied in health risk and impact...

  13. Characterizing pesticide dissipation in food crops

    OpenAIRE

    Fantke, Peter; Juraske, R.; Jolliet, O.

    2013-01-01

    Ingestion of residues via consumption of food crops is the predominant exposure route of the general population toward pesticides. However, pesticide dissipation in crops constitutes a main source of uncertainty in estimating residues in harvested crop parts and subsequent human exposure. Nevertheless, dissipation is a key mechanism in models assessing pesticide distribution in the cropenvironment and the magnitude of residues in harvest. We provide a consistent framework for characterizing p...

  14. Noise and dissipation in magnetoelectronic nanostructures

    OpenAIRE

    Foros, Jørn

    2008-01-01

    This thesis adresses electric and magnetic noise and dissipation in magnetoelectronic nanostructures. Charge and spin current fluctuations are studied in various nanosized metallic structures consisting of both ferromagnetic and non-magnetic elements. The interplay between current and magnetization fluctuations, and the relation of these fluctuations to the electric and magnetic dissipation of energy, are considered. Special focus is on the enhancement of magnetization damping due to so-calle...

  15. Heat dissipation during hovering and forward flight in hummingbirds.

    Science.gov (United States)

    Powers, Donald R; Tobalske, Bret W; Wilson, J Keaton; Woods, H Arthur; Corder, Keely R

    2015-12-01

    Flying animals generate large amounts of heat, which must be dissipated to avoid overheating. In birds, heat dissipation is complicated by feathers, which cover most body surfaces and retard heat loss. To understand how birds manage heat budgets during flight, it is critical to know how heat moves from the skin to the external environment. Hummingbirds are instructive because they fly at speeds from 0 to more than 12 m s(-1), during which they transit from radiative to convective heat loss. We used infrared thermography and particle image velocimetry to test the effects of flight speed on heat loss from specific body regions in flying calliope hummingbirds (Selasphorus calliope). We measured heat flux in a carcass with and without plumage to test the effectiveness of the insulation layer. In flying hummingbirds, the highest thermal gradients occurred in key heat dissipation areas (HDAs) around the eyes, axial region and feet. Eye and axial surface temperatures were 8°C or more above air temperature, and remained relatively constant across speeds suggesting physiological regulation of skin surface temperature. During hovering, birds dangled their feet, which enhanced radiative heat loss. In addition, during hovering, near-body induced airflows from the wings were low except around the feet (approx. 2.5 m s(-1)), which probably enhanced convective heat loss. Axial HDA and maximum surface temperature exhibited a shallow U-shaped pattern across speeds, revealing a localized relationship with power production in flight in the HDA closest to the primary flight muscles. We conclude that hummingbirds actively alter routes of heat dissipation as a function of flight speed.

  16. Patterns of nectar production and composition, and morphology of floral nectaries in Helicteres guazumifolia and Helicteres baruensis (Sterculiaceae: two sympatric species from the Costa Rican tropical dry forest

    Directory of Open Access Journals (Sweden)

    Loretta Goldberg

    2009-11-01

    Full Text Available Helicteres guazumifolia Kunth and Helicteres baruensis Jacq. (Sterculiaceae are two sympatric species of shrubs common along the North Western tropical dry forest of Costa Rica. i recorded their nectar production within a 24 hour cycle. i also describe the morphology of extrafloral nectaries with scanning electron microscopy. in H. guazumifolia secretion was restricted to the first day of flower life span, shortly after anthesis (0600 hr - 1800 hr. Flowers secreted on average 15.63 ±8.45 µl (N=409. Nectar is composed of three main sugars: sucrose, fructose and glucose (mainly sucrose. A total of 17 free amino acids were identified: mainly proline, arginine, threonine and tyrosine, with a concentration above 70 Ng/µl. values were different for H. baruensis. Nectar secretion was confined to the second day after anthesis, starting at 1600 hr and ending at 0600 hr the following day. Flowers secreted on average 77.03 ±64.99 µl (N=163 of nectar. Nectar is also composed of three main sugars; however, it showed a tendency to be hexose-rich, having more fructose and glucose than sucrose. There were also 17 free amino acids, mainly proline, alanine, tyrosine, arginine and threonine. Patterns of nectar production are different between the two species for timing, and for amount and composition of nectar secretion. Rev. Biol. Trop. 57 (Suppl. 1: 161-177. Epub 2009 November 30.Helicteres guazumifolia Kunth y Helicteres baruensis Jacq. (Sterculiaceae son dos especies simpátricas de arbustos comunes en el bosque tropical seco de la zona noroeste de Costa Rica. Registré los patrones de producción de néctar de las dos especies según la hora del día o de la noche cuando hubo secreción de néctar. En H. guazumifolia se limitó al primer día del período de vida floral, desde el inicio de la antesis a las 0600 hr hasta las 1800 hr. Las flores secretaron en promedio 15.63 ±8.45 µl (N=409 de néctar. El néctar está compuesto por tres az

  17. Dry cell battery poisoning

    Science.gov (United States)

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  18. Energy dissipation mapping of cancer cells.

    Science.gov (United States)

    Dutta, Diganta; Palmer, Xavier-Lewis; Kim, Jinhyun; Qian, Shizhi; Stacey, Michael

    2018-02-01

    The purpose of this study is to map the energy dissipation of Jurkat cells using a single 60 nanosecond pulse electric field (NsPEF), primarily through atomic force microscopy (AFM). The phase shift is generated by the sample elements that do not have a heterogeneous surface. Monitoring and manipulating the phase shift is a powerful way for determining the dissipated energy and plotting the topography. The dissipated energy is a relative value, so the silica wafer and cover slip are given a set reference while the transmission of energy between the tip of the cantilever and cell surfaces is measured. The most important finding is that the magnitude and the number of variations in the dissipated energy change with the strength of NsPEF applied. Utilizing a single low field strength NsPEF (15kV/cm), minor changes in dissipated energy were found. The application of a single high field strength NsPEF (60kV/cm) to Jurkat cells resulted in a higher dissipated energy change versus that of in the low field strength condition. Thus, the dissipated energy from the Jurkat cells changes with the strength of NsPEF. By analyzing the forces via investigation in the tapping mode of the AFM, the stabilization of the cytoskeleton and membrane of the cell are related to the strength of NsPEF applied. Furthermore, the strength of NsPEF indicates a meaningful relationship to the survival of the Jurkat cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. An estimate of energy dissipation due to soil-moisture hysteresis

    KAUST Repository

    McNamara, H.

    2014-01-01

    Processes of infiltration, transport, and outflow in unsaturated soil necessarily involve the dissipation of energy through various processes. Accounting for these energetic processes can contribute to modeling hydrological and ecological systems. The well-documented hysteretic relationship between matric potential and moisture content in soil suggests that one such mechanism of energy dissipation is associated with the cycling between wetting and drying processes, but it is challenging to estimate the magnitude of the effect in situ. The Preisach model, a generalization of the Independent Domain model, allows hysteresis effects to be incorporated into dynamical systems of differential equations. Building on earlier work using such systems with field data from the south-west of Ireland, this work estimates the average rate of hysteretic energy dissipation. Through some straightforward assumptions, the magnitude of this rate is found to be of O(10-5) W m-3. Key Points Hysteresis in soil-water dissipates energy The rate of dissipation can be estimated directly from saturation data The rate of heating caused is significant ©2013. American Geophysical Union. All Rights Reserved.

  20. Decay of Kadomtsev-Petviashvili lumps in dissipative media

    Science.gov (United States)

    Clarke, S.; Gorshkov, K.; Grimshaw, R.; Stepanyants, Y.

    2018-03-01

    The decay of Kadomtsev-Petviashvili lumps is considered for a few typical dissipations-Rayleigh dissipation, Reynolds dissipation, Landau damping, Chezy bottom friction, viscous dissipation in the laminar boundary layer, and radiative losses caused by large-scale dispersion. It is shown that the straight-line motion of lumps is unstable under the influence of dissipation. The lump trajectories are calculated for two most typical models of dissipation-the Rayleigh and Reynolds dissipations. A comparison of analytical results obtained within the framework of asymptotic theory with the direct numerical calculations of the Kadomtsev-Petviashvili equation is presented. Good agreement between the theoretical and numerical results is obtained.

  1. Dissipative structures, machines, and organisms: A perspective.

    Science.gov (United States)

    Kondepudi, Dilip; Kay, Bruce; Dixon, James

    2017-10-01

    Self-organization in nonequilibrium systems resulting in the formation of dissipative structures has been studied in a variety of systems, most prominently in chemical systems. We present a study of a voltage-driven dissipative structure consisting of conducting beads immersed in a viscous medium of oil. In this simple system, we observed remarkably complex organism-like behavior. The dissipative structure consists of a tree structure that spontaneously forms and moves like a worm and exhibits many features characteristic of living organisms. The complex motion of the beads driven by the applied field, the dipole-dipole interaction between the beads, and the hydrodynamic flow of the viscous medium result in a time evolution of the tree structure towards states of lower resistance or higher dissipation and thus higher rates of entropy production. The resulting end-directed evolution manifests as the tree moving to locations seeking higher current, the current that sustains its structure and dynamics. The study of end-directed evolution in the dissipative structure gives us a means to distinguish the fundamental difference between machines and organisms and opens a path for the formulation of physics of organisms.

  2. Dry Cleaning

    OpenAIRE

    Shirley, Lindsey; Weller, Chanae

    2010-01-01

    Despite its name, commercial dry cleaning is not actually a “dry” process. Clothes are immersed in a solvent, most commonly perchlorethylene (perc), instead of in water. Perc or other similar solvents are effective in the removal of oil and grease-based stains without damaging or shrinking sensitive fabrics, unlike a regular detergents and fabric softeners.

  3. Dry storage

    International Nuclear Information System (INIS)

    Arnott, Don.

    1985-01-01

    The environmental movement has consistently argued against disposal of nuclear waste. Reasons include its irretrievability in the event of leakage, the implication that reprocessing will continue and the legitimacy attached to an expanding nuclear programme. But there is an alternative. The author here sets out the background and a possible future direction of a campaign based on a call for dry storage. (author)

  4. Tidal Dissipation Within the Jupiter Moon Io - A Numerical Approach

    Science.gov (United States)

    Steinke, Teresa; van der Wal, Wouter; Hu, Haiyang; Vermeersen, Bert

    2017-04-01

    Satellite images and recent Earth-based observations of the innermost of the Galilean moons reveal a conspicuous pattern of volcanic hotspots and paterae on its surface. This pattern is associated with the heat flux originating from tidal dissipation in Io's mantle and asthenosphere. As shown by many analytical studies [e.g. Segatz et al. 1988], the local heat flux pattern depends on the rheology and structure of the satellite's interior and therefore could reveal constraints on Io's present interior. However, non-linear processes, different rheologies, and in particular lateral variations arising from the spatial heating pattern are difficult to incorporate in analytical 1D models but might be crucial. This motivates the development of a 3D finite element model of a layered body disturbed by a tidal potential. As a first step of this project we present a 3D finite element model of a spherically stratified body of linear viscoelastic rheology. For validation, we compare the resulting tidal deformation and local heating patterns with the results obtained by analytical models. Numerical errors increase with lower values of the asthenosphere viscosity. Currently, the numerical model allows realistic simulation down to viscosities of 1018 Pa s. Furthermore, we investigate an adequate way to deal with the relaxation of false modes that arise at the onset of the periodic tidal potential series in the numerical approach. Segatz, M., Spohn, T., Ross, M. N., Schubert, G. (1988). Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io. Icarus, 75(2), 187-206.

  5. Pattern of pre-existing IgG subclass responses to a panel of asexual stage malaria antigens reported during the lengthy dry season in Daraweesh, Sudan

    DEFF Research Database (Denmark)

    Nasr, A; Iriemenam, N C; Troye-Blomberg, M

    2011-01-01

    The anti-malarial IgG immune response during the lengthy and dry season in areas of low malaria transmission as in Eastern Sudan is largely unknown. In this study, ELISA was used for the measurement of pre-existing total IgG and IgG subclasses to a panel of malaria antigens, MSP2-3D7, MSP2-FC27...

  6. Dynamics of quasi-stable dissipative systems

    CERN Document Server

    Chueshov, Igor

    2015-01-01

    This book is  devoted to background material and recently developed mathematical methods in the study of infinite-dimensional dissipative systems. The theory of such systems is motivated by the long-term goal to establish rigorous mathematical models for turbulent and chaotic phenomena. The aim here is to offer general methods and abstract results pertaining to fundamental dynamical systems properties related to dissipative long-time behavior. The book systematically presents, develops and uses the quasi-stability method while substantially extending it by including for consideration new classes of models and PDE systems arising in Continuum Mechanics. The book can be used as a textbook in dissipative dynamics at the graduate level.   Igor Chueshov is a Professor of Mathematics at Karazin Kharkov National University in Kharkov, Ukraine.

  7. Optimizing the microstructure of dissipative materials

    DEFF Research Database (Denmark)

    Andreassen, Erik; Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard

    the material’s loss factor, however, only for large wave lengths (small wave numbers) and constant material parameters (Andreasen et al., 2012). An alternative way to determine the material’s loss factor is to consider the material’s band diagram (Sigalas and Economou, 1992), from which the loss factor can...... from experimental results in (Schaedler, 2011), where a highly energy absorbing material, constructed from structural elements with a small cross sectional area but large area moment of inertia, is presented. Furthermore, the applicability of multiscale finite element methods (Efendiev, 2009......The aim of this work is to present a method to design material microstructures with high dissipation using topology optimization. In order to compute the macroscopic energy dissipation in periodic structures, we focus both on capturing the physical dissipation mechanism and to find the effective...

  8. Dissipation and traversal time in Josephson junctions

    International Nuclear Information System (INIS)

    Cacciari, Ilaria; Ranfagni, Anedio; Moretti, Paolo

    2010-01-01

    The various ways of evaluating dissipative effects in macroscopic quantum tunneling are re-examined. The results obtained by using functional integration, while confirming those of previously given treatments, enable a comparison with available experimental results relative to Josephson junctions. A criterion based on the shortening of the semiclassical traversal time τ of the barrier with regard to dissipation can be established, according to which Δτ/τ > or approx. N/Q, where Q is the quality factor of the junction and N is a numerical constant of order unity. The best agreement with the experiments is obtained for N=1.11, as it results from a semiempirical analysis based on an increase in the potential barrier caused by dissipative effects.

  9. Induced waveform transitions of dissipative solitons

    Science.gov (United States)

    Kochetov, Bogdan A.; Tuz, Vladimir R.

    2018-01-01

    The effect of an externally applied force upon the dynamics of dissipative solitons is analyzed in the framework of the one-dimensional cubic-quintic complex Ginzburg-Landau equation supplemented by a potential term with an explicit coordinate dependence. The potential accounts for the external force manipulations and consists of three symmetrically arranged potential wells whose depth varies along the longitudinal coordinate. It is found out that under an influence of such potential a transition between different soliton waveforms coexisting under the same physical conditions can be achieved. A low-dimensional phase-space analysis is applied in order to demonstrate that by only changing the potential profile, transitions between different soliton waveforms can be performed in a controllable way. In particular, it is shown that by means of a selected potential, stationary dissipative soliton can be transformed into another stationary soliton as well as into periodic, quasi-periodic, and chaotic spatiotemporal dissipative structures.

  10. Microscopic theory of one-body dissipation

    International Nuclear Information System (INIS)

    Koonin, S.E.; Randrup, J.; Hatch, R.; Kolomietz, V.

    1977-01-01

    A microscopic theory is developed for nuclear collective motion in the limit of a long nuclear mean-free path. Linear response techniques are applied to an independent particle model and expressions for the collective kinetic energy and rate of energy dissipation are obtained. For leptodermous systems, these quantities are characterized by mass and dissipation kernels coupling the velocities at different points on the nuclear surface. In a classical treatment, the kernels are given in terms of nucleon trajectories within the nuclear shape. In a quantal treatment, the dissipation kernel is related to the nuclear Green function. The spatial and thermal properties of the kernels are investigated. Corrections for the diffuseness of the potential and shell effects are also discussed. (Auth.)

  11. Sudden viscous dissipation in compressing plasma turbulence

    Science.gov (United States)

    Davidovits, Seth; Fisch, Nathaniel

    2015-11-01

    Compression of a turbulent plasma or fluid can cause amplification of the turbulent kinetic energy, if the compression is fast compared to the turnover and viscous dissipation times of the turbulent eddies. The consideration of compressing turbulent flows in inviscid fluids has been motivated by the suggestion that amplification of turbulent kinetic energy occurred on experiments at the Weizmann Institute of Science Z-Pinch. We demonstrate a sudden viscous dissipation mechanism whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, which further increases the temperature, feeding back to further enhance the dissipation. Application of this mechanism in compression experiments may be advantageous, if the plasma can be kept comparatively cold during much of the compression, reducing radiation and conduction losses, until the plasma suddenly becomes hot. This work was supported by DOE through contract 67350-9960 (Prime # DOE DE-NA0001836) and by the DTRA.

  12. Dissipative Continuous Spontaneous Localization (CSL) model.

    Science.gov (United States)

    Smirne, Andrea; Bassi, Angelo

    2015-08-05

    Collapse models explain the absence of quantum superpositions at the macroscopic scale, while giving practically the same predictions as quantum mechanics for microscopic systems. The Continuous Spontaneous Localization (CSL) model is the most refined and studied among collapse models. A well-known problem of this model, and of similar ones, is the steady and unlimited increase of the energy induced by the collapse noise. Here we present the dissipative version of the CSL model, which guarantees a finite energy during the entire system's evolution, thus making a crucial step toward a realistic energy-conserving collapse model. This is achieved by introducing a non-linear stochastic modification of the Schrödinger equation, which represents the action of a dissipative finite-temperature collapse noise. The possibility to introduce dissipation within collapse models in a consistent way will have relevant impact on the experimental investigations of the CSL model, and therefore also on the testability of the quantum superposition principle.

  13. Dissipation regimes for short wind waves

    Science.gov (United States)

    Caulliez, Guillemette

    2013-02-01

    The dissipation processes affecting short wind waves of centimeter and decimeter scales are investigated experimentally in laboratory. The processes include damping due to molecular viscosity, generation of capillary waves, microbreaking, and breaking. The observations were made in a large wind wave tank for a wide range of fetches and winds, using a laser sheet and a high-resolution video camera. The work aims at constructing a comprehensive picture of dissipative processes in the short wind wave field, to find for which scales particular dissipative mechanism may become important. Four distinct regimes have been identified. For capillary-gravity wave fields, i.e., for dominant waves with scales below 4 cm, viscous damping is found to be the main dissipation mechanism. The gravity-capillary wave fields with dominant wavelength less than 10 cm usually exhibit a train of capillary ripples at the crest wavefront, but no wave breaking. For such waves, the main dissipation process is molecular viscosity occurring through nonlinear energy cascade toward high-frequency motions. Microscale breaking takes place for waves longer than 10 cm and manifests itself in a very localized surface disruption on the forward face of the crest. Such events generate turbulent motions in water and thus enhance wave dissipation. Plunging breaking, characterized by formation of a crest bulge, a microjet hitting the water surface and a splash-up, occurs for short gravity waves of wavelength exceeding 20 cm. Macroscale spilling breaking is also observed for longer waves at high winds. In both cases, the direct momentum transfer from breaking waves to the water flow contributes significantly to wave damping.

  14. Dry Mouth or Xerostomia

    Science.gov (United States)

    ... Side Effects > Dry Mouth or Xerostomia Request Permissions Dry Mouth or Xerostomia Approved by the Cancer.Net Editorial Board , 05/ ... with a dry mouth. Signs and symptoms of dry mouth The signs and symptoms of dry mouth include ...

  15. Dissipative phenomena in condensed matter some applications

    CERN Document Server

    Dattagupta, Sushanta

    2004-01-01

    From the field of nonequilibrium statistical physics, this graduate- and research-level volume treats the modeling and characterization of dissipative phenomena. A variety of examples from diverse disciplines like condensed matter physics, materials science, metallurgy, chemical physics etc. are discussed. Dattagupta employs the broad framework of stochastic processes and master equation techniques to obtain models for a wide range of experimentally relevant phenomena such as classical and quantum Brownian motion, spin dynamics, kinetics of phase ordering, relaxation in glasses, dissipative tunneling. It provides a pedagogical exposition of current research material and will be useful to experimentalists, computational physicists and theorists.

  16. Quantum dissipation from power-law memory

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2012-01-01

    A new quantum dissipation model based on memory mechanism is suggested. Dynamics of open and closed quantum systems with power-law memory is considered. The processes with power-law memory are described by using integration and differentiation of non-integer orders, by methods of fractional calculus. An example of quantum oscillator with linear friction and power-law memory is considered. - Highlights: ► A new quantum dissipation model based on memory mechanism is suggested. ► The generalization of Lindblad equation is considered. ► An exact solution of generalized Lindblad equation for quantum oscillator with linear friction and power-law memory is derived.

  17. Mechanical energy dissipation in natural ceramic composites.

    Science.gov (United States)

    Mayer, George

    2017-12-01

    Ceramics and glasses, in their monolithic forms, typically exhibit low fracture toughness values, but rigid natural marine ceramic and glass composites have shown remarkable resistance to mechanical failure. This has been observed in load-extension behavior by recognizing that the total area under the curve, notably the part beyond the yield point, often conveys substantial capacity to carry mechanical load. The mechanisms underlying the latter observations are proposed as defining factors for toughness that provide resistance to failure, or capability to dissipate energy, rather than fracture toughness. Such behavior is exhibited in the spicules of glass sponges and in mollusk shells. There are a number of similarities in the manner in which energy dissipation takes place in both sponges and mollusks. It was observed that crack diversion, a new form of crack bridging, creation of new surface area, and other important energy-dissipating mechanisms occur and aid in "toughening". Crack tolerance, key to energy dissipation in these natural composite materials, is assisted by promoting energy distribution over large volumes of loaded specimens by minor components of organic constituents that also serve important roles as adhesives. Viscoelastic deformation was a notable characteristic of the organic component. Some of these energy-dissipating modes and characteristics were found to be quite different from the toughening mechanisms that are utilized for more conventional structural composites. Complementary to those mechanisms found in rigid natural ceramic/organic composites, layered architectures and very thin organic layers played major roles in energy dissipation in these structures. It has been demonstrated in rigid natural marine composites that not only architecture, but also the mechanical behavior of the individual constituents, the nature of the interfaces, and interfacial bonding play important roles in energy dissipation. Additionally, the controlling

  18. Morphing of the Dissipative Reaction Mechanism

    International Nuclear Information System (INIS)

    Schroeder, W.U.; Toke, J.; Gawlikowicz, W.; Houck, M.A.; Lu, J.; Pienkowski, L.

    2003-01-01

    Important trends in the evolution of heavy-ion reaction mechanisms with bombarding energy and impact parameter are reviewed. Essential features of dissipative reactions appear preserved at E/A = 50-62 MeV, such as dissipative orbiting and multi-nucleon exchange. The relaxation of the A/Z asymmetry with impact parameter is slow. Non-equilibrium emission of light particles and clusters is an important process accompanying the evolution of the mechanism. Evidence is presented for a new mechanism of statistical cluster emission from hot, metastable primary reaction products, driven by surface entropy. These results suggest a plausible reinterpretation of multi-fragmentation. (authors)

  19. New derivation of relativistic dissipative fluid dynamics

    International Nuclear Information System (INIS)

    Jaiswal, Amaresh; Bhalerao, Rajeev S.; Pal, Subrata

    2012-01-01

    Relativistic dissipative hydrodynamics has been quite successful in explaining the spectra and azimuthal anisotropy of particles produced in heavy-ion collisions at the RHIC and recently at the LHC. The first-order dissipative fluid dynamics or the relativistic Navier-Stokes (NS) theory involves parabolic differential equations and suffers from a causality and instability. The second-order or Israel-Stewart (IS) theory with its hyperbolic equations restores causality but may not guarantee stability. The correct formulation of relativistic viscous fluid dynamics is far from settled and is under intense investigation

  20. Dissipation and decoherence in quantum systems

    International Nuclear Information System (INIS)

    Menskii, Mikhail B

    2003-01-01

    The theory of dissipative quantum systems and its relation to the quantum theory of continuous measurements are reviewed. Constructing a correct theory of a dissipative quantum system requires that the system's interaction with its environment (reservoir) be taken into account. Since information about the system is 'recorded' in the state of the reservoir, the quantum theory of continuous measurements can be used to account for the influence of the reservoir. If based on the use of restricted path integrals, this theory does not require an explicit reservoir model and is therefore much simpler technically. (reviews of topical problems)

  1. Noise and Dissipation on Coadjoint Orbits

    Science.gov (United States)

    Arnaudon, Alexis; De Castro, Alex L.; Holm, Darryl D.

    2018-02-01

    We derive and study stochastic dissipative dynamics on coadjoint orbits by incorporating noise and dissipation into mechanical systems arising from the theory of reduction by symmetry, including a semidirect product extension. Random attractors are found for this general class of systems when the Lie algebra is semi-simple, provided the top Lyapunov exponent is positive. We study in details two canonical examples, the free rigid body and the heavy top, whose stochastic integrable reductions are found and numerical simulations of their random attractors are shown.

  2. Periodic solutions of dissipative systems revisited

    Directory of Open Access Journals (Sweden)

    Lech Górniewicz

    2006-05-01

    Full Text Available We reprove in an extremely simple way the classical theorem that time periodic dissipative systems imply the existence of harmonic periodic solutions, in the case of uniqueness. We will also show that, in the lack of uniqueness, the existence of harmonics is implied by uniform dissipativity. The localization of starting points and multiplicity of periodic solutions will be established, under suitable additional assumptions, as well. The arguments are based on the application of various asymptotic fixed point theorems of the Lefschetz and Nielsen type.

  3. Periodic solutions of dissipative systems revisited

    Directory of Open Access Journals (Sweden)

    Górniewicz Lech

    2006-01-01

    Full Text Available We reprove in an extremely simple way the classical theorem that time periodic dissipative systems imply the existence of harmonic periodic solutions, in the case of uniqueness. We will also show that, in the lack of uniqueness, the existence of harmonics is implied by uniform dissipativity. The localization of starting points and multiplicity of periodic solutions will be established, under suitable additional assumptions, as well. The arguments are based on the application of various asymptotic fixed point theorems of the Lefschetz and Nielsen type.

  4. Appendix to Power Dissipation in Division

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    This document is an appendix to the paper: Wei Liu and Alberto Nannarelli, ”Power Dissipation in Division”, Proc. of 42nd Asilomar Conference on Signals, Systems, and Computers, October 2008. The purpose of the document is to provide the necessary information for the implementation of the archite......This document is an appendix to the paper: Wei Liu and Alberto Nannarelli, ”Power Dissipation in Division”, Proc. of 42nd Asilomar Conference on Signals, Systems, and Computers, October 2008. The purpose of the document is to provide the necessary information for the implementation...

  5. dry sausage

    African Journals Online (AJOL)

    AJB SERVER

    2006-08-17

    Aug 17, 2006 ... fermentation, desired pH of fermentation (4.9 - 5.0) was achieved after 24 h fermentation, at temperature 30 and. 35°C, which is the desired mesophilic condition for lactic bacterial growth. With the progress of drying, the decrease in pH due to formation of lactic acid was directly proportional to the increase ...

  6. Effect of weaning age on feed intake and ruminal fermentation patterns of calves fed a dry total mixed ration with ad libitum access to grass hay.

    Science.gov (United States)

    Van Ackeren, Caroline; Steingass, Herbert; Hartung, Karin; Funk, Rainer; Drochner, Winfried

    2010-08-01

    To study the effect of weaning age on average daily gain (ADG), dry matter intake (DMI) and ruminal fermentation, 10 rumen-cannulated male Holstein calves were randomly assigned to one of two treatments: (i) early weaned at 8 weeks of age (235 l milk); (ii) conventionally weaned at 12 weeks of age (347 l milk). Twice daily grass hay (9.0 MJ ME x kg(-1) DM) and a dry total mixed ration (TMR) (11.6 MJ ME x kg(-1) DM) containing 15% alfalfa hay and 85% concentrates were offered separately. Water was available ad libitum. Ruminal fluid was collected via cannulas at weeks 9, 11, 13 and 15, twice weekly just prior to as well as 1, 3, 5 and 7 h after morning feeding. Calves of both treatments achieved adequate ADG (947 vs. 959 g; p > 0.05). Just-weaned calves rapidly increased DMI (1.1-2.5 kg TMR and 2.4-3.6 kg TMR for early- and conventionally-weaned calves, respectively). From weeks 10-12 early-weaned calves consumed significantly more dry feed than conventionally-weaned calves (week 10: 2.5 vs. 1.6 kg/d; week 12: 3.4 vs. 2.4 kg/d). Early weaning stimulates DMI supporting ruminal fermentation intensity, indicated by lower ruminal pH. After weaning, only early-weaned calves achieved critical average ruminal pH (week 9: 5.7 vs. 6.0, p = 0.017; week 11: 5.9 vs. 6.2, p = 0.007). Experimental treatment did not affect the concentration of ruminal short-chain fatty acids (SCFA). For all calves, the effects of the concentrate-rich TMR were shown by a high SCFA level (daily average: 137-152 mmol x l(-1)) and an acetate to propionate to butyrate ratio between 51:36:9 and 54:33:10.

  7. Local deforestation patterns and their driving forces of tropical dry forest in two municipalities in Southern Oaxaca, Mexico (1985-2006

    Directory of Open Access Journals (Sweden)

    L. Galicia

    2016-11-01

    Full Text Available The tropical dry forest is an ecosystem that is undergoing rapid changes. Although global driving forces behind these changes have been addressed at a local scale, spatio-temporal dynamics are still largely unknown. The main objective of this study was to identify the causes governing the dynamics of changes in land use and land cover in the tropical dry forest in two municipalities in Southern México. Satellite imagery and air photographs were used in a GIS context to produce maps of land use and land cover for 1985, 1995 and 2006. A number of statistical methods (Markov chains, general lineal models and regression tree analysis were applied to identify the proximate and the underlying causes of deforestation, agriculture being the most important one. When agriculture is mainly for self consumption, topographic factors determine its location. Increasing job opportunities in the tourism sector has resulted in the abandonment of agricultural land; consequently, the forest has recovered. Different studies have examined the dynamics of local deforestation and its driving forces in México; however, this study considered both spatial and temporal elements in order to identify the most important underlying driving forces of deforestation and its dynamics at local scale, and also compared two neighboring municipalities.

  8. Dissipativity Analysis of Linear State/Input Delay Systems

    Directory of Open Access Journals (Sweden)

    Guifang Cheng

    2012-01-01

    Full Text Available This paper discusses dissipativity problem for system of linear state/input delay equations. Motivated by dissipativity theory of control systems, we choose a new quadratic supply rate. Using the concept of dissipativity, necessary and sufficient conditions for the linear state/input delay systems to be dissipative and exponentially dissipative are derived. The connection of dissipativity with stability is also considered. Finally, passivity and finite gain are explored, correspondingly. The positive-real and bounded-real lemmas are derived.

  9. Entanglement from dissipation and holographic interpretation

    Science.gov (United States)

    Cantcheff, M. Botta; Gadelha, Alexandre L.; Marchioro, Dáfni F. Z.; Nedel, Daniel Luiz

    2018-02-01

    In this work we study a dissipative field theory where the dissipation process is manifestly related to dynamical entanglement and put it in the holographic context. Such endeavour is realized by further development of a canonical approach to study quantum dissipation, which consists of doubling the degrees of freedom of the original system by defining an auxiliary one. A time dependent entanglement entropy for the vacumm state is calculated and a geometrical interpretation of the auxiliary system and the entropy is given in the context of the AdS/CFT correspondence using the Ryu-Takayanagi formula. We show that the dissipative dynamics is controlled by the entanglement entropy and there are two distinct stages: in the early times the holographic interpretation requires some deviation from classical General Relativity; in the later times the quantum system is described as a wormhole, a solution of the Einstein's equations near to a maximally extended black hole with two asymptotically AdS boundaries. We focus our holographic analysis in this regime, and suggest a mechanism similar to teleportation protocol to exchange (quantum) information between the two CFTs on the boundaries (see Maldacena et al. in Fortschr Phys 65(5):1700034, arXiv:1704.05333 [hep-th], 2017).

  10. Magnetohydrodynamic stokes problem for a dissipative heat ...

    African Journals Online (AJOL)

    Heat and Mass transfer MHD stokes problem for a dissipative heat generating fluid with radiation absorption, mass diffusion, Hall and ion-slip currents is presented. The set of governing equations for the problem are solved by a finite difference algorithm. Effects of the various parameters in the laminar boundary layer on ...

  11. Quantum phase transition with dissipative frustration

    Science.gov (United States)

    Maile, D.; Andergassen, S.; Belzig, W.; Rastelli, G.

    2018-04-01

    We study the quantum phase transition of the one-dimensional phase model in the presence of dissipative frustration, provided by an interaction of the system with the environment through two noncommuting operators. Such a model can be realized in Josephson junction chains with shunt resistances and resistances between the chain and the ground. Using a self-consistent harmonic approximation, we determine the phase diagram at zero temperature which exhibits a quantum phase transition between an ordered phase, corresponding to the superconducting state, and a disordered phase, corresponding to the insulating state with localized superconducting charge. Interestingly, we find that the critical line separating the two phases has a nonmonotonic behavior as a function of the dissipative coupling strength. This result is a consequence of the frustration between (i) one dissipative coupling that quenches the quantum phase fluctuations favoring the ordered phase and (ii) one that quenches the quantum momentum (charge) fluctuations leading to a vanishing phase coherence. Moreover, within the self-consistent harmonic approximation, we analyze the dissipation induced crossover between a first and second order phase transition, showing that quantum frustration increases the range in which the phase transition is second order. The nonmonotonic behavior is reflected also in the purity of the system that quantifies the degree of correlation between the system and the environment, and in the logarithmic negativity as an entanglement measure that encodes the internal quantum correlations in the chain.

  12. Tidal Energy Dissipation from Topex/Poseidon

    Science.gov (United States)

    Ray, Richard D.; Egbert, G. D.; Smith, David E. (Technical Monitor)

    2000-01-01

    In a recent paper ({\\it Nature, 405,} 775, 2000) we concluded that 25 to 30\\% of the ocean's tidal energy dissipation, or about 1 terawatt, occurs in the deep ocean, with the remaining 2.6 TW in shallow seas. The physical mechanism for deep-ocean dissipation is apparently scattering of the surface tide into internal modes; Munk and Wunsch have suggested that this mechanism may provide half the power needed for mixing the deep-ocean. This paper builds further evidence for $1\\pm 0.2$ TW of deep-ocean dissipation. The evidence is extracted from tidal elevations deduced from seven years of Topex/Poseidon satellite altimeter data. The dissipation rate Is formed as a balance between the rate of working by tidal forces and the energy flux divergence. While dynamical assumptions are required to compute fluxes, area integrals of the energy balance are, owing to the tight satellite constraints, remarkably insensitive to these assumptions. A large suite of tidal solutions based on a wide range of dynamical assumptions, on perturbations to bathymetric models, and on simulated elevation data are used to assess this sensitivity. These and Monte Carlo error fields from a generalized inverse model are used to establish error uncertainties.

  13. Viscosity measurement techniques in Dissipative Particle Dynamics

    Science.gov (United States)

    Boromand, Arman; Jamali, Safa; Maia, Joao M.

    2015-11-01

    In this study two main groups of viscosity measurement techniques are used to measure the viscosity of a simple fluid using Dissipative Particle Dynamics, DPD. In the first method, a microscopic definition of the pressure tensor is used in equilibrium and out of equilibrium to measure the zero-shear viscosity and shear viscosity, respectively. In the second method, a periodic Poiseuille flow and start-up transient shear flow is used and the shear viscosity is obtained from the velocity profiles by a numerical fitting procedure. Using the standard Lees-Edward boundary condition for DPD will result in incorrect velocity profiles at high values of the dissipative parameter. Although this issue was partially addressed in Chatterjee (2007), in this work we present further modifications (Lagrangian approach) to the original LE boundary condition (Eulerian approach) that will fix the deviation from the desired shear rate at high values of the dissipative parameter and decrease the noise to signal ratios in stress measurement while increases the accessible low shear rate window. Also, the thermostat effect of the dissipative and random forces is coupled to the dynamic response of the system and affects the transport properties like the viscosity and diffusion coefficient. We investigated thoroughly the dependency of viscosity measured by both Eulerian and Lagrangian methodologies, as well as numerical fitting procedures and found that all the methods are in quantitative agreement.

  14. Magnetization dissipation in ferromagnets from scattering theory

    NARCIS (Netherlands)

    Brataas, A.; Tserkovnyak, Y.; Bauer, G.E.W.

    2011-01-01

    The magnetization dynamics of ferromagnets is often formulated in terms of the Landau-Lifshitz-Gilbert (LLG) equation. The reactive part of this equation describes the response of the magnetization in terms of effective fields, whereas the dissipative part is parametrized by the Gilbert damping

  15. Dynamics of dissipative multifluid neutron star cores

    NARCIS (Netherlands)

    Haskell, B.; Andersson, N.; Comer, G.L.

    2012-01-01

    We present a Newtonian multifluid formalism for superfluid neutron star cores, focusing on the additional dissipative terms which arise when one takes into account the individual dynamical degrees of freedom associated with the coupled "fluids." The problem is of direct astrophysical interest as the

  16. Dissipative preparation of entanglement in optical cavities

    DEFF Research Database (Denmark)

    Kastoryano, Michael James; Reiter, Florentin; Sørensen, Anders Søndberg

    2011-01-01

    We propose a novel scheme for the preparation of a maximally entangled state of two atoms in an optical cavity. Starting from an arbitrary initial state, a singlet state is prepared as the unique fixed point of a dissipative quantum dynamical process. In our scheme, cavity decay is no longer...

  17. Energy and dissipated work in snow avalanches

    Science.gov (United States)

    Bartelt, P.; Buser, O.

    2004-12-01

    Using the results of large scale avalanche experiments at the Swiss Vallée de la Sionne test site, the energy balance of several snow avalanches is determined. Avalanches convert approximately one-seventh of their potential energy into kinetic energy. The total potential energy depends strongly on the entrained snowcover, indicating that entrainment processes cannot be ignored when predicting terminal velocities and runout distances. We find energy dissipation rates on the order of 1 GW. Fluidization of the fracture slab can be identified in the experiments as an increase in dissipation rate, thereby explaining the initial and rapid acceleration of avalanches after release. Interestingly, the dissipation rates appear to be constant along the track, although large fluctuations in internal velocity exist. Thus, we can demonstrate within the context of non-equilibrium thermodynamics that -- in space -- granular snow avalanches are irreversible, dissipative systems that minimize entropy production because they appear to reach a steady-state non-equilibrium. A thermodynamic analysis reveals that fluctuations in velocity depend on the roughness of the flow surface and viscosity of the granular system. We speculate that this property explains the transition from flowing avalanches to powder avalanches.

  18. Allometry and dissipation of ecological flow networks.

    Directory of Open Access Journals (Sweden)

    Jiang Zhang

    Full Text Available BACKGROUND: An ecological flow network is a weighted directed graph in which the nodes are species, the edges are "who eats whom" relationships and the weights are rates of energy or nutrient transferred between species. Allometric scaling is a ubiquitous feature for flow systems such as river basins, vascular networks and food webs. METHODOLOGY: The "ecological network analysis" can serve to reveal hidden allometries, the power law relationship between the throughflux and the indirect impact of node [Formula: see text], directly from the original flow networks without any need to cut edges in the network. The dissipation law, which is another significant scaling relationship between the energy dissipation (respiration and the throughflow of any species, is also obtained from an analysis of the empirical flow networks. Interestingly, the exponents of the allometric law ([Formula: see text] and the dissipation law ([Formula: see text] show a strong relationship for both empirical and simulated flow networks. The dissipation law exponent [Formula: see text], rather than the topology of the network, is the most important factors that affect the allometric exponent [Formula: see text]. CONCLUSIONS: The exponent [Formula: see text] can be interpreted as the degree of centralization of the network, i.e., the concentration of impacts (direct and indirect influences on the entire network along all energy flow pathways on hubs (the nodes with large throughflows. As a result, we find that as [Formula: see text] increases, the relative energy loss of large nodes increases, [Formula: see text] decreases, i.e., the relative importance of large species decreases. Moreover, the entire flow network is more decentralized. Therefore, network flow structure (allometry and thermodynamic constraints (dissipation are linked.

  19. Patterns of infection by intestinal parasites in sympatric howler monkey (Alouatta palliata) and spider monkey (Ateles geoffroyi) populations in a tropical dry forest in Costa Rica.

    Science.gov (United States)

    Maldonado-López, Selene; Maldonado-López, Yurixhi; Gómez-Tagle Ch, Alberto; Cuevas-Reyes, Pablo; Stoner, Kathryn E

    2014-07-01

    In primate populations, endoparasite species richness and prevalence are associated with host traits such as reproductive and social status, age, sex, host population density, and environmental factors such as humidity. We analyzed the species richness and prevalence of intestinal parasites in two sympatric primate populations, one of Alouatta palliata and one of Ateles geoffroyi, found in a tropical dry forest in Costa Rica. We identified three species of intestinal parasites (Controrchis sp., Trypanoxyuris sp., and Strongyloides sp.) in these two primate species. We did not find any differences in species richness between the primate species. However, the prevalences of Controrchis sp. and Trypanoxyuris sp. were higher in Alouatta palliata. Similarly, males and lactating females of Alouatta palliata showed higher Controrchis sp. prevalences. We did not observe any differences in parasite richness and prevalence between seasons. Infectious diseases in endangered primate populations must be considered in conservation strategies, especially when defining protected areas.

  20. Elevated dry-season malaria prevalence associated with fine-scale spatial patterns of environmental risk: a case-control study of children in rural Malawi.

    Science.gov (United States)

    Townes, Lindsay R; Mwandama, Dyson; Mathanga, Don P; Wilson, Mark L

    2013-11-11

    Understanding the role of local environmental risk factors for malaria in holo-endemic, poverty-stricken settings will be critical to more effectively implement- interventions aimed at eventual elimination. Household-level environmental drivers of malaria risk during the dry season were investigated in rural southern Malawi among children Authority (TA) regions dominated by small-scale agriculture. Ten villages were randomly selected from TA Sitola (n = 6) and Nsamala (n = 4). Within each village, during June to August 2011, a census was conducted of all households with children under-five and recorded their locations with a geographic position system (GPS) device. At each participating house, a nurse administered a malaria rapid diagnostic test (RDT) to children under five years of age, and a questionnaire to parents. Environmental data were collected for each house, including land cover within 50-m radius. Variables found to be significantly associated with P. falciparum infection status in bivariate analysis were included in generalized linear models, including multivariate logistic regression (MLR) and multi-level multivariate logistic regression (MLLR). Spatial clustering of RDT status, environmental factors, and Pearson residuals from MLR and MLLR were analysed using the Getis-Ord Gi* statistic. Of 390 children enrolled from six villages in Sitola (n = 162) and four villages in Nsamala (n = 228), 45.6% tested positive (n = 178) for Plasmodium infection by RDT. The MLLR modelled the statistical relationship of Plasmodium positives and household proximity to agriculture ( 2.58, p < 0.01) predominantly within TA Sitola, while residuals from MLLR showed no such clustering. This study provides evidence for significant, dry-season heterogeneity of malaria prevalence strongly linked to peridomestic land use, and particularly of elevated risk associated with nearby crop production.

  1. Small scale spatial variability and pattern of soil respiration and water content in wet and a dry temperate grasslands and bare soil

    Czech Academy of Sciences Publication Activity Database

    Fóti, S.; Nagy, Z.; Balogh, J.; Bartha, S.; Acosta, Manuel; Czóbel, S.; Péli, E.; Marek, Michal V.; Tuba, Z.

    2009-01-01

    Roč. 28, č. 4 (2009), s. 389-398 ISSN 1335-342X Institutional research plan: CEZ:AV0Z60870520 Institutional support: RVO:67179843 Keywords : chamber technique * coefficient of variation * semivariance * Soil respiration * spatial pattern Subject RIV: EH - Ecology, Behaviour

  2. Fabrication of HfO2 patterns by laser interference nanolithography and selective dry etching for III-V CMOS application

    Directory of Open Access Journals (Sweden)

    Molina-Aldareguia Jon

    2011-01-01

    Full Text Available Abstract Nanostructuring of ultrathin HfO2 films deposited on GaAs (001 substrates by high-resolution Lloyd's mirror laser interference nanolithography is described. Pattern transfer to the HfO2 film was carried out by reactive ion beam etching using CF4 and O2 plasmas. A combination of atomic force microscopy, high-resolution scanning electron microscopy, high-resolution transmission electron microscopy, and energy-dispersive X-ray spectroscopy microanalysis was used to characterise the various etching steps of the process and the resulting HfO2/GaAs pattern morphology, structure, and chemical composition. We show that the patterning process can be applied to fabricate uniform arrays of HfO2 mesa stripes with tapered sidewalls and linewidths of 100 nm. The exposed GaAs trenches were found to be residue-free and atomically smooth with a root-mean-square line roughness of 0.18 nm after plasma etching. PACS: Dielectric oxides 77.84.Bw, Nanoscale pattern formation 81.16.Rf, Plasma etching 52.77.Bn, Fabrication of III-V semiconductors 81.05.Ea

  3. Enantioselective Dissipation of Acephate and Its Metabolite, Methamidophos, during Tea Cultivation, Manufacturing, and Infusion.

    Science.gov (United States)

    Pan, Rong; Chen, Hongping; Wang, Chen; Wang, Qinghua; Jiang, Ying; Liu, Xin

    2015-02-04

    The enantioselective dissipation of acephate and its metabolite, methamidophos, was investigated during tea cultivation, manufacturing, and infusion, using QuEChERS sample preparation technique and gas chromatography coupled with a BGB-176 chiral column. Results showed that (+)-acephate and (-)-acephate dissipated following first-order kinetics in fresh tea leaves with half-lives of 1.8 and 1.9 days, respectively. Acephate was degraded into a more toxic metabolite, methamidophos. Preferential dissipation and translocation of (+)-acephate may exist in tea shoots, and (-)-methamidophos was degraded more rapidly than (+)-methamidophos. During tea manufacturing, drying and spreading (or withering) played important roles in the dissipation of acephate enantiomers. The enantiometic fractions of acephate changed from 0.495-0.496 to 0.479-0.486 (P ≤ 0.0081), whereas those of methamidophos changed from 0.576-0.630 to 0.568-0.645 (P ≤ 0.0366 except for green tea manufacturing on day 1), from fresh tea leaves to made tea. In addition, high transfer rates (>80%) and significant enantioselectivity (P ≤ 0.0042) of both acephate and its metabolite occurred during tea brewing.

  4. A heat dissipating model for water cooling garments

    Directory of Open Access Journals (Sweden)

    Yang Kai

    2013-01-01

    Full Text Available A water cooling garment is a functional clothing used to dissipate human body’s redundant energy in extravehicular environment or other hot environment. Its heat dissipating property greatly affects body’s heat balance. In this paper, a heat dissipating model for the water cooling garment is established and verified experimentally using the experimental thermal-manikin.

  5. Storage functions for dissipative linear systems are quadratic state functions

    NARCIS (Netherlands)

    Trentelman, Harry L.; Willems, Jan C.

    1997-01-01

    This paper deals with dissipative dynamical systems. Dissipative dynamical systems can be used as models for physical phenomena in which energy exchange with their environment plays a role. In a dissipative dynamical system, the book-keeping of energy is done via the supply rate and a storage

  6. Wind Turbine Control with Active Damage Reduction through Energy Dissipation

    NARCIS (Netherlands)

    Barradas Berglind, Jose de Jesus; Jayawardhana, Bayu; Wisniewski, Rafał

    2016-01-01

    In this paper we propose an active damage reduction control strategy for wind turbines based on dissipated energy. To this end we rely on the equivalences relating both damage in the rainflow counting sense and dissipated energy to the variations of Preisach hysteresis operators. Since dissipation

  7. A heat dissipating model for water cooling garments

    OpenAIRE

    Yang Kai; Jiao Ming-Li; Liu Zhe; Zhang Wei-Yuan

    2013-01-01

    A water cooling garment is a functional clothing used to dissipate human body’s redundant energy in extravehicular environment or other hot environment. Its heat dissipating property greatly affects body’s heat balance. In this paper, a heat dissipating model for the water cooling garment is established and verified experimentally using the experimental thermal-manikin.

  8. estimation of ionospheric energy dissipation for the year 2012 using

    African Journals Online (AJOL)

    userpc

    both mean daily and hourly ionospheric energy dissipation using Østgaard's empirical relation. The computation has been ... energy dissipation is the dominant channel of energy transfer in that year from the solar wind. This is consistent with many ..... converted to thermal energy for dissipation in the ionosphere (Kallio, et ...

  9. Assessing relative volatility/intermittency/energy dissipation

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole E.; Pakkanen, Mikko S.; Schmiegel, Jürgen

    2014-01-01

    process in particular. This estimation method is motivated by the assessment of relative energy dissipation in empirical data of turbulence, but it is also applicable in other areas. We develop a probabilistic asymptotic theory for realised relative power variations of Brownian semistationary processes......, and introduce inference methods based on the theory. We also discuss how to extend the asymptotic theory to other classes of processes exhibiting stochastic volatility/intermittency. As an empirical application, we study relative energy dissipation in data of atmospheric turbulence.......We introduce the notion of relative volatility/intermittency and demonstrate how relative volatility statistics can be used to estimate consistently the temporal variation of volatility/intermittency when the data of interest are generated by a non-semimartingale, or a Brownian semistationary...

  10. Dissipative solitons in pair-ion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Samiran, E-mail: sran-g@yahoo.com [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Adak, Ashish, E-mail: ashish-adak@yahoo.com; Khan, Manoranjan, E-mail: mkhan.ju@gmail.com [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India)

    2014-01-15

    The effects of ion-neutral collisions on the dynamics of the nonlinear ion acoustic wave in pair-ion plasma are investigated. The standard perturbative approach leads to a Korteweg-de Vries equation with a linear damping term for the dynamics of the finite amplitude wave. The ion-neutral collision induced dissipation is responsible for the linear damping. The analytical solution and numerical simulation reveal that the nonlinear wave propagates in the form of a weakly dissipative compressive solitons. Furthermore, the width of the soliton is proportional to the amplitude of the wave for fixed soliton velocity. Results are discussed in the context of the fullerene pair-ion plasma experiment.

  11. Non-dissipative effects in nonequilibrium systems

    CERN Document Server

    Maes, Christian

    2018-01-01

    This book introduces and discusses both the fundamental aspects and the measurability of applications of time-symmetric kinetic quantities, outlining the features that constitute the non-dissipative branch of non-equilibrium physics. These specific features of non-equilibrium dynamics have largely been ignored in standard statistical mechanics texts. This introductory-level book offers novel material that does not take the traditional line of extending standard thermodynamics to the irreversible domain. It shows that although stationary dissipation is essentially equivalent with steady non-equilibrium and ubiquitous in complex phenomena, non-equilibrium is not determined solely by the time-antisymmetric sector of energy-entropy considerations. While this should not be very surprising, this book provides timely, simple reminders of the role of time-symmetric and kinetic aspects in the construction of non-equilibrium statistical mechanics.

  12. On the Lagrangian description of dissipative systems

    Science.gov (United States)

    Martínez-Pérez, N. E.; Ramírez, C.

    2018-03-01

    We consider the Lagrangian formulation with duplicated variables of dissipative mechanical systems. The application of Noether theorem leads to physical observable quantities which are not conserved, like energy and angular momentum, and conserved quantities, like the Hamiltonian, that generate symmetry transformations and do not correspond to observables. We show that there are simple relations among the equations satisfied by these two types of quantities. In the case of the damped harmonic oscillator, from the quantities obtained by the Noether theorem follows the algebra of Feshbach and Tikochinsky. Furthermore, if we consider the whole dynamics, the degrees of freedom separate into a physical and an unphysical sector. We analyze several cases, with linear and nonlinear dissipative forces; the physical consistency of the solutions is ensured, observing that the unphysical sector has always the trivial solution.

  13. Dissipative processes in light heavy ion collisions

    Science.gov (United States)

    Pop, A.; Andronic, A.; Berceanu, I.; Duma, M.; Moisâ, D.; Petrovici, M.; Simion, V.; Immé, G.; Lanzanò, G.; Pagano, A.; Raciti, G.; Coniglione, R.; Del Zoppo, A.; Piatelli, P.; Sapienza, P.; Colonna, N.; D'Erasmo, G.; Pantaleo, A.

    1999-09-01

    The characteristics of the dissipative processes in the collisions of light heavy ion systems at incident energies below 10 MeV/nucleon have been studied. The correlations between different experimental observables show similar trends as those known at much heavier systems and semiempirical relationships are established starting from assumptions on the nature of the micro-scopic mechanisms. The charge equilibration process in light systems is also studied.

  14. Dissipative processes in light heavy ion collisions

    International Nuclear Information System (INIS)

    Pop, A.; Andronic, A.; Berceanu, I.; Duma, M.; Moisa, D.; Petrovici, M.; Simion, V.; Imme, G.; Lanzano, G.; Pagano, A.; Raciti, G.; Coniglione, R.; Del Zoppo, A.; Piatelli, P.; Sapienza, P.; Colonna, N.; D'Erasmo, G.; Pantaleo, A.

    1999-01-01

    The characteristics of the dissipative processes in the collisions of light heavy ion systems at incident energies below 10 MeV/nucleon have been studied. The correlations between different experimental observables show similar trends as those known at much heavier systems and semiempirical relationships are established starting from assumptions on the nature of the microscopic mechanisms. The charge equilibration process in light systems is also studied. (author)

  15. Offshore heat dissipation for nuclear energy centers

    International Nuclear Information System (INIS)

    Bauman, H.F.

    1978-09-01

    The technical, environmental, and economic aspects of utilizing the ocean or other large water bodies for the dissipation of reject heat from Nuclear Energy Centers (NECs) were investigated. An NEC in concept is an aggregate of nuclear power plants of 10 GW(e) capacity or greater on a common site. The use of once-through cooling for large power installations offers advantages including higher thermal efficiencies, especially under summer peak-load conditions, compared to closed-cycle cooling systems. A disadvantage of once-through cooling is the potential for greater adverse impacts on the aquatic environment. A concept is presented for minimizing the impacts of such systems by placing water intake and discharge locations relatively distant from shore in deeper water than has heretofore been the practice. This technique would avoid impacts on relatively biologically productive and ecologically sensitive shallow inshore areas. The NEC itself would be set back from the shoreline so that recreational use of the shore area would not be impaired. The characteristics of a heat-dissipation system of the size required for a NEC were predicted from the known characteristics of a smaller system by applying hydraulic scaling laws. The results showed that adequate heat dissipation can be obtained from NEC-sized systems located in water of appropriate depth. Offshore intake and discharge structures would be connected to the NEC pump house on shore via tunnels or buried pipelines. Tunnels have the advantage that shoreline and beach areas would not be disturbed. The cost of an offshore heat-dissipation system depends on the characteristics of the site, particularly the distance to suitably deep water and the type of soil or rock in which water conduits would be constructed. For a favorable site, the cost of an offshore system is estimated to be less than the cost of a closed-cycle system

  16. Driven-Dissipative Supersolid in a Ring Cavity

    Science.gov (United States)

    Mivehvar, Farokh; Ostermann, Stefan; Piazza, Francesco; Ritsch, Helmut

    2018-03-01

    Supersolids are characterized by the counterintuitive coexistence of superfluid and crystalline order. Here we study a supersolid phase emerging in the steady state of a driven-dissipative system. We consider a transversely pumped Bose-Einstein condensate trapped along the axis of a ring cavity and coherently coupled to a pair of degenerate counterpropagating cavity modes. Above a threshold pump strength the interference of photons scattered into the two cavity modes results in an emergent superradiant lattice, which spontaneously breaks the continuous translational symmetry towards a periodic atomic pattern. The crystalline steady state inherits the superfluidity of the Bose-Einstein condensate, thus exhibiting genuine properties of a supersolid. A gapless collective Goldstone mode correspondingly appears in the superradiant phase, which can be nondestructively monitored via the relative phase of the two cavity modes on the cavity output. Despite cavity-photon losses the Goldstone mode remains undamped, indicating the robustness of the supersolid phase.

  17. Low Energy Dissipation Nano Device Research

    Science.gov (United States)

    Yu, Jenny

    2015-03-01

    The development of research on energy dissipation has been rapid in energy efficient area. Nano-material power FET is operated as an RF power amplifier, the transport is ballistic, noise is limited and power dissipation is minimized. The goal is Green-save energy by developing the Graphene and carbon nantube microwave and high performance devices. Higher performing RF amplifiers can have multiple impacts on broadly field, for example communication equipment, (such as mobile phone and RADAR); higher power density and lower power dissipation will improve spectral efficiency which translates into higher system level bandwidth and capacity for communications equipment. Thus, fundamental studies of power handling capabilities of new RF (nano)technologies can have broad, sweeping impact. Because it is critical to maximizing the power handling ability of grephene and carbon nanotube FET, the initial task focuses on measuring and understanding the mechanism of electrical breakdown. We aim specifically to determine how the breakdown voltage in graphene and nanotubes is related to the source-drain spacing, electrode material and thickness, and substrate, and thus develop reliable statistics on the breakdown mechanism and probability.

  18. Quadratic dissipation effect on the moonpool resonance

    Science.gov (United States)

    Liu, Heng-xu; Chen, Hai-long; Zhang, Liang; Zhang, Wan-chao; Liu, Ming

    2017-12-01

    This paper adopted a semi-analytical method based on eigenfunction matching to solve the problem of sharp resonance of cylindrical structures with a moonpool that has a restricted entrance. To eliminate the sharp resonance and to measure the viscous effect, a quadratic dissipation is introduced by assuming an additional dissipative disk at the moonpool entrance. The fluid domain is divided into five cylindrical subdomains, and the velocity potential in each subdomain is obtained by meeting the Laplace equation as well as the boundary conditions. The free-surface elevation at the center of the moonpool, along with the pressure and velocity at the restricted entrance for first-order wave are evaluated. By choosing appropriate dissipation coefficients, the free-surface elevation calculated at the center of the moonpool is in coincidence with the measurements in model tests both at the peak period and amplitude at resonance. It is shown that the sharp resonance in the potential flow theory can be eliminated and the viscous effect can be estimated with a simple method in some provided hydrodynamic models.

  19. Relativistic electrodynamics of dissipative elastic media

    International Nuclear Information System (INIS)

    Kranys, M.

    1980-01-01

    A phenomenological general relativistic electrodynamics is proposed for a dissipative elastic solid which is polarizable and magnetizable and whose governing equations form a hyperbolic system. Non-stationary transport equations are proposed for dissipative fluxes (and constitutive equations of electrodynamics) containing new cross-effect terms, as required for compatibility with an entropy principle expressed by a new balance equation (including a new Gibbs equation). The dynamic equations are deduced from the unified Minkowski-Abraham-Eckart energy-momentum tensor. The theory, formed by a set of 29 (reducible to 23) partial differential equations (in special relativity) governing the material behaviour of the system characterized by generalizing the constitutive equations of quasineutral media, together with Maxwell's equations, may be referred to as the electrodynamics of dissipative elastic media (or fluid). The proposed transport laws for polarization and magnetization generalize the well-known Debye law for relaxation and show the influence of shear and bulk viscosity on polarization and magentization. Besides the form of the entropy function, the free energy function in the non-stationary regime is also formulated. (auth)

  20. Dissipation range turbulent cascades in plasmas

    International Nuclear Information System (INIS)

    Terry, P. W.; Almagri, A. F.; Forest, C. B.; Nornberg, M. D.; Rahbarnia, K.; Sarff, J. S.; Fiksel, G.; Hatch, D. R.; Jenko, F.; Prager, S. C.; Ren, Y.

    2012-01-01

    Dissipation range cascades in plasma turbulence are described and spectra are formulated from the scaled attenuation in wavenumber space of the spectral energy transfer rate. This yields spectra characterized by the product of a power law and exponential fall-off, applicable to all scales. Spectral indices of the power law and exponential fall-off depend on the scaling of the dissipation, the strength of the nonlinearity, and nonlocal effects when dissipation rates of multiple fluctuation fields are different. The theory is used to derive spectra for MHD turbulence with magnetic Prandtl number greater than unity, extending previous work. The theory is also applied to generic plasma turbulence by considering the spectrum from damping with arbitrary wavenumber scaling. The latter is relevant to ion temperature gradient turbulence modeled by gyrokinetics. The spectrum in this case has an exponential component that becomes weaker at small scale, giving a power law asymptotically. Results from the theory are compared to three very different types of turbulence. These include the magnetic plasma turbulence of the Madison Symmetric Torus, the MHD turbulence of liquid metal in the Madison Dynamo Experiment, and gyrokinetic simulation of ion temperature gradient turbulence.

  1. Correlated Photon Dynamics in Dissipative Rydberg Media

    Science.gov (United States)

    Zeuthen, Emil; Gullans, Michael J.; Maghrebi, Mohammad F.; Gorshkov, Alexey V.

    2017-07-01

    Rydberg blockade physics in optically dense atomic media under the conditions of electromagnetically induced transparency (EIT) leads to strong dissipative interactions between single photons. We introduce a new approach to analyzing this challenging many-body problem in the limit of a large optical depth per blockade radius. In our approach, we separate the single-polariton EIT physics from Rydberg-Rydberg interactions in a serialized manner while using a hard-sphere model for the latter, thus capturing the dualistic particle-wave nature of light as it manifests itself in dissipative Rydberg-EIT media. Using this approach, we analyze the saturation behavior of the transmission through one-dimensional Rydberg-EIT media in the regime of nonperturbative dissipative interactions relevant to current experiments. Our model is able to capture the many-body dynamics of bright, coherent pulses through these strongly interacting media. We compare our model with available experimental data in this regime and find good agreement. We also analyze a scheme for generating regular trains of single photons from continuous-wave input and derive its scaling behavior in the presence of imperfect single-photon EIT.

  2. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Español Eye Health / Eye Health A-Z Dry Eye Sections What Is Dry Eye? Dry Eye Symptoms ... Dry Eye Dry Eye Treatment What Is Dry Eye? Leer en Español: ¿Qué es el ojo seco? ...

  3. Evidence of Facilitation Cascade Processes as Drivers of Successional Patterns of Ecosystem Engineers at the Upper Altitudinal Limit of the Dry Puna.

    Directory of Open Access Journals (Sweden)

    Luca Malatesta

    Full Text Available Facilitation processes constitute basic elements of vegetation dynamics in harsh systems. Recent studies in tropical alpine environments demonstrated how pioneer plant species defined as "ecosystem engineers" are capable of enhancing landscape-level richness by adding new species to the community through the modification of microhabitats, and also provided hints about the alternation of different ecosystem engineers over time. Nevertheless, most of the existing works analysed different ecosystem engineers separately, without considering the interaction of different ecosystem engineers. Focusing on the altitudinal limit of Peruvian Dry Puna vegetation, we hypothesized that positive interactions structure plant communities by facilitation cascades involving different ecosystem engineers, determining the evolution of the microhabitat patches in terms of abiotic resources and beneficiary species hosted. To analyze successional mechanisms, we used a "space-for-time" substitution to account for changes over time, and analyzed data on soil texture, composition, and temperature, facilitated species and their interaction with nurse species, and surface area of engineered patches by means of chemical analyses, indicator species analysis, and rarefaction curves. A successional process, resulting from the dynamic interaction of different ecosystem engineers, which determined a progressive amelioration of soil conditions (e.g. nitrogen and organic matter content, and temperature, was the main driver of species assemblage at the community scale, enhancing species richness. Cushion plants act as pioneers, by starting the successional processes that continue with shrubs and tussocks. Tussock grasses have sometimes been found to be capable of creating microhabitat patches independently. The dynamics of species assemblage seem to follow the nested assemblage mechanism, in which the first foundation species to colonize a habitat provides a novel substrate for

  4. Evidence of Facilitation Cascade Processes as Drivers of Successional Patterns of Ecosystem Engineers at the Upper Altitudinal Limit of the Dry Puna.

    Science.gov (United States)

    Malatesta, Luca; Tardella, Federico Maria; Piermarteri, Karina; Catorci, Andrea

    2016-01-01

    Facilitation processes constitute basic elements of vegetation dynamics in harsh systems. Recent studies in tropical alpine environments demonstrated how pioneer plant species defined as "ecosystem engineers" are capable of enhancing landscape-level richness by adding new species to the community through the modification of microhabitats, and also provided hints about the alternation of different ecosystem engineers over time. Nevertheless, most of the existing works analysed different ecosystem engineers separately, without considering the interaction of different ecosystem engineers. Focusing on the altitudinal limit of Peruvian Dry Puna vegetation, we hypothesized that positive interactions structure plant communities by facilitation cascades involving different ecosystem engineers, determining the evolution of the microhabitat patches in terms of abiotic resources and beneficiary species hosted. To analyze successional mechanisms, we used a "space-for-time" substitution to account for changes over time, and analyzed data on soil texture, composition, and temperature, facilitated species and their interaction with nurse species, and surface area of engineered patches by means of chemical analyses, indicator species analysis, and rarefaction curves. A successional process, resulting from the dynamic interaction of different ecosystem engineers, which determined a progressive amelioration of soil conditions (e.g. nitrogen and organic matter content, and temperature), was the main driver of species assemblage at the community scale, enhancing species richness. Cushion plants act as pioneers, by starting the successional processes that continue with shrubs and tussocks. Tussock grasses have sometimes been found to be capable of creating microhabitat patches independently. The dynamics of species assemblage seem to follow the nested assemblage mechanism, in which the first foundation species to colonize a habitat provides a novel substrate for colonization by other

  5. Detecting singular weak-dissipation limit for flutter onset in reversible systems

    Science.gov (United States)

    Bigoni, Davide; Misseroni, Diego; Tommasini, Mirko; Kirillov, Oleg N.; Noselli, Giovanni

    2018-02-01

    A "flutter machine" is introduced for the investigation of a singular interface between the classical and reversible Hopf bifurcations that is theoretically predicted to be generic in nonconservative reversible systems with vanishing dissipation. In particular, such a singular interface exists for the Pflüger viscoelastic column moving in a resistive medium, which is proven by means of the perturbation theory of multiple eigenvalues with the Jordan block. The laboratory setup, consisting of a cantilevered viscoelastic rod loaded by a positional force with nonzero curl produced by dry friction, demonstrates high sensitivity of the classical Hopf bifurcation onset to the ratio between the weak air drag and Kelvin-Voigt damping in the Pflüger column. Thus, the Whitney umbrella singularity is experimentally confirmed, responsible for discontinuities accompanying dissipation-induced instabilities in a broad range of physical contexts.

  6. Analysing half-lives for pesticide dissipation in plants.

    Science.gov (United States)

    Jacobsen, R E; Fantke, P; Trapp, S

    2015-01-01

    Overall dissipation of pesticides from plants is frequently measured, but the contribution of individual loss processes is largely unknown. We use a pesticide fate model for the quantification of dissipation by processes other than degradation. The model was parameterised using field studies. Scenarios were established for Copenhagen/Denmark and Shanghai/PR China, and calibrated with measured results. The simulated dissipation rates of 42 pesticides were then compared with measured overall dissipation from field studies using tomato and wheat. The difference between measured overall dissipation and calculated dissipation by non-degradative processes should ideally be contributable to degradation in plants. In 11% of the cases, calculated dissipation was above the measured dissipation. For the remaining cases, the non-explained dissipation ranged from 30% to 83%, depending on crop type, plant part and scenario. Accordingly, degradation is the most relevant dissipation process for these 42 pesticides, followed by growth dilution. Volatilisation was less relevant, which can be explained by the design of plant protection agents. Uptake of active compound from soil into plants leads to a negative dissipation process (i.e. a gain) that is difficult to quantify because it depends largely on interception, precipitation and plant stage. This process is particularly relevant for soluble compounds.

  7. Detection of successional stages and spatial patterns of forest initiation strategies for an abandoned tropical dry forest pasture in Guanacaste Costa Rica

    Science.gov (United States)

    Castillo-Nunez, Mauricio

    Canopy heights derived from a Waveform LIDAR sensor (LVIS) are used to identify characteristics of successional stages in an abandoned pasture in Guanacaste, Costa Rica. LIDAR canopy heights were validated through comparison with field collected heights The location of 3 classes derived from an automatic classification of the LIDAR data was compared against the location of successional stages identified a previous research. In addition the spatial location of two forest initiation strategies (seed dispersion) was investigated analyzing the textural information from a DEM (Digital Elevation Model) generated from the LVIS total canopy height data. The results of this research suggest a good agreement between successional stages reported in the literature and those identified with the LIDAR data. Also the fragments initiated by wind and vertebrate dispersion strategies detected in this study suggest a good agreement with several characteristics (spatial patterns) of such fragments reported by the literature.

  8. Theoretical and numerical study of hydraulic characteristics of orifice energy dissipator

    Directory of Open Access Journals (Sweden)

    Ning He

    2010-06-01

    Full Text Available Different factors affecting the efficiency of the orifice energy dissipator were investigated based on a series of theoretical analyses and numerical simulations. The main factors investigated by dimension analysis were identified, including the Reynolds number (Re, the ratio of the orifice diameter to the inner diameter of the pipe (d/D, and the ratio of distances between orifices to the inner diameter of the pipe (L/D. Then, numerical simulations were conducted with a k-ɛ two-equation turbulence model. The calculation results show the following: Hydraulic characteristics change dramatically as flow passes through the orifice, with abruptly increasing velocity and turbulent energy, and decreasing pressure. The turbulent energy appears to be low in the middle and high near the pipe wall. For the energy dissipation setup with only one orifice, when Re is smaller than 105, the orifice energy dissipation coefficient K increases rapidly with the increase of Re. When Re is larger than 105, K gradually stabilizes. As d/D increases, K and the length of the recirculation region L1 show similar variation patterns, which inversely vary with d/D. The function curves can be approximated as straight lines. For the energy dissipation model with two orifices, because of different incoming flows at different orifices, the energy dissipation coefficient of the second orifice (K2 is smaller than that of the first. If L/D is less than 5, the K value of the L/D model, depending on the variation of K2, increases with the spacing between two orifices L, and an orifice cannot fulfill its energy dissipation function. If L/D is greater than 5, K2 tends to be steady; thus, the K value of the L/D model gradually stabilizes. Then, the flow fully develops, and L has almost no impact on the value of K.

  9. Dynamics of dissipative systems and computational physics

    International Nuclear Information System (INIS)

    Adam, Gh.; Scutaru, H.; Ixaru, L.; Adam, S.; Rizea, M.; Stefanescu, E.; Mihalache, D.; Mazilu, D.; Crasovan, L.

    2002-01-01

    During the first year of research activity in the frame of this project there have been investigated two main topics: I. Dynamics of systems of fermions in complex dissipative media; II. Solitons with topologic charge in dissipative systems. An essential problem of the quantum information systems is the controllability and observability of the quantum states, generally described by Lindblad's master equation with phenomenological coefficients. In its usual form, this equation describes a decay of the mean-values, but not necessarily the expected decaying transitions. The basic and very difficult problem of a dissipative quantum theory is to project the evolution of the total system (the system of interest + the environment) on the space of the system of interest. In this case, one obtains a quantum master equation where the system evolution is described by two terms: 1) a Hamiltonian term for the processes with energy conservation, and 2) a non-Hamiltonian term with coefficients depending on the dissipative coupling. That means that a master equation is based on some approximations enabling the replacement of the operators of the dissipative environment with average value coefficients. It is often assumed that the evolution operators of the dissipative system define a semigroup, not a group as in the case of an isolated system. In this framework, Lindblad obtained a quantum master equation in agreement with all the quantum-mechanical principles. However, the Lindblad master equation was unable to secure a correct description of the decaying states. To do that, one has to take into account the transition operators between the system eigenstates with appropriate coefficients. Within this investigation, we have obtained an equation obeying to this requirement, giving the ρ(t) time derivative in terms of creation-annihilation operators of the single-particle states |i>, and λ ij , representing the dissipative coefficients, the microscopic expressions of which are

  10. Dissipative motion perturbation theory and exact solutions

    International Nuclear Information System (INIS)

    Lodder, J.J.

    1976-06-01

    Dissipative motion of classical and quantum systems is described. In particular, attention is paid to systems coupled to the radiation field. A dissipative equation of motion for a particle in an arbitrary potential coupled to the radiation field is derived by means of perturbation theory. The usual divrgencies associated with the radiation field are eliminated by the application of a theory of generalized functions. This theory is developed as a subject in its own right and is presented independently. The introduction of classical zero-point energy makes the classical equa tion of motion for the phase density formally the same as its quantum counterpart. In particular, it is shown that the classical zero-point energy prevents the collapse of a classical H-atom and gives rise to a classical ground state. For systems with a quadratic Hamiltoian, the equation of motion can be solved exactly, even in the continuum limit for the radiation field, by means of the new generalized functions. Classically, the Fokker-Planck equation is found without any approximations, and quantum mechanically, the only approximation is the neglect of the change in the ground state caused by the interaction. The derivation is valid even for strong damping and arbitrarily short times. There is no transient time. For harmonic oscillators complete equivalence is shown to exist between quantum mechanics and classical mechanics with zero-point energy. A discussion of the derivation of the Pauli equation is given and perturbation theory is compared with the exact derivation. The exactly solvable models are used to calculate the Langevin force of the radiation field. The result is that the classical Langevin force is exactly delta-correlated, while the quantum Langevin force is not delta-correlated at all. The fluctuation-dissipation theorem is shown to be an exact consequence of the solution to the equations of motion

  11. Characteristics of a Dry Fog Ionizer

    International Nuclear Information System (INIS)

    Murata, Y; Kudo, Y; Yonezawa, M

    2008-01-01

    The newly developed 'Dry Fog Ionizer' generates charged dry fog. The dry fog consists of very fine water droplets 8μm in mean diameter. This system consists of a dry fog nozzle (H.Ikeuchi and Co., LTD.), a ring electrode for induction charging (50mm outside diameter, and 10mm thick) in front of the nozzle, and a fan for dissipating charged dry fog. The ring electrode is DC or AC-biased and fine droplets ejected from the nozzle are electrified by induction charging. The particle size of the charged water droplets are reduced through evaporation during the transporting process by air flow, and completely evaporate approximately 2m from the nozzle under normal atmospheric conditions (25 deg. C, 60%R.H.) leaving high density ions. Using this system, high density ionic space charge can be realized in a remote spot from the ionizer. By this principle, the Dry Fog Ionizer shows strong charge-eliminating ability in the region away from the ionizer. When a dc bias of 5kV was applied to a ring electrode with the rate of water flow from the nozzle being 21/h, an ionic space-charge density of 1200nC /m 3 was able to be obtained at a distance 2m away from the ionizer, which was 10 2 times the value produced by an ordinary corona-type ionizer with an air blower.

  12. Assessing Relative Volatility/Intermittency/Energy Dissipation

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole E.; Pakkanen, Mikko; Schmiegel, Jürgen

    process in particular. While this estimation method is motivated by the assessment of relative energy dissipation in empirical data of turbulence, we apply it also to energy price data. Moreover, we develop a probabilistic asymptotic theory for relative power variations of Brownian semistationary......We introduce the notion of relative volatility/intermittency and demonstrate how relative volatility statistics can be used to estimate consistently the temporal variation of volatility/intermittency even when the data of interest are generated by a non-semimartingale, or a Brownian semistationary...... processes and Ito semimartingales and discuss how it can be used for inference on relative volatility/intermittency....

  13. Dissipation and the population of compound nuclei

    International Nuclear Information System (INIS)

    Thoennessen, M.; Beene, J.R.

    1992-01-01

    The importance of nuclear dissipative efforts on the formation of compound nuclei is studied with the γ-ray decay of the giant dipole resonance (GDR) built on highly excited states. The compound nuclei 164 Yb, 160 Er, and 110 Sn were produced with very mass-asymmetric and with more mass-symmetric target/projectile combinations. The large deviation from statistical model prediction observed in the γ-ray spectra from the more symmetrically formed 160 Er and 164 Yb can be qualitatively explained within the particle exchange model

  14. Fluctuation-dissipation relation in accelerated frames

    Science.gov (United States)

    Adhikari, Ananya; Bhattacharya, Krishnakanta; Chowdhury, Chandramouli; Majhi, Bibhas Ranjan

    2018-02-01

    A uniformly accelerated (Rindler) observer will detect particles in the Minkowski vacuum, known as the Unruh effect. The spectrum is thermal and the temperature is given by that of the Killing horizon, which is proportional to the acceleration. Considering that these particles are kept in a thermal bath with this temperature, we find that the correlation function of the random force due to radiation acting on the particles, as measured by the accelerated frame, shows the fluctuation-dissipation relation. It is observed that the correlations, in both (1 +1 ) spacetime and (1 +3 ) dimensional spacetimes, are of the Brownian type. We discuss the implications of this new observation.

  15. Quantum chaos and dissipation: Lyapunov exponents

    International Nuclear Information System (INIS)

    Cerdeira, H.A.; Ramaswamy, R.; Caldeira, A.O.

    1989-12-01

    We study a periodically kicked quantum oscillator system in contact with a heat bath. Using the Caldeira-Leggett approach, we solve for the kernel of the Wigner function at all temperatures. Previous results for dissipative quantum maps are recovered as special limits of low damping and slow kicks when the system effectively becomes one-dimensional. We then define the Lyapunov exponent for this quantum system by computing the expectation value for the coordinate variable, by taking the average along a semiclassical trajectory weighted by the Wigner function. In the semiclassical limit, the Lyapunov exponent scales as a positive exponent of Planck's constant. (author). 19 refs, 6 figs

  16. Dissipative Structures At Laser-Solid Interactions

    Science.gov (United States)

    Nanai, Laszlo

    1989-05-01

    The questions which are discussed in this lecture refer to one of sections of laser-solid interactions, namely: to formation of different dissipative structures on the surface of metals and semiconductors when they are irradiated by intensive laser light in chemically active media (f.e.air). Some particular examples of the development at different spatial and time instabilities, periodic and stochastic structures, auto-wave processes are present-ed using testing materials vanadium metal and semiconducting V205 single crystals and light sources: cw and pulsed CO2 and YAG lasers.

  17. On the nature of rainfall in dry climate: Space-time patterns of convective rain cells over the Dead Sea region and their relations with synoptic state and flash flood generation

    Science.gov (United States)

    Belachsen, Idit; Marra, Francesco; Peleg, Nadav; Morin, Efrat

    2017-04-01

    Space-time patterns of rainfall are important climatic characteristics that influence runoff generation and flash flood magnitude. Their derivation requires high-resolution measurements to adequately represent the rainfall distribution, and is best provided by remote sensing tools. This need is further emphasized in dry climate regions, where rainfall is scarce and, often, local and highly variable. Our research is focused on understanding the nature of rainfall events in the dry Dead Sea region (Eastern Mediterranean) by identifying and characterizing the spatial structure and the dynamics of convective storm cores (known as rain cells). To do so, we take advantage of 25 years of corrected and gauge-adjusted weather radar data. A statistical analysis of convective rain-cells spatial and temporal characteristics was performed with respect to synoptic pattern, geographical location, and flash flood generation. Rain cells were extracted from radar data using a cell segmentation method and a tracking algorithm and were divided into rain events. A total of 10,500 rain cells, 2650 cell tracks and 424 rain events were elicited. Rain cell properties, such as mean areal and maximal rain intensity, area, life span, direction and speed, were derived. Rain events were clustered, according to several ERA-Interim atmospheric parameters, and associated with three main synoptic patterns: Cyprus Low, Low to the East of the study region and Active Red Sea Trough. The first two originate from the Mediterranean Sea, while the third is an extension of the African monsoon. On average, the convective rain cells in the region are 90 km2 in size, moving from West to East in 13 ms-1 and living 18 minutes. Several significant differences between rain cells of the various synoptic types were observed. In particular, Active Red Sea Trough rain cells are characterized by higher rain intensities and lower speeds, suggesting a higher flooding potential for small catchments. The north

  18. Partial drying accelerates bacterial growth recovery to rewetting

    DEFF Research Database (Denmark)

    Meisner, Annelein; Leizeaga, Ainara; Rousk, Johannes

    2017-01-01

    Fluctuations in soil moisture create drying-rewetting events affecting the activity of microorganisms. Microbial responses to drying-rewetting are mostly studied in soils that are air-dried before rewetting. Upon rewetting, two patterns of bacterial growth have been observed. In the Type 1 pattern......, bacterial growth rates increase immediately in a linear fashion. In the Type 2 pattern, bacterial growth rates increase exponentially after a lag period. However, soils are often only partially dried. Partial drying (higher remaining moisture content before rewetting) may be considered a less harsh...... treatment compared with air-drying. We hypothesized that a soil with a Type 2 response upon rewetting air-dried soil would transform into a Type 1 response if dried partially before rewetting. Two soils were dried to a gradient of different moisture content. Respiration and bacterial growth rates were...

  19. Cucurbita spp. and Cucumis sativus enhance the dissipation of polychlorinated biphenyl congeners by stimulating soil microbial community development

    International Nuclear Information System (INIS)

    Qin, Hua; Brookes, Philip C.; Xu, Jianming

    2014-01-01

    A number of Cucurbita species have the potential to extract polychlorinated biphenyls (PCBs) from soil, but their impact on the soil microbial communities responsible for PCB degradation remains unclear. A greenhouse experiment was conducted to investigate the effect of three Cucurbita and one Cucumis species on PCB dissipation and soil microbial community structure. Compared to the unplanted control, enhanced losses of PCBs (19.5%–42.7%) were observed in all planted soils. Cucurbita pepo and Cucurbita moschata treatments were more efficient in PCB dissipation, and have similar patterns of soil phospholipid fatty acids (PLFAs) and PCB congener profiles. Cucurbita treatments tend to have higher soil microbial biomass than Cucumis. Gram-negative (G − ) bacteria were significantly correlated with PCB degradation rates (R 2 = 0.719, p − bacteria were correlated with dissipation of the penta homologue group (R 2 = 0.590, p − bacteria contributed significantly to soil PCB dissipation. • Fungi have a great potential in the dissipation of high chlorinated biphenyls. -- Cucurbita associated fungi and G − bacteria have important influence on soil PCB dissipation rate and congener profile

  20. Dissipation of pesticides during composting and anaerobic digestion of source-separated organic waste at full-scale plants.

    Science.gov (United States)

    Kupper, Thomas; Bucheli, Thomas D; Brändli, Rahel C; Ortelli, Didier; Edder, Patrick

    2008-11-01

    In the present study, concentration levels and dissipation of modern pesticides during composting and digestion at full-scale plants were followed. Of the 271 pesticides analyzed, 28 were detected. Within the three windrows studied, total concentrations were between 36 and 101microg per kg of dry matter (d.m.) in input materials and between 8 and 20microg kg d.m.(-1) in composts after 112 days of treatment. Fungicides and among them triazoles clearly dominated over other pesticides. More than two-thirds of all pesticides detected in the input materials showed dissipation rates higher than 50% during composting, whilst levels of most triazoles decreased slightly or remained unchanged. The investigation on semi-dry thermophilic anaerobic digestion suggests that pesticides preferentially end up in presswater after solid-liquid separation.

  1. Stochastic pump effect and geometric phases in dissipative and stochastic systems

    Energy Technology Data Exchange (ETDEWEB)

    Sinitsyn, Nikolai [Los Alamos National Laboratory

    2008-01-01

    The success of Berry phases in quantum mechanics stimulated the study of similar phenomena in other areas of physics, including the theory of living cell locomotion and motion of patterns in nonlinear media. More recently, geometric phases have been applied to systems operating in a strongly stochastic environment, such as molecular motors. We discuss such geometric effects in purely classical dissipative stochastic systems and their role in the theory of the stochastic pump effect (SPE).

  2. Hydraulics, Air Entrainment, and Energy Dissipation on a Gabion Stepped Weir

    OpenAIRE

    Wüthrich, Davide; Chanson, Hubert

    2014-01-01

    In the last decades the design of stepped spillways regained some interest because of their suitability with new construction methods including gabions. The hydraulic performances of gabion stepped weirs were investigated experimentally in terms of the flow patterns, air-water flow properties, and energy dissipation. A laboratory study was conducted in a 26.6 degrees slope (1V: 2H) and 0.10-m step height facility, with both smooth impervious and gabion steps. The visual observations highlight...

  3. Dissipative Properties of EHD Lubricant Film

    Science.gov (United States)

    Fedorov, S. V.

    2018-01-01

    For the case of the failure of the lubricant film at hydrodynamic lubrication a common thermodynamic theory of strength is considered. According to this theory the failure occurs when the internal energy density (potential and thermal components) in the volume of material reaches a constant for a given material. A special case of this theory is considered when only the density of heat (kinetic) component of internal energy is taken into account. Temperature condition determines the limit state for liquid lubricants - mineral oils. When analyzing the regularities of friction at EHD lubrication the state and properties of the oil film at the condition of irregular and hydrostatic compression. The original structural model of oil film at EHD lubrication in the form of the rotary oscillating cells with elastic interactions to each other is proposed. It is similar to the Rayleigh-Benard cells and corresponds to the cellular hypothesis of J. Gibbs for the case of equilibrium and reversible process. It is quite possible that the size of the cells have an order of about nano level. The oil film dissipates energy in the direction of relative motion of bodies. This oil film has the highest dissipative properties.

  4. Hydrodynamic relaxations in dissipative particle dynamics

    Science.gov (United States)

    Hansen, J. S.; Greenfield, Michael L.; Dyre, Jeppe C.

    2018-01-01

    This paper studies the dynamics of relaxation phenomena in the standard dissipative particle dynamics (DPD) model [R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997)]. Using fluctuating hydrodynamics as the framework of the investigation, we focus on the collective transverse and longitudinal dynamics. It is shown that classical hydrodynamic theory predicts the transverse dynamics at relatively low temperatures very well when compared to simulation data; however, the theory predictions are, on the same length scale, less accurate for higher temperatures. The agreement with hydrodynamics depends on the definition of the viscosity, and here we find that the transverse dynamics are independent of the dissipative and random shear force contributions to the stress. For high temperatures, the spectrum for the longitudinal dynamics is dominated by the Brillouin peak for large length scales and the relaxation is therefore governed by sound wave propagation and is athermal. This contrasts the results at lower temperatures and small length scale, where the thermal process is clearly present in the spectra. The DPD model, at least qualitatively, re-captures the underlying hydrodynamical mechanisms, and quantitative agreement is excellent at intermediate temperatures for the transverse dynamics.

  5. Hyperbolic theory of relativistic conformal dissipative fluids

    Science.gov (United States)

    Lehner, Luis; Reula, Oscar A.; Rubio, Marcelo E.

    2018-01-01

    We develop a complete description of the class of conformal relativistic dissipative fluids of divergence form, following the formalism described in [R. Geroch and L. Lindblom, Phys. Rev. D 41, 1855 (1990), 10.1103/PhysRevD.41.1855, S. Pennisi, Some considerations on a non linear approach to extended thermodynamics and in Proceedings of Symposium of Kinetic Theory and Extended Thermodynamics, Bologna, 1987.]. This type of theory is fully described in terms of evolution variables whose dynamics are governed by total divergence-type conservation laws. Specifically, we give a characterization of the whole family of conformal fluids in terms of a single master scalar function defined up to second-order corrections in dissipative effects, which we explicitly find in general form. This allows us to identify the equilibrium states of the theory and derive constitutive relations and a Fourier-like law for the corresponding first-order theory heat flux. Finally, we show that among this class of theories—and near equilibrium configurations—there exist symmetric hyperbolic ones, implying that for them one can define well-posed initial value problems.

  6. Dissipation of oxytetracycline in soils under different redox conditions

    International Nuclear Information System (INIS)

    Yang Jigeng; Ying Guangguo; Zhou Lijun; Liu Shan; Zhao Jianliang

    2009-01-01

    This study investigated the dissipation kinetics of oxytetracycline in soils under aerobic and anoxic conditions. Laboratory experiments showed that the dissipation of oxytetracycline in soil followed first-order reaction kinetics and its dissipation rates decreased with increasing concentration. Oxytetracycline dissipated faster in soil under aerobic conditions than under anoxic conditions. The half-lives for oxytetracycline in soil under aerobic conditions ranged between 29 and 56 days for non-sterile treatments and 99-120 days for sterile treatments, while under anoxic conditions the half-lives of oxytetracycline ranged between 43 and 62 days in the non-sterile soil and between 69 and 104 days in the sterile soil. This suggests microbes can degrade oxytetracycline in agricultural soil. Abiotic factors such as strong sorption onto soil components also played a role in the dissipation of oxytetracycline in soil. - Oxytetracycline dissipation in soils is influenced by redox conditions and soil properties.

  7. Estimating Half-Lives for Pesticide Dissipation from Plants

    DEFF Research Database (Denmark)

    Fantke, Peter; Gillespie, Brenda W.; Juraske, Ronnie

    2014-01-01

    Pesticide risk and impact assessment models critically rely on and are sensitive to information describing dissipation from plants. Despite recent progress, experimental data are not available for all relevant pesticide−plant combinations, and currently no model predicting plant dissipation...... accounts for the influence of substance properties, plant characteristics, temperature, and study conditions. In this study, we propose models to estimate half-lives for pesticide dissipation from plants and provide recommendations for how to use our results. On the basis of fitting experimental...... dissipation data with reported average air temperatures, we estimated a reaction activation energy of 14.25 kJ/mol and a temperature coefficient Q10 of 1.22 to correct dissipation from plants for the influence of temperature. We calculated a set of dissipation half-lives for 333 substances applied at 20 °C...

  8. Analysing half-lives for pesticide dissipation in plants

    DEFF Research Database (Denmark)

    Jacobsen, R.E.; Fantke, Peter; Trapp, Stefan

    2015-01-01

    Overall dissipation of pesticides from plants is frequently measured, but the contribution of individual loss processes is largely unknown. We use a pesticide fate model for the quantification of dissipation by processes other than degradation. The model was parameterised using field studies....... Scenarios were established for Copenhagen/Denmark and Shanghai/PR China, and calibrated with measured results. The simulated dissipation rates of 42 pesticides were then compared with measured overall dissipation from field studies using tomato and wheat. The difference between measured overall dissipation...... and scenario. Accordingly, degradation is the most relevant dissipation process for these 42 pesticides, followed by growth dilution. Volatilisation was less relevant, which can be explained by the design of plant protection agents. Uptake of active compound from soil into plants leads to a negative...

  9. Effective mass approximation for tunneling states with dissipation

    International Nuclear Information System (INIS)

    Chen Hong; Wu Xiang.

    1987-08-01

    The dissipative tunneling in an asymmetric double-well potential is studied at low temperature. With effective mass approximation, the dissipation can be replaced by a temperature-dependent effective mass. The effective mass increases with decreasing temperature and becomes infinite at T=0. The partition function of the system is derived, which has the same form as that of a non-dissipative tunneling system. Some possible applications in glasses and heavy fermion system are also discussed. (author). 21 refs, 1 fig

  10. Entropy model of dissipative structure on corporate social responsibility

    Science.gov (United States)

    Li, Zuozhi; Jiang, Jie

    2017-06-01

    Enterprise is prompted to fulfill the social responsibility requirement by the internal and external environment. In this complex system, some studies suggest that firms have an orderly or chaotic entropy exchange behavior. Based on the theory of dissipative structure, this paper constructs the entropy index system of corporate social responsibility(CSR) and explores the dissipative structure of CSR through Brusselator model criterion. Picking up listed companies of the equipment manufacturing, the research shows that CSR has positive incentive to negative entropy and promotes the stability of dissipative structure. In short, the dissipative structure of CSR has a positive impact on the interests of stakeholders and corporate social images.

  11. Dissipation Assisted Quantum Memory with Coupled Spin Systems

    Science.gov (United States)

    Jiang, Liang; Verstraete, Frank; Cirac, Ignacio; Lukin, Mikhail

    2009-05-01

    Dissipative dynamics often destroys quantum coherences. However, one can use dissipation to suppress decoherence. A well-known example is the so-called quantum Zeno effect, in which one can freeze the evolution using dissipative processes (e.g., frequently projecting the system to its initial state). Similarly, the undesired decoherence of quantum bits can also be suppressed using controlled dissipation. We propose and analyze the use of this generalization of quantum Zeno effect for protecting the quantum information encoded in the coupled spin systems. This new approach may potentially enhance the performance of quantum memories, in systems such as nitrogen-vacancy color-centers in diamond.

  12. Dissipative soliton acceleration in nonlinear optical lattices.

    Science.gov (United States)

    Kominis, Yannis; Papagiannis, Panagiotis; Droulias, Sotiris

    2012-07-30

    An effective mechanism for dissipative soliton acceleration in nonlinear optical lattices under the presence of linear gain and nonlinear loss is presented. The key idea for soliton acceleration consists of the dynamical reduction of the amplitude of the effective potential experienced by the soliton so that its kinetic energy eventually increases. This is possible through the dependence of the effective potential amplitude on the soliton mass, which can be varied due to the presence of gain and loss mechanisms. In contrast to the case where either the linear or the nonlinear refractive index is spatially modulated, we show that when both indices are modulated with the same period we can have soliton acceleration and mass increasing as well as stable soliton propagation with constant non-oscillating velocity. The acceleration mechanism is shown to be very robust for a wide range of configurations.

  13. Quantum Markov Chain Mixing and Dissipative Engineering

    DEFF Research Database (Denmark)

    Kastoryano, Michael James

    2012-01-01

    (stationary states). The aim of Markov chain mixing is to obtain (upper and/or lower) bounds on the number of steps it takes for the Markov chain to reach a stationary state. The natural quantum extensions of these notions are density matrices and quantum channels. We set out to develop a general mathematical......This thesis is the fruit of investigations on the extension of ideas of Markov chain mixing to the quantum setting, and its application to problems of dissipative engineering. A Markov chain describes a statistical process where the probability of future events depends only on the state...... framework for studying quantum Markov chain mixing. We introduce two new distance measures into the quantum setting; the quantum $\\chi^2$-divergence and Hilbert's projective metric. With the help of these distance measures, we are able to derive some basic bounds on the the mixing times of quantum channels...

  14. Neural network training as a dissipative process.

    Science.gov (United States)

    Gori, Marco; Maggini, Marco; Rossi, Alessandro

    2016-09-01

    This paper analyzes the practical issues and reports some results on a theory in which learning is modeled as a continuous temporal process driven by laws describing the interactions of intelligent agents with their own environment. The classic regularization framework is paired with the idea of temporal manifolds by introducing the principle of least cognitive action, which is inspired by the related principle of mechanics. The introduction of the counterparts of the kinetic and potential energy leads to an interpretation of learning as a dissipative process. As an example, we apply the theory to supervised learning in neural networks and show that the corresponding Euler-Lagrange differential equations can be connected to the classic gradient descent algorithm on the supervised pairs. We give preliminary experiments to confirm the soundness of the theory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. An extended dissipative particle dynamics model

    CERN Document Server

    Cotter, C J

    2003-01-01

    The method of dissipative particle dynamics (DPD) was introduced by Hoogerbrugge & Koelman to study meso-scale material processes. The theoretical investigation of the DPD method was initiated by Espanol who used a Fokker-Planck formulation of the DPD method and applied the Mori-Zwanzig projection operator calculus to obtain the equations of hydrodynamics for DPD. A current limitation of DPD is that it requires a clear separation of scales between the resolved and unresolved processes. In this note, we suggest a simple extension of DPD that allows for inclusion of unresolved processes with exponentially decaying variance for any value of the decay rate. The main point of the extension is that it is as easy to implement as DPD in a numerical algorithm.

  16. Thermodynamique des moteurs thermiques aux structures dissipatives

    CERN Document Server

    Prigogine, Ilya

    1999-01-01

    Ce livre constitue à la fois une présentation complète de la thermodynamique et une introduction scientifique à l'œuvre de Prigogine. Les auteurs innovent en montrant comment la thermodynamique du non-équilibre est un prolongement naturel de la thermodynamique de l'équilibre. Elle constitue ainsi la science des processus irréversibles - " la flèche du temps " - dont les structures dissipatives sont les témoignages les plus éclatants. Les développements historiques en font, non seulement un texte de référence, mais aussi un livre de culture. Les nombreux exemples et exercices, comme les programmes informatiques et les références aux sites Internet en font un outil de travail irremplaçable.

  17. Minimum Dissipation Principle in Nonlinear Transport

    Directory of Open Access Journals (Sweden)

    Giorgio Sonnino

    2015-10-01

    Full Text Available We extend Onsager’s minimum dissipation principle to stationary states that are only subject to local equilibrium constraints, even when the transport coefficients depend on the thermodynamic forces. Crucial to this generalization is a decomposition of the thermodynamic forces into those that are held fixed by the boundary conditions and the subspace that is orthogonal with respect to the metric defined by the transport coefficients. We are then able to apply Onsager and Machlup’s proof to the second set of forces. As an example, we consider two-dimensional nonlinear diffusion coupled to two reservoirs at different temperatures. Our extension differs from that of Bertini et al. in that we assume microscopic irreversibility, and we allow a nonlinear dependence of the fluxes on the forces.

  18. Quantum thermodynamics for driven dissipative bosonic systems

    Science.gov (United States)

    Ochoa, Maicol A.; Zimbovskaya, Natalya; Nitzan, Abraham

    2018-02-01

    We investigate two prototypical dissipative bosonic systems under slow driving and arbitrary system-bath coupling strength, recovering their dynamic evolution as well as the heat and work rates, and we verify that thermodynamic laws are respected. Specifically, we look at the damped harmonic oscillator and the damped two-level system. For the former, we study independently the slow time-dependent perturbation in the oscillator frequency and in the coupling strength. For the latter, we concentrate on the slow modulation of the energy gap between the two levels. Importantly, we are able to find the entropy production rates for each case without explicitly defining nonequilibrium extensions for the entropy functional. This analysis also permits the definition of phenomenological friction coefficients in terms of structural properties of the system-bath composite.

  19. Dissipative rendering and neural network control system design

    Science.gov (United States)

    Gonzalez, Oscar R.

    1995-01-01

    Model-based control system designs are limited by the accuracy of the models of the plant, plant uncertainty, and exogenous signals. Although better models can be obtained with system identification, the models and control designs still have limitations. One approach to reduce the dependency on particular models is to design a set of compensators that will guarantee robust stability to a set of plants. Optimization over the compensator parameters can then be used to get the desired performance. Conservativeness of this approach can be reduced by integrating fundamental properties of the plant models. This is the approach of dissipative control design. Dissipative control designs are based on several variations of the Passivity Theorem, which have been proven for nonlinear/linear and continuous-time/discrete-time systems. These theorems depend not on a specific model of a plant, but on its general dissipative properties. Dissipative control design has found wide applicability in flexible space structures and robotic systems that can be configured to be dissipative. Currently, there is ongoing research to improve the performance of dissipative control designs. For aircraft systems that are not dissipative active control may be used to make them dissipative and then a dissipative control design technique can be used. It is also possible that rendering a system dissipative and dissipative control design may be combined into one step. Furthermore, the transformation of a non-dissipative system to dissipative can be done robustly. One sequential design procedure for finite dimensional linear time-invariant systems has been developed. For nonlinear plants that cannot be controlled adequately with a single linear controller, model-based techniques have additional problems. Nonlinear system identification is still a research topic. Lacking analytical models for model-based design, artificial neural network algorithms have recently received considerable attention. Using

  20. Amphetamine enhances endurance by increasing heat dissipation.

    Science.gov (United States)

    Morozova, Ekaterina; Yoo, Yeonjoo; Behrouzvaziri, Abolhassan; Zaretskaia, Maria; Rusyniak, Daniel; Zaretsky, Dmitry; Molkov, Yaroslav

    2016-09-01

    Athletes use amphetamines to improve their performance through largely unknown mechanisms. Considering that body temperature is one of the major determinants of exhaustion during exercise, we investigated the influence of amphetamine on the thermoregulation. To explore this, we measured core body temperature and oxygen consumption of control and amphetamine-trea ted rats running on a treadmill with an incrementally increasing load (both speed and incline). Experimental results showed that rats treated with amphetamine (2 mg/kg) were able to run significantly longer than control rats. Due to a progressively increasing workload, which was matched by oxygen consumption, the control group exhibited a steady increase in the body temperature. The administration of amphetamine slowed down the temperature rise (thus decreasing core body temperature) in the beginning of the run without affecting oxygen consumption. In contrast, a lower dose of amphetamine (1 mg/kg) had no effect on measured parameters. Using a mathematical model describing temperature dynamics in two compartments (the core and the muscles), we were able to infer what physiological parameters were affected by amphetamine. Modeling revealed that amphetamine administration increases heat dissipation in the core. Furthermore, the model predicted that the muscle temperature at the end of the run in the amphetamine-treated group was significantly higher than in the control group. Therefore, we conclude that amphetamine may mask or delay fatigue by slowing down exercise-induced core body temperature growth by increasing heat dissipation. However, this affects the integrity of thermoregulatory system and may result in potentially dangerous overheating of the muscles. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  1. Dissipation of bentazone, pyrimethanil and boscalid in biochar and digestate based soil mixtures for biopurification systems

    International Nuclear Information System (INIS)

    Mukherjee, Santanu; Tappe, Wolfgang; Weihermueller, Lutz; Hofmann, Diana; Köppchen, Stephan; Laabs, Volker; Schroeder, Tom; Vereecken, Harry; Burauel, Peter

    2016-01-01

    Biopurification systems, such as biofilters, are biotechnological tools to prevent point sources of pesticide pollution stemming from on-farm operations. For the purification processes pesticide sorption and mineralization and/or dissipation are essential and both largely depend on the type of filling materials and the pesticide in use. In this paper the mineralization and dissipation of three contrasting 14 C-labeled pesticides (bentazone, boscalid, and pyrimethanil) were investigated in laboratory incubation experiments using sandy soil, biochar produced from Pine woodchips, and/or digestate obtained from anaerobic digestion process using maize silage, chicken manure, beef and pig urine as feedstock. The results indicate that the addition of digestate increased pesticide mineralization, whereby the mineralization was not proportional to the digestate loads in the mixture, indicating a saturation effect in the turnover rate of pesticides. This effect was in correlation with the amount of water extractable DOC, obtained from the digestate based mixtures. Mixing biochar into the soil generally reduced total mineralization and led to larger sorption/sequestration of the pesticides, resulting in faster decrease of the extractable fraction. Also the addition of biochar to the soil/digestate mixtures reduced mineralization compared to the digestate alone mixture but mineralization rates were still higher as for the biochar/soil alone. In consequence, the addition of biochar to the soil generally decreased pesticide dissipation times and larger amounts of biochar led to high amounts of non-extractable residues of pesticide in the substrates. Among the mixtures tested, a mixture of digestate (5%) and biochar (5%) gave optimal results with respect to mineralization and simultaneous sorption for all three pesticides. - Highlights: • Biochar and digestate significantly affects the dissipation pattern of pesticides. • Addition of digestate enhanced mineralization of

  2. Dissipation of bentazone, pyrimethanil and boscalid in biochar and digestate based soil mixtures for biopurification systems

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Santanu, E-mail: s.mukherjee@fz-juelich.de [Institute of Bio- and Geosciences (IBG-3), Agrosphere Institute, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Tappe, Wolfgang; Weihermueller, Lutz; Hofmann, Diana; Köppchen, Stephan [Institute of Bio- and Geosciences (IBG-3), Agrosphere Institute, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Laabs, Volker; Schroeder, Tom [BASF SE, Crop Protection, 67117, Limburgerhof (Germany); Vereecken, Harry [Institute of Bio- and Geosciences (IBG-3), Agrosphere Institute, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Burauel, Peter [Sustainable Campus, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany)

    2016-02-15

    Biopurification systems, such as biofilters, are biotechnological tools to prevent point sources of pesticide pollution stemming from on-farm operations. For the purification processes pesticide sorption and mineralization and/or dissipation are essential and both largely depend on the type of filling materials and the pesticide in use. In this paper the mineralization and dissipation of three contrasting {sup 14}C-labeled pesticides (bentazone, boscalid, and pyrimethanil) were investigated in laboratory incubation experiments using sandy soil, biochar produced from Pine woodchips, and/or digestate obtained from anaerobic digestion process using maize silage, chicken manure, beef and pig urine as feedstock. The results indicate that the addition of digestate increased pesticide mineralization, whereby the mineralization was not proportional to the digestate loads in the mixture, indicating a saturation effect in the turnover rate of pesticides. This effect was in correlation with the amount of water extractable DOC, obtained from the digestate based mixtures. Mixing biochar into the soil generally reduced total mineralization and led to larger sorption/sequestration of the pesticides, resulting in faster decrease of the extractable fraction. Also the addition of biochar to the soil/digestate mixtures reduced mineralization compared to the digestate alone mixture but mineralization rates were still higher as for the biochar/soil alone. In consequence, the addition of biochar to the soil generally decreased pesticide dissipation times and larger amounts of biochar led to high amounts of non-extractable residues of pesticide in the substrates. Among the mixtures tested, a mixture of digestate (5%) and biochar (5%) gave optimal results with respect to mineralization and simultaneous sorption for all three pesticides. - Highlights: • Biochar and digestate significantly affects the dissipation pattern of pesticides. • Addition of digestate enhanced mineralization of

  3. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Eye Symptoms Causes of Dry Eye Dry Eye Treatment What Is Dry Eye? Leer en Español: ¿Qué ... Your Eyelid Nov 29, 2017 New Dry Eye Treatment is a Tear-Jerker Jul 21, 2017 Three ...

  4. Study of a fluctuation-dissipation relation of a dissipative driven mesoscopic system

    Science.gov (United States)

    Arrachea, L.; Cugliandolo, L. F.

    2005-06-01

    We study the nonequilibrium dynamics of a mesoscopic metallic ring threaded by a time-dependent magnetic field and coupled to an electronic reservoir. We analyze the relation between the (nonstationary) real-time Keldysh and retarded Green functions and we argue that, in the linear-response regime with weak heat transfer to the environment, an effective temperature accounts for the modification of the equilibrium fluctuation-dissipation relation. We discuss possible extensions of this analysis.

  5. Balance laws and centro velocity in dissipative systems

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Mainardi, F.

    1990-01-01

    Starting with a density that is conserved for a dynamical system when dissipation is ignored, a local conservation law is derived for which the total flux (integrated over the spatial domain) is unique. When dissipation is incorporated, the conservation law becomes a balance law. The contribution

  6. Thermal energy dissipation and xanthophyll cycles beyond the Arabidopsis model.

    Science.gov (United States)

    García-Plazaola, José Ignacio; Esteban, Raquel; Fernández-Marín, Beatriz; Kranner, Ilse; Porcar-Castell, Albert

    2012-09-01

    Thermal dissipation of excitation energy is a fundamental photoprotection mechanism in plants. Thermal energy dissipation is frequently estimated using the quenching of the chlorophyll fluorescence signal, termed non-photochemical quenching. Over the last two decades, great progress has been made in the understanding of the mechanism of thermal energy dissipation through the use of a few model plants, mainly Arabidopsis. Nonetheless, an emerging number of studies suggest that this model represents only one strategy among several different solutions for the environmental adjustment of thermal energy dissipation that have evolved among photosynthetic organisms in the course of evolution. In this review, a detailed analysis of three examples highlights the need to use models other than Arabidopsis: first, overwintering evergreens that develop a sustained form of thermal energy dissipation; second, desiccation tolerant plants that induce rapid thermal energy dissipation; and third, understorey plants in which a complementary lutein epoxide cycle modulates thermal energy dissipation. The three examples have in common a shift from a photosynthetically efficient state to a dissipative conformation, a strategy widely distributed among stress-tolerant evergreen perennials. Likewise, they show a distinct operation of the xanthophyll cycle. Expanding the list of model species beyond Arabidopsis will enhance our knowledge of these mechanisms and increase the synergy of the current studies now dispersed over a wide number of species.

  7. Dissipation and leaching of pyroxasulfone and s-metolachlor

    Science.gov (United States)

    Pyroxasulfone dissipation and mobility in the soil was evaluated and compared to S-metolachlor in 2009 and 2010 at two field sites in northern Colorado, on a Nunn fine clay loam, and Olney fine sandy loam soil. Pyroxasulfone dissipation half-life (DT50) values varied from 47 to 134 d, and those of S...

  8. Dissipation of Alfven waves in solar coronal arches

    International Nuclear Information System (INIS)

    1989-01-01

    It is shown that the slow motion of the feet of coronal arches lead to irregular magnetic fields and that Alfvan waves propagating in the irregular magnetic sturcture are dissipated though filamentation of the wave packet that generates short scales necessary for efficient dissipation. (author). 19 refs.; 3 figs

  9. Luminaries-level structure improvement of LEDs for heat dissipation ...

    Indian Academy of Sciences (India)

    Heat dissipation enhancement of LED luminaries is of great significance to the large-scale application of LED. Luminaries-level structure improvement by the method of boring through-hole is adopted to intensify heat dissipation. Furthermore, the natural convection heat transfer process of LED luminaries is simulated by ...

  10. Foucault Dissipation in a Rolling Cylinder: A Webcam Quantitative Study

    Science.gov (United States)

    Bonanno, A.; Bozzo, G.; Camarca, M.; Sapia, P.

    2011-01-01

    In this paper we present an experimental strategy to measure the micro power dissipation due to Foucault "eddy" currents in a copper cylinder rolling on two parallel conductive rails in the presence of a magnetic field. Foucault power dissipation is obtained from kinematical measurements carried out by using a common PC webcam and video analysis…

  11. Braun-Le Chatelier principle in dissipative thermodynamics

    OpenAIRE

    Pavelka, Michal; Grmela, Miroslav

    2016-01-01

    Braun-Le Chatelier principle is a fundamental result of equilibrium thermodynamics, showing how stable equilibrium states shift when external conditions are varied. The principle follows from convexity of thermodynamic potential. Analogously, from convexity of dissipation potential it follows how steady non-equilibrium states shift when thermodynamic forces are varied, which is the extension of the principle to dissipative thermodynamics.

  12. Dissipative quantum trajectories in complex space: Damped harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    2016-10-15

    Dissipative quantum trajectories in complex space are investigated in the framework of the logarithmic nonlinear Schrödinger equation. The logarithmic nonlinear Schrödinger equation provides a phenomenological description for dissipative quantum systems. Substituting the wave function expressed in terms of the complex action into the complex-extended logarithmic nonlinear Schrödinger equation, we derive the complex quantum Hamilton–Jacobi equation including the dissipative potential. It is shown that dissipative quantum trajectories satisfy a quantum Newtonian equation of motion in complex space with a friction force. Exact dissipative complex quantum trajectories are analyzed for the wave and solitonlike solutions to the logarithmic nonlinear Schrödinger equation for the damped harmonic oscillator. These trajectories converge to the equilibrium position as time evolves. It is indicated that dissipative complex quantum trajectories for the wave and solitonlike solutions are identical to dissipative complex classical trajectories for the damped harmonic oscillator. This study develops a theoretical framework for dissipative quantum trajectories in complex space.

  13. 30 CFR 56.6602 - Static electricity dissipation during loading.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Static electricity dissipation during loading... Explosives Extraneous Electricity § 56.6602 Static electricity dissipation during loading. When explosive material is loaded pneumatically into a blasthole in a manner that generates a static electricity hazard...

  14. 30 CFR 57.6602 - Static electricity dissipation during loading.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Static electricity dissipation during loading... MINES Explosives Extraneous Electricity-Surface and Underground § 57.6602 Static electricity dissipation... generates a static electricity hazard— (a) An evaluation of the potential static electricity hazard shall be...

  15. Estimating half-lives for pesticide dissipation from plants.

    Science.gov (United States)

    Fantke, Peter; Gillespie, Brenda W; Juraske, Ronnie; Jolliet, Olivier

    2014-01-01

    Pesticide risk and impact assessment models critically rely on and are sensitive to information describing dissipation from plants. Despite recent progress, experimental data are not available for all relevant pesticide-plant combinations, and currently no model predicting plant dissipation accounts for the influence of substance properties, plant characteristics, temperature, and study conditions. In this study, we propose models to estimate half-lives for pesticide dissipation from plants and provide recommendations for how to use our results. On the basis of fitting experimental dissipation data with reported average air temperatures, we estimated a reaction activation energy of 14.25 kJ/mol and a temperature coefficient Q10 of 1.22 to correct dissipation from plants for the influence of temperature. We calculated a set of dissipation half-lives for 333 substances applied at 20 °C under field conditions. Half-lives range from 0.2 days for pyrethrins to 31 days for dalapon. Parameter estimates are provided to correct for specific plant species, temperatures, and study conditions. Finally, we propose a predictive regression model for pesticides without available measured dissipation data to estimate half-lives based on substance properties at the level of chemical substance class. Estimated half-lives from our study are designed to be applied in risk and impact assessment models to either directly describe dissipation or as first proxy for describing degradation.

  16. Dissipative nucleus-nucleus collisions: study of memory effects

    International Nuclear Information System (INIS)

    Agarwal, K.C.; Yadav, H.L.

    2002-01-01

    Dissipative collisions between two heavy nuclei are described in terms of a macroscopic dynamical model within the framework of a multi-dimensional Fokker-Planck equation. The reaction 86 Kr(8.18 MeV/u) + 166 Er has been used as a prototype to study and demonstrate the memory effects for dissipation and diffusion processes

  17. The thermodynamic basis of entransy and entransy dissipation

    International Nuclear Information System (INIS)

    Xu, Mingtian

    2011-01-01

    In the present work, the entransy and entransy dissipation are defined from the thermodynamic point of view. It is shown that the entransy is a state variable and can be employed to describe the second law of thermodynamics. For heat conduction, a principle of minimum entransy dissipation is established based on the second law of thermodynamics in terms of entransy dissipation, which leads to the governing equation of the steady Fourier heat conduction without heat source. Furthermore, we derive the expressions of the entransy dissipation in duct flows and heat exchangers from the second law of thermodynamics, which paves the way for applications of the entransy dissipation theory in heat exchanger design. -- Highlights: → The concepts of entransy and entransy dissipation are defined from the thermodynamic point of view. → We find that the entransy is a new thermodynamic property. → The second law of thermodynamics can be described by the entransy and entransy dissipation. → The expressions of entransy dissipation in duct flows and heat exchangers are derived from the second law of thermodynamics.

  18. Influence of viscous dissipation and radiation on MHD Couette flow ...

    African Journals Online (AJOL)

    The overall analysis of the study of these parameters in various degrees show an increase in the velocity profile of the fluid, while radiation parameter decreases the temperature profile; viscous dissipation and Reynolds number increase the temperature profile of the fluid. Key word: Couette flow, viscous dissipation, ...

  19. Turbulent energy dissipation in coronal loops: statistical analysis of dissipative structures

    Science.gov (United States)

    Gomez, D. O.; Morales, L. F.; Dmitruk, P.

    2017-12-01

    The power law energy distribution observed in dissipation events ranging from flares down to nanoflares, has been associated either to intermittent turbulence or to self-organized criticality. In spite of the many studies conducted in recent years, it is unclear whether these two paradigms are mutually exclusive or whether they are complementary manifestations of the complexity of the system.We numericaly integrate the magnetohydrodynamic equations to simulate the dynamics of coronal loops driven at their bases by footpoint motions. After a few photospheric turnover times, a stationary turbulent regime is reached, displaying a broadband power spectrum and a dissipation rate consistent with the cooling rates of the plasma confined in these loops. Our main goal is to determine whether the intermittent features observed in this turbulent flow can also be regarded as manifestations of self-organized criticality. A statistical analysis of the energy, area and lifetime of the dissipative structures observed in these simulations display robust scaling laws.In a preliminary study, we calculated the critical exponents characterizing the avalanche dynamics, andthe spreading exponents that quantify the growth of these structures over time. In this work we also calculate the remaining critical exponents for several activity thresholds and verify that they satisfy the conservation relations predicted for SOC systems. These results can therefore be regarded as a bona fide test supporting that the stationary turbulent regimes characterizing coronal loops, also correspond to states of self organized cricality.

  20. Mechanisms for Acoustic Absorption in Dry and Weakly Wet Granular Media

    International Nuclear Information System (INIS)

    Brunet, Th.; Jia, X.; Mills, P.

    2008-01-01

    The dissipation of an elastic wave in dry and wet glass bead packings is measured using multiple sound scattering. The interplay of a linear viscoelastic loss and a nonlinear frictional one is observed in dry media. The Mindlin model provides a qualitative description of the experiment, but fails to quantitatively account for the data due to grain roughness. In weakly wet media, we find that the dissipation is dominated by a linear viscous loss due to the liquid films trapped at the grain surface asperities. Adding more liquid enables us to form the capillary menisci but does not increase the energy loss

  1. Variability of Pesticide Dissipation Half-Lives in Plants

    DEFF Research Database (Denmark)

    Fantke, Peter; Juraske, Ronnie

    2013-01-01

    Information on dissipation kinetics of pesticides in food crops and other plants is a key aspect in current risk and impact assessment practice. This is because human exposure to pesticides is predominantly caused by residues in agricultural crops grown for human and animal consumption. However......, modeling dissipation of pesticides in plants is highly uncertain and therefore strongly relies on experimental data. Unfortunately, available information on pesticide dissipation in plants from experimental studies only covers a small fraction of possible combinations of substances authorized for use...... on food and fodder crops. Additionally, aspects and processes influencing dissipation kinetics are still not fully understood. Therefore, we systematically reviewed 811 scientific literature sources providing 4513 dissipation half-lives of 346 pesticides measured in 183 plant species. We focused...

  2. Dry needling — peripheral and central considerations

    Science.gov (United States)

    Dommerholt, Jan

    2011-01-01

    Dry needling is a common treatment technique in orthopedic manual physical therapy. Although various dry needling approaches exist, the more common and best supported approach targets myofascial trigger points. This article aims to place trigger point dry needling within the context of pain sciences. From a pain science perspective, trigger points are constant sources of peripheral nociceptive input leading to peripheral and central sensitization. Dry needling cannot only reverse some aspects of central sensitization, it reduces local and referred pain, improves range of motion and muscle activation pattern, and alters the chemical environment of trigger points. Trigger point dry needling should be based on a thorough understanding of the scientific background of trigger points, the differences and similarities between active and latent trigger points, motor adaptation, and central sensitize application. Several outcome studies are included, as well as comments on dry needling and acupuncture. PMID:23115475

  3. Dry needling - peripheral and central considerations.

    Science.gov (United States)

    Dommerholt, Jan

    2011-11-01

    Dry needling is a common treatment technique in orthopedic manual physical therapy. Although various dry needling approaches exist, the more common and best supported approach targets myofascial trigger points. This article aims to place trigger point dry needling within the context of pain sciences. From a pain science perspective, trigger points are constant sources of peripheral nociceptive input leading to peripheral and central sensitization. Dry needling cannot only reverse some aspects of central sensitization, it reduces local and referred pain, improves range of motion and muscle activation pattern, and alters the chemical environment of trigger points. Trigger point dry needling should be based on a thorough understanding of the scientific background of trigger points, the differences and similarities between active and latent trigger points, motor adaptation, and central sensitize application. Several outcome studies are included, as well as comments on dry needling and acupuncture.

  4. Viscous Dissipation and Criticality of Subducting Slabs

    Science.gov (United States)

    Riedel, Mike; Karato, Shun; Yuen, Dave

    2016-04-01

    Rheology of subducting lithosphere appears to be complicated. In the shallow part, deformation is largely accomodated by brittle failure, whereas at greater depth, at higher confining pressures, ductile creep is expected to control slab strength. The amount of viscous dissipation ΔQ during subduction at greater depth, as constrained by experimental rock mechanics, can be estimated on the basis of a simple bending moment equation [1,2] 2ɛ˙0(z) ∫ +h/2 2 M (z) = h ṡ -h/2 4μ(y,z)y dy , (1) for a complex multi-phase rheology in the mantle transition zone, including the effects of a metastable phase transition as well as the pressure, temperature, grain-size and stress dependency of the relevant creep mechanisms; μ is here the effective viscosity and ɛ˙0(z) is a (reference) strain rate. Numerical analysis shows that the maximum bending moment, Mcrit, that can be sustained by a slab is of the order of 1019 Nm per m according to Mcrit˜=σp ∗h2/4, where σp is the Peierl's stress limit of slab materials and h is the slab thickness. Near Mcrit, the amount of viscous dissipation grows strongly as a consequence of a lattice instability of mantle minerals (dislocation glide in olivine), suggesting that thermo-mechanical instabilities become prone to occur at places where a critical shear-heating rate is exceeded, see figure. This implies that the lithosphere behaves in such cases like a perfectly plastic solid [3]. Recently available detailed data related to deep seismicity [4,5] seems to provide support to our conclusion. It shows, e.g., that thermal shear instabilities, and not transformational faulting, is likely the dominating mechanism for deep-focus earthquakes at the bottom of the transition zone, in accordance with this suggested "deep criticality" model. These new findings are therefore briefly outlined and possible implications are discussed. References [1] Riedel, M. R., Karato, S., Yuen, D. A. Criticality of Subducting Slabs. University of Minnesota

  5. Dissipation of 'dark energy' by cortex in knowledge retrieval.

    Science.gov (United States)

    Capolupo, Antonio; Freeman, Walter J; Vitiello, Giuseppe

    2013-03-01

    We have devised a thermodynamic model of cortical neurodynamics expressed at the classical level by neural networks and at the quantum level by dissipative quantum field theory. Our model is based on features in the spatial images of cortical activity newly revealed by high-density electrode arrays. We have incorporated the mechanism and necessity for so-called dark energy in knowledge retrieval. We have extended the model first using the Carnot cycle to define our measures for energy, entropy and temperature, and then using the Rankine cycle to incorporate criticality and phase transitions. We describe the dynamics of two interactive fields of neural activity that express knowledge, one at high and the other at low energy density, and the two operators that create and annihilate the fields. We postulate that the extremely high density of energy sequestered briefly in cortical activity patterns can account for the vividness, richness of associations, and emotional intensity of memories recalled by stimuli. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. An Optimal Free Energy Dissipation Strategy of the MinCDE Oscillator in Regulating Symmetric Bacterial Cell Division

    Science.gov (United States)

    Xiong, Liping; Lan, Ganhui

    2015-01-01

    Sustained molecular oscillations are ubiquitous in biology. The obtained oscillatory patterns provide vital functions as timekeepers, pacemakers and spacemarkers. Models based on control theory have been introduced to explain how specific oscillatory behaviors stem from protein interaction feedbacks, whereas the energy dissipation through the oscillating processes and its role in the regulatory function remain unexplored. Here we developed a general framework to assess an oscillator’s regulation performance at different dissipation levels. Using the Escherichia coli MinCDE oscillator as a model system, we showed that a sufficient amount of energy dissipation is needed to switch on the oscillation, which is tightly coupled to the system’s regulatory performance. Once the dissipation level is beyond this threshold, unlike stationary regulators’ monotonic performance-to-cost relation, excess dissipation at certain steps in the oscillating process damages the oscillator’s regulatory performance. We further discovered that the chemical free energy from ATP hydrolysis has to be strategically assigned to the MinE-aided MinD release and the MinD immobilization steps for optimal performance, and a higher energy budget improves the robustness of the oscillator. These results unfold a novel mode by which living systems trade energy for regulatory function. PMID:26317492

  7. Microbial growth responses upon rewetting dry soil

    Science.gov (United States)

    Meisner, Annelein; Rousk, Johannes; Bååth, Erland

    2015-04-01

    Increased rainfall and drought periods are expected to occur with current climate change, leading to fluctuations in soil moisture. Changes in soil moisture are known to affect carbon cycling. A pulse of carbon dioxide release (respiration) is often observed after rewetting a dry soil and a drying threshold is observed before this pulse emerges. Increased microbial activity is often assumed to be the cause for the pulse in respiration. Yet, the microbial growth responses that underlie this pulse are often not studied. The following questions will be addressed in this presentation. 1) Do fungal and bacterial growth explain the pulse in respiration upon rewetting a dry soil? 2) How does microbial growth respond to different drying intensities before rewetting? To answer the research questions, soils from Sweden, U.K. and Greenland were put in microcosms, air-dried for four days, a prolonged period or to different moisture content before rewetting. We measured soil respiration, fungal growth rates and/or bacterial growth rates at high temporal resolution during one week after rewetting. Our results suggest that the respiration pulse upon rewetting dry soil is not due to high microbial growth rates. During the first hours after rewetting, bacterial and fungal growth rates were low whereas the respiration rates were high. As such, there was a decoupling between the pulse in respiration and microbial growth rates. Two patterns of bacterial growth were observed upon rewetting the three different soils. In "pattern 1", bacteria started growing immediately in a linear pattern up to values similar as the moist control. In "pattern 2", bacteria started growing exponentially after a lag period of no growth with a second pulse of respiration occurring at the start of bacterial growth. Manipulating the drying intensity changed the patterns. Soils with "pattern 1" were changed to "pattern 2" when subjected to more extensive drying periods whereas soils with "pattern 2" were

  8. Dry cooling tower operating experience in the LOFT reactor

    International Nuclear Information System (INIS)

    Hunter, J.A.

    1980-01-01

    A dry cooling tower has been uniquely utilized to dissipate heat generated in a small experimental pressurized water nuclear reactor. Operational experience revealed that dry cooling towers can be intermittently operated with minimal wind susceptibility and water hammer occurrences by cooling potential steam sources after a reactor scram, by isolating idle tubes from the external atmosphere, and by operating at relatively high pressures. Operating experience has also revealed that tube freezing can be minimized by incorporating the proper heating and heat loss prevention features

  9. Role of arbuscular mycorrhizal fungus Rhizophagus custos in the dissipation of PAHs under root-organ culture conditions

    International Nuclear Information System (INIS)

    Aranda, Elisabet; Scervino, José Martín; Godoy, Patricia; Reina, Rocío; Ocampo, Juan Antonio; Wittich, Regina-Michaela; García-Romera, Inmaculada

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are one of the most common contaminants in soil. Arbuscular mycorrhizal (AM) fungi make host plants resistant to pollutants. This study aims to evaluate the impact of anthracene, phenanthrene and dibenzothiophene on the AM fungus Rhizophagus custos, isolated from soil contaminated by heavy metals and PAHs, under monoxenic conditions. We found a high level of tolerance in R. custos to the presence of PAHs, especially in the case of anthracene, in which no negative effect on AM-colonized root dry weight (root yield) was observed, and also a decrease in the formation of anthraquinone was detected. Increased PAH dissipation in the mycorrhizal root culture medium was observed; however, dissipation was affected by the level of concentration and the specific PAH, which lead us to a better understanding of the possible contribution of AM fungi, and in particular R. custos, to pollutant removal. -- Highlights: •The AM fungus R. custos contributes to PAH dissipation and removal from the medium. •R. custos showed high levels of tolerance to high concentrations of anthracene. •Phenanthrene negatively affects the functionality of the symbiosis. •R. custos accumulates PAHs in spores and extraradical mycelia. •R. custos is able to prevent PAHs from entering roots. -- The AM fungus Rhizophagus custos is involved in PAH dissipation in absence of other microorganisms and could be potentially effective in protecting anthracene exposed plants

  10. Drying textile yarns

    Energy Technology Data Exchange (ETDEWEB)

    McCullough, H.C.

    1987-05-20

    The material drying apparatus described comprises a moisture withdrawal or drying section, wherein a tray carrying textile yarn bobbins is removably installed, a heat input section and recirculating ducting for recirculating a flow of drying gas between the heat input and withdrawal sections such that moisture taken from the material in the moisture withdrawal section is removed from the drying gas in the heat input section. A receptable means is provided for the collection of condensate. Preferably the heat input section includes a heat pump: thus the drying gas passing from the drying section laden with moisture can be directed through a condensing section of the heat pump for dehumidification.

  11. Energy dissipation of rockfalls by coppice structures

    Directory of Open Access Journals (Sweden)

    G. Ciabocco

    2009-06-01

    Full Text Available The objective of this work is to develop elements to improve understanding of the behaviour of a coppice in relation to the phenomenon of falling boulders. The first section proposes an amendment to the equation for calculating the index which describes the probability of impact between a rock and plants in managed coppice forests. A study was carried out, using models to calculate the kinetic energy of a falling boulder along a slope considering the kinetic energy dissipated during the impact with the structure of forest plants managed by coppice. The output of the simulation models were then compared with the real dynamics of falling boulders in field tests using digital video.

    It emerged from an analysis of the results of this comparison that a modification to the 1989 Gsteiger equation was required, in order to calculate the "Average Distance between Contacts" (ADC. To this purpose, the concept of "Structure of Interception", proposed in this paper, was developed, valid as a first approach for describing the differences in the spatial distribution of stems between coppice and forest. This study also aims to provide suggestions for forestry management, in order to maintain or increase the protective capacity of a coppice managed with conventional techniques for the area studied, modifying the dendrometric characteristics.

  12. Architected squirt-flow materials for energy dissipation

    Science.gov (United States)

    Cohen, Tal; Kurzeja, Patrick; Bertoldi, Katia

    2017-12-01

    In the present study we explore material architectures that lead to enhanced dissipation properties by taking advantage of squirt-flow - a local flow mechanism triggered by heterogeneities at the pore level. While squirt-flow is a known dominant source of dissipation and seismic attenuation in fluid saturated geological materials, we study its untapped potential to be incorporated in highly deformable elastic materials with embedded fluid-filled cavities for future engineering applications. An analytical investigation, that isolates the squirt-flow mechanism from other potential dissipation mechanisms and considers an idealized setting, predicts high theoretical levels of dissipation achievable by squirt-flow and establishes a set of guidelines for optimal dissipation design. Particular architectures are then investigated via numerical simulations showing that a careful design of the internal voids can lead to an increase of dissipation levels by an order of magnitude, compared with equivalent homogeneous void distributions. Therefore, we suggest squirt-flow as a promising mechanism to be incorporated in future architected materials to effectively and reversibly dissipate energy.

  13. Global dissipativity of continuous-time recurrent neural networks with time delay

    International Nuclear Information System (INIS)

    Liao Xiaoxin; Wang Jun

    2003-01-01

    This paper addresses the global dissipativity of a general class of continuous-time recurrent neural networks. First, the concepts of global dissipation and global exponential dissipation are defined and elaborated. Next, the sets of global dissipativity and global exponentially dissipativity are characterized using the parameters of recurrent neural network models. In particular, it is shown that the Hopfield network and cellular neural networks with or without time delays are dissipative systems

  14. Templated Dry Printing of Conductive Metal Nanoparticles

    Science.gov (United States)

    Rolfe, David Alexander

    Printed electronics can lower the cost and increase the ubiquity of electrical components such as batteries, sensors, and telemetry systems. Unfortunately, the advance of printed electronics has been held back by the limited minimum resolution, aspect ratio, and feature fidelity of present printing techniques such as gravure, screen printing and inkjet printing. Templated dry printing offers a solution to these problems by patterning nanoparticle inks into templates before drying. This dissertation shows advancements in two varieties of templated dry nanoprinting. The first, advective micromolding in vapor-permeable templates (AMPT) is a microfluidic approach that uses evaporation-driven mold filling to create submicron features with a 1:1 aspect ratio. We will discuss submicron surface acoustic wave (SAW) resonators made through this process, and the refinement process in the template manufacturing process necessary to make these devices. We also present modeling techniques that can be applied to future AMPT templates. We conclude with a modified templated dry printing that improves throughput and isolated feature patterning by transferring dry-templated features with laser ablation. This method utilizes surface energy-defined templates to pattern features via doctor blade coating. Patterned and dried features can be transferred to a polymer substrate with an Nd:YAG MOPA fiber laser, and printed features can be smaller than the laser beam width.

  15. Skyrmionic spin Seebeck effect via dissipative thermomagnonic torques

    Science.gov (United States)

    Kovalev, Alexey A.

    2014-06-01

    We derive thermomagnonic torque and its "β-type" dissipative correction from the stochastic Landau-Lifshitz-Gilbert equation. The β-type dissipative correction describes viscous coupling between magnetic dynamics and magnonic current and it stems from spin mistracking of the magnetic order. We show that thermomagnonic torque is important for describing temperature gradient induced motion of skyrmions in helical magnets while dissipative correction plays an essential role in generating transverse Magnus force. We propose to detect such skyrmionic motion by employing the transverse spin Seebeck effect geometry.

  16. Turbulent viscosity and Jupiter's tidal Q. [energy dissipation function

    Science.gov (United States)

    Goldreich, P.; Nicholson, P. D.

    1977-01-01

    A recent estimate of tidal dissipation by turbulent viscosity in Jupiter's convective interior predicts that the current value of the planet's tidal Q is roughly 5 million. We point out a fundamental error in this calculation, and show that turbulent dissipation alone implies that at present Q is about 50 trillion. Our reduced estimate for the rate of tidal dissipation shows conclusively that tidal torques have produced only negligible modifications of the orbits of the Galilean satellites over the age of the solar system.

  17. Confinement-deconfinement transition in dissipative gauge field

    Science.gov (United States)

    Nagaosa, Naoto

    1993-12-01

    The effect of dissipation on confinement is studied for compact QED. This model is relevant to the recently developed gauge theory of high-Tc superconductors. The global phase diagram of the gauge field is clarified in the parameter space of the coupling constant g, the strength of dissipation γ, and the temperature T. Confinement is drastically suppressed by dissipation, and the deconfining phase appears even in the strong-coupling and zero temperature limit when γ exceeds a critical value. This result supports the spin-charge separation in the resonating-valence-bond state.

  18. Relative Entropy, Interaction Energy and the Nature of Dissipation

    Directory of Open Access Journals (Sweden)

    Bernard Gaveau

    2014-06-01

    Full Text Available Many thermodynamic relations involve inequalities, with equality if a process does not involve dissipation. In this article we provide equalities in which the dissipative contribution is shown to involve the relative entropy (a.k.a. Kullback-Leibler divergence. The processes considered are general time evolutions both in classical and quantum mechanics, and the initial state is sometimes thermal, sometimes partially so. By calculating a transport coefficient we show that indeed—at least in this case—the source of dissipation in that coefficient is the relative entropy.

  19. Influence of queue propagation and dissipation on route travel times

    DEFF Research Database (Denmark)

    Raovic, Nevena

    into account (Bliemer, 2008). Yperman (2007) indicates that there is a significant difference in queue-propagation and queue-dissipation between the LTM and DQM. This results in different route travel times, and can further affect route choice. In this paper, different approaches to represent queue propagation...... and dissipation through the CTM, LTM and DQM are studied. A simple network allows to show how these approaches influence route travel time. Furthermore, the possibility of changing the existing DQM is considered in order to more realistically represent queue propagation and dissipation, which would lead to more...... accurate route travel times....

  20. Bounds on dissipation in stress-driven flow

    Science.gov (United States)

    Tang, W.; Caulfield, C. P.; Young, W. R.

    2004-07-01

    We calculate the optimal upper and lower bounds, subject to the assumption of streamwise invariance, on the long-time-averaged mechanical energy dissipation rate varepsilon within the flow of an incompressible viscous fluid of constant kinematic viscosity nu and depth h driven by a constant surface stress tau=rho u(2_star) , where u_star is the friction velocity. We show that varepsilon ≤ varepsilon_{max}=tau(2/(rho^2nu)) , i.e. the dissipation is bounded above by the dissipation associated with the laminar solution bu=tau(z+h)/(rhonu) xvec, where xvec is the unit vector in the streamwise x-direction.

  1. On Instantaneous Power Dissipation in Class B Amplifier

    Directory of Open Access Journals (Sweden)

    Hristo Zhivomirov

    2014-08-01

    Full Text Available The present paper describes the analysis of the instantaneous power dissipation by the two active components in a class B power amplifier. Attention is paid to restrictions of the instantaneous power dissipation relations in reference literature, and the consequences of their misuse. A new generalized equation that takes into account the power dissipated by the two active devices is proposed. The theoretical statement is substantiated by Matlab® numeric computation and visualization, Cadence OrCAD® simulations and measurements of a real-world audio power amplifier performed by NI USB-6211 measurement complex.

  2. Dry Mouth (Xerostomia)

    Science.gov (United States)

    ... Finding Dental Care Home Health Info Health Topics Dry Mouth Saliva, or spit, is made by the salivary ... help keep teeth strong and fight tooth decay. Dry mouth, also called xerostomia (ZEER-oh-STOH-mee-ah), ...

  3. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Symptoms Causes of Dry Eye Dry Eye Treatment What Is Dry Eye? Leer en Español: ¿Qué es ... the tear film. It makes up most of what we see as tears. This layer cleans the ...

  4. Particle Acceleration in Dissipative Pulsar Magnetospheres

    Science.gov (United States)

    Kazanas, Z.; Kalapotharakos, C.; Harding, A.; Contopoulos, I.

    2012-01-01

    Pulsar magnetospheres represent unipolar inductor-type electrical circuits at which an EM potential across the polar cap (due to the rotation of their magnetic field) drives currents that run in and out of the polar cap and close at infinity. An estimate ofthe magnitude of this current can be obtained by dividing the potential induced across the polar cap V approx = B(sub O) R(sub O)(Omega R(sub O)/c)(exp 2) by the impedance of free space Z approx eq 4 pi/c; the resulting polar cap current density is close to $n {GJ} c$ where $n_{GJ}$ is the Goldreich-Julian (GJ) charge density. This argument suggests that even at current densities close to the GJ one, pulsar magnetospheres have a significant component of electric field $E_{parallel}$, parallel to the magnetic field, a condition necessary for particle acceleration and the production of radiation. We present the magnetic and electric field structures as well as the currents, charge densities, spin down rates and potential drops along the magnetic field lines of pulsar magnetospheres which do not obey the ideal MHD condition $E cdot B = 0$. By relating the current density along the poloidal field lines to the parallel electric field via a kind of Ohm's law $J = sigma E_{parallel}$ we study the structure of these magnetospheres as a function of the conductivity $sigma$. We find that for $sigma gg OmegaS the solution tends to the (ideal) Force-Free one and to the Vacuum one for $sigma 11 OmegaS. Finally, we present dissipative magnetospheric solutions with spatially variable $sigma$ that supports various microphysical properties and are compatible with the observations.

  5. A dissipative model of solar system

    Science.gov (United States)

    Vladimir, V. G.

    2009-04-01

    rotation of planets, and the small tidal deformations arising under influence of gradients of gravitational forces. The method of division of movements receives the equations describing movements of the centers of weights of planets and their own rotations. In the offered model takes place a dissipation of the energy which source are internally viscous forces of each planet. The system supposes the first integral - the law of preservation of the kinetic moment concerning the centre of weights of system. As a result of deformations of planets in the law of the universal gravitation which has been written down for material points, there are small conservative amendments. The equations of movement describe movement of the centers of weights of planets and their rotation around of the centers of weights in view of the tidal phenomena and the dissipative forces. The connected system of the equations consists of 3N the vector equations of the second order representing the theorems of movement of the centers of weights of planets, and N the vector equations of the first order determining changes of the own kinetic moments of each planet. Stationary values of full mechanical energy on the variety set in integral of the kinetic moment, correspond to stationary movements - to rotations of system as firm body with constant angular speed around of the centre of weights of all system. Angular speed of stationary rotation is directed along a constant vector of the kinetic moment, and the axis of rotation is the main central axis of inertia of system. We shall notice, that deformations of planets in stationary movement are constant, as in system of coordinates rotating with constant angular speed centrifugal forces and forces of gravitational interaction of planets are constant. Stationary configurations of system are determined according to Routh`s technique as stationary points of the changed potential energy submitted by the sum potential energies of centrifugal and gravitational

  6. Dry and Semi-Dry Tropical Cyclones

    Science.gov (United States)

    Cronin, T.; Chavas, D. R.

    2017-12-01

    Our understanding of dynamics in our real moist atmosphere is strongly informed by idealized dry models. It is widely believed that tropical cyclones (TCs) are an intrinsically moist phenomenon - relying fundamentally on evaporation and latent heat release - yet recent numerical modeling work has found formation of dry axisymmetric tropical cyclones from a state of dry radiative-convective equilibrium. What can such "dry hurricanes" teach us about intensity, structure, and size of real moist tropical cyclones in nature? Are dry TCs even stable in 3D? What about surfaces that are nearly dry but have some latent heat flux - can they also support TCs? To address these questions, we use the SAM cloud-system resolving model to simulate radiative-convective equilibrium on a rapidly rotating f-plane, subject to constant tropospheric radiative cooling. We use a homogeneous surface with fixed temperature and with surface saturation vapor pressure scaled by a factor 0-1 relative to that over pure water - allowing for continuous variation between moist and dry limits. We also explore cases with surface enthalpy fluxes that are uniform in space and time, where partitioning between latent and sensible heat fluxes is specified directly. We find that a completely moist surface yields a TC-world where multiple vortices form spontaneously and persist for tens of days. A completely dry surface can also yield a parallel dry TC-world with many vortices that are even more stable and persistent. Spontaneous cyclogenesis, however, is impeded for a range of low to intermediate surface wetness values, and by the combination of large rotation rates and a dry surface. We discuss whether these constraints on spontaneous cyclogenesis might arise from: 1) rain evaporation in the subcloud layer limiting the range of viable surface wetness values, and 2) a natural convective Rossby number limiting the range of viable rotation rates. Finally, we discuss simulations with uniform surface enthalpy

  7. Quantum Correlation in Circuit QED Under Various Dissipative Modes

    Science.gov (United States)

    Ying-Hua, Ji; Yong-Mei, Liu

    2017-02-01

    Dynamical evolutions of quantum correlations in circuit quantum electrodynamics (circuit-QED) are investigated under various dissipative modes. The influences of photon number, coupling strength, detuning and relative phase angle on quantum entanglement and quantum discord are compared as well. The results show that quantum discord may be less robust to decoherence than quantum entanglement since the death and revival also appears. Under certain dissipative mode, the decoherence subspace can be formed in circuit-QED due to the cooperative action of vacuum field. Whether a decoherence subspace can be formed not only depends on the form of quantum system but also relates closely to the dissipative mode of environment. One can manipulate decoherence through manipulating the correlation between environments, but the effect depends on the choice of initial quantum states and dissipative modes. Furthermore, we find that proper relative phase of initial quantum state provides one means of suppressing decoherence.

  8. Energy-dissipation-model for metallurgical multi-phase-systems

    Energy Technology Data Exchange (ETDEWEB)

    Mavrommatis, K.T. [Rheinisch-Westfaelische Technische Hochschule Aachen, Aachen (Germany)

    1996-12-31

    Entropy production in real processes is directly associated with the dissipation of energy. Both are potential measures for the proceed of irreversible processes taking place in metallurgical systems. Many of these processes in multi-phase-systems could then be modelled on the basis of the energy-dissipation associated with. As this entity can often be estimated using very simple assumptions from first principles, the evolution of an overall measure of systems behaviour can be studied constructing an energy-dissipation -based model of the system. In this work a formulation of this concept, the Energy-Dissipation-Model (EDM), for metallurgical multi-phase-systems is given. Special examples are studied to illustrate the concept, and benefits as well as the range of validity are shown. This concept might be understood as complement to usual CFD-modelling of complex systems on a more abstract level but reproducing essential attributes of complex metallurgical systems. (author)

  9. Nonoscillatory shock capturing scheme using flux limited dissipation

    International Nuclear Information System (INIS)

    Jameson, A.

    1985-01-01

    A method for modifying the third order dissipative terms by the introduction of flux limiters is proposed. The first order dissipative terms can then be eliminated entirely, and in the case of a scalar conservation law the scheme is converted into a total variation diminishing scheme provided that an appropriate value is chosen for the dissipative coefficient. Particular attention is given to: (1) the treatment of the scalar conservation law; (2) the treatment of the Euler equations for inviscid compressible flow; (3) the boundary conditions; and (4) multistage time stepping and multigrid schemes. Numerical results for transonic flows suggest that a central difference scheme augmented by flux limited dissipative terms can lead to an effective nonoscillatory shock capturing method. 20 references

  10. Quantum dynamics in nanoscale magnets in dissipative environments

    NARCIS (Netherlands)

    Miyashita, S; Saito, K; Kobayashi, H.; de Raedt, H.A.

    2000-01-01

    In discrete energy structure of nanoscale magnets, nonadiabatic transitions at avoided level crossings lead to fundamental processes of dynamics of magnetizations. The thermal environment causes dissipative effects on these processes. In this paper we review the features of the nonadiabatic

  11. The effects of dissipation on topological mechanical systems

    Science.gov (United States)

    Xiong, Ye; Wang, Tianxiang; Tong, Peiqing

    2016-09-01

    We theoretically study the effects of isotropic dissipation in a topological mechanical system which is an analogue of Chern insulator in mechanical vibrational lattice. The global gauge invariance is still conserved in this system albeit it is destroyed by the dissipation in the quantum counterpart. The chiral edge states in this system are therefore robust against strong dissipation. The dissipation also causes a dispersion of damping for the eigenstates. It will modify the equation of motion of a wave packet by an extra effective force. After taking into account the Berry curvature in the wave vector space, the trace of a free wave packet in the real space should be curved, feinting to break the Newton’s first law.

  12. Dissipation of angular momentum in light heavy ion collision

    International Nuclear Information System (INIS)

    Bhattacharya, C.; Bhattacharya, S.; Bhattacharjee, T.; Dey, A.; Kundu, S.; Krishan, K.; Banerjee, S.R.; Das, P.; Basu, S.K.

    2003-01-01

    The fragment emission has been studied and is reported how angular momentum dissipation can be estimated in a model independent manner using additional information from the fusion-fission component of the fragment emission data

  13. Reversible dissipative processes, conformal motions and Landau damping

    International Nuclear Information System (INIS)

    Herrera, L.; Di Prisco, A.; Ibáñez, J.

    2012-01-01

    The existence of a dissipative flux vector is known to be compatible with reversible processes, provided a timelike conformal Killing vector (CKV) χ α =(V α )/T (where V α and T denote the four-velocity and temperature respectively) is admitted by the spacetime. Here we show that if a constitutive transport equation, either within the context of standard irreversible thermodynamics or the causal Israel–Stewart theory, is adopted, then such a compatibility also requires vanishing dissipative fluxes. Therefore, in this later case the vanishing of entropy production generated by the existence of such CKV is not actually associated to an imperfect fluid, but to a non-dissipative one. We discuss also about Landau damping. -- Highlights: ► We review the problem of compatibility of dissipation with reversibility. ► We show that the additional assumption of a transport equation renders such a compatibility trivial. ► We discuss about Landau damping.

  14. Wave Breaking Phenomenon for DGH Equation with Strong Dissipation

    Directory of Open Access Journals (Sweden)

    Zhengguang Guo

    2014-01-01

    Full Text Available The present work is mainly concerned with the Dullin-Gottwald-Holm (DGH equation with strong dissipative term. We establish some sufficient conditions to guarantee finite time blow-up of strong solutions.

  15. Eddy Viscosity for Time Reversing Waves in a Dissipative Environment

    Science.gov (United States)

    Garnier, Josselin; Nachbin, André

    2004-10-01

    We present new results for the time reversal of weakly nonlinear pulses traveling in a random dissipative environment. Also we describe a new theory for calculating the eddy viscosity for weakly nonlinear waves propagating over a random surface. The turbulent viscosity is calculated from first principles, namely, without imposing any stress-strain hypothesis. A viscous shallow water model is considered and its effective viscosity characterized. We also show that weakly nonlinear waves can still be time reversed under weak dissipation. Incoherently scattered signals are recompressed, both for time reversal in transmission as well as in reflection. Under the weakly nonlinear, weakly dissipative regime, dissipation only affects the refocused pulse profile regarding its amplitude, but its shape is not corrupted. Numerical experiments are presented.

  16. Dissipative Structures of the Kuramoto–Sivashinsky Equation

    Directory of Open Access Journals (Sweden)

    N. A. Kudryashov

    2015-01-01

    Full Text Available In the present work, we study the features of dissipative structures formation described by the periodic boundary value problem for the Kuramoto-Sivashinsky equation. The numerical algorithm which is based on the pseudospectral method is presented. We prove the efficiency and accuracy of the proposed numerical method on the exact solution of the equation considered. Using this approach, we performed the numerical simulation of dissipative structure formations described by the Kuramoto–Sivashinsky equation. The influence of the problem parameters on these processes are studied. The quantitative and qualitative characteristics of dissipative structure formations are described. We have shown that there is a value of the control parameter at which the processes of dissipative structure formation are observed. In particular, using the cyclic convolution we define the average value of this parameter. Also, we find the dependence of the amplitude of the structures on the value of control parameter.

  17. Entropy-Assisted Computing of Low-Dissipative Systems

    Directory of Open Access Journals (Sweden)

    Ilya V. Karlin

    2015-12-01

    Full Text Available Entropy feedback is reviewed and highlighted as the guiding principle to reach extremely low dissipation. This principle is illustrated through turbulent flow simulations using the entropic lattice Boltzmann scheme.

  18. Beam-to-Column Connections with Demountable Energy Dissipative Plates

    Directory of Open Access Journals (Sweden)

    Vasile-Mircea Venghiac

    2018-03-01

    Full Text Available The behavior of steel structures subjected to seismic actions depends directly on the connections behavior. There are two current tendencies for ensuring the structural ductility: allowing the formation of plastic hinges in the beams by using reduced beam sections or reduced web sections or by ensuring the plastic hinge formation in the connection by using dissipative elements. This paper presents a new perspective regarding the energy dissipation mechanism formation within the beam-to-column connection. The design of connections capable of dissipating large amounts of energy, with an acceptable strength and ductile behavior is a real challenge for engineers. Sustainability is a big advantage for these connections. Another big advantage is the possibility of restoring the functionality of the damaged construction in a short time interval and with reduced costs. The introduction of connections with demountable energy dissipative plates can be a step forward in designing new beam-to-column connections for steel structures.

  19. New results from dissipative diabatic dynamics and nuclear elastoplasticity

    International Nuclear Information System (INIS)

    Noerenberg, W.; Technische Hochschule Darmstadt

    1986-10-01

    I present new results about dissipative diabatic dynamics and nuclear elastoplasticity, in particular on a self-consistent diabatic formulation, on first numerical calculations of dissipative diabatic dynamics in two collective degrees of freedom, on quasi-elastic recoil in central nucleus-nucleus collisions, on the diabatic hindrance of fusion reactions and on the diabatic emission of nucleons in central nucleus-nucleus collisions. (orig./HSI)

  20. Second Order Dissipative Fluid Dynamics and Relativistic Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Muronga, Azwinndini

    2004-01-01

    Non-ideal fluid dynamics is used to describe the space-time evolution of matter produced in relativistic nuclear collisions such as those at RHIC in BNL and at LHC in CERN. Dissipation is accounted for by employing causal theory of relativistic dissipative fluid dynamics derived from extended irreversible thermodynamics. The results are compared to those obtained by using Navier-Stokes theory and the ones obtained by perfect fluid approximation

  1. Transitions in the Communication Capacity of Dissipative Qubit Channels

    Science.gov (United States)

    Daems, D.

    2009-05-01

    The information transmission is studied for quantum channels in which the noise includes dissipative effects, more specifically, nonunitality. Noise is usually a nuisance but can sometimes be helpful. For these channels, the communication capacity is shown to increase with the dissipative component of the noise and may exhibit transitions beyond which it increases faster. The optimal states are constructed analytically as well as the pertaining “phase” diagram.

  2. Transport theory of dissipative heavy-ion collisions

    International Nuclear Information System (INIS)

    Norenberg, W.

    1979-01-01

    The lectures present the formulation of a transport theory, the derivation of a practicable transport equation (Fokker-Planck equation) and the evaluation of transport coefficients for dissipative (or deeply inelastic) heavy-ion collisions. The applicability of the theoretical concept is tested with remarkable success in the analyses of various experimental information (mass transfer, angular-momentum dissipation and energy loss). Some critical remarks on the present situation of transport theories are added. Future developments are outlined. (author)

  3. Dissipation and spontaneous symmetry breaking in brain dynamics

    International Nuclear Information System (INIS)

    Freeman, Walter J; Vitiello, Giuseppe

    2008-01-01

    We compare the predictions of the dissipative quantum model of the brain with neurophysiological data collected from electroencephalograms resulting from high-density arrays fixed on the surfaces of primary sensory and limbic areas of trained rabbits and cats. Functional brain imaging in relation to behavior reveals the formation of coherent domains of synchronized neuronal oscillatory activity and phase transitions predicted by the dissipative model

  4. Nanoscale thermal imaging of dissipation in quantum systems

    OpenAIRE

    Halbertal, Dorri; Cuppens, Jo; Shalom, Moshe Ben; Embon, Lior; Shadmi, Nitzan; Anahory, Yonathan; Naren, HR; Sarkar, Jayanta; Uri, Aviram; Ronen, Yuval; Myasoedov, Yury; Levitov, Leonid; Joselevich, Ernesto; Geim, Andre Konstantin; Zeldov, Eli

    2016-01-01

    Energy dissipation is a fundamental process governing the dynamics of physical, chemical and biological systems. It is also one of the main characteristics that distinguish quantum from classical phenomena. In particular, in condensed matter physics, scattering mechanisms, loss of quantum information or breakdown of topological protection are deeply rooted in the intricate details of how and where the dissipation occurs. Yet the microscopic behaviour of a system is usually not formulated in t...

  5. Nanoscale thermal imaging of dissipation in quantum systems.

    Science.gov (United States)

    Halbertal, D; Cuppens, J; Shalom, M Ben; Embon, L; Shadmi, N; Anahory, Y; Naren, H R; Sarkar, J; Uri, A; Ronen, Y; Myasoedov, Y; Levitov, L S; Joselevich, E; Geim, A K; Zeldov, E

    2016-11-17

    Energy dissipation is a fundamental process governing the dynamics of physical, chemical and biological systems. It is also one of the main characteristics that distinguish quantum from classical phenomena. In particular, in condensed matter physics, scattering mechanisms, loss of quantum information or breakdown of topological protection are deeply rooted in the intricate details of how and where the dissipation occurs. Yet the microscopic behaviour of a system is usually not formulated in terms of dissipation because energy dissipation is not a readily measurable quantity on the micrometre scale. Although nanoscale thermometry has gained much recent interest, existing thermal imaging methods are not sensitive enough for the study of quantum systems and are also unsuitable for the low-temperature operation that is required. Here we report a nano-thermometer based on a superconducting quantum interference device with a diameter of less than 50 nanometres that resides at the apex of a sharp pipette: it provides scanning cryogenic thermal sensing that is four orders of magnitude more sensitive than previous devices-below 1 μK Hz -1/2 . This non-contact, non-invasive thermometry allows thermal imaging of very low intensity, nanoscale energy dissipation down to the fundamental Landauer limit of 40 femtowatts for continuous readout of a single qubit at one gigahertz at 4.2 kelvin. These advances enable the observation of changes in dissipation due to single-electron charging of individual quantum dots in carbon nanotubes. They also reveal a dissipation mechanism attributable to resonant localized states in graphene encapsulated within hexagonal boron nitride, opening the door to direct thermal imaging of nanoscale dissipation processes in quantum matter.

  6. Plate Tectonics as a Far-From-Equilibrium Self-Organized Dissipative System

    Science.gov (United States)

    Anderson, D. L.

    2001-12-01

    A fluid above the critical Rayleigh number is far from equilibrium and spontaneously organizes itself into patterns involving the collective motion of large numbers of molecules which are resisted by the viscosity of the fluid. No external template is involved in forming the pattern. In 1928 Pearson showed that Bénard's experiments were driven by variations in surface tension at the top of the fluid and the surface motions drove convection in the fluid. In this case, the surface organized itself AND the underlying fluid. Both internal buoyancy driven flow and flow driven by surface forces can be far-from-equilibrium self-organized open systems that receive energy and matter from the environment. In the Earth, the cold thermal boundary layer at the surface drives plate tectonics and introduces temperature, shear and pressure gradients into the mantle that drive mantle convection. The mantle provides energy and material but may not provide the template. Plate tectonics is therefore a candidate for a far-from-equilibrium dissipative self-organizing system. Alternatively, one could view mantle convection as the self-organized system and the plates as simply the surface manifestation. Lithospheric architecture also imposes lateral temperature gradients onto the mantle which can drive and organize flow. Far-from-equilibrium self-organization requires; an open system, interacting parts, nonlinearities or feedbacks, an outside steady source of energy or matter, multiple possible states and a source of dissipation. In uniform fluids viscosity is the source of dissipation. Sources of dissipation in the plate system include bending, breaking, folding, shearing, tearing, collision and basal drag. These can change rapidly, in contrast to plate driving forces, and introduce the sort of fluctuations that can reorganize far-from-equilibrium systems. Global plate reorganizations can alternatively be thought of as convective overturns of the mantle, or thermal weakening of plates

  7. The TKE dissipation rate in the northern South China Sea

    Science.gov (United States)

    Lozovatsky, Iossif; Liu, Zhiyu; Fernando, Harindra Joseph S.; Hu, Jianyu; Wei, Hao

    2013-12-01

    The microstructure measurements taken during the summer seasons of 2009 and 2010 in the northern South China Sea (between 18°N and 22.5°N, and from the Luzon Strait to the eastern shelf of China) were used to estimate the averaged dissipation rate in the upper pycnocline of the deep basin and on the shelf. Linear correlation between and the estimates of available potential energy of internal waves, which was found for this data set, indicates an impact of energetic internal waves on spatial structure and temporal variability of . On the shelf stations, the bottom boundary layer depth-integrated dissipation reaches 17-19 mW/m2, dominating the dissipation in the water column below the surface layer. In the pycnocline, the integrated dissipation was mostly ˜10-30 % of . A weak dependence of bin-averaged dissipation on the Richardson number was noted, according to , where ɛ 0 + ɛ m is the background value of for weak stratification and Ri cr = 0.25, pointing to the combined effects of shear instability of small-scale motions and the influence of larger-scale low frequency internal waves. The latter broadly agrees with the MacKinnon-Gregg scaling for internal-wave-induced turbulence dissipation.

  8. Scalar dissipation rates in non-conservative transport systems

    Science.gov (United States)

    Engdahl, Nicholas B.; Ginn, Timothy R.; Fogg, Graham E.

    2013-06-01

    This work considers how the inferred mixing state of diffusive and advective-diffusive systems will vary over time when the solute masses are not constant over time. We develop a number of tools that allow the scalar dissipation rate to be used as a mixing measure in these systems without calculating local concentration gradients. The behavior of dissipation rates is investigated for single and multi-component kinetic reactions and a commonly studied equilibrium reaction. The scalar dissipation rate of a tracer experiencing first-order decay can be determined exactly from the decay constant and the dissipation rate of a passive tracer, and the mixing rate of a conservative component is not the superposition of the solute specific mixing rates. We then show how the behavior of the scalar dissipation rate can be determined from a limited subset of an infinite domain. Corrections are derived for constant and time dependent limits of integration the latter is used to approximate dissipation rates in advective-diffusive systems. Several of the corrections exhibit similarities to the previous work on mixing, including non-Fickian mixing. This illustrates the importance of accounting for the effects that reaction systems or limited monitoring areas may have on the inferred mixing state.

  9. Cold collisions in dissipative optical lattices

    International Nuclear Information System (INIS)

    Piilo, J; Suominen, K-A

    2005-01-01

    The invention of laser cooling methods for neutral atoms allows optical and magnetic trapping of cold atomic clouds in the temperature regime below 1 mK. In the past, light-assisted cold collisions between laser cooled atoms have been widely studied in magneto-optical atom traps (MOTs). We describe here theoretical studies of dynamical interactions, specifically cold collisions, between atoms trapped in near-resonant, dissipative optical lattices. The extension of collision studies to the regime of optical lattices introduces several complicating factors. For the lattice studies, one has to account for the internal substates of atoms, position-dependent matter-light coupling, and position-dependent couplings between the atoms, in addition to the spontaneous decay of electronically excited atomic states. The developed one-dimensional quantum-mechanical model combines atomic cooling and collision dynamics in a single framework. The model is based on Monte Carlo wavefunction simulations and is applied when the lattice-creating lasers have frequencies both below (red-detuned lattice) and above (blue-detuned lattice) the atomic resonance frequency. It turns out that the radiative heating mechanism affects the dynamics of atomic cloud in a red-detuned lattice in a way that is not directly expected from the MOT studies. The optical lattice and position-dependent light-matter coupling introduces selectivity of collision partners. The atoms which are most mobile and energetic are strongly favoured to participate in collisions, and are more often ejected from the lattice, than the slow ones in the laser parameter region selected for study. Consequently, the atoms remaining in the lattice have a smaller average kinetic energy per atom than in the case of non-interacting atoms. For blue-detuned lattices, we study how optical shielding emerges as a natural part of the lattice and look for ways to optimize the effect. We find that the cooling and shielding dynamics do not mix

  10. Bioindicator demonstrates high persistence of sulfentrazone in dry soil

    Directory of Open Access Journals (Sweden)

    Renato Coradello Lourenço

    2015-09-01

    Full Text Available In sugarcane crop areas, the application of preemergence herbicides with long residual effect in the soil has been frequently necessary. The herbicide persistence in the soil must be high especially because of applications during the dry season of the year, after sugarcane harvest. This study aimed at estimating the sulfentrazone persistence and dissipation in dry soil using bioindicator. Five experiments were carried out, divided into two phases. In the first phase, three dose-response curves were adjusted to select the best bioindicator to be adopted in the second phase. Niger was adopted due to its lower sensibility to sulfentrazone. In the second phase, a new dose-response curve was carried out, with six doses of sulfentrazone, in order to standardize the bioindicator sensibility to sulfentrazone. At the end, another experiment with six periods of sulfentrazone persistence in dry clay soil was developed. Persistence periods were: 182, 154, 125, 98 and 30 days. The bioindicator was seeded at the application day in treated plots and control. In this experiment, the sulfentrazone dose applied was 800 g ha-1. Niger was considered a good species to estimate the sulfentrazone persistence in dry soil. The sulfentrazone phytotoxic activity was identified up to 182 days after application, and its average dissipation rate was 2.15 g ha-1 day-1, with half-life higher than 182 days.

  11. Field dissipation of four personal care products in biosolids-amended soils in North China.

    Science.gov (United States)

    Chen, Feng; Ying, Guang-Guo; Ma, Yi-Bing; Chen, Zhi-Feng; Lai, Hua-Jie

    2014-11-01

    The present study investigated the dissipation behaviors of 4 typical personal care products (PCPs)-triclocarban (TCC), triclosan (TCS), tonalide (AHTN), and galaxolide (HHCB)- in soils amended with biosolids under field conditions in North China. The results showed that the 4 target compounds were detected in all biosolids-amended soils at levels of a few nanograms per gram to thousands of nanograms per gram (dry wt). The residual concentrations of the 4 PCPs were found in the following order: TCC > TCS > AHTN > HHCB. Significant dissipation of the 4 PCPs was observed in the biosolids-amended soils, with half-lives ranging from 26 d to 133 d. Furthermore, repeated biosolids applications and a higher biosolids application rate could lead to higher accumulation of the 4 PCPs in the agricultural soils. Based on the detected concentrations in the field trial and limited ecotoxicity data, high risks to soil organisms are expected for TCC, whereas low to medium risks are expected in most cases for AHTN, HHCB, and TCS. © 2014 SETAC.

  12. Drying and energy technologies

    CERN Document Server

    Lima, A

    2016-01-01

    This book provides a comprehensive overview of essential topics related to conventional and advanced drying and energy technologies, especially motivated by increased industry and academic interest. The main topics discussed are: theory and applications of drying, emerging topics in drying technology, innovations and trends in drying, thermo-hydro-chemical-mechanical behaviors of porous materials in drying, and drying equipment and energy. Since the topics covered are inter- and multi-disciplinary, the book offers an excellent source of information for engineers, energy specialists, scientists, researchers, graduate students, and leaders of industrial companies. This book is divided into several chapters focusing on the engineering, science and technology applied in essential industrial processes used for raw materials and products.

  13. Dry etching for microelectronics

    CERN Document Server

    Powell, RA

    1984-01-01

    This volume collects together for the first time a series of in-depth, critical reviews of important topics in dry etching, such as dry processing of III-V compound semiconductors, dry etching of refractory metal silicides and dry etching aluminium and aluminium alloys. This topical format provides the reader with more specialised information and references than found in a general review article. In addition, it presents a broad perspective which would otherwise have to be gained by reading a large number of individual research papers. An additional important and unique feature of this book

  14. Non-Dissipative Structural Evolutions in Granular Materials

    Directory of Open Access Journals (Sweden)

    Pouragha Mehdi

    2017-01-01

    Full Text Available The structure of the contact network in granular assemblies can evolve due to either dissipative mechanisms such as sliding at contact points, or non-dissipative mechanisms through the phenomenon of contact gain and loss. Being associated with negligible deformations, non-dissipative mechanisms is actually active even in the small strain range of ~ 10−3, especially in the case of densely packed assemblies. Hence, from a constitutive modelling point of view, it is crucial to be able to estimate such non-dissipative evolutions since both elastic and plastic properties of granular assemblies highly depend on contact network characteristics. The current study proposes an analytical scheme that allows us to estimate the non-dissipative contact gain/loss regime in terms of directional changes in the average contact force. The probability distribution of contact forces is used to compute the number of lost contact for each direction. Similarly, the number of newly formed contacts is estimated by considering the probability distribution of the gap between neighbouring particles. Based on the directional contact gain/loss computed, the changes in coordination number and fabric anisotropy can be found which, together with statistical treatments of Love-Weber stress expression, form a complete system of equations describing the evolution of other controlling microvariables. Finally, the results of the calculations have been compared with DEM simulations which verify the accuracy of the proposed scheme.

  15. Evaluation of turbulent dissipation rate retrievals from Doppler Cloud Radar

    Directory of Open Access Journals (Sweden)

    M. D. Shupe

    2012-06-01

    Full Text Available Turbulent dissipation rate retrievals from cloud radar Doppler velocity measurements are evaluated using independent, in situ observations in Arctic stratocumulus clouds. In situ validation data sets of dissipation rate are derived using sonic anemometer measurements from a tethered balloon and high frequency pressure variation observations from a research aircraft, both flown in proximity to stationary, ground-based radars. Modest biases are found among the data sets in particularly low- or high-turbulence regimes, but in general the radar-retrieved values correspond well with the in situ measurements. Root mean square differences are typically a factor of 4–6 relative to any given magnitude of dissipation rate. These differences are no larger than those found when comparing dissipation rates computed from tethered-balloon and meteorological tower-mounted sonic anemometer measurements made at spatial distances of a few hundred meters. Temporal lag analyses suggest that approximately half of the observed differences are due to spatial sampling considerations, such that the anticipated radar-based retrieval uncertainty is on the order of a factor of 2–3. Moreover, radar retrievals are clearly able to capture the vertical dissipation rate structure observed by the in situ sensors, while offering substantially more information on the time variability of turbulence profiles. Together these evaluations indicate that radar-based retrievals can, at a minimum, be used to determine the vertical structure of turbulence in Arctic stratocumulus clouds.

  16. Compaction shock dissipation in low density granular explosive

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Pratap T.; Gonthier, Keith A., E-mail: gonthier@me.lsu.edu; Chakravarthy, Sunada [Mechanical and Industrial Engineering Department, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)

    2016-06-14

    The microstructure of granular explosives can affect dissipative heating within compaction shocks that can trigger combustion and initiate detonation. Because initiation occurs over distances that are much larger than the mean particle size, homogenized (macroscale) theories are often used to describe local thermodynamic states within and behind shocks that are regarded as the average manifestation of thermodynamic fields at the particle scale. In this paper, mesoscale modeling and simulation are used to examine how the initial packing density of granular HMX (C{sub 4}H{sub 8}N{sub 8}O{sub 8}) C{sub 4}H{sub 8}N{sub 8}O{sub 8} having a narrow particle size distribution influences dissipation within resolved, planar compaction shocks. The model tracks the evolution of thermomechanical fields within large ensembles of particles due to pore collapse. Effective shock profiles, obtained by averaging mesoscale fields over space and time, are compared with those given by an independent macroscale compaction theory that predicts the variation in effective thermomechanical fields within shocks due to an imbalance between the solid pressure and a configurational stress. Reducing packing density is shown to reduce the dissipation rate within shocks but increase the integrated dissipated work over shock rise times, which is indicative of enhanced sensitivity. In all cases, dissipated work is related to shock pressure by a density-dependent power law, and shock rise time is related to pressure by a power law having an exponent of negative one.

  17. Dissipative dark matter halos: The steady state solution

    Science.gov (United States)

    Foot, R.

    2018-02-01

    Dissipative dark matter, where dark matter particle properties closely resemble familiar baryonic matter, is considered. Mirror dark matter, which arises from an isomorphic hidden sector, is a specific and theoretically constrained scenario. Other possibilities include models with more generic hidden sectors that contain massless dark photons [unbroken U (1 ) gauge interactions]. Such dark matter not only features dissipative cooling processes but also is assumed to have nontrivial heating sourced by ordinary supernovae (facilitated by the kinetic mixing interaction). The dynamics of dissipative dark matter halos around rotationally supported galaxies, influenced by heating as well as cooling processes, can be modeled by fluid equations. For a sufficiently isolated galaxy with a stable star formation rate, the dissipative dark matter halos are expected to evolve to a steady state configuration which is in hydrostatic equilibrium and where heating and cooling rates locally balance. Here, we take into account the major cooling and heating processes, and numerically solve for the steady state solution under the assumptions of spherical symmetry, negligible dark magnetic fields, and that supernova sourced energy is transported to the halo via dark radiation. For the parameters considered, and assumptions made, we were unable to find a physically realistic solution for the constrained case of mirror dark matter halos. Halo cooling generally exceeds heating at realistic halo mass densities. This problem can be rectified in more generic dissipative dark matter models, and we discuss a specific example in some detail.

  18. Compaction shock dissipation in low density granular explosive

    Science.gov (United States)

    Rao, Pratap T.; Gonthier, Keith A.; Chakravarthy, Sunada

    2016-06-01

    The microstructure of granular explosives can affect dissipative heating within compaction shocks that can trigger combustion and initiate detonation. Because initiation occurs over distances that are much larger than the mean particle size, homogenized (macroscale) theories are often used to describe local thermodynamic states within and behind shocks that are regarded as the average manifestation of thermodynamic fields at the particle scale. In this paper, mesoscale modeling and simulation are used to examine how the initial packing density of granular HMX (C4H8N8O8) C4H8N8O8 having a narrow particle size distribution influences dissipation within resolved, planar compaction shocks. The model tracks the evolution of thermomechanical fields within large ensembles of particles due to pore collapse. Effective shock profiles, obtained by averaging mesoscale fields over space and time, are compared with those given by an independent macroscale compaction theory that predicts the variation in effective thermomechanical fields within shocks due to an imbalance between the solid pressure and a configurational stress. Reducing packing density is shown to reduce the dissipation rate within shocks but increase the integrated dissipated work over shock rise times, which is indicative of enhanced sensitivity. In all cases, dissipated work is related to shock pressure by a density-dependent power law, and shock rise time is related to pressure by a power law having an exponent of negative one.

  19. Reaction time in the 19F+93Nb dissipative collision

    International Nuclear Information System (INIS)

    Tian Wendong; Wang Qi; Li Songlin; Dong Yuchuan; Guo Zhongyan; Zhan Wenlong; Xiao Guoqing

    2002-01-01

    The angular distribution and excitation function of the dissipative products have been measured in the reaction 19 F + 93 Nb. The reaction time of the dissipative products is extracted from the angular distribution and compared with that extracted from their energy auto-correlation function. A great difference exists between the reaction times extracted from these two methods. The results obtained from analyzing these two methods in different symmetrical reaction systems show that the reaction time extracted in the more symmetrical system by analyzing the slope of the angular distribution demonstrates the characteristic times of both direct and dissipative products, while the reaction times extracted in the more asymmetrical system only reflects the character of the direct products. But the method of the energy auto-correlation function can give the the characteristic time for dissipative products in both symmetrical and asymmetrical system. In addition, the damping rotation feature of the dinuclear system formed in the dissipative reaction can be described by analyzing the energy auto-correlation function

  20. Power injected in dissipative systems and the fluctuation theorem

    Science.gov (United States)

    Aumaître, S.; Fauve, S.; McNamara, S.; Poggi, P.

    We consider three examples of dissipative dynamical systems involving many degrees of freedom, driven far from equilibrium by a constant or time dependent forcing. We study the statistical properties of the injected and dissipated power as well as the fluctuations of the total energy of these systems. The three systems under consideration are: a shell model of turbulence, a gas of hard spheres colliding inelastically and excited by a vibrating piston, and a Burridge-Knopoff spring-block model. Although they involve different types of forcing and dissipation, we show that the statistics of the injected power obey the ``fluctuation theorem" demonstrated in the case of time reversible dissipative systems maintained at constant total energy, or in the case of some stochastic processes. Although this may be only a consequence of the theory of large deviations, this allows a possible definition of ``temperature" for a dissipative system out of equilibrium. We consider how this ``temperature" scales with the energy and the number of degrees of freedom in the different systems under consideration.

  1. Efficient heat dissipation of photonic crystal microcavity by monolayer graphene.

    Science.gov (United States)

    Shih, Min-Hsiung; Li, Lain-Jong; Yang, Yi-Chun; Chou, Hsiang-Yu; Lin, Cheng-Te; Su, Ching-Yuan

    2013-12-23

    Graphene, which exhibits excellent thermal conductivity, is a potential heat dissipation medium for compact optoelectronic devices. Photonic devices normally produce large- quantity of unwanted heat, and thus, a heat dissipation strategy is urgently needed. In this study, single-layer graphene (SLG) grown by chemical vapor deposition (CVD) is used to cover the surface of a photonic crystal (PhC) cavity, where the heat flux produced by the PhC cavity can be efficiently dissipated along the in-plane direction of the SLG. The thermal properties of the graphene-capped PhC cavity were characterized by experiments and theoretical calculations. The thermal resistance of the SLG-capped PhC cavity obtained from experiments is lower than half of that of a bare PhC cavity. The temperature of a SLG-capped PhC cavity is 45 K lower than that without SLG capping under an optical power of 100 μW. Our simulation results indicate that SLG receives the majority of the heat fluxes from the device, leading to the efficient heat dissipation. Both the experimental and simulation results suggest that the SLG is a promising material to enhance the heat dissipation efficiency for optoelectronic applications.

  2. Observation-based input and dissipation version of WAVEWATCH III

    Science.gov (United States)

    Zieger, Stefan; Babanin, Alexander; Rogers, Erick; Young, Ian

    2013-04-01

    Measurements collected at Lake George, Australia, resulted in new insights on the processes of wind wave interaction and white-capping dissipation and consequently new parameterisations of these source terms. The new nonlinear wind input source term accounts for dependence of the growth increment on wave steepness, for airflow separation which leads to a relative reduction of the growth under extreme wind conditions, and for negative growth rate under adverse winds. The new wave breaking and whitecapping dissipation source function features two separate terms: the inherent breaking term and a cumulative dissipation term due to influences of longer waves on wave breaking of shorter waves. Another novel feature of this dissipation is the threshold in terms of spectral density: below this threshold breaking stops and whitecapping becomes zero. In such conditions dissipation due to wave interaction with water turbulence takes over, which regime is particularly relevant for decaying seas and for swell. This paper describes these source terms implemented in WAVEWATCH III and evaluates the performance against existing source terms in duration-limited simulations and against buoy measurements for windsea-dominated conditions. Results show agreement by means of growth curves and integral parameters in the simulations and hindcast. The paper also introduces wave breaking probability as model output, along with standard wind-wave metrics.

  3. Optimal bounds on dissipation in stress driven flow

    Science.gov (United States)

    Tang, W.; Caulfield, C. P.; Young, W. R.

    2003-11-01

    We calculate the optimal upper and lower bounds, subject to the assumption of streamwise invariance, on the long-time-averaged mechanical energy dissipation rate ɛ within the flow of an incompressible viscous fluid of constant kinematic viscosity ν and depth h that is driven by a constant stress τ, defining an appropriate Grashof number G=τ h^2/ν^2. We show that ɛ ≤ τ^2/ν, i.e. the dissipation is bounded above by the dissipation associated with the laminar solution u=τ z hat ^x/ν. By using the the variational background method, (due to Constantin, Doering, and Hopf) and numerical continuation, we also generate the best possible rigorous lower bounds on the dissipation for arbitrary Grashof numbers. As G arrow ∞, we show that the dissipation is bounded below by ɛm = O(τ^3/2/h), with a numerical coefficient that we identify explicitly. The associated bounding solution has thin boundary layers at the top and bottom of the fluid layer with a deep intermediate region of weak shear.

  4. Non-Dissipative Structural Evolutions in Granular Materials

    Science.gov (United States)

    Pouragha, Mehdi; Wan, Richard

    2017-06-01

    The structure of the contact network in granular assemblies can evolve due to either dissipative mechanisms such as sliding at contact points, or non-dissipative mechanisms through the phenomenon of contact gain and loss. Being associated with negligible deformations, non-dissipative mechanisms is actually active even in the small strain range of 10-3, especially in the case of densely packed assemblies. Hence, from a constitutive modelling point of view, it is crucial to be able to estimate such non-dissipative evolutions since both elastic and plastic properties of granular assemblies highly depend on contact network characteristics. The current study proposes an analytical scheme that allows us to estimate the non-dissipative contact gain/loss regime in terms of directional changes in the average contact force. The probability distribution of contact forces is used to compute the number of lost contact for each direction. Similarly, the number of newly formed contacts is estimated by considering the probability distribution of the gap between neighbouring particles. Based on the directional contact gain/loss computed, the changes in coordination number and fabric anisotropy can be found which, together with statistical treatments of Love-Weber stress expression, form a complete system of equations describing the evolution of other controlling microvariables. Finally, the results of the calculations have been compared with DEM simulations which verify the accuracy of the proposed scheme.

  5. Coronal heating by Alfven waves dissipation in compressible nonuniform media

    International Nuclear Information System (INIS)

    Malara, Francesco; Primavera, Leonardo; Veltri, Pierluigi

    1996-01-01

    The possibility to produce small scales and then to efficiently dissipate energy has been studied by Malara et al. [1992b] in the case of MHD disturbances propagating in an weakly dissipative incompressible and inhomogeneous medium, for a strictly 2D geometry. We extend this work to include both compressibility and the third component for vector quantities. Numerical simulations show that, when an Alfven wave propagates in a compressible nonuniform medium, the two dynamical effects responsible for the small scales formation in the incompressible case are still at work: energy pinching and phase-mixing. These effects give rise to the formation of compressible perturbations (fast and slow waves or a static entropy wave). Some of these compressive fluctuations are subject to the steepening of the wave front and become shock waves, which are extremely efficient in dissipating their energy, their dissipation being independent of the Reynolds number. Rough estimates of the typical times the various dynamical processes take to produce small scales show that these times are consistent with those required to dissipate inside the solar corona the energy of Alfven waves of photospheric origin

  6. Strong tidal dissipation in Io and Jupiter from astrometric observations.

    Science.gov (United States)

    Lainey, Valéry; Arlot, Jean-Eudes; Karatekin, Ozgür; Van Hoolst, Tim

    2009-06-18

    Io is the volcanically most active body in the Solar System and has a large surface heat flux. The geological activity is thought to be the result of tides raised by Jupiter, but it is not known whether the current tidal heat production is sufficiently high to generate the observed surface heat flow. Io's tidal heat comes from the orbital energy of the Io-Jupiter system (resulting in orbital acceleration), whereas dissipation of energy in Jupiter causes Io's orbital motion to decelerate. Here we report a determination of the tidal dissipation in Io and Jupiter through its effect on the orbital motions of the Galilean moons. Our results show that the rate of internal energy dissipation in Io (k(2)/Q = 0.015 +/- 0.003, where k(2) is the Love number and Q is the quality factor) is in good agreement with the observed surface heat flow, and suggest that Io is close to thermal equilibrium. Dissipation in Jupiter (k(2)/Q = (1.102 +/- 0.203) x 10(-5)) is close to the upper bound of its average value expected from the long-term evolution of the system, and dissipation in extrasolar planets may be higher than presently assumed. The measured secular accelerations indicate that Io is evolving inwards, towards Jupiter, and that the three innermost Galilean moons (Io, Europa and Ganymede) are evolving out of the exact Laplace resonance.

  7. through Slicing, DryIng and Packagi.

    African Journals Online (AJOL)

    lene b~gs than in perforated polyethylene bags. lished but in-pack condensation due to high moisture content of ihe 'dry' michembe could be held accountable. This would in tum lead to more activities of-food-bor'ne microorganisms than in the other, types of packaging materials,. Moisture losses in th~ l~,st month could not ...

  8. Influence of black carbon addition on phenanthrene dissipation and microbial community structure in soil

    International Nuclear Information System (INIS)

    Wang Ping; Wang Haizhen; Wu Laosheng; Di Hongjie; He Yan; Xu Jianming

    2012-01-01

    Biodegradation processes and changes in microbial community structure were investigated in black carbon (BC) amended soils in a laboratory experiment using two soils (black soil and red soil). We applied different percentages of charcoal as BC (0%, 0.5% and 1% by weight) with 100 mg kg −1 of phenanthrene. Soil samples were collected at different incubation times (0, 7, 15, 30, 60, 120 d). The amendment with BC caused a marked decrease in the dissipation (ascribed to mainly degradation and/or sequestration) of phenanthrene residues from soil. Extracted phenanthrene in black soil with 1% BC were higher, oppositely in red soil, 0.5% BC amendments were higher. There were significant changes in the PLFA pattern in phenanthrene-spiked soils with time but BC had little effect on the microbial community structure of phenanthrene-spiked soils, as indicated by principal component analysis (PCA) of the PLFA signatures. - Highlights: ► Extracted phenanthrene increased substantially as the BC amount increased. ► Extracted phenanthrene in black soil with 1% BC were higher, oppositely in red soil. ► BC caused a marked decrease in the dissipation of phenanthrene from soil. ► PLFA pattern in phenanthrene-spiked soils with time had significant changes. - BC amendments on phenanthrene extraction were different for two soils and time was a more effective factor in microbial community changes.

  9. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Tips & Prevention News Ask an Ophthalmologist Patient Stories Español Eye Health / Eye Health A-Z Dry Eye ... Eye Treatment What Is Dry Eye? Leer en Español: ¿Qué Es el Ojo Seco? Written By: Kierstan ...

  10. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Tips & Prevention News Ask an Ophthalmologist Patient Stories Español Eye Health / Eye Health A-Z Dry Eye ... Eye Treatment What Is Dry Eye? Leer en Español: ¿Qué es el ojo seco? Written By: Kierstan ...

  11. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Pagan-Duran MD Sep. 01, 2017 Our eyes need tears to stay healthy and comfortable. If your eyes do not produce enough tears, it is called dry eye. Dry eye is also when your eyes do not make the right type of tears or tear film . How do tears ...

  12. Numerical Simulation of the Thermal Performance of a Dry Storage Cask for Spent Nuclear Fuel

    Directory of Open Access Journals (Sweden)

    Heui-Yung Chang

    2018-01-01

    Full Text Available In this study, the heat flow characteristics and thermal performance of a dry storage cask were investigated via thermal flow experiments and a computational fluid dynamics (CFD simulation. The results indicate that there are many inner circulations in the flow channel of the cask (the channel width is 10 cm. These circulations affect the channel airflow efficiency, which in turn affects the heat dissipation of the dry storage cask. The daily operating temperatures at the top concrete lid and the upper locations of the concrete cask are higher than those permitted by the design specification. The installation of the salt particle collection device has a limited negative effect on the thermal dissipation performance of the dry storage cask.

  13. Dissipative phase transition in the open quantum Rabi model

    Science.gov (United States)

    Hwang, Myung-Joong; Rabl, Peter; Plenio, Martin B.

    2018-01-01

    We demonstrate that the open quantum Rabi model (QRM) exhibits a second-order dissipative phase transition (DPT) and propose a method to observe this transition with trapped ions. The interplay between the ultrastrong qubit-oscillator coupling and the oscillator damping brings the system into a steady state with a diverging number of excitations, in which a DPT is allowed to occur even with a finite number of system components. The universality class of the open QRM, modified from the closed QRM by a Markovian bath, is identified by finding critical exponents and scaling functions using the Keldysh functional integral approach. We propose to realize the open QRM with two trapped ions where the coherent coupling and the rate of dissipation can be individually controlled and adjusted over a wide range. Thanks to this controllability, our work opens a possibility to investigate potentially rich dynamics associated with a dissipative phase transition.

  14. Log-Normal Turbulence Dissipation in Global Ocean Models

    Science.gov (United States)

    Pearson, Brodie; Fox-Kemper, Baylor

    2018-03-01

    Data from turbulent numerical simulations of the global ocean demonstrate that the dissipation of kinetic energy obeys a nearly log-normal distribution even at large horizontal scales O (10 km ) . As the horizontal scales of resolved turbulence are larger than the ocean is deep, the Kolmogorov-Yaglom theory for intermittency in 3D homogeneous, isotropic turbulence cannot apply; instead, the down-scale potential enstrophy cascade of quasigeostrophic turbulence should. Yet, energy dissipation obeys approximate log-normality—robustly across depths, seasons, regions, and subgrid schemes. The distribution parameters, skewness and kurtosis, show small systematic departures from log-normality with depth and subgrid friction schemes. Log-normality suggests that a few high-dissipation locations dominate the integrated energy and enstrophy budgets, which should be taken into account when making inferences from simplified models and inferring global energy budgets from sparse observations.

  15. Dissipative elastic metamaterial with a low-frequency passband

    Science.gov (United States)

    Liu, Yongquan; Yi, Jianlin; Li, Zheng; Su, Xianyue; Li, Wenlong; Negahban, Mehrdad

    2017-06-01

    We design and experimentally demonstrate a dissipative elastic metamaterial structure that functions as a bandpass filter with a low-frequency passband. The mechanism of dissipation in this structure is well described by a mass-spring-damper model that reveals that the imaginary part of the wavenumber is non-zero, even in the passband of dissipative metamaterials. This indicates that transmittance in this range can be low. A prototype for this viscoelastic metamaterial model is fabricated by 3D printing techniques using soft and hard acrylics as constituent materials. The transmittance of the printed metamaterial is measured and shows good agreement with theoretical predictions, demonstrating its potential in the design of compact waveguides, filters and other advanced devices for controlling mechanical waves.

  16. Dissipative elastic metamaterial with a low-frequency passband

    Directory of Open Access Journals (Sweden)

    Yongquan Liu

    2017-06-01

    Full Text Available We design and experimentally demonstrate a dissipative elastic metamaterial structure that functions as a bandpass filter with a low-frequency passband. The mechanism of dissipation in this structure is well described by a mass-spring-damper model that reveals that the imaginary part of the wavenumber is non-zero, even in the passband of dissipative metamaterials. This indicates that transmittance in this range can be low. A prototype for this viscoelastic metamaterial model is fabricated by 3D printing techniques using soft and hard acrylics as constituent materials. The transmittance of the printed metamaterial is measured and shows good agreement with theoretical predictions, demonstrating its potential in the design of compact waveguides, filters and other advanced devices for controlling mechanical waves.

  17. Mechanical dissipation at elevated temperatures in tetrahedral amorphous carbon.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, John P.; Friedmann, Thomas Aquinas; Czaplewski, David A.; Wendt, Joel Robert

    2005-05-01

    We have measured the temperature dependence of mechanical dissipation in tetrahedral amorphous carbon flexural and torsional resonators over the temperature range from 300 to 1023 K. The mechanical dissipation was found to be controlled by defects within the material, and the magnitude and temperature dependence of the dissipation were found to depend on whether flexural or torsional vibrational modes were excited. The defects that were active under flexural stresses have a relatively flat concentration from 0.4 to 0.7 eV with an ever increasing defect concentration up to 1.9 eV. Under shear stresses (torsion), the defect activation energies increase immediately beginning at 0.4 eV, with increasing defect concentration at higher energies.

  18. Coherent structures, dissipation and intermittency in plasma turbulence

    Science.gov (United States)

    Wan, M.; Matthaeus, W. H.; Roytershteyn, V.; Parashar, T.; Shay, M. A.; Karimabadi, H.; Wu, P.

    2015-12-01

    The nature of collisionless dissipation in turbulent plasmas such as the solar wind and the solar corona has been hotly debated recently. Here we report results from high resolution, fully kinetic simulations of plasmas turbulence in both two and three dimensions. The simulations show development of turbulent coherent structures, characterized by sheet-like current density structures spanning a range of scales. Results from particle-in-cell (PIC) simulations are also compared with MHD simulations in terms of coherent structures, dissipation and intermittency. An important conclusion, for all simulations examined, is that the dissipation is concentrated in very small volumes, reminiscent of the scenario that motivates the Kolmogorov refined similarity hypothesis in hydrodynamic turbulence. Extrapolated to large heliospheric system sizes, this leads to the expectation of significant departures from heating processes that operate uniformly in space. Results from latest 3D driven PIC simulations, as well as the connection to solar wind observations, will also be discussed.

  19. Subwavelength light confinement and enhancement enabled by dissipative dielectric nanostructures.

    Science.gov (United States)

    Dong, Kaichen; Deng, Yang; Wang, Xi; Tom, Kyle B; You, Zheng; Yao, Jie

    2018-04-15

    Dissipative loss in optical materials is considered one of the major challenges in nano-optics. Here we show that, counter-intuitively, a large imaginary part of material permittivity contributes positively to subwavelength light enhancement and confinement. The Purcell factor and the fluorescence enhancement of dissipative dielectric bowtie nanoantennas, such as Si in ultraviolet (UV), are demonstrated to be orders of magnitude higher than their lossless dielectric counterparts, which is particularly favorable in deep UV applications where metals are plasmonically inactive. The loss-facilitated field enhancement is the result of a large material property contrast and an electric field discontinuity. These dissipative dielectric nanostructures can be easily achieved with a great variety of dielectrics at their Lorentz oscillation frequencies, thus having the potential to build a completely new material platform boosting light-matter interaction over broader frequency ranges, with advantages such as bio-compatibility, CMOS compatibility, and harsh environment endurance.

  20. Memory effects in dissipative nucleus-nucleus collision

    CERN Document Server

    Yadav, H L

    2002-01-01

    A macroscopic dynamical model within the framework of a multidimensional Fokker-Planck equation is employed for a theoretical description of low-energy dissipative collisions between two heavy nuclei. The effect of two-body collisions leading to intrinsic equilibrium has been treated phenomenologically using the basic concepts of dissipative diabatic dynamics. The heavy-ion reaction sup 8 sup 6 Kr(8.18 MeV/u) + sup 1 sup 6 sup 6 Er has been as a prototype to study and demonstrate the memory effects for dissipation and diffusion processes. Our calculated results for the deflection angle, angular distributions d sigma/d theta sub c sub m , energy distributions d sigma/d DELTA EPSILON, and element distributions d sigma/d ZETA illustrate a remarkable dependence on the memory effects and are consistent with the experimental data

  1. Confronting GRB prompt emission with a model for subphotospheric dissipation

    Science.gov (United States)

    Ahlgren, Björn; Larsson, Josefin; Nymark, Tanja; Ryde, Felix; Pe'er, Asaf

    2015-11-01

    The origin of the prompt emission in gamma-ray bursts (GRBs) is still an unsolved problem and several different mechanisms have been suggested. Here, we fit Fermi GRB data with a photospheric emission model which includes dissipation of the jet kinetic energy below the photosphere. The resulting spectra are dominated by Comptonization and contain no significant contribution from synchrotron radiation. In order to fit to the data, we span a physically motivated part of the model's parameter space and create DREAM (Dissipation with Radiative Emission as A table Model), a table model for XSPEC. We show that this model can describe different kinds of GRB spectra, including GRB 090618, representing a typical Band function spectrum, and GRB 100724B, illustrating a double peaked spectrum, previously fitted with a Band+blackbody model, suggesting they originate from a similar scenario. We suggest that the main difference between these two types of bursts is the optical depth at the dissipation site.

  2. Dissipative optomechanics in a Michelson-Sagnac interferometer.

    Science.gov (United States)

    Xuereb, André; Schnabel, Roman; Hammerer, Klemens

    2011-11-18

    Dissipative optomechanics studies the coupling of the motion of an optical element to the decay rate of a cavity. We propose and theoretically explore a realization of this system in the optical domain, using a combined Michelson-Sagnac interferometer, which enables a strong and tunable dissipative coupling. Quantum interference in such a setup results in the suppression of the lower motional sideband, leading to strongly enhanced cooling in the non-sideband-resolved regime. With state-of-the-art parameters, ground-state cooling and low-power quantum-limited position transduction are both possible. The possibility of a strong, tunable dissipative coupling opens up a new route towards observation of such fundamental optomechanical effects as nonlinear dynamics. Beyond optomechanics, the suggested method can be readily transferred to other setups involving nonlinear media, atomic ensembles, or single atoms.

  3. Variability of pesticide dissipation half-lives in plants.

    Science.gov (United States)

    Fantke, Peter; Juraske, Ronnie

    2013-04-16

    Information on dissipation kinetics of pesticides in food crops and other plants is a key aspect in current risk and impact assessment practice. This is because human exposure to pesticides is predominantly caused by residues in agricultural crops grown for human and animal consumption. However, modeling dissipation of pesticides in plants is highly uncertain and therefore strongly relies on experimental data. Unfortunately, available information on pesticide dissipation in plants from experimental studies only covers a small fraction of possible combinations of substances authorized for use on food and fodder crops. Additionally, aspects and processes influencing dissipation kinetics are still not fully understood. Therefore, we systematically reviewed 811 scientific literature sources providing 4513 dissipation half-lives of 346 pesticides measured in 183 plant species. We focused on the variability across substances, plant species and harvested plant components and finally discuss different substance, plant and environmental aspects influencing pesticide dissipation. Measured half-lives in harvested plant materials range from around 1 hour for pyrethrins in leaves of tomato and pepper fruit to 918 days for pyriproxyfen in pepper fruits under cold storage conditions. Ninety-five percent of all half-lives fall within the range between 0.6 and 29 days. Our results emphasize that future experiments are required to analyze pesticide-plant species combinations that have so far not been covered and that are relevant for human exposure. In addition, prediction models would help to assess all possible pesticide-plant species combinations in the context of comparative studies. The combination of both would finally reduce uncertainty and improve assumptions in current risk and impact assessment practice.

  4. Effect of growing Sesamum indicum L. on enhanced dissipation of lindane (1, 2, 3, 4, 5, 6-hexachlorocyclohexane) from soil.

    Science.gov (United States)

    Abhilash, P C; Singh, Nandita

    2010-07-01

    The effect of growing Sesamum indicum L. on the dissipation of lindane (gamma-HCH) was studied in spiked soil. For this, S. indicum was grown with four different concentrations of lindane (5, 10, 15, and 20 microg g(-1)). Plant growth, yield, photosynthetic pigments, soluble protein, microbial biomass carbon, lindane uptake, residual lindane concentration in soil and percentage dissipation of lindane from soil were analyzed at 25, 90, and 124 d. The accumulation of lindane in test plants was linearly related to the soil concentration (r2 = 0.897-0.979). At maturity, the accumulation of lindane in S. indicum grown with four spiked concentrations reached up to 7.98, 13.72, 23.71, and 33.29 microg g(-1) dry matter, respectively. There was a marked difference in the dissipation of lindane in vegetated and non-vegetated soils (p indicum could accumulate 2237-2611 mg lindane per acre after 124 d cultivation. S. indicum could thus be used for the phytoremediation of lindane contaminated soil.

  5. Glyphosate Dissipation in Different Soils Under No-Till and Conventional Till

    Science.gov (United States)

    Okada, Elena; Costa, Jose Luis; Francisco, Bedmar

    2017-04-01

    Glyphosate is the most used herbicide in Argentina, accounting for 62% of the commercialized pesticides in the market. It is used as a weed controller in chemical fallow under no-till systems, and it is also applied in various genetically modified crops (e.g. soybean, corn, cotton). Though it has a high solubility in water, it tends to adsorb and accumulate in agricultural soils. The description of glyphosate biodegradation in soils with a long term history under agricultural practices is of interest. The main objectives of this work were to compare the dissipation of glyphosate and the accumulation of its metabolite aminomethylphosphonic acid (AMPA) over time in three soils from Argentina. The studied soils belong to areas of high agronomic land use and different edaphoclimatic conditions, situated in Manfredi (MAN), Pergamino (PER) and Paraná (PAR). Soil samples were taken from long-term field trials with a history of more than 16 years under no-till and conventional tillage management. To study glyphosate dissipation in soil under controlled laboratory conditions, 400 g of dry soil sample were placed in 1.5 L flasks. A dose corresponding to 6 L ha-1 of commercial glyphosate ATANOR II® (35.6 % a.i.) was applied on day 0. The dose applied was equivalent to a final concentration in soil of 4000 μg Kg-1 of active ingredient. The moisture of the soil samples was kept at 60 % of the field capacity. Samples were incubated in the dark at a constant temperature of 22°C ± 1°C. A sub-sample of 5 g was taken from each flask at day 0 (after application), 1, 3, 7, 15, 20, 28, 44 and 62. Glyphosate and AMPA in soil samples was extracted with a strong basic solution (100 mM Na2B4O7•10H2O/ 100 mM K3PO4, pH=9) and then derivitazed with FMOC-Cl. Detection and quantification of the compounds was performed by ultra-performance liquid chromatography coupled with a mass spectrometer (UPLC MS/MS). The results showed that forty percent of the applied glyphosate was degraded

  6. Subsurface Salts in Antarctic Dry Valley Soils

    Science.gov (United States)

    Englert, P.; Bishop, J. L.; Gibson, E. K.; Koeberl, C.

    2013-01-01

    The distribution of water-soluble ions, major and minor elements, and other parameters were examined to determine the extent and effects of chemical weathering on cold desert soils. Patterns at the study sites support theories of multiple salt forming processes, including marine aerosols and chemical weathering of mafic minerals. Periodic solar-mediated ionization of atmospheric nitrogen might also produce high nitrate concentrations found in older sediments. Chemical weathering, however, was the major contributor of salts in Antarctic Dry Valleys. The Antarctic Dry Valleys represent a unique analog for Mars, as they are extremely cold and dry desert environments. Similarities in the climate, surface geology, and chemical properties of the Dry Valleys to that of Mars imply the possible presence of these soil formation mechanisms on Mars, other planets and icy satellites.

  7. Penetration of an electron beam into material and energy dissipation

    International Nuclear Information System (INIS)

    Kral, V.; Pelzbauer, Z.

    1986-01-01

    The contribution is concerned with penetration of an electron beam having energy between 5 and 25 keV into the polymer and with energy dissipation inside the interaction volume of the polymer. The experimentally observed shape on the interaction volume has been theoretically substantiated, the range has been calculated, and a comparison with Gruen's empirical relation has been carried out. It is shown that with increasing accelerating voltage the centre of the core of the interaction volume is shifted more deeply under the sample surface and the dissipated energy decreases. Extension of the neck of the interaction volume caused by back scattering is discussed. (author)

  8. Energy Dissipation Rate in an Agitated Crucible Containing Molten Metal

    Science.gov (United States)

    Li, Tao; Shimasaki, Shin-ichi; Narita, Shunsuke; Taniguchi, Shoji

    2017-10-01

    The energy dissipation rate (EDR) is an important parameter for characterizing the behavior of inclusion coagulation in agitated molten metal. To clarify the inclusion coagulation mechanism, we review previous water model studies by particularly focusing on the relation between the impeller torque and the EDR of the fluid, which indicates the ratio of energy dissipated in the viscous medium to the energy inputted by the rotating impeller. In the present study, simulations coupled with experiments were performed to determine the relation between the torque and the effective EDR for water and liquid Al in crucibles with and without baffles.

  9. ΛCDM model with dissipative nonextensive viscous dark matter

    Science.gov (United States)

    Gimenes, H. S.; Viswanathan, G. M.; Silva, R.

    2018-03-01

    Many models in cosmology typically assume the standard bulk viscosity. We study an alternative interpretation for the origin of the bulk viscosity. Using nonadditive statistics proposed by Tsallis, we propose a bulk viscosity component that can only exist by a nonextensive effect through the nonextensive/dissipative correspondence (NexDC). In this paper, we consider a ΛCDM model for a flat universe with a dissipative nonextensive viscous dark matter component, following the Eckart theory of bulk viscosity, without any perturbative approach. In order to analyze cosmological constraints, we use one of the most recent observations of Type Ia Supernova, baryon acoustic oscillations and cosmic microwave background data.

  10. Topology optimization problems for reflection and dissipation of elastic waves

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    2007-01-01

    This paper is devoted to topology optimization problems for elastic wave propagation. The objective of the study is to maximize the reflection or the dissipation in a finite slab of material for pressure and shear waves in a range of frequencies. The optimized designs consist of two or three...... material phases: a host material and scattering and/or absorbing inclusions. The capabilities of the optimization algorithm are demonstrated with two numerical examples in which the reflection and dissipation of ground-borne wave pulses are maximized....

  11. An exact solution for quantum tunneling in a dissipative system

    International Nuclear Information System (INIS)

    Yu, L.H.

    1996-01-01

    Applying a technique developed recently for a harmonic oscillator coupled to a bath of harmonic oscillators, we present an exact solution for the tunneling problem in an Ohmic dissipative system with inverted harmonic potential. The result shows that while the dissipation tends to suppress the tunneling, the Brownian motion tends to enhance the tunneling. Whether the tunneling rate increases or not would then depend on the initial conditions. We give a specific formula to calculate the tunneling probability determined by various parameters and the initial conditions

  12. Breakdown of invariant attractors for the dissipative standard map.

    Science.gov (United States)

    Calleja, Renato; Celletti, Alessandra

    2010-03-01

    We implement different methods for the computation of the breakdown threshold of invariant attractors in the dissipative standard mapping. A first approach is based on the computation of the Sobolev norms of the function parametrizing the solution. Then we look for the approximating periodic orbits and we analyze their stability in order to compute the critical threshold at which an invariant attractor breaks down. We also determine the domain of convergence of the dissipative standard mapping by extending the computations to the complex parameter space as well as by investigating a two-frequency model.

  13. Fluctuation-dissipation relation for nonlinear Langevin equations.

    Science.gov (United States)

    Kumaran, V

    2011-04-01

    It is shown that the fluctuation-dissipation theorem is satisfied by the solutions of a general set of nonlinear Langevin equations with a quadratic free-energy functional (constant susceptibility) and field-dependent kinetic coefficients, provided the kinetic coefficients satisfy the Onsager reciprocal relations for the irreversible terms and the antisymmetry relations for the reversible terms. The analysis employs a perturbation expansion of the nonlinear terms, and a functional integral calculation of the correlation and response functions, and it is shown that the fluctuation-dissipation relation is satisfied at each order in the expansion. ©2011 American Physical Society

  14. Radiation and viscous dissipation effect on square porous annulus

    Energy Technology Data Exchange (ETDEWEB)

    Badruddin, Irfan Anjum [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Quadir, G. A. [School of Mechatronic Engineering, University Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis (Malaysia)

    2016-06-08

    The present study is carried out to investigate the effect of radiation and viscous dissipation in a square porous annulus subjected to outside hot T{sub h} and inside cold T{sub c} temperature. The square annulus has a hollow section of dimension D×D at the interior of annulus. The flow is assumed to obey Darcy law. The governing equations are non-dimensionalised and solved with the help of finite element method. Results are discussed with respect to viscous dissipation parameter, radiation parameter and size of the hollow section of annulus.

  15. Evolution of heat in dry rotary swaging

    Science.gov (United States)

    Herrmann, Marius; Liu, Yang; Schenck, Christian; Kuhfuss, Bernd; Ohlsen, Inken

    2017-10-01

    In dry metal forming processes, the heat dissipation is a critical issue. The cooling by the lubricant is missing. The different heat evolution affects the machine and the process and thus the final product. For the machine the thermal expansion is affected and needs to be considered. Also the tools can bear only a maximum heat load before they get damaged. Furthermore, the heat can influence the material properties like the flow stress if it exceeds a critical value. Furthermore, the process forces and the material flow are directly affected. In addition, heat modifies in combination with plastic strain the generated microstructure of the workpiece. If the heat is high enough even positive effects of cold forming like work hardening are drastically decreased. In summary, the heat evolution during lubricated and dry forming processes need to be investigated. The evolution of heat in rotary swaging was investigated with conventional tools and machine settings. This was realized by varying the feeding velocity for the lubricated forming of aluminum tubes (3.3206) and steel tubes (1.0308). Moreover, the steel tubes are also formed with conventional tools by dry rotary swaging. A temperature measurement was integrated inside the tubes during the rotary process. Thus, the heat evolution inside the tube during the process at two different positions was examined. Also the variation between inside the tubes and the surface of the tubes was investigated by measuring the temperature at the surface directly after the forming process. Comparisons between different measured heat evolutions represent the impact of lubrication, feed rate and material. Thus, the practicability and the challenge for dry forming processes are presented.

  16. A Comparative Study of the Drying Rate Constant, Drying Efficiency ...

    African Journals Online (AJOL)

    The adoption of the drying techniques would ensure steady availability of these vegetables all the year round as well as reduce carbon emissions from the conventional drying methods and hence mitigate global warming. KEYWORDS: Solar drying, open- air sun drying, drying rate constant, falling rate, climate change, food ...

  17. A mesoscopic simulation of static and dynamic wetting using many-body dissipative particle dynamics

    Science.gov (United States)

    Ghorbani, Najmeh; Pishevar, Ahmadreza

    2018-01-01

    A many-body dissipative particle dynamics simulation is applied here to pave the way for investigating the behavior of mesoscale droplets after impact on horizontal solid substrates. First, hydrophobic and hydrophilic substrates are simulated through tuning the solid-liquid interfacial interaction parameters of an innovative conservative force model. The static contact angles are calculated on homogeneous and several patterned surfaces and compared with the predicted values by the Cassie's law in order to verify the model. The results properly evaluate the amount of increase in surface superhydrophobicity as a result of surface patterning. Then drop impact phenomenon is studied by calculating the spreading factor and dimensionless height versus dimensionless time and the comparisons made between the results and the experimental values for three different static contact angles. The results show the capability of the procedure in calculating the amount of maximum spreading factor, which is a significant concept in ink-jet printing and coating process.

  18. The Effect of a Dissipative Ladle Shroud on Mixing in Tundish: Mathematical and Experimental Modelling

    Science.gov (United States)

    Zhang, Jiangshan; Yang, Shufeng; Li, Jingshe; Tang, Haiyan; Jiang, Zhengyi

    2018-01-01

    The effect of a dissipative ladle shroud (DLS) on mixing in tundish was investigated, compared with that of a conventional ladle shroud (CLS) using mathematical and physical modelling. The tracer profiles of mathematical results, achieved using large eddy simulation, were validated by physical observations employing high-speed cinephotography. The design of a DLS dramatically changed the flow patterns and contributed the intermixing of fluid elements inside the ladle shroud. The vortex flow encouraged the turbulent mixing and was verified by tracking of physical tracer dispersion inside the DLS. Residence Time Distribution (RTD) curves were obtained in two different sized tundishes to examine the mixing behaviours. The findings indicated that the DLS benefited the tundish mixing in terms of increasing active volume. The effect seemed to be more remarkable in the smaller tundish. The DLS gave rise to a more plug-like flow pattern inside the tundish, showing potential to shorten the transition length during grade change.

  19. Energy Dissipation in Sandwich Structures During Axial Compression

    DEFF Research Database (Denmark)

    Urban, Jesper

    2002-01-01

    -scale structural elements in fast sandwich vessels. Two of the crushing tests are simulated with the explicit finite element software LS-DYNA3D. The key results are load-end shortening relationship and the energy dissipation. Good agreement between the numerical predictions and the experiments are obtained...

  20. Logarithmic scaling in the near-dissipation range of turbulence

    Indian Academy of Sciences (India)

    physics pp. 315–321. Logarithmic scaling in the near-dissipation range of turbulence. K R SREENIVASAN1 and A BERSHADSKII1,2. 1The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11,. 34100 Trieste, Italy. 2ICAR, P.O. Box 31155, Jerusalem 91000, Israel. E-mail: krs@ictp.it. Abstract.

  1. A non-linear dissipative model of magnetism

    Czech Academy of Sciences Publication Activity Database

    Durand, P.; Paidarová, Ivana

    2010-01-01

    Roč. 89, č. 6 (2010), s. 67004 ISSN 1286-4854 R&D Projects: GA AV ČR IAA100400501 Institutional research plan: CEZ:AV0Z40400503 Keywords : non-linear dissipative model of magnetism * thermodynamics * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry http://epljournal.edpsciences.org/

  2. ENERGY DISSIPATION IN MAGNETIC NULL POINTS AT KINETIC SCALES

    International Nuclear Information System (INIS)

    Olshevsky, Vyacheslav; Lapenta, Giovanni; Divin, Andrey; Eriksson, Elin; Markidis, Stefano

    2015-01-01

    We use kinetic particle-in-cell and MHD simulations supported by an observational data set to investigate magnetic reconnection in clusters of null points in space plasma. The magnetic configuration under investigation is driven by fast adiabatic flux rope compression that dissipates almost half of the initial magnetic field energy. In this phase powerful currents are excited producing secondary instabilities, and the system is brought into a state of “intermittent turbulence” within a few ion gyro-periods. Reconnection events are distributed all over the simulation domain and energy dissipation is rather volume-filling. Numerous spiral null points interconnected via their spines form null lines embedded into magnetic flux ropes; null point pairs demonstrate the signatures of torsional spine reconnection. However, energy dissipation mainly happens in the shear layers formed by adjacent flux ropes with oppositely directed currents. In these regions radial null pairs are spontaneously emerging and vanishing, associated with electron streams and small-scale current sheets. The number of spiral nulls in the simulation outweighs the number of radial nulls by a factor of 5–10, in accordance with Cluster observations in the Earth's magnetosheath. Twisted magnetic fields with embedded spiral null points might indicate the regions of major energy dissipation for future space missions such as the Magnetospheric Multiscale Mission

  3. Oblique Propagation and Dissipation of Alfven Waves in Coronal ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We investigate the effect of viscosity and magnetic diffusivity on the oblique propagation and dissipation of Alfvén waves with respect to the normal outward direction, making use of MHD equations, density, temperature and magnetic field structure in coronal holes and underlying magnetic funnels. We find ...

  4. Estimation of ionospheric energy dissipation for the year 2012 using ...

    African Journals Online (AJOL)

    In this paper, data for the electron precipitation energy(ep) and joule heating energy(jh) have been used in the computation of both mean daily and hourly ionospheric ... with 90% confidence level, which indicates that ionospheric energy dissipation is the dominant channel of energy transfer in that year from the solar wind.

  5. Logarithmic scaling in the near-dissipation range of turbulence

    Indian Academy of Sciences (India)

    From experimental data at moderate Reynolds numbers, it is shown that the logarithmic scaling, deduced from general considerations for the near-dissipation range, covers almost the entire range of scales (about two decades) of structure functions, for both velocity and passive scalar fields. This new scaling requires two ...

  6. Conservative and Dissipative Interactions of Ionic Liquids in Nanoconfinement

    NARCIS (Netherlands)

    Seddon, James Richard Thorley

    2014-01-01

    By applying a small-amplitude (∼200 pm) oscillation to an atomic force microscopy probe during force–distance spectroscopy we are able to separate the “resistance to squeeze” of an ionic liquid nanoconfined between the probe and a mica sheet into its conservative and dissipative components. The

  7. Reduction in energy dissipation rate with increased effective applied field

    Czech Academy of Sciences Publication Activity Database

    Janů, Zdeněk; Soukup, František

    2015-01-01

    Roč. 28, č. 8 (2015), "085016-1"-"085016-5" ISSN 0953-2048 Institutional support: RVO:68378271 Keywords : critical state * hysteresis * energy dissipation rate * field waveform Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.717, year: 2015

  8. High-Density Quantum Sensing with Dissipative First Order Transitions

    Science.gov (United States)

    Raghunandan, Meghana; Wrachtrup, Jörg; Weimer, Hendrik

    2018-04-01

    The sensing of external fields using quantum systems is a prime example of an emergent quantum technology. Generically, the sensitivity of a quantum sensor consisting of N independent particles is proportional to √{N }. However, interactions invariably occurring at high densities lead to a breakdown of the assumption of independence between the particles, posing a severe challenge for quantum sensors operating at the nanoscale. Here, we show that interactions in quantum sensors can be transformed from a nuisance into an advantage when strong interactions trigger a dissipative phase transition in an open quantum system. We demonstrate this behavior by analyzing dissipative quantum sensors based upon nitrogen-vacancy defect centers in diamond. Using both a variational method and a numerical simulation of the master equation describing the open quantum many-body system, we establish the existence of a dissipative first order transition that can be used for quantum sensing. We investigate the properties of this phase transition for two- and three-dimensional setups, demonstrating that the transition can be observed using current experimental technology. Finally, we show that quantum sensors based on dissipative phase transitions are particularly robust against imperfections such as disorder or decoherence, with the sensitivity of the sensor not being limited by the T2 coherence time of the device. Our results can readily be applied to other applications in quantum sensing and quantum metrology where interactions are currently a limiting factor.

  9. Dissipation of the fungicide hexaconazole in oil palm plantation.

    Science.gov (United States)

    Maznah, Zainol; Halimah, Muhamad; Ismail, Sahid; Idris, Abu Seman

    2015-12-01

    Hexaconazole is a potential fungicide to be used in the oil palm plantation for controlling the basal stem root (BSR) disease caused by Ganoderma boninense. Therefore, the dissipation rate of hexaconazole in an oil palm agroecosystem under field conditions was studied. Two experimental plots were treated with hexaconazole at the recommended dosage of 4.5 g a.i. palm(-1) (active ingredient) and at double the recommended dosage (9.0 g a.i. palm(-1)), whilst one plot was untreated as control. The residue of hexaconazole was detected in soil samples in the range of 2.74 to 0.78 and 7.13 to 1.66 mg kg(-1) at the recommended and double recommended dosage plots, respectively. An initial relatively rapid dissipation rate of hexaconazole residues occurred but reduced with time. The dissipation of hexaconazole in soil was described using first-order kinetics with the value of coefficient regression (r (2) > 0.8). The results indicated that hexaconazole has moderate persistence in the soil and the half-life was found to be 69.3 and 86.6 days in the recommended and double recommended dosage plot, respectively. The results obtained highlight that downward movement of hexaconazole was led by preferential flow as shown in image analysis. It can be concluded that varying soil conditions, environmental factors, and pesticide chemical properties of hexaconazole has a significant impact on dissipation of hexaconazole in soil under humid conditions.

  10. A comparative study on heat dissipation, morphological and ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 7. A comparative study on heat dissipation, morphological and magnetic properties of hyperthermia suitable nanoparticles prepared by co-precipitation and hydrothermal methods. Md Shariful Islam Yoshihumi Kusumoto Junichi Kurawaki Md ...

  11. A model for turbulent dissipation rate in a constant pressure ...

    Indian Academy of Sciences (India)

    J Dey

    flow quantities. Comparable agreement between the estimated Taylor microscale and Kolmogorov length scale with other data ... experimentally. Keywords. Boundary layers; dissipation rate; Kolmogorov length scale; Taylor microscale. 1. ... practice due to complexity involved in estimating these quantities. Segalini et al [2] ...

  12. thermoelastic waves without energy dissipation in an elastic plate ...

    African Journals Online (AJOL)

    cistvr

    tensor has only two components rr σ and. ϑϑ σ which are the normal stresses in the radial and transverse directions respectively. According to the theory of thermoelasticity without energy dissipation, the field equations for a homogeneous and isotropic thermoelastic body, in the absence of heat sources and body forces, ...

  13. Surfaces for high heat dissipation with no Leidenfrost limit

    Science.gov (United States)

    Sajadi, Seyed Mohammad; Irajizad, Peyman; Kashyap, Varun; Farokhnia, Nazanin; Ghasemi, Hadi

    2017-07-01

    Heat dissipation from hot surfaces through cooling droplets is limited by the Leidenfrost point (LFP), in which an insulating vapor film prevents direct contact between the cooling droplet and the hot surface. A range of approaches have been developed to raise this limit to higher temperatures, but the limit still exists. Recently, a surface architecture, decoupled hierarchical structure, was developed that allows the suppression of LFP completely. However, heat dissipation by the structure in the low superheat region was inferior to other surfaces and the structure required an extensive micro/nano fabrication procedure. Here, we present a metallic surface structure with no LFP and high heat dissipation capacity in all temperature ranges. The surface features the nucleate boiling phenomenon independent of the temperature with an approximate heat transfer coefficient of 20 kW m-2 K-1. This surface is developed in a one-step process with no micro/nano fabrication. We envision that this metallic surface provides a unique platform for high heat dissipation in power generation, photonics/electronics, and aviation systems.

  14. Nondestructive evaluation of dissipative behavior of reinforced concrete structure

    International Nuclear Information System (INIS)

    Luong, M.P.

    2001-01-01

    Current technological developments tend toward increased exploitation of materials strengths and toward tackling extreme loads and environmental actions such as offshore structures subject to wind and wave loading, or buildings in seismic area. Concrete is widely used as a construction material because of its high strength-cost ratio in many applications. Experience of earthquakes and laboratory tests has shown that well designed and detailed reinforced concrete is suitable for earthquake resistant structures. The most severe likely earthquake can be survived if the members are sufficiently ductile to absorb and dissipate seismic energy by inelastic deformation. This requires a designer to assess realistically the acceptable levels of strength and to ensure adequate dissipation. This paper proposes the use of infrared thermography as a nondestructive, noncontact and real-time technique to examine diverse mechanisms of dissipation and to illustrate the onset of damage process, stress concentration and heat dissipation localization in loaded zone. In addition, this technique can be used as a nondestructive method for evaluating the fatigue limit of concrete structure subject to repeated loading

  15. Temperature Dependence of Mechanical Stiffness and Dissipation in Ultrananocrystalline Diamond

    Science.gov (United States)

    2009-01-01

    dissipation in ultrananocrystalline diamond resonators," Accepted for publication in Physical Review B, 2009. [12] N. Sepulveda , L. Jing, D. M. Aslam, and J...nanocrystalline diamond at low grain sizes," Acta Materialia, vol. 56, pp. 5340-5344, 2008. [22] N. Sepulveda , D. M. Aslam, and J. P. Sullivan

  16. On the gravitational instability of a dissipative medium

    International Nuclear Information System (INIS)

    Colin, L S Garcia; Sandoval-Villalbazo, Alfredo

    2002-01-01

    This paper shows that the ordinary Jeans wave number can be obtained as a limiting case of a more general approach that includes dissipative effects. Corrections to the Jeans critical mass associated with viscosity are established. Some possible implications of the results are finally discussed

  17. Standing shocks in magnetized dissipative accretion flow around ...

    Indian Academy of Sciences (India)

    BIPLOB SARKAR

    2018-02-09

    Feb 9, 2018 ... The consequences of large scale ordered magnetic fields in accretion disc theories are frequently inves- ... by the effect of differential rotation on the originally poloidal field lines linking layers rotating at ..... ter possesses high entropy content (Becker & Kazanas. 2001). For a dissipative accretion flow, the ...

  18. A field theory description of constrained energy-dissipation processes

    International Nuclear Information System (INIS)

    Mandzhavidze, I.D.; Sisakyan, A.N.

    2002-01-01

    A field theory description of dissipation processes constrained by a high-symmetry group is given. The formalism is presented in the example of the multiple-hadron production processes, where the transition to the thermodynamic equilibrium results from the kinetic energy of colliding particles dissipating into hadron masses. The dynamics of these processes is restricted because the constraints responsible for the colour charge confinement must be taken into account. We develop a more general S-matrix formulation of the thermodynamics of nonequilibrium dissipative processes and find a necessary and sufficient condition for the validity of this description; this condition is similar to the correlation relaxation condition, which, according to Bogolyubov, must apply as the system approaches equilibrium. This situation must physically occur in processes with an extremely high multiplicity, at least if the hadron mass is nonzero. We also describe a new strong-coupling perturbation scheme, which is useful for taking symmetry restrictions on the dynamics of dissipation processes into account. We review the literature devoted to this problem

  19. Dissipative N-point-vortex Models in the Plane

    Science.gov (United States)

    Shashikanth, Banavara N.

    2010-02-01

    A method is presented for constructing point vortex models in the plane that dissipate the Hamiltonian function at any prescribed rate and yet conserve the level sets of the invariants of the Hamiltonian model arising from the SE (2) symmetries. The method is purely geometric in that it uses the level sets of the Hamiltonian and the invariants to construct the dissipative field and is based on elementary classical geometry in ℝ3. Extension to higher-dimensional spaces, such as the point vortex phase space, is done using exterior algebra. The method is in fact general enough to apply to any smooth finite-dimensional system with conserved quantities, and, for certain special cases, the dissipative vector field constructed can be associated with an appropriately defined double Nambu-Poisson bracket. The most interesting feature of this method is that it allows for an infinite sequence of such dissipative vector fields to be constructed by repeated application of a symmetric linear operator (matrix) at each point of the intersection of the level sets.

  20. Boundary crisis and transient in a dissipative relativistic standard map

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Diego F.M., E-mail: diegofregolente@gmail.com [CAMTP, Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000, Maribor (Slovenia); Leonel, Edson D., E-mail: edleonel@rc.unesp.br [Departamento de Estatistica, Matematica Aplicada e Computacao, UNESP, Univ. Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Robnik, Marko, E-mail: robnik@uni-mb.si [CAMTP, Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000, Maribor (Slovenia)

    2011-09-05

    Some dynamical properties for a problem concerning the acceleration of particles in a wave packet are studied. The model is described in terms of a two-dimensional nonlinear map obtained from a Hamiltonian which describes the motion of a relativistic standard map. The phase space is mixed in the sense that there are regular and chaotic regions coexisting. When dissipation is introduced, the property of area preservation is broken and attractors emerge. We have shown that a tiny increase of the dissipation causes a change in the phase space. A chaotic attractor as well as its basin of attraction are destroyed thereby leading the system to experience a boundary crisis. We have characterized such a boundary crisis via a collision of the chaotic attractor with the stable manifold of a saddle fixed point. Once the chaotic attractor is destroyed, a chaotic transient described by a power law with exponent -1 is observed. -- Highlights: → A problem concerning the acceleration of particles. Dissipation is introduced. → The property of area preservation is broken and attractors emerge. → After a tiny increase of the dissipation the system experience a boundary crisis. → The chaotic transient is described by a power law with exponent -1.

  1. On the dissipative Lax-Phillips scattering theory

    International Nuclear Information System (INIS)

    Neidhardt, H.

    1987-01-01

    The paper is devoted to the characterization of all possible scattering matrices occurring in a dissipative Lax-Phillips scattering theory. The characterization is obtained in terms of an analytically unitary synthesis of a strongly measurable contraction-valued function which generalizes the notion of Darlingtom synthesis

  2. A model for turbulent dissipation rate in a constant pressure ...

    Indian Academy of Sciences (India)

    J Dey

    for measuring the Taylor microscale from two hot-wire measurements. Once the Taylor microscale is available, the turbulent dissipation rate can be estimated, at least for isotropic turbulence. .... Reynolds number based on the boundary layer thickness. While the ... the laminar skin-friction term in pipe and channel flows.

  3. A generic travelling wave solution in dissipative laser cavity

    Indian Academy of Sciences (India)

    2016-09-09

    Sep 9, 2016 ... Abstract. A large family of cosh-Gaussian travelling wave solution of a complex Ginzburg–Landau equation. (CGLE), that describes dissipative semiconductor laser cavity is derived. Using perturbation method, the stabil- ity region is identified. Bifurcation analysis is done by smoothly varying the cavity loss ...

  4. A generic travelling wave solution in dissipative laser cavity

    Indian Academy of Sciences (India)

    2016-09-09

    Sep 9, 2016 ... (CGLE), that describes dissipative semiconductor laser cavity is derived. Using perturbation method, the ... insight of the system dynamics. He's variational method is adopted to obtain the standard sech-type and the not- ... larger variety of systems such as physical [2–4], chem- ical [5], mathematical [6], and ...

  5. Effects of dissipation and temperature on macroscopic quantum tunneling

    International Nuclear Information System (INIS)

    Washburn, S.; Webb, R.A.; Voss, R.F.; Faris, S.M.

    1985-01-01

    Measurements of the tunneling rate GAMMA out of the zero-voltage state for several Nb edge junctions with differing shunt capacitances are described. At zero temperature, increasing the shunt capacitance lowers GAMMA in agreement with dissipative calculations of the macroscopic-quantum-tunneling rate. As temperature increases, ln[GAMMA(T)/GAMMA(0)]proportionalT 2 as recently predicted

  6. New particle formation by ion-induced nucleation during dissipation ...

    Indian Academy of Sciences (India)

    jess/120/05/0843-0850. Keywords. New particle formation; ion-induced nucleation; lightning intensity and rain. Abstract. A case of new particle formation observed during dissipation stage of a thunderstorm at a tropical station, Pune, India on 3 ...

  7. Scattering for wave equations with dissipative terms in layered media

    Directory of Open Access Journals (Sweden)

    Mitsuteru Kadowaki

    2011-05-01

    Full Text Available In this article, we show the existence of scattering solutions to wave equations with dissipative terms in layered media. To analyze the wave propagation in layered media, it is necessary to handle singular points called thresholds in the spectrum. Our main tools are Kato's smooth perturbation theory and some approximate operators.

  8. Dissipation Mechanisms and Particle Acceleration at the Earth's Bow Shock

    Science.gov (United States)

    Desai, M. I.; Burch, J. L.; Broll, J. M.; Genestreti, K.; Torbert, R. B.; Ergun, R.; Wei, H.; Giles, B. L.; Russell, C. T.; Phan, T.; Chen, L. J.; Lai, H.; Wang, S.; Schwartz, S. J.; Allen, R. C.; Mauk, B.; Gingell, I.

    2017-12-01

    NASA's Magnetospheric Multiscale (MMS) mission has four spacecraft equipped with identical state-of-the-art instruments that acquire magnetic and electric field, plasma wave, and particle data at unprecedented temporal resolution to study the fundamental physics of magnetic reconnection in the Earth's magnetosphere. During Phase 1a, MMS also encountered and crossed the Earth's bow shock more than 300 times. We use burst data during 2 bow shock crossings to shed new light on key open questions regarding the formation, evolution, and dissipation mechanisms at collisionless shocks. Specifically, we focus on two events that exhibit clear differences in the ion and electron properties, the associated wave activity, and, therefore in the nature of the dissipation. In the case of a quasi-perpendicular, low beta shock crossing, we find that the dissipation processes are most likely associated with field-aligned electron beams that are coincident with high frequency electrostatic waves. On the other hand, the dissipation processes at an oblique, high beta shock crossing are largely governed by the quasi-static electric field and generation of magnetosonic whistler waves that result in perpendicular temperature anisotropy for the electrons. We also discuss the implications of these results for ion heating, reflection, and particle acceleration.

  9. Reversible dissipative processes, conformal motions and Landau damping

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, L., E-mail: laherrera@cantv.net.ve [Departamento de Física Teórica e Historia de la Ciencia, Universidad del País Vasco, Bilbao (Spain); Di Prisco, A., E-mail: adiprisc@fisica.ciens.ucv.ve [Departamento de Física Teórica e Historia de la Ciencia, Universidad del País Vasco, Bilbao (Spain); Ibáñez, J., E-mail: j.ibanez@ehu.es [Departamento de Física Teórica e Historia de la Ciencia, Universidad del País Vasco, Bilbao (Spain)

    2012-02-06

    The existence of a dissipative flux vector is known to be compatible with reversible processes, provided a timelike conformal Killing vector (CKV) χ{sup α}=(V{sup α})/T (where V{sup α} and T denote the four-velocity and temperature respectively) is admitted by the spacetime. Here we show that if a constitutive transport equation, either within the context of standard irreversible thermodynamics or the causal Israel–Stewart theory, is adopted, then such a compatibility also requires vanishing dissipative fluxes. Therefore, in this later case the vanishing of entropy production generated by the existence of such CKV is not actually associated to an imperfect fluid, but to a non-dissipative one. We discuss also about Landau damping. -- Highlights: ► We review the problem of compatibility of dissipation with reversibility. ► We show that the additional assumption of a transport equation renders such a compatibility trivial. ► We discuss about Landau damping.

  10. Deterministic entanglement of Rydberg ensembles by engineered dissipation

    DEFF Research Database (Denmark)

    Dasari, Durga; Mølmer, Klaus

    2014-01-01

    We propose a scheme that employs dissipation to deterministically generate entanglement in an ensemble of strongly interacting Rydberg atoms. With a combination of microwave driving between different Rydberg levels and a resonant laser coupling to a short lived atomic state, the ensemble can be d...

  11. Improved observations of turbulence dissipation rates from wind profiling radars

    Directory of Open Access Journals (Sweden)

    K. McCaffrey

    2017-07-01

    Full Text Available Observations of turbulence dissipation rates in the planetary boundary layer are crucial for validation of parameterizations in numerical weather prediction models. However, because dissipation rates are difficult to obtain, they are infrequently measured through the depth of the boundary layer. For this reason, demonstrating the ability of commonly used wind profiling radars (WPRs to estimate this quantity would be greatly beneficial. During the XPIA field campaign at the Boulder Atmospheric Observatory, two WPRs operated in an optimized configuration, using high spectral resolution for increased accuracy of Doppler spectral width, specifically chosen to estimate turbulence from a vertically pointing beam. Multiple post-processing techniques, including different numbers of spectral averages and peak processing algorithms for calculating spectral moments, were evaluated to determine the most accurate procedures for estimating turbulence dissipation rates using the information contained in the Doppler spectral width, using sonic anemometers mounted on a 300 m tower for validation. The optimal settings were determined, producing a low bias, which was later corrected. Resulting estimations of turbulence dissipation rates correlated well (R2 = 0. 54 and 0. 41 with the sonic anemometers, and profiles up to 2 km from the 449 MHz WPR and 1 km from the 915 MHz WPR were observed.

  12. Phase velocity and attenuation of plane waves in dissipative elastic ...

    African Journals Online (AJOL)

    Phase velocity and attenuation of plane waves in dissipative elastic media: Solving complex transcendental equation using functional iteration method. ... a solution at all. Then the absence of solution implies that the mathematical model used does not represent the propagation of defined wave in the medium considered.

  13. Semiclassical approximation for a nonlinear oscillator with dissipation

    OpenAIRE

    Iomin, A.

    2003-01-01

    An $S$--matrix approach is developed for the chaotic dynamics of a nonlinear oscillator with dissipation. The quantum--classical crossover is studied in the framework of the semiclassical expansion for the $S$--matrix. Analytical expressions for the braking time and the $S$--matrix are obtained.

  14. Thermoelastic waves without energy dissipation in an elastic plate to ...

    African Journals Online (AJOL)

    The linear theory of thermoelasticity without energy dissipation for isotropic and homogeneous materials is employed to study waves in an elastic plate. The waves are assumed to arise out of a ramp-type stress on the plate's boundary which is maintained at constant temperature. Laplace transforms are used to solve the ...

  15. Static and dynamic properties of dissipative particle dynamics

    NARCIS (Netherlands)

    Marsh, C.A.; Backx, G.; Ernst, M.H.

    The algorithm for the dissipative particle dynamics (DPD) fluid, the dynamics of which is conceptually a combination of molecular dynamics, Brownian dynamics, and lattice gas automata, is designed for simulating rheological properties of complex fluids on hydrodynamic time scales. This paper

  16. The Benjamin-Bona-Mahony equation with dissipative memory

    Czech Academy of Sciences Publication Activity Database

    Dell'Oro, Filippo; Mammeri, Y.; Pata, V.

    2015-01-01

    Roč. 22, č. 4 (2015), s. 899-910 ISSN 1021-9722 Institutional support: RVO:67985840 Keywords : Benjamin-Bona-Mahony equation * dissipative memory * exponential stability * nonlinear contraction semigroup Subject RIV: BA - General Mathematics Impact factor: 0.797, year: 2015 http://link.springer.com/article/10.1007%2Fs00030-014-0308-8

  17. Interaction between "dissipative solitons" stabilized by aggregation in excitable kinetics

    Science.gov (United States)

    Mangioni, Sergio E.

    2014-10-01

    We consider that a population of individuals governed by the Nagumo model is characterized by predisposition towards aggregation. "Dissipative solitons" interacting are solutions for such system. We changed the possibility of extinction, predicted by Nagumo model, by a uniform background of low population's density and then we observed relevant effect on interaction between "solitons".

  18. Constructal entransy dissipation minimization for 'volume-point' heat conduction

    International Nuclear Information System (INIS)

    Chen Lingen; Wei Shuhuan; Sun Fengrui

    2008-01-01

    The 'volume to point' heat conduction problem, which can be described as to how to determine the optimal distribution of high conductivity material through the given volume such that the heat generated at every point is transferred most effectively to its boundary, has became the focus of attention in the current constructal theory literature. In general, the minimization of the maximum temperature difference in the volume is taken as the optimization objective. A new physical quantity, entransy, has been identified as a basis for optimizing heat transfer processes in terms of the analogy between heat and electrical conduction recently. Heat transfer analyses show that the entransy of an object describes its heat transfer ability, just as the electrical energy in a capacitor describes its charge transfer ability. Entransy dissipation occurs during heat transfer processes, as a measure of the heat transfer irreversibility with the dissipation related thermal resistance. By taking equivalent thermal resistance (it corresponds to the mean temperature difference), which reflects the average heat conduction effect and is defined based on entransy dissipation, as an optimization objective, the 'volume to point' constructal problem is re-analysed and re-optimized in this paper. The constructal shape of the control volume with the best average heat conduction effect is deduced. For the elemental area and the first order construct assembly, when the thermal current density in the high conductive link is linear with the length, the optimized shapes of assembly based on the minimization of entransy dissipation are the same as those based on minimization of the maximum temperature difference, and the mean temperature difference is 2/3 of the maximum temperature difference. For the second and higher order construct assemblies, the thermal current densities in the high conductive link are not linear with the length, and the optimized shapes of the assembly based on the

  19. Intrinsic Energy Dissipation Limits in Nano and Micromechanical Resonators

    Science.gov (United States)

    Iyer, Srikanth Subramanian

    Resonant microelectromechanical Systems (MEMS) have enabled miniaturization of high-performance inertial sensors, radio-frequency filters, timing references and mass-based chemical sensors. Despite the increasing prevalence of MEMS resonators for these applications, the energy dissipation in these structures is not well-understood. Accurate prediction of the energy loss and the resulting quality factor (Q) has significant design implications because it is directly related to device performance metrics including sensitivity for resonant sensors, bandwidth for radio-frequency filters and phase-noise for timing references. In order to assess the future potential for MEMS resonators it is critically important to evaluate the energy dissipation limits, which will dictate the ultimate performance resonant MEMS devices can achieve. This work focuses on the derivation and evaluation of the intrinsic mechanical energy dissipation limit for single-crystal nano and micromechanical resonators due to anharmonic phonon-phonon scattering in the Akhiezer regime. The energy loss is derived using perturbation theory and the linearized Boltzmann transport equation for phonons, and includes the direction and polarization dependent mode-Gruneisen parameters in order to capture the strain-induced anharmonicity among phonon branches. Evaluation of the quality factor limit reveals that Akhiezer damping, previously thought to depend only on material properties, has a strong dependence on crystal orientation and resonant mode shape. The robust model provides a dissipation limit for all resonant modes including shear-mode vibrations, which have significantly reduced energy loss because dissipative phonon-phonon scattering is restricted to volume-preserving phonon branches, indicating that Lame or wine-glass mode resonators will have the highest upper limit on mechanical efficiency. Finally, the analytical dissipation model is integrated with commercial finite element software in order to

  20. What Is Dry Eye?

    Medline Plus

    Full Text Available ... the Inside of Your Eyelid Nov 29, 2017 New Dry Eye Treatment is a Tear-Jerker Jul ... Privacy Policy Terms of Service For Advertisers For Media Ophthalmology Job Center © American Academy of Ophthalmology 2018 ...

  1. Freeze drying method

    International Nuclear Information System (INIS)

    Coppa, N.V.; Stewart, P.; Renzi, E.

    1999-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser

  2. Cold Vacuum Drying Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the K-Basins (see K-Basins link) in Hanford's 100 Area is a facility called the Cold Vacuum Drying Facility (CVDF).Between 2000 and 2004, workers at the...

  3. TIDAL DISSIPATION COMPARED TO SEISMIC DISSIPATION: IN SMALL BODIES, EARTHS, AND SUPER-EARTHS

    International Nuclear Information System (INIS)

    Efroimsky, Michael

    2012-01-01

    While the seismic quality factor and phase lag are defined solely by the bulk properties of the mantle, their tidal counterparts are determined by both the bulk properties and the size effect (self-gravitation of a body as a whole). For a qualitative estimate, we model the body with a homogeneous sphere, and express the tidal phase lag through the lag in a sample of material. Although simplistic, our model is sufficient to understand that the lags are not identical. The difference emerges because self-gravitation pulls the tidal bulge down. At low frequencies, this reduces strain and the damping rate, making tidal damping less efficient in larger objects. At higher frequencies, competition between self-gravitation and rheology becomes more complex, though for sufficiently large super-Earths the same rule applies: the larger the planet, the weaker the tidal dissipation in it. Being negligible for small terrestrial planets and moons, the difference between the seismic and tidal lagging (and likewise between the seismic and tidal damping) becomes very considerable for large exoplanets (super-Earths). In those, it is much lower than what one might expect from using a seismic quality factor. The tidal damping rate deviates from the seismic damping rate, especially in the zero-frequency limit, and this difference takes place for bodies of any size. So the equal in magnitude but opposite in sign tidal torques, exerted on one another by the primary and the secondary, have their orbital averages going smoothly through zero as the secondary crosses the synchronous orbit. We describe the mantle rheology with the Andrade model, allowing it to lean toward the Maxwell model at the lowest frequencies. To implement this additional flexibility, we reformulate the Andrade model by endowing it with a free parameter ζ which is the ratio of the anelastic timescale to the viscoelastic Maxwell time of the mantle. Some uncertainty in this parameter's frequency dependence does not

  4. Mars’ Low Dissipation Factor at 11-h - Interpretation from Anelasticity-Based Dissipation Model

    Science.gov (United States)

    Castillo-Rogez, Julie; Choukroun, M.

    2010-10-01

    We explore the information contained in the ratio of the tidal Love number k2 to the dissipation factor Q characterizing the response of Mars to the tides exerted by its satellite Phobos (11-h period). Assuming that Mars can be approximated as a Maxwell body, Bills et al. [1] have inferred an average viscosity of the Martian mantle 8.7x1014 Pa s. Such a low viscosity appears inconsistent with Mars’ thermal evolution and current heat budget models. Alternative explanations include the presence of partial melt in the mantle [2], or the presence of an aquifer in the crust [3]. We revisit the interpretation of Mars’ k2/Q using a laboratory-based attenuation model that accounts for material viscoelasticity and anelasticity. As a first step, we have computed Mars’ k2/Q for an interior model that includes a solid inner core, a liquid core layer, a mantle, and crust (consistent with the observed moment of inertia, and k2 measured at the orbital period), and searched for the range of mantle viscosities that can explain the observed k2/Q. Successful models are characterized by an average mantle viscosity between 1018 and 1022 Pa s, which rules out the presence of partial melt in the mantle. We can narrow down that range by performing a more detailed calculation of the mineralogy and temperature profiles. Preliminary results will be presented at the meeting. References: [1] Bills et al. (2005) JGR 110, E00704; [2] Ruedas et al. (2009 White paper to the NRC Planetary Science decadal survey; [3] Bills et al. (2009) LPS 40, 1712. MC is supported by a NASA Postdoctoral Program Fellowship, administered by Oak Ridge Associated Universities. This work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under a contract to NASA. Government sponsorship acknowledged.

  5. Dissipation enhanced vibrational sensing in an olfactory molecular switch

    International Nuclear Information System (INIS)

    Chęcińska, Agata; Heaney, Libby; Pollock, Felix A.; Nazir, Ahsan

    2015-01-01

    Motivated by a proposed olfactory mechanism based on a vibrationally activated molecular switch, we study electron transport within a donor-acceptor pair that is coupled to a vibrational mode and embedded in a surrounding environment. We derive a polaron master equation with which we study the dynamics of both the electronic and vibrational degrees of freedom beyond previously employed semiclassical (Marcus-Jortner) rate analyses. We show (i) that in the absence of explicit dissipation of the vibrational mode, the semiclassical approach is generally unable to capture the dynamics predicted by our master equation due to both its assumption of one-way (exponential) electron transfer from donor to acceptor and its neglect of the spectral details of the environment; (ii) that by additionally allowing strong dissipation to act on the odorant vibrational mode, we can recover exponential electron transfer, though typically at a rate that differs from that given by the Marcus-Jortner expression; (iii) that the ability of the molecular switch to discriminate between the presence and absence of the odorant, and its sensitivity to the odorant vibrational frequency, is enhanced significantly in this strong dissipation regime, when compared to the case without mode dissipation; and (iv) that details of the environment absent from previous Marcus-Jortner analyses can also dramatically alter the sensitivity of the molecular switch, in particular, allowing its frequency resolution to be improved. Our results thus demonstrate the constructive role dissipation can play in facilitating sensitive and selective operation in molecular switch devices, as well as the inadequacy of semiclassical rate equations in analysing such behaviour over a wide range of parameters

  6. Effects of Different Temperatures for Drying Cervical Mucus Smear ...

    African Journals Online (AJOL)

    The effects of different room temperatures for drying cervical mucus on crystallisation of fern-tree patterns was determined using cervical mucus smears from 60 women undergoing investigation for infertility at the University of Benin Teaching Hospital. Cervical mucus smears were dried in the oven at 15, 20, 25, 30 and 35C ...

  7. Cucurbita spp. and Cucumis sativus enhance the dissipation of polychlorinated biphenyl congeners by stimulating soil microbial community development.

    Science.gov (United States)

    Qin, Hua; Brookes, Philip C; Xu, Jianming

    2014-01-01

    A number of Cucurbita species have the potential to extract polychlorinated biphenyls (PCBs) from soil, but their impact on the soil microbial communities responsible for PCB degradation remains unclear. A greenhouse experiment was conducted to investigate the effect of three Cucurbita and one Cucumis species on PCB dissipation and soil microbial community structure. Compared to the unplanted control, enhanced losses of PCBs (19.5%-42.7%) were observed in all planted soils. Cucurbita pepo and Cucurbita moschata treatments were more efficient in PCB dissipation, and have similar patterns of soil phospholipid fatty acids (PLFAs) and PCB congener profiles. Cucurbita treatments tend to have higher soil microbial biomass than Cucumis. Gram-negative (G(-)) bacteria were significantly correlated with PCB degradation rates (R(2) = 0.719, p Cucurbita related soil microorganisms could play an important role in remediation of PCB contaminated soils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Skin histology and its role in heat dissipation in three pinniped species

    Directory of Open Access Journals (Sweden)

    Khamas Wael A

    2012-08-01

    Full Text Available Abstract Background Pinnipeds have a thick blubber layer and may have difficulty maintaining their body temperature during hot weather when on land. The skin is the main thermoregulatory conduit which emits excessive body heat. Methods Thorough evaluation of the skin histology in three pinniped species; the California sea lion-Zalophus californianus, the Pacific harbor seal-Phoca vitulina richardsi, and the Northern elephant seal-Mirounga angustirostris, was conducted to identify the presence, location and distribution of skin structures which contribute to thermoregulation. These structures included hair, adipose tissue, sweat glands, vasculature, and arteriovenous anastomoses (AVA. Thermal imaging was performed on live animals of the same species to correlate histological findings with thermal emission of the skin. Results The presence and distribution of skin structures directly relates to emissivity of the skin in all three species. Emissivity of skin in phocids (Pacific harbor and Northern elephant seals follows a different pattern than skin in otariids (California sea lions. The flipper skin in phocids tends to be the most emissive region during hot weather and least emissive during cold weather. On the contrary in otariids, skin of the entire body has a tendency to be emissive during both hot and cold weather. Conclusion Heat dissipation of the skin directly relates to the presence and distribution of skin structures in all three species. Different skin thermal dissipation patterns were observed in phocid versus otariid seals. Observed thermal patterns can be used for proper understanding of optimum thermal needs of seals housed in research facilities, rescue centers and zoo exhibits.

  9. Pressure head distribution during unstable flow in relation to the formation and dissipation of fingers

    Directory of Open Access Journals (Sweden)

    H. Cho

    2002-01-01

    Full Text Available Wetting front instability creates a shallow induction zone from which fingers emerge that rapidly transport water and solutes downwards. How the induction zone affects finger location and spacing is unknown. In the moist subsoil, fingers may well dissipate because the finger tips no longer have to overcome the water entry value. Both flow regions were investigated in a two-dimensional chamber with a fine-over-coarse glass bead porous medium. A capillary fringe was created by upward wetting through capillary rise. Upon ponding with dye-coloured water, fingers emerged, propagated downward and diverged when reaching the capillary fringe. Microtensiometers were installed in the induction zone, the fingers, and in the capillary fringe. In the induction zone, a lateral sinusoidal pressure head developed within minutes. Only in one of two experiments could the observed pressure head pattern be satisfactorily reproduced by a steady-state model assuming uniform induction zone properties and uniform infiltration. Later, fingers emerged below the pressure head minima. The induction zone did not affect finger properties. The pressure head in the induction zone was determined by the depth of the finger tips. The water requirement of the fingers dictated the lateral pressure head gradients. The pressure heads in the capillary fringe supported the hypothesis that the flow stabilised and dissipated there. Keywords: fingered flow, wetting front instability, unsaturated flow, microtensiometers, induction zone, capillary fringe

  10. Dips and rims in dried colloidal films.

    Science.gov (United States)

    Parneix, C; Vandoolaeghe, P; Nikolayev, V S; Quéré, D; Li, J; Cabane, B

    2010-12-31

    We describe a spatial pattern arising from the nonuniform evaporation of a colloidal film. Immediately after the film deposition, an obstacle is positioned above its free surface, minimizing evaporation at this location. In a first stage, the film dries everywhere but under the obstacle, where a liquid region remains. Subsequently, this liquid region evaporates near its boundaries with the dry film. This loss of water causes a flow of liquid and particles from the center of the obstructed region to its periphery. The final film has a dip surrounded by a rim whose diameter is set by the obstacle. This turns out to be a simple technique for structuring films of nanometric thickness.

  11. Cassava Sun Drying Performance on Various Surfaces and Drying ...

    African Journals Online (AJOL)

    depth and recommended for sun drying of cassava. However; there is need to investigate on whether there is significant quality difference between cassava sun dried at different bed depths investigated in this study. Key words: drying characteristics, weight loss, ambient air temperature, perforated surface, cassava drying ...

  12. Drying drops : Drying drops containing solutes: From hydrodynamical to mechanical instabilities.

    Science.gov (United States)

    Giorgiutti-Dauphiné, F; Pauchard, L

    2018-03-19

    The drying of complex fluids involves a large number of microscopic phenomena (transport and organization of non-volatile solutes) as well as hydrodynamic and mechanical instabilities. These phenomena can be captured in drying sessile drops where different domains can be identified: strong concentration gradients, formation of a glassy or porous envelope that withstands mechanical stress, and consolidation of a layer strongly adhering to the substrate at the drop edge. In colloidal systems, we quantify the evolution of the particle volume fraction at a nanometric scale and microscopic scale and identify the conditions for the envelope formation at the free surface by balancing the effect of diffusion and evaporation. When a solid envelope is formed at a drop surface, the mechanical instabilities induced by the drying result in different drop shapes. Finally, large drying stresses build up in the solid layer adhering on the substrate, and possibly cause crack formation. In particular, we study how crack patterns are affected by the contact angle of drops and the drying conditions. A particular interest of the review is devoted to drying pattern of solutes.

  13. Characterization of dry biopotential electrodes.

    Science.gov (United States)

    Xie, Li; Yang, Geng; Xu, Linlin; Seoane, Fernando; Chen, Qiang; Zheng, Lirong

    2013-01-01

    Driven by the increased interest in wearable long-term healthcare monitoring systems, varieties of dry electrodes are proposed based on different materials with different patterns and structures. Most of the studies reported in the literature focus on proposing new electrodes and comparing its performance with commercial electrodes. Few papers are about detailed comparison among different dry electrodes. In this paper, printed metal-plate electrodes, textile based electrodes, and spiked electrodes are for the first time evaluated and compared under the same experimental setup. The contact impedance and noise characterization are measured. The in-vivo electrocardiogram (ECG) measurement is applied to evaluate the overall performance of different electrodes. Textile electrodes and printed electrodes gain comparable high-quality ECG signals. The ECG signal obtained by spiked electrodes is noisier. However, a clear ECG envelope can be observed and the signal quality can be easily improved by backend signal processing. The features of each type of electrodes are analyzed and the suitable application scenario is addressed.

  14. Dry etching technology for semiconductors

    CERN Document Server

    Nojiri, Kazuo

    2015-01-01

    This book is a must-have reference to dry etching technology for semiconductors, which will enable engineers to develop new etching processes for further miniaturization and integration of semiconductor integrated circuits.  The author describes the device manufacturing flow, and explains in which part of the flow dry etching is actually used. The content is designed as a practical guide for engineers working at chip makers, equipment suppliers and materials suppliers, and university students studying plasma, focusing on the topics they need most, such as detailed etching processes for each material (Si, SiO2, Metal etc) used in semiconductor devices, etching equipment used in manufacturing fabs, explanation of why a particular plasma source and gas chemistry are used for the etching of each material, and how to develop etching processes.  The latest, key technologies are also described, such as 3D IC Etching, Dual Damascene Etching, Low-k Etching, Hi-k/Metal Gate Etching, FinFET Etching, Double Patterning ...

  15. Trigger Point Dry Needling.

    Science.gov (United States)

    2017-03-01

    Increasingly, physical therapists in the United States and throughout the world are using dry needling to treat musculoskeletal pain, even though this treatment has been a controversial addition to practice. To better generalize to physical therapy practice the findings about dry needling thus far, the authors of a study published in the March 2017 issue of JOSPT identified the need for a systematic review examining the effectiveness of dry needling performed by physical therapists on people with musculoskeletal pain. Their review offers a meta-analysis of data from several included studies and assesses the evidence for risks of bias. J Orthop Sports Phys Ther 2017;47(3):150. doi:10.2519/jospt.2017.0502.

  16. Drying of Concrete

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Geiker, Mette Rica; Nygaard, Peter Vagn

    2002-01-01

    Estimated and measured relative humidity (RH) change during drying are compared for two concretes, 1: w/c=0.46 and 2: w/(c+0.5fa+2sf)=0.50. The estimations were undertaken by means of the Swedish program TorkaS 1.0. Measurements were performed by RH-sensors type Humi-Guard. Drying of 150 mm thick...... samples from sides at 60% RH and 22 °C took place from 4 to 56 days after casting. At the end of the drying period the measured RH was about 4% lower than the estimated RH at 1/5th depth from the exposed surface for both concretes. In the middle of the samples, the measured RH of concretes 1 and 2 were 2...

  17. Bounds on the dissipation in the Lorenz system

    International Nuclear Information System (INIS)

    Petrelis, Francois; Petrelis, Nicolas

    2004-01-01

    In this Letter we find an upper bound on the time-averaged dissipation in the Lorenz system (L. s.) [J. Atmos. Sci. 20 (1963) 244]. Whereas bounding theories were developed and applied to systems described by partial differential equations displaying turbulent behavior, we develop a method similar to the 'background method' [Phys. Rev. E 49 (1994) 4087; Phys. Rev. E 53 (1996) 5957; Phys. Rev. E 51 (1995) 3192; Phys. Plasmas 10 (2003) 4314; Phys. Plasmas 10 (2003) 4324] and apply it to the L. s., which consists of three first-order ordinary differential equations. The bound and the bounding field are explicitly calculated and compared to the numerically computed solutions of the system. For large values of the control parameter, the bound and the time-averaged dissipation differ by less than three percent. We then apply our method to another positive quadratic form defined for the solutions of the L. s

  18. Causal dissipation for the relativistic dynamics of ideal gases.

    Science.gov (United States)

    Freistühler, Heinrich; Temple, Blake

    2017-05-01

    We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a second-order system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier-Stokes equations.

  19. Parameter-free dissipation in simulated sliding friction

    Science.gov (United States)

    Benassi, A.; Vanossi, A.; Santoro, G. E.; Tosatti, E.

    2010-08-01

    Nonequilibrium molecular-dynamics simulations, of crucial importance in sliding friction, are hampered by arbitrariness and uncertainties in the way Joule heat is removed. We implement in a realistic frictional simulation a parameter-free, non-Markovian, stochastic dynamics, which, as expected from theory, absorbs Joule heat precisely as a semi-infinite harmonic substrate would. Simulating stick-slip friction of a slider over a two-dimensional Lennard-Jones solid, we compare our virtually exact frictional results with approximate ones from commonly adopted empirical dissipation schemes. While the latter are generally in serious error, we show that the exact results can be closely reproduced by a viscous Langevin dissipation at the boundary layer, once the backreflected frictional energy is variationally optimized.

  20. Coalescence cascade of dissipative solitons in parametrically driven systems

    Science.gov (United States)

    Clerc, M. G.; Coulibaly, S.; Gordillo, L.; Mujica, N.; Navarro, R.

    2011-09-01

    Parametrically driven spatially extended systems exhibit uniform oscillations which are modulationally unstable. The resulting periodic state evolves to the creation of a gas of dissipative solitons. Driven by the interaction of dissipative solitons, the multisoliton state undergoes a cascade of coalescence processes, where the average soliton separation distance obeys a temporal self-similar law. Starting from the soliton pair interaction law, we have derived analytically and characterized the law of this multisoliton coarsening process. A comparison of numerical results obtained with different models such as the parametrically driven damped nonlinear Schrödinger equation, a vertically driven chain of pendula, and a parametrically forced magnetic wire, shows remarkable agreement. Both phenomena, the pair interaction law and the coarsening process, are also observed experimentally in a quasi-one-dimensional layer of Newtonian fluid which is oscillated vertically.

  1. Dissipative relativistic standard map: Periodic attractors and basins of attraction

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Boon Leong [Monash University, School of Engineering, Bandar Sunway, Selangor (Malaysia)], E-mail: lan.boon.leong@eng.monash.edu.my; Yapp, Clarence [Monash University, School of Engineering, Bandar Sunway, Selangor (Malaysia)

    2008-09-15

    The dissipative relativistic standard map, introduced by Ciubotariu et al. [Ciubotariu C, Badelita L, Stancu V. Chaos in dissipative relativistic standard maps. Chaos, Solitons and Fractals 2002;13:1253-67.], is further studied numerically for small damping in the resonant case. We find that the attractors are all periodic; their basins of attraction have fractal boundaries and are closely interwoven. The number of attractors increases with decreasing damping. For a very small damping, there are thousands of periodic attractors, comprising mostly of the lowest-period attractors of period one or two; the basin of attraction of these lowest-period attractors is significantly larger compared to the basins of the higher-period attractors.

  2. A Dissipative Connector for CLT Buildings: Concept, Design and Testing

    Science.gov (United States)

    Scotta, Roberto; Marchi, Luca; Trutalli, Davide; Pozza, Luca

    2016-01-01

    This paper deals with the conception and characterization of an innovative connection for cross-laminated timber (CLT) panels. The connection is designed to provide an adequate level of dissipative capacity to CLT structures also when realized with large horizontal panels and therefore prone to fragile shear sliding failure. The connector, named X-bracket, has been theorized and designed by means of numerical parametric analyses. Furthermore, its cyclic behavior has been verified with experimental tests and compared to that of traditional connectors. Numerical simulations of cyclic tests of different CLT walls anchored to the foundation with X-brackets were also performed to assess their improved seismic performances. Finally, the analysis of the response of a 6 m × 3 m squat wall demonstrates that the developed connection provides good ductility and dissipation capacities also to shear walls realized with a single CLT panel. PMID:28773265

  3. Observation of a Dissipation-Induced Classical to Quantum Transition

    Directory of Open Access Journals (Sweden)

    J. Raftery

    2014-09-01

    Full Text Available Here, we report the experimental observation of a dynamical quantum phase transition in a strongly interacting open photonic system. The system studied, comprising a Jaynes-Cummings dimer realized on a superconducting circuit platform, exhibits a dissipation-driven localization transition. Signatures of the transition in the homodyne signal and photon number reveal this transition to be from a regime of classical oscillations into a macroscopically self-trapped state manifesting revivals, a fundamentally quantum phenomenon. This experiment also demonstrates a small-scale realization of a new class of quantum simulator, whose well-controlled coherent and dissipative dynamics is suited to the study of quantum many-body phenomena out of equilibrium.

  4. Holographic RG flow of thermoelectric transport with momentum dissipation

    Science.gov (United States)

    Wu, Shao-Feng; Wang, Bin; Ge, Xian-Hui; Tian, Yu

    2018-03-01

    We construct the holographic renormalization group (RG) flow of thermoelectric conductivities when the translational symmetry is broken. The RG flow is probed by the intrinsic observers hovering on the sliding radial membranes. We obtain the RG flow by solving a matrix-form Riccati equation. The RG flow provides a high-efficient numerical method to calculate the thermoelectric conductivities of strongly coupled systems with momentum dissipation. As an illustration, we recover the AC thermoelectric conductivities in the Einstein-Maxwell-axion model. Moreover, in several homogeneous and isotropic holographic models which dissipate the momentum and have the finite density, it is found that the RG flow of a particular combination of DC thermoelectric conductivities does not run. As a result, the DC thermal conductivity on the boundary field theory can be derived analytically, without using the conserved thermal current.

  5. Magnetic field dissipation and fractal model of current sheets

    International Nuclear Information System (INIS)

    Yankov, V.V.

    1997-01-01

    A model of magnetic field dissipation is suggested, which possesses features of both the Kolmogorov model of turbulence of ideal fluid and the Sweet endash Parker model of magnetic reconnection. It is suggested that current sheets are smooth along the magnetic lines but have fractal structure in the transverse dimension. The fractal dimension d=2.5 of the current sheet was found instead of d=3 in Kolmogorov-like models and d=2 in the Sweet endash Parker model. The reconnection time is the geometrical mean of the Alfvacute en time and the Sweet endash Parker time. The magnetic energy dissipation time can be even shorter, up to the Alfvacute en time. copyright 1997 American Institute of Physics

  6. Stable schemes for dissipative particle dynamics with conserved energy

    Energy Technology Data Exchange (ETDEWEB)

    Stoltz, Gabriel, E-mail: stoltz@cermics.enpc.fr

    2017-07-01

    This article presents a new numerical scheme for the discretization of dissipative particle dynamics with conserved energy. The key idea is to reduce elementary pairwise stochastic dynamics (either fluctuation/dissipation or thermal conduction) to effective single-variable dynamics, and to approximate the solution of these dynamics with one step of a Metropolis–Hastings algorithm. This ensures by construction that no negative internal energies are encountered during the simulation, and hence allows to increase the admissible timesteps to integrate the dynamics, even for systems with small heat capacities. Stability is only limited by the Hamiltonian part of the dynamics, which suggests resorting to multiple timestep strategies where the stochastic part is integrated less frequently than the Hamiltonian one.

  7. Dynamic response function and large-amplitude dissipative collective motion

    International Nuclear Information System (INIS)

    Wu Xizhen; Zhuo Yizhong; Li Zhuxia; Sakata, Fumihiko.

    1993-05-01

    Aiming at exploring microscopic dynamics responsible for the dissipative large-amplitude collective motion, the dynamic response and correlation functions are introduced within the general theory of nuclear coupled-master equations. The theory is based on the microscopic theory of nuclear collective dynamics which has been developed within the time-dependent Hartree-Fock (TDHF) theory for disclosing complex structure of the TDHF-manifold. A systematic numerical method for calculating the dynamic response and correlation functions is proposed. By performing numerical calculation for a simple model Hamiltonian, it is pointed out that the dynamic response function gives an important information in understanding the large-amplitude dissipative collective motion which is described by an ensemble of trajectories within the TDHF-manifold. (author)

  8. Irreversibility and dissipation in finite-state automata

    International Nuclear Information System (INIS)

    Ganesh, Natesh; Anderson, Neal G.

    2013-01-01

    Irreversibility and dissipation in finite-state automata (FSA) are considered from a physical-information-theoretic perspective. A quantitative measure for the computational irreversibility of finite automata is introduced, and a fundamental lower bound on the average energy dissipated per state transition is obtained and expressed in terms of FSA irreversibility. The irreversibility measure and energy bound are germane to any realization of a deterministic automaton that faithfully registers abstract FSA states in distinguishable states of a physical system coupled to a thermal environment, and that evolves via a sequence of interactions with an external system holding a physical instantiation of a random input string. The central result, which is shown to follow from quantum dynamics and entropic inequalities alone, can be regarded as a generalization of Landauer's Principle applicable to FSAs and tailorable to specified automata. Application to a simple FSA is illustrated.

  9. Solvable Family of Driven-Dissipative Many-Body Systems

    Science.gov (United States)

    Foss-Feig, Michael; Young, Jeremy T.; Albert, Victor V.; Gorshkov, Alexey V.; Maghrebi, Mohammad F.

    2017-11-01

    Exactly solvable models have played an important role in establishing the sophisticated modern understanding of equilibrium many-body physics. Conversely, the relative scarcity of solutions for nonequilibrium models greatly limits our understanding of systems away from thermal equilibrium. We study a family of nonequilibrium models, some of which can be viewed as dissipative analogues of the transverse-field Ising model, in that an effectively classical Hamiltonian is frustrated by dissipative processes that drive the system toward states that do not commute with the Hamiltonian. Surprisingly, a broad and experimentally relevant subset of these models can be solved efficiently. We leverage these solutions to compute the effects of decoherence on a canonical trapped-ion-based quantum computation architecture, and to prove a no-go theorem on steady-state phase transitions in a many-body model that can be realized naturally with Rydberg atoms or trapped ions.

  10. How Cassini can constrain tidal dissipation in Saturn

    Science.gov (United States)

    Luan, Jing; Fuller, Jim; Quataert, Eliot

    2018-02-01

    Tidal dissipation inside giant planets is important for the orbital evolution of their natural satellites. It is conventionally treated by parametrized equilibrium tidal theory, in which the tidal torque declines rapidly with distance, and orbital expansion was faster in the past. However, some Saturnian satellites are currently migrating outward faster than predicted by equilibrium tidal theory. Resonance locking between satellites and internal oscillations of Saturn naturally matches the observed migration rates. Here, we show that the resonance locking theory predicts dynamical tidal perturbations to Saturn's gravitational field in addition to those produced by equilibrium tidal bulges. We show that these perturbations can likely be detected during Cassini's proximal orbits if migration of satellites results from resonant gravity modes, but will likely be undetectable if migration results from inertial wave attractors or dissipation of the equilibrium tide. Additionally, we show that the detection of gravity modes would place constraints on the size of the hypothetical stably stratified region in Saturn.

  11. Experience in waste drying

    International Nuclear Information System (INIS)

    Burnham, R.E.; Temus, C.J.; Hillstrom, D.S.

    1987-01-01

    Ion exchange resins, filter media and sludges are currently either dewatered or solidified for stabilization, prior to disposal at a low level waste facility. Nuclear Packaging developed the Resin Drying System and placed it into commercial service to provide a system which meets the regulatory requirements for free standing water with a relatively short process duration, requiring no chemical or material addition and utilizing more volume efficient containers than were previously available. The Resin Drying System has proven to be a very cost effective, efficient and secure means of processing low level radioactive waste for many utilities in the United States

  12. Dynamics of the conservative and dissipative spin-orbit problem

    CERN Document Server

    Celletti, A; Lega, E

    2006-01-01

    We investigate the dynamics of the spin--orbit coupling under different settings. First we consider the conservative problem, and then we add a dissipative torque as provided by MacDonald's or Darwin's models. By means of frequency analysis and of the computation of the maximum Lyapunov indicator we explore the different dynamical behaviors associated to the main resonances. In particular we focus on the 1:1 and 3:2 resonances in which the Moon and Mercury are actually trapped.

  13. Nonlinear saturation of dissipative trapped ion instability and anomalous transport

    International Nuclear Information System (INIS)

    Sugihara, Masayoshi; Ogasawara, Masatada.

    1977-04-01

    An expression for the turbulent collision frequency is derived by summing up the most dominant terms from each order in the perturbation expansion in order to obtain the nonlinear saturation level of the dissipative trapped ion instability. Numerical calculation shows that the anomalous diffusion coefficient at the saturated state is in good agreement with the result of Kadomtsev and Pogutse when the effect of the magnetic shear is taken into account. (auth.)

  14. A simulation for energy dissipation in nuclear reactions

    International Nuclear Information System (INIS)

    Mshelia, E.D.; Ngadda, Y.H.

    1989-01-01

    A model for energy dissipation is presented which demonstrates energy transfer from a collective degree of freedom, represented by free motion, into intrinsic modes, represented by four coupled oscillators. The quantum mechanical probability amplitude for internal excitation is expressed as a multiple integral of a product of translational and intrinsic wavefunctions and exactly solved analytically. Its numerical values as a function of quantities of physical interest have been calculated, represented graphically and discussed. The results show that the probability distributions are peaked. (author)

  15. Dissipative Effects in the Effective Field Theory of Inflation

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Nacir, Diana; /Buenos Aires, CONICET /Buenos Aires U.; Porto, Rafael A.; /Princeton, Inst. Advanced Study /ISCAP, New York /Columbia U.; Senatore, Leonardo; /Stanford U., ITP /SLAC /KIPAC, Menlo Park; Zaldarriaga, Matias; /Princeton, Inst. Advanced Study

    2012-09-14

    We generalize the effective field theory of single clock inflation to include dissipative effects. Working in unitary gauge we couple a set of composite operators, {Omicron}{sub {mu}{nu}}..., in the effective action which is constrained solely by invariance under time-dependent spatial diffeomorphisms. We restrict ourselves to situations where the degrees of freedom responsible for dissipation do not contribute to the density perturbations at late time. The dynamics of the perturbations is then modified by the appearance of 'friction' and noise terms, and assuming certain locality properties for the Green's functions of these composite operators, we show that there is a regime characterized by a large friction term {gamma} >> H in which the {zeta}-correlators are dominated by the noise and the power spectrum can be significantly enhanced. We also compute the three point function <{zeta}{zeta}{zeta}> for a wide class of models and discuss under which circumstances large friction leads to an increased level of non-Gaussianities. In particular, under our assumptions, we show that strong dissipation together with the required non-linear realization of the symmetries implies |f{sub NL}| {approx} {gamma}/c{sub s}{sup 2} H >> 1. As a paradigmatic example we work out a variation of the 'trapped inflation' scenario with local response functions and perform the matching with our effective theory. A detection of the generic type of signatures that result from incorporating dissipative effects during inflation, as we describe here, would teach us about the dynamics of the early universe and also extend the parameter space of inflationary models.

  16. A fat fractal crisis in a quasi-dissipative system

    International Nuclear Information System (INIS)

    Shen, Ying; Dai, Jun; Jiang, Yumei; He, Yue; He, Da-Ren

    2006-01-01

    A crisis, induced by a sudden change of a fat strange set to a transit, is observed in a system, which is a two-dimensional discontinuous and noninvertible map and displays a dissipation sowing linear time dependence. It is shown analytically and numerically that, in this crisis, the characteristic scaling exponent takes a large value of 1.72; this is in agreement with the observed superlong transients

  17. Investigation of the Dissipation Process in Electrolytic Capacitors

    OpenAIRE

    Keith A. Joyner; Leconte Cathey

    1980-01-01

    An experimental study of electrolytic capacitors was conducted, with emphasis on their thermal properties. The capacitors were subjected to charge–discharge cycles with various values of peak voltage. The observed power dissipated did not agree with that which would be expected if constant capacitance and constant effective series resistance (ESR) are assumed for the capacitors. In order to explain the discrepancy, the capacitance and ESR variations were measured with respect to voltage, temp...

  18. Light Heavy-Ion Dissipative Collisions at Low Energy

    Science.gov (United States)

    Pop, A.; Andronic, A.; Berceanu, I.; Duma, M.; Moisa, D.; Petrovici, M.; Simion, V.; Immé, G.; Lanzanó, G.; Pagano, A.; Raciti, G.; Coniglione, R.; Del Zoppo, A.; Piatelli, P.; Sapienza, P.; Colonna, N.; D'Erasmo, G.; Pantaleo, A.

    2004-09-01

    Dissipative processes have been investigated experimentally in several light heavy-ion systems, using a complex detector which has as main components two position sensitive ionization chambers. Experimental evidence and comparison with theoretical calculations suggest a mechanism similar to deep inelastic processes in heavy and medium systems, even in the case of completely damped events. Note from Publisher: This article contains the abstract and references only.

  19. Dissipative force on an external quark in heavy quark cloud

    Science.gov (United States)

    Chakrabortty, Shankhadeep

    2011-11-01

    Within the finite temperature N = 4 strongly coupled super-Yang-Mills, we compute the dissipative force on an external quark in the presence of evenly distributed heavy quark cloud. This is computed holographically by constructing the corresponding gravity dual. We study the behaviour of this force as a function of the cloud density. Along the way we also analyze the stability of the gravity dual for vector and tensor perturbations.

  20. Luminaries-level structure improvement of LEDs for heat dissipation ...

    Indian Academy of Sciences (India)

    petitive in the market. Furthermore, most existent efficient heat dissipation technologies, which inevitably utilize moving mechanical components, such as pump, .... 0.04. – 0.03. – 0.02. – 0.01. 0. 10. 20. 30. 40. 50. 60. 70. 80 β / o. – 0.06. – 0.04. – 0.02. 0. 0.02. 0.04. 0.06. Figure 5. Coordination of velocity and heat flow field.

  1. Effects of thermal perturbations on magnetic dissipative droplet solitons

    OpenAIRE

    Wills, P.; Iacocca, E.; Hoefer, M. A.

    2015-01-01

    The magnetic dissipative droplet is a strongly nonlinear wave structure that can be stabilized in a thin film ferromagnet exhibiting perpendicular magnetic anisotropy by use of spin transfer torque. These structures have been observed experimentally at room temperature, showcasing their robustness against noise. Here, we quantify the effects of thermal noise by deriving the stochastic equations of motion for a droplet based on soliton perturbation theory. First, it is found that deterministic...

  2. Dissipative Control Systems and Disturbance Attenuation for Nonlinear H∞ Problems

    International Nuclear Information System (INIS)

    Frankowska, H.; Quincampoix, M.

    1999-01-01

    We characterize functions satisfying a dissipative inequality associated with a control problem. Such a characterization is provided in terms of an epicontingent solution, or a viscosity supersolution to a partial differential equation called Isaacs' equation. Links between supersolutions and epicontingent solutions to Isaacs' equation are studied. Finally, we derive (possibly discontinuous) disturbance attenuation feedback of the H ∞ problem from contingent formulation of Isaacs' equation

  3. Stable low-dissipation schemes for turbulent compressible flows

    Science.gov (United States)

    Subbareddy, Pramod Kumar V.

    Shock capturing schemes, which are commonly used in compressible flow simulations, introduce excessive amounts of numerical viscosity which smears out small scale flow features. A few low-dissipation methods have been proposed in the recent literature. They are more selective in the sense that they explicitly identify the portion of the numerical flux that is diffusive and damp its effect in 'smooth' regions of the flow. This work employs flux vector splitting methods; the dissipative portions of the Steger-Warming schemes are explicitly identified and various shock detection switches are explored. For high Reynolds number flows, especially when the energetic scales are close to the Nyquist limits of the grids used, aliasing errors become noticeable. These high frequency oscillations that arise due to the nonlinear nature of the Navier-Stokes equations cause solutions to become unstable. When dissipative methods are used, these errors are suppressed; however when using low-dissipation schemes, they can be prominent and need to be addressed by some other means. In this thesis, we focus on methods that enhance stability by enforcing 'secondary conservation' - the fluxes are constrained in such a way that a conservation law for a secondary, positive quantity is also satisified. In particular, we focus on kinetic energy, and a fully discrete (in time and space) 'kinetic energy consistent' scheme is derived and tested. Hybrid RAMS-LES methods such as Detached Eddy Simulations are necessary in order to make simulations of high speed flows with attached boundary layers affordable. A popular DES model is based on the Spalart-Allmaras RANS equation; a minor modification to the length scale makes the model behave in a hybrid manner. The S-A model itself was constructed using mostly empirical arguments by the authors. This model is analyzed and its connection to other turbulence models, in particular, the ksgs equation, is explored. A dynamic version of the model is proposed

  4. Love wave propagation in piezoelectric layered structure with dissipation.

    Science.gov (United States)

    Du, Jianke; Xian, Kai; Wang, Ji; Yong, Yook-Kong

    2009-02-01

    We investigate analytically the effect of the viscous dissipation of piezoelectric material on the dispersive and attenuated characteristics of Love wave propagation in a layered structure, which involves a thin piezoelectric layer bonded perfectly to an unbounded elastic substrate. The effects of the viscous coefficient on the phase velocity of Love waves and attenuation are presented and discussed in detail. The analytical method and the results can be useful for the design of the resonators and sensors.

  5. Robustness of Linear Systems towards Multi-Dissipative Pertubations

    DEFF Research Database (Denmark)

    Thygesen, Uffe Høgsbro; Poulsen, Niels Kjølstad

    1997-01-01

    We consider the question of robust stability of a linear time invariant plant subject to dynamic perturbations, which are dissipative in the sense of Willems with respect to several quadratic supply rates. For instance, parasitic dynamics are often both small gain and passive. We reduce several...... robustness analysis questions to linear matrix inequalities: robust stability, robust H2 performance and robust performance in presence of disturbances with finite signal-to-noise ratios...

  6. Experimental and Numerical Investigation of Reactive and Dissipative Mufflers

    Science.gov (United States)

    Mohanty, Amiya Ranjan

    In this research both experimental and numerical investigations are carried out for passive mufflers. These mufflers, both reactive and dissipative, can be used in automotive applications. The reactive mufflers have perforates, baffles, flow plugs and extended inlet/outlet tubes, whereas the dissipative mufflers have sound absorbing materials. A multi-domain boundary element method is used as a numerical technique for modeling such mufflers and predicting their transmission loss. In reactive mufflers, like the concentric resonators and plug flow mufflers, the transfer impedance across the perforate is incorporated in the multi-domain boundary element model. In dissipative mufflers, the sound absorbing material lining is treated both as bulk as well as locally reacting. To successfully incorporate perforates and sound absorbing materials in the boundary element models, experiments are conducted to determine the perforate transfer impedance and the propagation constant, characteristic impedance and surface impedance of the sound absorbing material. To validate the boundary element solution, an analytical one-dimensional solution for a duct with a perforated partition and the transmission loss of a family of reactive and dissipative mufflers are obtained. Various techniques to determine the transmission loss are investigated. One of the techniques, the transfer function method requires the design and fabrication of a perfect anechoic termination of the system, and it is a difficult task. Alternate methods are then investigated, where the transmission loss is computed from the experimentally determined four-pole parameters of the muffler in question. The two-load and the two-source location methods are used to determine the four-pole parameters and then the transmission loss, without the use of an anechoic termination. Excellent agreement is found between the results of the experimental investigation and the boundary element method for the various mufflers.

  7. Measurement fidelity in the presence of coherent dynamics or dissipation

    Science.gov (United States)

    You, Jian-Qiang; Ashhab, S.; Nori, Franco

    2011-03-01

    We analyze the problem of a charge qubit probed by a quantum point contact when the measurement is concurrent with Hamiltonian-induced coherent dynamics or dissipation. This additional dynamics changes the state of the qubit before the measurement is completed. As a result, the measurement fidelity is reduced. We calculate the reduction in measurement fidelity in these cases. References: S. Ashhab, J. Q. You, and F. Nori, New J. Phys. 11, 083017 (2009); Phys. Scr. T137, 014005 (2009).

  8. Quantum tight-binding chains with dissipative coupling

    International Nuclear Information System (INIS)

    Mogilevtsev, D; Slepyan, G Ya; Garusov, E; Kilin, S Ya; Korolkova, N

    2015-01-01

    We present a one-dimensional tight-binding chain of two-level systems coupled only through common dissipative Markovian reservoirs. This quantum chain can demonstrate anomalous thermodynamic behavior contradicting Fourier law. Population dynamics of individual systems of the chain is polynomial with the order determined by the initial state of the chain. The chain can simulate classically hard problems, such as multi-dimensional random walks. (paper)

  9. Meteorological effects of energy dissipation at large power parks

    International Nuclear Information System (INIS)

    Hanna, S.R.; Gifford, F.A.

    1976-01-01

    Large (10,000 to 50,000 MW) power parks are being studied as one means of satisfying the nation's demand for energy. The dissipation of waste energy from these installations may result in significant meteorological effects. It is shown that the rate of atmospheric dissipation of the waste energy from these power parks is approximately equal to the atmospheric dissipation of energy by geophysical phenomena such as thunderstorms, volcanoes, and large bushfires. Cumulus clouds and whirlwinds often result from these energy releases. There is a possibility that natural vorticity will be concentrated by large power parks. A theory of multiple plume rise is used to estimate the enhancement of plume rise from multiple cooling towers. Calculations of plume rise, ground level fog intensity, and drift deposition due to emissions from cooling towers at a hypothetical 40,000 MW nuclear power park are made. The plume rise from 50 towers is estimated to be more than 110 percent of that from a single tower if the tower spacing is less than about 300 m

  10. Foucault dissipation in a rolling cylinder: a webcam quantitative study

    International Nuclear Information System (INIS)

    Bonanno, A; Bozzo, G; Camarca, M; Sapia, P

    2011-01-01

    In this paper we present an experimental strategy to measure the micro power dissipation due to Foucault 'eddy' currents in a copper cylinder rolling on two parallel conductive rails in the presence of a magnetic field. Foucault power dissipation is obtained from kinematical measurements carried out by using a common PC webcam and video analysis done by means of software tools freely available within Windows operating system (Paint and Movie Maker). The proposed method allows us to experimentally discern the contribution to dissipation due to the velocity-independent rolling friction from that owed to the viscous-like friction emerging from complex electrodynamic interactions among eddy currents and the external magnetic field. In this way a microdissipation of some tens of μW is measured. The easily reproducible experimental setup, the simple implementation of data analysis and the discussion on various experimental approaches and strategies make the proposed activity highly significant for university undergraduates, since involved crucial skills can be efficiently strengthened.

  11. Foucault dissipation in a rolling cylinder: a webcam quantitative study

    Energy Technology Data Exchange (ETDEWEB)

    Bonanno, A; Bozzo, G; Camarca, M; Sapia, P, E-mail: sapia@fis.unical.it [Physics Department, University of Calabria, I-87036 Rende, CS (Italy)

    2011-03-15

    In this paper we present an experimental strategy to measure the micro power dissipation due to Foucault 'eddy' currents in a copper cylinder rolling on two parallel conductive rails in the presence of a magnetic field. Foucault power dissipation is obtained from kinematical measurements carried out by using a common PC webcam and video analysis done by means of software tools freely available within Windows operating system (Paint and Movie Maker). The proposed method allows us to experimentally discern the contribution to dissipation due to the velocity-independent rolling friction from that owed to the viscous-like friction emerging from complex electrodynamic interactions among eddy currents and the external magnetic field. In this way a microdissipation of some tens of {mu}W is measured. The easily reproducible experimental setup, the simple implementation of data analysis and the discussion on various experimental approaches and strategies make the proposed activity highly significant for university undergraduates, since involved crucial skills can be efficiently strengthened.

  12. Dissipation and energy balance in electronic dynamics of Na clusters

    Science.gov (United States)

    Vincendon, Marc; Suraud, Eric; Reinhard, Paul-Gerhard

    2017-06-01

    We investigate the impact of dissipation on the energy balance in the electron dynamics of metal clusters excited by strong electro-magnetic pulses. The dynamics is described theoretically by Time-Dependent Density-Functional Theory (TDDFT) at the level of Local Density Approximation (LDA) augmented by a self interaction correction term and a quantum collision term in Relaxation-Time Approximation (RTA). We evaluate the separate contributions to the total excitation energy, namely energy exported by electron emission, potential energy due to changing charge state, intrinsic kinetic and potential energy, and collective flow energy. The balance of these energies is studied as function of the laser parameters (frequency, intensity, pulse length) and as function of system size and charge. We also look at collisions with a highly charged ion and here at the dependence on the impact parameter (close versus distant collisions). Dissipation turns out to be small where direct electron emission prevails namely for laser frequencies above any ionization threshold and for slow electron extraction in distant collisions. Dissipation is large for fast collisions and at low laser frequencies, particularly at resonances. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.

  13. Minimum energy dissipation required for a logically irreversible operation

    Science.gov (United States)

    Takeuchi, Naoki; Yoshikawa, Nobuyuki

    2018-01-01

    According to Landauer's principle, the minimum heat emission required for computing is linked to logical entropy, or logical reversibility. The validity of Landauer's principle has been investigated for several decades and was finally demonstrated in recent experiments by showing that the minimum heat emission is associated with the reduction in logical entropy during a logically irreversible operation. Although the relationship between minimum heat emission and logical reversibility is being revealed, it is not clear how much free energy is required to be dissipated for a logically irreversible operation. In the present study, in order to reveal the connection between logical reversibility and free energy dissipation, we numerically demonstrated logically irreversible protocols using adiabatic superconductor logic. The calculation results of work during the protocol showed that, while the minimum heat emission conforms to Landauer's principle, the free energy dissipation can be arbitrarily reduced by performing the protocol quasistatically. The above results show that logical reversibility is not associated with thermodynamic reversibility, and that heat is not only emitted from logic devices but also absorbed by logic devices. We also formulated the heat emission from adiabatic superconductor logic during a logically irreversible operation at a finite operation speed.

  14. Traits of estuarine marsh plants affect wave dissipation

    Science.gov (United States)

    Schulte Ostermann, Tilla; Heuner, Maike; Bouma, Tjeerd

    2017-04-01

    Estuarine vegetation can attenuate hydrodynamic forces such as waves or flow velocities and therefore has an important role in natural tidal bank protection. This function depends on the degree of hydrodynamic forces, bank morphology and on plant traits of the dominant species. The traits vary between the species but also between different marsh sites. Biomass, stem density and biomechanical properties are crucial factors that influence the rate of wave dissipation. These properties illustrate the trade-offs a species is facing in such a dynamic habitat and highlight the ability of dominant species such as Bolboschoenus maritimus and Schoenoplectus tabernaemontani to protect the tidal bank. Along the Elbe estuary, traits of dominant marsh plant species were measured on different sites. The sites vary e.g. in their elevation, salt levels and inundation periods. To analyse the role that plant traits can play in wave dissipation, the structure of the vegetation as well as the composition was recorded. Biomechanical tests helped to understand the species traits regarding stem flexibility and to determine the effects of plant traits on wave dynamics and vice versa. On the conference, we will present how plant traits affect the wave dissipation on tidal marshes and why they vary.

  15. Beating Landauer's Bound: Tradeoff between Accuracy and Heat Dissipation

    Science.gov (United States)

    Talukdar, Saurav; Bhaban, Shreyas; Salapaka, Murti

    The Landauer's Principle states that erasing of one bit of stored information is necessarily accompanied by heat dissipation of at least kb Tln 2 per bit. However, this is true only if the erasure process is always successful. We demonstrate that if the erasure process has a success probability p, the minimum heat dissipation per bit is given by kb T(plnp + (1 - p) ln (1 - p) + ln 2), referred to as the Generalized Landauer Bound, which is kb Tln 2 if the erasure process is always successful and decreases to zero as p reduces to 0.5. We present a model for a one-bit memory based on a Brownian particle in a double well potential motivated from optical tweezers and achieve erasure by manipulation of the optical fields. The method uniquely provides with a handle on the success proportion of the erasure. The thermodynamics framework for Langevin dynamics developed by Sekimoto is used for computation of heat dissipation in each realization of the erasure process. Using extensive Monte Carlo simulations, we demonstrate that the Landauer Bound of kb Tln 2 is violated by compromising on the success of the erasure process, while validating the existence of the Generalized Landauer Bound.

  16. A variational approach to the analysis of dissipative electromechanical systems.

    Directory of Open Access Journals (Sweden)

    Andrew Allison

    Full Text Available We develop a method for systematically constructing Lagrangian functions for dissipative mechanical, electrical, and electromechanical systems. We derive the equations of motion for some typical electromechanical systems using deterministic principles that are strictly variational. We do not use any ad hoc features that are added on after the analysis has been completed, such as the Rayleigh dissipation function. We generalise the concept of potential, and define generalised potentials for dissipative lumped system elements. Our innovation offers a unified approach to the analysis of electromechanical systems where there are energy and power terms in both the mechanical and electrical parts of the system. Using our novel technique, we can take advantage of the analytic approach from mechanics, and we can apply these powerful analytical methods to electrical and to electromechanical systems. We can analyse systems that include non-conservative forces. Our methodology is deterministic, and does does require any special intuition, and is thus suitable for automation via a computer-based algebra package.

  17. Constraining Planetary Migration and Tidal Dissipation with Coeval Hot Jupiters

    Science.gov (United States)

    O'Connor, Christopher E.; Hansen, Bradley M. S.

    2018-03-01

    We investigate the constraints on the formation of, and tidal dissipation processes in, hot Jupiters (HJs) that can be inferred based on reliable knowledge of the age of a system or population. Particular attention is paid to the role of young systems (such as those in open clusters or star-forming regions) in such studies. For an ensemble of coeval HJ (or proto-HJ) systems, we quantify the effect of age on the distribution of orbital eccentricities with respect to orbital periods as well as the location of the observed "pile-up" feature. We expect the effects of pre-main-sequence stellar evolution to be important only if a substantial fraction of HJs approach their current orbits early in protostellar contraction (ages ≲ 10 Myr). Application to the HJs presently known in the cluster M 67 yields constraints on the dissipation roughly consistent with those gleaned from planets in the field; for those in the Hyades and Praesepe, our results suggest a higher degree of dissipation at early times than that inferred from other populations.

  18. Study of dissipation in superconductors at high frequency regime

    International Nuclear Information System (INIS)

    Vallet, Christophe

    1994-01-01

    This thesis is devoted to the study of the Joule effect dissipation occurring in superconducting accelerating cavities. Two mechanisms of dissipation are presented: the first concerns the magnetic flux present around the cryostat and trapped by the (Niobium) superconducting cavity during a temperature descent; a theoretical and experimental study allow the evaluation of the percentage of flux which rests trapped and its contribution to the dissipation. Improving the magnetic shielding leads to a remnant field of the order of several milli-Gauss and the surface resistance drops from 25 nΩ to 4.2 nΩ (with a few other modifications). The second mechanism is related to the polycrystalline structure of the superconductor. A theoretical study evaluates this contribution to about 3 nΩ. A complex process of recrystallization is needed in order to overcome this effect. Using an electron beam at low energy might help in reaching this goal and thus observing surface resistance values smaller than ever obtained. (author) [fr

  19. Dissipative dynamics of fluid lipid membranes enriched in cholesterol.

    Science.gov (United States)

    Arriaga, Laura R; Rodríguez-García, Ruddi; Moleiro, Lara H; Prévost, Sylvain; López-Montero, Iván; Hellweg, Thomas; Monroy, Francisco

    2017-09-01

    Cholesterol is an intriguing component of fluid lipid membranes: It makes them stiffer but also more fluid. Despite the enormous biological significance of this complex dynamical behavior, which blends aspects of membrane elasticity with viscous friction, their mechanical bases remain however poorly understood. Here, we show that the incorporation of physiologically relevant contents of cholesterol in model fluid membranes produces a fourfold increase in the membrane bending modulus. However, the increase in the compression rigidity that we measure is only twofold; this indicates that cholesterol increases coupling between the two membrane leaflets. In addition, we show that although cholesterol makes each membrane leaflet more fluid, it increases the friction between the membrane leaflets. This dissipative dynamics causes opposite but advantageous effects over different membrane motions: It allows the membrane to rearrange quickly in the lateral dimension, and to simultaneously dissipate out-of-plane stresses through friction between the two membrane leaflets. Moreover, our results provide a clear correlation between coupling and friction of membrane leaflets. Furthermore, we show that these rigid membranes are optimal to resist slow deformations with minimum energy dissipation; their optimized stability might be exploited to design soft technological microsystems with an encoded mechanics, vesicles or capsules for instance, useful beyond classical applications as model biophysical systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Determination of the dissipation in superconducting Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Mugnai, D., E-mail: d.mugnai@ifac.cnr.it; Ranfagni, A.; Cacciari, I. [“Nello Carrara” Institute of Applied Physics, CNR Florence Research Area, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence (Italy)

    2015-02-07

    The results relative to macroscopic quantum tunneling rate, out of the metastable state of Josephson junctions, are examined in view of determining the effect of dissipation. We adopt a simple criterion in accordance to which the effect of dissipation can be evaluated by analyzing the shortening of the semiclassical traversal time of the barrier. In almost all the considered cases, especially those with relatively large capacitance values, the relative time shortening turns out to be about 20% and with a corresponding quality factor Q ≃ 5.5. However, beyond the specific cases here considered, still in the regime of moderate dissipation, the method is applicable also to different situations with different values of the quality factor. The method allows, within the error limits, for a reliable determination of the load resistance R{sub L}, the less accessible quantity in the framework of the resistively and capacitively shunted junction model, provided that the characteristics of the junction (intrinsic capacitance, critical current, and the ratio of the bias current to the critical one) are known with sufficient accuracy.

  1. Optimal coherent control of dissipative N-level systems

    International Nuclear Information System (INIS)

    Jirari, H.; Poetz, W.

    2005-01-01

    General optimal coherent control of dissipative N-level systems in the Markovian time regime is formulated within Pointryagin's principle and the Lindblad equation. In the present paper, we study feasibility and limitations of steering of dissipative two-, three-, and four-level systems from a given initial pure or mixed state into a desired final state under the influence of an external electric field. The time evolution of the system is computed within the Lindblad equation and a conjugate gradient method is used to identify optimal control fields. The influence of both field-independent population and polarization decay on achieving the objective is investigated in systematic fashion. It is shown that, for realistic dephasing times, optimum control fields can be identified which drive the system into the target state with very high success rate and in economical fashion, even when starting from a poor initial guess. Furthermore, the optimal fields obtained give insight into the system dynamics. However, if decay rates of the system cannot be subjected to electromagnetic control, the dissipative system cannot be maintained in a specific pure or mixed state, in general

  2. Fractional Stochastic Differential Equations Satisfying Fluctuation-Dissipation Theorem

    Science.gov (United States)

    Li, Lei; Liu, Jian-Guo; Lu, Jianfeng

    2017-10-01

    We propose in this work a fractional stochastic differential equation (FSDE) model consistent with the over-damped limit of the generalized Langevin equation model. As a result of the `fluctuation-dissipation theorem', the differential equations driven by fractional Brownian noise to model memory effects should be paired with Caputo derivatives, and this FSDE model should be understood in an integral form. We establish the existence of strong solutions for such equations and discuss the ergodicity and convergence to Gibbs measure. In the linear forcing regime, we show rigorously the algebraic convergence to Gibbs measure when the `fluctuation-dissipation theorem' is satisfied, and this verifies that satisfying `fluctuation-dissipation theorem' indeed leads to the correct physical behavior. We further discuss possible approaches to analyze the ergodicity and convergence to Gibbs measure in the nonlinear forcing regime, while leave the rigorous analysis for future works. The FSDE model proposed is suitable for systems in contact with heat bath with power-law kernel and subdiffusion behaviors.

  3. Foucault dissipation in a rolling cylinder: a webcam quantitative study

    Science.gov (United States)

    Bonanno, A.; Bozzo, G.; Camarca, M.; Sapia, P.

    2011-03-01

    In this paper we present an experimental strategy to measure the micro power dissipation due to Foucault 'eddy' currents in a copper cylinder rolling on two parallel conductive rails in the presence of a magnetic field. Foucault power dissipation is obtained from kinematical measurements carried out by using a common PC webcam and video analysis done by means of software tools freely available within Windows operating system (Paint and Movie Maker). The proposed method allows us to experimentally discern the contribution to dissipation due to the velocity-independent rolling friction from that owed to the viscous-like friction emerging from complex electrodynamic interactions among eddy currents and the external magnetic field. In this way a microdissipation of some tens of µW is measured. The easily reproducible experimental setup, the simple implementation of data analysis and the discussion on various experimental approaches and strategies make the proposed activity highly significant for university undergraduates, since involved crucial skills can be efficiently strengthened.

  4. Energy dissipation in head-on collisions of spheres

    International Nuclear Information System (INIS)

    Krijt, S; Tielens, A G G M; Güttler, C; Heißelmann, D; Dominik, C

    2013-01-01

    Collisions between spheres are a common ingredient in a variety of scientific problems, and the coefficient of restitution (COR) is a key parameter to describe their outcome. We present a new collision model that treats adhesion and viscoelasticity self-consistently, while energy losses arising from plastic deformation are assumed to be additive. Results show that viscoelasticity can significantly increase the energy that is dissipated in a collision, enhancing the sticking velocity. Furthermore, collisions well above the sticking velocity remain dissipative. We systemically compare the model to a large and unbiased set of published laboratory experiments to show its general applicability. The model is well capable of reproducing the important relation between impact velocity and COR as measured in the experiments, covering a wide range of materials, particle sizes, and collision velocities. Furthermore, the fitting parameters from those curves provide physical parameters such as the surface energy, yield strength, and characteristic viscous relaxation time. Our results show that all three aspects—adhesion, viscoelastic dissipation and plastic deformation—are required for a proper description of the kinetic energy losses in sphere collisions. (paper)

  5. Resolving defence mechanisms: A perspective based on dissipative structure theory.

    Science.gov (United States)

    Zhang, Wei; Guo, Ben-Yu

    2017-04-01

    Theories and classifications of defence mechanisms are not unified. This study addresses the psychological system as a dissipative structure which exchanges information with the external and internal world. When using defence mechanisms, the cognitive-affective schema of an individual could remain stable and ordered by excluding psychological entropy, obtaining psychological negentropy or by dissipating the energy of self-presentation. From this perspective, defences can be classified into three basic types: isolation, compensation and self-dissipation. However, not every kind of defence mechanisms can actually help the individual. Non-adaptive defences are just functioning as an effective strategy in the short run but can be a harmful approach in the long run, while adaptive defences could instead help the individual as a long-term mechanism. Thus, we would like to suggest that it is more useful for the individual to use more adaptive defence mechanisms and seek out social or interpersonal support when undergoing psychic difficulties. As this model of defences is theoretical at present, we therefore aim to support and enrich this viewpoint with empirical evidence. Copyright © 2017 Institute of Psychoanalysis.

  6. Dissipation factor of acrylic dielectric elastomer--an experimental study.

    Science.gov (United States)

    Sahu, Raj Kumar; Pramanik, Bipul; Patra, Karali; Bhaumik, Shovan; Pandey, Arvind Kumar; Setua, Dipak Kumar

    2014-10-01

    This paper studies the effects of frequency, pre-strain and electrode types on the dielectric property of a commercially available and most widely used acrylic elastomer, VHB 4910. The acrylic VHB film is pre-stretched in biaxial directions with the help of an in-house developed biaxial stretching device. The stretched film has been sandwiched between two card board frames to prepare samples of different pre-stretch values. Three different types of electrodes namely copper tape, silver grease and carbon grease have been pasted on the both sides of prestretched samples. Dissipation factor of pre-stretched and electrode adhered VHB sample has been experimentally determined at different frequency (upto 1 MHz) of input voltage using a LCR meter. Experimental results on the variation of dissipation factor with pre-straining, frequency (low to high) and electrode types are reported. The dissipation factor value is further used to estimate electrical efficiency at different biaxial pre-straining, frequency and electrode types.

  7. Steam drying compared to drum drying markedly increases early phase rumen fermentability of sugar beet pulp

    DEFF Research Database (Denmark)

    Nielsen, Mette Olaf; Larsen, Kasper; Jensen, Arne Sloth

    2017-01-01

    , but there were no differences in fermentation pattern after 24 hours of fermentation. The increased early fermentability must markedly increase the nutritional value for high-yielding dairy cows, which at feed intakes of 25 kg dry matter or more, have retention times in the rumen for water soluble compounds...

  8. Corncob-fueled drying system

    Energy Technology Data Exchange (ETDEWEB)

    Morey, R.V.; Thimsen, D.P.; Lang, J.P.; Hansen, D.J.

    1984-01-01

    A system to collect, transport, process, dry and burn corncobs to dry shelled corn was evaluated. A mixture of shelled corn and cobs was harvested and transported to the drying facility where a continuous, automated system separated, dried and conveyed cobs to the combustor, a two-stage downdraft device with a 400 to 800 kW heat output. Exhaust products were put directly into the drying air without adversely affecting the corn's appearance or odor. 6 references.

  9. FREEZE DRYING PROCESS: A REVIEW

    OpenAIRE

    Soham Shukla

    2011-01-01

    Among the various methods of drying, this article has mentioned only one most important method, “Freeze drying”. This method is mainly used for the drying of thermo labile materials. This method works on the principle of sublimation. This method is divided into 3 steps for its better understanding; these are Freezing, Primary drying, and secondary drying. There are many advantages and disadvantages of this method, but still this is the most useful drying method nowadays.

  10. A dissipative self-sustained optomechanical resonator on a silicon chip

    Science.gov (United States)

    Huang, J. G.; Li, Y.; Chin, L. K.; Cai, H.; Gu, Y. D.; Karim, M. F.; Wu, J. H.; Chen, T. N.; Yang, Z. C.; Hao, Y. L.; Qiu, C. W.; Liu, A. Q.

    2018-01-01

    In this letter, we report the experimental demonstration of a dissipative self-sustained optomechanical resonator on a silicon chip by introducing dissipative optomechanical coupling between a vertically offset bus waveguide and a racetrack optical cavity. Different from conventional blue-detuning limited self-oscillation, the dissipative optomechanical resonator exhibits self-oscillation in the resonance and red detuning regime. The anti-damping effects of dissipative optomechanical coupling are validated by both numerical simulation and experimental results. The demonstration of the dissipative self-sustained optomechanical resonator with an extended working range has potential applications in optomechanical oscillation for on-chip signal modulation and processing.

  11. What Is Dry Eye?

    Medline Plus

    Full Text Available ... tested whether I close my eyes when I sleep? Feb 10, 2016 Can light sensitivity from Parkinson’s be treated? Jan 28, ... of Your Eyelid Nov 29, 2017 New Dry Eye Treatment is a Tear-Jerker Jul 21, 2017 Three ...

  12. Dry Cleaning, Course Description.

    Science.gov (United States)

    Briscoe, Albert J.; Anderson, Floyd L.

    This course description was developed by educators for use at the Work Opportunity Center which was established to teach high school dropouts and/or hard-core unemployed youth. The ultimate objectives of this course are to prepare students for employment in dry cleaning occupations and to assist them in completing their high school graduation…

  13. Dissipative particle dynamics simulation of flow generated by two rotating concentric cylinders: II. Lateral dissipative and random forces

    International Nuclear Information System (INIS)

    Filipovic, N; Haber, S; Kojic, M; Tsuda, A

    2008-01-01

    Traditional DPD methods address dissipative and random forces exerted along the line connecting neighbouring particles. Espanol (1998 Phys. Rev. E 57 2930-48) suggested adding dissipative and random force components in a direction perpendicular to this line. This paper focuses on the advantages and disadvantages of such an addition as compared with the traditional DPD method. Our benchmark system comprises fluid initially at rest occupying the space between two concentric cylinders rotating with various angular velocities. The effect of the lateral force components on the time evolution of the simulated velocity profile was also compared with that of the known analytical solution. The results show that (i) the solution accuracy at steady state has improved and the error has been reduced by at least 30% (in one case by 75%), (ii) the DPD time to reach steady state has been halved, (iii) the CPU time has increased by only 30%, and (iv) no significant differences exist in density and temperature distributions

  14. Infrared Drying Parameter Optimization

    Science.gov (United States)

    Jackson, Matthew R.

    In recent years, much research has been done to explore direct printing methods, such as screen and inkjet printing, as alternatives to the traditional lithographic process. The primary motivation is reduction of the material costs associated with producing common electronic devices. Much of this research has focused on developing inkjet or screen paste formulations that can be printed on a variety of substrates, and which have similar conductivity performance to the materials currently used in the manufacturing of circuit boards and other electronic devices. Very little research has been done to develop a process that would use direct printing methods to manufacture electronic devices in high volumes. This study focuses on developing and optimizing a drying process for conductive copper ink in a high volume manufacturing setting. Using an infrared (IR) dryer, it was determined that conductive copper prints could be dried in seconds or minutes as opposed to tens of minutes or hours that it would take with other drying devices, such as a vacuum oven. In addition, this study also identifies significant parameters that can affect the conductivity of IR dried prints. Using designed experiments and statistical analysis; the dryer parameters were optimized to produce the best conductivity performance for a specific ink formulation and substrate combination. It was determined that for an ethylene glycol, butanol, 1-methoxy 2- propanol ink formulation printed on Kapton, the optimal drying parameters consisted of a dryer height of 4 inches, a temperature setting between 190 - 200°C, and a dry time of 50-65 seconds depending on the printed film thickness as determined by the number of print passes. It is important to note that these parameters are optimized specifically for the ink formulation and substrate used in this study. There is still much research that needs to be done into optimizing the IR dryer for different ink substrate combinations, as well as developing a

  15. Anisotropic Characteristics of Turbulence Dissipation in Swirling Flow: A Direct Numerical Simulation Study

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2015-01-01

    Full Text Available This study investigates the anisotropic characteristics of turbulent energy dissipation rate in a rotating jet flow via direct numerical simulation. The turbulent energy dissipation tensor, including its eigenvalues in the swirling flows with different rotating velocities, is analyzed to investigate the anisotropic characteristics of turbulence and dissipation. In addition, the probability density function of the eigenvalues of turbulence dissipation tensor is presented. The isotropic subrange of PDF always exists in swirling flows relevant to small-scale vortex structure. Thus, with remarkable large-scale vortex breakdown, the isotropic subrange of PDF is reduced in strongly swirling flows, and anisotropic energy dissipation is proven to exist in the core region of the vortex breakdown. More specifically, strong anisotropic turbulence dissipation occurs concentratively in the vortex breakdown region, whereas nearly isotropic turbulence dissipation occurs dispersively in the peripheral region of the strong swirling flows.

  16. Spatial and temporal patterns of cloud cover and fog inundation in coastal California: Ecological implications

    Science.gov (United States)

    Rastogi, Bharat; Williams, A. Park; Fischer, Douglas T.; Iacobellis, Sam F.; McEachern, A. Kathryn; Carvalho, Leila; Jones, Charles Leslie; Baguskas, Sara A.; Still, Christopher J.

    2016-01-01

    The presence of low-lying stratocumulus clouds and fog has been known to modify biophysical and ecological properties in coastal California where forests are frequently shaded by low-lying clouds or immersed in fog during otherwise warm and dry summer months. Summer fog and stratus can ameliorate summer drought stress and enhance soil water budgets, and often have different spatial and temporal patterns. Here we use remote sensing datasets to characterize the spatial and temporal patterns of cloud cover over California’s northern Channel Islands. We found marine stratus to be persistent from May through September across the years 2001-2012. Stratus clouds were both most frequent and had the greatest spatial extent in July. Clouds typically formed in the evening, and dissipated by the following early afternoon. We present a novel method to downscale satellite imagery using atmospheric observations and discriminate patterns of fog from those of stratus and help explain patterns of fog deposition previously studied on the islands. The outcomes of this study contribute significantly to our ability to quantify the occurrence of coastal fog at biologically meaningful spatial and temporal scales that can improve our understanding of cloud-ecosystem interactions, species distributions and coastal ecohydrology.

  17. Quantification of γ- and α-tocopherol isomers in combination with pattern recognition model as a tool for differentiating dry-cured shoulders of Iberian pigs raised on different feeding systems.

    Science.gov (United States)

    Rey, Ana I; Amazan, Daniel; López-Bote, Clemente J; García-Casco, Juan M

    2014-10-01

    Quantification of γ- and α-tocopherol in dry-cured shoulders of Iberian pigs was evaluated as a tool for differentiating feeding backgrounds or regimens. Samples (n = 115) were obtained over two different seasons from the four categories of pigs described in the Industry Quality Policy, i.e. pigs fed in free-range conditions (FREE-RANGE), pigs fed in free-range conditions and provided feed supplements (FREE-FEED), pigs fed outdoors with feed and with access to grass (FEED-OUT) and pigs fed in intensive conditions with feed (FEED). Linear discriminant functions were calculated and validated. The validation results showed that 20% of the muscle samples were not correctly classified into the four feeding categories, giving an 80% success rate. The FEED group had the lowest proportion of errors, with 100% of samples correctly classified. For the FREE-RANGE group, 87% of samples were assigned to the correct feeding system by cross-validation; however, 13% were considered as FREE-FEED. A higher rate of correct classification can be obtained when using three categories or by calculating the weight gain in free-range conditions using regression equations. Taking into account the high variability of the samples and the high success in classification, these results are of interest and may be applied in practical situations. © 2014 Society of Chemical Industry.

  18. a comparative study of the drying rate constant, drying efficiency ...

    African Journals Online (AJOL)

    Vernonia amagdalina) and black pepper (Piper guinenses) using solar dryer and open- air sun drying methods. Two hundred grams (200g) of each sample were dried under the two different conditions. Their respective weight losses were used to ...

  19. Spray Drying Processing: granules production and drying kinetics of droplets

    International Nuclear Information System (INIS)

    Mondragon, R.; Julia, J. E.; Barba, A.; Jarque, J. C.

    2013-01-01

    Spray drying is a unit operation very common in many industrial processes. For each particular application, the resulting granulated material must possess determined properties that depend on the conditions in which the spray drying processing has been carried out, and whose dependence must be known in order to optimize the quality of the material obtained. The large number of variables that influence on the processes of matter and energy transfer and on the formation of granular material has required a detailed analysis of the drying process. Over the years there have been many studies on the spray drying processing of all kind of materials and the influence of process variables on the drying kinetics of the granulated material properties obtained. This article lists the most important works published for both the spray drying processing and the drying of individual droplets, as well as studies aimed at modeling the drying kinetics of drops. (Author)

  20. Smoothed dissipative particle dynamics with angular momentum conservation

    International Nuclear Information System (INIS)

    Müller, Kathrin; Fedosov, Dmitry A.; Gompper, Gerhard

    2015-01-01

    Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor–Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential

  1. Real-time dynamics of dissipative quantum systems

    International Nuclear Information System (INIS)

    Chow, K.S.

    1988-01-01

    The first part of this thesis motivates a real time approach to the dynamics of dissipative quantum systems. We review previous imaginary time methods for calculating escape rates and discuss their applications to the analysis of data in macroscopic quantum tunneling experiments. In tunneling experiments on heavily damped Superconducting Quantum Interference Devices, the instanton method gave results that compare reasonably well with data. In tunneling experiments on weakly damped Current Biased Josephson Junctions, two problems arise. First, the classical limit of the instanton result disagrees with the classical rate of thermal activation. Second, the instanton method cannot predict the microwave enhancement of escape rates. In the third chapter, we discuss our real time approach to the dynamics of dissipative systems in terms of a kinetic equation for the reduced density matrix. We demonstrate some known equilibrium properties of dissipative systems through the kinetic equation and derived the bath induced widths and energy shifts. In the low damping limit, the kinetic equation reduces to a much simpler master equation. The classical limit of the master equation is completely equivalent to the Fokker-Planck equation that describes thermal activation. In the fourth chapter, we apply the master equation to the problem of tunneling and resonance enhancement of tunneling in weakly damped current biased Josephson junctions. In the classical regime, microwaves of the appropriate frequency induce resonances between many neighboring levels and an asymmetrical resonance peak is measured. We can calibrate the junction parameters by fitting the stationary solution of the master equation to the classical resonance data. In the quantum regime, the stationary solution of the master equation, predicts well-resolved resonance peaks which agree very well with the observed data

  2. Smoothed dissipative particle dynamics with angular momentum conservation

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Kathrin, E-mail: k.mueller@fz-juelich.de; Fedosov, Dmitry A., E-mail: d.fedosov@fz-juelich.de; Gompper, Gerhard, E-mail: g.gompper@fz-juelich.de

    2015-01-15

    Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor–Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.

  3. Functional methods and mappings of dissipative quantum systems

    International Nuclear Information System (INIS)

    Baur, H.

    2006-01-01

    In the first part of this work we extract the algebraic structure behind the method of the influence functional in the context of dissipative quantum mechanics. Special emphasis was put on the transition from a quantum mechanical description to a classical one, since it allows a deeper understanding of the measurement-process. This is tightly connected with the transition from a microscopic to a macroscopic world where the former one is described by the rules of quantum mechanics whereas the latter follows the rules of classical mechanics. In addition we show how the results of the influence functional method can be interpreted as a stochastical process, which in turn allows an easy comparison with the well known time development of a quantum mechanical system by use of the Schroedinger equation. In the following we examine the tight-binding approximation of models of which their hamiltionian shows discrete eigenstates in position space and where transitions between those states are suppressed so that propagation either is described by tunneling or by thermal activation. In the framework of dissipative quantum mechanics this leads to a tremendous simplification of the effective description of the system since instead of looking at the full history of all paths in the path integral description, we only have to look at all possible jump times and the possible corresponding set of weights for the jump direction, which is much easier to handle both analytically and numerically. In addition we deal with the mapping and the connection of dissipative quantum mechanical models with ones in quantum field theory and in particular models in statistical field theory. As an example we mention conformal invariance in two dimensions which always becomes relevant if a statistical system only has local interaction and is invariant under scaling. (orig.)

  4. Mineral and water content of A. gigas scales determine local micromechanical properties and energy dissipation mechanisms

    Science.gov (United States)

    Troncoso, Omar P.; Gigos, Florian; Torres, Fernando G.

    2017-11-01

    Arapaima gigas scales are natural laminated composite materials made of individual layers with different degrees of mineralization, accompanied of varying mechanical properties. This natural design provides scales with hardness and flexibility, and can serve as a source of inspiration for the development of new layered composites with a hard surface and flexible base. In this paper, we have carried out cyclic micro-indentation tests on both; the internal and the highly mineralized external surface of air dried and wet scales, in order to assess the variation of their local micromechanical properties with regard to the mineral and water content. The load-penetration (P-h) curves showed that creep takes place throughout the application of a constant force during the micro-indentation tests, confirming the time dependent response of A. gigas scales. A model that accounted for the elastic, plastic and viscous responses of the samples was used to fit the experimental results. The penetration depth during loading and creep, as well as the energy dissipated are dependent on the water content. The used model suggests that the viscous response of the internal layer increases with the water content.

  5. Transparent and Electrically Conductive Carbon Nanotube-Polymer Nanocomposite Materials for Electrostatic Charge Dissipation

    Science.gov (United States)

    Dervishi, E.; Biris, A. S.; Biris, A. R.; Lupu, D.; Trigwell, S.; Miller, D. W.; Schmitt, T.; Buzatu, D. A.; Wilkes, J. G.

    2006-01-01

    In recent years, nanocomposite materials have been extensively studied because of their superior electrical, magnetic, and optical properties and large number of possible applications that range from nano-electronics, specialty coatings, electromagnetic shielding, and drug delivery. The aim of the present work is to study the electrical and optical properties of carbon nanotube(CNT)-polymer nanocomposite materials for electrostatic charge dissipation. Single and multi-wall carbon nanotubes were grown by catalytic chemical vapor deposition (CCVD) on metal/metal oxide catalytic systems using acetylene or other hydrocarbon feedstocks. After the purification process, in which amorphous carbon and non-carbon impurities were removed, the nanotubes were functionalized with carboxylic acid groups in order to achieve a good dispersion in water and various other solvents. The carbon nanostructures were analyzed, both before and after functionalization by several analytical techniques, including microscopy, Raman spectroscopy, and X-Ray photoelectron spectroscopy. Solvent dispersed nanotubes were mixed (1 to 7 wt %) into acrylic polymers by sonication and allowed to dry into 25 micron thick films. The electrical and optical properties of the films were analyzed as a function of the nanotubes' concentration. A reduction in electrical resistivity, up to six orders of magnitude, was measured as the nanotubes' concentration in the polymeric films increased, while optical transparency remained 85 % or higher relative to acrylic films without nanotubes.

  6. Residue dissipation and processing factor for dimethomorph, famoxadone and cymoxanil during raisin preparation.

    Science.gov (United States)

    Shabeer T P, Ahammed; Banerjee, Kaushik; Jadhav, Manjusha; Girame, Rushali; Utture, Sagar; Hingmire, Sandip; Oulkar, Dasharath

    2015-03-01

    A method was validated for the simultaneous analysis of the residues of dimethomorph, famoxadone and cymoxanil in grape and raisin matrix by ethyl acetate based extraction and liquid chromatography tandem mass spectrometric analysis. Field studies were conducted to evaluate the dissipation rate kinetics and processing factor (PF) for these pesticides during raisin making. Residue data during the drying process were best fitted to 1st+1st order rate kinetics with half-life ranging between 8-9 days for dimethomorph, 12-13 days for famoxadone and 9-10 days for cymoxanil at single dose (SD) and double dose (DD), respectively. PF values calculated were 1.03 and 1.14 for dimethomorph, 1.95 and 2.09 for famoxadone, and 1.99 and 1.35 for cymoxanil at SD and DD, respectively. PF value >1 indicates concentration of the residues during raisin making. The residues of detected pesticides in market samples of raisins were devoid of any risk of acute toxicity related to dietary exposure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Humidity scanning quartz crystal microbalance with dissipation monitoring setup for determination of sorption-desorption isotherms and rheological changes

    Energy Technology Data Exchange (ETDEWEB)

    Björklund, Sebastian, E-mail: sebastianbjorklund@gmail.com; Kocherbitov, Vitaly [Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö (Sweden); Biofilms—Research Center for Biointerfaces, Malmö University, Malmö (Sweden)

    2015-05-15

    A new method to determine water sorption-desorption isotherms with high resolution in the complete range of water activities (relative humidities) is presented. The method is based on quartz crystal microbalance with dissipation monitoring (QCM-D). The QCM-D is equipped with a humidity module in which the sample film is kept in air with controlled humidity. The experimental setup allows for continuous scanning of the relative humidity from either dry to humid conditions or vice versa. The amount of water sorbed or desorbed from the sample is determined from the resonance frequencies of the coated quartz sensor, via analysis of the overtone dependence. In addition, the method allows for characterization of hydration induced changes of the rheological properties from the dissipation data, which is closely connected to the viscoelasticity of the film. The accuracy of the humidity scanning setup is confirmed in control experiments. Sorption-desorption isotherms of pig gastric mucin and lysozyme, obtained by the new method, show good agreement with previous results. Finally, we show that the deposition technique used to coat the quartz sensor influences the QCM-D data and how this issue can be used to obtain further information on the effect of hydration. In particular, we demonstrate that spin-coating represents an attractive alternative to obtain sorption-desorption isotherms, while drop-coating provides additional information on changes of the rheological properties during hydration.

  8. Humidity scanning quartz crystal microbalance with dissipation monitoring setup for determination of sorption-desorption isotherms and rheological changes

    Science.gov (United States)

    Björklund, Sebastian; Kocherbitov, Vitaly

    2015-05-01

    A new method to determine water sorption-desorption isotherms with high resolution in the complete range of water activities (relative humidities) is presented. The method is based on quartz crystal microbalance with dissipation monitoring (QCM-D). The QCM-D is equipped with a humidity module in which the sample film is kept in air with controlled humidity. The experimental setup allows for continuous scanning of the relative humidity from either dry to humid conditions or vice versa. The amount of water sorbed or desorbed from the sample is determined from the resonance frequencies of the coated quartz sensor, via analysis of the overtone dependence. In addition, the method allows for characterization of hydration induced changes of the rheological properties from the dissipation data, which is closely connected to the viscoelasticity of the film. The accuracy of the humidity scanning setup is confirmed in control experiments. Sorption-desorption isotherms of pig gastric mucin and lysozyme, obtained by the new method, show good agreement with previous results. Finally, we show that the deposition technique used to coat the quartz sensor influences the QCM-D data and how this issue can be used to obtain further information on the effect of hydration. In particular, we demonstrate that spin-coating represents an attractive alternative to obtain sorption-desorption isotherms, while drop-coating provides additional information on changes of the rheological properties during hydration.

  9. Tidal dissipation in rotating fluid bodies: the presence of a magnetic field

    Science.gov (United States)

    Lin, Yufeng; Ogilvie, Gordon I.

    2018-02-01

    We investigate effects of the presence of a magnetic field on tidal dissipation in rotating fluid bodies. We consider a simplified model consisting of a rigid core and a fluid envelope, permeated by a background magnetic field (either a dipolar field or a uniform axial field). The wave-like tidal responses in the fluid layer are in the form of magnetic Coriolis waves, which are restored by both the Coriolis force and the Lorentz force. Energy dissipation occurs through viscous damping and Ohmic damping of these waves. Our numerical results show that the tidal dissipation can be dominated by Ohmic damping even with a weak magnetic field. The presence of a magnetic field smooths out the complicated frequency dependence of the dissipation rate, and broadens the frequency spectrum of the dissipation rate, depending on the strength of the background magnetic field. However, the frequency-averaged dissipation is independent of the strength and structure of the magnetic field, and of the dissipative parameters in the approximation that the wave-like response is driven only by the Coriolis force acting on the non-wavelike tidal flow. Indeed, the frequency-averaged dissipation quantity is in good agreement with previous analytical results in the absence of magnetic fields. Our results suggest that the frequency-averaged tidal dissipation of the wave-like perturbations is insensitive to detailed damping mechanisms and dissipative properties.

  10. Surface spin tunneling and heat dissipation in magnetic nanoparticles

    Science.gov (United States)

    Palakkal, Jasnamol P.; Obula Reddy, Chinna; Paulose, Ajeesh P.; Sankar, Cheriyedath Raj

    2018-03-01

    Quantum superparamagnetic state is observed in ultra-fine magnetic particles, which is often experimentally identified by a significant hike in magnetization towards low temperatures much below the superparamagnetic blocking temperature. Here, we report experimentally observed surface spin relaxation at low temperatures in hydrated magnesium ferrite nanoparticles of size range of about 5 nm. We observed time dependent oscillatory magnetization of the sample below 2.5 K, which is attributed to surface spin tunneling. Interestingly, we observed heat dissipation during the process by using an external thermometer.

  11. Bounds on charge and heat diffusivities in momentum dissipating holography

    Energy Technology Data Exchange (ETDEWEB)

    Amoretti, Andrea [Dipartimento di Fisica, Università di Genova,via Dodecaneso 33, I-16146, Genova (Italy); INFN - Sezione di Genova,via Dodecaneso 33, I-16146, Genova (Italy); Lorentz Institute for Theoretical Physics,Niels Bohrweg 2, Leiden NL-2333 CA (Netherlands); Braggio, Alessandro [INFN - Sezione di Genova,via Dodecaneso 33, I-16146, Genova (Italy); CNR-SPIN,Via Dodecaneso 33, 16146, Genova (Italy); Magnoli, Nicodemo [Dipartimento di Fisica, Università di Genova,via Dodecaneso 33, I-16146, Genova (Italy); INFN - Sezione di Genova,via Dodecaneso 33, I-16146, Genova (Italy); Musso, Daniele [Abdus Salam International Centre for Theoretical Physics (ICTP),Strada Costiera 11, I-34151 Trieste (Italy)

    2015-07-20

    Inspired by a recently conjectured universal bound for thermo-electric diffusion constants in quantum critical, strongly coupled systems and relying on holographic analytical computations, we investigate the possibility of formulating Planckian bounds in different holographic models featuring momentum dissipation. For a certain family of solutions to a simple massive gravity dilaton model at zero charge density we find linear in temperature resistivity and entropy density alongside a constant electric susceptibility. In addition we explicitly find that the sum of the thermo-electric diffusion constants is bounded.

  12. Air Entrainment and Energy Dissipation on Gabion Stepped Weirs

    OpenAIRE

    Wüthrich, Davide

    2014-01-01

    In the last three decades the design of stepped spillways regained some interest because of their suitability with new construction methods including gabion placement. In this study, the hydraulic performances of gabion stepped weirs were investigated experimentally in terms of the air-water flow properties and energy dissipation rate. A physical study was performed in a relatively large size facility with a 26.6° slope (1V:2H) and 0.10 m step height. For both gabion and impervious stepped we...

  13. Dissipative tunneling and orthogonality catastrophe in molecular transistors

    DEFF Research Database (Denmark)

    Braig, S.; Flensberg, Karsten

    2004-01-01

    of the charge on the molecule to the vibrational modes of the environment has on the I-V characteristics. We find that, for comparable characteristic length scales of the van der Waals and electrostatic interaction of the molecule with the environmental vibrational modes, the I-V characteristics...... are qualitatively changed from what one would expect from orthogonality catastrophe and develop a steplike discontinuity at the onset of conduction. For the case of very different length scales, we recover dissipation consistent with modeling the electrostatic forces as an external influence on the system comprised...

  14. Surface erosion issues and analysis for dissipative divertors

    International Nuclear Information System (INIS)

    Brooks, J.N.; Ruzic, D.N.; Hayden, D.B.; Turkot, R.B. Jr.

    1994-05-01

    Erosion/redeposition is examined for the sidewall of a dissipative divertor using coupled impurity transport, charge exchange, and sputtering codes, applied to a plasma solution for the ITER design. A key issue for this regime is possible runaway self-sputtering, due to the effect of a low boundary density and nearly parallel field geometry on redeposition parameters. Net erosion rates, assuming finite self-sputtering, vary with wall location, boundary conditions, and plasma solution, and are roughly of the following order: 200--2000 angstrom/s for beryllium, 10--100 angstrom/s for vanadium, and 0.3--3 angstrom/s for tungsten

  15. Modern thermodynamics from heat engines to dissipative structures

    CERN Document Server

    Kondepudi, Dilip

    2014-01-01

    Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition presents a comprehensive introduction to 20th century thermodynamics that can be applied to both equilibrium and non-equilibrium systems, unifying what was traditionally divided into 'thermodynamics' and 'kinetics' into one theory of irreversible processes. This comprehensive text, suitable for introductory as well as advanced courses on thermodynamics, has been widely used by chemists, physicists, engineers and geologists.  Fully revised and expanded, this new edition includes the following updates and featur

  16. Localized structures in dissipative media: from optics to plant ecology

    Science.gov (United States)

    Tlidi, M.; Staliunas, K.; Panajotov, K.; Vladimirov, A. G.; Clerc, M. G.

    2014-01-01

    Localized structures (LSs) in dissipative media appear in various fields of natural science such as biology, chemistry, plant ecology, optics and laser physics. The proposal for this Theme Issue was to gather specialists from various fields of nonlinear science towards a cross-fertilization among active areas of research. This is a cross-disciplinary area of research dominated by nonlinear optics due to potential applications for all-optical control of light, optical storage and information processing. This Theme Issue contains contributions from 18 active groups involved in the LS field and have all made significant contributions in recent years. PMID:25246688

  17. Quantum mechanics of non-Hamiltonian and dissipative systems

    CERN Document Server

    Tarasov, Vasily

    2008-01-01

    Quantum Mechanics of Non-Hamiltonian and Dissipative Systems is self-contained and can be used by students without a previous course in modern mathematics and physics. The book describes the modern structure of the theory, and covers the fundamental results of last 15 years. The book has been recommended by Russian Ministry of Education as the textbook for graduate students and has been used for graduate student lectures from 1998 to 2006. Requires no preliminary knowledge of graduate and advanced mathematics Discusses the fundamental results of last 15 years in this theory Suitable for cours

  18. Atomic physics effects on dissipative toroidal drift wave stability

    International Nuclear Information System (INIS)

    Beer, M.A.; Hahm, T.S.

    1992-02-01

    The effects of atomic physics processes such as ionization, charge exchange, and radiation on the linear stability of dissipative drift waves are investigated in toroidal geometry both numerically and analytically. For typical TFTR and TEXT edge parameters, overall linear stability is determined by the competition between the destabilizing influence of ionization and the stabilizing effect due to the electron temperature gradient. An analytical expression for the linear marginal stability condition, η e crit , is derived. The instability is most likely to occur at the extreme edge of tokamaks with a significant ionization source and a steep electron density gradient

  19. Adiabatic dynamics of one-dimensional classical Hamiltonian dissipative systems

    Science.gov (United States)

    Pritula, G. M.; Petrenko, E. V.; Usatenko, O. V.

    2018-02-01

    A linearized plane pendulum with the slowly varying mass and length of string and the suspension point moving at a slowly varying speed is presented as an example of a simple 1D mechanical system described by the generalized harmonic oscillator equation, which is a basic model in discussion of the adiabatic dynamics and geometric phase. The expression for the pendulum geometric phase is obtained by three different methods. The pendulum is shown to be canonically equivalent to the damped harmonic oscillator. This supports the mathematical conclusion, not widely accepted in physical community, of no difference between the dissipative and Hamiltonian 1D systems.

  20. Power Dissipation Challenges in Multicore Floating-Point Units

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    2010-01-01

    With increased densities on chips and the growing popularity of multicore processors and general-purpose graphics processing units (GPGPUs) power dissipation and energy consumption pose a serious challenge in the design of system-on-chips (SoCs) and a rise in costs for heat removal. In this work......-Raphson approximation algorithm to the implementation in a dedicated digit-recurrence unit. The results show a significant reduction of energy in a typical scientific application when the division digit-recurrence unit is used. In addition, we model the thermal behavior of the considered FP-units....

  1. Femtosecond Fiber Lasers Based on Dissipative Processes for Nonlinear Microscopy

    Science.gov (United States)

    Wise, Frank W.

    2012-01-01

    Recent progress in the development of femtosecond-pulse fiber lasers with parameters appropriate for nonlinear microscopy is reviewed. Pulse-shaping in lasers with only normal-dispersion components is briefly described, and the performance of the resulting lasers is summarized. Fiber lasers based on the formation of dissipative solitons now offer performance competitive with that of solid-state lasers, but with the benefits of the fiber medium. Lasers based on self-similar pulse evolution in the gain section of a laser also offer a combination of short pulse duration and high pulse energy that will be attractive for applications in nonlinear bioimaging. PMID:23869163

  2. An optimal dissipative encoder for the toric code

    Science.gov (United States)

    Dengis, John; König, Robert; Pastawski, Fernando

    2014-01-01

    We consider the problem of preparing specific encoded resource states for the toric code by local, time-independent interactions with a memoryless environment. We propose the construction of such a dissipative encoder which converts product states to topologically ordered ones while preserving logical information. The corresponding Liouvillian is made up of four local Lindblad operators. For a qubit lattice of size L × L, we show that this process prepares encoded states in time O(L), which is optimal. This scaling compares favorably with known local unitary encoders for the toric code which take time of order Ω(L2) and require active time-dependent control.

  3. Propagation of shear wave in nonlinear and dissipative medium

    International Nuclear Information System (INIS)

    Jeambrun, D.

    1995-01-01

    The civil engineering projects, like nuclear installations, submitted to vibrations or seismic motions, require the study of the soil behaviour underlying the site under intensive dynamic loading. In order to understand in depth the soil damping phenomenon, a propagation of a shear seismic wave in a dissipative medium has been numerically simulated. The computer code, based on a nonlinear hysteretic model using Newmark-Wilson and Newton-Raphson algorithms and variable spatial steps, passes through the difficulties related to acceleration discontinuities. The simulation should allow the identification of the soil parameters by comparison with in situ measures. (author)

  4. Nitramine Drying & Fine Grinding Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Nitramine Drying and Fine Grinding Facility provides TACOM-ARDEC with a state-of-the-art facility capable of drying and grinding high explosives (e.g., RDX and...

  5. Dry Cleaning Sector (NAICS 8123)

    Science.gov (United States)

    The dry cleaning sector includes establishments engaged in providing laundry services and industrial launderers. Find environmental regulatory information for perchloroethylene (PERC) cleaners as well as hazardous waste regulations for dry cleaners.

  6. Global Warming and 21st Century Drying

    Science.gov (United States)

    Cook, Benjamin I.; Smerdun, Jason E.; Seager, Richard; Coats, Sloan

    2014-01-01

    Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twentyfirst century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman- Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both

  7. Drying hardwoods with impinging jets.

    Science.gov (United States)

    Howard N. Rosen

    1980-01-01

    Silver maple, yellow poplar, and black walnut lumber was dried in a prototype jet dryer over a range of temperatures from 120 degrees to 400 degrees Fahrenheit and air velocities from 1,000 to 9,000 fpm. Different drying schedules were developed for each type of wood. The quality of the jet-dried lumber was good and compared favorably with kiln-dried lumber.

  8. Blood drop patterns: Formation and applications.

    Science.gov (United States)

    Chen, Ruoyang; Zhang, Liyuan; Zang, Duyang; Shen, Wei

    2016-05-01

    The drying of a drop of blood or plasma on a solid substrate leads to the formation of interesting and complex patterns. Inter- and intra-cellular and macromolecular interactions in the drying plasma or blood drop are responsible for the final morphologies of the dried patterns. Changes in these cellular and macromolecular components in blood caused by diseases have been suspected to cause changes in the dried drop patterns of plasma and whole blood, which could be used as simple diagnostic tools to identify the health of humans and livestock. However, complex physicochemical driving forces involved in the pattern formation are not fully understood. This review focuses on the scientific development in microscopic observations and pattern interpretation of dried plasma and whole blood samples, as well as the diagnostic applications of pattern analysis. Dried drop patterns of plasma consist of intricate visible cracks in the outer region and fine structures in the central region, which are mainly influenced by the presence and concentration of inorganic salts and proteins during drying. The shrinkage of macromolecular gel and its adhesion to the substrate surface have been thought to be responsible for the formation of the cracks. Dried drop patterns of whole blood have three characteristic zones; their formation as functions of drying time has been reported in the literature. Some research works have applied engineering treatment to the evaporation process of whole blood samples. The sensitivities of the resultant patterns to the relative humidity of the environment, the wettability of the substrates, and the size of the drop have been reported. These research works shed light on the mechanisms of spreading, evaporation, gelation, and crack formation of the blood drops on solid substrates, as well as on the potential applications of dried drop patterns of plasma and whole blood in diagnosis. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  9. Fluid flow in drying drops

    NARCIS (Netherlands)

    Gelderblom, Hanneke

    2013-01-01

    When a suspension drop evaporates, it leaves behind a drying stain. Examples of these drying stains encountered in daily life are coffee or tea stains on a table top, mineral rings on glassware that comes out of the dishwasher, or the salt deposits on the streets in winter. Drying stains are also

  10. Diurnal modulation signal from dissipative hidden sector dark matter

    Directory of Open Access Journals (Sweden)

    R. Foot

    2015-09-01

    Full Text Available We consider a simple generic dissipative dark matter model: a hidden sector featuring two dark matter particles charged under an unbroken U(1′ interaction. Previous work has shown that such a model has the potential to explain dark matter phenomena on both large and small scales. In this framework, the dark matter halo in spiral galaxies features nontrivial dynamics, with the halo energy loss due to dissipative interactions balanced by a heat source. Ordinary supernovae can potentially supply this heat provided kinetic mixing interaction exists with strength ϵ∼10−9. This type of kinetically mixed dark matter can be probed in direct detection experiments. Importantly, this self-interacting dark matter can be captured within the Earth and shield a dark matter detector from the halo wind, giving rise to a diurnal modulation effect. We estimate the size of this effect for detectors located in the Southern hemisphere, and find that the modulation is large (≳10% for a wide range of parameters.

  11. Modelling turbulent energy dissipation in the high-latitude mesosphere

    Science.gov (United States)

    Hall, C. M.; Brekke, A.; Martynenko, O. V.; Namgaladze, A. A.

    1998-02-01

    The global numerical model of the Earth's thermosphere, ionosphere and protonosphere constructed at the Kaliningrad Observatory of IZMIRAN and Polar Geophysical Institute in Murmansk, (Namgaladze et al., 1991), hereafter referred to as PGI97, is being extended to encompass modelling of the mesosphere. Here we report the first predictions of turbulent intensities in the height regime 80 to 90 km. Recently, Hall (1997) reported estimates of the turbulent energy dissipation rate, ɛ, using the EISCAT VHF radar located in Northern Norway (69°N, 19°E), which has, in turn, been compared to in situ measurements. Thus initial testing of PGI97 has concentrated on the same region. The agreements between PGI97 and EISCAT results for summer and winter solstice mesospheres are good. The general seasonal variation has been investigated, again showing good agreement with the EISCAT results. However, when examining the average energy dissipation in the 80-90 km height regime, the model shows less variability than the observations.

  12. Thermodynamic dissipation theory for the origin of life

    Directory of Open Access Journals (Sweden)

    K. Michaelian

    2011-03-01

    Full Text Available Understanding the thermodynamic function of life may shed light on its origin. Life, as are all irreversible processes, is contingent on entropy production. Entropy production is a measure of the rate of the tendency of Nature to explore available microstates. The most important irreversible process generating entropy in the biosphere and, thus, facilitating this exploration, is the absorption and transformation of sunlight into heat. Here we hypothesize that life began, and persists today, as a catalyst for the absorption and dissipation of sunlight on the surface of Archean seas. The resulting heat could then be efficiently harvested by other irreversible processes such as the water cycle, hurricanes, and ocean and wind currents. RNA and DNA are the most efficient of all known molecules for absorbing the intense ultraviolet light that penetrated the dense early atmosphere and are remarkably rapid in transforming this light into heat in the presence of liquid water. From this perspective, the origin and evolution of life, inseparable from water and the water cycle, can be understood as resulting from the natural thermodynamic imperative of increasing the entropy production of the Earth in its interaction with its solar environment. A mechanism is proposed for the reproduction of RNA and DNA without the need for enzymes, promoted instead through UV light dissipation and diurnal temperature cycling of the Archean sea-surface.

  13. Nonlinear evolution of a baroclinic wave and imbalanced dissipation

    Science.gov (United States)

    Nadiga, Balu

    2015-11-01

    The question of how ocean circulation equilibrates in the presence of continuous large-scale forcing and a tendency of geostrophic turbulence to confine energy to large and intermediate scales is considered. By considering the nonlinear evolution of an unstable baroclinic wave at small Rossby and Froude numbers (small aspect ratio domain) at high resolutions, it is shown that submesoscale instabilities provide an interior pathway between the energetic oceanic mesoscales and smaller unbalanced scales. An estimate of the magnitude of this pathway is presented. Phenomenology-wise, mesoscale shear and strain resulting from the primary baroclinic instability drive frontogenesis; fronts in turn support ageostrophic secondary circulation and instabilities. These two processes together lead to a quick rise in dissipation rate which then reaches a peak and begins to fall as frontogenesis slows down; eventually balanced and imbalanced modes decouple. Dissipation of balanced energy by imbalanced processes is shown to scale exponentially with Rossby number of the base flow. Further, a break is seen in the total energy (TE) spectrum at small scales with a transition from k-3 to k - 5 / 3 reminiscent of the atmospheric spectra of Nastrom & Gage. For details see JFM 756, 965-1006.

  14. Dissipation and fluctuation caused by statistical exchange of particles

    International Nuclear Information System (INIS)

    Feldmeier, H.; Spangenberger, H.

    1982-01-01

    Drift and diffusion coefficients are calculated for the dissipation caused by particle exchange between two Fermi gases. The goal is to find the probability rate W(p→, eta→) for the relative momentum p→ to change by a certain amount eta→ per time. The mean value of W(p→, eta→) with respect to eta→ determines the drift coefficient γ→ (friction force) and the record moments are the diffusion coefficients Dij which enter the Fokker-Planck equation. This way of calculating friction and diffusion does not a priori assume an Einstein relation. The general relation between both, the so called dissipation fluctuation theorem, manifests itself in calculating the coefficients as moments of the same probability distribution W(p→, eta→). To determine W(p→, eta→) one must consider the dynamical evolution of the system during a small time interval Δt. In the model, the two heavy ions are idealized as two Fermi gases having different mean velocities and being in contact at a window through which they can exchange particles

  15. SCALING OF THE ELECTRON DISSIPATION RANGE OF SOLAR WIND TURBULENCE

    International Nuclear Information System (INIS)

    Sahraoui, F.; Belmont, G.; Rétino, A.; Robert, P.; De Patoul, J.; Huang, S. Y.; Goldstein, M. L.

    2013-01-01

    Electron scale solar wind (SW) turbulence has attracted great interest in recent years. Considerable evidence exists that the turbulence is not fully dissipated near the proton scale, but continues cascading down to electron scales. However, the scaling of the magnetic energy spectra as well as the nature of the plasma modes involved at those small scales are still not fully determined. Here we survey 10 yr of the Cluster STAFF search-coil magnetometer waveforms measured in the SW and perform a statistical study of the magnetic energy spectra in the frequency range [1, 180] Hz. We found that 75% of the analyzed spectra exhibit breakpoints near the electron gyroscale ρ e , followed by steeper power-law-like spectra. We show that the scaling below the electron breakpoint cannot be determined unambiguously due to instrumental limitations that we discuss in detail. We compare our results to those reported in other studies and discuss their implications for the physical mechanisms involved and for theoretical modeling of energy dissipation in the SW

  16. [Study on energy dissipation in modified airlift bioreactor].

    Science.gov (United States)

    Jin, Ren-Cun; Zheng, Ping

    2005-09-01

    The effects of operational variables and reactor configurations (e.g. diameter of draft tube and the number of static mixers) on energy loss in modified airlift bioreactor were investigated at the first time. The results showed that improving the structure of draft tube could reduce energy loss in the bioreactor. When the diameter of draft tube and the number of static mixers were 4.0cm and 39, respectively, the total energy loss in the modified bioreactor was the least among all the configurations and 23.6% less than that of the conventional counterpart at the same air flowrate. The energy consumption for aeration was the smallest (43.9% less than that of the conventional counterpart) when the diameter of draft tube and the number of static mixers were 5.5cm and 13, respectively. The highest energy dissipation (70% - 80%) occurred in the riser, the bottom zone (about 20%) took the second place and the separator (less than 10%) took the third place. The energy dissipation in the downcomer was neglectable under the conditions in the research. When the energy loss per unit volume was considered, bottom zone stood the first place. It was implied that the riser was the most important zone to cut down the energy loss of the bioreactor and some attention should also be paid to the bottom zone.

  17. Analysing Vibrations of Dissipative Structures with Connection Disruption

    Science.gov (United States)

    Potapov, A.

    2017-11-01

    The article contains the mathematical models of vibrations and the algorithm to calculate a constructive nonlinear system in case of a sudden failure process in a connection. The calculation model of the structure is viewed as a discreet dissipative system. From the position of time analysis, the author derives the governing equation of the system reaction under static load before the failure. The author has conducted the analysis of the system reaction and has proved certain dependence for its parameters at the moment of connection fracture. For the critical time point we obtained the kinematic (movements, velocities and accelerations) and force parameters of reaction (restoring, dissipative and inertial forces) in two states of the calculation model: before and after the fracture. The article contains the derivation of analytical expressions defining the leap size of the dynamic reaction parameters of the calculation model at the moment of its damage. The author has presented the auxiliary reaction which allows one to evaluate the side effect caused by the constructive element disruption. The side effect reaction equation presents a vector difference of the reaction after and before the damage. The results are illustrated by the example of a two span steel beam the vibrations of which were caused by the sudden destruction of an intermediate support. The evaluation of the solution accuracy is also presented.

  18. Bayesian Analysis of Hot Jupiter Radii Points to Ohmic Dissipation

    Science.gov (United States)

    Thorngren, Daniel; Fortney, Jonathan J.

    2017-10-01

    The cause of the unexpectedly large radii of hot Jupiters has been the subject of many hypotheses over the past 15 years and is one of the long-standing open issues in exoplanetary physics. In our work, we seek to examine the population of 300 hot Jupiters to identify a model that best explains their radii. Using a hierarchical Bayesian framework, we match structure evolution models to the observed giant planets’ masses, radii, and ages, with a prior for bulk composition based on the mass from Thorngren et al. (2016). We consider various models for the relationship between heating efficiency (the fraction of flux absorbed into the interior) and incident flux. For the first time, we are able to derive this heating efficiency as a function of planetary T_eq. Models in which the heating efficiency decreases at the higher temperatures (above ~1600 K) are strongly and statistically significantly preferred. Of the published models for the radius anomaly, only the Ohmic dissipation model predicts this feature, which it explains as being the result of magnetic drag reducing atmospheric wind speeds. We interpret our results as strong evidence in favor of the Ohmic dissipation model.

  19. Large strain viscoelastic dissipation during interfacial rupture in laminated glass.

    Science.gov (United States)

    Elzière, Paul; Dalle-Ferrier, Cécile; Creton, Costantino; Barthel, Étienne; Ciccotti, Matteo

    2017-02-22

    In the dynamic rupture of laminated glass, it is essential to maximize energy dissipation. To investigate the mechanisms of energy dissipation, we have experimentally studied the delamination and stretching of a polymeric viscoelastic interlayer sandwiched between glass plates. We find that there is a velocity and temperature domain in which delamination fronts propagate in a steady state manner. At lower velocities, fronts are unstable, while at higher velocities, the polymer ruptures. Studying the influence of the interlayer thickness, we have shown that the macroscopic work of fracture during the delamination of the interlayer can be divided in two main components: (1) a near crack work of fracture which is related to the interfacial rupture and to the polymer deformation in the crack vicinity. (2) A bulk stretching work, which relates to the stretching of the interlayer behind the delamination front. Digital image correlation measurements showed that the characteristic length scale over which this stretching occurs is of the order of the interlayer thickness. Finally, an estimate of the bulk stretching work was provided, based on a simple uniaxial tensile test.

  20. Dissipation of glyphosate from grapevine soils in Sonora, Mexico

    Directory of Open Access Journals (Sweden)

    Norma J. Salazar López

    2016-10-01

    Full Text Available Grapevine is one of the important crops in Sonora, due to revenue generation from its export to foreign countries. Among the most widely used herbicides for this crop is glyphosate, which is considered moderately toxic and persistent. The present research evaluates the dissipation of glyphosate in grapevine planted soil at three depths (5, 30 and 60 cm. Sampling was carried out before glyphosate application, and 5, 10, 18, 27, and 65 days after. Glyphosate was extracted from soil samples using ammonium hydroxide. The derivate extracts were partitioned with dichloromethane and analyzed using gas chromatography with pulsed flame photometric detector (PFPD. The results showed that average glyphosate residues are significantly greater at 5 cm (0.09 mg kg-1 than the other depths (30 and 60 cm, having a difference of 0.078 mg kg-1 between them (P < 0.03. Glyphosate concentration time profiles were similar; it reached maximum soil concentration in a range of 10 to 18 days after application. The half-life of glyphosate in soil has an average of 39 days at all depths. Our data suggests that the release in soil of glyphosate applied to weeds delays its transference to soil by 14 days, and extends residue half life to 55 days after application. These results could be the basis for further research, including more environmental parameters that could affect the dissipation or degradation process in soil.