WorldWideScience

Sample records for dry-storage dual-purpose casks

  1. Possible use of dual purpose dry storage casks for transportation and future storage of spent nuclear fuel from IRT-Sofia

    International Nuclear Information System (INIS)

    Manev, L.; Baltiyski, M.

    2003-01-01

    Objectives: The main objective of the present paper is related to one of the priority goals stipulated in Bulgarian Governmental Decision No.332 from May 17, 1999 - removal of SNF from IRT-Sofia site and its exporting for reprocessing and/or for temporary storage at Kozloduy NPP site. The variant of using dual purpose dry storage casks for transportation and future temporary storage of SNF from IRT-Sofia aims to find out a reasonable alternative of the existing till now variant for temporary SNF storage under water in the existing Kozloduy NPP Spent Fuel Storage Facility until its export for reprocessing. Results: Based on the given data for the condition of 73 Spent Nuclear Fuel Assemblies (SNFA) stored in the storage pool and technical data as well as data for available equipment and IRT-Sofia layout the following framework are specified: draft technical features of dual purpose dry storage casks and their overall dimensions; the suitability of the available equipment for safety and reliable performance of transportation and handling operations of assemblies from storage pool to dual purpose dry storage casks; the necessity of new equipment for performance of the above mentioned operations; Assemblies' transportation and handling operations are described; requirements to and conditions for future safety and reliable storage of SNFA loaded casks are determined. When selecting the technical solutions for safety assurance during performance of site handling operations of IRT-Sofia and for description of the exemplary casks the Effective Bulgarian Regulations are considered. The experience of other countries in performance of transfer and transportation of SNFA from such types of research reactors is taken into account. Also, Kozloduy NPP experience in SNF handling operations is taken into account. Conclusions: The Decision of Council of Minister for refurbishment of research reactor into a low power one and its future utilization for experimental and training

  2. Development of dual-purpose metal cask for interim storage of spent nuclear fuel (1). Outline of cask structure

    International Nuclear Information System (INIS)

    Shimizu, Masashi; Hayashi, Makoto; Kashiwakura, Jun

    2003-01-01

    Spent fuels discharged from nuclear power plants in Japan are planed to be reprocessed at the nuclear fuel recycle plant under construction at Rokkasho-mura. Since the amount of the spent fuels exceeds that of recycled fuel, the spent fuels have to be properly stored and maintained as recycle fuel resource until the beginning of the reprocessing. For that sake, interim storage installations are being constructed outside the nuclear power plants by 2010. The storage dry casks have been practically used as the interim storage in the nuclear power plants. From this reason, the storage system using the storage dry casks is promising as the interim storage installations away form the reactors, which are under discussion. In the interim storage facilities, the storage using the dry cask of the storage metal cask with business showings, having the function of transportation is now under discussion. By employing transportation and storage dual-purpose cask, the repack equipments can be exhausted, and the reliability of the interim storage installations can be increased. Hitachi, Ltd. has been developing the high reliable and economical transportation and storage dry metal cask. In this report, the outline of our developing transportation and storage dry cask is described. (author)

  3. Technical issues affecting the transport of dual purpose casks

    International Nuclear Information System (INIS)

    Sanders, T.L.; Ottinger, C.A.; Brimhall, J.L.; Gilbert, E.R.; Jones, R.H.

    1989-01-01

    Approximately 60,000 metric tons of uranium (MTU) spent fuel will be discharged by the projected 2003 startup date of a federal disposal system. Of this, approximately 15,000 MTU will require storage outside existing or projected pool storage capabilities (Orvis et al., 1984). At-reactor dry storage of spent fuel, including vault, caisson, and cask systems, is being considered as an alternative to accommodate this excess fuel. Two dry storage cask concepts are among those under consideration. One involves placing spent fuel in storage-only casks (SOC) until a monitored retrievable storage (MRS) facility or repository is open, when the spent fuel would be transferred to a transport-only cask (TOC) for shipment. The second option, the dual purpose or transportable storage cask (TSC), is a system that would serve for both storage and later transport. To carry out its purpose, a TSC must be shipped directly from a storage facility to a disposal facility without first being opened to evaluate the cask or the fuel. To assure that both the fuel and the cask are in a transportable condition after 20 to 40 years of storage requires: (1) a definition of expected storage conditions; (2) an assessment of the impact of expected storage conditions on the reliability of the components and functions of the TSC during transport; and (3) the development of an overall TSC system design and operational strategy which ensures that TSC transport reliability compares to that of a transport-only cask. The later requirement is related to defining what appropriate design features, pre-shipment inspection, and/or alternative fuel and cask monitoring requirements are necessary during long-term storage to ensure the cask will meet transport performance requirements during later transport. 8 refs., 1 fig., 1 tab

  4. Preliminary safety analysis of criticality for dual-purpose metal cask under dry storage conditions in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taeman, E-mail: tmkim@korad.or.kr [Korea Radioactive Waste Agency (KORAD), 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Dho, Hoseog; Baeg, Chang-Yeal [Korea Radioactive Waste Agency (KORAD), 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Lee, Gang-uk [Korea Nuclear Engineering and Service Co. (KONES), Hyundai Plaza, 341-4 Jangdae-dong, Yuseong-gu, Daejeon (Korea, Republic of)

    2014-10-15

    Highlights: • DPC is under development led by Korea Radioactive Waste Agency in South Korea. • The results of criticality analysis with respect to design requirements. • The k{sub eff} under normal and off-normal conditions were 0.36 and 0.46, respectively. • In addition, the k{sub eff} under a postulated accident condition was evaluated to be 0.94. - Abstract: A dual-purpose metal cask is under development led by Korea Radioactive Waste Agency (KORAD) in Korea, for the dry interim storage and long-distance transportation. This cask comprises a main body made of carbon steel and a stainless steel Dry Shielded Canister (DSC), with stainless steel baskets inside to contain spent fuel assemblies. In this study, nuclear criticality safety analysis was conducted as a part of safety assessment of the metal cask. Analysis to show criticality safety in accordance with regulatory requirements of PWR spent fuel storage was carried out. 10CFR72.124 “Criteria for nuclear criticality safety” and the Regulatory Guide of the American Nuclear Society, ANSI/ANS-57.9 “Design Criteria for an Independent Spent Fuel” and US NRC's “Standard Review Plan for Spent Fuel Dry Storage Systems at a General License Facility” were employed as regulatory standard and criteria. This paper shows results of criticality analysis with respect to each designated criterion with modeling of a virtual nuclear fuel assembly and a cask body that induces the maximum reactivity among various design basis fuels of the metal cask. In addition, the sensitivity analysis of nuclear criticality taking into account the various modeling deviation such as manufacturing tolerance and modeling assumptions of conventional models was carried out to ensure the reliability of the analysis result. The criticality evaluation result of the metal cask and the maximum k{sub eff} under normal and off-normal conditions were 0.36884 and 0.46255, respectively. The maximum k{sub eff} under a postulated

  5. Technical issues affecting the transport of dual purpose casks

    International Nuclear Information System (INIS)

    Sanders, T.L.; Ottinger, C.A.; Brimhall, J.L.; Gilbert, E.R.; Jones, R.H.

    1989-01-01

    Spent fuel storage pools at many nuclear reactors in the US have already or will soon be filled to maximum capacity. Approximately 50,000 metric tons of uranium (MTU) spent fuel will be discharged by the projected 2003 start-up date of a federal disposal system. Of this, approximately 6,000 MTU will require storage outside existing or projected pool storage capabilities (DOE, 1988). At-reactor dry storage of spent fuel, including vault, caisson, and cask systems, is being considered as an alternative to accommodate this excess fuel. Two dry storage cask concepts are among those under consideration. One involves placing spent fuel in storage-only casks (SOC) until a monitored retrievable storage (MRS) facility or repository is open when the spent fuel would be transferred to a transport-only cask (TOC) for shipment. The second option, the dual purpose or transportable storage cask (TSC), is a system that would serve for both storage and later transport without requiring the spent fuel to be unloaded. To carry out its purpose, a TSC must be shipped directly from a storage facility to a disposal facility without first being opened to evaluate the cask or the fuel. To assure that both the fuel and the cask are in a transportable condition after 20 to 40 years of storage requires: (1) a definition of expected storage conditions; (2) an assessment of the impact of expected storage conditions on the reliability of the components and functions of the TSC during transport; and (3) the development of an overall TSC system design and operational strategy which ensures that TSC transport reliability meets or exceeds that of a transport-only cask. The later requirement is related to defining what appropriate design features, pre-shipment inspections, and/or alternative fuel and cask monitoring requirements are necessary during long-term storage to ensure the cask will meet transport requirements during later transport

  6. Testing of the dual slab verification detector for attended measurements of the BN-350 dry storage casks

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter A [Los Alamos National Laboratory; Browne, Michael C [Los Alamos National Laboratory; Williams, Richard B [Los Alamos National Laboratory; Parker, Robert F [Los Alamos National Laboratory

    2009-01-01

    The Dual Slab Verification Detector (DSVD) has been developed and built by Los Alamos National Laboratory in cooperation with the International Atomic Energy Agency (IAEA) as part of the dry storage safeguards system for the spent fuel from the BN-350 fast reactor. The detector consists of two rows of {sup 3}He tubes embedded in a slab of polyethylene which has been designed to be placed on the outer surface of the dry storage cask. The DSVD will be used to perform measurements of the neutron flux emanating from inside the dry storage cask at several locations around each cask to establish a neutron 'fingerprint' that is sensitive to the contents of the cask. The sensitivity of the fingerprinting technique to the removal of specific amount of nuclear material from the cask is determined by the characteristics of the detector that is used to perform the measurements, the characteristics of the spent fuel being measured, and systematic uncertainties that are associated with the dry storage scenario. MCNPX calculations of the BN-350 dry storage asks and layout have shown that the neutron fingerprint verification technique using measurements from the DSVD would be sensitive to both the amount and location of material that is present within an individual cask. To confirm the performance of the neutron fingerprint technique in verifying the presence of BN-350 spent fuel in dry storage, an initial series of measurements have been performed to test the performance and characteristics of the DSVD. Results of these measurements will be presented and compared with MCNPX results.

  7. Design of dry cask storage for Serpong multi purpose reactor spent nuclear fuel

    International Nuclear Information System (INIS)

    Dyah Sulistyani Rahayu; Yuli Purwanto; Zainus Salimin

    2018-01-01

    The spent nuclear fuel (SNF) from Serpong Multipurpose Reactor, after 100 days storing in the reactor pond, is transferred to water pool interim storage for spent fuel (ISFSF). At present there are a remaining of 245 elements of SNF on the ISSF, 198 element of which have been re-exported to the USA. The dry-cask storage allows the SNF, which has already been cooled in the ISSF, to lower its radiation exposure and heat decay at a very low level. Design of the dry cask storage for SNF has been done. Dual purpose of unventilated vertical dry cask was selected among other choices of metal cask, horizontal concrete modules, and modular vaults by taking into account of technical and economical advantages. The designed structure of cask consists of SNF rack canister, inner steel liner, concrete shielding of cask, and outer steel liner. To avoid bimetallic corrosion, the construction material for canister and inner steel liner follows the same material construction of fuel cladding, i.e. the alloy of AlMg 2 . The construction material of outer steel liner is copper to facilitate the heat transfer from the cask to the atmosphere. The total decay heat is transferred from SNF elements bundle to the atmosphere by a serial of heat transfer resistance for canister wall, inner steel liner, concrete shielding, and outer steel liner respectedly. The rack canister optimum capacity of 34 fuel elements was designed by geometric similarity method based on SNF position arrangement of 7 x 6 triangular pitch array of fuel elements for prohibiting criticality by spontaneous neutron. The SNF elements are stored vertically on the rack canister. The thickness of concrete wall shielding was calculated by trial and error to give air temperature of 30 °C and radiation dose on the wall surface of outer liner of 200 mrem/h. The SNF elements bundles originate from the existing racks of wet storage, i.e. rack canister no 3, 8 and 10. The value of I 0 from the rack no 3, 8 and 10 are 434.307; 446

  8. Development of spent fuel dry storage technology

    International Nuclear Information System (INIS)

    Maruoka, Kunio; Matsunaga, Kenichi; Kunishima, Shigeru

    2000-01-01

    The spent fuels are the recycle fuel resources, and it is very important to store the spent fuels in safety. There are two types of the spent fuel interim storage system. One is wet storage system and another is dry storage system. In this study, the dry storage technology, dual purpose metal cask storage and canister storage, has been developed. For the dual purpose metal cask storage, boronated aluminum basket cell, rational cask body shape and shaping process have been developed, and new type dual purpose metal cask has been designed. For the canister storage, new type concrete cask and high density vault storage technology have been developed. The results of this study will be useful for the spent fuel interim storage. Safety and economical spent fuel interim storage will be realized in the near future. (author)

  9. Combined Thermal Management and Power Generation Concept for the Spent Fuel Dry Storage Cask

    International Nuclear Information System (INIS)

    Kim, In Guk; Bang, In Cheol

    2017-01-01

    The management of the spent nuclear fuel generated by nuclear power plants is a major issue in Korea due to insufficient capacity of the wet storage pools. Therefore, it is considered that dry storage system is the one possible solution for storing spent fuel. A dual-purpose metal cask (transportation and storage) is currently developing in Korea. This cask has 21 of fuel assemblies and 16.8 kW of maximum decay heat. To evaluate the critical safety in normal/off normal and accident conditions, critical stabilities were conducted by using CSAS 6.0. The experimental investigation of heat removal of a concrete storage cask was also conducted under normal, off normal and accident conditions. The results of the evaluation showed a good safety of the dry storage cask. The results showed the enhanced thermal performance according to modification of flow rate. To verify combined thermal management and power generation concept, a new type of test facility for dry storage cask was designed in 1/10 scale of concrete dry storage cask. The experimental study involved the cooling methods that are an integrated system on the top of the dry cask and air flow path on the canister wall. The results showed the temperature distribution of the wall and inside of the dry cask at the normal condition. The influence of the change of the heat load and cooling system were investigated. The heat removal by the integrated system is approximately 20% of the total heat removal of the dry cask with reduced wall temperature. In these tests, economic analysis is conducted by applying the concept of the cost and efficiency. Under different decay power cases, the energy efficiency of the heat pipe and Stirling engine are determined and compared based on experimental results. The average efficiencies of the Stirling engine were the range of 2.375 to 3.247% under the power range of 35– 65W. These results showed that advanced dry storage concept had a better cooling performance in comparison with

  10. Developing new transportable storage casks for interim dry storage

    International Nuclear Information System (INIS)

    Hayashi, K.; Iwasa, K.; Araki, K.; Asano, R.

    2004-01-01

    Transportable storage metal casks are to be consistently used during transport and storage for AFR interim dry storage facilities planning in Japan. The casks are required to comply with the technical standards of regulations for both transport (hereinafter called ''transport regulation'') and storage (hereafter called ''storage regulation'') to maintain safety functions (heat transfer, containment, shielding and sub-critical control). In addition to these requirements, it is not planned in normal state to change the seal materials during storage at the storage facility, therefore it is requested to use same seal materials when the casks are transported after storage period. The dry transportable storage metal casks that satisfy the requirements have been developed to meet the needs of the dry storage facilities. The basic policy of this development is to utilize proven technology achieved from our design and fabrication experience, to carry out necessary verification for new designs and to realize a safe and rational design with higher capacity and efficient fabrication

  11. The evaluation of minimum cooling period for loading of PWR spent nuclear fuel of a dual purpose metal cask

    Energy Technology Data Exchange (ETDEWEB)

    Dho, Ho Seog; Kim, Tae Man; Cho, Chun Hyung [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2016-12-15

    Recently, because the wet pool storage facilities of NPPs in Korea has become saturated, there has been much active R and D on an interim dry storage system using a transportation and storage cask. Generally, the shielding evaluation for the design of a spent fuel transportation and storage cask is performed by the design basis fuel, which selects the most conservative fuel among the fuels to be loaded into the cask. However, the loading of actual spent fuel into the transportation metal cask is not limited to the design basis fuel used in the shielding evaluation; the loading feasibility of actual spent fuel is determined by the shielding evaluation that considers the characteristics of the initial enrichment, the maximum burnup and the minimum cooling period. This study describes a shielding analysis method for determining the minimum cooling period of spent fuel that meets the domestic transportation standard of the dual purpose metal cask. In particular, the spent fuel of 3.0-4.5wt% initial enrichment, which has a large amount of release, was evaluated by segmented shielding calculations for efficient improvement of the results. The shielding evaluation revealed that about 81% of generated spent fuel from the domestic nuclear power plants until 2008 could be transported by the dual purpose metal cask. The results of this study will be helpful in establishing a technical basis for developing operating procedures for transportation of the dual purpose metal cask.

  12. The evaluation of minimum cooling period for loading of PWR spent nuclear fuel of a dual purpose metal cask

    International Nuclear Information System (INIS)

    Dho, Ho Seog; Kim, Tae Man; Cho, Chun Hyung

    2016-01-01

    Recently, because the wet pool storage facilities of NPPs in Korea has become saturated, there has been much active R and D on an interim dry storage system using a transportation and storage cask. Generally, the shielding evaluation for the design of a spent fuel transportation and storage cask is performed by the design basis fuel, which selects the most conservative fuel among the fuels to be loaded into the cask. However, the loading of actual spent fuel into the transportation metal cask is not limited to the design basis fuel used in the shielding evaluation; the loading feasibility of actual spent fuel is determined by the shielding evaluation that considers the characteristics of the initial enrichment, the maximum burnup and the minimum cooling period. This study describes a shielding analysis method for determining the minimum cooling period of spent fuel that meets the domestic transportation standard of the dual purpose metal cask. In particular, the spent fuel of 3.0-4.5wt% initial enrichment, which has a large amount of release, was evaluated by segmented shielding calculations for efficient improvement of the results. The shielding evaluation revealed that about 81% of generated spent fuel from the domestic nuclear power plants until 2008 could be transported by the dual purpose metal cask. The results of this study will be helpful in establishing a technical basis for developing operating procedures for transportation of the dual purpose metal cask

  13. Developing new transportable storage casks for interim dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, K.; Iwasa, K.; Araki, K.; Asano, R. [Hitachi Zosen Diesel and Engineering Co., Ltd., Tokyo (Japan)

    2004-07-01

    Transportable storage metal casks are to be consistently used during transport and storage for AFR interim dry storage facilities planning in Japan. The casks are required to comply with the technical standards of regulations for both transport (hereinafter called ''transport regulation'') and storage (hereafter called ''storage regulation'') to maintain safety functions (heat transfer, containment, shielding and sub-critical control). In addition to these requirements, it is not planned in normal state to change the seal materials during storage at the storage facility, therefore it is requested to use same seal materials when the casks are transported after storage period. The dry transportable storage metal casks that satisfy the requirements have been developed to meet the needs of the dry storage facilities. The basic policy of this development is to utilize proven technology achieved from our design and fabrication experience, to carry out necessary verification for new designs and to realize a safe and rational design with higher capacity and efficient fabrication.

  14. Dry Cask Storage Characterization Project - Phase 1: CASTOR V/21 Cask Opening and Examination

    Energy Technology Data Exchange (ETDEWEB)

    Bare, Walter Claude; Ebner, Matthias Anthony; Torgerson, Laurence Dale

    2001-08-01

    This report documents visual examination and testing conducted in 1999 and early 2000 at the Idaho National Engineering and Environmental Laboratory (INEEL) on a Gesellschaft für Nuklear Service (GNS) CASTOR V/21 pressurized water reactor (PWR) spent fuel dry storage cask. The purpose of the examination and testing is to develop a technical basis for renewal of licenses and Certificates of Compliance for dry storage systems for spent nuclear fuel and high-level waste at independent spent fuel storage installation sites. The examination and testing was conducted to assess the condition of the cask internal and external surfaces, cask contents consisting of 21 Westinghouse PWR spent fuel assemblies from Dominion’s (formerly named Virginia Power) Surry Power Station and cask concrete storage pad. The assemblies have been continuously stored in the CASTOR cask since 1985. Cask exterior surface and selected fuel assembly temperatures, and cask surface gamma and neutron dose rates were measured. Cask external/internal surfaces, fuel basket components including accessible weldments, fuel assembly exteriors, and primary lid seals were visually examined. Selected fuel rods were removed from one fuel assembly, visually examined, and then shipped to Argonne National Laboratory for nondestructive, destructive, and mechanical examination. Cask interior crud samples and helium cover gas samples were collected and analyzed. The results of the examination and testing indicate the concrete storage pad, CASTOR V/21 cask, and cask contents exhibited sound structural and seal integrity and that long-term storage has not caused detectable degradation of the spent fuel cladding or the release of gaseous fission products between 1985 and 1999.

  15. IAEA'S International Working Group on Integrated Transport and Storage Safety case for Dual Purpose Casks

    International Nuclear Information System (INIS)

    Kumano, Yumiko; Varley, Kasturi; ); Droste, Bernhard; Wolff, Dietmar; Hirose, Makoto; Harvey, John; Reiche, Ingo; McConnell, Paul

    2014-01-01

    Spent nuclear fuel is generated from the operation of nuclear reactors and it is imperative that it is safely managed following its removal from reactor cores. Reactor pools are usually designed based on the assumption that the fuel will be removed after a short period of time either for reprocessing, disposal, or further storage. As a result of storing higher burn-up fuel, significantly increased time-frame till disposal solutions are prepared, and delays in decisions on strategies for spent fuel management, the volume of spent fuel discharged from reactors which needs to be managed and stored is on the increase. Consequently, additional storage capacity is needed following the initial storage in reactor pools. Options for additional storage include wet storage or dry storage in a dedicated facility or in storage casks. One of these options is the use of a Dual Purpose Cask (DPC), which is a specially designed cask for both storage and transport. The management of spent fuel using a DPC generally involves on-site and off-site transportation before and after storage. Most countries require package design approval for the DPC to be transported. In addition, it is required in many countries to have a licence for storage of the spent fuel in the DPC or a licence for a storage facility that contains DPCs. Therefore, demonstration of compliance of the DPC with national and international transport regulations as well as with the storage requirements is necessary. In order to address this increasing need among Member States, the IAEA established an international working group in 2010 to develop a guidance for integrating safety cases for both storage and transport in a holistic manner. The working group consists of experts from regulatory bodies, Technical Support Organizations, operators for both transportation and storage, and research institutes. This activity is planned to be completed by 2013. Currently, a technical report has been drafted and is expected to be

  16. Moving the largest capacity PWR dual-purpose cask in the world from Goesgen NPP to the Zwilag interim storage site

    International Nuclear Information System (INIS)

    Delannay, M.; Dudragne, S.

    2002-01-01

    The Swiss Goesgen nuclear power plant (NPP) has decided to use two different methods for the disposal of its spent fuel. (1) To reprocess some of its spent fuel in dedicated facilities. Some of the vitrified waste from the reprocessing will be shipped back to Switzerland using the new COGEMA Logistics, TN81 cask. (2) To ship the other part of its spent fuel to the central interim storage facility of Zwilag (Switzerland) using a COGEMA Logistics dual-purpose TN24G cask. The TN24G is the heaviest and largest dual-purpose cask manufactured so far by COGEMA Logistics in Europe. It is intended for the transport and storage of 37 pressurised water-reactor (PWR) spent fuel assemblies. Four casks were delivered by COGEMA Logistics to Goesgen NPP. Three transports of loaded TN24G casks between Goesgen and Zwilag were successfully performed at the beginning of 2002 with the new COGEMA Logistics Q76 wagon specifically designed to transport heavy casks. This article describes the procedure of operations and shipments for the first TN24G casks up to storage at Zwilag. The fourth transport of loaded TN24G was due to happen in October 2002. The TN24G cask, as part of the TN24 casks family, proved to be a very efficient solution for the KKG spent fuel management. (author)

  17. Design Of Dry Cask Storage For Serpong Multipurpose Reactor Spent Nuclear Fuel

    Directory of Open Access Journals (Sweden)

    Dyah Sulistyani Rahayu

    2018-03-01

    Full Text Available DESIGN OF DRY CASK STORAGE FOR SERPONG MULTI PURPOSE REACTOR SPENT NUCLEAR FUEL. The spent nuclear fuel (SNF from Serpong Multipurpose Reactor, after 100 days storing in the reactor pond, is transferred to water pool interim storage for spent fuel (ISFSF. At present there are a remaining of 245 elements of SNF on the ISSF,198 element of which have been re-exported to the USA. The dry-cask storage allows the SNF, which has already been cooled in the ISSF, to lower its radiation exposure and heat decayat a very low level. Design of the dry cask storage for SNF has been done. Dual purpose of unventilated vertical dry cask was selected among other choices of metal cask, horizontal concrete modules, and modular vaults by taking into account of technical and economical advantages. The designed structure of cask consists of SNF rack canister, inner steel liner, concrete shielding of cask, and outer steel liner. To avoid bimetallic corrosion, the construction material for canister and inner steel liner follows the same material construction of fuel cladding, i.e. the alloy of AlMg2. The construction material of outer steel liner is copper to facilitate the heat transfer from the cask to the atmosphere. The total decay heat is transferred from SNF elements bundle to the atmosphere by a serial of heat transfer resistance for canister wall, inner steel liner, concrete shielding, and outer steel liner respectedly. The rack canister optimum capacity of 34 fuel elements was designed by geometric similarity method basedon SNF position arrangement of 7 x 6 triangular pitch array of fuel elements for prohibiting criticality by spontaneous neutron. The SNF elements are stored vertically on the rack canister.  The thickness of concrete wall shielding was calculated by trial and error to give air temperature of 30 oC and radiation dose on the wall surface of outer liner of 200 mrem/h. The SNF elements bundles originate from the existing racks of wet storage, i

  18. Criticality studies for dry storage cask

    International Nuclear Information System (INIS)

    Krishnani, P.D.; Srinivasan, K.R.

    1993-01-01

    Spent nuclear fuel from Tarapur Atomic Power Station (TAPS) is stored in a storage pool located inside the reactor building. The capacity of this pool was initially to meet storage requirements of 528 bundles which was later augmented from time to time. Since the enhanced capacity was also getting exhausted, setting up of a storage pool away from reactor was envisaged. As an interim measure, the dry storage casks were designed to store the spent fuel already cooled for a few years in the storage pools. If water enters the cask, the cask interior may be covered with steam water or air-water mixture. This paper gives the results of criticality calculations for storage cask under various conditions of steam water mixture, using the computer code LWRBOX. In these calculations, it has been assumed that the cask contains the most reactive fuel assemblies of reload-1 at zero burnup. It also gives the comparison of some of the results with General Electric (GE) calculations. (author). 3 refs., 1 fig., 2 tabs

  19. Calculation of radiation exposure of the environment of interim storage facilities for the dry storage of spent fuel in dual-purpose casks

    Energy Technology Data Exchange (ETDEWEB)

    Wortmann, B.; Stratmann, W. [STEAG Encotec GmbH, Essen (Germany)

    2004-07-01

    Acceptance problems in the public concerning the transport of spent nuclear fuel elements and a new political objective of the Federal Government have forced the German utilities to embark on on-site interim storage projects for the temporary storage of spent nuclear fuel elements. STEAG encotec GmbH, Essen, Germany, was awarded contracts for the conceptual planning including necessary shielding calculations for the majority of the 13 nuclear sites which opted for the dry storage concept. The capacity of the storage facilities ranges from 80 to 100 casks, according to the storage needs of the plants. The average dose rate at the surface of each cask was limited to 0.5 mSv/h, independent of the type of radiation. These new buildings should not significantly increase the exposure of the public to radiation already originating from the existing nuclear power plant. The layout of the storage building therefore has to ensure that additional target values of 10-20 iSv/y are not exceeded. These very low target values as well as the requirement to avoid high mechanical impacts to the casks in case of external events led to a thickness of walls and ceilings of between 1.2 m and 1.3 m. To remove the decay heat from the casks by natural convection sufficient cross sections of the air inlet and outlet ducts are required.

  20. Dry cask storage: a Vepco/DOE/EPRI cooperative demonstration program

    International Nuclear Information System (INIS)

    Smith, M.L.

    1984-01-01

    In response to a Department of Energy (DOE) Solicitation for Cooperative Agreement Proposal, Virginia Electric and Power Company (Vepco) proposed to participate in a spent fuel storage demonstration program utilizing the dry cask storage technology. This proposed program includes dry cask storage at Vepco's Surry Nuclear Power Station and research and development activities at a DOE site in support of the licensed program at Surry. Phase I of Vepco's two-phase program involves a demonstration of the licensed dry cask storage of spent fuel in an inert atmosphere at the Surry Power Station site. Phase II of Vepco's proposed program will involve the demonstration of storing unconsolidated and consolidated spent fuel in dry casks filled only with air. This phase of the program will involve DOE site testing similar to Phase I and is expected to require an additional (fourth) cask to demonstrate storage of unconsolidated spent fuel in air-filled casks

  1. Seal performance of thermal aged metal gasket of dual purpose metal cask for interim spent fuel storage after external impact load

    International Nuclear Information System (INIS)

    Takeshi Yokoyama; Masami Kato; Satoshi Itooka

    2005-01-01

    As for interim storage for spent nuclear fuels using dual purpose dry metal cask in Japan, we recognize one of the important technical issues that there is a possibility for the cask with degraded metal gasket during storage to apply to transportation. In our study until 2003 focused on degradation of important components for the cask safety performance during storage and application to transportation, for metal gasket, we conducted property tests for degradation and influence of lid movement on seal performance, and furthermore verification tests. From the results, we developed the method to evaluate leak rate from lid with degraded metal gasket at accidents during transportation and in addition, we found as follows: Lid would hardly move and leak rate would not increase seriously during fire event. Leak rate from lid with degraded metal gasket could be evaluated by using results of leak rate trend depending on horizontal displacement of lid by external impact load. So, with regard to influence of lid movement on seal performance, we conducted additional test for extending horizontal displacement in lid moving in 2004. In addition, seal performance was discussed from the results, both previous and latest test. (authors)

  2. Estimation of terrorist attack resistibility of dual-purpose cask TP-117 with DU (depleted uranium) gamma shield

    International Nuclear Information System (INIS)

    Alekseev, O.G.; Matveev, V.Z.; Morenko, A.I.; Il'kaev, R.I.; Shapovalov, V.I.

    2004-01-01

    Report is devoted to numerical research of dual-purpose unified cask (used for SFA transportation and storage) resistance to terrorist attacks. High resistance of dual-purpose unified cask has been achieved due to the unique design-technological solutions and implementation of depleted uranium in cask construction. In suggested variant of construction depleted uranium fulfils functions of shielding and constructional material. It is used both in metallic and cermet form (basing on steel and depleted uranium dioxide). Implementation of depleted uranium in cask construction allows maximal load in existing overall dimensions of the cask. At the same time: 1) all safety requirements (IAEA) are met, 2) dual-purpose cask with SFA has high resistance to terrorist attacks

  3. Estimation of terrorist attack resistibility of dual-purpose cask TP-117 with DU (depleted uranium) gamma shield

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, O.G.; Matveev, V.Z.; Morenko, A.I.; Il' kaev, R.I.; Shapovalov, V.I. [Russian Federal Nuclear Center - All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation)

    2004-07-01

    Report is devoted to numerical research of dual-purpose unified cask (used for SFA transportation and storage) resistance to terrorist attacks. High resistance of dual-purpose unified cask has been achieved due to the unique design-technological solutions and implementation of depleted uranium in cask construction. In suggested variant of construction depleted uranium fulfils functions of shielding and constructional material. It is used both in metallic and cermet form (basing on steel and depleted uranium dioxide). Implementation of depleted uranium in cask construction allows maximal load in existing overall dimensions of the cask. At the same time: 1) all safety requirements (IAEA) are met, 2) dual-purpose cask with SFA has high resistance to terrorist attacks.

  4. Multi-purpose canister storage unit and transfer cask thermal analysis

    International Nuclear Information System (INIS)

    Montgomery, R.A.; Niemer, K.A.; Lindner, C.N.

    1997-01-01

    Spent Nuclear Fuel (SNF) generated at commercial nuclear power plants throughout the US is a concern because of continued delays in obtaining a safe, permanent disposal facility. Most utilities maintain their SNF in wet storage pools; however, after decades of use, many pools are filled to capacity. Unfortunately, DOE's proposed final repository at Yucca Mountain is at least 10 years from completion, and commercial power utilities have few options for SNF storage in the interim. The Multi-Purpose Canister (MPC) system, sponsored by DOE's Office of Civilian Radioactive Waste Management, is a viable solution to the interim storage problem. The system is designed for interim dry storage, transport, and ultimate disposal of commercial SNF. The MPC system consists of four separate components: an MPC, Transfer Cask, Storage Unit, and Transport Cask. The SNF assemblies are loaded and sealed inside the helium-filled steel MPC. Once sealed, the MPC is not reopened, eliminating the need to re-handle the individual spent fuel assemblies. The MPC is transferred, using the MPC Transfer Cask, into a cylindrical, reinforced-concrete Storage Unit for on-site dry storage. The MPC may be removed from the Storage Unit at any time and transferred into the MPC Transport Cask for transport to the final repository. This paper discusses the analytical approach used to evaluate the heat transfer characteristics of an MPC containing SNF assemblies in the MPC Transfer Cask and Storage Unit

  5. Considerations for Disposition of Dry Cask Storage System Materials at End of Storage System Life

    International Nuclear Information System (INIS)

    Howard, Rob; Van den Akker, Bret

    2014-01-01

    Dry cask storage systems are deployed at nuclear power plants for used nuclear fuel (UNF) storage when spent fuel pools reach their storage capacity and/or the plants are decommissioned. An important waste and materials disposition consideration arising from the increasing use of these systems is the management of the dry cask storage systems' materials after the UNF proceeds to disposition. Thermal analyses of repository design concepts currently under consideration internationally indicate that waste package sizes for the geologic media under consideration may be significantly smaller than the canisters being used for on-site dry storage by the nuclear utilities. Therefore, at some point along the UNF disposition pathway, there could be a need to repackage fuel assemblies already loaded into the dry storage canisters currently in use. In the United States, there are already over 1650 of these dry storage canisters deployed and approximately 200 canisters per year are being loaded at the current fleet of commercial nuclear power plants. There is about 10 cubic meters of material from each dry storage canister system that will need to be dispositioned. The concrete horizontal storage modules or vertical storage overpacks will need to be reused, re-purposed, recycled, or disposed of in some manner. The empty metal storage canister/cask would also have to be cleaned, and decontaminated for possible reuse or recycling or disposed of, likely as low-level radioactive waste. These material disposition options can have impacts of the overall used fuel management system costs. This paper will identify and explore some of the technical and interface considerations associated with managing the dry cask storage system materials. (authors)

  6. Effect of a dual-purpose cask payload increment of spent fuel assemblies from VVER 1000 Bushehr Nuclear Power Plant on basket criticality

    International Nuclear Information System (INIS)

    Rezaeian, M.; Kamali, J.

    2017-01-01

    Dual-purpose casks can be utilized for dry interim storage and transportation of the highly radioactive spent fuel assemblies (SFAs) of Bushehr Nuclear Power Plant (NPP). Criticality safety analysis was carried out using the MCNP code for the cask containing 12, 18, or 19 SFAs. The basket materials of borated stainless steel and Boral (Al-B_4C) were investigated, and the minimum required receptacle pitch of the basket was determined. - Highlights: • Criticality safety analysis for a dual purpose cask was carried out. • The basket material of borated stainless steel and Boral were investigated. • Minimum receptacle pitch was determined for 12, 18, or 19 VVER 1000 spent fuel assemblies.

  7. BWR - Spent Fuel Transport and Storage with the TNTM9/4 and TNTM24BH Casks

    International Nuclear Information System (INIS)

    Wattez, L.; Marguerat, Y.; Hoesli, C.

    2006-01-01

    The Swiss Nuclear Utilities have started in 2001 to store spent fuel in dry metallic dual-purpose casks at ZWILAG, the Swiss interim storage facility. BKW FMB Energy Ltd., the Muehleberg Nuclear Power Plant owner, is involved in this process and has elected to store its BWR spent fuel in a new high capacity dual-purpose cask, the TNeTeM24BH from the COGEMA Logistics/TRANSNUCLEAR TN TM 24 family. The Muehleberg BWR spent fuels are transported by road in a medium size shuttle transport cask and then transferred to a heavy transport/storage cask (dry transfer) in the hot cell of ZWILAG site. For that purpose, COGEMA Logistics designed and supplied: - Two shuttle casks, TN TM 9/4, mainly devoted to transport of spent fuel from Muehleberg NPP to ZWILAG. Licensed according to IAEA 1996, the TN TM 9/4 is a 40 ton transport cask, for 7 BWR high bum-up spent fuel assemblies. - A series of new high capacity dual-purpose casks, TN TM 24BH, holding 69 BWR spent fuels. Two transport campaigns took place in 2003 and 2004. For each campaign, ten TN TM 9/4 round trips are performed, and one TN TM 24BH is loaded. 5 additional TN TM 24BH are being manufactured for BKW, and the next transport campaigns are scheduled from 2006. The TN TM 24BH high capacity dual purpose cask and the TN TM 9/4 transport cask characteristics and capabilities will then be detailed. (authors)

  8. Effectiveness of the neutron-shield nanocomposites for a dual-purpose cask of Bushehr's Water–Water Energetic Reactor (VVER 1000 nuclear-power-plant spent fuels

    Directory of Open Access Journals (Sweden)

    Mahdi Rezaeian

    2017-10-01

    Full Text Available In order to perform dry interim storage and transportation of the spent-fuel assemblies of the Bushehr Nuclear Power Plant, dual-purpose casks can be utilized. The effectiveness of different neutron-shield materials for the dual-purpose cask was analyzed through a set of calculations carried out using the Monte Carlo N-Particle (MCNP code. The dose rate for the dual-purpose cask utilizing the recently developed materials of epoxy/clay/B4C and epoxy/clay/B4C/carbon fiber was less than the allowable radiation level of 2 mSv/h at any point and 0.1 mSv/h at 2 m from the external surface of the cask. By utilization of epoxy/clay/B4C instead of an ethylene glycol/water mixture, the dose rates on the side surface of the cask due to neutron sources and consequent secondary gamma rays will be reduced by 17.5% and 10%, respectively. The overall dose rate in this case will be reduced by 11%.

  9. Basket criticality design of a dual purpose cask for VVER 1000 spent fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Rezaeian, Mahdi [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Kamali, Jamshid [Atomic Energy Organization of Iran (AEOI), Tehran (Iran, Islamic Republic of)

    2016-12-15

    Dual purpose cask technology is one of the most prominent options for interim storage of spent fuels following their removal from reactors. Criticality safety of the spent fuel assemblies are ensured by design of the basket within these casks. In this study, a set of criticality design calculations of a dual purpose cask for 12 VVER 1000 spent fuel assemblies of Bushehr nuclear power plant were carried out. The basket material of borated stainless steel with 0.5 to 2.5 wt% of boron and Boral (Al-B{sub 4}C) with 1.5 to 40 wt% of boron carbide, were investigated and the minimum required receptacle pitch of the basket was determined. Using the calculated receptacle pitch of the basket, the minimum required diameter of the cavity could be established.

  10. Viability of Existing INL Facilities for Dry Storage Cask Handling

    Energy Technology Data Exchange (ETDEWEB)

    Bohachek, Randy; Wallace, Bruce; Winston, Phil; Marschman, Steve

    2013-04-30

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

  11. Viability of Existing INL Facilities for Dry Storage Cask Handling

    Energy Technology Data Exchange (ETDEWEB)

    Randy Bohachek; Charles Park; Bruce Wallace; Phil Winston; Steve Marschman

    2013-04-01

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

  12. Multiple-Angle Muon Radiography of a Dry Storage Cask

    Energy Technology Data Exchange (ETDEWEB)

    Durham, J. Matthew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Guardincerri, Elena [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morris, Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poulson, Daniel Cris [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bacon, Jeffrey Darnell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morley, Deborah Jean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Plaud-Ramos, Kenie Omar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-23

    A partially loaded dry storage cask was imaged using cosmic ray muons. Since the cask is large relative to the size of the muon tracking detectors, the instruments were placed at nine different positions around the cask to record data covering the entire fuel basket. We show that this technique can detect the removal of a single fuel assembly from the center of the cask.

  13. Storage/transport cask design and challenges

    International Nuclear Information System (INIS)

    Houston, J.V.; Viebrock, J.M.

    1989-01-01

    The concept of spent-fuel casks that could be used for both storage and for transport has been around for some years, but was only seriously evaluated when utilities started becoming concerned about adequate fuel storage. In the early 1980s, the U.S. Department of Energy proposed to solve the problem with their away-from-reactor storage facility concept. This was superceded by passage of the Nuclear Waste Policy Act of 1982, which directed the development of one or more waste repositories, the first of which was to be in operation by 1998. Delays in this program now indicate an opening data of 2003 or later. This, together with the lack of significant progress on a monitored retrievable storage facility, leaves the utility companies to solve their storage problems individually. One alternative is to use dual-purpose casks. The use of such a cask should eliminate the need to move the cask and fuel back into the spent-fuel pool for transfer to a transport cask. However, a dual-purpose cask must be licensed for use under both 10CFR71 and 10CFR72 of the U.S. Code of Federal Regulations. The purpose of this paper is to examine the differences between the requirements of 10CFR71 and 10CFR72, to note the changes over the past several years in the NRC's interpretation of 10CFR71 requirements, and to review the design modifications that the Nuclear Assurance Corporation (NAC) believes are required to make a licensed storage cask acceptable for transport under 10CFR71

  14. Standard review plan for dry cask storage systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The Standard Review Plan (SRP) For Dry Cask Storage Systems provides guidance to the Nuclear Regulatory Commission staff in the Spent Fuel Project Office for performing safety reviews of dry cask storage systems. The SRP is intended to ensure the quality and uniformity of the staff reviews, present a basis for the review scope, and clarification of the regulatory requirements. Part 72, Subpart B generally specifies the information needed in a license application for the independent storage of spent nuclear fuel and high level radioactive waste. Regulatory Guide 3.61 {open_quotes}Standard Format and Content for a Topical Safety Analysis Report for a Spent Fuel Dry Storage Cask{close_quotes} contains an outline of the specific information required by the staff. The SRP is divided into 14 sections which reflect the standard application format. Regulatory requirements, staff positions, industry codes and standards, acceptance criteria, and other information are discussed.

  15. Demonstration of cask transportation and dry storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Teer, B.R.; Clark, J.

    1984-01-01

    Nuclear Fuel Services, Inc. and the Department of Energy's Idaho Operations Office have signed a cost sharing contract to demonstrate dual purpose shipping and storage casks for spent nuclear fuel. Transnuclear, Inc. has been selected by NFS to design and supply two forged steel casks - one for 40 PWR assemblies from the Ginna reactor, the other for 85 BWR assemblies from the Big Rock Point reactor. The casks will be delivered to West Valley in mid-1985, loaded with the fuel assemblies and shipped by rail to the Idaho National Engineering Laboratory. The shipments will be made under a DOE Certificate of Compliance which will be issued based on reviews by Oak Ridge National Laboratory of Transnuclear's designs

  16. Basic Considerations for Dry Storage of Spent Nuclear Fuels and Revisited CFD Thermal Analysis on the Concrete Cask

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Jae Soo [ACT Co. Ltd., Daejeon (Korea, Republic of); Park, Younwon; Song, Sub Lee [BEES Inc., Daejeon (Korea, Republic of); Kim, Hyeun Min [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    The integrity of storage facility and also of the spent nuclear fuel itself is considered very important. Storage casks can be located in a designated area on a site or in a designated storage building. A number of different designs for dry storage have been developed and used in different countries. Dry storage system was classified into two categories by IAEA. One is container including cask and silo, the other one is vault. However, there is various way of categorization for dry storage system. Dry silo and cask are usually classified separately, so the dry storage system can be classified into three different types. Furthermore, dry cask storage can be categorized into two types based on the type of the materials, concrete cask and metal cask. In this paper, the design characteristics of dry storage cask are introduced and computational fluid dynamics (CFD) based thermal analysis for concrete cask is revisited. Basic principles for dry storage cask design were described. Based on that, thermal analysis of concrete dry cask was introduced from the study of H. M. Kim et al. From the CFD calculation, the temperature of concrete wall was maintained under the safety criteria. From this fundamental analysis, further investigations are expected. For example, thermal analysis on the metal cask, thermal analysis on horizontally laid spent nuclear fuel assemblies for transportation concerns, and investigations on better performance of natural air circulation in dry cask can be promising candidates.

  17. Basic Considerations for Dry Storage of Spent Nuclear Fuels and Revisited CFD Thermal Analysis on the Concrete Cask

    International Nuclear Information System (INIS)

    Noh, Jae Soo; Park, Younwon; Song, Sub Lee; Kim, Hyeun Min

    2016-01-01

    The integrity of storage facility and also of the spent nuclear fuel itself is considered very important. Storage casks can be located in a designated area on a site or in a designated storage building. A number of different designs for dry storage have been developed and used in different countries. Dry storage system was classified into two categories by IAEA. One is container including cask and silo, the other one is vault. However, there is various way of categorization for dry storage system. Dry silo and cask are usually classified separately, so the dry storage system can be classified into three different types. Furthermore, dry cask storage can be categorized into two types based on the type of the materials, concrete cask and metal cask. In this paper, the design characteristics of dry storage cask are introduced and computational fluid dynamics (CFD) based thermal analysis for concrete cask is revisited. Basic principles for dry storage cask design were described. Based on that, thermal analysis of concrete dry cask was introduced from the study of H. M. Kim et al. From the CFD calculation, the temperature of concrete wall was maintained under the safety criteria. From this fundamental analysis, further investigations are expected. For example, thermal analysis on the metal cask, thermal analysis on horizontally laid spent nuclear fuel assemblies for transportation concerns, and investigations on better performance of natural air circulation in dry cask can be promising candidates

  18. Estimated risk contribution for dry spent fuel storage cask

    International Nuclear Information System (INIS)

    Santos, C.; Kirk, M.T.; Abramson, L.; Guttmann, J.; Hackett, E.; Simonen, F.A.

    2001-01-01

    The U.S. Nuclear Regulatory Commission (NRC) is pursuing means to risk-inform its regulations and programs for dry storage of spent nuclear fuel. In pursuit of this objective, the NRC will develop safety goals and probabilistic risk assessments for implementing risk-informed programs. This paper provides one example method for calculating the risk of a dry spent fuel storage cask under normal and accident conditions. The example is on the HI-STORM 100 cask at a proposed site containing four thousand such casks. The paper evaluates the risk to the public by determining the likelihood a welded stainless steel container will leak. In addition, the study addresses the risk at a site where 4,000 casks may be stored until the U.S. Department of Energy accepts the casks for placement in a repository. The methods used employ the PRODIGAL computer code to assess the probability of a faulty weld on a stainless steel-welded canister. These analyses are only the initial stages of a comprehensive risk study that the NRC is performing in support of its regulatory initiatives. (author)

  19. Development of the vacuum drying process for the PWR spent nuclear fuel dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Baeg, Chagn Yeal; Cho, Chun Hyung [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2016-12-15

    This paper describes the development of a dry operation process for PWR spent nuclear fuel, which is currently stored in the domestic NPP's storage pool, using a dual purpose metal cask. Domestic NNPs have had experience with wet type transportation of PWR spent nuclear fuel between neighboring NPPs since the early 1990s, but no experience with dry type operation. For this reason, we developed a specific operation process and also confirmed the safety of the major cask components and its spent nuclear fuel during the dual purpose metal cask operation process. We also describe the short term operation process that was established to be completed within 21 hours and propose the allowable working time for each step (15 hours for wet process, 3 hours for drain process and 3 hours for vacuum drying process)

  20. Spent fuel storage cask testing and operational experience at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Eslinger, L.E.; Schmitt, R.C.

    1989-01-01

    Spent-fuel storage cask research, development, and demonstration activities are being performed for the U.S. Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM) as a part of the storage cask testing program. The cask testing program at federal sites and other locations supports the Nuclear Waste Policy Act (NWPA) and DOE objectives for cooperative demonstrations with the cask vendors and utilities for development of at-reactor dry cask storage capabilities for spent nuclear fuel assemblies. One research and development program for the storage cask performance testing of metal storage cask was initiated through a cooperative agreement between Virginia Power and DOE in 1984. The performance testing was conducted for the DOE and the Electric Power Research Institute by the Pacific Northwest laboratory, operated for DOE by Battelle Memorial Institute, and the Idaho National Engineering Laboratory (INEL), operated for DOE by EG ampersand G Idaho, Inc. In 1988 a cooperative agreement was entered into by DOE with Pacific Sierra Nuclear Associates (PSN) for performance testing of the PSN concrete Ventilated Storage Cask. Another closely related activity involving INEL is a transportable storage cask project identified as the Nuclear Fuel Services Spent-Fuel Shipping/Storage Cask Demonstration Project. The purpose of this project is to demonstrate the feasibility of packing, transporting, and storing commercial spent fuel in dual-purpose transport/storage casks

  1. High Burnup Dry Storage Cask Research and Development Project, Final Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-02-27

    EPRI is leading a project team to develop and implement the first five years of a Test Plan to collect data from a SNF dry storage system containing high burnup fuel.12 The Test Plan defined in this document outlines the data to be collected, and the storage system design, procedures, and licensing necessary to implement the Test Plan.13 The main goals of the proposed test are to provide confirmatory data14 for models, future SNF dry storage cask design, and to support license renewals and new licenses for ISFSIs. To provide data that is most relevant to high burnup fuel in dry storage, the design of the test storage system must mimic real conditions that high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to the ISFSI for multi-year storage.15 Along with other optional modeling, SETs, and SSTs, the data collected in this Test Plan can be used to evaluate the integrity of dry storage systems and the high burnup fuel contained therein over many decades. It should be noted that the Test Plan described in this document discusses essential activities that go beyond the first five years of Test Plan implementation.16 The first five years of the Test Plan include activities up through loading the cask, initiating the data collection, and beginning the long-term storage period at the ISFSI. The Test Plan encompasses the overall project that includes activities that may not be completed until 15 or more years from now, including continued data collection, shipment of the Research Project Cask to a Fuel Examination Facility, opening the cask at the Fuel Examination Facility, and examining the high burnup fuel after the initial storage period.

  2. Advantages of dry hardened cask storage over wet storage for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Romanato, Luiz Sergio, E-mail: romanato@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil). Dept. da Qualidade

    2011-07-01

    Pools are generally used to store and maintain spent nuclear fuel assemblies for cooling, after removed from reactors. After three to five years stored in the pools, spent fuel can be reprocessed or sent to a final disposition in a geological repository and handled as radioactive waste or sent to another site waiting for future solution. Spent fuel can be stored in dry or wet installations, depending on the method adopted by the nuclear plant. If this storage were exclusively wet, at the installation decommissioning in the future, another solution for storage will need to be found. Today, after a preliminary cooling, the spent fuel assemblies can be removed from the pool and sent to dry hardened storage installations. This kind of storage does not need complex radiation monitoring and it is safer than wet storage. Brazil has two nuclear reactors in operation, a third reactor is under construction and they use wet spent fuel storage . Dry hardened casks use metal or both metal and concrete for radiation shielding and they are safe, especially during an earthquake. An earthquake struck Japan on March 11, 2011 damaging Fukushima Daiichi nuclear power plant. The occurrence of earthquakes in Brazil is very small but dry casks can resist to other events, including terrorist acts, better than pools. This paper shows the advantages of dry hardened cask storage in comparison with the wet storage (water pools) for spent nuclear fuel. (author)

  3. Advantages of dry hardened cask storage over wet storage for spent nuclear fuel

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2011-01-01

    Pools are generally used to store and maintain spent nuclear fuel assemblies for cooling, after removed from reactors. After three to five years stored in the pools, spent fuel can be reprocessed or sent to a final disposition in a geological repository and handled as radioactive waste or sent to another site waiting for future solution. Spent fuel can be stored in dry or wet installations, depending on the method adopted by the nuclear plant. If this storage were exclusively wet, at the installation decommissioning in the future, another solution for storage will need to be found. Today, after a preliminary cooling, the spent fuel assemblies can be removed from the pool and sent to dry hardened storage installations. This kind of storage does not need complex radiation monitoring and it is safer than wet storage. Brazil has two nuclear reactors in operation, a third reactor is under construction and they use wet spent fuel storage . Dry hardened casks use metal or both metal and concrete for radiation shielding and they are safe, especially during an earthquake. An earthquake struck Japan on March 11, 2011 damaging Fukushima Daiichi nuclear power plant. The occurrence of earthquakes in Brazil is very small but dry casks can resist to other events, including terrorist acts, better than pools. This paper shows the advantages of dry hardened cask storage in comparison with the wet storage (water pools) for spent nuclear fuel. (author)

  4. Conceptual design and cost estimation of dry cask storage facility for spent fuel

    International Nuclear Information System (INIS)

    Maki, Yasuro; Hironaga, Michihiko; Kitano, Koichi; Shidahara, Isao; Shiomi, Satoshi; Ohnuma, Hiroshi; Saegusa, Toshiari

    1985-01-01

    In order to propose an optimum storage method of spent fuel, studies on the technical and economical evaluation of various storage methods have been carried out. This report is one of the results of the study and deals with storage facility of dry cask storage. The basic condition of this work conforms to ''Basic Condition for Spent Fuel Storage'' prepared by Project Group of Spent Fuel Dry Storage at July 1984. Concerning the structural system of cask storage facilities, trench structure system and concrete silo system are selected for storage at reactor (AR), and a reinforced concrete structure of simple design and a structure with membrance roof are selected for away from reactor (AFR) storage. The basic thinking of this selection are (1) cask is put charge of safety against to radioactivity and (2) storage facility is simplified. Conceptual designs are made for the selected storage facilities according to the basic condition. Attached facilities of storage yard structure (these are cask handling facility, cask supervising facility, cask maintenance facility, radioactivity control facility, damaged fuel inspection and repack facility, waste management facility) are also designed. Cost estimation of cask storage facility are made on the basis of the conceptual design. (author)

  5. Hybrid heat pipe based passive cooling device for spent nuclear fuel dry storage cask

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2016-01-01

    Highlights: • Hybrid heat pipe was presented as a passive cooling device for dry storage cask of SNF. • A method to utilize waste heat from spent fuel was suggested using hybrid heat pipe. • CFD analysis was performed to evaluate the thermal performance of hybrid heat pipe. • Hybrid heat pipe can increase safety margin and storage capacity of the dry storage cask. - Abstract: Conventional dry storage facilities for spent nuclear fuel (SNF) were designed to remove decay heat through the natural convection of air, but this method has limited cooling capacity and a possible re-criticality accident in case of flooding. To enhance the safety and capacity of dry storage cask of SNF, hybrid heat pipe-based passive cooling device was suggested. Heat pipe is an excellent passive heat transfer device using the principles of both conduction and phase change of the working fluid. The heat pipe containing neutron absorber material, the so-called hybrid heat pipe, is expected to prevent the re-criticality accidents of SNF and to increase the safety margin during interim and long term storage period. Moreover, a hybrid heat pipe with thermoelectric module, a Stirling engine and a phase change material tank can be used for utilization of the waste heat as heat-transfer medium. Located at the guide tube or instrumentation tube, hybrid heat pipe can remove decay heat from inside the sealed metal cask to outside, decreasing fuel rod temperature. In this paper, a 2-step analysis was performed using computational fluid dynamics code to evaluate the heat and fluid flow inside a cask, which consisted of a single spent fuel assembly simulation and a full-scope dry cask simulation. For a normal dry storage cask, the maximum fuel temperature is 290.0 °C. With hybrid heat pipe cooling, the temperature decreased to 261.6 °C with application of one hybrid heat pipe per assembly, and to 195.1 °C with the application of five hybrid heat pipes per assembly. Therefore, a dry

  6. Testing of Metal Cask and Concrete Cask

    International Nuclear Information System (INIS)

    Shirai, K.; Wataru, M.; Takeda, H.; Tani, J.; Arai, T.; Saegusa, T.

    2015-01-01

    In Japan, the first interim spent fuel storage facility (ISF) outside of nuclear power plant site in use of dual-purpose metal cask is being planned to start its commercial operation in 2012 in Mutsu city, Aomori prefecture. The CRIEPI (Central Research Institute of Electric Power Industry) has executed several study programs on demonstrative testing for interim storage of spent fuel, mainly related to metal cask and concrete cask storage technology to reflect in Japanese safety requirements for dry casks issued by NISA/METI (Nuclear and Industrial Safety Agency, Ministry of Economy and Trade Industry). On top of that, the Japan Nuclear Energy Safety Organization (JNES) has executed study programs on spent fuel integrity, etc. This paper introduces the summary of these research programs. (author)

  7. Standard review plan for dry cask storage systems. Final report

    International Nuclear Information System (INIS)

    1997-01-01

    The Standard Review Plan (SRP) For Dry Cask Storage Systems provides guidance to the Nuclear Regulatory Commission staff in the Spent Fuel Project Office for performing safety reviews of dry cask storage systems. The SRP is intended to ensure the quality and uniformity of the staff reviews, present a basis for the review scope, and clarification of the regulatory requirements. Part 72, Subpart B generally specifies the information needed in a license application for the independent storage of spent nuclear fuel and high level radioactive waste. Regulatory Guide 3.61 open-quotes Standard Format and Content for a Topical Safety Analysis Report for a Spent Fuel Dry Storage Caskclose quotes contains an outline of the specific information required by the staff. The SRP is divided into 14 sections which reflect the standard application format. Regulatory requirements, staff positions, industry codes and standards, acceptance criteria, and other information are discussed

  8. Status analysis for the confinement monitoring technology of PWR spent nuclear fuel dry storage system

    Energy Technology Data Exchange (ETDEWEB)

    Baeg, Chang Yeal; Cho, Chun Hyung [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2016-03-15

    Leading national R and D project to design a PWR spent nuclear fuel interim dry storage system that has been under development since mid-2009, which consists of a dual purpose metal cask and concrete storage cask. To ensure the safe operation of dry storage systems in foreign countries, major confinement monitoring techniques currently consist of pressure and temperature measurement. In the case of a dual purpose metal cask, a pressure sensor is installed in the interspace of bolted double lid(primary and secondary lid) in order to measure pressure. A concrete storage cask is a canister based system made of double/redundant welded lid to ensure confinement integrity. For this reason, confinement monitoring method is real time temperature measurement by thermocouple placed in the air flow(air intake and exit) of the concrete structure(over pack and module). The use of various monitoring technologies and operating experiences for the interim dry storage system over the last decades in foreign countries were analyzed. On the basis of the analysis above, development of the confinement monitoring technology that can be used optimally in our system will be available in the near future.

  9. Safety aspects of dry spent fuel storage and spent fuel management

    International Nuclear Information System (INIS)

    Botsch, W.; Smalian, S.; Hinterding, P.; Voelzke, H.; Wolff, D.; Kasparek, E.

    2014-01-01

    The storage of spent nuclear fuel (SF) and high-level radioactive waste (HLW) must conform to safety requirements. Safety aspects like safe enclosure of radioactive materials, safe removal of decay heat, nuclear criticality safety and avoidance of unnecessary radiation exposure must be achieved throughout the storage period. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. In Germany dual purpose casks for SF or HLW are used for safe transportation and interim storage. TUV and BAM, who work as independent experts for the competent authorities, present the storage licensing process including sites and casks and inform about spent nuclear fuel management and issues concerning dry storage of spent nuclear fuel, based on their long experience in these fields (authors)

  10. Numerical Simulation of the Thermal Performance of a Dry Storage Cask for Spent Nuclear Fuel

    Directory of Open Access Journals (Sweden)

    Heui-Yung Chang

    2018-01-01

    Full Text Available In this study, the heat flow characteristics and thermal performance of a dry storage cask were investigated via thermal flow experiments and a computational fluid dynamics (CFD simulation. The results indicate that there are many inner circulations in the flow channel of the cask (the channel width is 10 cm. These circulations affect the channel airflow efficiency, which in turn affects the heat dissipation of the dry storage cask. The daily operating temperatures at the top concrete lid and the upper locations of the concrete cask are higher than those permitted by the design specification. The installation of the salt particle collection device has a limited negative effect on the thermal dissipation performance of the dry storage cask.

  11. Thermoelectric Powered Wireless Sensors for Dry-Cask Storage

    Science.gov (United States)

    Carstens, Thomas Alan

    This study focuses on the development of self-powered wireless sensors. These sensors can be used to measure key parameters in extreme environments; e.g., temperature monitoring for spent nuclear fuel during dry-cask storage. This study has developed a design methodology for these self-powered monitoring systems. The main elements that constitute this work consist of selecting and testing a power source for the wireless sensor, determination of the attenuation of the wireless signal, and testing the wireless sensor circuitry in an extreme environment. OrigenArp determined the decay heat and gamma/neutron source strength of the spent fuel throughout the service life of the dry-cask. A first principles analysis modeled the temperatures inside the dry-cask. A finite-element heat transfer code calculated the temperature distribution of the thermoelectric and heat sink. The temperature distributions determine the power produced by the thermoelectric. It was experimentally verified that a thermoelectric generator (HZ-14) with a DC/DC converter (Linear Technology LTC3108EDE) can power a transceiver (EmbedRF) at condition which represent prototypical conditions throughout and beyond the service life of the dry-cask. The wireless sensor is required to broadcast with enough power to overcome the attenuation from the dry-cask. It will be important to minimize the attenuation of the signal in order to broadcast with a small transmission power. To investigate the signal transmission through the dry-cask, CST Microwave Studio was used to determine the scattering parameter S2,1 for a horizontal dry-cask. Important parameters that can influence the transmission of the signal are antenna orientation, antenna placement, and transmission frequency. The thermoelectric generator, DC/DC converter, and transceiver were exposed to 60Co gamma radiation (exposure rate170.3 Rad/min) at the University of Wisconsin Medical Radiation Research Center. The effects of gamma radiation on the

  12. The dry spent RBMK fuel cask storage site at the Ignalina NPP in Lithuania

    International Nuclear Information System (INIS)

    Penkov, V.V.; Diersch, R.

    1999-01-01

    At present, there are about 15,000 spent RBMK fuel assemblies stored in the water pools near the reactors at the Ignalina Nuclear Power Plant (INPP). Part of them are cut in two bundles and stored in standardized baskets in the pools. Each basket is loaded with 102 bundles. For long-term interim storage of this fuel, it was decided to use dry storage in casks. For this reason, the total activity to be stored is split into individual units (casks). Each cask represents a closed and independent safety system, fulfilling all safety-relevant requirements for both normal operational and hypothetical accidental conditions. The main safety relevant features of the storage cask system are: (1) Inherent safety system; (2) Double barrier system; (3) Passive cooling by natural convection; (4) Safety against accidents. The cask dry storage system is a cost effective and multi-functional system for storage, transport after the operation time and final disposal under consideration of additional protective elements. From an economical point of view, cask storage has a number of advantages. Two cask types have been intended for the INPP storage site: (1) The CASTOR RBMK cask made of ductile cast iron; (2) The CONSTOR RBMK sandwich cask made of an inner and outer steel shell and reinforced heavy concrete. The CASTOR RBMK and the CONSTOR RBMK casks are designed to withstand severe storage site accidents and with help of impact limiters - to fulfil the IAEA test criteria for type B(U)F packages. The INPP spent RBMK fuel storage site is designed as an open air storage for an operational time of 50 years. The casks are arranged on the concrete storage pad. The site is equipped with a crane for cask handling and technological buildings and security systems. The safety analyses for fuel and cask handling and for cask handling and for cask technology at the site have been made and accepted by the Lithuanian Competent Authority. (author)

  13. Influence of local regulations on TN dual purpose BWR casks

    International Nuclear Information System (INIS)

    Samson, P.; Neider, T.

    1999-01-01

    Transnucleaire (Paris, France) and Transnuclear, Inc. (Hawthorne, New York, United Sates) have both developed Pressurized Water Reactor (PWR) spent fuel casks for storage and transport purposes. The products are supplied in Europe by Transnucleaire and in the United States by Transnuclear, Inc. Now the TN Group is working on a design for Boiling Water Reactor (BWR) spent fuel assemblies: the TN 52 L cask is designed for transport and storage is Switzerland, the TN 68 cask is designed for transport and storage in the United States. For storage purpose, national regulatory requirements have to be met: each country has specific demands and criteria. As a consequence, differences between the TN 52 L design and the TN 68 design for rather similar contents appear in several fields: the design work, the licensing process, the manufacturing and the operational life. (author)

  14. Behavior of spent fuel and cask components after extended periods of dry storage

    International Nuclear Information System (INIS)

    Kenneally, R.; Kessler, J.

    2001-01-01

    The U.S. Nuclear Regulatory Commission (NRC) promulgated 10 CFR Part 72, Title 10, for the independent storage of spent nuclear fuel and high-level radioactive waste outside reactor spent fuel pools. Part 72 currently limits the license term for an independent spent fuel storage installation to 20 years from the date of issuance. Licenses may be renewed by the Commission at or before the expiration of the license term. Applications for renewal of a license should be filed at least two years prior to the expiration of the existing license. In preparation for possible license renewal, the NRC Office of Nuclear Material and Safeguards, Spent Fuel Project Office, is developing the technical basis for renewals of licenses and Certificates of Compliance for dry storage systems for spent nuclear fuel and high-level radioactive waste at independent spent fuel storage installation sites. An analysis of past performance of selected components of these systems is required as part of that technical basis. In the years 1980 through the early 1990, the Department of Energy (DOE) procured four prototype dry storage casks for testing at the Idaho National Engineering and Environmental Laboratory (INEEL): Castor-V/21, MC-10, TN-24P, and VSC-17. The primary purpose of the testing was to benchmark thermal and radiological codes and to determine the thermal and radiological characteristics of the casks. A series of examinations in 1999 and early 2000 to investigate the integrity of the Castor V/21 cask were undertaken. There is no evidence of significant degradation of the Castor V/21 cask systems important to safety from the time of initial loading of the cask in 1985 up to the time of testing in 1999. (author)

  15. BWR-spent fuel transport and storage with the TN trademark 9/4 and TN trademark 24BH casks

    International Nuclear Information System (INIS)

    Wattez, L.; Marguerat, Y.; Hoesli, C.

    2004-01-01

    The Swiss Nuclear Utilities have started in 2001 to store spent fuel in dry metallic dual-purpose casks in ZWILAG, the Swiss interim storage facility. BKW FMB Energy Ltd., as Muehleberg Nuclear Power Plant owner, is involved in this process and has selected to store its spent fuel, a new high capacity dual-purpose cask, the TN trademark 24BH. For the transport in a medium size cask, COGEMA LOGISTICS has developed a new cask, the TN trademark 9/4, to replace the NTL9 cask, which performed numerous transports of BWR spent fuel in the past decades. Licensed IAEA 1996, the TN trademark 9/4 is a 40 ton transport cask, for 7 BWR high burn-up spent fuel assemblies. The spent fuel assemblies can be transferred in the ZWILAG hot cell in the TN trademark 24BH cask. The first use of these casks took place in 2003. Ten TN trademark 9/4 transports were performed, and one TN trademark 24BH was loaded. After a brief presentation of the operational aspects, the paper will focus on the TN trademark 24BH high capacity dual purpose cask, the TN trademark 9/4 transport cask and describe in detail their characteristics and possibilities

  16. Activation analysis of dual-purpose metal cask after the end of design lifetime for decommission

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Man; Ku, Ji Young; Dho Ho Seog; Cho, Chun Hyung [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of); Ko, Jae Hun [Korea Nuclear Engineering and Service Co., Daejeon (Korea, Republic of)

    2016-12-15

    The Korea Radioactive Waste Agency (KORAD) has developed a dual-purpose metal cask for the dry storage of spent nuclear fuel that has been generated by domestic light-water reactors. The metal cask was designed in compliance with international and domestic technology standards, and safety was the most important consideration in developing the design. It was designed to maintain its integrity for 50 years in terms of major safety factors. The metal cask ensures the minimization of waste generated by maintenance activities during the storage period as well as the safe management of the waste. An activation evaluation of the main body, which includes internal and external components of metal casks whose design lifetime has expired, provides quantitative data on their radioactive inventory. The radioactive inventory of the main body and the components of the metal cask were calculated by applying the MCNP5·ORIGEN-2 evaluation system and by considering each component's chemical composition, neutron flux distribution, and reaction rate, as well as the duration of neutron irradiation during the storage period. The evaluation results revealed that 10 years after the end of the cask's design life, {sup 60}Co had greater radioactivity than other nuclides among the metal materials. In the case of the neutron shield, nuclides that emit high-energy gamma rays such as {sup 28}Al and {sup 24}Na had greater radioactivity immediately after the design lifetime. However, their radioactivity level became negligible after six months due to their short half-life. The surface exposure dose rates of the canister and the main body of the metal cask from which the spent nuclear fuel had been removed with expiration of the design lifetime were determined to be at very low levels, and the radiation exposure doses to which radiation workers were subjected during the decommissioning process appeared to be at insignificant levels. The evaluations of this study strongly suggest that

  17. Standardized, utility-DOE compatible, spent fuel storage-transport systems

    International Nuclear Information System (INIS)

    Smith, M.L.

    1991-01-01

    Virginia Power has developed and licensed a facility for dry storage of spent nuclear fuel in metal spent fuel storage casks. The modifications to the design of these casks necessary for licensing for both storage and transport of spent fuel are discussed along with the operational advantages of dual purpose storage-transport casks. Dual purpose casks can be used for storage at utility and DOE sites (MRS or repository) and for shipment between these sites with minimal spent fuel handling. The cost for a standardized system of casks that are compatible for use at both DOE and utility sites is discussed along with possible arrangements for sharing both the cost and benefits of dual purpose storage-transport casks

  18. Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks

    Science.gov (United States)

    Poulson, D.; Durham, J. M.; Guardincerri, E.; Morris, C. L.; Bacon, J. D.; Plaud-Ramos, K.; Morley, D.; Hecht, A. A.

    2017-01-01

    Radiography with cosmic ray muon scattering has proven to be a successful method of imaging nuclear material through heavy shielding. Of particular interest is monitoring dry storage casks for diversion of plutonium contained in spent reactor fuel. Using muon tracking detectors that surround a cylindrical cask, cosmic ray muon scattering can be simultaneously measured from all azimuthal angles, giving complete tomographic coverage of the cask interior. This paper describes the first application of filtered back projection algorithms, typically used in medical imaging, to cosmic ray muon scattering imaging. The specific application to monitoring spent nuclear fuel in dry storage casks is investigated via GEANT4 simulations. With a cylindrical muon tracking detector surrounding a typical spent fuel cask, simulations indicate that missing fuel bundles can be detected with a statistical significance of ∼ 18 σ in less than two days exposure and a sensitivity at 1σ to a 5% missing portion of a fuel bundle. Potential detector technologies and geometries are discussed.

  19. Nonlinear Ultrasonic Diagnosis and Prognosis of ASR Damage in Dry Cask Storage

    International Nuclear Information System (INIS)

    Qu, Jianmin; Bazant, Zdenek; Jacobs, Laurence; Guimaraes, Maria

    2015-01-01

    Alkali-silica reaction (ASR) is a deleterious chemical process that may occur in cement-based materials such as mortars and concretes, where the hydroxyl ions in the highly alkaline pore solution attack the siloxane groups in the siliceous minerals in the aggregates. The reaction produces a cross-linked alkali-silica gel. The ASR gel swells in the presence of water. Expansion of the gel results in cracking when the swelling-induced stress exceeds the fracture toughness of the concrete. As the ASR continues, cracks may grow and eventually coalesce, which results in reduced service life and a decrease safety of concrete structures. Since concrete is widely used as a critical structural component in dry cask storage of used nuclear fuels, ASR damage poses a significant threat to the sustainability of long term dry cask storage systems. Therefore, techniques for effectively detecting, managing and mitigating ASR damage are needed. Currently, there are no nondestructive methods to accurately detect ASR damage in existing concrete structures. The only current way of accurately assessing ASR damage is to drill a core from an existing structure, and conduct microscopy on this drilled cylindrical core. Clearly, such a practice is not applicable to dry cask storage systems. To meet these needs, this research is aimed at developing (1) a suite of nonlinear ultrasonic quantitative nondestructive evaluation (QNDE) techniques to characterize ASR damage, and (2) a physics-based model for ASR damage evolution using the QNDE data. Outcomes of this research will provide a nondestructive diagnostic tool to evaluate the extent of the ASR damage, and a prognostic tool to estimate the future reliability and safety of the concrete structures in dry cask storage systems

  20. Nonlinear Ultrasonic Diagnosis and Prognosis of ASR Damage in Dry Cask Storage

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jianmin [Northwestern Univ., Evanston, IL (United States); Bazant, Zdenek [Northwestern Univ., Evanston, IL (United States); Jacobs, Laurence [Georgia Inst. of Technology, Atlanta, GA (United States); Guimaraes, Maria [Electrical Power Research Institute, Palo Alto, CA (United States)

    2015-11-30

    Alkali-silica reaction (ASR) is a deleterious chemical process that may occur in cement-based materials such as mortars and concretes, where the hydroxyl ions in the highly alkaline pore solution attack the siloxane groups in the siliceous minerals in the aggregates. The reaction produces a cross-linked alkali-silica gel. The ASR gel swells in the presence of water. Expansion of the gel results in cracking when the swelling-induced stress exceeds the fracture toughness of the concrete. As the ASR continues, cracks may grow and eventually coalesce, which results in reduced service life and a decrease safety of concrete structures. Since concrete is widely used as a critical structural component in dry cask storage of used nuclear fuels, ASR damage poses a significant threat to the sustainability of long term dry cask storage systems. Therefore, techniques for effectively detecting, managing and mitigating ASR damage are needed. Currently, there are no nondestructive methods to accurately detect ASR damage in existing concrete structures. The only current way of accurately assessing ASR damage is to drill a core from an existing structure, and conduct microscopy on this drilled cylindrical core. Clearly, such a practice is not applicable to dry cask storage systems. To meet these needs, this research is aimed at developing (1) a suite of nonlinear ultrasonic quantitative nondestructive evaluation (QNDE) techniques to characterize ASR damage, and (2) a physics-based model for ASR damage evolution using the QNDE data. Outcomes of this research will provide a nondestructive diagnostic tool to evaluate the extent of the ASR damage, and a prognostic tool to estimate the future reliability and safety of the concrete structures in dry cask storage systems

  1. Impact analysis of spent fuel dry casks under accidental drop scenarios

    International Nuclear Information System (INIS)

    Braverman, J.I.; Morante, R.J.; Xu, J.; Hofmayer, C.H.; Shaukat, S.K.

    2003-01-01

    A series of analyses were performed to assess the structural response of spent nuclear fuel dry casks subjected to various handling and on-site transfer events. The results of these analyses are being used by the Nuclear Regulatory Commission (NRC) to perform a probabilistic risk assessment (PRA). Although the PRA study is being performed for a specific nuclear plant, the PRA study is also intended to provide a framework for a general methodology that could also be applied to other dry cask systems at other nuclear plants. The dry cask system consists of a transfer cask, used for handling and moving the multi-purpose canister (MPC) that contains the fuel, and a storage cask, used to store the MPC and fuel on a concrete pad at the site. This paper describes the analyses of the casks for two loading events. The first loading consists of dropping the transfer cask while it is lowered by a crane to a concrete floor at ground elevation. The second loading consists of dropping the storage cask while it is being transferred to the concrete storage pad outdoors. Three dimensional finite element models of the transfer cask and storage cask, containing the MPC and fuel, were utilized to perform the drop analyses. These models were combined with finite element models of the target structures being impacted. The transfer cask drop analyses considered various drop heights for the cask impacting the reinforced concrete floor at ground level. The finite element model of the target included a section of the concrete floor and concrete wall supporting the floor. The storage cask drop analyses evaluated a 30.5 cm (12 in.) drop of the cask impacting three different surfaces: reinforced concrete, asphalt, and gravel. (author)

  2. Cask operation and maintenance for spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.S. [International Atomic Energy Agency, Vienna (Austria)

    2004-07-01

    Interim storage is an essential platform for any option to be chosen later as an endpoint for spent fuel management. In view of such a circumstance, the most imminent service required for the spent fuel management worldwide is to provide adequate storage for the future spent fuel inventory arising either from the continued operation of nuclear power plants or from the removal of spent fuel in preparation for plant decommissioning. While the bulk of the global inventory of spent fuel are still stored in AR pools, dry storage has become a prominent alternative especially for newly built AFR facilities, with more than 17,000 t HM already stored in dry storage facilities worldwide. Storage in cask under inert conditions has become the preferred option, given the advantages including passive cooling features and modular mode of capacity increase. In terms of economics, dry storage is particularly propitious for long-term storage in that operational costs are minimized by the passive cooling features. The trend toward dry storage, especially in cask type, is likely to continue with an implication that and the supply will closely follow the increasing demand for storage by incremental additions of casks to the effect of minimizing cost penalty of the idle capacities typical of pool facilities. A variety of storage systems have been developed to meet specific requirements of different reactor fuels and a large number of designs based on these generic technologies are now available for the spent fuel containers (horizontal, vertical etc) and storage facilities. Multi-purpose technologies (i.e. a single technology for storage, transportation and disposal) have also been studied. Recent concern on security measures for protection of spent fuel has prompted a consideration on the possibility of placing storage facility underground. The future evolution of requirements and technologies will bring important impacts on cask operation and maintenance for spent fuel storage.

  3. Cask operation and maintenance for spent fuel storage

    International Nuclear Information System (INIS)

    Lee, J.S.

    2004-01-01

    Interim storage is an essential platform for any option to be chosen later as an endpoint for spent fuel management. In view of such a circumstance, the most imminent service required for the spent fuel management worldwide is to provide adequate storage for the future spent fuel inventory arising either from the continued operation of nuclear power plants or from the removal of spent fuel in preparation for plant decommissioning. While the bulk of the global inventory of spent fuel are still stored in AR pools, dry storage has become a prominent alternative especially for newly built AFR facilities, with more than 17,000 t HM already stored in dry storage facilities worldwide. Storage in cask under inert conditions has become the preferred option, given the advantages including passive cooling features and modular mode of capacity increase. In terms of economics, dry storage is particularly propitious for long-term storage in that operational costs are minimized by the passive cooling features. The trend toward dry storage, especially in cask type, is likely to continue with an implication that and the supply will closely follow the increasing demand for storage by incremental additions of casks to the effect of minimizing cost penalty of the idle capacities typical of pool facilities. A variety of storage systems have been developed to meet specific requirements of different reactor fuels and a large number of designs based on these generic technologies are now available for the spent fuel containers (horizontal, vertical etc) and storage facilities. Multi-purpose technologies (i.e. a single technology for storage, transportation and disposal) have also been studied. Recent concern on security measures for protection of spent fuel has prompted a consideration on the possibility of placing storage facility underground. The future evolution of requirements and technologies will bring important impacts on cask operation and maintenance for spent fuel storage

  4. Seismic Performance of Dry Casks Storage for Long- Term Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, Luis [Univ. of Utah, Salt Lake City, UT (United States); Sanders, David [Univ. of Nevada, Reno, NV (United States); Yang, Haori [Oregon State Univ., Corvallis, OR (United States); Pantelides, Chris [Univ. of Utah, Salt Lake City, UT (United States)

    2016-12-30

    The main goal of this study is to evaluate the long-term seismic performance of freestanding and anchored Dry Storage Casks (DSCs) using experimental tests on a shaking table, as well as comprehensive numerical evaluations that include the cask-pad-soil system. The study focuses on the dynamic performance of vertical DSCs, which can be designed as free-standing structures resting on a reinforced concrete foundation pad, or casks anchored to a foundation pad. The spent nuclear fuel (SNF) at nuclear power plants (NPPs) is initially stored in fuel-storage pools to control the fuel temperature. After several years, the fuel assemblies are transferred to DSCs at sites contiguous to the plant, known as Interim Spent Fuel Storage Installations (ISFSIs). The regulations for these storage systems (10 CFR 72) ensure adequate passive heat removal and radiation shielding during normal operations, off-normal events, and accident scenarios. The integrity of the DSCs is important, even if the overpack does not breach, because eventually the spent fuel-rods need to be shipped either to a reprocessing plant or a repository. DSCs have been considered as a temporary storage solution, and usually are licensed for 20 years, although they can be relicensed for operating periods of up to 60 years. In recent years, DSCs have been reevaluated as a potential mid-term solution, in which the operating period may be extended for up to 300 years. At the same time, recent seismic events have underlined the significant risks DSCs are exposed. The consideration of DCSs for storing spent fuel for hundreds of years has created new challenges. In the case of seismic hazard, longer-term operating periods not only lead to larger horizontal accelerations, but also increase the relative effect of vertical accelerations that usually are disregarded for smaller seismic events. These larger seismic demands could lead to casks sliding and tipping over, impacting the concrete pad or adjacent casks. The casks

  5. The state of the Primary Degradation Factors and Models of Concrete Cask in Spent Fuel Dry Storage System

    International Nuclear Information System (INIS)

    Kim, J. S.; Lee, K. S.; Choi, J. W.; Kwon, S.

    2010-01-01

    In South Korea, a total of twenty nuclear reactors are in operation; the cumulative amount of spent fuel is estimated to be 10,490 MTU in 2009. The full capacity of the waste storage is expected to be saturated in around 2016. However, a national strategy for spent fuel management has not yet been set down and high level waste (HLW) such as spent fuel will have to be stored at-reactor (AR) by re-racking. Recently an worldwide interest on the dry storage has increased especially around U.S. With a perspective of the material of the spent fuel dry storage cask, the system can be divided into two types of metal and concrete casks. The concrete type cask is a very attractive option because of the cost competitiveness of concrete material and its relatively long-term durability. Although the type of metal cask is chosen, the use of cementitious material is inevitable at least for the cask foundation and the facilities for the protection of dry storage structures. Upon being placed, the performance of concrete begins to deteriorate from the intrinsic change of cement and the physical/ chemical environmental conditions. Thus it is necessary to evaluate the durability of a concrete for the increase of reliability and safety of the whole system during the designed life time. Considering the dry storage system of spent fuel is the item which can create a lot of added value, the development of a dry storage cask is usually initiated by private enterprises among developed countries. The detail research results and specific design criteria for the safety assessment of a concrete cask have not been revealed to the public well. In this paper, the major expected degradation factors and related degradation models of concrete casks were investigated as part of the safety assessment by taking account of the site where Korea industrial nuclear power plants are located

  6. Final version dry cask storage study

    International Nuclear Information System (INIS)

    1989-02-01

    This report was prepared in response to Section 5064 of the Nuclear Waste Policy Amendments Act of 1987 (the Amendments Act--Public Law 100-203), which directs the Secretary of Energy to conduct a study of the use of dry-cask-storage technology for storing spent fuel at the sites of civilian nuclear reactors until a geologic repository is available. In conducting this study, whose results are being reported to the Congress, the Secretary was to consider such factors as costs, effects on human health and the environment, and the extent to which the Nuclear Waste Fund can and should be used to provide funds for at-reactor storage. In addition, the Secretary was to consult with the Nuclear Regulatory Commission (NRC), include NRC comments in the report, and solicit the views of State and local governments and the public. The study performed in response to these requirements was based largely on data published by the DOE or the NRC or included in documents issued by the DOE. Among the DOE documents are the 1987 MRS proposal to the Congress and a subsequent report, prepared to supply the Congress with additional information on the MRS facility. Because in evaluating dry storage at reactor sites it is necessary to take into account other options for meeting storage needs, this study covered all forms of at-reactor storage. 107 refs., 15 figs., 10 tabs

  7. Experimental assessment on the thermal effects of the neutron shielding and heat-transfer fin of dual purpose casks on open pool fire

    International Nuclear Information System (INIS)

    Bang, Kyoung-Sik; Yu, Seung-Hwan; Lee, Ju-Chan; Seo, Ki-Seog; Choi, Woo-Seok

    2016-01-01

    Highlights: • An open pool fire test was performed to estimate not only the combustion effect of the neutron shielding but also the effect of the heat transfer fin of the dual purpose cask. • The heat transfer to the inside of the dual purpose cask was reduced, when the neutron shielding burns. • The surface temperatures are lower in the present of the heat transfer fins. • If inflammable material is used as the components of the cask, evaluating thermal integrity using the thermal test would be desirable. - Abstract: Dual purpose casks are used for storage and transport of spent nuclear fuel assemblies. They must therefore satisfy the requirements prescribed in the Korea Nuclear Safety Security Commission Act 2014-50, the IAEA Safety Standard Series No. SSR-6, and US 10 CFR Part 71. These regulatory guidelines classify the dual purpose cask as a Type B package and state that a Type B package must be able to withstand a temperature of 800 °C for a period of 30 min. NS-4-FR is used as neutron shielding of the dual purpose cask. Heat transfer fins are embedded to enhance heat transfer from the cask body to the outer-shell because the thermal conductivity of NS-4-FR is not good. However, accurately simulating not only the combustion effect of the neutron shielding but also the effect of the heat transfer fin in the thermal analysis is not easy. Therefore, an open pool fire test was conducted using a one-sixth slice of a real cask to estimate these effects at a temperature of 800 °C for a period of 30 min. The temperature at the central portion of the neutron shielding was lower when the neutron shielding in contact with the outer cask burned because the neutron shielding absorbed the surrounding latent heat as the neutron shielding burned. Therefore, the heat transfer to the inside of the dual purpose cask was reduced. The surface temperature was lower when a heat transfer fin was installed because the high heat generated by the flame was transferred to the

  8. Experimental assessment on the thermal effects of the neutron shielding and heat-transfer fin of dual purpose casks on open pool fire

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Kyoung-Sik, E-mail: nksbang@kaeri.re.kr; Yu, Seung-Hwan; Lee, Ju-Chan; Seo, Ki-Seog; Choi, Woo-Seok

    2016-08-01

    Highlights: • An open pool fire test was performed to estimate not only the combustion effect of the neutron shielding but also the effect of the heat transfer fin of the dual purpose cask. • The heat transfer to the inside of the dual purpose cask was reduced, when the neutron shielding burns. • The surface temperatures are lower in the present of the heat transfer fins. • If inflammable material is used as the components of the cask, evaluating thermal integrity using the thermal test would be desirable. - Abstract: Dual purpose casks are used for storage and transport of spent nuclear fuel assemblies. They must therefore satisfy the requirements prescribed in the Korea Nuclear Safety Security Commission Act 2014-50, the IAEA Safety Standard Series No. SSR-6, and US 10 CFR Part 71. These regulatory guidelines classify the dual purpose cask as a Type B package and state that a Type B package must be able to withstand a temperature of 800 °C for a period of 30 min. NS-4-FR is used as neutron shielding of the dual purpose cask. Heat transfer fins are embedded to enhance heat transfer from the cask body to the outer-shell because the thermal conductivity of NS-4-FR is not good. However, accurately simulating not only the combustion effect of the neutron shielding but also the effect of the heat transfer fin in the thermal analysis is not easy. Therefore, an open pool fire test was conducted using a one-sixth slice of a real cask to estimate these effects at a temperature of 800 °C for a period of 30 min. The temperature at the central portion of the neutron shielding was lower when the neutron shielding in contact with the outer cask burned because the neutron shielding absorbed the surrounding latent heat as the neutron shielding burned. Therefore, the heat transfer to the inside of the dual purpose cask was reduced. The surface temperature was lower when a heat transfer fin was installed because the high heat generated by the flame was transferred to the

  9. Interim dry cask storage of irradiated Fast Flux Test Facility fuel

    International Nuclear Information System (INIS)

    Scott, P.L.

    1994-09-01

    The Fast Flux Test Facility (FFTF), located at the US Department of Energy's (DOE'S) Hanford Site, is the largest, most modern, liquid metal-cooled test reactor in the world. This paper will give an overview of the FFTF Spent Fuel Off load project. Major discussion areas will address the status of the fuel off load project, including an overview of the fuel off load system and detailed discussion on the individual components that make up the dry cask storage portion of this system. These components consist of the Interim Storage Cask (ISC) and Core Component Container (CCC). This paper will also discuss the challenges that have been addressed in the evolution of this project

  10. Dry storage systems using casks for long term storage in an AFR and repository

    International Nuclear Information System (INIS)

    Einfeld, K.; Popp, F.W.

    1986-01-01

    In conclusion it can be stated that two basic routes with respect to spent fuel storage casks are feasible. One is the Multiple Transport Cask, which with certain modifications can be upgraded to meet the criteria for intermediate storage. Its status is characterized by the licensing of several types of Castor Casks for an intermediate storage period of 30 years in the AFR Storage Facility of DWK at Gorleben in the FRG. The other one is the Final Disposal (Repository) Cask, which can be made suitable for long term storage before a final decision with respect to a repository application is taken. The licensing procedure for a Pilot Conditioning Facility with the Pollux Cask System as reference case will be initiated by DWK in the near future. Under the assumption that in addition to the present Multiple Transport/Storage Casks a license for a Final disposal Cask with respect to long term storage is available, the relative merits of different cask storage systems would have to be evaluated

  11. Fuel-assembly behavior under dynamic impact loads due to dry-storage cask mishandling

    International Nuclear Information System (INIS)

    1991-07-01

    Continued operation of nuclear power plants is contingent on the ability to provide adequate storage of spent fuel. Until recently, utilities have been able to maintain interim in-pool spent fuel storage. However, many facilities have reached their capacity and are now faced with shipping their spent fuel in dry casks to alternate storage facilities. The objective of this report is to provide estimates of the structural integrity of irradiated LWR fuel rods subjected to impact loads resulting from postulated cask handling accidents. This is accomplished in five stages: (1) Material properties for irradiated fuel are compiled for use in the structural analyses. (2) Results from parametric analyses of representative assembly designs are used to determine the most limiting case for end and side drop postulated handling accidents. (3) Detailed structural analysis results are presented for these critical designs. The detailed analyses include the coupling of assembly interaction with the cask and cask internals. (4) Criteria for both ultimate stress and brittle fracture failure modes of fuel rod cladding are established. (5) Safe cask handling drop height limits are computed based on items 2 through 4 above. 44 figs., 18 tabs

  12. Final Technical Report: Imaging a Dry Storage Cask with Cosmic Ray Muons

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haori; Hayward, Jason; Can, Liao; Liu, Zhengzhi

    2018-03-31

    The goal of this project is to build a scaled prototype system for monitoring used nuclear fuel (UNF) dry storage casks (DSCs) through cosmic ray muon imaging. Such a system will have the capability of verifying the content inside a DSC without opening it. Because of the growth of the nuclear power industry in the U.S. and the policy decision to ban reprocessing of commercial UNF, the used fuel inventory at commercial reactor sites has been increasing. Currently, UNF needs to be moved to independent spent fuel storage installations (ISFSIs), as its inventory approaches the limit on capacity of on-site wet storage. Thereafter, the fuel will be placed in shipping containers to be transferred to a final disposal site. The ISFSIs were initially licensed as temporary facilities for ~20-yr periods. Given the cancellation of the Yucca mountain project and no clear path forward, extended dry-cask storage (~100 yr.) at ISFSIs is very likely. From the point of view of nuclear material protection, accountability and control technologies (MPACT) campaign, it is important to ensure that special nuclear material (SNM) in UNF is not stolen or diverted from civilian facilities for other use during the extended storage.

  13. Selected concrete spent fuel storage cask concepts and the DOE/PSN Cooperative Cask Testing Program

    International Nuclear Information System (INIS)

    Creer, J.M.; McKinnon, M.A.; Collantes, C.E.

    1990-01-01

    To date, water pools, metal casks, horizontal concrete modules, and modular vaults have been used to store the major quantity of commercial light water reactor spent nuclear fuel. Recently, vertical concrete dry storage casks have received consideration for storage of spent nuclear fuel. This paper reviews the evolution of the development of selected vertical concrete dry storage casks and outlines a cooperative cask testing (heat transfer and shielding) program involving the US Department of Energy and Pacific Sierra Nuclear Associates. Others participating in the cooperative program are Pacific Northwest Laboratory; EG ampersand G Idaho, Inc.; Wisconsin Electric Power Company; and the Electric Power Research Institute. 28 refs., 14 figs

  14. Neutronic and thermal hydraulic of dry cask storage systems

    International Nuclear Information System (INIS)

    Yavuz, U.

    2000-01-01

    Interim spent fuel storage systems must provide for the safe receipt, handling, retrieval and storage of spent nuclear fuel before reprocessing or disposal. In the context of achieving these objectives, the following features of the design are to be taken into consideration: to maintain fuel subcritical, to remove spent fuel residualheat, and to provide for radiation protection. These features in the design of a dry cask storage system were analyzed for normal operating conditions by employing COBRA-SFS, SCALE4.4 (ORIGEN, XSDOSE, CSAS6) codes. For a metal-shielded type storage system, appropriate designs, in accordance with safety assurance limits of IAEA, were obtained for spent fuel burned to 33000, 45000 and 55000 MW d/t and cooled for 5 and 10 years

  15. Sensitivity analyses of seismic behavior of spent fuel dry cask storage systems

    International Nuclear Information System (INIS)

    Luk, V.K.; Spencer, B.W.; Shaukat, S.K.; Lam, I.P.; Dameron, R.A.

    2003-01-01

    Sandia National Laboratories is conducting a research project to develop a comprehensive methodology for evaluating the seismic behavior of spent fuel dry cask storage systems (DCSS) for the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission (NRC). A typical Independent Spent Fuel Storage Installation (ISFSI) consists of arrays of free-standing storage casks resting on concrete pads. In the safety review process of these cask systems, their seismically induced horizontal displacements and angular rotations must be quantified to determine whether casks will overturn or neighboring casks will collide during a seismic event. The ABAQUS/Explicit code is used to analyze three-dimensional coupled finite element models consisting of three submodels, which are a cylindrical cask or a rectangular module, a flexible concrete pad, and an underlying soil foundation. The coupled model includes two sets of contact surfaces between the submodels with prescribed coefficients of friction. The seismic event is described by one vertical and two horizontal components of statistically independent seismic acceleration time histories. A deconvolution procedure is used to adjust the amplitudes and frequency contents of these three-component reference surface motions before applying them simultaneously at the soil foundation base. The research project focused on examining the dynamic and nonlinear seismic behavior of the coupled model of free-standing DCSS including soil-structure interaction effects. This paper presents a subset of analysis results for a series of parametric analyses. Input variables in the parametric analyses include: designs of the cask/module, time histories of the seismic accelerations, coefficients of friction at the cask/pad interface, and material properties of the soil foundation. In subsequent research, the analysis results will be compiled and presented in nomograms to highlight the sensitivity of seismic response of DCSS to

  16. Loads imposed on dual purpose casks in German on-site-storage facilities for long term intermediate storage of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, N.; Rabe, O. [TUeV NORD EnSys Hannover GmbH und Co. KG, Hanover (Germany)

    2004-07-01

    In accordance with recent changes of the atomic energy act and in order to secure reliable removal of spent fuel from the nuclear power plants' fuel storage ponds the German utilities filed license applications for a total of 12 onsite- storage facilities for spent fuel assemblies. By the end of 2003 the last of these storage facilities were licensed and are currently under construction. The first on-site-storage facility of that line became operational in late 2002. There are several design lines of storage facilities with different handling procedures or possible accident conditions. Short term interim storage facilities for a few casks are characterized by individual concrete hoods shielding the casks in horizontal position whereas long term intermediate storage facilities currently erected for large numbers of casks typically feature a condensed pattern of casks stored in upright position and massive structures of reinforced concrete. TUeV Hannover/Sachsen-Anhalt e. V. (now TUeV NORD EnSys Hannover GmbH and Co. KG) has been contracted as a body of independent experts for the assessment of all related safety requirements on behalf of the national licensing authority, the federal office for radiation protection (BfS).

  17. Loads imposed on dual purpose casks in German on-site-storage facilities for long term intermediate storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Wetzel, N.; Rabe, O.

    2004-01-01

    In accordance with recent changes of the atomic energy act and in order to secure reliable removal of spent fuel from the nuclear power plants' fuel storage ponds the German utilities filed license applications for a total of 12 onsite- storage facilities for spent fuel assemblies. By the end of 2003 the last of these storage facilities were licensed and are currently under construction. The first on-site-storage facility of that line became operational in late 2002. There are several design lines of storage facilities with different handling procedures or possible accident conditions. Short term interim storage facilities for a few casks are characterized by individual concrete hoods shielding the casks in horizontal position whereas long term intermediate storage facilities currently erected for large numbers of casks typically feature a condensed pattern of casks stored in upright position and massive structures of reinforced concrete. TUeV Hannover/Sachsen-Anhalt e. V. (now TUeV NORD EnSys Hannover GmbH and Co. KG) has been contracted as a body of independent experts for the assessment of all related safety requirements on behalf of the national licensing authority, the federal office for radiation protection (BfS)

  18. Safety analysis of spent fuel transport and storage casks under extreme impact conditions

    International Nuclear Information System (INIS)

    Wolff, D.; Wieser, G.; Ballheimer, V.; Voelzke, H.; Droste, B.

    2005-01-01

    Full text: Worldwide the security of transport and storage of spent fuel with respect to terrorism threats is a matter of concern. In Germany a spent nuclear fuel management program was developed by the government including a new concept of dry on-site interim storage instead of centralized interim storage. In order to minimize transports of spent fuel casks between nuclear power plants, reprocessing plants and central storage facilities, the operators of NPPs have to erect and to use interim storage facilities for spent nuclear fuel on the site or in the vicinity of nuclear power plants. Up to now, 11 on-site interim storage buildings, one storage tunnel and 4 on-site interim storage areas (preliminary cask storage till the on-site interim storage building is completed) have been licensed at 12 nuclear power plant sites. Inside the interim storage buildings the casks are kept in upright position, whereas at the preliminary interim storage areas horizontal storage of the casks on concrete slabs is used and each cask is covered by concrete elements. Storage buildings and concrete elements are designed only for gamma and neutron radiation shielding reasons and as weather protection. Therefore the security of spent fuel inside a dual purpose transport and storage cask depends on the inherent safety of the cask itself. For nearly three decades BAM has been investigating cask safety under severe accident conditions like drop tests from more than 9 m onto different targets and without impact limiters as well as artificially damaged prototype casks. Since the terror attacks of 11 September 2001 the determination of casks' inherent safety also under extreme impact conditions due to terrorist attacks has been of our increasing interest. With respect to spent fuel storage one of the most critical scenarios of a terrorist attack for a cask is the centric impact of a dynamic load onto the lid-seal-system caused e.g. by direct aircraft crash or its engine as well as by a

  19. Test Plan for the Boiling Water Reactor Dry Cask Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lindgren, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis . These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and by increasing the internal convection through greater canister helium pressure. These same vertical, canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern vertical, canistered dry cask systems. The BWR cask simulator (BCS) has been designed in detail for both the above-ground and below-ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 deg C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the

  20. Structural dimensioning of dual purpose cask prototype

    International Nuclear Information System (INIS)

    Silva, Luiz Leite da; Mourao, Rogerio Pimenta; Lopes, Claudio Cunha

    2005-01-01

    The structural dimensioning of a Type B(U) dual purpose cask prototype is part of the scope of work of the Brazilian institute CDTN in the IAEA regional project involving Latin American countries which operate research reactors (Argentina, Brazil, Chile, Mexico and Peru). In order to meet the dimensional and operational characteristics of the reactor facilities in these countries, a maximum weight of 10.000 kgf and a maximum dimension of 1 m in at least one direction were set for the cask. With these design restrictions, the cask's payload is either 21 MTR or 78 TRIGA fuel elements. The cask's most important components are main body, primary and secondary lids, basket and impact limiters. The main body has a sandwich-like wall with internal and external layers made of AISI 304 stainless steel with lead in-between. The lead provides biological shielding. The primary lid is similarly layered, but in the axial direction. It is provided with a double system of metallic rings and has ports for pressurization, sampling and containment verification. The secondary lid has the main function of protecting the primary lid against mechanical impacts. The basket structure is basically a tube array reinforced by bottom plate, feet and spacers. Square tubes are used for MTR elements and circular tubes for TRIGA elements. Finally, the impact limiters are structures made of an external stainless steel thin covering and a filling made of the wood composite OSB - Oriented Strand Board. The prototype is provided with bottom and top impact limiters, which are attached to each other by means of four threaded rods. The limiters are not rigidly attached to the cask body. A half scale cask model was designed to be submitted to a testing program. As its volume scales down to 1:8, the model weight is 1,250 kgf. This paper presents the methodology for the preliminary structural dimensioning of the critical parameters of the cask prototype. Both normal conditions of operation and hypothetical

  1. Results for the Aboveground Configuration of the Boiling Water Reactor Dry Cask Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lindgren, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-30

    The thermal performance of commercial nuclear spent fuel dry storage casks is evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full-sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask, in part by increasing the efficiency of internal conduction pathways, and also by increasing the internal convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above- and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the current investigation was to produce data sets that can be used to test the validity of the assumptions associated with the calculations used to determine steady-state cladding temperatures in modern dry casks that utilize elevated helium pressure in the sealed canister in an above-ground configuration.

  2. Dry storage technologies: keys to choosing among metal casks, concrete shielded steel canister modules and vaults

    International Nuclear Information System (INIS)

    Roland, V.; Solignac, Y.; Chiguer, M.; Guenon, Y.

    2003-01-01

    time. Then the key criterion is maximum modularity. Furthermore, the up front capital costs requirement for this type of solution is minimal, so depending on the chosen discount rate of the investor, they have an additional attraction. Those smaller modules allow to change course in back end policy more easily. Priority of modularity yields two other solutions, dual-purpose metal casks of the TN24TM family or dual purpose or single purpose concrete shielded welded canisters such as NUHOMS. These solutions, implemented by COGEMA LOGISTICS, TRANSNUCLEAR Inc. and FRAMATOME-ANP, are very flexible and have been adapted also to quite different fuels. Among what influences the choice, we can consider: in favor of metal casks (minimal ancillary equipment, ready to move to final or centralized repository or reprocessing or other ISFSI, compact systems, easy rearrangement, easy handling), in favor of concrete shielded canisters based systems (economics when initial quantity is sufficient to spread out up front equipment, significant cost-shielding advantage, easy local production of the relatively light canisters). Both approaches, when transportable, are also a factor for public acceptance because of the non-permanent characteristics and because transport licensing refers to internationally recognized rules, standards and methods. (authors)

  3. Licensing of spent nuclear fuel dry storage in Russia

    International Nuclear Information System (INIS)

    Kislov, A.I.; Kolesnikov, A.S.

    1999-01-01

    The Federal nuclear and radiation safety authority of Russia (Gosatomnadzor) being the state regulation body, organizes and carries out the state regulation and supervision for safety at handling, transport and storage of spent nuclear fuel. In Russia, the use of dry storage in casks will be the primary spent nuclear fuel storage option for the next twenty years. The cask for spent nuclear fuel must be applied for licensing by Gosatomnadzor for both storage and transportation. There are a number of regulations for transportation and storage of spent nuclear fuel in Russia. Up to now, there are no special regulations for dry storage of spent nuclear fuel. Such regulations will be prepared up to the end of 1998. Principally, it will be required that only type B(U)F, packages can be used for interim storage of spent nuclear fuel. Recently, there are two dual-purpose cask designs under consideration in Russia. One of them is the CONSTOR steel concrete cask, developed in Russia (NPO CKTI) under the leadership of GNB, Germany. The other cask design is the TUK-104 cask of KBSM, Russia. Both cask types were designed for spent nuclear RBMK fuel. The CONSTOR steel concrete cask was designed to be in full compliance with both Russian and IAEA regulations for transport of packages for radioactive material. The evaluation of the design criteria by Russian experts for the CONSTOR steel concrete cask project was performed at a first stage of licensing (1995 - 1997). The CONSTOR cask design has been assessed (strength analysis, thermal physics, nuclear physics and others) by different Russian experts. To show finally the compliance of the CONSTOR steel concrete cask with Russian and IAEA regulations, six drop tests have been performed with a 1:2 scale model manufactured in Russia. A test report was prepared. The test results have shown that the CONSTOR cask integrity is guaranteed under both transport and storage accident conditions. The final stage of the certification procedure

  4. Issues related to the transport of a transportable storage cask after storage

    International Nuclear Information System (INIS)

    McConnell, P.; Brimhall, J.L.; Creer, J.M.; Gilbert, E.R.; Sanders, T.L.; Jones, R.H.

    1991-01-01

    An evaluation was performed to assess whether the reliability of a transportable storage cask system and the risks associated with its use are comparable to those associated with existing transport cask systems and, if they are not, determine how the transportable storage cask system can be made as reliable as existing systems. Reliability and failure mode analyses of both transport-only casks and transportable storage casks and implementation options are compared. Current knowledge regarding the potential effects of a long-term dry storage environment on spent fuel and cask materials is reviewed. A summary assessment of the consideration for deploying a transportable storage cask (TSC) system with emphasis on preliminary design, validation and operational recommendations for TSC implementations is presented. The analyses conclude that a transportable storage cask can likely be shipped upopened by applying a combination of design considerations and operational constraints, including environmental monitoring and pretransport assessments of functional reliability of the cask. A proper mix of these constraints should yield risk parity with any existing transport cask

  5. Design review report FFTF interim storage cask

    International Nuclear Information System (INIS)

    Scott, P.L.

    1995-01-01

    Final Design Review Report for the FFTF Interim Storage Cask. The Interim Storage Cask (ISC) will be used for long term above ground dry storage of FFTF irradiated fuel in Core Component Containers (CCC)s. The CCC has been designed and will house assemblies that have been sodium washed in the IEM Cell. The Solid Waste Cask (SWC) will transfer a full CCC from the IEM Cell to the RSB Cask Loading Station where the ISC will be located to receive it. Once the loaded ISC has been sealed at the RSB Cask Loading Station, it will be transferred by facility crane to the DSWC Transporter. After the ISC has been transferred to the Interim Storage Area (ISA), which is yet to be designed, a mobile crane will be used to place the ISC in its final storage location

  6. Thermal-Hydraulic Results for the Boiling Water Reactor Dry Cask Simulator.

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lindgren, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    The thermal performance of commercial nuclear spent fuel dry storage casks is evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and by increasing the internal convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both aboveground and belowground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of aboveground and belowground canistered dry cask systems. The purpose of this investigation was to produce validation-quality data that can be used to test the validity of the modeling presently used to determine cladding temperatures in modern vertical dry casks. These cladding temperatures are critical to evaluate cladding integrity throughout the storage cycle. To produce these data sets under well-controlled boundary conditions, the dry cask simulator (DCS) was built to study the thermal-hydraulic response of fuel under a variety of heat loads, internal vessel pressures, and external configurations. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly was deployed inside of a representative storage basket and cylindrical pressure vessel that represents a vertical canister system. The symmetric

  7. Dry Cask Storage Inspection and Monitoring. Interim Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtiari, Susan [Argonne National Lab. (ANL), Argonne, IL (United States); Elmer, Thomas W. [Argonne National Lab. (ANL), Argonne, IL (United States); Koehl, Eugene R. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Ke [Argonne National Lab. (ANL), Argonne, IL (United States); Raptis, Apostolos C. [Argonne National Lab. (ANL), Argonne, IL (United States); Kunerth, Dennis C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Birk, Sandra M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-03-04

    Recently, the U.S. Nuclear Regulatory Commission (NRC) issued the guidance on the aging management of dry storage facilities that indicates the necessity to monitor the conditions of dry cask storage systems (DCSSs) over extended periods of time.1 Part of the justification of the aging management plans is the requirement for inspection and monitoring to verify whether continued monitoring, inspection or mitigation are necessary. To meet this challenge Argonne National Laboratory (ANL) in collaboration with Idaho National Laboratory (INL) is conducting scoping studies on current and emerging nondestructive evaluation/examination (NDE) and online monitoring (OLM) technologies for DCSS integrity assessments. The scope of work plan includes identification and verification of technologies for long-term online monitoring of DCSSs’ crucial physical parameters such as temperature, pressure, leakage and structural integrity in general. Modifications have been made to the current technologies to accommodate field inspections and monitoring. A summary of the scoping studies and experimental efforts conducted to date as well as plans for future activities is provided below.

  8. 77 FR 9591 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8

    Science.gov (United States)

    2012-02-17

    ... Fuel Storage Casks: HI-STORM 100, Revision 8 AGENCY: Nuclear Regulatory Commission. ACTION: Proposed... spent fuel storage cask regulations by revising the Holtec International HI-STORM 100 dry cask storage... Amendment No. 8 to CoC No. 1014 and does not include other aspects of the HI-STORM 100 dry storage cask...

  9. Risk Assessment of Structural Integrity of Transportation Casks after Extended Storage

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, Luis; Medina, Ricardo; Yang, Haori

    2018-03-23

    This study assessed the risk of loss of structural integrity of transportation casks and fuel cladding after extended storage. Although it is known that fuel rods discharged from NPPs have a small percentage of rod cladding defects, the behavior of fuel cladding and the structural elements of assemblies during transportation after long-term storage is not well understood. If the fuel degrades during extended storage, it could be susceptible to damage from vibration and impact loads during transport operations, releasing fission-product gases into the canister or the cask interior (NWTRB 2010). Degradation of cladding may occur due to mechanisms associated with hydrogen embrittlement, delayed hydride cracking, low temperature creep, and stress corrosion cracking (SCC) that may affect fuel cladding and canister components after extended storage of hundreds of years. Over extended periods at low temperatures, these mechanisms affect the ductility, strength, and fracture toughness of the fuel cladding, which becomes brittle. For transportation purposes, the fuel may be transferred from storage to shipping casks, or dual-purpose casks may be used for storage and transportation. Currently, most of the transportation casks will be the former case. A risk assessment evaluation is conducted based on results from experimental tests and simulations with advanced numerical models. A novel contribution of this study is the evaluation of the combined effect of component aging and vibration/impact loads in transportation scenarios. The expected levels of deterioration will be obtained from previous and current studies on the effect of aging on fuel and cask components. The emphasis of the study is placed on the structural integrity of fuel cladding and canisters.

  10. Managing aging effects on dry cask storage systems for extended long-term storage and transportation of used fuel - rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O.K.; Diercks, D.; Fabian, R.; Ma, D.; Shah, V.; Tam, S.W.; Liu, Y. (Decision and Information Sciences); ( EVS); ( NE)

    2012-07-06

    The cancellation of the Yucca Mountain repository program in the United States raises the prospect of extended long-term storage (i.e., >120 years) and deferred transportation of used fuel at operating and decommissioned nuclear power plant sites. Under U.S. federal regulations contained in Title 10 of the Code of Federal Regulations (CFR) 72.42, the initial license term for an Independent Spent Fuel Storage Installation (ISFSI) must not exceed 40 years from the date of issuance. Licenses may be renewed by the U.S. Nuclear Regulatory Commission (NRC) at the expiration of the license term upon application by the licensee for a period not to exceed 40 years. Application for ISFSI license renewals must include the following: (1) Time-limited aging analyses (TLAAs) that demonstrate that structures, systems, and components (SSCs) important to safety will continue to perform their intended function for the requested period of extended operation; and (2) a description of the aging management program (AMP) for management of issues associated with aging that could adversely affect SSCs important to safety. In addition, the application must also include design bases information as documented in the most recent updated final safety analysis report as required by 10 CFR 72.70. Information contained in previous applications, statements, or reports filed with the Commission under the license may be incorporated by reference provided that those references are clear and specific. The NRC has recently issued the Standard Review Plan (SRP) for renewal of used-fuel dry cask storage system (DCSS) licenses and Certificates of Compliance (CoCs), NUREG-1927, under which NRC may renew a specific license or a CoC for a term not to exceed 40 years. Both the license and the CoC renewal applications must contain revised technical requirements and operating conditions (fuel storage, surveillance and maintenance, and other requirements) for the ISFSI and DCSS that address aging effects that

  11. Source storage and transfer cask: Users Guide

    International Nuclear Information System (INIS)

    Eccleston, G.W.; Speir, L.G.; Garcia, D.C.

    1985-04-01

    The storage and shield cask for the dual californium source is designed to shield and transport up to 3.7 mg (2 Ci) of 252 Cf. the cask meets Department of Transportation (DOT) license requirements for Type A materials (DOT-7A). The cask is designed to transfer sources to and from the Flourinel and Fuel Storage (FAST) facility delayed-neutron interrogator. Californium sources placed in the cask must be encapsulated in the SR-CF-100 package and attached to Teleflex cables. The cask contains two source locations. Each location contains a gear box that allows a Teleflex cable to be remotely moved by a hand crank into and out of the cask. This transfer procedure permits sources to be easily removed and inserted into the delayed-neutron interrogator and reduces personnel radiation exposure during transfer. The radiation dose rate with the maximum allowable quantity of californium (3.7 mg) in the cask is 30 mR/h at the surface and less than 2 mR/h 1 m from the cask surface. This manual contains information about the cask, californium sources, describes the method to ship the cask, and how to insert and remove sources from the cask. 28 figs

  12. Economics of dry storage systems

    International Nuclear Information System (INIS)

    Moore, G.R.; Winders, R.C.

    1980-01-01

    This paper postulates a dry storage application suitable as a regional away-from-reactor storage (AFR), develops an economical system design concept and estimates system costs. The system discussed uses the experience gained in the dry storage research activities and attempts to present a best foot forward system concept. The major element of the system is the Receiving and Packaging Building. In this building fuel assemblies are removed from transportation casks and encapsulated for storage. This facility could be equally applicable to silo, vault, or caisson storage. However the caisson storage concept has been chosen for discussion purposes

  13. A Criticality Evaluation of the GBC-32 Dry Storage Cask in PWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyoungju; Park, Kwangheon; Hong, Ser Gi [Kyung Hee Univ., Yongin (Korea, Republic of)

    2015-05-15

    The current criticality safety evaluation assumes the only unirradiated fresh fuels with the maximum enrichment in a dry storage cask (DSC) for conservatism without consideration of the depletion of fissile nuclides and the generation of neutron-absorbing fission products. However, the large conservatism leads to the significant increase of the storage casks required. Thus, the application of burnup credit which takes credit for the reduction of reactivity resulted from fuel depletion can increase the capacity in storage casks. On the other hand, the burnup credit application introduces lots of complexity into a criticality safety analysis such as the accurate estimation of the isotopic inventories and the burnup of UNFs and the validation of the criticality calculation. The criticality evaluation with an effect of burnup credit was performed for the DSC of GBC-32 by using SCALE 6.1/STARBUCS. keff values were calculated as a function of burnup and cooling time for four initial enrichments of 2, 3, 4, and 5 wt. % 235U. The values were calculated for the burnup range of 0 to 60,000 MWD/MTU, in increments of 10,000 MWD/MTU, and for five cooling times of 0, 5, 10, 20, and 40 years.

  14. Development of a dry transport and storage cask for spent LWR fuel assemblies in Spain

    International Nuclear Information System (INIS)

    Melches, C.; Uriarte, A.; Espallardo, J.A.

    1982-01-01

    One of the advantages of the cask storage concept is its flexibility which makes it specially attractive in the case of the Spanish circumstances. For these reasons the Empresa Nacional del Uranio, S.A. (ENUSA), Junta de Energia Nuclear (JEN) and Equipos Nucleares, S.A. (ENSA) initiated in 1981 a joint program for the development of a prototype cask for the dry transport and storage of spent fuel assemblies. This program includes as main steps the analysis of the conceptual design, the detailed design and experimental tests, the fabrication of a prototype and its licencing and safety testing. The mentioned program, which started in the early 1981, is scheduled to be completed at the end of 1984

  15. Results for the Aboveground Configuration of the Boiling Water Reactor Dry Cask Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Fuel Cycle Technologies; Lindgren, Eric Richard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Fuel Cycle Technologies

    2016-09-01

    The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and also by increasing the internal convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and belowground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of aboveground and belowground canistered dry cask systems. The purpose of the current investigation was to produce data sets that can be used to test the validity of the assumptions associated with the calculations used to determine steady-state cladding temperatures in modern dry casks that utilize elevated helium pressure in the sealed canister in an aboveground configuration. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly was deployed inside of a representative storage basket and cylindrical pressure vessel that represents a vertical canister system. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. The arrangement of ducting was used to mimic conditions for an aboveground storage configuration in a vertical, dry cask

  16. Design of double containment canister cask storage system

    International Nuclear Information System (INIS)

    Asami, M.; Matsumoto, T.; Oohama, T.; Kuriyama, K.; Kawakami, K.

    2004-01-01

    Spent fuels discharged from Japanese LWR will be stored as recycled-fuel-resources in interim storage facilities. The concrete cask storage system is one of important forms for the spent fuel interim storage. In Japan, the interim storage facility will be located near the coast, therefore it is important to prevent SCC (Stress Corrosion Cracking) caused by sea salt particles and to assure the containment integrity of the canister which contains spent fuels. KEPCO, NFT and OCL have designed the double containment canister cask storage system that can assure the long-term containment integrity and monitor the containment performance without storage capacity decrease. Major features of the combined canister cask system are shown as follows: This system can survey containment integrity of dual canisters by monitoring the pressure of the gap between canisters. The primary canister has dual lids sealed by welding. The secondary canister has single lid tightened by bolts and sealed by metallic gaskets. The primary canister is contained in the transport cask during transportation, and the gap between the primary canister and the transport cask is filled with He gas. Under storage condition in the concrete cask, the primary canister is contained in the secondary canister, and the gap between these canisters is filled with helium gas. Hence this system can prevent the primary canister to contact sea salt particle in the air and from SCC. Decrease of cooling performance because of the double canister is compensated by fins fitted on the secondary canister surface. Then, this system can prevent the decrease of storage capacity determined by the fuel temperature limit. This system can assure that the primary canister will keep intact for long term storage. Therefore, in the case of pressure down of the gap between canisters, it can be considered that the secondary canister containment is damaged, and the primary canister will be transferred to another secondary canister at the

  17. Spent fuel storage and transport cask decontamination and modification. An overview of management requirements and applications based on practical experience

    International Nuclear Information System (INIS)

    1999-04-01

    A large increase in the number of casks required for transport and/or storage of spent fuel is forecast into the next century. The principal requirement will be for increased number of storage and dual purpose (transport/storage) casks for interim storage of spent fuel prior to reprocessing or permanent disposal in both on-site and off-site storage facilities. Through contact with radioactive materials spent fuel casks will be contaminated on both internal and external surfaces. In broad terms, cask contamination management can be defined by three components: minimisation, prevention and decontamination. This publication is a compilation of international experience with cask contamination problems and decontamination practices. The objective is to present current knowledge and experience as well as developments, trends and potential for new applications in this field. Furthermore, the report may assist in new design or modification of existing casks, cask handling systems and decontamination equipment

  18. Safety analysis of dual purpose metal cask subjected to impulsive loads due to aircraft engine crash

    International Nuclear Information System (INIS)

    Shirai, Koji; Namba, Kosuke; Saegusa, Toshiari

    2009-01-01

    In Japan, the first Interim Storage Facility of spent nuclear fuel away from reactor site is being planned to start its commercial operation around 2010, in use of dual-purpose metal cask in the northern part of Main Japan Island. Business License Examination for safety design approval has started since March, 2007. To demonstrate the more scientific and rational performance of safety regulation activities on each phase for the first license procedure, CREPEI has executed demonstration tests with full scale casks, such as drop tests onto real targets without impact limiters and seismic tests subjected to strong earthquake motions. Moreover, it is important to develop the knowledge for the inherent security of metal casks under extreme mechanical-impact conditions, especially for increasing interest since the terrorist attacks from 11th September 2001. This paper presents dynamic mechanical behavior of the metal cask lid closure system caused by direct aircraft engine crash and describes calculated results (especially, leak tightness based on relative dynamic displacements between metallic seals). Firstly, the local penetration damage of the interim storage facility building by a big passenger aircraft engine research (diameter 2.7m, length 4.3m, weight 4.4ton, impact velocity 90m/s) has been examined. The reduced velocity is calculated by the local damage formula for concrete structure with its thickness of 70cm. The load vs. time function for this reduced velocity (60m/s) is estimated by the impact analysis using Finite Element code LS-DYNA with the full scale engine model onto a hypothetically rigid target. Secondly, as the most critical scenarios for the metal cask, two impact scenarios (horizontal impact hitting the cask and vertical impact onto the lid metallic seal system) are chosen. To consider the geometry of all bolts for two lids, the gasket reaction forces and the inner pressure of the cask cavity, the detailed three dimensional FEM models are developed

  19. Safety Analysis of Dual Purpose Metal Cask Subjected to Impulsive Loads due to Aircraft Engine Crash

    Science.gov (United States)

    Shirai, Koji; Namba, Kosuke; Saegusa, Toshiari

    In Japan, the first Interim Storage Facility of spent nuclear fuel away from reactor site is being planned to start its commercial operation around 2010, in use of dual-purpose metal cask in the northern part of Main Japan Island. Business License Examination for safety design approval has started since March, 2007. To demonstrate the more scientific and rational performance of safety regulation activities on each phase for the first license procedure, CREPEI has executed demonstration tests with full scale casks, such as drop tests onto real targets without impact limiters(1) and seismic tests subjected to strong earthquake motions(2). Moreover, it is important to develop the knowledge for the inherent security of metal casks under extreme mechanical-impact conditions, especially for increasing interest since the terrorist attacks from 11th September 2001(3)-(6). This paper presents dynamic mechanical behavior of the metal cask lid closure system caused by direct aircraft engine crash and describes calculated results (especially, leak tightness based on relative dynamic displacements between metallic seals). Firstly, the local penetration damage of the interim storage facility building by a big passenger aircraft engine crash (diameter 2.7m, length 4.3m, weight 4.4ton, impact velocity 90m/s) has been examined. The reduced velocity is calculated by the local damage formula for concrete structure with its thickness of 70cm. The load vs. time function for this reduced velocity (60m/s) is estimated by the impact analysis using Finite Element code LS-DYNA with the full scale engine model onto a hypothetically rigid target. Secondly, as the most critical scenarios for the metal cask, two impact scenarios (horizontal impact hitting the cask and vertical impact onto the lid metallic seal system) are chosen. To consider the geometry of all bolts for two lids, the gasket reaction forces and the inner pressure of the cask cavity, the detailed three dimensional FEM models are

  20. CASTORR 1000/19: Development and Design of a New Transport and Storage Cask

    International Nuclear Information System (INIS)

    Funke, Th.; Henig, Ch.

    2008-01-01

    The design of the new transport and storage cask type CASTOR R 1000/19 is presented in this paper. This cask was developed for the dry interim storage of spent VVER1000 fuel assemblies concerning the requirements of the Temelin NPP, Czech Republic. While the cask body is based on well-known ductile cast iron cask types with in-wall moderator, the basket follows a new concept. The basket is able to carry 19 fuel assemblies with a total decay heat power up to approximately 17 kW. The cask fulfils all requirements for a type B(U)F package. The main nuclear, mechanical and thermal properties of the cask are illustrated for normal conditions and for hypothetical accident scenarios during transport and storage. The main steps of the handling procedure such as loading the cask, drying the cavity and mounting the double lid system for tightness during interim storage are shown in principle. For this handling, boundary conditions at the NPP site such as dimensions, weight and the loading machine interface are considered. (authors)

  1. A simplified computational scheme for thermal analysis of LWR spent fuel dry storage and transportation casks

    International Nuclear Information System (INIS)

    Kim, Chang Hyun

    1997-02-01

    A simplified computational scheme for thermal analysis of the LWR spent fuel dry storage and transportation casks has been developed using two-step thermal analysis method incorporating effective thermal conductivity model for the homogenized spent fuel assembly. Although a lot of computer codes and analytical models have been developed for application to the fields of thermal analysis of dry storage and/or transportation casks, some difficulties in its analysis arise from the complexity of the geometry including the rod bundles of spent fuel and the heat transfer phenomena in the cavity of cask. Particularly, if the disk-type structures such as fuel baskets and aluminium heat transfer fins are included, the thermal analysis problems in the cavity are very complex. To overcome these difficulties, cylindrical coordinate system is adopted to calculate the temperature profile of a cylindrical cask body using the multiple cylinder model as the step-1 analysis of the present study. In the step-2 analysis, Cartesian coordinate system is adopted to calculate the temperature distributions of the disk-type structures such as fuel basket and aluminium heat transfer fin using three- dimensional conduction analysis model. The effective thermal conductivity for homogenized spent fuel assembly based on Manteufel and Todreas model is incorporated in step-2 analysis to predict the maximum fuel temperature. The presented two-step computational scheme has been performed using an existing HEATING 7.2 code and the effective thermal conductivity for the homogenized spent fuel assembly has been calculated by additional numerical analyses. Sample analyses of five cases are performed for NAC-STC including normal transportation condition to examine the applicability of the presented simplified computational scheme for thermal analysis of the large LWR spent fuel dry storage and transportation casks and heat transfer characteristics in the cavity of the cask with the disk-type structures

  2. Facility handling and operational considerations with dry storage casks

    International Nuclear Information System (INIS)

    Moegling, J.; McCreery, P.N.

    1982-09-01

    The Tennessee Valley Authority, in conjunction with US DOE and Pacific Northwest Laboratory, is conducting the first US commercial demonstration of spent fuel storage in casks. The two casks selected for this study are the Castor Ic, on loan from Gesellschaft fur Nuklear Service of Essen, West Germany and the DOE supplied REA 2023, manufactured by Ridihalgh, Eggers, and Associates, of Columbus, Ohio. Preparations began in the spring of 1982. The casks are expected to be loaded with fuel at Brown's Ferry Nuclear Station early in 1984, and the test completed about two years later. NRC is issuing a two-year license for this test under 10 CFR 72

  3. Dry storage technologies: Optimized solutions for spent fuels and vitrified residues

    International Nuclear Information System (INIS)

    Roland, Vincent; Verdier, Antoine; Sicard, Damien; Neider, Tara

    2006-01-01

    In many countries, fuel cycle and waste policies influence the way operators organize waste management. These policies help drive progress and improvements in areas such as waste minimization programs, conditioning or industrial transformation before final or intermediate conditioning. The criteria that lead to different choices include economic factors, the presence or absence of a wide range of options such as transport, and reprocessing and recycling policies. The current international trend towards expanding Spent Fuel Interim Dry Storage capabilities goes with an improvement of the performance of the proposed systems which have to accommodate Spent fuel Assemblies characterized by ever increasing burn-up, fissile isotopes contents, thermal releases, and total inventory. Due to heterogeneous worldwide reactor pools and specific local constraints the proposed solutions have also to cope with a wide variety of fuel design. The Spent Fuel Assemblies stored temporarily for cooling may have to be transported either to reprocessing facilities or to interim storage facilities before direct disposal; it is the reason why the retrievability, including or not the need of transportation of the proposed systems, is often specified by the utilities for the design of their storage systems and sometimes required by law. In most cases, the producers of spent fuel require a large capacity that is cumulated over many years, each reload at a time. Then the key criterion is maximum modularity. Furthermore, the up front capital costs required for this type of solution has to be attractive for the investor. Two solutions, dual purpose metal casks of the TN TM 24 family or dual purpose or single purpose concrete shielded welded canisters such as NUHOMS R , implemented by COGEMA LOGISTICS, and TRANSNUCLEAR Inc. offer flexibility and modularity and have been adapted also to quite different fuels. Among what influences the choice, we can consider: - In favor of metal casks: Minimal

  4. Development of Neutron Energy Spectral Signatures for Passive Monitoring of Spent Nuclear Fuels in Dry Cask Storage

    Science.gov (United States)

    Harkness, Ira; Zhu, Ting; Liang, Yinong; Rauch, Eric; Enqvist, Andreas; Jordan, Kelly A.

    2018-01-01

    Demand for spent nuclear fuel dry casks as an interim storage solution has increased globally and the IAEA has expressed a need for robust safeguards and verification technologies for ensuring the continuity of knowledge and the integrity of radioactive materials inside spent fuel casks. Existing research has been focusing on "fingerprinting" casks based on count rate statistics to represent radiation emission signatures. The current research aims to expand to include neutron energy spectral information as part of the fuel characteristics. First, spent fuel composition data are taken from the Next Generation Safeguards Initiative Spent Fuel Libraries, representative for Westinghouse 17ˣ17 PWR assemblies. The ORIGEN-S code then calculates the spontaneous fission and (α,n) emissions for individual fuel rods, followed by detailed MCNP simulations of neutrons transported through the fuel assemblies. A comprehensive database of neutron energy spectral profiles is to be constructed, with different enrichment, burn-up, and cooling time conditions. The end goal is to utilize the computational spent fuel library, predictive algorithm, and a pressurized 4He scintillator to verify the spent fuel assemblies inside a cask. This work identifies neutron spectral signatures that correlate with the cooling time of spent fuel. Both the total and relative contributions from spontaneous fission and (α,n) change noticeably with respect to cooling time, due to the relatively short half-life (18 years) of the major neutron source 244Cm. Identification of this and other neutron spectral signatures allows the characterization of spent nuclear fuels in dry cask storage.

  5. The development of a transportable storage cask

    International Nuclear Information System (INIS)

    Stuart, I.F.

    1991-01-01

    There are a number of different technologies for implementing interim storage of spent fuel at reactor sites. It is generally accepted that, if possible, expanding the capacity of existing fuel pools through the installation of compact racks and the use of fuel rod consolidation are the most economical first steps. Once these have been carried out, other alternatives must be employed if further capacity expansion is required. It is not the purpose of this paper to discuss the relative economics of these alternatives, since under specific constraints and conditions each one can be shown to have an economic benefit. However, it is the reduction in plant operations, the minimising of radiation exposure, the inherent flexibility and corresponding overall favourable economics that have led to the development of the dual purpose storage and transport cask in the past few years. (author)

  6. Dry spent fuel storage licensing

    International Nuclear Information System (INIS)

    Sturz, F.C.

    1995-01-01

    In the US, at-reactor-site dry spent fuel storage in independent spent fuel storage installations (ISFSI) has become the principal option for utilities needing storage capacity outside of the reactor spent fuel pools. Delays in the geologic repository operational date at or beyond 2010, and the increasing uncertainty of the US Department of Energy's (DOE) being able to site and license a Monitored Retrievable Storage (MRS) facility by 1998 make at-reactor-site dry storage of spent nuclear fuel increasingly desirable to utilities and DOE to meet the need for additional spent fuel storage capacity until disposal, in a repository, is available. The past year has been another busy year for dry spent fuel storage licensing. The licensing staff has been reviewing 7 applications and 12 amendment requests, as well as participating in inspection-related activities. The authors have licensed, on a site-specific basis, a variety of dry technologies (cask, module, and vault). By using certified designs, site-specific licensing is no longer required. Another new cask has been certified. They have received one new application for cask certification and two amendments to a certified cask design. As they stand on the brink of receiving multiple applications from DOE for the MPC, they are preparing to meet the needs of this national program. With the range of technical and licensing options available to utilities, the authors believe that utilities can meet their need for additional spent fuel storage capacity for essentially all reactor sites through the next decade

  7. Evaluation of microwave cavity gas sensor for in-vessel monitoring of dry cask storage systems

    Science.gov (United States)

    Bakhtiari, S.; Gonnot, T.; Elmer, T.; Chien, H.-T.; Engel, D.; Koehl, E.; Heifetz, A.

    2018-04-01

    Results are reported of research activities conducted at Argonne to assess the viability of microwave resonant cavities for extended in-vessel monitoring of dry cask storage system (DCSS) environment. One of the gases of concern to long-term storage in canisters is water vapor, which appears due to evaporation of residual moisture from incompletely dried fuel assembly. Excess moisture could contribute to corrosion and deterioration of components inside the canister, which would in turn compromise maintenance and safe transportation of such systems. Selection of the sensor type in this work was based on a number of factors, including good sensitivity, fast response time, small form factor and ruggedness of the probing element. A critical design constraint was the capability to mount and operate the sensor using the existing canister penetrations-use of existing ports for thermocouple lances. Microwave resonant cavities operating at select resonant frequency matched to the rotational absorption line of the molecule of interest offer the possibility of highly sensitive detection. In this study, two prototype K-band microwave cylindrical cavities operating at TE01n resonant modes around the 22 GHz water absorption line were developed and tested. The sensors employ a single port for excitation and detection and a novel dual-loop inductive coupling for optimized excitation of the resonant modes. Measurement of the loaded and unloaded cavity quality factor was obtained from the S11 parameter. The acquisition and real-time analysis of data was implemented using software based tools developed for this purpose. The results indicate that the microwave humidity sensors developed in this work could be adapted to in-vessel monitoring applications that require few parts-per-million level of sensitivity. The microwave sensing method for detection of water vapor can potentially be extended to detection of radioactive fission gases leaking into the interior of the canister through

  8. CASTOR THTR transport/storage casks

    International Nuclear Information System (INIS)

    Laug, R.W.; Spilker, H.; Sappok, M.

    1998-01-01

    For the management of spent fuel from nuclear power plants, two possibilities are available in Germany. One possibility is the reprocessing of the spent fuel and the realization of a so called closed nuclear fuel cycle, the other is the direct disposal after a period of interim storage, without reprocessing. For the German GCR plants ''THTR 300'' and ''AVR'', only the way of direct disposal is available to date for managing the spent fuel (pebble-bed fuel). For the period of interim storage, dry storage in casks was selected. (author)

  9. Full-scale prototyping of the Hitachi dual-purpose metal cask and verification of its heat transfer characteristics

    International Nuclear Information System (INIS)

    Kumagai, N.; Ishida, N.; Ootsuka, M.; Kamoshida, M.; Hiranuma, T.; Doumori, S.; Hoshikawa, T.; Shimizu, M.; Kashiwakura, J.; Hayashi, M.

    2004-01-01

    Hitachi has been developing dual-purpose metal casks for transport and storage of spent nuclear fuels. The Hitachi cask, HDP69B can store 69 BWR fuel assemblies. The cask features are as follows. 1) The fuel basket is assembled mainly with plates of borated stainless steel. The plates are not welded, but cross-inserted into each other like the dividers in an egg carton. Since the borated stainless steel has relatively low heat conductivity, aluminum alloy plates are inserted along with some stainless steel plates to enhance heat removal ability. 2) Cured resin blocks are fitted into the inner shell of the cask for neutron shielding of the cask body. The resin blocks are surrounded by an aluminum casing which transfers heat of stored fuel from the inner shell to the outer shell of the cask. The block type shield structure eliminates the need for welding the heat transfer fins to the inner and outer shells. The weldless structures of the HDP69B lead to its enhanced manufacturability, but they complicate the heat transfer characteristics because there are gaps between such components as the aluminum casing and inner/outer shells. We carried out full-scale prototyping of the HDP69B and ran a heat transfer test using the prototype. The purposes of the heat transfer test were to check the heat removal ability of the HDP69B and to verify the safety analysis model for heat removal. Results of the heat transfer test and optimized analysis model for heat transfer characteristics of the HDP69B are the focus of this paper. The heat transfer test is summarized as follows. Sixty nine heaters simulating the shape and heat power of spent fuel assemblies were inserted into the fuel basket. After replacing the inner atmosphere with 0.1 MPa of helium, the heat transfer test was started. About 7 days were required to equilibrate the temperature distribution. The temperature at the center of the basket was 194 C. The results confirmed the HDP69B had sufficient heat removal ability. The

  10. 10 CFR 72.103 - Geological and seismological characteristics for applications for dry cask modes of storage on or...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Geological and seismological characteristics for... § 72.103 Geological and seismological characteristics for applications for dry cask modes of storage on... foundation and geological investigation, literature review, and regional geological reconnaissance show no...

  11. Experience Of Using Metal-and-Concrete Cask TUK-108/1 For Storage And Transportation Of Spent Nuclear Fuel Of Decommissioned NPS

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, E.; Dyer, R. [Environmental Protection Agency, Ronald Reagan Bldg. 3rd Floor 1200 Pennsylvania Av., NW Washington, D.C. 20024 (United States); Snipes, R. [Oak Ridge National Laboratories, VA (United States); Dolbenkov, V.G.; Guskov, V.D.; Korotkov, G.V. [Joint Stock Company ' KBSM' , 64 Lesnoy Av., St.Petersburg 194100 (Russian Federation); Makarchuk, T.F. [Joint Stock Company ' Atomstroyexport' , Potapovskiy str. 5, bld. 4, Moscow, 101990 (Russian Federation); Zakharchev, A.A. [State Corporation ' Rosatom' , 24-26 Ordinka St., Moscow, 100000 (Russian Federation)

    2009-06-15

    In past 10 years in Russia an intensive development of a new technology of management of spent nuclear fuel (SNF) has taken place. This technology is based on the concept of using a shielded cask which provides safety of its content (SNF) and meeting all other safety requirements to storage and transportation of SNF. Radiation protection against emission and non-propagation of activity outside the cask is ensured by the physical barriers such as all-metal or composite body, face work, inner structures to accommodate spent fuel assemblies (SFA), lids with sealing systems. Residual heat buildup is off-taken to the environment by natural way: emission and convection of surrounding air. The necessity in development of the cask technology of SNF management was conditioned by the situation at hand with defueling of Russian decommissioned nuclear-powered submarines (NPS) as the existed transport infrastructure and enterprises involved in fuel processing could not meet the demand for transportation and processing of SNF neither from reactors of all dismantled NPS, nor from reactors of NPS waiting for decommissioning. The US and Norway actively participated in the trilateral joint project with the Russian Federation aimed at creation of a cask prototype for interim storage and transportation of SNF of dismantled NPS. The 1.1 Project is a part of the Arctic Military Environmental Cooperation (AMEC) Program. In December 2000 the project was successfully completed by issuance of the certificate-permit for design and transportation of NP Submarine SNF. It was a first certified dual-purpose TUK from the MMC family. In these years 106 TUK-108/1 casks have been manufactured and supplied to PO Mayak, JSC CS Zvezda, JSC CS Zvezdochka and FSUE DalRAO. The storage pads for interim storage of TUK-108/1 have been built and currently are in operation on sites of SNF unloading from submarine reactors and SNF cask-loading such as JSC CS Zvezda, JSC CS Zvezdochka and FSUE DalRAO. In

  12. Enhanced Thermal Management System for Spent Nuclear Fuel Dry Storage Canister with Hybrid Heat Pipes

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2016-01-01

    Dry storage uses the gas or air as coolant within sealed canister with neutron shielding materials. Dry storage system for spent fuel is regarded as relatively safe and emits little radioactive waste for the storage, but it showed that the storage capacity and overall safety of dry cask needs to be enhanced for the dry storage cask for LWR in Korea. For safety enhancement of dry cask, previous studies of our group firstly suggested the passive cooling system with heat pipes for LWR spent fuel dry storage metal cask. As an extension, enhanced thermal management systems for the spent fuel dry storage cask for LWR was suggested with hybrid heat pipe concept, and their performances were analyzed in thermal-hydraulic viewpoint in this paper. In this paper, hybrid heat pipe concept for dry storage cask is suggested for thermal management to enhance safety margin. Although current design of dry cask satisfies the design criteria, it cannot be assured to have long term storage period and designed lifetime. Introducing hybrid heat pipe concept to dry storage cask designed without disrupting structural integrity, it can enhance the overall safety characteristics with adequate thermal management to reduce overall temperature as well as criticality control. To evaluate thermal performance of hybrid heat pipe according to its design, CFD simulation was conducted and previous and revised design of hybrid heat pipe was compared in terms of temperature inside canister

  13. CASTOR{sup R} 1000/19: Development and Design of a New Transport and Storage Cask

    Energy Technology Data Exchange (ETDEWEB)

    Funke, Th.; Henig, Ch. [GNS mbH, Hollestrasse 7A, 45127 Essen (Germany)

    2008-07-01

    The design of the new transport and storage cask type CASTOR{sup R} 1000/19 is presented in this paper. This cask was developed for the dry interim storage of spent VVER1000 fuel assemblies concerning the requirements of the Temelin NPP, Czech Republic. While the cask body is based on well-known ductile cast iron cask types with in-wall moderator, the basket follows a new concept. The basket is able to carry 19 fuel assemblies with a total decay heat power up to approximately 17 kW. The cask fulfils all requirements for a type B(U)F package. The main nuclear, mechanical and thermal properties of the cask are illustrated for normal conditions and for hypothetical accident scenarios during transport and storage. The main steps of the handling procedure such as loading the cask, drying the cavity and mounting the double lid system for tightness during interim storage are shown in principle. For this handling, boundary conditions at the NPP site such as dimensions, weight and the loading machine interface are considered. (authors)

  14. Spent fuel storage - dry storage options and issues

    International Nuclear Information System (INIS)

    Akins, M.J.

    2007-01-01

    The increase in the number of nuclear energy power generation facilities will require the ability to store the spent nuclear fuel for a long period until the host countries develop reprocessing or disposal options. Plants have storage pools which are closely associated with the operating units. These are excellent for short term storage, but require active maintenance and operations support which are not desirable for the long term. Over the past 25 years, dry storage options have been developed and implemented throughout the world. In recent years, protection against terrorist attack has become an increasing source of design objectives for these facilities, as well as the main nuclear plant. This paper explores the current design options of dry storage cask systems and examines some of the current design issues for above ground , in-ground, or below-ground storage of spent fuel in dry casks. (author)

  15. Development of metal cask for nuclear spent fuel

    International Nuclear Information System (INIS)

    Matsuoka, T.; Kuri, S.; Ohsono, K.; Hode, S.

    2001-01-01

    It is one of the realistic solutions against increasing demand on interim storage of spent fuel assemblies arising from nuclear power plants in Japan to apply dual purpose (transport and storage) metal casks. Since 1980's Mitsubishi Heavy Industries, Ltd. (MHI) has been contributing to develop metal cask technologies for utilities, etc. in Japan, and have established transport and storage cask design ''MSF series'' which realizes higher payload and reliability for long term storage. MSF series transport and storage casks use various new design concepts and materials to improve thermal performance of the cask, structural integrity of the basket, durability of the neutron shielding material and so on. This paper summarizes an outline of the cask design that can accommodate BWR spent fuel assemblies as well as the new technologies applied to the design and fabrication. (author)

  16. Fabrication and operational experience with the interim storage cask

    International Nuclear Information System (INIS)

    Scott, P.L.

    1998-01-01

    This paper discusses the fabrication and operational experience of the Interim Storage Cask (ISC). The ISC is a dry storage cask which is used to safely store a Core Component Container (CCC) containing up to seven Fast Flux Test Facility (FFTF) spent fuel assemblies at the US Department of Energy's Hanford Site. Under contract to B and W Hanford Company (BWHC), General Atomics (GA) designed and fabricated thirty ISC casks which BWHC is remotely loading at the FFTF facility. BWHC designed and fabricated the CCCS. As of December 1997, thirty ISCs have been fabricated, of which eighteen have been loaded and moved to a storage site adjacent to the FFTF facility. Fabrication consisted of three sets of casks. The first unit was completed and acceptance tested before any other units were fabricated. After the first unit passed all acceptance tests, nine more units were fabricated in the first production run. Before those nine units were completed, GA began a production run of twenty more units. The paper provides an overview of the cask design and discusses the problems encountered in fabrication, their resolution, and changes made in the fabrication processes to improve the quality of the casks. The paper also discusses the loading process and operational experiences with loading and handling of the casks. Information on loading times, worker dose exposure, and total dose for loading are presented

  17. Verification of heat removal capability of a concrete cask system for spent fuel storage

    International Nuclear Information System (INIS)

    Sakai, Mikio; Fujiwara, Hiroaki; Sakaya, Tadatugu

    2001-01-01

    The reprocessing works comprising of a center of nuclear fuel cycle in Japan is now under construction at Rokkasho-mura in Aomori prefecture, which is to be operated in 2005. However, as reprocessing capacity of the works is under total forming amount of spent nuclear fuels, it has been essential to construct a new facility intermediately to store them at a period before reprocessing them because of prediction to reach limit of pool storage in nuclear power stations. There are some intermediate storage methods, which are water pool method for wet storage, and bolt method, metal cask method, silo method and concrete cask method for dry storage. Among many methods, the dry storage is focussed at a standpoint of its operability and economy, the concrete cask method which has a lot of using results in U.S.A. has been focussed as a method expectable in its cost reduction effect among it. The Ishikawajima-Harima Heavy Industries Co., Ltd. produced, in trial, a concrete cask with real size to confirm productivity when advancing design work on concrete cask. By using the trial product, a heat removal test mainly focussing temperature of concrete in the cask was carried out to confirm heat conductive performances of the cask. And, analysis of heat conductivity was also carried out to verify validity of its analysis model. (G.K.)

  18. Thermal test and analysis of a spent fuel storage cask

    International Nuclear Information System (INIS)

    Yamakawa, H.; Gomi, Y.; Ozaki, S.; Kosaki, A.

    1993-01-01

    A thermal test simulated with full-scale cask model for the normal storage was performed to verify the storage skill of the spent fuels of the cask. The maximum temperature at each point in the test was lower than the allowable temperature. The integrity of the cask was maintained. It was observed that the safety of containment system was also kept according to the check of the seal before and after the thermal test. Therefore it was shown that using the present skill, it is possible to store spent fuels in the dry-type cask safely. Moreover, because of the good agreement between analysis and experimental results, it was shown that the analysis model was successfully established to estimate the temperature distribution of the fuel cladding and the seal portion. (J.P.N.)

  19. Spent fuel behaviour during dry storage - a review

    International Nuclear Information System (INIS)

    Shivakumar, V.; Anantharaman, K.

    1997-09-01

    One of the strategies employed for management of spent fuel prior to their final disposal/reprocessing is their dry storage in casks, after they have been sufficiently cooled in spent fuel pools. In this interim storage, one of the main consideration is that the fuel should retain its integrity to ensure (a) radiological health hazard remains minimal and (b) the fuel is retrievable for down steam fuel management processes such as geological disposal or reprocessing. For dry storage of spent fuel in air, oxidation of the exposed UO 2 is the most severe of phenomena affecting the integrity of fuel. This is kept within acceptable limits for desired storage time by limiting the fuel temperature in the storage cask. The limit on the fuel temperature is met by having suitable limits on maximum burn-up of fuel, minimum cooling period in storage pool and optimum arrangement of fuel bundles in the storage cask from heat removal considerations. The oxidation of UO 2 by moist air has more deleterious effects on the integrity of fuel than that by dry air. The removal of moisture from the storage cask is therefore a very important aspect in dry storage practice. The kinetics of the oxidation phenomena at temperatures expected during dry storage in air is very slow and therefore the majority of the existing data is based on extrapolation of data obtained at higher fuel temperatures. This and the complex effects of factors like fission products in fuel, radiolysis of storage medium etc. has necessitated in having a conservative limiting criteria. The data generated by various experimental programmes and results from the on going programmes have shown that dry storage is a safe and economical practice. (author)

  20. A Well Established System For The Dry Storage Of Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Skrzyppek, Juergen; Kim, Josef Du-III [SMART Power Company, Essen (Germany)

    2015-05-15

    The German company GNS Gesellschaft fur Nuklear-Service mbH today looks back on more than 30 years of operational experience with dual-purpose casks. Following customer demands, GNS developed two different cask types for SNF the CASTOR and the CONSTOR cask type. While the CASTOR type is optimized for high thermal loads which allows loading after extremely short cooling times and/or high burn-up of the SNF the CONSTOR type is cost optimized for the cost-efficient storage of large quantities of cooler SNF. By now almost 1,300 GNS-casks are in operation worldwide. In Germany alone, more than 1000 CASTOR casks are stored with individual storage periods of up to 30 years. Taking into account the additional casks that have to be manufactured, loaded and stored during the final years of the German Nuclear Phase-Out, there will be 2000 casks by GNS in operation worldwide. The presentation will give an overview over several national and international projects and show the bandwidth of customized solutions by GNS.

  1. 78 FR 32077 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Science.gov (United States)

    2013-05-29

    ... Fuel Storage Casks: MAGNASTOR[supreg] System AGENCY: Nuclear Regulatory Commission. ACTION: Direct... All-purpose Storage (MAGNASTOR[supreg]) System listing within the ``List of Approved Spent Fuel... CoC No. 1031, MAGNASTOR[supreg] System listing within the ``List of Approved Spent Fuel Storage Casks...

  2. Low-cost concepts for dry transfer of spent fuel and waste between storage and transportation casks

    International Nuclear Information System (INIS)

    Schneider, K.L.

    1984-01-01

    The federal government may provide interim storage for spent fuel from commercial nuclear power reactors that have used up their available storage capacity. One of the leading candidate concepts for this interim storage is to place spent fuel in large metal shielding casks. The Federal Interim Storage (FIS) site may not have the capability to transfer spent fuel from transportation casks to storage casks and vice versa. Thus, there may be an incentive to construct a relatively inexpensive but reliable intercask transfer system for use at an FIS site. This report documents the results of a preliminary study of preconceptual design and analysis of four intercask transfer concepts. The four concepts are: a large shielded cylindrical turntable that contains an integral fuel handling machine (turntable concept); a shielded fuel handling machine under which shipping and storage casks are moved horizontally (shuttle concept); a small hot cell containing equipment for transferring fuel betwee shipping and storage casks (that enter and leave the cell on carts) in a bifurcated trench (trench concept) and a large hot cell, shielded by an earthen berm, that houses equipment for handling fuel between casks that enter and leave the cell on a single cart (igloo concept). Information derived for each of the concepts is operating, capital and relocation costs; implementation and relocation time requirements; and overall characteristics

  3. Thermal tests of a transport / Storage cask in buried conditions

    International Nuclear Information System (INIS)

    Yamakawa, H.; Gomi, Y.; Saegusa, T.; Ito, C.

    1998-01-01

    Thermal tests for a hypothetical accident which simulated accidents caused by building collapse in case of an earthquake were conducted using a full-scale dry type transport and storage cask (total heat load: 23 kW). The objectives of these tests were to clarify the heat transfer features of the buried cask under such accidents and the time limit for maintaining the thermal integrity of the cask. Moreover, thermal analyses of the test cask under the buried conditions were carried out on basis of experimental results to establish methodology for the thermal analysis. The characteristics of the test cask are described as well as the test method used. The heat transfer features of the buried cask under such accidents and a time for maintaining the thermal integrity of the cask have been obtained. (O.M.)

  4. A Multi-function Cask for At-Reactor Storage of Short-Cooled Spent Fuel, Transport, and Disposal

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    2004-01-01

    . This cask design approach can also be used for storage only and dual-purpose (storage and transport) SNF casks. (author)

  5. Study of a brazilian cask and its installation for PWR spent nuclear fuel dry storage

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2009-01-01

    Spent nuclear fuel (SNF) is removed from the nuclear reactor after the depletion on efficiency in generating energy. After the withdrawal from the reactor core, the SNF is temporarily stored in pools at the same site of the reactor. At this time, the generated heat and the short and medium lived radioactive elements decay to levels that allow removing SNF from the pool and sending it to temporary dry storage. In that phase, the fuel needs to be safely and efficiently stored, and then, it can be retrieved in a future, or can be disposed as radioactive waste. The amount of spent fuel increases annually and, in the next years, will still increase more, because of the construction of new nuclear plants. Today, the number of new facilities back up to levels of the 1970's, since it is greater than the amount of decommissioning in old installations. As no final decision on the back-end of the nuclear fuel cycle is foreseen in the near future in Brazil, either to recover the SNF or to consider it as radioactive waste, this material has to be isolated in some type of storage model existing around the world. In the present study it is shown that dry SNF storage is the best option. A national cask model for SNF as well these casks storage installation are proposed. It is a multidisciplinary study in which the engineering conceptual task was developed and may be applied to national SNF removed from the Brazilian power reactors, to be safely stored for a long time until the Brazilian authorities will decide about the site for final disposal. (author)

  6. Commercial solutions [for dry spent fuel storage casks

    International Nuclear Information System (INIS)

    Howe, W.F.; Pennington, C.W.; Hobbs, J.; Lee, W.; Thomas, B.D.; Dibert, D.J.

    1996-01-01

    In the aftermath of the termination of the DOE's MPC (Multi-Purpose Canister) programme, commercial suppliers are coming forward with new or updated systems to meet utility needs. Leading vendors describe the advantages of their systems for dry spent fuel storage and transport. (Author)

  7. 78 FR 16619 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Science.gov (United States)

    2013-03-18

    ...-0308] RIN 3150-AJ22 List of Approved Spent Fuel Storage Casks: MAGNASTOR[supreg] System AGENCY: Nuclear... proposing to amend its spent fuel storage regulations by revising the NAC International, Inc., Modular Advanced Generation Nuclear All-purpose Storage (MAGNASTOR[supreg]) Cask System listing within the ``List...

  8. Behaviour of a spent fuel transport-storage cask during an airplane crash

    International Nuclear Information System (INIS)

    Malesys, P.

    1994-01-01

    TRANSNUCLEAIRE has got an order for the design and manufacturing of dual purpose, transport and storage, casks for spent fuel.An original item of the qualification of the design of this cask, for the storage aspect, is the necessity to demonstrate the resistance to an air crash.The typical case taken into account for design is the crash of a military fighter (F16) with a total mass of 14600kg and an impact speed of 150ms -1 . The demonstration of the ability of the cask to withstand this test is provided by both calculation and test.Two cases were considered. For the first one, the projectile hits the cask at the centre of the anti-crash lid. For the second one, it hits the cask in the plane of the closure system.The first step of the qualification is based on calculations performed with a code designed to study the effects of crashes. The aim of the calculations is, mainly, to determine the missile which has to be shot, and to select the worst orientation for the impact.To provide a full justification of the acceptability of the impact as concerned leaktightness, a test has been performed on a one-third scale model. It has shown that it was not altered by the impact.The paper provides a full description of the method of analysis, results of the numerical analysis, conclusion of the test and how the combination of calculation and test demonstrates the ability of the cask to withstand an airplane crash. ((orig.))

  9. 77 FR 9515 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8

    Science.gov (United States)

    2012-02-17

    ... Storage Casks: HI-STORM 100, Revision 8 AGENCY: Nuclear Regulatory Commission. ACTION: Direct final rule... regulations by revising the Holtec International HI-STORM 100 dry cask storage system listing within the... and safety will be adequately protected. This direct final rule revises the HI-STORM 100 listing in 10...

  10. Standard review plan for reviewing safety analysis reports for dry metallic spent fuel storage casks

    International Nuclear Information System (INIS)

    1988-01-01

    The Cask Standard Review Plan (CSRP) has been prepared as guidance to be used in the review of Cask Safety Analysis Reports (CSARs) for storage packages. The principal purpose of the CSRP is to assure the quality and uniformity of storage cask reviews and to present a well-defined base from which to evaluate proposed changes in the scope and requirements of reviews. The CSRP also sets forth solutions and approaches determined to be acceptable in the past by the NRC staff in dealing with a specific safety issue or safety-related design area. These solutions and approaches are presented in this form so that reviewers can take consistent and well-understood positions as the same safety issues arise in future cases. An applicant submitting a CSAR does not have to follow the solutions or approaches presented in the CSRP. However, applicants should recognize that the NRC staff has spent substantial time and effort in reviewing and developing their positions for the issues. A corresponding amount of time and effort will probably be required to review and accept new or different solutions and approaches

  11. Status update of the BWR cask simulator

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Durbin, Samuel G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The performance of commercial nuclear spent fuel dry storage casks are typically evaluated through detailed numerical analysis of the system's thermal performance. These modeling efforts are performed by the vendor to demonstrate the performance and regulatory compliance and are independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Numerous studies have been previously conducted. Recent advances in dry storage cask designs have moved the storage location from above ground to below ground and significantly increased the maximum thermal load allowed in a cask in part by increasing the canister helium pressure. Previous cask performance validation testing did not capture these parameters. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern dry casks. These modern cask designs utilize elevated helium pressure in the sealed canister or are intended for subsurface storage. The BWR cask simulator (BCS) has been designed in detail for both the above ground and below ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the canister. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. Various configurations of outer concentric ducting will be used to mimic conditions for above and below ground storage configurations

  12. CASKS (Computer Analysis of Storage casKS): A microcomputer based analysis system for storage cask design review. User's manual to Version 1b (including program reference)

    International Nuclear Information System (INIS)

    Chen, T.F.; Gerhard, M.A.; Trummer, D.J.; Johnson, G.L.; Mok, G.C.

    1995-02-01

    CASKS (Computer Analysis of Storage casKS) is a microcomputer-based system of computer programs and databases developed at the Lawrence Livermore National Laboratory (LLNL) for evaluating safety analysis reports on spent-fuel storage casks. The bulk of the complete program and this user's manual are based upon the SCANS (Shipping Cask ANalysis System) program previously developed at LLNL. A number of enhancements and improvements were added to the original SCANS program to meet requirements unique to storage casks. CASKS is an easy-to-use system that calculates global response of storage casks to impact loads, pressure loads and thermal conditions. This provides reviewers with a tool for an independent check on analyses submitted by licensees. CASKS is based on microcomputers compatible with the IBM-PC family of computers. The system is composed of a series of menus, input programs, cask analysis programs, and output display programs. All data is entered through fill-in-the-blank input screens that contain descriptive data requests

  13. Concrete storage cask for interim storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Nabemoto, Toyonobu; Fujiwara, Hiroaki; Kobayashi, Shunji; Shionaga, Ryosuke

    2004-01-01

    Experiments and analytical evaluation of the fabrication, non-destructive inspection and structural integrity of reinforced concrete body for storage casks were carried out to demonstrate the concrete storage cask for spent fuel generated from nuclear power plants. Analytical survey on the type of concrete material and fabrication method of the storage cask was performed and the most suitable fabrication method for the concrete body was identified to reduce concrete cracking. The structural integrity of the concrete body of the storage cask under load conditions during storage was confirmed and the long term integrity of concrete body against degradation dependent on environmental factors was evaluated. (author)

  14. 78 FR 63375 - List of Approved Spent Fuel Storage Casks: Transnuclear, Inc. Standardized NUHOMS® Cask System

    Science.gov (United States)

    2013-10-24

    ... Fuel Storage Casks: Transnuclear, Inc. Standardized NUHOMS[supreg] Cask System AGENCY: Nuclear...] Cask System listing within the ``List of Approved Spent Fuel Storage Casks'' to include Amendment No..., Inc. Standardized NUHOMS[supreg] Cask System listing within the ``List of Approved Spent Fuel Storage...

  15. Materials in the environment of the fuel in dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Issard, H [TN International (Cogema Logistics) (France)

    2012-07-01

    Spent nuclear fuel has been stored safely in pools or dry systems in over 30 countries. The majority of IAEA Member States have not yet decided upon the ultimate disposition of their spent nuclear fuel: reprocessing or direct disposal. Interim storage is the current solution for these countries. For developing the technological knowledge data base, a continuation of the IAEA's spent fuel storage performance assessment was achieved. The objectives are: Investigate the dry storage systems and gather basic fuel behaviour assessment; Gather data on dry storage environment and cask materials; Evaluate long term behaviour of cask materials.

  16. 78 FR 63408 - List of Approved Spent Fuel Storage Casks: Transnuclear, Inc. Standardized NUHOMS® Cask System

    Science.gov (United States)

    2013-10-24

    ... Fuel Storage Casks: Transnuclear, Inc. Standardized NUHOMS[supreg] Cask System AGENCY: Nuclear...] Cask System listing within the ``List of Approved Spent Fuel Storage Casks'' to include Amendment No... Safety Analysis Report for the Standardized NUHOMS[supreg] Horizontal Modular Storage System for...

  17. 78 FR 78693 - List of Approved Spent Fuel Storage Casks: Transnuclear, Inc. Standardized NUHOMS® Cask System

    Science.gov (United States)

    2013-12-27

    ... Storage Casks: Transnuclear, Inc. Standardized NUHOMS[supreg] Cask System AGENCY: Nuclear Regulatory... storage regulations by revising the Transnuclear, Inc. Standardized NUHOMS[supreg] Cask System listing within the ``List of Approved Spent Fuel Storage Casks'' to include Amendment No. 11 to Certificate of...

  18. Comparative economics for DUCRETE spent fuel storage cask handling, transportation, and capital requirements

    International Nuclear Information System (INIS)

    Powell, F.P.

    1995-04-01

    This report summarizes economic differences between a DUCRETE spent nuclear fuel storage cask and a conventional concrete storage cask in the areas of handling, transportation, and capital requirements. The DUCRETE cask is under evaluation as a new technology that could substantially reduce the overall costs of spent fuel and depleted U disposal. DUCRETE incorporates depleted U in a Portland cement mixture and functions as the cask's primary radiation barrier. The cask system design includes insertion of the US DOE Multi-Purpose Canister inside the DUCRETE cask. The economic comparison is from the time a cask is loaded in a spent fuel pool until it is placed in the repository and includes the utility and overall US system perspectives

  19. The prospects for dry fuel storage

    International Nuclear Information System (INIS)

    Harris, G.G.; Elliott, D.

    1994-01-01

    Dry storage of spent nuclear fuels is one method of dealing with radioactive waste. This article reports from a one day seminar on future prospects for dry fuel storage held in November 1993. Dry storage in an inert gas or air environment in vaults or casks, is an alternative to wet storage in water-filled ponds. Both wet and dry storage form part of the Interim Storage option for radioactive waste materials, and form alternatives to reprocessing or direct disposal in a deep repository. It has become clear that a large market for dry fuel storage will exist in the future. It will therefore be necessary to ensure that the various technical, safety, commercial, legislative and political constraints associated with it can be met effectively. (UK)

  20. Interim and final storage casks

    International Nuclear Information System (INIS)

    Stumpfrock, L.; Kockelmann, H.

    2012-01-01

    The disposal of radioactive waste is a huge social challenge in Germany and all over the world. As is well known the search for a site for a final repository for high-level waste in Germany is not complete. Therefore, interim storage facilities for radioactive waste were built at plant sites in Germany. The waste is stored in these storage facilities in appropriate storage and transport casks until the transport in a final repository can be carried out. Licensing of the storage and transport casks aimed for use in the public space is done according to the traffic laws and for handling in the storage facility according to nuclear law. Taking into account the activity of the waste to be stored, different containers are in use, so that experience is available from the licensing and operation in interim storage facilities. The large volume of radioactive waste to be disposed of after the shut-down of power generation in nuclear power stations makes it necessary for large quantities of licensed storage and transport casks to be provided soon.

  1. Horizontal modular dry irradiated fuel storage system

    Science.gov (United States)

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  2. Criticality safety analysis of TK-13 cask in Bushehr nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Ashgar; Omidvari, Nima [Iran Radioactive Waste Management Company, Tehran (Iran, Islamic Republic of); Hassanzadeh, Mostafa [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2017-12-15

    Spent fuel production is one of the main problems of nuclear power plants that should be managed properly considering the strategy of each country. Today, in most of nuclear power owner countries, the interim storage has been selected as the temporary solution of spent fuel management because of absence of deep geological repositories and no tendency for reprocessing. On the other side, considering the merits of storage in dual purpose casks based on dry storage, this method was chosen for interim storage. By taking into account that the only operating reactor of Iran is of Water-Water Energetic Reactor (WWER)-1000 type, proposed TK-13 cask by Russia which is the manufacturer of these types of reactors has been considered. In this study, the calculation of basket holding spent fuel assembly criticality of this cask has been analyzed for two modes of fresh and spent fuel by ORIGEN2.1 and MCNPX2.6 nuclear codes. The criterion of the nuclear criticality safety for effective multiplication factor (k{sub eff}) should be 0.95 and 0.98 for many ordinary and accident conditions, respectively. Therefore, the results show that a cylindrical basket with 66 cm diameter and 28 cm pitch with internal holding basket made of borated steel with 0.1% borate and steel free from borate would meet the criticality of cask, respectively.

  3. Criticality safety analysis of TK-13 cask in Bushehr nuclear power plant

    International Nuclear Information System (INIS)

    Mohammadi, Ashgar; Omidvari, Nima; Hassanzadeh, Mostafa

    2017-01-01

    Spent fuel production is one of the main problems of nuclear power plants that should be managed properly considering the strategy of each country. Today, in most of nuclear power owner countries, the interim storage has been selected as the temporary solution of spent fuel management because of absence of deep geological repositories and no tendency for reprocessing. On the other side, considering the merits of storage in dual purpose casks based on dry storage, this method was chosen for interim storage. By taking into account that the only operating reactor of Iran is of Water-Water Energetic Reactor (WWER)-1000 type, proposed TK-13 cask by Russia which is the manufacturer of these types of reactors has been considered. In this study, the calculation of basket holding spent fuel assembly criticality of this cask has been analyzed for two modes of fresh and spent fuel by ORIGEN2.1 and MCNPX2.6 nuclear codes. The criterion of the nuclear criticality safety for effective multiplication factor (k eff ) should be 0.95 and 0.98 for many ordinary and accident conditions, respectively. Therefore, the results show that a cylindrical basket with 66 cm diameter and 28 cm pitch with internal holding basket made of borated steel with 0.1% borate and steel free from borate would meet the criticality of cask, respectively.

  4. Seismic Response Analysis and Test of 1/8 Scale Model for a Spent Fuel Storage Cask

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Park, C. G.; Koo, G. H.; Seo, G. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yeom, S. H. [Chungnam Univ., Daejeon (Korea, Republic of); Choi, B. I.; Cho, Y. D. [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2005-07-15

    The seismic response tests of a spent fuel dry storage cask model of 1/8 scale are performed for an typical 1940 El-centro and Kobe earthquakes. This report firstly focuses on the data generation by seismic response tests of a free standing storage cask model to check the overturing possibility of a storage cask and the slipping displacement on concrete slab bed. The variations in seismic load magnitude and cask/bed interface friction are considered in tests. The test results show that the model gives an overturning response for an extreme condition only. A FEM model is built for the test model of 1/8 scale spent fuel dry storage cask using available 3D contact conditions in ABAQUS/Explicit. Input load for this analysis is El-centro earthquake, and the friction coefficients are obtained from the test result. Penalty and kinematic contact methods of ABAQUS are used for a mechanical contact formulation. The analysis methods was verified with the rocking angle obtained by seismic response tests. The kinematic contact method with an adequate normal contact stiffness showed a good agreement with tests. Based on the established analysis method for 1/8 scale model, the seismic response analyses of a full scale model are performed for design and beyond design seismic loads.

  5. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    International Nuclear Information System (INIS)

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior

  6. Safety aspects of long-term dry interim storage of type-B spent fuel and HLW transport casks

    International Nuclear Information System (INIS)

    Wolff, D.; Probst, U.; Voelzke, H.; Droste, B.; Roedel, R.

    2004-01-01

    Based on the German decision to minimise transports of spent fuel casks between nuclear power plants, reprocessing plants and central storage facilities several on-site storage facilities have been licensed till the end of 2003. Because of the large amount of type-B transport casks which are going to be used for long-term interim storage the question of time limited type-B license maintenance during the storage period of up to 40 years has been discussed under different aspects. This paper describes present technical aspects of the discussion. A main aspect of transport cask qualification for interim storage is the long-term behaviour of the metallic seal lid system. Concerning this results from current experimental long-term tests with metallic ''Helicoflex''-seals in which pool water is enclosed are presented. The test series has been performed by the Federal Institute for Materials Research and Testing (BAM) on behalf of the Federal Office for Radiation Protection (BfS) since 2001. Finally, the paper presents a German concept for an authorities' and technical experts' exchange of experience, know-how and state of the art referring to cask dispatch in nuclear facilities. BAM has taken over a central role in this so-called ''co-ordinating institution for cask dispatching information'' (''KOBAF'') which contains an online data base and a technical working group meeting twice a year. The goal is to keep comparable technical standards for all nuclear sites and storage facilities which are going to load and dispatch casks of the same or similar types under the responsibility of different German state governments for the next decades

  7. Safety aspects of long-term dry interim storage of Type B spent fuel and high-level transport casks

    International Nuclear Information System (INIS)

    Wolff, D.; Probst, U.; Voelzke, H.; Droste, B.; Roedel, R.

    2004-01-01

    Based on the German decision to minimise transport of spent fuel casks between nuclear power plants, reprocessing plants and central storage facilities several on-site storage facilities were licensed until the end of 2003. Because of the large amount of Type B(U) transport casks which are going to be used for long-term interim storage the question of time-limited Type B(U) licence maintenance during the storage period of up to 40 years has been discussed under different aspects. This paper describes present technical aspects of the discussion. A main aspect of qualification of transport casks for interim storage is the long-term behaviour of the metallic seal-lid system. Here we present results from current long-term experimental tests with metallic 'Helicoflex' seals in which pool water is enclosed. This series of tests has been performed by the Federal Institute for Materials Research and Testing (BAM) on behalf of the Federal Office for Radiation Protection (BfS) since 2001. Finally, the paper presents a German concept for an exchange of experience, know-how and state-of-the-art between authorities and technical experts with regard to cask dispatch in nuclear facilities. BAM has taken over a central role in this so-called 'coordinating institution for cask dispatching information' ('KOBAF') which entails management of an online database of cask-specific documents and a technical working group meeting twice a year. The goal is to keep comparable technical standards for all nuclear sites and storage facilities which are going to load and dispatch casks of the same or similar types under the responsibility of different German state governments for the coming decades. (author)

  8. Verification of Spent Nuclear Fuel in Sealed Dry Storage Casks via Measurements of Cosmic-Ray Muon Scattering

    Science.gov (United States)

    Durham, J. M.; Poulson, D.; Bacon, J.; Chichester, D. L.; Guardincerri, E.; Morris, C. L.; Plaud-Ramos, K.; Schwendiman, W.; Tolman, J. D.; Winston, P.

    2018-04-01

    Most of the plutonium in the world resides inside spent nuclear reactor fuel rods. This high-level radioactive waste is commonly held in long-term storage within large, heavily shielded casks. Currently, international nuclear safeguards inspectors have no stand-alone method of verifying the amount of reactor fuel stored within a sealed cask. Here we demonstrate experimentally that measurements of the scattering angles of cosmic-ray muons, which pass through a storage cask, can be used to determine if spent fuel assemblies are missing without opening the cask. This application of technology and methods commonly used in high-energy particle physics provides a potential solution to this long-standing problem in international nuclear safeguards.

  9. Evaluation of canister weld flaw depth for concrete storage cask

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Tae Chul; Cho, Chun Hyung [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of); Jung, Sung Hun; Lee, Young Oh; Jung, In Su [Korea Nuclear Engineering and Service Corp, Daejeon (Korea, Republic of)

    2017-03-15

    Domestically developed concrete storage casks include an internal canister to maintain the confinement integrity of radioactive materials. In this study, we analyzed the depth of flaws caused by loads that propagate canister weld cracks under normal, off-normal and accident conditions, and evaluated the maximum allowable weld flaw depth needed to secure the structural integrity of the canister weld and to reduce the welding time of the internal canister lid of the concrete storage cask. Structural analyses for normal, off-normal and accident conditions were performed using the general-purpose finite element analysis program ABAQUS; the allowable flaw depth was assessed according to ASME B and PV Code Section XI. Evaluation results revealed an allowable canister weld flaw depth of 18.75 mm for the concrete storage cask, which satisfies the critical flaw depth recommended in NUREG-1536.

  10. Structural analysis of a metal spent-fuel storage cask in an aircraft crash for risk assessment

    International Nuclear Information System (INIS)

    Almomani, Belal; Lee, Sanghoon; Kang, Hyun Gook

    2016-01-01

    Highlights: • Several engine-applied loads with different locations of impact on the storage cask body were implemented. • Cask structural responses due to the influence of engine impact loadings were analyzed. • Leakage path areas from lid closure openings were numerically calculated. • Release fractions that depend on the generated seal opening areas and fuel damage ratios were estimated. - Abstract: Evaluations of the impact resistance of a dry storage cask under mechanical impact loadings resulting from a large commercial aircraft crash have become an important issue for designers and evaluators, in order to promote interim dry storage activities and to evaluate design safety margins. This study presents a method to evaluate the structural integrity of a generic metal cask subjected to various mechanical loading conditions, which represent aircraft engine impacts, on different locations of the cask body. Thirty representative impact conditions are analyzed to provide a comprehensive evaluation of cask damage response. The applied engine impact load–time functions were carefully re-derived by utilizing CRIEPI’s proposed curve through Riera’s approach for six impact velocities, and applied to five locations on a freestanding cask: lateral impacts on the lower half, center of gravity, and upper half of the cask body, corner impact on the lid closure, and vertical impact on the center of the lid closure. A nonlinear dynamic finite element analysis is performed to evaluate the dynamic response of the cask lid closure system and to calculate the lid gaps. The release fractions from the cask to the environment for each impact condition are preliminarily estimated by referring to a proposed methodology from literature. It is believed that this paper presents a systematic process to connect the mechanical analysis of a cask response at the moment of aircraft engine impact with its radiological consequence analysis.

  11. Structural analysis of a metal spent-fuel storage cask in an aircraft crash for risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Almomani, Belal, E-mail: balmomani@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Sanghoon, E-mail: shlee1222@kmu.ac.kr [Department of Mechanical and Automotive Engineering, Keimyung University, Dalgubeol-daero 1095, Dalseo-gu, Daegu (Korea, Republic of); Kang, Hyun Gook, E-mail: hyungook@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2016-11-15

    Highlights: • Several engine-applied loads with different locations of impact on the storage cask body were implemented. • Cask structural responses due to the influence of engine impact loadings were analyzed. • Leakage path areas from lid closure openings were numerically calculated. • Release fractions that depend on the generated seal opening areas and fuel damage ratios were estimated. - Abstract: Evaluations of the impact resistance of a dry storage cask under mechanical impact loadings resulting from a large commercial aircraft crash have become an important issue for designers and evaluators, in order to promote interim dry storage activities and to evaluate design safety margins. This study presents a method to evaluate the structural integrity of a generic metal cask subjected to various mechanical loading conditions, which represent aircraft engine impacts, on different locations of the cask body. Thirty representative impact conditions are analyzed to provide a comprehensive evaluation of cask damage response. The applied engine impact load–time functions were carefully re-derived by utilizing CRIEPI’s proposed curve through Riera’s approach for six impact velocities, and applied to five locations on a freestanding cask: lateral impacts on the lower half, center of gravity, and upper half of the cask body, corner impact on the lid closure, and vertical impact on the center of the lid closure. A nonlinear dynamic finite element analysis is performed to evaluate the dynamic response of the cask lid closure system and to calculate the lid gaps. The release fractions from the cask to the environment for each impact condition are preliminarily estimated by referring to a proposed methodology from literature. It is believed that this paper presents a systematic process to connect the mechanical analysis of a cask response at the moment of aircraft engine impact with its radiological consequence analysis.

  12. Heat transfer investigations within dry spent fuel casks

    International Nuclear Information System (INIS)

    Nitsche, F.

    1986-07-01

    For studying the heat transfer processes and predicting the maximum spent fuel element surface temperature in a spent fuel assembly (SFA) transported in a dry cask, model experiments have been performed with a gas-filled model cask containing a simplified electrically heated model of a WWER-type SFA with 90 fuel elements. The temperature distribution of the SFA model is measured for different heat rates under vacuum in the model cask, and under normal pressure and overpressure (0.1 ... 0.7 MPa) for several cooling gases (air, argon, helium) in order to separately investigate heat transfer processes by radiation and convection/conduction. The measuring results were compared with the calculations. Computer programmes as well as simplified calculation methods for temperature prediction were developed and checked. The results obtained are also useful for thermal analyses in the field of the dry storage of SFAs in a cask or can. Specifically it was found that: The heat removal from the SFA can be considerably improved by increasing the internal cask pressure or by using helium as coolant. The radiant heat exchange in the SFA model can be calculated with sufficient accuracy by means of a computer programme developed in 1978 or by means of a simplified analytical representation shown in the final report. Both methods are directly applicable to the original SFA and useful in order to approximately calculate the maximum SFE surface temperature under normal pressure, if the fraction of heat transferred by radiation is allowed for. For the calculation of the total heat transfer a computer programme was developed and verified, which completely permits the temperature prediction of the SFA model in dependence on heat rate, type of gaseous coolant and coolant pressure. This computer programme can be directly applied to the original SFA for the calculation of the maximum SFE surface temperature

  13. Welding issues associated with design, fabrication and loading of spent fuel storage casks

    International Nuclear Information System (INIS)

    Battige, C.K. Jr.; Howe, A.G.; Sturz, F.C.

    1999-01-01

    The U.S. Nuclear Regulatory Commission (NRC) has observed a number of welding issues associated with design, fabrication, and loading of spent fuel storage casks. These emerging welding-related issues involving a certain dry cask storage system have challenged the safety basis for which NRC approved the casks for storage of spent nuclear fuel. During closure welding, problems have been encountered with cracking. Although the cracks have been attributed to several causes including material suitability, joint restraint and residual stresses, NRC believes hydrogen-induced cracking is the most likely explanation. In light of these cracking events and the potential for flaws in any welding process, NRC sought verification of the corrective actions and the integrity of the lid closure welds before allowing additional casks to be loaded. As a result, the affected utility companies modified the closure welding procedures and developed an acceptable ultrasonic inspection (UT) method. In addition, the casks already loaded at three power reactor sites will require additional non-destructive examinations (NDE) to determine their suitability for continued use. NRC plans to evaluate the generic implications of this issue for current designs and for those in the licensing process. (author)

  14. Safety Aspects of Long Term Spent Fuel Dry Storage

    International Nuclear Information System (INIS)

    Botsch, Wolfgang; Smalian, S.; Hinterding, P.; Drotleff, H.; Voelzke, H.; Wolff, D.; Kasparek, E.

    2014-01-01

    As a consequence of the lack of a final repository for spent nuclear fuel (SF) and high level waste (HLW), long term interim storage of SF and HLW will be necessary. As with the storage of all radioactive materials, the long term storage of SF and HLW must conform to safety requirements. Safety aspects such as safe enclosure of radioactive materials, safe removal of decay heat, sub-criticality and avoidance of unnecessary radiation exposure must be achieved throughout the complete storage period. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. After the events of Fukushima, the advantages of passively and inherently safe dry storage systems have become more obvious. In Germany, dry storage of SF in casks fulfils both transport and storage requirements. Mostly, storage facilities are designed as concrete buildings above the ground; one storage facility has also been built as a rock tunnel. In all these facilities the safe enclosure of radioactive materials in dry storage casks is achieved by a double-lid sealing system with surveillance of the sealing system. The safe removal of decay heat is ensured by the design of the storage containers and the storage facility, which also secures to reduce the radiation exposure to acceptable levels. TUV and BAM, who work as independent experts for the competent authorities, inform about spent fuel management and issues concerning dry storage of spent nuclear fuel, based on their long experience in these fields. All relevant safety issues such as safe enclosure, shielding, removal of decay heat and sub-criticality are checked and validated with state-of-the-art methods and computer codes before the license approval. In our presentation we discuss which of these aspects need to be examined closer for a long term interim storage. It is shown

  15. Effects of temperature on concrete cask in a dry storage facility for spent nuclear fuels

    International Nuclear Information System (INIS)

    Huang Weiqing; Wu Ruixian; Zheng Yukuan

    2011-01-01

    In the dry storage of spent nuclear fuels,concrete cask serves both as a shielding and a structural containment. The concrete in the storage facility is expected to endure the decay heat of the spent nuclear fuel during its service life. Thus, effects of the sustaining high temperature on concrete material need be evaluated for safety of the dry storage facility. In this paper, we report an experimental program aimed at investigating possible high temperature effects on properties of concrete, with emphasis on the mechanical stability, porosity,and crack-resisting ability of concrete mixes prepared using various amounts of Portland cement, fly ash, and blast furnace slag. The experimental results obtained from concrete specimens exposed to a temperature of 94 degree C for 90 days indicate that: (1) compressive strength of the concrete remains practically unchanged; (2) the ultrasonic pulse velocity, and dynamic modulus of elasticity of the concrete decrease in early stage of the high-temperature exposure,and gradually become stable with continuing exposure; (3) shrinkage of concrete mixes exhibits an increase in early stage of the exposure and does not decrease further with time; (4) concrete mixes containing pozzolanic materials,including fly ash and blast furnace slag, show better temperature-resisting characteristics than those using only Portland cement. (authors)

  16. Design of a dry cask storage system for spent LWR fuels: radiation protection, subcriticality, and heat removal aspects

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, U. [Turkish Atomic Energy Authority, Ankara (Turkey). Nuclear Safety Dept.; Zabunoolu, O.H. [Hacettepe Univ., Ankara (Turkey). Dept. of Nuclear Engineering

    2006-08-15

    Spent nuclear fuel resulting from reactor operation must be safely stored and managed prior to reprocessing and/or final disposal of high-level waste. Any spent fuel storage system must provide for safe receipt, handling, retrieval, and storage of spent fuel. In order to achieve the safe storage, the design should primarily provide for radiation protection, subcriticality of spent fuel, and removal of spent fuel residual heat. This article is focused on the design of a metal-shielded dry-cask storage system, which will host spent LWR fuels burned to 33 000, 45 000, and 55 000 MWd/t U and cooled for 5 or 10 years after discharge from reactor. The storage system is analyzed by taking into account radiation protection, subcriticality, and heat-removal aspects; and appropriate designs, in accordance with the international standards. (orig.)

  17. CFD Simulation of Heat and Fluid Flow for Spent Fuel in a Dry Storage

    International Nuclear Information System (INIS)

    In, Wangkee; Kwack, Youngkyun; Kook, Donghak; Koo, Yanghyun

    2014-01-01

    A dry storage system is used for the interim storage of spent fuel prior to permanent depository and/or recycling. The spent fuel is initially stored in a water pool for more than 5 years at least after dispatch from the reactor core and is transported to dry storage. The dry cask contains a multiple number of spent fuel assemblies, which are cooled down in the spent fuel pool. The dry cask is usually filled up with helium gas for increasing the heat transfer to the environment outside the cask. The dry storage system has been used for more than a decade in United States of America (USA) and the European Union (EU). Korea is also developing a dry storage system since its spent fuel pool is anticipated to be full within 10 years. The spent fuel will be stored in a dry cask for more than 40 years. The integrity and safety of spent fuel are important for long-term dry storage. The long-term storage will experience the degradation of spent fuel such as the embrittlement of fuel cladding, thermal creep and hydride reorientation. High burn-up fuel may expedite the material degradation. It is known that the cladding temperature has a strong influence on the material degradation. Hence, it is necessary to accurately predict the local distribution of the cladding temperature using the Computational Fluid Dynamics (CFD) approach. The objective of this study is to apply the CFD method for predicting the three-dimensional distribution of fuel temperature in a dry cask. This CFD study simulated the dry cask for containing the 21 fuel assemblies under development in Korea. This paper presents the fluid velocity and temperature distribution as well as the fuel temperature. A two-step CFD approach was applied to simulate the heat and fluid flow in a dry storage of 21 spent fuel assemblies. The first CFD analysis predicted the helium flow and temperature in a dry cask by a assuming porous body of the spent fuel. The second CFD analysis was to simulate a spent fuel assembly in the

  18. Long-Term Dry Storage of High Burn-Up Spent Pressurized Water Reactor (PWR) Fuel in TAD (Transportation, Aging, and Disposal) Containers

    International Nuclear Information System (INIS)

    Hwang, Yong Soo

    2008-12-01

    A TAD canister, in conjunction with specially-designed over-packs can accomplish the functions of transportation, aging, and disposal (TAD) in the management of spent nuclear fuel (SNF). Industrial dry cask systems currently available for SNF are licensed for storage-only or for dual-purpose (i.e., storage and transportation). By extending the function to include the indefinite storage and perhaps, eventual geologic disposal, the TAD canister would have to be designed to enhance, among others, corrosion resistance, thermal stability, and criticality-safety control. This investigative paper introduces the use of these advanced iron-based, corrosion-resistant materials for SNF transportation, aging, and disposal.The objective of this investigative project is to explore the interest that KAERI would research and develop its specific SAM coating materials for the TAD canisters to satisfy the requirements of corrosion-resistance, thermal stability, and criticality-controls for long-term dry storage of high burn-up spent PWR fuel

  19. Current status on the spent fuel dry storage management in Taiwan

    International Nuclear Information System (INIS)

    Chen, H.T.; Liu, C.H.

    2006-01-01

    Full text: Full text: One of the high priority issues for the continuous operation of nuclear power plants is how to manage and store spent fuel. In recent years, interim dry storage of spent fuel has become a significant solution in extending the storage capacity at a nuclear reactor site that lacks sufficient spent fuel pool storage capacity as in the world, and also in Taiwan. Although the re-racking project for the spent fuel pools has been undertaken, the Taiwan Power Company (TPC) Chinshan nuclear power plant still will lose its full core reserve by the year 2010. TPC has declared to build an on-site interim dry storage facility, this followed by geological disposal represents the most suitable option at this time. TPC is expected to submit the application for construction permit in 2006; preoperational test and storage should be put into operation by the end of 2008. Interim dry storage is a passive system. Materials used play a crucial role in the safety function of cask. The competent authority of spent fuel management in Taiwan, FCMA/AEC, will carry out a confirmatory evaluation regarding heat dissipation, structural seismic analysis, and radiation shielding to assure available safety function for casks after reviewing safety analysis report submitted by TPC. Third party inspection has been required to enhance quality assurance program and foreign technical consultation will be arranged. Although the security level for such facility will be kept to the same level as an NPP, a comprehensive analysis against a commercial airplane attack on cask should be made and addressed in the supplement of SAR. Licensing hearing is also required before issuing the construction permit. The paper presents the review plan and regulatory requirements for the licensing of an interim dry storage of spent fuel, the licensing procedure, and the development of dry storage cask for spent fuel in Taiwan

  20. On-site concrete cask storage system for spent nuclear fuel

    International Nuclear Information System (INIS)

    Craig, P.A.; Haelsig, R.T.; Kent, J.D.; Schmoker, D.S.

    1989-01-01

    A method is described of storing spent nuclear fuel assemblies including the steps of: transferring the fuel assemblies from a spent-fuel pool to a moveable concrete storage cask located outside the spent-fuel pool; maintaining a barrier between the fuel and the concrete in the cask to prevent contamination of the concrete by the fuel; maintaining the concrete storage cask containing the spent-fuel on site at the reactor complex for some predetermined period; transferring the fuel assemblies from the concrete storage cask to a shipping container; and, recycling the concrete storage cask

  1. Capabilities for processing shipping casks at spent fuel storage facilities

    International Nuclear Information System (INIS)

    Baker, W.H.; Arnett, L.M.

    1978-01-01

    Spent fuel is received at a storage facility in heavily shielded casks transported either by rail or truck. The casks are inspected, cooled, emptied, decontaminated, and reshipped. The spent fuel is transferred to storage. The number of locations or space inside the building provided to perform each function in cask processing will determine the rate at which the facility can process shipping casks and transfer spent fuel to storage. Because of the high cost of construction of licensed spent fuel handling and storage facilities and the difficulty in retrofitting, it is desirable to correctly specify the space required. In this paper, the size of the cask handling facilities is specified as a function of rate at which spent fuel is received for storage. The minimum number of handling locations to achieve a given throughput of shipping casks has been determined by computer simulation of the process. The simulation program uses a Monte Carlo technique in which a large number of casks are received at a facility with a fixed number of handling locations in each process area. As a cask enters a handling location, the time to process the cask at that location is selected at random from the distribution of process time. Shipping cask handling times are based on experience at the General Electric Storage Facility, Morris, Illinois. Shipping cask capacity is based on the most recent survey available of the expected capability of reactors to handle existing rail or truck casks

  2. Spent nuclear fuel integrity during dry storage - performance tests and demonstrations

    International Nuclear Information System (INIS)

    McKinnon, M.A.; Doherty, A.L.

    1997-06-01

    This report summarizes the results of fuel integrity surveillance determined from gas sampling during and after performance tests and demonstrations conducted from 1983 through 1996 by or in cooperation with the US DOE Office of Commercial Radioactive Waste Management (OCRWM). The cask performance tests were conducted at Idaho National Engineering Laboratory (INEL) between 1984 and 1991 and included visual observation and ultrasonic examination of the condition of the cladding, fuel rods, and fuel assembly hardware before dry storage and consolidation of fuel, and a qualitative determination of the effects of dry storage and fuel consolidation on fission gas release from the spent fuel rods. The performance tests consisted of 6 to 14 runs involving one or two loading, usually three backfill environments (helium, nitrogen, and vacuum backfills), and one or two storage system orientations. The nitrogen and helium backfills were sampled and analyzed to detect leaking spent fuel rods. At the end of each performance test, periodic gas sampling was conducted on each cask. A spent fuel behavior project (i.e., enhanced surveillance, monitoring, and gas sampling activities) was initiated by DOE in 1994 for intact fuel in a CASTOR V/21 cask and for consolidated fuel in a VSC-17 cask. The results of the gas sampling activities are included in this report. Information on spent fuel integrity is of interest in evaluating the impact of long-term dry storage on the behavior of spent fuel rods. Spent fuel used during cask performance tests at INEL offers significant opportunities for confirmation of the benign nature of long-term dry storage. Supporting cask demonstration included licensing and operation of an independent spent fuel storage installation (ISFSI) at the Virginia Power (VP) Surry reactor site. A CASTOR V/21, an MC-10, and a Nuclear Assurance NAC-I28 have been loaded and placed at the VP ISFSI as part of the demonstration program. 13 refs., 14 figs., 9 tabs

  3. Seismic stability of unanchored spent nuclear fuel storage casks

    International Nuclear Information System (INIS)

    Ofoegbu, G. I.; Gute, G. D.; Chowdhury, A. H.

    2003-01-01

    Dynamic soil-structure interaction analyses were performed to examine the effects of a potential earthquake on the stability of unanchored cylindrical spent nuclear fuel casks for an above-ground storage installation. The casks would be placed on a cluster of reinforced concrete pads founded on a deep sequence of clays and silts underlain by sandstones. The analyses focused on evaluating the geometric stability of the casks during an earthquake with respect to a design concept that a cask should not tip over, slide off the storage pad, or collide with another cask. The analyses were performed using LS-DYNA with a three-dimensional explicit finite element model representing the site soil and a fully loaded storage pad. Three statistically independent acceleration time histories were applied simultaneously at the base of the model to generate a free-field ground motion time history representing the design-basis earthquake. Sensitivity studies were performed to examine the effects of the interface conditions between the storage pad and the surrounding soil, and between the base of the storage casks and the top surface of the pad. The results indicate that ground motion from the design-basis earthquake would not cause any cask to tip over, slide off the pad, or collide with another cask. The contact conditions at the cask-to-pad and pad-to-soil interfaces have a strong effect on potential cask motions during an earthquake. If the cask-base friction coefficient is small, the casks may slide, but would not experience any significant rocking. If the cask-base friction is large enough to permit a significant transfer of earthquake lateral motions across the cask-to-pad interface, a design with bonded pad-to-soil interfaces would produce larger cask motions than a design with frictional pad-to-soil interfaces. Furthermore, a cask strage design in which the cask motions are essentially isolated from the motions of the pad-soil system, which can be accomplished if the cask

  4. Licensing of spent fuel dry storage and consolidated rod storage

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1990-02-01

    The results of this study, performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE), respond to the nuclear industry's recommendation that a report be prepared that collects and describes the licensing issues (and their resolutions) that confront a new applicant requesting approval from the US Nuclear Regulatory Commission (NRC) for dry storage of spent fuel or for large-scale storage of consolidated spent fuel rods in pools. The issues are identified in comments, questions, and requests from the NRC during its review of applicants' submittals. Included in the report are discussions of (1) the 18 topical reports on cask and module designs for dry storage fuel that have been submitted to the NRC, (2) the three license applications for dry storage of spent fuel at independent spent fuel storage installations (ISFSIs) that have been submitted to the NRC, and (3) the three applications (one of which was later withdrawn) for large-scale storage of consolidated fuel rods in existing spent fuel storage pools at reactors that were submitted tot he NRC. For each of the applications submitted, examples of some of the issues (and suggestions for their resolutions) are described. The issues and their resolutions are also covered in detail in an example in each of the three subject areas: (1) the application for the CASTOR V/21 dry spent fuel storage cask, (2) the application for the ISFSI for dry storage of spent fuel at Surry, and (3) the application for full-scale wet storage of consolidated spent fuel at Millstone-2. The conclusions in the report include examples of major issues that applicants have encountered. Recommendations for future applicants to follow are listed. 401 refs., 26 tabs

  5. Concrete spent fuel storage casks dose rates

    International Nuclear Information System (INIS)

    Bace, M.; Jecmenica, R.; Trontl, K.

    1998-01-01

    Our intention was to model a series of concrete storage casks based on TranStor system storage cask VSC-24, and calculate the dose rates at the surface of the casks as a function of extended burnup and a prolonged cooling time. All of the modeled casks have been filled with the original multi-assembly sealed basket. The thickness of the concrete shield has been varied. A series of dose rate calculations for different burnup and cooling time values have been performed. The results of the calculations show rather conservative original design of the VSC-24 system, considering only the dose rate values, and appropriate design considering heat rejection.(author)

  6. Dry storage of irradiated nuclear fuels and vitrified wastes

    International Nuclear Information System (INIS)

    Deacon, D.

    1982-01-01

    A review is given of the work of GEC Energy Systems Ltd. over the years in the dry storage of irradiated fuel. The dry-storage module (designated as Cell 4) for irradiated magnox fuel recently constructed at Wylfa nuclear power station is described. Development work on the long-term dry storage of irradiated oxide fuels is reported. Four different methods of storage are compared. These are the pond, vault, cask and caisson stores. It is concluded that there are important advantages with the passive air-cooled ESL dry stove. (U.K.)

  7. 78 FR 73456 - List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9

    Science.gov (United States)

    2013-12-06

    ...-2012-0052] RIN 3150-AJ12 List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment... International HI-STORM 100 Cask System listing within the ``List of Approved Spent Fuel Storage Casks'' to... requirements for the HI-STORM 100U part of the HI-STORM 100 Cask System and updates the thermal model and...

  8. Structural evaluation and analysis under normal conditions for spent fuel concrete storage cask

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Taechul; Baeg, Changyeal; Yoon, Sitae [Korea Radioactive waste Management Agency, Daejeon (Korea, Republic of); Jung, Insoo [Korea Nuclear Engineering and Service Co., Daejeon (Korea, Republic of)

    2014-05-15

    The purpose of this paper is the verification of stabilities of the structural elements that influence the safety of a concrete storage cask. The evaluation results were reviewed with respect to every design criterion, in terms of whether the results satisfy the criteria, provided by 10CFR 72 and NUREG-1536. The basic information on the design is partially explained in 2. Description of spent fuel storage system and the maintainability and assumptions included in the analysis were confirmed through detailed explanations of the acceptable standards, analysis model, and analysis method. ABAQUS 6.10, a widely used finite element analysis program, was used in the structural analysis. The storage cask shall maintain the sub-criticality, shielding, structural integrity, thermal capability and confinement in accordance with the requirements specified in US 10 CFR 72. The safety of storage cask is analyzed and it has been confirmed to meet the requirements of US 10 CFR 72. This paper summarizes the structural stability evaluation results of a concrete storage cask with respect to the design criteria. The evaluation results of this paper show that the maximum stress was below the allowable stress under every condition, and the concrete storage cask satisfied the design criteria.

  9. Standard casks for the transport of LWR spent fuel. Storage/transport casks for long cooled spent fuel

    International Nuclear Information System (INIS)

    Blum, P.; Sert, G.; Gagnon, R.

    1983-01-01

    During the past decade, TRANSNUCLEAIRE has developed, licensed and marketed a family of standard casks for the transport of spent fuel from LWR reactors to reprocessing plants and the ancillary equipments necessary for their operation and transport. A large number of these casks are presently used for European and intercontinental transports and manufactured under TRANSNUCLEAIRE supervision in different countries. The main advantages of these casks are: - large payload for considered modes of transport, - moderate cost, - reliability due to the large experience gained by TRANSNUCLEAIRE as concerns fabrication and operation problems, - standardization faciliting fabrication, operation and spare part supply. Recently, TRANSNUCLEAIRE also developed a new generation of casks for the dry storage and occasional transport of LWR spent fuel which has been cooled for 5 years or 7 years in case of consolidated fuel rods. These casks have an optimum payload which takes into account the shielding requirements and the weight limitations at most sites. This paper deals more particularly with the TN 24 model which exists in 4 versions among which one for 24 PWR 900 fuel assemblies and another one for the consolidated fuel rods from 48 of same fuel assemblies

  10. 78 FR 78165 - List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9

    Science.gov (United States)

    2013-12-26

    ... Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9 AGENCY: Nuclear Regulatory... storage regulations by revising the Holtec International HI-STORM 100 Cask System listing within the...

  11. Transport casks help solve spent fuel interim storage problems

    International Nuclear Information System (INIS)

    Dierkes, P.; Janberg, K.; Baatz, H.; Weinhold, G.

    1980-01-01

    Transport casks can be used as storage modules, combining the inherent safety of passive cooling with the absence of secondary radioactive waste and the flexibility to build up storage capacity according to actual requirements. In the Federal Republic of Germany, transport casks are being developed as a solution to its interim storage problems. Criteria for their design and licensing are outlined. Details are given of the casks and the storage facility. Tests are illustrated. (U.K.)

  12. Advanced surveillance technologies for used fuel long-term storage and transportation - 59032

    International Nuclear Information System (INIS)

    Tsai, Hanchung; Liu, Yung Y.; Nutt, Mark; Shuler, James

    2012-01-01

    Utilities worldwide are using dry-cask storage systems to handle the ever-increasing number of discharged fuel assemblies from nuclear power plants. In the United States and possibly elsewhere, this trend will continue until an acceptable disposal path is established. The recent Fukushima nuclear power plant accident, specifically the events with the storage pools, may accelerate the drive to relocate more of the used fuel assemblies from pools into dry casks. Many of the newer cask systems incorporate dual-purpose (storage and transport) or multiple-purpose (storage, transport, and disposal) canister technologies. With the prospect looming for very long term storage - possibly over multiple decades - and deferred transport, condition- and performance-based aging management of cask structures and components is now a necessity that requires immediate attention. From the standpoint of consequences, one of the greatest concerns is the rupture of a substantial number of fuel rods that would affect fuel retrievability. Used fuel cladding may become susceptible to rupture due to radial-hydride-induced embrittlement caused by water-side corrosion during the reactor operation and subsequent drying/transfer process, through early stage of storage in a dry cask, especially for high burnup fuels. Radio frequency identification (RFID) is an automated data capture and remote-sensing technology ideally suited for monitoring sensitive assets on a long-term, continuous basis. One such system, called ARG-US, has been developed by Argonne National Laboratory for the U.S. Department of Energy's Packaging Certification Program for tracking and monitoring drums containing sensitive nuclear and radioactive materials. The ARG-US RFID system is versatile and can be readily adapted for dry-cask monitoring applications. The current built-in sensor suite consists of seal, temperature, humidity, shock, and radiation sensors. With the universal asynchronous receiver/transmitter interface in

  13. Thermal-hydraulic experiment and analysis for interim dry storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Yoo, Seung Hun

    2011-02-01

    The experimental and numerical studies of interim storages for nuclear spent fuels have been performed to investigate thermal-hydraulic characteristics of the dry storage systems and to propose new methodologies for the analysis and the design. Three separate researches have been performed in the present study: (a) Development of a scaling methodology and thermal-hydraulic experiment of a single spent fuel assembly simulating a dry storage cask: (b) Full-scope simulation of a dry storage cask by the use of Computational Fluid Dynamics (CFD) code: (c) Thermal-hydraulic design of a tunnel-type interim storage facility. In the first study, a scaling methodology has been developed to design a scaled-down canister. The scaling was performed in two steps. For the first step, the height of a spent fuel assembly was reduced from full height to half height. In order to consider the effect of height reduction on the natural convection, the scaling law of Ishii and Kataoka (1984) was employed. For the second step, the quantity of spent fuel assemblies was reduced from multiple assemblies to a single assembly. The scaling methodology was validated through the comparison with the experiment of the TN24P cask. The Peak Cladding Temperature (PCT), temperature gradients, and the axial and radial temperature distribution in the nondimensional forms were in good agreement with the experimental data. Based on the developed methodology, we have performed a single assembly experiment which was designed to simulate the full scale of the TN24P cask. The experimental data was compared with the CFD calculations. It turns out that their PCTs were less than the maximum allowable temperature for the fuel cladding and that the differences of their PCTs were agreed within 3 .deg. C, which was less than measurement uncertainty. In the second study, the full-scope simulations of the TN24P cask were performed by FLUENT. In order to investigate the sensitivity of the numerical and physical

  14. Dry cask handling system for shipping nuclear fuel

    International Nuclear Information System (INIS)

    Jones, C.R.

    1975-01-01

    A nuclear facility is described for improved handling of a shipping cask for nuclear fuel. After being brought into the building, the cask is lowered into a tank mounted on a transporter, which then carries the tank into a position under an auxiliary well to which it is sealed. Fuel can then be loaded into or unloaded from the cask via the auxiliary well which is flooded. Throughout the procedure, the cask surface remains dry. (U.S.)

  15. Structural dimensioning of dual purpose cask prototype; Dimensionamento estrutural de prototipo de casco de duplo proposito

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luiz Leite da; Mourao, Rogerio Pimenta; Lopes, Claudio Cunha [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)]. E-mail: silvall@cdtn.br; mouraor@cdtn.br; ccl@cdtn.br

    2005-07-01

    The structural dimensioning of a Type B(U) dual purpose cask prototype is part of the scope of work of the Brazilian institute CDTN in the IAEA regional project involving Latin American countries which operate research reactors (Argentina, Brazil, Chile, Mexico and Peru). In order to meet the dimensional and operational characteristics of the reactor facilities in these countries, a maximum weight of 10.000 kgf and a maximum dimension of 1 m in at least one direction were set for the cask. With these design restrictions, the cask's payload is either 21 MTR or 78 TRIGA fuel elements. The cask's most important components are main body, primary and secondary lids, basket and impact limiters. The main body has a sandwich-like wall with internal and external layers made of AISI 304 stainless steel with lead in-between. The lead provides biological shielding. The primary lid is similarly layered, but in the axial direction. It is provided with a double system of metallic rings and has ports for pressurization, sampling and containment verification. The secondary lid has the main function of protecting the primary lid against mechanical impacts. The basket structure is basically a tube array reinforced by bottom plate, feet and spacers. Square tubes are used for MTR elements and circular tubes for TRIGA elements. Finally, the impact limiters are structures made of an external stainless steel thin covering and a filling made of the wood composite OSB - Oriented Strand Board. The prototype is provided with bottom and top impact limiters, which are attached to each other by means of four threaded rods. The limiters are not rigidly attached to the cask body. A half scale cask model was designed to be submitted to a testing program. As its volume scales down to 1:8, the model weight is 1,250 kgf. This paper presents the methodology for the preliminary structural dimensioning of the critical parameters of the cask prototype. Both normal conditions of operation and

  16. Concept study for interim storage of research reactor fuel elements in transport and storage casks. Transport and storage licensing procedure for the CASTOR MTR 2 cask. Final report

    International Nuclear Information System (INIS)

    Weiss, M.

    2001-01-01

    As a result of the project, a concept was to be developed for managing spent fuel elements from research reactors on the basis of the interim storage technology existing in Germany, in order to make the transition to direct disposal possible in the long term. This final report describes the studies for the spent fuel management concept as well as the development of a transport and storage cask for spent fuel elements from research reactors. The concept analyses were based on data of the fuel to be disposed of, as well as the handling conditions for casks at the German research reactors. Due to the quite different conditions for handling of casks at the individual reactors, it was necessary to examine different cask concepts as well as special solutions for loading the casks outside of the spent fuel pools. As a result of these analyses, a concept was elaborated on the basis of a newly developed transport and storage cask as well as a mobile fuel transfer system for the reactor stations, at which a direct loading of the cask is not possible, as the optimal variant. The cask necessary for this concept with the designation CASTOR trademark MTR 2 follows in ist design the tried and tested principles of the CASTOR trademark casks for transport and interim storage of spent LWR fuel. With the CASTOR trademark MTR 2, it is possible to transport and to place into long term interim storage various fuel element types, which have been and are currently used in German research reactors. The technical development of the cask has been completed, the documents for the transport license as type B(U)F package design and for obtaining the storage license at the interim storage facility of Ahaus have been prepared, submitted to the licensing authorities and to a large degree already evaluated positively. The transport license of the CASTOR trademark MTR 2 has been issued for the shipment of VKTA-contents and FRM II compact fuel elements. (orig.)

  17. Effects of Lower Drying-Storage Temperature on the Ductility of High-Burnup PWR Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Burtseva, T. A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-30

    The purpose of this research effort is to determine the effects of canister and/or cask drying and storage on radial hydride precipitation in, and potential embrittlement of, high-burnup (HBU) pressurized water reactor (PWR) cladding alloys during cooling for a range of peak drying-storage temperatures (PCT) and hoop stresses. Extensive precipitation of radial hydrides could lower the failure hoop stresses and strains, relative to limits established for as-irradiated cladding from discharged fuel rods stored in pools, at temperatures below the ductile-to-brittle transition temperature (DBTT).

  18. Analysis for seismic response of dry storage facility for spent fuel

    International Nuclear Information System (INIS)

    Ko, Y.-Y.; Hsu, S.-Y.; Chen, C.-H.

    2009-01-01

    Most of the dry storage systems for spent fuel are freestanding, which leads to stability concerns in an earthquake. In this study, as a safety check, the ABAQUS/Explicit code is adopted to analyse the seismic response of the dry storage facility planned to be installed at Nuclear Power Plant no. 1 (NPP1) in Taiwan. A 3D coupled finite element (FE) model was established, which consisted of a freestanding cask, a concrete pad, and underneath soils interacting with frictional contact interfaces. The scenario earthquake used in the model included an artificial earthquake compatible to the design spectrum of NPP1, and a strong ground motion modified from the time history recorded during the Chi-Chi earthquake. The results show that the freestanding cask will slide, but not tip over, during strong earthquakes. The scale of the sliding is very small and a collision between casks will not occur. In addition, the differential settlement of the foundation pad that takes place due to the weight of the casks increases the sliding potential of the casks during earthquakes

  19. Considerations applicable to the transportability of a transportable storage cask at the end of the storage period

    International Nuclear Information System (INIS)

    Sanders, T.L.; Ottinger, C.A.; Brimhall, J.L.; Creer, J.M.; Gilbert, E.R.; Jones, R.H.; McConnell, P.E.

    1991-11-01

    Additional spent fuel storage capacity is needed at many nuclear power plant sites where spent fuel storage pools have either reached or are expected to reach maximum capacities before spent fuel can be removed. This analysis examines certain aspects of Transportable Storage Casks (TSC) to assist in the determination of their feasibility as an option for at-reactor dry storage. Factors that can affect in-transport reliability include: the quality of design, development, and fabrication activities; the possibilities of damage or error during loading and closure; in-storage deterioration or unanticipated storage conditions; and the potential for loss of storage period monitoring/measurement data necessary for verifying the TSC fitness-for-transport. The reported effort utilizes a relative reliability comparison of TSCs to Transport-Only Casks (TOC) to identify and prioritize those issues and activities that are unique to TSCs. TSC system recommendations combine certain design and operational features, such as in-service monitoring, pretransport assessments, and conservation design assumptions, which when implemented and verified, should sufficiently ensure that the system will perform as intended in a later transport environment

  20. 78 FR 16601 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Science.gov (United States)

    2013-03-18

    ... Storage Casks: MAGNASTOR[supreg] System AGENCY: Nuclear Regulatory Commission. ACTION: Direct final rule... (MAGNASTOR[supreg]) System listing within the ``List of Approved Spent Fuel Storage Casks'' to include... for the MAGNASTOR[supreg] System cask design within the list of approved spent fuel storage casks that...

  1. Numerical simulation of ambient flow and thermal distributions in a spent fuel storage cask array

    International Nuclear Information System (INIS)

    Michener, T.; Trent, D.S.; Guttmann, J.; Bajwa, C.

    2001-01-01

    At the request of the U.S. Nuclear Regulatory Commission (USNRC), the staff at the Pacific Northwest National Laboratory (PNNL) analyzed the thermal performance of the Utah Private Fuel Storage (PFS) using the TEMPEST computational fluid dynamics software. A three-dimensional section of the PFS with a total of 20 casks was modeled to estimate the ambient flow and temperature distributions surrounding the casks. The purpose of this analysis was to compute the cask inlet vent air temperature to be used for boundary conditions in a detailed analysis of an individual Holtec Hi-Storm 100 cask using the COBRA-SFS (Spent Fuel Storage) thermal hydraulic computer software. (author)

  2. CASTOR {sup ®} and CONSTOR {sup ®}. A well established system for the dry storage of spent fuel and high level waste

    Energy Technology Data Exchange (ETDEWEB)

    Wimmer, Hannes; Skrzyppek, Juergen; Koebl, Michael [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany)

    2015-06-01

    The German company GNS Gesellschaft fuer Nuklear-Service mbH today looks back on more than 30 years of operational experience with dual-purpose casks for the transport and storage of spent nuclear fuel (SNF) from nuclear power plants and high level waste (HLW) from reprocessing. Following customer demands, GNS developed two different cask types for SNF. By now, almost 1,300 GNS-casks are in operation worldwide. This article gives an overview over several national and international projects and shows the bandwidth of customised solutions by GNS.

  3. Managing aging effects on used fuel dry cask for very long-term storage - 59067

    International Nuclear Information System (INIS)

    Chopra, Omesh; Diercks, Dwight; Ma, David; Shah, Vikram; Tam, Shiu-Wing; Fabian, Ralph; Liu, Yung; Nutt, Mark

    2012-01-01

    The cancellation of the Yucca Mountain repository program in the Unites States raises the prospect of very long-term storage (i.e., >120 years) and deferred transportation of used fuel at the nuclear power plant sites. While long-term storage of used nuclear fuel in dry cask storage systems (DCSSs) at Independent Spent Fuel Storage Installations (ISFSIs) is already a standard practice among U.S. utilities, recent rule-making activities of the U.S. Nuclear Regulatory Commission (NRC) indicated additional flexibility for the NRC licensees of ISFSIs and certificate holders of the DCSSs to request initial and renewal terms for up to 40 years. The proposed rule also adds a requirement that renewal applicants must provide descriptions of aging management programs (AMPs) and time-limited aging analyses (TLAAs) to ensure that the structures, systems, and components (SSCs) that are important to safety in the DCSSs will perform as designed under the extended license terms. This paper examines issues related to managing aging effects on DCSSs for very long-term storage (VLTS) of used fuels, capitalizing on the extensive knowledge and experience accumulated from the work on aging research and life cycle management at Argonne National Laboratory (ANL) over the last 30 years. The technical basis for acceptable AMPs and TLAAs is described, as are generic AMPs and TLAAs that are being developed by Argonne under the support of the U.S. Department of Energy (DOE) Used Fuel Disposition Campaign for R and D on extended long-term storage and transportation. (authors)

  4. 78 FR 73379 - List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9

    Science.gov (United States)

    2013-12-06

    ... Storage Casks: HI-STORM 100 Cask System; Amendment No. 9 AGENCY: Nuclear Regulatory Commission. ACTION... storage regulations by revising the Holtec International HI- STORM 100 Cask System listing within the...C) No. 1014. Amendment No. 9 broadens the subgrade requirements for the HI-STORM 100U part of the HI...

  5. German Approach for the Transport of Spent Fuel Packages after Interim Storage

    International Nuclear Information System (INIS)

    Wille, Frank; Wolff, Dietmar; Droste, Bernhard; Voelzke, Holger

    2014-01-01

    In Germany the concept of dry interim storage of spent nuclear fuel in dual purpose metal casks is implemented, currently for periods of up to 40 years. The casks being used have an approved package design in accordance with the international transport regulations. The license for dry storage is granted on the German Atomic Energy Act with respect to the recently (in 2012) revised 'Guidelines for dry cask storage of spent nuclear fuel and heat-generating waste' by the German Waste management Commission (ESK) which are very similar to the former RSK (reactor safety commission) guidelines. For transport on public routes between or after long term interim storage periods, it has to be ensured that the transport and storage casks fulfil the specifications of the transport approval or other sufficient properties which satisfy the proofs for the compliance of the safety objectives at that time. In recent years the validation period of transport approval certificates for manufactured, loaded and stored packages were discussed among authorities and applicants. A case dependent system of 3, 5 and 10 years was established. There are consequences for the safety cases in the Package Design Safety Report including evaluation of long term behavior of components and specific operating procedures of the package. Present research and knowledge concerning the long term behavior of transport and storage cask components have to be consulted as well as experiences from interim cask storage operations. Challenges in the safety assessment are e.g. the behavior of aged metal and elastomeric seals under IAEA test conditions to ensure that the results of drop tests can be transferred to the compliance of the safety objectives at the time of transport after the interim storage period (aged package). Assessment methods for the material compatibility, the behavior of fuel assemblies and the aging behavior of shielding parts are issues as well. This paper describes the state

  6. Conceptual study of dry storage method for spent fuel assemblies based on honeycomb concrete overpack (COP). Phase 1

    International Nuclear Information System (INIS)

    Hida, Yoshio; Hayashi, Shigeki; Katsuyama, Yoshiaki; Hashimoto, Hirohide; Murata, Takashi

    2017-01-01

    The amount of spent fuel assemblies currently stored in Japan is approximately 15,000 tU. Most of these are stored in storage pools, although dry storage method will be safer, as was revealed in the accident of the Fukushima Daiichi Nuclear Power Plant. In addition, Japan has established a national policy of the nuclear fuel cycle. All spent fuel assemblies are designated for reprocessing. However, the reprocessing plant in Japan is currently under regulatory review for compliance with newly established safety standards. Beyond this, shortfalls in its processing capacity mean interim storage facilities for spent fuel are required. The Tokyo Electric Power Company Holdings, Incorporated and the Japan Atomic Power Company are currently building an interim dry storage facility with a storage capacity of 5,000 tU in Aomori Prefecture, while Chubu Electric Power Company, Inc. is currently building a dry storage facility with a storage capacity of 400 tU in the Hamaoka Nuclear Power Station. These facilities consist of earthquake-resistant buildings and dry storage casks. Within the buildings, metal transportable storage casks loaded with spent fuel assemblies are placed vertically with spaces between the casks and supported by earthquake-proof measures that prevent toppling or other movement. These structures entail significant cost and construction efforts. At the Fukushima Daiichi Nuclear Power Plant, a temporary dry storage facility has been built within the premises to store spent fuel generated during decommissioning. Part of this facility is already in operation. Here, each metal cask containing spent fuel is mounted on an earthquake-resistant concrete mat, which is anchored to the ground. Each cask is enclosed in a concrete box for additional radiation shielding, and the casks are spaced at intervals. This approach requires a large plot of land. The dry storage method for spent fuel presented here does not require a building. The dry metal casks containing spent

  7. 78 FR 22411 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Amendment No. 8; Corrections

    Science.gov (United States)

    2013-04-16

    ... Fuel Storage Casks: HI-STORM 100, Amendment No. 8; Corrections AGENCY: Nuclear Regulatory Commission... revising the Holtec International, Inc. (Holtec) HI-STORM 100 Cask System listing within the ``List of... the Holtec HI-STORM 100 Cask System, Amendment No. 8. The purpose of this document is to provide...

  8. Storage and transport casks combine to bring benefits

    International Nuclear Information System (INIS)

    Thorup, C.

    1988-01-01

    The Nuclear Assurance Corporation is currently preparing a safety report on its new spent fuel storage/transport casks. The report is due to be submitted to the NRC in 1989, together with an application for a licence. The aim of the combined casks is to simplify the process of dealing with spent fuel, whilst keeping costs down. The design of the casks is described, together with questions relating to the licensing of the casks. (author)

  9. Long term integrity of spent fuel and construction materials for dry storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Saegusa, T [CRIEPI (Japan)

    2012-07-01

    In Japan, two dry storage facilities at reactor sites have already been operating since 1995 and 2002, respectively. Additionally, a large scale dry storage facility away from reactor sites is under safety examination for license near the coast and desired to start its operation in 2010. Its final storage capacity is 5,000tU. It is therefore necessary to obtain and evaluate the related data on integrity of spent fuels loaded into and construction materials of casks during long term dry storage. The objectives are: - Spent fuel rod: To evaluate hydrogen migration along axial fuel direction on irradiated claddings stored for twenty years in air; To evaluate pellet oxidation behaviour for high burn-up UO{sub 2} fuels; - Construction materials for dry storage facilities: To evaluate long term reliability of welded stainless steel canister under stress corrosion cracking (SCC) environment; To evaluate long term integrity of concrete cask under carbonation and salt attack environment; To evaluate integrity of sealability of metal gasket under long term storage and short term accidental impact force.

  10. SCALE6.1 Hybrid Shielding Methodology For The Spent Fuel Dry Storage

    International Nuclear Information System (INIS)

    Matijevic, M.; Pevec, D.; Trontl, K.

    2015-01-01

    The SCALE6.1/MAVRIC hybrid deterministic-stochastic shielding methodology was used for dose rates calculation of the generic spent fuel dry storage installation. The neutron-gamma dose rates around the cask array were calculated over a large problem domain in order to determine the boundary of the controlled area. The FW-CADIS methodology, based on the deterministic forward and adjoint solution over the phase - space, was used for optimized, global Monte Carlo results over the mesh tally. The cask inventory was modeled as homogenized material corresponding to 20 fuel assemblies from a standard mid - sized PWR reactor. The global simulation model was an array of 32 casks in 2 rows with concrete foundations and external air, which makes a large spatial domain for shielding calculations. The dose rates around the casks were determined using FW-CADIS method with weighted adjoint source and mesh tally covering a portion of spatial domain of interest. The conservatively obtained dose rates give the upper boundary, since the activation reduction of sources was not taken into account when sequential filling of the dry storage will start. The effective area of the dry storage installation can be additionally reduced with lowering concrete foundation under the ground, embankment raising, and with extra concrete walls, that would additionally lower the dominant gamma dose rates. (author).

  11. 78 FR 78285 - List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9

    Science.gov (United States)

    2013-12-26

    ...-2012-0052] RIN 3150-AJ12 List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment... document proposed to amend the NRC's spent fuel storage regulations by revising the Holtec International HI...

  12. Shipping and storage cask data for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, E.R.; Notz, K.J.

    1988-11-01

    This document is a compilation of data on casks used for the storage and/or transport of commercially generated spent fuel in the US based on publicly available information. In using the information contained in the following data sheets, it should be understood that the data have been assembled from published information, which in some instances was not internally consistent. Moreover, it was sometimes necessary to calculate or infer the values of some attributes from available information. Nor was there always a uniform method of reporting the values of some attributes; for example, an outside surface dose of the loaded cask was sometimes reported to be the maximum acceptable by NRC, while in other cases the maximum actual dose rate expected was reported, and in still other cases the expected average dose rate was reported. A summary comparison of the principal attributes of storage and transportable storage casks is provided and a similar comparison for shipping casks is also shown. References to source data are provided on the individual data sheets for each cask.

  13. Shipping and storage cask data for spent nuclear fuel

    International Nuclear Information System (INIS)

    Johnson, E.R.; Notz, K.J.

    1988-11-01

    This document is a compilation of data on casks used for the storage and/or transport of commercially generated spent fuel in the US based on publicly available information. In using the information contained in the following data sheets, it should be understood that the data have been assembled from published information, which in some instances was not internally consistent. Moreover, it was sometimes necessary to calculate or infer the values of some attributes from available information. Nor was there always a uniform method of reporting the values of some attributes; for example, an outside surface dose of the loaded cask was sometimes reported to be the maximum acceptable by NRC, while in other cases the maximum actual dose rate expected was reported, and in still other cases the expected average dose rate was reported. A summary comparison of the principal attributes of storage and transportable storage casks is provided and a similar comparison for shipping casks is also shown. References to source data are provided on the individual data sheets for each cask

  14. Dry interim storage of radioactive material in Germany

    International Nuclear Information System (INIS)

    Drobniewski, Christian; Palmes, Julia

    2013-01-01

    In accordance with the waste management concept in Germany, spent fuel is stored in interim storage facilities for a period of up to 40 years until deposition in a geological repository. In twelve on-site interim storages in the vicinity or directly on the sites of the nuclear power plants, spent fuel elements from reactor operation are stored after the necessary period of decay in wet storage basins inside the reactors. Additionally, three central interim storage facilities for storage of spent fuel of different origin are in operation. The German facilities realize the concept of dry interim storage in metallic transport and storage casks. The confinement of the radioactive material is ensured by the double lid system of the casks, of which the leak tightness is monitored constantly. The casks are constructed to provide adequate heat removal and shielding of gamma and neutron radiation. Usually the storage facilities are halls of thick concrete structures, which ensure the removal of the decay heat by natural convection. The main safety goal of the storage concept is to prevent unnecessary exposure of persons, material goods and environment to ionizing radiation. Moreover any exposure should be kept as low as reasonable achievable. To reach this goal the containment of the radioactive materials, the disposal of decay heat, the sub criticality and the shielding of ionizing radiation has to be demonstrated by the applicant and verified by the licensing authority. In particular accidents, incidents and disasters have to be considered in the facility and cask design. This includes mechanical impacts onto the cask, internal and external fire, and environmental effects like wind, rain, snowfall, flood, earthquakes and landslides. In addition civilizatoric influences like plane crashes and explosions have to be taken into account. In all mentioned cases the secure confinement of the radioactive materials has to be ensured. On-site storage facilities have to consider the

  15. Status of work at PNL supporting dry storage of spent fuel

    International Nuclear Information System (INIS)

    Cunningham, M.E.; McKinnon, M.A.; Michener, T.E.; Thomas, L.E.; Thornhill, C.K.

    1992-01-01

    Three projects related to dry storage of light-water reactor spent fuel are being conducted at Pacific Northwest Laboratory. Performance testing of six dry storage systems (four metal casks and two concrete storage systems) has been completed and results compiled. Two computer codes for predicting spent fuel and storage system thermal performance, COBRA-SFS and HYDRA-II, have been developed and have been reviewed by the US Nuclear Regulatory Commission. Air oxidation testing of spent fuel was conducted from 1984 through 1990 to obtain data to support recommendations of temperature-time limits for air dry storage for periods up to 40 years

  16. Multi-purpose container technologies for spent fuel management

    International Nuclear Information System (INIS)

    2000-12-01

    The management of spent nuclear fuel is an integral part of the nuclear fuel cycle. Spent fuel management resides in the back end of the fuel cycle, and is not revenue producing as electric power generation is. It instead results in a cost associated power generation. It is a major consideration in the nuclear power industry today. Because technologies, needs and circumstances vary from country to country, there is no single, standardized approach to spent fuel management. The projected cumulative amount of spent fuel generated worldwide by 2010 will be 330 000 t HM. When reprocessing is accounted for, that amount is likely to be reduced to 215 000 t HM, which is still more than twice as much as the amount now in storage. Considering the limited capacity of at-reactor (AR) storage, various technologies are being developed for increasing storage capacities. At present, many countries are developing away-from-reactor (AFR) storage in the form of pool storage or as dry storage. Further these AFR storage systems may be at-reactor sites or away-from-reactor sites (e.g. centrally located interim storage facilities, serving several reactors). The dry storage technologies being developed are varied and include vaults, horizontal concrete modules, concrete casks, and metal casks. The review of the interim storage plans of several countries indicates that the newest approaches being pursued for spent fuel management use dual-purpose and multi-purpose containers. These containers are envisaged to hold several spent fuel assemblies, and be part of the transport, storage, and possibly geological disposal systems of an integrated spent fuel management system

  17. Criticality safety evaluation for long term storage of FFTF fuel in interim storage casks

    International Nuclear Information System (INIS)

    Richard, R.F.

    1995-01-01

    It has been postulated that a degradation phenomenon, referred to as ''hot cell rot'', may affect irradiated FFTF mixed plutonium-uranium oxide (MOX) fuel during dry interim storage. ''Hot cell rot'' refers to a variety of phenomena that degrade fuel pin cladding during exposure to air and inert gas environments. It is thought to be a form of caustic stress corrosion cracking or environmentally assisted cracking. Here, a criticality safety analysis was performed to address the effect of the ''hot cell rot'' phenomenon on the long term storage of irradiated FFTF fuel in core component containers. The results show that seven FFTF fuel assemblies or six Ident-69 pin containers stored in core component containers within interim storage casks will remain safely subcritical

  18. Shipment and Storage Containers for Tritium Production Transportation Casks

    International Nuclear Information System (INIS)

    Massey, W.M.

    1998-04-01

    The need for a shipping and storage container for the Tritium production transportation casks is addressed in this report. It is concluded that a shipping and storage container is not required. A recommendation is made to eliminate the requirement for this container because structural support and inerting requirements can be satisfied completely by the cask with a removable basket

  19. Corrosion assessment of dry fuel storage containers

    Energy Technology Data Exchange (ETDEWEB)

    Graves, C.E.

    1994-09-01

    The structural stability as a function of expected corrosion degradation of 75 dry fuel storage containers located in the 200 Area Low-Level Waste Burial Grounds was evaluated. These containers include 22 concrete burial containers, 13 55-gal (208-l) drums, and 40 Experimental Breeder Reactor II (EBR-II) transport/storage casks. All containers are buried beneath at least 48 in. of soil and a heavy plastic tarp with the exception of 35 of the EBR-II casks which are exposed to atmosphere. A literature review revealed that little general corrosion is expected and pitting corrosion of the carbon steel used as the exterior shell for all containers (with the exception of the concrete containers) will occur at a maximum rate of 3.5 mil/yr. Penetration from pitting of the exterior shell of the 208-l drums and EBR-II casks is calculated to occur after 18 and 71 years of burial, respectively. The internal construction beneath the shell would be expected to preclude containment breach, however, for the drums and casks. The estimates for structural failure of the external shells, large-scale shell deterioration due to corrosion, are considerably longer, 39 and 150 years respectively for the drums and casks. The concrete burial containers are expected to withstand a service life of 50 years.

  20. Containment performance of transportable storage casks at 9m drop test

    Energy Technology Data Exchange (ETDEWEB)

    Tobita, H. [Hitachi Zosen Corp., Osaka (Japan); Araki, K. [Hitachi Zosen Diesel and Engineering Co., Ltd., Tokyo (Japan)

    2004-07-01

    Spent fuel transportable storage casks usually have a double lid closure system, which consists of primary and secondary lids, and gaskets, to keep the containment function during transportation and storage, and to monitor a leakage or containment function during storage. Metal gasket is planning to be used not only during storage but transportation of both before and after storage. As metal gasket will degrade its containment function by creep during storage period of 50 years, relative displacement such as opening and slide displacement between the flange of the containment vessel and the lid should be restricted to a small range. To maintain the containment performance, we provisionally adopted the maximum opening limit of 0.1mm and the maximum slide displacement limit of 3.0mm in the full-scale cask design based on the report of the fundamental experiment on the metal gasket which examines the relation between leakage rate and sealing gap. The purpose of this study is to analyse the behaviour of the sealed parts (lid and vessel body) under 9m-drop impact test conditions and to establish some analytical method to evaluate this behaviour. In this study, the drop test of 1/3scale model of Hitz-B69 cask with the double lids closure system was carried out, the behaviours of the seal part were measured by displacement sensors, and they were compared with the result of the numerical analysis carried out separateley.

  1. Behavior of spent nuclear fuel and storage system components in dry interim storage.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.B. Jr.; Gilbert, E.R.; Guenther, R.J.

    1982-08-01

    Irradiated nuclear fuel has been handled under dry conditions since the early days of nuclear reactor operation, and use of dry storage facilities for extended management of irradiated fuel began in 1964. Irradiated fuel is currently being stored dry in four types of facilities: dry wells, vaults, silos, and metal casks. Essentially all types of irradiated nuclear fuel are currently stored under dry conditions. Gas-cooled reactor (GCR) and liquid metal fast breeder reactor (LMFBR) fuels are stored in vaults and dry wells. Certain types of fuel are being stored in licensed dry storage facilities: Magnox fuel in vaults in the United Kingdom and organic-cooled reactor (OCR) fuel in silos in Canada. Dry storage demonstrations are under way for Zircaloy-clad fuel from boiling water reactors BWR's, pressurized heavy-water reactors (PHWRs), and pressurized water reactors (PWRs) in all four types of dry storage facilities. The demonstrations and related hot cell and laboratory tests are directed toward expanding the data base and establishing a licensing basis for dry storage of water reactor fuel. This report reviews the scope of dry interim storage technology, the performance of fuel and facility materials, the status of programs in several countries to license dry storage of water reactor fuel, and the characteristics of water reactor fuel that relate to dry storage conditions.

  2. Behavior of spent nuclear fuel and storage-system components in dry interim storage

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Gilbert, E.R.; Guenther, R.J.

    1982-08-01

    Irradiated nuclear fuel has been handled under dry conditions since the early days of nuclear reactor operation, and use of dry storage facilities for extended management of irradiated fuel began in 1964. Irradiated fuel is currently being stored dry in four types of facilities: dry wells, vaults, silos, and metal casks. Essentially all types of irradiated nuclear fuel are currently stored under dry conditions. Gas-cooled reactor (GCR) and liquid metal fast breeder reactor (LMFBR) fuels are stored in vaults and dry wells. Certain types of fuel are being stored in licensed dry storage facilities: Magnox fuel in vaults in the United Kingdom and organic-cooled reactor (OCR) fuel in silos in Canada. Dry storage demonstrations are under way for Zircaloy-clad fuel from boiling water reactors BWR's, pressurized heavy-water reactors (PHWRs), and pressurized water reactors (PWRs) in all four types of dry storage facilities. The demonstrations and related hot cell and laboratory tests are directed toward expanding the data base and establishing a licensing basis for dry storage of water reactor fuel. This report reviews the scope of dry interim storage technology, the performance of fuel and facility materials, the status of programs in several countries to license dry storage of water reactor fuel, and the characteristics of water reactor fuel that relate to dry storage conditions

  3. Development of concrete cask storage technology for spent nuclear fuel

    International Nuclear Information System (INIS)

    Saegusa, Toshiari; Shirai, Koji; Takeda, Hirofumi

    2010-01-01

    Need of spent fuel storage in Japan is estimated as 10,000 to 25,000 t by 2050 depending on reprocessing. Concrete cask storage is expected due to its economy and risk hedge for procurement. The CRIEPI executed verification tests using full-scale concrete casks. Heat removal performances in normal and accidental conditions were verified and analytical method for the normal condition was established. Shielding performance focus on radiation streaming through the air outlet was tested and confirmed to meet the design requirements. Structural integrity was verified in terms of fracture toughness of stainless steel canister for the cask of accidental drop tests. Cracking of cylindrical concrete container due to thermal stress was confirmed to maintain its integrity. Seismic tests of concrete cask without tie-down using scale and full-scale model casks were carried out to confirm that the casks do not tip-over and the spent fuel assembly keeps its integrity under severe earthquake conditions. Long-term integrity of concrete cask for 40 to 60 years is required. It was confirmed using a real concrete cask storing real spent fuel for 15 years. Stress corrosion cracking is serious issue for concrete cask storage in the salty air environment. The material factor was improved by using highly corrosion resistant stainless steel. The environmental factor was mitigated by the development of salt reduction technology. Estimate of surface salt concentration as a function of time became possible. Monitoring technology to detect accidental loss of containment of the canister by the stress corrosion cracking was developed. Spent fuel integrity during storage was evaluated in terms of hydrogen movement using spent fuel claddings stored for 20 years. The effect of hydrogen on the integrity of the cladding was found negligible. With these results, information necessary for real service of concrete cask was almost prepared. Remaining subject is to develop more economical and rational

  4. Method to mount defect fuel elements i transport casks

    International Nuclear Information System (INIS)

    Borgers, H.; Deleryd, R.

    1996-01-01

    Leaching or otherwise failed fuel elements are mounted in special containers that fit into specially designed chambers in a transportation cask for transport to reprocessing or long-time storage. The fuel elements are entered into the container under water in a pool. The interior of the container is dried before transfer to the cask. Before closing the cask, its interior, and the exterior of the container are dried. 2 figs

  5. DESIGN OF A CONCRETE SLAB FOR STORAGE OF SNF AND HLW CASKS

    International Nuclear Information System (INIS)

    J. Bisset

    2005-01-01

    This calculation documents the design of the Spent Nuclear Fuel (SNF) and High-Level Waste (HLW) Cask storage slab for the Aging Area. The design is based on the weights of casks that may be stored on the slab, the weights of vehicles that may be used to move the casks, and the layout shown on the sketch for a 1000 Metric Ton of Heavy Metal (MTHM) storage pad on Attachment 2, Sht.1 of the calculation 170-C0C-C000-00100-000-00A (BSC 2004a). The analytical model used herein is based on the storage area for 8 vertical casks. To simplify the model, the storage area of the horizontal concrete modules and their related shield walls is not included. The heavy weights of the vertical storage casks and the tensile forces due to pullout at the anchorages will produce design moments and shear forces that will envelope those that would occur in the storage area of the horizontal modules. The design loadings will also include snow and live loads. In addition, the design will also reflect pertinent geotechnical data. This calculation will document the preliminary thickness and general reinforcing steel requirements for the slab. This calculation also documents the initial design of the cask anchorage. Other slab details are not developed in this calculation. They will be developed during the final design process. The calculation also does not include the evaluation of the effects of cask drop loads. These will be evaluated in this or another calculation when the exact cask geometry is known

  6. Modification of SKYSHINE-III to include cask array shadowing

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, N.E. [Georgia Institute of Technology, Atlanta, GA (United States); Pfeifer, H.J. [NAC International, Norcross, GA (United States); Napolitano, D.G. [NISYS Corporation, Duluth, GA (United States)

    2000-03-01

    The NAC International version of SKYSHINE-III has been expanded to represent the radiation emissions from ISFSI (Interim Spent Fuel Storage Installations) dry storage casks using surface source descriptions. In addition, this modification includes a shadow shielding algorithm of the casks in the array. The resultant code is a flexible design tool which can be used to rapidly assess the impact of various cask loadings and arrangements. An example of its use in calculating dose rates for a 10x8 cask array is presented. (author)

  7. Choosing a spent fuel interim storage system

    International Nuclear Information System (INIS)

    Roland, V.; Hunter, I.

    2001-01-01

    The Transnucleaire Group has developed different modular solutions to address spent fuel interim storage needs of NPP. These solutions, that are present in Europe, USA and Asia are metal casks (dual purpose or storage only) of the TN 24 family and the NUHOMS canister based system. It is not always simple for an operator to sort out relevant choice criteria. After explaining the basic designs involved on the examples of the TN 120 WWER dual purpose cask and the NUHOMS 56 WWER for WWER 440 spent fuel, we shall discuss the criteria that govern the choice of a given spent fuel interim storage system from the stand point of the operator. In conclusion, choosing and implementing an interim storage system is a complex process, whose implications can be far reaching for the long-term success of a spent fuel management policy. (author)

  8. Burnup credit for storage and transportation casks

    International Nuclear Information System (INIS)

    Wells, A.H.

    1988-01-01

    The application of burnup credit to storage and transportation cask licensing results in a significant improvement in cask capacity and an associated reduction of the cost per kilogram of uranium in the cask contents. The issues for licensing with burnup credit deal primarily with the treatment of fission product poisons and methods of verification of burnup during cask operations. Other issues include benchmarking of cross-section sets and codes and the effect of spatial variation of burnup within an assembly. The licensing of burnup credit for casks will be complex, although the criticality calculations are not themselves difficult. Attention should be directed to the use of fission product poisons and the uncertainties that they introduce. Verification of burnup by measurements will remove some of the concerns for criticality safety. Calculations for burnup credit casks should consider rod-to-rod and axial variations of burnup, as well as variability of burnable poisons it they are used in the assembly. In spite of the complexity of cask burnup credit licensing issues, these issues appear to be resolvable within the current state of the art of criticality safety

  9. 75 FR 33736 - List of Approved Spent Fuel Storage Casks: MAGNASTOR System, Revision 1

    Science.gov (United States)

    2010-06-15

    ... Fuel Storage Casks: MAGNASTOR System, Revision 1 AGENCY: Nuclear Regulatory Commission. ACTION... storage cask regulations by revising the NAC International, Inc. (NAC), MAGNASTOR System listing within the ``List of Approved Spent Fuel Storage Casks'' to include Amendment No. 1 to Certificate of...

  10. Design assessment for transport and storage casks

    International Nuclear Information System (INIS)

    Janberg, K.; Diersch, R.; Spilker, H.; Dreier, G.

    1995-01-01

    The design assessment concerning the mechanical behaviour of transport and storage casks for radioactive material to fulfil nuclear safety criteria has to be based on two essential considerations: (1) Effective analysis of the stress-strain state of the cask components under both normal operational and test conditions including hypothetical accident scenarios with suitable accepted methods. (2) Economic estimation of the required properties and the structural state of the cask components with sufficient exactness. In an overview of the codes which are available at GNS/GNB for cask impact strength analyses (ANSYS, ADINA, VDI Codes), procedures and aspects of benchmarking and validation of calculation codes are described. The results of experimental full size cask drop test programs (CASTOR, POLLUX) and corresponding pre-test calculational analyses show the suitability of the codes used. The influence of dynamic effects on the mechanical properties of material (ductile cast iron, wood) has been investigated experimentally. By consideration of these dynamic values in strength analyses of casks at impact a good agreement between experimental and calculational results has been achieved. (author)

  11. Licensing of spent fuel dry storage and consolidated rod storage: A Review of Issues and Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, W.J.

    1990-02-01

    The results of this study, performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE), respond to the nuclear industry's recommendation that a report be prepared that collects and describes the licensing issues (and their resolutions) that confront a new applicant requesting approval from the US Nuclear Regulatory Commission (NRC) for dry storage of spent fuel or for large-scale storage of consolidated spent fuel rods in pools. The issues are identified in comments, questions, and requests from the NRC during its review of applicants' submittals. Included in the report are discussions of (1) the 18 topical reports on cask and module designs for dry storage fuel that have been submitted to the NRC, (2) the three license applications for dry storage of spent fuel at independent spent fuel storage installations (ISFSIs) that have been submitted to the NRC, and (3) the three applications (one of which was later withdrawn) for large-scale storage of consolidated fuel rods in existing spent fuel storage pools at reactors that were submitted tot he NRC. For each of the applications submitted, examples of some of the issues (and suggestions for their resolutions) are described. The issues and their resolutions are also covered in detail in an example in each of the three subject areas: (1) the application for the CASTOR V/21 dry spent fuel storage cask, (2) the application for the ISFSI for dry storage of spent fuel at Surry, and (3) the application for full-scale wet storage of consolidated spent fuel at Millstone-2. The conclusions in the report include examples of major issues that applicants have encountered. Recommendations for future applicants to follow are listed. 401 refs., 26 tabs.

  12. Extending dry storage of spent LWR fuel for up to 100 years

    International Nuclear Information System (INIS)

    Einziger, R.E.; McKinnon, M.A.; Machiels, A.J.

    1999-01-01

    Because of delays in closing the back end of the fuel cycle in the U.S., there is a need to extend dry inert storage of spent fuel beyond its originally anticipated 20-year duration. Many of the methodologies developed to support initial licensing for 20-year storage should be able to support the longer storage periods envisioned. This paper evaluates the applicability of existing information and methodologies to support dry storage up to 100 years. The thrust of the analysis is the potential behavior of the spent fuel. In the USA, the criteria for dry storage of LWR spent fuel are delineated in 10 CFR 72. The criteria fall into four general categories: maintain subcriticality, prevent the release of radioactive material above acceptable limits, ensure that radiation rates and doses do not exceed acceptable levels, and maintain retrievability of the stored radioactive material. These criteria need to be considered for normal, off-normal, and postulated accident conditions. The initial safety analysis report submitted for licensing evaluated the fuel's ability to meet the requirements for 20 years. It is not the intent to repeat these calculations, but to look at expected behavior over the additional 80 years, during which the temperatures and radiation fields are lower. During the first 20 years, the properties of the components may change because of elevated temperatures, presence of moisture, effects of radiation, etc. During normal storage in an inert atmosphere, there is potential for the cladding mechanical properties to change due to annealing or interaction with cask materials. The emissivity of the cladding could also change due to storage conditions. If there is air leakage into the cask, additional degradation could occur through oxidation in breached rods, which could lead to additional fission gas release and enlargement of cladding breaches. Air in-leakage could also affect cover gas conductivity, cladding oxidation, emissivity changes, and excessive

  13. Extending dry storage of spent LWR fuel for up to 100 years

    International Nuclear Information System (INIS)

    Einziger, R. E.

    1998-01-01

    Because of delays in closing the back end of the fuel cycle in the U.S., there is a need to extend dry inert storage of spent fuel beyond its originally anticipated 20-year duration. Many of the methodologies developed to support initial licensing for 20-year storage should be able to support the longer storage periods envisioned. This paper evaluates the applicability of existing information and methodologies to support dry storage up to 100 years. The thrust of the analysis is the potential behavior of the spent fuel. In the USA, the criteria for dry storage of LWR spent fuel are delineated in 10 CFR 72 [1]. The criteria fall into four general categories: maintain subcriticality, prevent the release of radioactive material above acceptable limits, ensure that radiation rates and doses do not exceed acceptable levels, and maintain retrievability of the stored radioactive material. These criteria need to be considered for normal, off-normal, and postulated accident conditions. The initial safety analysis report submitted for licensing evaluated the fuel's ability to meet the requirements for 20 years. It is not the intent to repeat these calculations, but to look at expected behavior over the additional 80 years, during which the temperatures and radiation fields are lower. During the first 20 years, the properties of the components may change because of elevated temperatures, presence of moisture, effects of radiation, etc. During normal storage in an inert atmosphere, there is potential for the cladding mechanical properties to change due to annealing or interaction with cask materials. The emissivity of the cladding could also change due to storage conditions. If there is air leakage into the cask, additional degradation could occur through oxidation in breached rods, which could lead to additional fission gas release and enlargement of cladding breaches. Air in-leakage could also affect cover gas conductivity, cladding oxidation, emissivity changes, and

  14. An economic evaluation of a storage system for casks with burnup credit

    International Nuclear Information System (INIS)

    Mimura, Masahiro; Tsuda, Kazuaki; Yamada, Nobuyuki; O-iwa, Akio.

    1993-01-01

    It is generally recognized that casks designed with burnup credit are more economical than those without burnup credit. To estimate how much more economical they are, we made conceptual designs of transport/storage casks with and without burnup credit for PWR and BWR fuels of various uranium enrichment. The casks were designed to contain the maximum number of fuel assemblies under the necessary weight and dimensional limitations as well as the criticality and shielding criteria. The results showed that approximately 8 % to 44 % more fuel assemblies could be contained in casks with burnup credit. We then evaluated the economy of cask storage system incorporating the cask designs obtained above both with and without burnup credit. The results showed that the cost of storing casks with burnup credit is approximately 7 % to 30 % less expensive than storing casks without burnup credit. (J.P.N.)

  15. Nondestructive Evaluation of the VSC-17 Cask

    International Nuclear Information System (INIS)

    Sheryl Morton; Al Carlson; Cecilia Hoffman; James Rivera; Phil Winston; Koji Shirai; Shin Takahashi; Masaharo Tanaka

    2006-01-01

    In 2003, representatives from the Central Research Institute of Electric Power Industry (CRIEPI) requested development of a project with the objective of determining the performance of a concrete spent nuclear fuel storage cask. Radiation and environmental effects may cause chemical alteration of the concrete that could result in excessive cracking, spalling, and loss of compressive strength. The Idaho National Laboratory (INL) project team and CRIEPI representatives identified the Ventilated Storage Cask (VSC 17) spent nuclear fuel storage cask, originally located at the INL Test Area North, as a candidate to study cask performance because it had been used to store fuel as part of a dry cask storage demonstration project for over 15 years. The project involved investigating the properties of the concrete shield. INL performed a survey of the cask in the summers of 2003 and 2004. The INL team met with the CRIEPI representatives in December of 2004 to discuss the next steps. As a result of that meeting, CRIEPI requested that in the summer 2005 INL perform additional surveys on the VSC 17 cask with participation of CRIEPI scientists. This document summarizes the evaluation methods used on the VSC 17 to evaluate the cask for compressive strength, concrete cracking, concrete thickness, and temperature distribution

  16. Drop test of reinforced concrete slab onto storage cask

    International Nuclear Information System (INIS)

    Kato, Y.; Hattori, S.; Ito, C.; Sirai, K.; Ozaki, S.; Kato, O.

    1993-01-01

    In this research, drop tests onto full-scale casks considering the specifications of a falling object (weight, construction, drop height, etc.) demonstrate and evaluate the integrity of casks in case a heavy object drops into the storage facilities. (J.P.N.)

  17. Probabilistic risk assessment of aircraft impact on a spent nuclear fuel dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Almomani, Belal, E-mail: balmomani@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Sanghoon, E-mail: shlee1222@kmu.ac.kr [Department of Mechanical and Automotive Engineering, Keimyung University, Dalgubeol-daero 1095, Dalseo-gu, Daegu (Korea, Republic of); Jang, Dongchan, E-mail: dongchan.jang@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kang, Hyun Gook, E-mail: kangh6@rpi.edu [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2017-01-15

    Highlights: • A new risk assessment frame is proposed for aircraft impact into an interim dry storage. • It uses event tree analysis, response-structural analysis, consequence analysis, and Monte Carlo simulation. • A case study of the proposed procedure is presented to illustrate the methodology’s application. - Abstract: This paper proposes a systematic risk evaluation framework for one of the most significant impact events on an interim dry storage facility, an aircraft crash, by using a probabilistic approach. A realistic case study that includes a specific cask model and selected impact conditions is performed to demonstrate the practical applicability of the proposed framework. An event tree analysis of an occurred aircraft crash that defines a set of impact conditions and storage cask response is constructed. The Monte-Carlo simulation is employed for the probabilistic approach in consideration of sources of uncertainty associated with the impact loads onto the internal storage casks. The parameters for representing uncertainties that are managed probabilistically include the aircraft impact velocity, the compressive strength of the reinforced concrete wall, the missile shape factor, and the facility wall thickness. Failure probabilities of the impacted wall and a single storage cask under direct mechanical impact load caused by the aircraft crash are estimated. A finite element analysis is applied to simulate the postulated direct engine impact load onto the cask body, and a source term analysis for associated releases of radioactive materials as well as an off-site consequence analysis are performed. Finally, conditional risk contribution calculations are represented by an event tree model. Case study results indicate that no severe risk is presented, as the radiological consequences do not exceed regulatory exposure limits to the public. This risk model can be used with any other representative detailed parameters and reference design concepts for

  18. Signatures of Extended Storage of Used Nuclear Fuel in Casks

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Eric Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-28

    As the amount of used nuclear fuel continues to grow, more and more used nuclear fuel will be transferred to storage casks. A consolidated storage facility is currently in the planning stages for storing these casks, where at least 10,000 MTHM of fuel will be stored. This site will have potentially thousands of casks once it is operational. A facility this large presents new safeguards and nuclear material accounting concerns. A new signature based on the distribution of neutron sources and multiplication within casks was part of the Department of Energy Office of Nuclear Energy’s Material Protection, Account and Control Technologies (MPACT) campaign. Under this project we looked at fingerprinting each cask's neutron signature. Each cask has a unique set of fuel, with a unique spread of initial enrichment, burnup, cooling time, and power history. The unique set of fuel creates a unique signature of neutron intensity based on the arrangement of the assemblies. The unique arrangement of neutron sources and multiplication produces a reliable and unique identification of the cask that has been shown to be relatively constant over long time periods. The work presented here could be used to restore from a loss of continuity of knowledge at the storage site. This presentation will show the steps used to simulate and form this signature from the start of the effort through its conclusion in September 2016.

  19. Burnup credit in a dry storage module

    International Nuclear Information System (INIS)

    Thornton, J.R.

    1989-01-01

    Comparison of spent fuel storage expansion options available to Oconee Nuclear Station revealed that dry storage could be economically competitive with transshipment and rod consolidation. Economic competitiveness, however, mandated large unit capacity while existing cask handling facilities at Oconee severely limited size and weight. The dry storage concept determined to best satisfy these conflicting criteria is a 24 pressurized water reactor (PWR) fuel assembly capacity NUTECH Horizontal Modular Storage (NUHOMS) system. The Oconee version of the NUHOMS system takes advantage of burnup credit in demonstrating criticality safety. The burnup credit criticality analysis was performed by Duke Power Company's Design Engineering Department. This paper was prepared to summarize the criticality control design features employed in the Oconee NUHOMS-24P DSC basket and to describe the incentives for pursuing a burnup credit design. Principal criticality design parameters, criteria, and analysis methodology are also presented

  20. Acoustic emission detection with fiber optical sensors for dry cask storage health monitoring

    Science.gov (United States)

    Lin, Bin; Bao, Jingjing; Yu, Lingyu; Giurgiutiu, Victor

    2016-04-01

    The increasing number, size, and complexity of nuclear facilities deployed worldwide are increasing the need to maintain readiness and develop innovative sensing materials to monitor important to safety structures (ITS). In the past two decades, an extensive sensor technology development has been used for structural health monitoring (SHM). Technologies for the diagnosis and prognosis of a nuclear system, such as dry cask storage system (DCSS), can improve verification of the health of the structure that can eventually reduce the likelihood of inadvertently failure of a component. Fiber optical sensors have emerged as one of the major SHM technologies developed particularly for temperature and strain measurements. This paper presents the development of optical equipment that is suitable for ultrasonic guided wave detection for active SHM in the MHz range. An experimental study of using fiber Bragg grating (FBG) as acoustic emission (AE) sensors was performed on steel blocks. FBG have the advantage of being durable, lightweight, and easily embeddable into composite structures as well as being immune to electromagnetic interference and optically multiplexed. The temperature effect on the FBG sensors was also studied. A multi-channel FBG system was developed and compared with piezoelectric based AE system. The paper ends with conclusions and suggestions for further work.

  1. 10 CFR 72.214 - List of approved spent fuel storage casks.

    Science.gov (United States)

    2010-01-01

    ... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C... Systems, Inc. SAR Title: Topical Safety Analysis Report for the Castor V/21 Cask Independent Spent Fuel... Title: Topical Safety Analysis Report for the NAC Storage/Transport Cask for Use at an Independent Spent...

  2. 75 FR 24786 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1

    Science.gov (United States)

    2010-05-06

    ... Fuel Storage Casks: NUHOMS[supreg] HD System Revision 1 AGENCY: Nuclear Regulatory Commission. ACTION... storage regulations by revising the Transnuclear, Inc. (TN) NUHOMS[supreg] HD System listing within the... System cask design within the list of approved spent fuel storage casks that power reactor licensees can...

  3. Preliminary assessment of alternative dry storage methods for the storage of commercial spent nuclear fuel

    International Nuclear Information System (INIS)

    1981-11-01

    This report presents the results of an assessment of the (1) state of technology, (2) licensability, (3) implementation schedule, and (4) costs of alternative dry methods for storage of spent fuel at a reactor location when used to supplement reactor pool storage facilities. The methods of storage that were considered included storage in casks, drywells, concrete silos and air-cooled vaults. The impact of disassembly of spent fuel and storage of consolidated fuel rods was also determined. The economic assessments were made based on the current projected storage requirements of Virginia Electric and Power Company's Surry Station for the period 1985 to 2009, which has two operating pressurized water reactors (824 MWe each). It was estimated that the unit cost for storage of spent fuel in casks would amount to $117/kgU and that such costs for storage in drywells would amount to $137/kgU. However, based on the overall assessment it was concluded both storage methods were equal in merit. Modular methods of storage were generally found to be more economic than those requiring all or most of the facilities to be constructed prior to commencement of storage operations

  4. 75 FR 27463 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1; Correction

    Science.gov (United States)

    2010-05-17

    ... Fuel Storage Casks: NUHOMS[supreg] HD System Revision 1; Correction AGENCY: Nuclear Regulatory... fuel storage casks to add revision 1 to the NUHOMS HD spent fuel storage cask system. This action is... Federal Register on May 7, 2010 (75 FR 25120), that proposes to amend the regulations that govern storage...

  5. Study on concrete cask for practical use. Heat removal test under normal condition

    International Nuclear Information System (INIS)

    Takeda, Hirofumi; Wataru, Masumi; Shirai, Koji; Saegusa, Toshiari

    2005-01-01

    In Japan, it is planed to construct interim storage facilities taking account of dry storage away form reactor in 2010. Recently, a concrete cask is noticed from the economical point of view. But data for its safety analysis have not been sufficient yet. Heat removal tests using to types of full-scale concrete casks were conducted. This paper describes the results under normal condition of spent fuel storage. In the tests, data on heat removal performance and integrity of cask components were obtained for different storage periods. The change of decay heat of spent fuel was simulated using electric heaters. Reinforced Concrete cask (RC cask) and Concrete Filled Steel cask (CFS cask) were the specimen casks. The levels of decay heat at the initial period of 60 years of storage, the intermediate period (20 years of storage), and the final period (40 years of storage) correspond to 22.6 kW, 16 kW and 10 kW, respectively. Quantitative temperature data of the cask components were obtained as compared with their limit temperature. In addition, heat balance data required for heat removal analyses were obtained. (author)

  6. Optimization of radiation protection by optimizing technology of CASTOR-Cask loading

    International Nuclear Information System (INIS)

    Lorenz, Bernd; Dreesen, Konrad; Hoffmann, Dietrich

    2008-01-01

    Full text: Germany Optimization of Protection is one of the basic principles of the ICRP System of Radiation Protection. Often this principle is misunderstood and people try to achieve minimal doses irrespective of the amount of manpower or money they have to afford to reach this aim. The better way of optimization is to optimize the technology or the practise which is the cause of radiation exposure and at the same time reduce the dose uptake. Three measures have been used for this purpose in the management of spent fuel in Germany in preparation for the dry storage in CASTOR-Casks. The casks have to be loaded with the spent fuel in the pond of the power plant. After the loading the cask has to be dewatered and dried. The remaining humidity has to be checked with respect to a given maximum residual humidity to avoid corrosion during the long-term storage. Initially a measuring device using the dew point mirror method was used. The mirror was often polluted and needed recalibration. This led to a large variety of measuring times, the time period needed for the above mentioned three steps ranged from 55 to 120 hours. Thus the work could not be reliably planned. To solve this problem we now use a pressure-rise method to measure the humidity within the cask. The time needed is now nearly equal and reliable for all cask loadings and considerably lower than using the dew point method. Thereby the dose uptake of the cask handling staff could be reduced to 2.5 man mSv on average in comparison to the former collective dose of 4 to 5 man mSv. A second step for reducing the dose of the staff is the introduction of remotely controlled valves for the drying process, the humidity measurement and the subsequent filling with Helium. The valves are located at the lid of the cask where a remarkable dose rate could be. The equipment for the remote valve handling has been successfully tested. In the same line is a third measure: to record the process data by computer. The supervising

  7. Certifying the TN-BRP and TN-REG transportable storage demonstration casks

    International Nuclear Information System (INIS)

    Abbott, D.G.; Nolan, D.J.; Yoshimura, H.R.

    1991-01-01

    The US DOE has obtained US NRC certification to transport two transportable storage casks for a demonstration project. Because the casks had been built before the decision was made to obtain NRC certification, only limited modifications could be made to the casks. NRC's review resulted in several technical concerns that were subsequently resolved by design modifications, testing, and further analysis. Certification activities included qualifying the ferritic steel body material, modifying the borated stainless steel basket design, and extensive impact limiter testing. Recommendations for certifying future casks are presented based on experience with these casks

  8. Proposal for the rocking analysis model of the dry cask for spent nuclear fuel attached to the storage pallet subjected to the strong earthquake motions

    International Nuclear Information System (INIS)

    Kondo, Shunsuke; Shirai, Koji; Namba, Kosuke

    2016-01-01

    In Japan, a dry cask for spent nuclear fuel attached to a storage pallet should be transferred and stored in the vertical orientation on the concrete floor in an interim spent nuclear fuel storage facility at or outside reactor site, and a transfer system using air supply will be adopted for such pallet. In case of the hypothetical event, the shutdown of the air supply due to the strong earthquake motions, it is important to evaluate a stability of the metal cask on the concrete floor during seismic motions. A dynamic analysis by the analysis code 'TDAPIII' was executed with a simple lumped mass model by adopting joint elements between a concrete floor and pallet, to reproduce the rocking and sliding behavior. Joint stiffness values were equivalently set to the vibration modes obtained by an eigenvalue analysis. The seismic analysis results were compared with the previous shaking table test results with 2/5 scale model of a real size cask. As a result, although discrepancies of the velocity response of the converted from maximum uplifting potential energy appeared in the range of μ ± 3σ (0.57 ∼ 1.46) among 45 analysis cases comparing with experiment results, it was confirmed that maximum value was about 110kine considerably less than the overturning threshold value 190kine. Moreover, an applicability of the proposed prediction methodology to the real size model was also confirmed. (author)

  9. The maximum allowable temperature of zircaloy-2 fuel cladding under dry storage conditions

    International Nuclear Information System (INIS)

    Mayuzumi, M.; Yoshiki, S.; Yasuda, T.; Nakatsuka, M.

    1990-09-01

    Japan plans to reprocess and reutilise the spent nuclear fuel from nuclear power generation. However, the temporary storage of spent fuel is assuming increasing importance as a means of ensuring flexibility in the nuclear fuel cycle. Our investigations of various methods of storage have shown that casks are the most suitable means of storing small quantities of spent fuel of around 500 t, and research and development are in progress to establish dry storage technology for such casks. The soundness of fuel cladding is being investigated. The most important factor in evaluating soundness in storage under inert gas as currently envisaged is creep deformation and rupture, and a number of investigations have been made of the creep behaviour of cladding. The present study was conducted on the basis of existing in-house results in collaboration with Nippon Kakunenryo Kaihatsu KK (Nippon Nuclear Fuel Department Co.), which has hot lab facilities. Tests were run on the creep deformation behaviour of irradiated cladding, and the maximum allowable temperature during dry storage was investigated. (author)

  10. Operation and maintenance of spent fuel storage and transportation casks/containers

    International Nuclear Information System (INIS)

    2007-01-01

    Member States have a growing need for casks for spent fuel storage and transportation. A variety of casks has been developed and is in use at an increasing number of sites. This has resulted in an accumulation of experience that will provide valuable information for other projects in spent fuel management. This publication provides a comprehensive review of information on the cask operation and maintenance associated with spent fuel storage. It draws upon generic knowledge from industrial experience and applications and is intended to serve as a basis for better planning and implementation in future projects

  11. 76 FR 2243 - List of Approved Spent Fuel Storage Casks: NUHOMS ® HD System Revision 1

    Science.gov (United States)

    2011-01-13

    ... Storage Casks: NUHOMS [supreg] HD System Revision 1 AGENCY: Nuclear Regulatory Commission. ACTION: Direct... fuel storage regulations by revising the Transnuclear, Inc. (TN) NUHOMS [supreg] HD System listing... NUHOMS [supreg] HD System cask design listed in Sec. 72.214 (List of approved spent fuel storage casks...

  12. 77 FR 4203 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System, Revision 2

    Science.gov (United States)

    2012-01-27

    ... Storage Casks: MAGNASTOR[supreg] System, Revision 2 AGENCY: Nuclear Regulatory Commission. ACTION: Direct... storage regulations by revising the NAC International, Inc. (NAC) MAGNASTOR[supreg] System listing within the ``List of Approved Spent Fuel Storage Casks'' to include Amendment No. 2 to Certificate of...

  13. NAC-1 cask dose rate calculations for LWR spent fuel

    International Nuclear Information System (INIS)

    CARLSON, A.B.

    1999-01-01

    A Nuclear Assurance Corporation nuclear fuel transport cask, NAC-1, is being considered as a transport and storage option for spent nuclear fuel located in the B-Cell of the 324 Building. The loaded casks will be shipped to the 200 East Area Interim Storage Area for dry interim storage. Several calculations were performed to assess the photon and neutron dose rates. This report describes the analytical methods, models, and results of this investigation

  14. Development of Enriched Borated Aluminum Alloy for Basket Material of Cask for Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Mikio Sakai; Tadatsugu Sakaya; Hiroaki Fujiwara; Akira Sakai

    2002-01-01

    Concrete cask system is focused as the candidate one for spent fuel dry storage facilities from economic potential in Japan. Concrete cask consists of a concrete storage cask and a steel canister. A canister containing nuclear spent fuel is shipped by a transportation cask from a nuclear power plant to an interim storage facility. The canister is transferred from the transportation cask to a storage cask by a transfer cask in the storage facility. IHI has developed a concrete cask horizontal transfer system. This transfer system indicates that a canister is transferred to a storage cask horizontally. This transfer system has a merit against canister drop accident in transfer operation, i.e. spent fuel assemblies can be kept safe during the transfer operation. There are guide rails inside of the concrete cask, and the canister is installed into the storage cask with sliding on the rails. To develop the horizontal transfer system, IHI carried out a heat load test and numerical analyses by CFD. Heat load experiment was carried out by using a full-scale prototype canister, storage cask and transfer vessel. The decay heat was simulated by an electric heater installed in the canister. Assuming high burn-up spent fuel storage, heat generation was set between 20.0 kW and 25.0 kW. This experiment was focused on the concrete temperature distribution. We confirmed that the maximum concrete temperature in transfer operation period was lower than 40 deg. C (Heat generation 22.5 kW). Moreover we confirmed the maximum concrete temperature passed 24 hours with horizontal orientation was below 90 deg. C (Heat generation 22.5 kW). We analyzed the thermal performance of the concrete cask with horizontal transfer condition and normal storage condition. Thermal analyses for horizontal transfer operation were carried out based on the experimental conditions. The tendency of the analytical results was in good agreement with experimental results. The purpose of vertical thermal analysis

  15. Dry Storage of Research Reactor Spent Nuclear Fuel - 13321

    Energy Technology Data Exchange (ETDEWEB)

    Adams, T.M.; Dunsmuir, M.D.; Leduc, D.R.; Severynse, T.F.; Sindelar, R.L. [Savannah River National Laboratory (United States); Moore, E.N. [Moore Nuclear Energy, LLC (United States)

    2013-07-01

    to dry storage requires integration with current facility operations, and selection of equipment that will allow safe operation within the constraints of existing facility conditions. Examples of such constraints that are evaluated and addressed by the dry storage program include limited basin depth, varying fuel lengths up to 4 m, (13 ft), fissile loading limits, canister closure design, post-load drying and closure of the canisters, instrument selection and installation, and movement of the canisters to storage casks. The initial pilot phase restricts the fuels to shorter length fuels that can be loaded to the canister directly underwater; subsequent phases will require use of a shielded transfer system. Removal of the canister from the basin, followed by drying, inerting, closure of the canister, and transfer of the canister to the storage cask are completed with remotely operated equipment and appropriate shielding to reduce personnel radiation exposure. (authors)

  16. Decontamination of transport casks and of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1990-06-01

    The present document provides an analysis of the technical papers presented at the meeting as well as a summary of the panel discussion. Conclusions and Recommendations: The meeting agreed that the primary source of contamination of transport casks is the production of radioactive isotopes in nuclear fuel and activation products of fuel components in nuclear reactors. The type, amount of mechanism for the release of these isotopes depend on the reactor type and fuel handling process. The widespread use of pools for the storage and handling of fuel provides an easy path for the transfer of contamination. Control of pool water conditions is essential for limiting the spread of contamination. For plants where casks are immersed in pools for loading, the immersion times should be minimised. Casks should be designed for ease of decontamination. The meeting discussed the use of stainless steel and suitable paints for coating casks. Designers should consider the appropriate coating for specific applications. The use of pressurized water for decontamination is recommended whenever possible. A number of commercially available reagents exist for decontaminating cask external surfaces. More work, however, is needed to cope with Pressurized Water Reactor crud within casks. Leaking fuel should be identified and isolated before storage in pools. Basic studies of the uptake and release of contamination from cask surfaces should be initiated. Standardization of methods of contamination measurement and instrumentation should be instituted. Refs, figs and tabs

  17. Standard guide for evaluation of materials used in extended service of interim spent nuclear fuel dry storage systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 Part of the total inventory of commercial spent nuclear fuel (SNF) is stored in dry cask storage systems (DCSS) under licenses granted by the U.S. Nuclear Regulatory Commission (NRC). The purpose of this guide is to provide information to assist in supporting the renewal of these licenses, safely and without removal of the SNF from its licensed confinement, for periods beyond those governed by the term of the original license. This guide provides information on materials behavior under conditions that may be important to safety evaluations for the extended service of the renewal period. This guide is written for DCSS containing light water reactor (LWR) fuel that is clad in zirconium alloy material and stored in accordance with the Code of Federal Regulations (CFR), at an independent spent-fuel storage installation (ISFSI). The components of an ISFSI, addressed in this document, include the commercial SNF, canister, cask, and all parts of the storage installation including the ISFSI pad. The language of t...

  18. Demonstration of a transportable storage system for spent nuclear fuel

    International Nuclear Information System (INIS)

    Shetler, J.R.; Miller, K.R.; Jones, R.E.

    1993-01-01

    The purpose of this paper is to discuss the joint demonstration project between the Sacramento Municipal Utility District (SMUD) and the US Department of Energy (DOE) regarding the use of a transportable storage system for the long-term storage and subsequent transport of spent nuclear fuel. SMUD's Rancho Seco nuclear generating station was shut down permanently in June 1989. After the shutdown, SMUD began planning the decommissioning process, including the disposition of the spent nuclear fuel. Concurrently, Congress had directed the Secretary of Energy to develop a plan for the use of dual-purpose casks. Licensing and demonstrating a dual-purpose cask, or transportable storage system, would be a step toward achieving Congress's goal of demonstrating a technology that can be used to minimize the handling of spent nuclear fuel from the time the fuel is permanently removed from the reactor through to its ultimate disposal at a DOE facility. For SMUD, using a transportable storage system at the Rancho Seco Independent Spent-Fuel Storage Installation supports the goal of abandoning Rancho Seco's spent-fuel pool as decommissioning proceeds

  19. 76 FR 33121 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Science.gov (United States)

    2011-06-08

    ... Storage Casks: HI-STORM Flood/Wind Addition AGENCY: Nuclear Regulatory Commission. ACTION: Direct final... regulations to add the Holtec HI-STORM Flood/Wind cask system to the ``List of Approved Spent Fuel Storage... Title 10 of the Code of Federal Regulations Section 72.214 to add the Holtec HI- STORM Flood/Wind cask...

  20. Analysis of removal of residual decay heat from interim storage facilities by means of the CFD program FLUENT

    International Nuclear Information System (INIS)

    Stratmann, W.; Hages, P.

    2004-01-01

    Within the scope of nuclear licensing procedures of on-site interim storage facilities for dual purpose casks it is necessary, among other things, to provide proof of sufficient removal of the residual decay heat emitted by the casks. The results of the analyses performed for this purpose define e.g. the boundary conditions for further thermal analyses regarding the permissible cask component temperatures or the maximum permissible temperatures of the fuel cladding tubes of the fuel elements stored in the casks. Up to now, for the centralized interim storage facilities in Germany such analyses were performed on the basis of experimental investigations using scaled-down storage geometries. In the engineering phase of the Lingen on-site interim storage facility, proof was furnished for the first time using the CFD (computational fluid dynamics) program FLUENT. The program FLUENT is an internationally recognized and comprehensively verified program for the calculation of flow and heat transport processes. Starting from a brief discussion of modeling and the different boundary conditions of the computation, this contribution presents various results regarding the temperatures of air, cask surfaces and storage facility components, the mass flows through the storage facility and the heat transfer at the cask surface. The interface point to the cask-specific analyses is defined to be the cask surface

  1. Status of US storage efforts

    International Nuclear Information System (INIS)

    Leasburg, R.H.

    1984-01-01

    Tasks involved in the implementation of the Nuclear Waste Policy Act are discussed. The need for speedy action on applications to deal with spent fuel storage problems is stressed. The problems faced by the Virginia Electric and Power Company, where full core discharge capability at the 1600-megawatt Surry power station is expected to be reached in early 1986, are reviewed. It is pointed out that although the Nuclear Waste Policy Act does not apply in this case, the problems illustrate the situation that may be faced after the Act is implemented. Problems involved in intro-utility transhipments and dry cask storage of spent fuel from Surry, including transportation ordinances at state and local levels and approval for the use of dry casks for storage, are reported. The suggestion that dry casks be used for interim storage and eventual transport to monitored retrievable storage facilities or permanent storage sites is considered. It is pointed out that data from a proposed 3-utility demonstration program of dry cask storage of consolidated fuels and the storage of fuels in air should give information applicable to the timely implementation of the Nuclear Waste Policy Act

  2. COBRA-SFS thermal analysis of a sealed storage cask for the Monitored Retrievable Storage of spent fuel

    International Nuclear Information System (INIS)

    Rector, D.R.; Wheeler, C.L.

    1986-01-01

    The COBRA-SFS (Spent Fuel Storage) computer code was used to predict temperature distributions in a concrete Sealed Storage Cask (SSC). This cask was designed for the Department of Energy in the Monitored Retrievable Storage (MRS) program for storage of spent fuel from commercial power operations. Analytical results were obtained for nominal operation of the SSC with spent fuel from 36 PWR fuel assemblies consolidated in 12 cylindrical canisters. Each canister generates 1650 W of thermal power. A parametric study was performed to assess the effects on cask thermal performance of thermal conductivity of the concrete, the fin material, and the amount of radial reinforcing steel bars (rebar). Seven different cases were modeled. The results of the COBRA-SFS analysis of the current cask design predict that the peak fuel cladding temperature in the SSC will not exceed the 37 0 C design limit for the maximum spent fuel load of 19.8 kW and a maximum expected ambient temperature of 37.8 0 C (100 0 F). The results of the parametric analyses illustrate the importance of material selection and design optimization with regard to the SSC thermal performance

  3. Nondestructive Examination Guidance for Dry Storage Casks

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Ryan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suffield, Sarah R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hirt, Evelyn H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suter, Jonathan D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lareau, John P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qiao, Hong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moran, Traci L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-30

    In this report, an assessment of NDE methods is performed for components of NUHOMS 80 and 102 dry storage system components in an effort to assist NRC staff with review of license renewal applications. The report considers concrete components associated with the horizontal storage modules (HSMs) as well as metal components in the HSMs. In addition, the report considers the dry shielded canister (DSC). Scope is limited to NDE methods that are considered most likely to be proposed by licensees. The document, ACI 349.3R, Evaluation of Existing Nuclear Safety-Related Concrete Structures, is used as the basis for the majority of the NDE methods summarized for inspecting HSM concrete components. Two other documents, ACI 228.2R, Nondestructive Test Methods for Evaluation of Concrete in Structures, and ORNL/TM-2007/191, Inspection of Nuclear Power Plant Structure--Overview of Methods and Related Application, supplement the list with additional technologies that are considered applicable. For the canister, the ASME B&PV Code is used as the basis for NDE methods considered, along with currently funded efforts through industry (Electric Power Research Institute [EPRI]) and the U.S. Department of Energy (DOE) to develop inspection technologies for canisters. The report provides a description of HSM and DSC components with a focus on those aspects of design considered relevant to inspection. This is followed by a brief description of other concrete structural components such as bridge decks, dams, and reactor containment structures in an effort to facilitate comparison between these structures and HSM concrete components and infer which NDE methods may work best for certain HSM concrete components based on experience with these other structures. Brief overviews of the NDE methods are provided with a focus on issues and influencing factors that may impact implementation or performance. An analysis is performed to determine which NDE methods are most applicable to specific

  4. European experience in transport/storage cask for vitrified residues

    International Nuclear Information System (INIS)

    Otton, Camille; Sicard, Damien

    2007-01-01

    Available in abstract form only. Full text of publication follows: Because of the evolution of burnup of spent fuel to be reprocessed, the high activity vitrified residues would not be transported in the existing cask designs. Therefore, TN International has decided in the late nineties to develop a brand new design of casks with optimized capacity able to store and transport the most active and hottest canisters: the TN TM 81 casks currently in use in Switzerland and the TN TM 85 cask which shall permit in the near future in Germany the storage and the transport of the most active vitrified residues defining a thermal power of 56 kW (kilowatts). The challenges for the TN TM 81 and TN TM 85 cask designs were that the geometry entry data were very restrictive and were combined with a fairly wide range set by the AREVA NC Specification relative to vitrified residue canister. The TN TM 81 and the TN TM 85 casks have been designed to fully anticipate shipment constraints of the present vitrified residue production. It also used the feedback of current shipments and the operational constraints and experience of receiving and shipping facilities. The casks had to fit as much as possible in the existing procedures for the already existing flasks such as the TN TM 28 cask and TS 28 V cask, all along the logistics chain of loading, unloading, transport and maintenance. (authors)

  5. FRAPCON analysis of cladding performance during dry storage operations

    Directory of Open Access Journals (Sweden)

    David J. Richmond

    2018-03-01

    Full Text Available There is an increasing need in the United States and around the world to move used nuclear fuel from wet storage in fuel pools to dry storage in casks stored at independent spent fuel storage installations or interim storage sites. Under normal conditions, the Nuclear Regulatory Commission limits cladding temperature to 400°C for high-burnup (>45 GWd/mtU fuel, with higher temperatures allowed for low-burnup fuel. An analysis was conducted with FRAPCON-4.0 on three modern fuel designs with three representative used nuclear fuel storage temperature profiles that peaked at 400°C. Results were representative of the majority of US light water reactor fuel. They conservatively showed that hoop stress remains below 90 MPa at the licensing temperature limit. Results also show that the limiting case for hoop stress may not be at the highest rod internal pressure in all cases but will be related to the axial temperature and oxidation profiles of the rods at the end of life and in storage. Keywords: Dry Storage, FRAPCON, Fuel Performance, Radial Hydride Reorientation, Vacuum Drying

  6. COMPLETION OF THE FIRST INTEGRATED SPENT NUCLEAR FUEL TRANSSHIPMENT/INTERIM STORAGE FACILITY IN NW RUSSIA

    International Nuclear Information System (INIS)

    Dyer, R.S.; Barnes, E.; Snipes, R.L.; Hoeibraaten, S.; Gran, H.C.; Foshaug, E.; Godunov, V.

    2003-01-01

    Northwest and Far East Russia contain large quantities of unsecured spent nuclear fuel (SNF) from decommissioned submarines that potentially threaten the fragile environments of the surrounding Arctic and North Pacific regions. The majority of the SNF from the Russian Navy, including that from decommissioned nuclear submarines, is currently stored in on-shore and floating storage facilities. Some of the SNF is damaged and stored in an unstable condition. Existing Russian transport infrastructure and reprocessing facilities cannot meet the requirements for moving and reprocessing this amount of fuel. Additional interim storage capacity is required. Most of the existing storage facilities being used in Northwest Russia do not meet health and safety, and physical security requirements. The United States and Norway are currently providing assistance to the Russian Federation (RF) in developing systems for managing these wastes. If these wastes are not properly managed, they could release significant concentrations of radioactivity to these sensitive environments and could become serious global environmental and physical security issues. There are currently three closely-linked trilateral cooperative projects: development of a prototype dual-purpose transport and storage cask for SNF, a cask transshipment interim storage facility, and a fuel drying and cask de-watering system. The prototype cask has been fabricated, successfully tested, and certified. Serial production is now underway in Russia. In addition, the U.S. and Russia are working together to improve the management strategy for nuclear submarine reactor compartments after SNF removal

  7. 76 FR 70331 - List of Approved Spent Fuel Storage Casks: MAGNASTOR ® System, Revision 2

    Science.gov (United States)

    2011-11-14

    ... Fuel Storage Casks: MAGNASTOR [supreg] System, Revision 2 AGENCY: Nuclear Regulatory Commission. ACTION... its spent fuel storage regulations by revising the NAC International, Inc. (NAC) MAGNASTOR [supreg] System listing within the ``List of Approved Spent Fuel Storage Casks'' to include Amendment No. 2 to...

  8. 76 FR 2277 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1

    Science.gov (United States)

    2011-01-13

    ... Fuel Storage Casks: NUHOMS[supreg] HD System Revision 1 AGENCY: Nuclear Regulatory Commission. ACTION... System listing within the ``List of Approved Spent Fuel Storage Casks'' to include Amendment No. 1 to... the NUHOMS[supreg] HD Horizontal Modular Storage System for Irradiated Nuclear Fuel. [[Page 2279...

  9. Technical issues and approach to license dry storage of LWR fuel in the United States

    International Nuclear Information System (INIS)

    Johnson, A.B.; Beeman, G.H.; Creer, J.M.; Gilbert, E.R.

    1984-01-01

    Dry storage is emerging as an important alternative to wet storage for US utilities, even though wet storage will remain the principal storage method, at least until the federal government begins to accept fuel in 1998. Dry storage has been licensed in several countries. In the USA, dry storage issues are related to storage system performance and behavior of spent fuel during storage. There is a coordinated US effort among electric utilities, the Electric Power Research Institute (EPRI), the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC) to license two dry storage concepts: metal casks, and horizontal storage modules. The following activities are underway to resolve the licensing issues associated with dry storage and to establish the licensing basis: a) summarize and assimilate domestic and foreigh dry storage experience; b) conduct tests which resolve specific licensing issues; c) conduct cooperative demonstrations of the leading dry storage concepts; d) establish criteria and justifications for generic licensing. The paper summarizes the licensing issues and the approach to their resolution

  10. 75 FR 25120 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1

    Science.gov (United States)

    2010-05-07

    ...] RIN 3150-AI75 List of Approved Spent Fuel Storage Casks: NUHOMS[supreg] HD System Revision 1 AGENCY...), NUHOMS[supreg] HD System listing within the ``List of Approved Spent Fuel Storage Casks'' to include... Modular Storage System for Irradiated Nuclear Fuel. Docket Number: 72-1030. Certificate Expiration Date...

  11. Castor-V/21 PWR spent fuel storage cask performance test

    International Nuclear Information System (INIS)

    Creer, J.M.; Schoonen, D.H.

    1986-01-01

    Performance testing of a CASTOR-V/21 PWR spent fuel storage cask manufactured by Gesellschaft fur Nuklear Service (GNS) was performed as part of a cooperative program between Virginia Power and the US Department of Energy. The performance test consisted of obtaining cask handling experience and heat transfer, shielding, and limited fuel integrity data. Five heat transfer test runs were performed with 21 Surry reactor spent fuel assemblies generating approximately 28 kW. Test runs were performed vacuum, nitrogen, and helium backfill environments with the cask in both vertical and horizontal orientations. Cask exterior surface gamma and neutron dose rates were measured with the cask fully loaded. Gas samples were obtained at the beginning and end of each run with nitrogen or helium environments to verify fuel integrity. The heat transfer performance of the CASTOR-V/21 cask was exceptionally good. Peak clad temperatures with helium and nitrogen environments with the cask in a vertical orientation and with helium with the cask in a horizontal orientation were less than 380 0 C. Vertical vacuum and horizontal nitrogen test runs resulted in peak clad temperatures over 380 0 , but the temperatures were not excessively high ( 0 C). The shielding performance of the cask met the design goal of less than 200 mrem/hr. Cask surface dose rates of <75 mrem/hr can easily be established with minor gamma shielding design refinements if desired. Gas samples obtained during testing indicated no leaking fuel rods were present in the cask. It was concluded that the cask performed satisfactorily from heat transfer and shielding perspectives

  12. Review and evaluation of long-term integrity on metal casks and spent fuels stored in overseas countries

    International Nuclear Information System (INIS)

    Sasahara, Akihiro; Saegusa, Toshiari

    2009-01-01

    Inspection and experimental results on the metal cask and PWR-UO 2 spent fuels practically stored for fifteen years in Idaho National Laboratory (INL) are reviewed. Experimental results on PWR-UO 2 and BWR-MOX spent fuels stored for twenty years under wet or dry condition obtained by Central Research Institute of Electric Power Industry (CRIEPI) are also reviewed. These results show that the integrity of the metal cask and PWR-spent fuels are maintained at least during dry storage for fifteen years and that Japanese electric utilities may start their self-inspection on casks and spent fuels after fifteen-year storage. The gas sampling carrying out in INL can be applied to licensing for interim dry storage facilities in Japan. New program for the fuel integrity for high burn-up fuels (>45 GWd/MTU) at transportation after dry storage has been launched by Nuclear Regulation Commission (NRC), Department of Energy (DOE) and Electric Power Research Institute (EPRI) in USA. (author)

  13. Cost comparisons of wet and dry interim storage facilities for PWR spent nuclear fuel in Korea

    International Nuclear Information System (INIS)

    Cho, Chun-Hyung; Kim, Tae-Man; Seong, Ki-Yeoul; Kim, Hyung-Jin; Yoon, Jeong-Hyoun

    2011-01-01

    Research highlights: → We compare the costs of wet and dry interim storage facilities for PWR spent fuel. → We use the parametric method and quotations to deduce unknown cost items. → Net present values and levelized unit prices are calculated for cost comparisons. → A system price is the most decisive factor in cost comparisons. - Abstract: As a part of an effort to determine the ideal storage solution for pressurized water reactor (PWR) spent nuclear fuel, a cost assessment was performed to better quantify the competitiveness of several storage types. Several storage solutions were chosen for comparison, including three dry storage concepts and a wet storage concept. The net present value (NPV) and the levelized unit cost (LUC) of each solution were calculated, taking into consideration established scenarios and facility size. Wet storage was calculated to be the most expensive solution for a 1700 MTU facility, and metal cask storage marked the highest cost for a 5000 MTU facility. Sensitivity analyses on discount rate, metal cask price, operation and maintenance cost, and facility size revealed that the system price is the most decisive factor affecting competitiveness among the storage types.

  14. Cost comparisons of wet and dry interim storage facilities for PWR spent nuclear fuel in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chun-Hyung, E-mail: skycho@krmc.or.kr [Korea Radioactive Waste Management Corporation, 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Kim, Tae-Man; Seong, Ki-Yeoul; Kim, Hyung-Jin; Yoon, Jeong-Hyoun [Korea Radioactive Waste Management Corporation, 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of)

    2011-05-15

    Research highlights: > We compare the costs of wet and dry interim storage facilities for PWR spent fuel. > We use the parametric method and quotations to deduce unknown cost items. > Net present values and levelized unit prices are calculated for cost comparisons. > A system price is the most decisive factor in cost comparisons. - Abstract: As a part of an effort to determine the ideal storage solution for pressurized water reactor (PWR) spent nuclear fuel, a cost assessment was performed to better quantify the competitiveness of several storage types. Several storage solutions were chosen for comparison, including three dry storage concepts and a wet storage concept. The net present value (NPV) and the levelized unit cost (LUC) of each solution were calculated, taking into consideration established scenarios and facility size. Wet storage was calculated to be the most expensive solution for a 1700 MTU facility, and metal cask storage marked the highest cost for a 5000 MTU facility. Sensitivity analyses on discount rate, metal cask price, operation and maintenance cost, and facility size revealed that the system price is the most decisive factor affecting competitiveness among the storage types.

  15. Castor-1C spent fuel storage cask decay heat, heat transfer, and shielding analyses

    International Nuclear Information System (INIS)

    Rector, D.R.; McCann, R.A.; Jenquin, U.P.; Heeb, C.M.; Creer, J.M.; Wheeler, C.L.

    1986-12-01

    This report documents the decay heat, heat transfer, and shielding analyses of the Gesellschaft fuer Nuklear Services (GNS) CASTOR-1C cask used in a spent fuel storage demonstration performed at Preussen Elektra's Wurgassen nuclear power plant. The demonstration was performed between March 1982 and January 1984, and resulted in cask and fuel temperature data and cask exterior surface gamma-ray and neutron radiation dose rate measurements. The purpose of the analyses reported here was to evaluate decay heat, heat transfer, and shielding computer codes. The analyses consisted of (1) performing pre-look predictions (predictions performed before the analysts were provided the test data), (2) comparing ORIGEN2 (decay heat), COBRA-SFS and HYDRA (heat transfer), and QAD and DOT (shielding) results to data, and (3) performing post-test analyses if appropriate. Even though two heat transfer codes were used to predict CASTOR-1C cask test data, no attempt was made to compare the two codes. The codes are being evaluated with other test data (single-assembly data and other cask data), and to compare the codes based on one set of data may be premature and lead to erroneous conclusions

  16. Optimization strategies for cask design and container loading in long term spent fuel storage

    International Nuclear Information System (INIS)

    2006-12-01

    As delays are incurred in implementing reprocessing and in planning for geologic repositories, storage of increasing quantities of spent fuel for extended durations is becoming a growing reality. Accordingly, effective management of spent fuel continues to be a priority topic. In response, the IAEA has organized a series of meetings to identify cask loading optimisation issues in preparation for a technical publication on Optimization Strategies for Cask/Container Loading in Long Term Spent Fuel Storage. This publication outlines the optimisation process for cask design, licensing and utilization, describing three principal groups of optimization activities in terms of relevant technical considerations such as criticality, shielding, structural design, operations, maintenance and retrievability. The optimization process for cask design, licensing, and utilization is outlined. The general objectives for the design of storage casks, including storage casks that are intended to be transportable, are summarized. The nature of optimization within the design process is described. The typical regulatory and licensing process is outlined, focusing on the roles of safety regulations, the regulator, and the designer/applicant in the optimization process. Based on the foregoing, a description of the three principal groups of optimization activities is provided. The subsequent chapters of this document then describe the specific optimization activities within these three activity groups, in each of the several design disciplines

  17. Analysis framework to calibrate a numerical model to simulate the thermal test of a 1:2 scale dual purpose cask under accident conditions

    International Nuclear Information System (INIS)

    Miranda, Carlos A.J.; Libardi, Rosani M.P.; Marcelino, Sergio; Oliveira, Carlos Alberto de; Mattar Neto, Miguel

    2013-01-01

    This work describes thermal analysis framework including a 3D model and some 2D models to be performed in a 1:2 scale model of a dual-purpose cask to transport and to store spent fuel elements from research reactors to assess the behavior of the cask structure and materials when submitted to heating and drop tests. The analyses should consider all non-linearities involved like the lead phase change and thermal contacts, beside the variation of material properties with the temperature, the air inside it and the heat transfer phenomena (conduction, convection and irradiation) to reproduce the experimental results already obtained in a 1:2 model. A full 3D finite element model takes several hours to run just one analysis. To speed up the analyses to evaluate the significance of some parameters like the emissivity, contact resistance and heat transfer phenomena, among others, two 2D models are planned: one simulating a vertical cut by a diametral plane and another one simulating a horizontal cut by a plane at the cask half height. These 2D models are predicted to run fast enough to allow several analyses in a short period of time and to define options and the best parameters values to match the already obtained experimental results. As this thermal test can not be extrapolated to an 1:1 scale, these parameter values will be used in the final 3D model analysis and also in the full scale model. (author)

  18. 75 FR 42339 - List of Approved Spent Fuel Storage Casks: NAC-MPC System, Revision 6

    Science.gov (United States)

    2010-07-21

    ...-2010-0183] RIN 3150--AI88 List of Approved Spent Fuel Storage Casks: NAC-MPC System, Revision 6 AGENCY.... (NAC), NAC-MPC System listing within the ``List of Approved Spent Fuel Storage Casks'' to include... changes to the configuration of the NAC-MPC storage system as noted in Appendix B of the Technical...

  19. CASTOR(r) and CONSTOR(r) type transport and storage casks for spent fuel and high active waste

    International Nuclear Information System (INIS)

    Kuehne, B.; Sowa, W.

    2002-01-01

    The German company GNB has developed, tested, licensed, fabricated, loaded, transported and stored a large number of casks for spent fuel and high-level waste. CASTOR(r) casks are used at 18 sites on three continents. Spent fuel assemblies of the types PWR, BWR, VVER, RBMK, MTR and THTR as well as vitrified high active waste (HAW) containers are stored in these kinds of casks. More than 600 CASTOR(r) casks have been loaded for long-term storage. The two decades of storage have shown that the basic requirements, which are safe confinement, criticality safety, sufficient shielding and appropriate heat transfer have been fulfilled in each case. There is no indication that problems will arise in the future. Of course, the experience of 20 years has resulted in improvements of the cask design. One basic improvement is GNB's development since the mid 1990s of a sandwich cask design using heavy concrete and steel as basic materials, for economical and technical reasons. This CONSTOR(r) cask concept also fulfils all design criteria for transport and storage given by the IAEA recommendations and national authorities. By May 2002 40 CONSTOR(r) casks had been delivered and 15 had been successfully loaded and stored. In this paper the different types of casks are presented. Experiences gained during the large number of cask loadings and more than 4000 cask-years of storage will be summarised. The presentation of recent and future development shows the optimisation potential of the CASTOR(r) and CONSTOR(r) cask families for safe and economical management of spent fuel. (author)

  20. Monitored Retrievable Storage conceptual system study: cask-in-trench

    International Nuclear Information System (INIS)

    1983-11-01

    This report provides a description of the Cask-in-Trench Storage Concept which meets a specified set of requirements; an estimate of the costs of construction, operation and decommissioning of the concept; the costs required to expand the facility throughput and storage capability; and the life cycle costs of the facility. 22 figures, 34 tables

  1. 75 FR 27401 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1; Correction

    Science.gov (United States)

    2010-05-17

    ... Storage Casks: NUHOMS[reg] HD System Revision 1; Correction AGENCY: Nuclear Regulatory Commission. ACTION... HD spent fuel storage cask system. This action is necessary to correctly specify the effective date... on May 6, 2010 (75 FR 24786), that amends the regulations that govern storage of spent nuclear fuel...

  2. SGN multipurpose dry storage technology applied to the Italian situation

    International Nuclear Information System (INIS)

    Giorgio, M.; Lanza, R.

    1999-01-01

    SGN has gained considerable experience in the design and construction of interim storage facilities for spent fuel and various nuclear waste, and can therefore propose single product and multipurpose facilities capable of accommodating all types of waste in a single structure. The pooling of certain functions (transport cask reception, radiation protection) and the choice of optimized technologies to answer the specific needs of clients (transfer of nuclear packages by shielded handling cask or nuclearized crane), the use of the same type of storage pit to cool the heat releasing packages (vitrified nuclear waste, fuel elements) makes it possible to propose industrially proven and cost-effective solutions. Studies carried out for the Dutch company COVRA (HABOG facility currently under implementation phase) provide an example of a multipurpose dry storage facility designed to store spent fuel, vitrified reprocessing waste, cemented hulls and end-pieces, cemented technological waste and bituminized waste from fuel reprocessing, i e. high level waste and intermediate level wastes. The study conducted by SGN and GENESI (an Italian consortium formed by Ansaldo's Nuclear Division and Fiat Avio), on behalf of the Italian utility ENEL, offers another example of the multipurpose dry storage facility designed to store in a centralised site all the remaining irradiated fuel elements plus the vitrified waste. This paper presents SGN's experience through a short description of reference storage facilities for various types of products (HLW and spent fuel). It continues with the typical application to the Italian situation to show how these proven technologies are combined to obtain multipurpose facilities tailored to the client's specific requirements. (author)

  3. Used fuel extended storage security and safeguards by design roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lindgren, Eric Richard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ketusky, Edward [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); England, Jeffrey [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Scherer, Carolynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sprinkle, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Michael. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rauch, Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scaglione, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dunn, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-05-01

    In the United States, spent nuclear fuel (SNF) is safely and securely stored in spent fuel pools and dry storage casks. The available capacity in spent fuel pools across the nuclear fleet has nearly reached a steady state value. The excess SNF continues to be loaded in dry storage casks. Fuel is expected to remain in dry storage for periods beyond the initial dry cask certification period of 20 years. Recent licensing renewals have approved an additional 40 years. This report identifies the current requirements and evaluation techniques associated with the safeguards and security of SNF dry cask storage. A set of knowledge gaps is identified in the current approaches. Finally, this roadmap identifies known knowledge gaps and provides a research path to deliver the tools and models needed to close the gaps and allow the optimization of the security and safeguards approaches for an interim spent fuel facility over the lifetime of the storage site.

  4. Performance of CASTORR HAW Cask Cold Trials for Loading, Transport and Storage of HAW canisters

    International Nuclear Information System (INIS)

    Wilmsmeier, Marco; Vossnacke, Andre

    2008-01-01

    On the basis of reprocessing contracts, concluded between the German Nuclear Utilities (GNUs) and the reprocessing companies in France (AREVA NC) and the UK (Nuclear Decommissioning Authority), GNS has the task to return the resulting residues to Germany. The high active waste (HAW) residuals from nuclear fuel reprocessing are vitrified and filled into steel cans, the HAW canisters. According to reprocessing contracts the equivalent number of HAW canisters to heavy metals delivered has to be returned to the country of origin and stored at an interim storage facility where applicable. The GNS' CASTOR R HAW casks are designed and licensed to fulfil the requirements for transport and long-term storage of HAW canisters. The new cask type CASTOR R HAW28M is capable of storing 28 HAW canisters with a maximum thermal power of 56 kW in total. Prior to the first active cask loading at a reprocessing facility it is required to demonstrate all important handling steps with the CASTOR R HAW28M cask according to a specific and approved sequence plan (MAP). These cold trials have to be carried out at the cask loading plant and at the reception area of an interim storage facility in Gorleben (TBL-G), witnessed by the licensing authorities and their independent experts. At transhipment stations GNS performs internal trials to demonstrate safe handling. A brand-new, empty CASTOR R HAW28M cask has been shipped from the GNS cask assembly facility in Muelheim to the TBL-G for cold trials. With this cask, GNS has to demonstrate the transhipment of casks at the Dannenberg transfer station from rail to road, transport to and reception at the TBL-G as well as incoming dose rate and contamination measurements and preparation for storage. After removal of all shock absorbers with a cask specific handling frame, tilting operation and assembly of the secondary lid with a pressure sensor, the helium leak tightness and 'Block-mass' tests have to be carried out as well. GNS long-term CASTOR R

  5. Multi-Purpose Storage Complex description

    International Nuclear Information System (INIS)

    Nyman, D.H.

    1993-01-01

    The Multi-Purpose Storage Complex will provide interim storage of radioactive material (irradiated fuel, cesium/strontium capsules, plutonium residuals, canisters of vitrified high-level waste glass, and other radioactive material) at the Hanford Site near Richland, Washington. A Storage Preparation and Shipping Facility is included that will have the capability to stabilize failed metal fuel, segregate high-level solid waste, and package/repackage any of the materials for interim storage/final disposal or subsequent processing. Current technology, both domestic and foreign, will be adapted with the expectation that no new technology will be required. This cost-effective approach will use fuel casks, transport systems, and/or modular vaults that have been licensed in the United States. The complex will have a central control room, and appropriate safeguards and security measures will be incorporated. A specific design objective will be to minimize the amount of secondary waste

  6. CASTOR-V/21 PWR spent fuel storage cask performance test

    International Nuclear Information System (INIS)

    Creer, J.M.; Schoonen, D.H.

    1986-01-01

    Performance testing of a CASTOR-V/21 PWR spent fuel storage cask manufactured by Gesellschaft fur Nuklear Service (GNS) was performed as part of a cooperative program between Virginia Power and the US Department of Energy. The performance test consisted of obtaining cask handling experience and heat transfer, shielding, and limited fuel integrity data. Five heat transfer test runs were performed with 21 Surry reactor spent fuel assemblies generating approximately 28 kW. Test runs were performed with vacuum, nitrogen, and helium backfills in both vertical and horizontal orientations. Cask exterior surface gamma and neutron dose rates were measured with the cask fully loaded. Gas samples were obtained at the beginning and end of each run with nitrogen or helium backfills to verify fuel integrity. The heat transfer performance of the CASTOR-V/21 cask was exceptionally good. Peak clad temperatures with helium and nitrogen backfills in a vertical orientation and with helium in a horizontal orientation were less than 380 0 C. Vertical vacuum and horizontal nitrogen runs resulted in peak clad temperatures over 380 0 , but the temperatures were not excessively high ( 0 C). The shielding performance of the cask met the design expectation of less than 200 mrem/h. Cask surface dose rates of <75 mrem/h can easily be established with minor gamma shielding design refinements if desired. Gas samples obtained during testing indicated no leaking fuel rods were present in the cask. It was concluded that the cask performed satisfactorily from heat transfer and shielding perspectives

  7. Safety of interim storage solutions of used nuclear fuel during extended term

    Energy Technology Data Exchange (ETDEWEB)

    Shelton, C.; Bader, S.; Issard, H.; Arslan, M. [AREVA, 7135 Minstrel Way, Suite 300 Columbia, MD 21045 (United States)

    2013-07-01

    In 2013, the total amount of stored used nuclear fuel (UNF) in the world will reach 225,000 T HM. The UNF inventory in wet storage will take up over 80% of the available total spent fuel pool (SFP) capacity. Interim storage solutions are needed. They give flexibility to the nuclear operators and ensure that nuclear reactors continue to operate. However, we need to keep in mind that they are also an easy way to differ final decision and implementation of a UNF management approach (recycling or final disposal). In term of public perception, they can have a negative impact overtime as it may appear that nuclear industry may have significant issues to resolve. In countries lacking an integrated UNF management approach, the UNF are being discharged from the SFPs to interim storage (mostly to dry storage) at the same rate as UNF is being discharged from reactors, as the SFPs at the reactor sites are becoming full. This is now the case in USA, Taiwan, Switzerland, Spain, South Africa and Germany. For interim storage, AREVA has developed different solutions in order to allow the continued operation of reactors while meeting the current requirements of Safety Authorities: -) Dry storage canisters on pads, -) Dual-purpose casks (dry storage and transportation), -) Vault dry storage, and -) Centralized pool storage.

  8. 76 FR 17037 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Science.gov (United States)

    2011-03-28

    ...-0007] RIN 3150-AI90 List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition AGENCY... or the Commission) is proposing to amend its spent fuel storage cask regulations to add the HI-STORM...: June 13, 2011. SAR Submitted by: Holtec International, Inc. SAR Title: Safety Analysis Report on the HI...

  9. Past experience and future needs for the use of burnup credit in LWR fuel storage

    International Nuclear Information System (INIS)

    Boyd, W.A.; Wrights, G.N.

    1987-01-01

    To achieve improved fuel economics and reduce the amount of fuel discharged annually, utilities are engaging in fuel management strategies that will achieve higher discharge burnups for their fuel assemblies. Although burnup credit methodologies have been developed and spent-fuel racks have been licensed, burnup credit fuel storage racks are not the answer for all utilities. Off-site and out-of-pool spent-fuel storage may be more appropriate. This is leading to the development of dry spent-fuel storage and shipping casks. Cask designs with spent-fuel storage capability between 20 and 32 assemblies are being developed by several vendors. The US Dept. of Energy is also funding work by VEPCO. Westinghouse is currently licensing its dry storage cask, developing a shipping cask for the domestic market, and is involved in a joint venture to develop a cask for the international market. Although methods of taking credit for fuel burnup in spent-fuel storage racks have been developed and licensed, use of these methods on dry spent-fuel storage and shipping casks can lead to new issues. These issues arise because the excess reactivity margin that is inherent in a burnup credit spent-fuel storage rack criticality analysis will not be available in a dry cask analysis

  10. Regulatory status of burnup credit for storage and transport of spent fuel in Germany

    International Nuclear Information System (INIS)

    Neuber, J.C.; Schweer, H.H.; Johann, H.G.

    2001-01-01

    This paper describes the regulatory status of burnup credit applications to pond storage and dry-cask transport and storage of spent fuel in Germany. Burnup credit for wet storage of LWR fuel at nuclear power plants has to comply with the newly developed safety standard DIN 25471. This standard establishes the safety requirements for burnup credit criticality safety analysis of LWR fuel storage ponds and gives guidance on meeting these requirements. Licensing evaluations of dry transport systems are based on the application of the IAEA Safety Standards Series No.ST-1. However, because of the fact that burnup credit for dry-cask transport becomes more and more inevitable due to increasing initial enrichment of the fuel, and because of the increasing importance of dry-cask storage in Germany, the necessity of giving regulatory guidance on applying burnup credit to dry-cask transport and storage is seen. (author)

  11. Interim spent-fuel storage options at commercial nuclear power plants

    International Nuclear Information System (INIS)

    Thakkar, A.R.; Hylko, J.M.

    1991-01-01

    Although spent fuel can be stored safely in waterfilled pools at reactor sites, some utilities may not possess sufficient space for life-of-plant storage capability. In-pool storage capability may be increased by reracking assemblies, rod consolidation, double tiering spent-fuel racks, and by shipping spent fuel to other utility-owned facilities. Long-term on-site storage capability for spent fuel may be provided by installing (dry-type) metal casks, storage and transportation casks, concrete casks, horizontal concrete modules, modular concrete vaults, or by constructing additional (pool-type) storage installations. Experience to date has provided valuable information regarding dry-type or pool-type installations, cask handling and staffing requirements, security features, decommissioning activities, and radiological issues

  12. Interim storage packagings for spent fuels : how to optimize an universal design to local needs

    International Nuclear Information System (INIS)

    Konirsch, O.; Kawabata, T.; Hunter, I.

    2003-01-01

    For the last ten years, the interim storage market for spent fuels issued from Nuclear Power Plants has significantly increased all over the world: there are presently many storage projects either in Asia, in North America and in Europe. Even if there is no international regulation on that field, there is a big concern from all the nuclear industry to try to harmonise the specification for the definition of the Interim Storage Systems. One example of this harmonisation is the common and general wish to develop systems, which allow to be easily transportable either to a final repository or to a reprocessing plant. As this destination is generally not yet known, the storage system should be able to be transported all over the world. On the other hand, the specific requirement for the storage facility and its associated equipment are subject to local and/or national regulation. COGEMA LOGISTICS Group has developed two different technologies which are compatible with this principle of harmonisation: dual purpose metallic cask represented by the TN24 family and the concrete storage system NUHOMS(R). For both technologies, basic designs can be adapted to the local needs in term of performance and of national regulation. To cover all the world, COGEMA LOGISTICS Group has its own subsidiaries, in Asia, in North America and in Europe with their own autonomous engineers teams for designing, licensing, manufacturing and delivering the transport/storage products. COGEMA LOGISTICS Group is presently the leader on the dry interim storage market. The purpose of the present paper is to show how it is possible to optimise a basic existing design of a dual purpose metallic cask for a local need of storage. Taking into account the national rules for storage and the international regulation for transport, the designer shall minimise the development cost for a completely new design and maximise the capacity of the packaging regarding the allowable limits in the Nuclear Power Plant, in

  13. Dry spent fuel storage facility at Kozloduy Nuclear Power Plant

    International Nuclear Information System (INIS)

    Goehring, R.; Stoev, M.; Davis, N.; Thomas, E.

    2004-01-01

    The Dry Spent Fuel Storage Facility (DSF) is financed by the Kozloduy International Decommissioning Support Fund (KIDSF) which is managed by European Bank for Reconstruction and Development (EBRD). On behalf of the Employer, the Kozloduy Nuclear Power Plant, a Project Management Unit (KPMU) under lead of British Nuclear Group is managing the contract with a Joint Venture Consortium under lead of RWE NUKEM mbH. The scope of the contract includes design, manufacturing and construction, testing and commissioning of the new storage facility for 2800 VVER-440 spent fuel assemblies at the KNPP site (turn-key contract). The storage technology will be cask storage of CONSTOR type, a steel-concrete-steel container. The licensing process complies with the national Bulgarian regulations and international rules. (authors)

  14. Shipment and Storage Containers for Tritium Production Transportation Casks

    International Nuclear Information System (INIS)

    Massey, W.M.

    1998-01-01

    A shipping and storage container for the Tritium production transportation casks may be required but requirements for protection of the irradiated rods and radioactive contamination have not been finalized. This report documents the various possibilities for the container depending on the final requirements

  15. Time and dose assessment of barge shipment and at-reactor handling of a CASTOR V/21 spent fuel storage cask

    Energy Technology Data Exchange (ETDEWEB)

    Hostick, C.J. (Pacific Northwest Lab., Richland, WA (United States)); Lavender, J.C. (Westinghouse Hanford Co., Richland, WA (United States)); Wakeman, B.H. (Virginia Electric and Power Co., Richmond, VA (United States))

    1992-04-01

    This report contains the results of a time/motion analysis and a radiation dose assessment made during the receipt from barge transport and the loading of CAst iron cask for Storage and Transport Of Radioactive material (CASTOR) V/21 storage casks with spent nuclear fuel at the Surry Power Station in Virginia during 1987. The study was a cooperative effort between Pacific Northwest Laboratory (PNL) and Virginia Electric and Power Company (Virginia Power), and was funded by the US Department of Energy (DOE) Transportation Program Office. In this study, cask handling activities were tracked at the Surry Power Station, tracing the transfer of the empty spent fuel storage cask from an ocean-going vessel to a barge for river transport through the activities required to place the loaded storage cask at an at-reactor storage location.

  16. Dry storage assessment of LWR fuel in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Goll, W [AREVA NP GmbH (Germany)

    2012-07-01

    Germany's revised energy act, dated 2002, prohibits the shipment of spent nuclear fuel to reprocessing plants and restricts its disposal to a final repository. To comply with this law and to ensure further nuclear plant operation, the reactor operators had to construct on-site facilities for dry cask storage, to keep spent fuel assemblies for 40 years until a final repository is available. Twelve facilities went into operation during the last years. The amount of spent fuel in store is continuously increasing and has reached a level of about 1700 t HM by end of 2007. The central sites Ahaus and Gorleben remain in operation but shall be used for special purposes in future. The objectives are: Review of main features of facilities with an emphasis on associated monitoring; Review of degradation mechanisms in the context of fuel types and design (PWR, BWR, UO2, MOX) relative to fuel burn-up, structural materials and long term behaviour.

  17. Heat removal tests on dry storage facilities for nuclear spent fuels

    International Nuclear Information System (INIS)

    Wataru, M.; Saegusa, T.; Koga, T.; Sakamoto, K.; Hattori, Y.

    1999-01-01

    In Japan, spent fuel generated in NPP is controlled and stored in dry storage facility away-from reactor. Natural convection cooling system of the storage facility is considered advantageous from both safety and economic point of view. In order to realize this type of facility it is necessary to develop an evaluation method for natural convection characteristics and to make a rational design taking account safety and economic factors. Heat removal tests with the reduces scale models of storage facilities (cask, vault and silo) identified the the flow pattern in the test modules. The temperature and velocity distributions were obtained and the heat transfer characteristics were evaluated

  18. Constor steel concrete sandwich cask concept for transport and storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Diersch, R.; Dreier, G.; Gluschke, K.; Zubkov, A.; Danilin, B.; Fromzel, V.

    1998-01-01

    A spent nuclear fuel transport and storage sandwich cask concept has been developed together with the Russian company CKTI. Special consideration was given to an economical and effective way of manufacturing by using conventional mechanical engineering technologies and common materials. The main objective of this development was to fabricate these casks in countries not having highly specialized industries. Nevertheless, this sandwich cask concept fulfills both the internationally valid IAEA criteria for transportation and the German criteria for long-term intermediate storage. The basic cask concept has been designed for adaptation to different spent fuel specifications as well as handling conditions in the NPP. Recently, adaptations have been made for spent fuel from the RBMK and VVER reactors, and also for BWR spent fuel. The analyses of nuclear and thermal behaviour as well as of strength according to IAEA examination requirements (9-m-drop, 1-m-pin drop, 800 deg. C-fire test) and of the behaviour during accident scenarios at the storage site (drop, fire, gas cloud explosion, side impact) were carried out by means of recognized calculation methods and programmes. In a special experimental programme, the mechanical and thermodynamic properties of heavy concrete were examined and the reference values required for safety analyses were determined. The results of the safety analysis after drop tests according to IAEA-regulations as well as after 1 m-drops at the storage site were confirmed by means of a test programme using a scale model. The fabrication technology has been tested with help of a half scale cask model. The model has been prefabricated in Russia and completed in Germany. It has been shown that the CONSTOR cask can be fabricated in an effective and economic way. (authors)

  19. Interaction of cosmic ray muons with spent nuclear fuel dry casks and determination of lower detection limit

    Energy Technology Data Exchange (ETDEWEB)

    Chatzidakis, S., E-mail: schatzid@purdue.edu; Choi, C.K.; Tsoukalas, L.H.

    2016-08-21

    The potential non-proliferation monitoring of spent nuclear fuel sealed in dry casks interacting continuously with the naturally generated cosmic ray muons is investigated. Treatments on the muon RMS scattering angle by Moliere, Rossi-Greisen, Highland and, Lynch-Dahl were analyzed and compared with simplified Monte Carlo simulations. The Lynch-Dahl expression has the lowest error and appears to be appropriate when performing conceptual calculations for high-Z, thick targets such as dry casks. The GEANT4 Monte Carlo code was used to simulate dry casks with various fuel loadings and scattering variance estimates for each case were obtained. The scattering variance estimation was shown to be unbiased and using Chebyshev's inequality, it was found that 10{sup 6} muons will provide estimates of the scattering variances that are within 1% of the true value at a 99% confidence level. These estimates were used as reference values to calculate scattering distributions and evaluate the asymptotic behavior for small variations on fuel loading. It is shown that the scattering distributions between a fully loaded dry cask and one with a fuel assembly missing initially overlap significantly but their distance eventually increases with increasing number of muons. One missing fuel assembly can be distinguished from a fully loaded cask with a small overlapping between the distributions which is the case of 100,000 muons. This indicates that the removal of a standard fuel assembly can be identified using muons providing that enough muons are collected. A Bayesian algorithm was developed to classify dry casks and provide a decision rule that minimizes the risk of making an incorrect decision. The algorithm performance was evaluated and the lower detection limit was determined.

  20. Life cycle cost report of VHLW cask

    International Nuclear Information System (INIS)

    1995-06-01

    This document, the Life Cycle Cost Report (LCCR) for the VHLW Cask, presents the life cycle costs for acquiring, using, and disposing of the VHLW casks. The VHLW cask consists of a ductile iron cask body, called the shielding insert, which is used for storage and transportation, and ultimately for disposal of Defense High Level Waste which has been vitrified and placed into VHLW canisters. Each ductile iron VHLW shielding insert holds one VHLW canister. For transportation, the shielding insert is placed into a containment overpack. The VHLW cask as configured for transportation is a legal weight truck cask which will be licensed by NRC. The purpose of this LCCR is to present the development of the life cycle costs for using the VHLW cask to transport VHLW canisters from the generating sites to a disposal site. Life cycle costs include the cost of acquiring, operating, maintaining, and ultimately dispositioning the VHLW cask and its associated hardware. This report summarizes costs associated with transportation of the VHLW casks. Costs are developed on the basis of expected usage, anticipated source and destination locations, and expected quantities of VHLW which must be transported. DOE overhead costs, such as the costs associated with source and destination facility handling of the VHLW, are not included. Also not included are costs exclusive to storage or disposal of the VHLW waste

  1. Performance of CASTOR {sup registered} HAW cask cold trials for loading, Transport and storage of HAW canisters

    Energy Technology Data Exchange (ETDEWEB)

    Wilmsmeier, Marco; Horn, Thomas; Graf, Wilhelm [GNS Gesellschaft fuer Nuklear-Service mbH (Germany)

    2009-07-01

    With over 30 years of experience in the design, manufacturing, assembly and loading of CASTOR {sup registered} casks, GNS is one of the worldwide leading suppliers of casks for the transport and storage of spent fuel assemblies as well as for canisters with vitrified high active wastes (meanwhile over 1.000 casks loaded and stored and more than 1.500 ordered). GNS's products are used at around 30 sites worldwide for a wide range of inventories from pressurised and boiling water reactor fuels (PWR, VVER and BWR, RBMK), thorium high-temperature reactor fuels (THTR) and research reactor fuels (MTR) to vitrified high active wastes (HAW) from reprocessing plants. GNS is responsible for all nuclear wastes resulting from German Nuclear Power Plants and assists and/or performs in the loading and dispatch of CASTOR {sup registered} casks as well as their transport to and storage at central interim storage facilities and local interim storage areas. (orig.)

  2. Development of an evaluation method for long-term sealability of the spent fuel storage cask

    International Nuclear Information System (INIS)

    Kato, Osamu; Ito, Chihiro; Saegusa, Toshiari

    1996-01-01

    One of the characteristics of the cask storage method of spent fuel is that containment of radioactive materials is assured by the storage cask itself. Thus, the seal structure of the cask is designed to have a highly reliable multi-barrier system using metallic gaskets instead of the conventional rubber gaskets. Although, it has been reported that the containment feature of the metallic gaskets is influenced by the plastic deformation and stress relaxation of the gaskets for a short-term usage, no research report has been published on the containment feature of the metallic gaskets for a long-term usage. In this paper, the stress relaxation features of the metallic gaskets is investigated which will directly influence the long-term sealability of the storage cask, at first. Next, the relationship between the temperature/time dependence of the plastic deformation and the containment features of the metallic gaskets. Finally, an evaluation method of the long-term sealability from experimental data of a short-term behavior of the metallic gaskets is proposed. (author)

  3. FRAPCON analysis of cladding performance during dry storage operations

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, David J.; Geelhood, Kenneth J.

    2018-03-01

    There is an increasing need in the U.S. and around the world to move used nuclear fuel from wet storage in fuel pools to dry storage in casks stored at independent spent fuel storage installations (ISFSI) or interim storage sites. The NRC limits cladding temperature to 400°C while maintaining cladding hoop stress below 90 MPa in an effort to avoid radial hydride reorientation. An analysis was conducted with FRAPCON-4.0 on three modern fuel designs with three representative used nuclear fuel storage temperature profiles that peaked at 400 °C. Results were representative of the majority of U.S. LWR fuel. They conservatively showed that hoop stress remains below 90 MPa at the licensing temperature limit. Results also show that the limiting case for hoop stress may not be at the highest rod internal pressure in all cases but will be related to the axial temperature and oxidation profiles of the rods at the end of life and in storage.

  4. Full-Scale Cask Testing and Public Acceptance of Spent Nuclear Fuel Shipments - 12254

    Energy Technology Data Exchange (ETDEWEB)

    Dilger, Fred [Black Mountain Research, Henderson, NV 81012 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects Carson City, NV 80906 (United States); Ballard, James D. [Department of Sociology, California State University, Northridge Northridge, CA 91330 (United States)

    2012-07-01

    Full-scale physical testing of spent fuel shipping casks has been proposed by the National Academy of Sciences (NAS) 2006 report on spent nuclear fuel transportation, and by the Presidential Blue Ribbon Commission (BRC) on America's Nuclear Future 2011 draft report. The U.S. Nuclear Regulatory Commission (NRC) in 2005 proposed full-scale testing of a rail cask, and considered 'regulatory limits' testing of both rail and truck casks (SRM SECY-05-0051). The recent U.S. Department of Energy (DOE) cancellation of the Yucca Mountain project, NRC evaluation of extended spent fuel storage (possibly beyond 60-120 years) before transportation, nuclear industry adoption of very large dual-purpose canisters for spent fuel storage and transport, and the deliberations of the BRC, will fundamentally change assumptions about the future spent fuel transportation system, and reopen the debate over shipping cask performance in severe accidents and acts of sabotage. This paper examines possible approaches to full-scale testing for enhancing public confidence in risk analyses, perception of risk, and acceptance of spent fuel shipments. The paper reviews the literature on public perception of spent nuclear fuel and nuclear waste transportation risks. We review and summarize opinion surveys sponsored by the State of Nevada over the past two decades, which show consistent patterns of concern among Nevada residents about health and safety impacts, and socioeconomic impacts such as reduced property values along likely transportation routes. We also review and summarize the large body of public opinion survey research on transportation concerns at regional and national levels. The paper reviews three past cask testing programs, the way in which these cask testing program results were portrayed in films and videos, and examines public and official responses to these three programs: the 1970's impact and fire testing of spent fuel truck casks at Sandia National

  5. Cna 1 spent fuel element interim dry storage system thermal analysis

    International Nuclear Information System (INIS)

    Hilal, R. E; Garcia, J. C; Delmastro, D. F

    2006-01-01

    At the moment, the Atucha I Nuclear Power Plant (Cnea-I) located in the city of Lima, has enough room to store its spent fuel (Sf) in their two pools spent fuel until about 2015.In case of life extension a spend fuel element interim dry storage system is needed.Nucleolectrica Argentina S.A. (N A-S A) and the Comision Nacional de Energia Atomica (Cnea), have proposed different interim dry storage systems.These systems have to be evaluated in order to choose one of them.The present work's objective is the thermal analysis of one dry storage alternative for the Sf element of Cna 1.In this work a simple model was developed and used to perform the thermal calculations corresponding to the system proposed by Cnea.This system considers the store of sealed containers with 37 spent fuels in concrete modules.Each one of the containers is filled in the pool houses and transported to the module in a transference cask with lead walls.Fulfill the maximum cladding temperature requirement ( [es

  6. Maximizing allowable cask payloads using zone-loading and cooling table specifications

    International Nuclear Information System (INIS)

    Hopf, J.E.; Lloyd, T.

    2004-01-01

    The newer dual-purpose canister designs generally have a higher fuel assembly capacity than earlier designs. Due to the resulting increases in thermal and radiological source terms from the assembly payload, this will generally result in higher cask system temperatures and cask external dose rates, making it more difficult to meet 10CFR71 and 10CFR72 thermal and radiological requirements. One approach to addressing this issue would be to employ advanced, and potentially expensive, engineering features to enhance cask shielding and heat removal capabilities. Another approach involves the strategic loading of fuel assemblies in specific locations within the dual-purpose canister, along with a more rigorous analysis of the specific assembly payload configuration inside the canister. This second approach, which does not involve difficult engineering design and fabrication, and which does not add to the cost of the canister or cask, is the subject of this paper. Traditional cask licensing analyses simply model a uniform assembly payload over the entire canister interior. One, or perhaps a few ''design-basis'' combinations of burnup, enrichment, and cooling time are analyzed and qualified. All loaded assemblies must be completely bounded by one or more of the analyzed sets of design basis assembly parameters. Effectively, the ''hottest'' possible assembly is modeled in all loading slots. This paper discusses two techniques that could greatly increase the number of spent fuel pool assemblies that qualify for storage or transportation, especially when taken together. The first technique, referred to as ''zone loading'' involves loading relatively ''cold'' assemblies in the locations around the edge of the canister. The outer assemblies will almost entirely shield the neutron and gamma fluxes from the interior assemblies, reducing their contribution to cask external dose rate to very low levels. This allows much ''hotter'' possible assembly is modeled in all loading slots

  7. The Role of Technological Innovations for Dry Storage of Used Nuclear Fuel

    International Nuclear Information System (INIS)

    Issard, H.

    2015-01-01

    We cannot predict the recovery from the financial crisis, but regardless of whether it is slow or quick, the global need for energy and the growth of electricity consumption have been confirmed. Many countries throughout the world are pursuing or have publicly expressed their intention to pursue the construction of Nuclear Power Plants or to extend the life of existing nuclear reactors and to address the back end of the fuel cycle. As always in history, when economic constraints become more severe, the answer is often innovation. Maintaining the high level of performance of nuclear energy and increasing safety with an attractive cost is today’s challenge. It is true for reactors, true also for fuel cycle and in particular for the back end: recycling and interim storage. Interim storage equipment or systems of used fuel are considered in this presentation. The industry is ready to provide support to countries and utilities for the development of radioactive material transportation and storage, and is striving to develop innovative solutions in wet or dry storage systems and casks and to bring them to the market. This presentation will elaborate on the two following questions: Where are the most crucial needs for technological innovations? What is the role of innovation? The needs of technological innovation are important in 3 domains: storage equipment design, interfaces and handling of used fuel and safety justification methodology. Concerning the design, continuous effort for optimisation of used fuel storage equipment requires innovations. These designs constitute the new generation of dry storage casks. The expectations are a higher payload thanks to new materials (such as metal matrix composites) and optimised geometry for criticality-safety, better thermal evacuation efficiency to accept higher fuel characteristics (more enrichment, burnup, shorter cooling time), resistance to impact of airplanes. Designs are also expected to be optimised for sustainable

  8. Creation of a Geant4 Muon Tomography Package for Imaging of Nuclear Fuel in Dry Cask Storage

    Energy Technology Data Exchange (ETDEWEB)

    Tsoukalas, Lefteri H. [Purdue Univ., West Lafayette, IN (United States)

    2016-03-01

    This is the final report of the NEUP project “Creation of a Geant4 Muon Tomography Package for Imaging of Nuclear Fuel in Dry Cask Storage”, DE-NE0000695. The project started on December 1, 2013 and this report covers the period December 1, 2013 through November 30, 2015. The project was successfully completed and this report provides an overview of the main achievements, results and findings throughout the duration of the project. Additional details can be found in the main body of this report and on the individual Quarterly Reports and associated Deliverables of the project, uploaded in PICS-NE.

  9. Simulation of Multi Canister Overpack (MCO) Handling Machine Impact with Cask and MCO During Insertion into the Transfer Pit (FDT-137)

    Energy Technology Data Exchange (ETDEWEB)

    BAZINET, G.D.

    2000-04-13

    The K-Basin Cask and Transportation System will be used for safely packaging and transporting approximately 2,100 metric tons of unprocessed, spent nuclear fuel from the 105 K East and K West Basins to the 200 E Area Canister Storage Building (CSB). Portions of the system will also be used for drying the spent fuel under cold vacuum conditions prior to placement in interim storage. The spent nuclear fuel is currently stored underwater in the two K-Basins. The K-Basins loadout pit is the area selected for loading spent nuclear fuel into the Multi-Canister Overpack (MCO) which in turn is located within the transportation cask. This Cask/MCO unit is secured.in the pit with a pail load out structure whose primary function is lo suspend and support the Cask/MCO unit at.the desired elevations and to protect the unit from the contaminated K-Basin water. The fuel elements will be placed in special baskets and stacked in the MCO that have been previously placed in the cask. The casks will be removed from the K Basin load out areas and taken to the cold vacuum drying station. Then the cask will be prepared for transportation to the CSB. The shipments will occur exclusively on the Hanford Site between K-Basins and the CSB. Travel will be by road with one cask per trailer. At the CSB receiving area the cask will be removed from the trailer. A gantry crane will then move the cask over to the transfer pit and load the cask into the transfer pit. From the transfer pit the MCO will be removed from the cask by the MCO Handling Machine (MHM). The MHM will move the MCO from the transfer pit to a canister storage tube in the CSB. MCOs will be piled two high in each canister Storage tube.

  10. Simulation of Multi Canister Overpack (MCO) Handling Machine Impact with Cask and MCO During Insertion into the Transfer Pit (FDT-137)

    International Nuclear Information System (INIS)

    BAZINET, G.D.

    2000-01-01

    The K-Basin Cask and Transportation System will be used for safely packaging and transporting approximately 2,100 metric tons of unprocessed, spent nuclear fuel from the 105 K East and K West Basins to the 200 E Area Canister Storage Building (CSB). Portions of the system will also be used for drying the spent fuel under cold vacuum conditions prior to placement in interim storage. The spent nuclear fuel is currently stored underwater in the two K-Basins. The K-Basins loadout pit is the area selected for loading spent nuclear fuel into the Multi-Canister Overpack (MCO) which in turn is located within the transportation cask. This Cask/MCO unit is secured.in the pit with a pail load out structure whose primary function is lo suspend and support the Cask/MCO unit at.the desired elevations and to protect the unit from the contaminated K-Basin water. The fuel elements will be placed in special baskets and stacked in the MCO that have been previously placed in the cask. The casks will be removed from the K Basin load out areas and taken to the cold vacuum drying station. Then the cask will be prepared for transportation to the CSB. The shipments will occur exclusively on the Hanford Site between K-Basins and the CSB. Travel will be by road with one cask per trailer. At the CSB receiving area the cask will be removed from the trailer. A gantry crane will then move the cask over to the transfer pit and load the cask into the transfer pit. From the transfer pit the MCO will be removed from the cask by the MCO Handling Machine (MHM). The MHM will move the MCO from the transfer pit to a canister storage tube in the CSB. MCOs will be piled two high in each canister Storage tube

  11. Development of NUPAC 140B 100 ton rail/barge cask

    International Nuclear Information System (INIS)

    1990-04-01

    The 140-B Cask Ancillary Equipment includes all cask-related hardware necessary for a complete transportation package and for handling of the cask at shipping and receiving facilities. The transportation package equipment includes the cask tiedown system, the railcar and the sunshield/personnel barrier. The cask handling systems include both single and dual load path cask lifting fixtures, a cask uprighting system, an intermodal transfer system, and the cask drain and fill system. This document describes the individual systems in terms of their purpose, their function, and their mechanical features. Structural analyses are provided for the cask lifting and tiedown devices. The cask ancillary equipment will also include special tools and equipment such as seal surface protection device, special torque wrenches, leak test equipment, etc., for handling the cask at a reactor site. Although final design work remains to be completed, the ancillary equipment design information presented in this document ensures that the 140-B cask transportation package will meet or exceed all structural, functional, and operational requirements, within the specified gross vehicle weight limit. 18 figs

  12. Performance of CASTOR{sup R} HAW Cask Cold Trials for Loading, Transport and Storage of HAW canisters

    Energy Technology Data Exchange (ETDEWEB)

    Wilmsmeier, Marco; Vossnacke, Andre [GNS Gesellschaft fuer Nuklear-Service mbH, Hollestrasse 7A, D-45127 Essen (Germany)

    2008-07-01

    On the basis of reprocessing contracts, concluded between the German Nuclear Utilities (GNUs) and the reprocessing companies in France (AREVA NC) and the UK (Nuclear Decommissioning Authority), GNS has the task to return the resulting residues to Germany. The high active waste (HAW) residuals from nuclear fuel reprocessing are vitrified and filled into steel cans, the HAW canisters. According to reprocessing contracts the equivalent number of HAW canisters to heavy metals delivered has to be returned to the country of origin and stored at an interim storage facility where applicable. The GNS' CASTOR{sup R} HAW casks are designed and licensed to fulfil the requirements for transport and long-term storage of HAW canisters. The new cask type CASTOR{sup R} HAW28M is capable of storing 28 HAW canisters with a maximum thermal power of 56 kW in total. Prior to the first active cask loading at a reprocessing facility it is required to demonstrate all important handling steps with the CASTOR{sup R} HAW28M cask according to a specific and approved sequence plan (MAP). These cold trials have to be carried out at the cask loading plant and at the reception area of an interim storage facility in Gorleben (TBL-G), witnessed by the licensing authorities and their independent experts. At transhipment stations GNS performs internal trials to demonstrate safe handling. A brand-new, empty CASTOR{sup R} HAW28M cask has been shipped from the GNS cask assembly facility in Muelheim to the TBL-G for cold trials. With this cask, GNS has to demonstrate the transhipment of casks at the Dannenberg transfer station from rail to road, transport to and reception at the TBL-G as well as incoming dose rate and contamination measurements and preparation for storage. After removal of all shock absorbers with a cask specific handling frame, tilting operation and assembly of the secondary lid with a pressure sensor, the helium leak tightness and 'Block-mass' tests have to be carried out

  13. Dynamic Response Analysis of Storage Cask Lid Structure Subjected to Lateral Impact Load of Aircraft Engine Crash

    International Nuclear Information System (INIS)

    Almomania, Belal; Kang, Hyun Gook; Lee, Sanghoon

    2015-01-01

    Several numerical methods and tests have been carried out to measure the capability of storage cask to withstand extreme impact loads. Testing methods are often constrained by cost, and difficulty in preparation for several impact conditions with different applied loads, and areas of impact. Instead, analytic method is an acceptable process that can easily apply different impact conditions for the evaluation of cask integrity. The aircraft engine impact is considered as one of the most critical impact accidents on the storage cask that significantly affects onto the lid closure system and may cause a considerable release of radioactive materials. This paper presents a method for evaluating the dynamic responses of one upper metal cask lid closure without impact limiters subjected to lateral impact of an aircraft engine with respect to variation of the impact velocity. An assessment method to predict damage response due to the lateral engine impact onto metal storage cask has been studied by using computer code LS-DYNA. The dynamic behavior of the lid movements was successfully calculated by utilizing a simplified finite element cask model, which showed a good agreement with the previous research. The simulation analyses results showed that no significant plastic deformation for bolts, lid, and the cask body. In this study, the lid opening and sliding displacements are considered as the major factors in initiating the leakage path. This analysis may be useful for evaluating the instantaneous leakage rates in a connection with the sliding and opening displacements between the lid and the flange to ensure that the radiological consequences caused by an aircraft engine crash accident during the storage phase are within the permissible level

  14. Dynamic Response Analysis of Storage Cask Lid Structure Subjected to Lateral Impact Load of Aircraft Engine Crash

    Energy Technology Data Exchange (ETDEWEB)

    Almomania, Belal; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of); Lee, Sanghoon [Keimyung Univ., Daegu (Korea, Republic of)

    2015-10-15

    Several numerical methods and tests have been carried out to measure the capability of storage cask to withstand extreme impact loads. Testing methods are often constrained by cost, and difficulty in preparation for several impact conditions with different applied loads, and areas of impact. Instead, analytic method is an acceptable process that can easily apply different impact conditions for the evaluation of cask integrity. The aircraft engine impact is considered as one of the most critical impact accidents on the storage cask that significantly affects onto the lid closure system and may cause a considerable release of radioactive materials. This paper presents a method for evaluating the dynamic responses of one upper metal cask lid closure without impact limiters subjected to lateral impact of an aircraft engine with respect to variation of the impact velocity. An assessment method to predict damage response due to the lateral engine impact onto metal storage cask has been studied by using computer code LS-DYNA. The dynamic behavior of the lid movements was successfully calculated by utilizing a simplified finite element cask model, which showed a good agreement with the previous research. The simulation analyses results showed that no significant plastic deformation for bolts, lid, and the cask body. In this study, the lid opening and sliding displacements are considered as the major factors in initiating the leakage path. This analysis may be useful for evaluating the instantaneous leakage rates in a connection with the sliding and opening displacements between the lid and the flange to ensure that the radiological consequences caused by an aircraft engine crash accident during the storage phase are within the permissible level.

  15. Evaluation of the 252Cf-source-driven neutron noise analysis method for measuring the subcriticality of LWR fuel storage casks

    International Nuclear Information System (INIS)

    Mihalczo, J.T.

    1987-01-01

    The 252 Cf-source-driven neutron noise analysis method was evaluated to determine if it could be used to measure the subcriticality of storage casks of burnt LWR fuel submerged in fuel storage pools, fully loaded and as they are being loaded. The motivation for this evaluation was that measurements of k/sub eff/ would provide the parameter most directly related to the criticality safety of storage cask configurations of LWR fuel and could allow proper credit for fuel burnup without reliance on calculations. This in turn could lead to more cost-effective cask designs. Evaluation of the method for this application was based on (1) experiments already completed at a critical experiments facility using arrays of PWR fuel pins typical of the size of storage cask configurations, (2) the existence of neutron detectors that can function in shipping cask environments, and (3) the ability to construct ionization chambers containing 252 Cf of adequate intensity for these measurements. These three considerations are discussed

  16. Testing and COBRA-SFS analysis of the VSC-17 ventilated concrete, spent fuel storage cask

    International Nuclear Information System (INIS)

    McKinnon, M.A.; Dodge, R.E.; Schmitt, R.C.

    1992-04-01

    A performance test of a Pacific Sierra Nuclear VSC-17 ventilated concrete storage cask loaded with 17 canisters of consolidated PWR spent fuel generating approximately 15 kW was conducted. The performance test included measuring the cask surface, concrete, air channel surface, and fuel temperatures, as well as cask surface gamma and neutron dose rates. Testing was performed using vacuum, nitrogen, and helium backfill environments. Pretest predictions of cask thermal performance were made using the COBRA-SFS computer code. Analysis results were within 15 degrees C of measured peak fuel temperature. Peak fuel temperature for normal operation was 321 degrees C. In general, the surface dose rates were less than 30 mrem/h on the side of the cask and 40 mrem/h on the top of the cask

  17. Thermal Test in accordance with Mesh Size at Opening of the Inlets and Outlets of Concrete Storage Cask

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Yu, S. H.; Lee, J. C.; Choi, W. S. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The concrete storage cask must be designed to have heat removal capabilities with appropriate reliability. However, the thermal conductivity of concrete is not adequate for this purpose. The American Concrete Institute standard ACI-349 specifies a limit of 66 .deg. C for the normal operating temperature of concrete, except for the local areas, which may not exceed 93 .deg. C, and a short-term or accident temperature limit of no more than 177 .deg. C. Therefore, a passive heat removal system was designed to maintain the temperatures of the fuel-assembly cladding material and concrete storage cask components within these allowable limits. The passive heat-removal system consists of four inlets and four outlets, and their openings are covered by screens of mesh structure to prevent debris or wildlife from entering the ventilation ducts. Depending on its mesh size, each screen will have a different effect on the heat removal of the concrete storage cask. This paper discusses the experimental approach used in the present study to evaluate the heat removal performance under normal conditions in accordance with the mesh size of the screen installed at the opening of the inlets and outlets. The main results of the study are described below. The mesh size of the screen had an insignificant effect on the temperature rise of the canister surface and the over-pack surface.

  18. Evaluation of economics of spent fuel storage techniques

    International Nuclear Information System (INIS)

    Yamaji, Kenji; Nagano, Koji

    1988-01-01

    Various spent fuel storage techniques are evaluated in terms of required costs. The unit storage cost for each spent fuel storage scenario is calculated based on the total cost required for the scenario including capital expenditure, operation cost, maintenance cost and transport cost. Intermediate storage may be performed in relatively small facilities in the plant or in independent large-scale facilities installed away from the plant. Dry casks or water pools are assumed to be used in in-plant storage facilities while vaults may also be employed in independent facilities. Evaluation is made for these different cases. In in-plant facilities, dry cask storage is found to be more economical in all cases than water pool storage, especially when large-sized casks are employed. In independent facilities, on the other hand, the use of vaults is the most desirable because the required capital expenditure is the lowest due to the effect of scale economics. Dry cask storage is less expensive than water pool storage also in independent facilities. The annual discount rate has relatively small influence on the unit cost for storage. An estimated unit cost for storage in independent storage facilities is shown separately for facilities with a capacity of 1,000 tons, 3,000 tons or 5,000 tons. The report also outlines the economics of spent fuel storage in overseas facilities (Finland, Sweden and U.S.A.). (Nogami, K.)

  19. Operational and safety aspects of vitrified waste casks

    International Nuclear Information System (INIS)

    Kirchner, B.

    1993-01-01

    For the time being two technical solutions have been developed for the interim storage: 1) one is based on forced air cooled pits set out in a concrete structure, as presently provided close to the Vitrification Facilities on reprocessing sites; 2) the other one is based on transportable storage casks standing vertically onto a storage pad, following principles similar to those already experienced with spent fuel storage casks. Considering these two solutions for interim storage, TRANSNUCLEAIRE has developed two main types of transportable casks for vitrified HAW; one is a routine transport cask; the other one is a transportable storage cask. Both are covered by the generic name TN28V and have already been described in previous papers. This paper deals with the safety and operation aspects of the casks under both transport and storage conditions. (J.P.N.)

  20. Thermal safety analysis of a dry storage cask for the Korean standard spent fuel - 16159

    International Nuclear Information System (INIS)

    Cha, Jeonghun; Kim, S.N.; Choi, K.W.

    2009-01-01

    A conceptual dry storage facility, which is based on a commercial dry storage facility, was designed for the Korea standard spent nuclear fuel (SNF) and preliminary thermal safety analysis was performed in this study. To perform the preliminary thermal analysis, a thermal analysis method was proposed. The thermal analysis method consists of 2 parts. By using the method, the surface temperature of the storage canister corresponding to the SNF clad temperature was calculated and the adequate air duct area was decided using the calculation result. The initial temperature of the facility was calculated and the fire condition and half air duct blockage were analyzed. (authors)

  1. Conceptual design report for the ICPP spent nuclear fuel dry storage project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The conceptual design is presented for a facility to transfer spent nuclear fuel from shipping casks to dry storage containers, and to safely store those containers at ICPP at INEL. The spent fuels to be handled at the new facility are identified and overall design and operating criteria established. Physical configuration of the facility and the systems used to handle the SNF are described. Detailed cost estimate for design and construction of the facility is presented.

  2. Czech interim spent fuel storage facility: operation experience, inspections and future plans

    International Nuclear Information System (INIS)

    Fajman, V.; Bartak, L.; Coufal, J.; Brzobohaty, K.; Kuba, S.

    1999-01-01

    The paper describes the situation in the spent fuel management in the Czech Republic. The interim Spent Fuel Storage Facility (ISFSF) at Dukovany, which was commissioned in January 1997 and is using dual transport and storage CASTOR - 440/84 casks, is briefly described. The authors deal with their experience in operating and inspecting the ISFSF Dukovany. The structure of the basic safety document 'Limits and Conditions of Normal Operation' is also mentioned, including the experience of the performance. The inspection activities focused on permanent checking of the leak tightness of the CASTOR 440/84 casks, the maximum cask temperature and inspections monitoring both the neutron and gamma dose rate as well as the surface contamination. The results of the inspections are mentioned in the presentation as well. The operator's experience with re-opening partly loaded and already dried CASTOR-440/84 cask, after its transport from NPP Jaslovske Bohunice to the NPP Dukovany is also described. The paper introduces briefly the concept of future spent fuel storage both from the NPP Dukovany and the NPP Temelin, as prepared by the CEZ. The preparatory work for the Central Interim Spent Nuclear Fuel Storage Facility (CISFSF) in the Czech Republic and the information concerning the planned storage technology for this facility is discussed in the paper as well. The authors describe the site selection process and the preparatory steps concerning new spent fuel facility construction including the Environmental Impact Assessment studies. (author)

  3. Radiation Templates of Spent Fuel in Casks

    Energy Technology Data Exchange (ETDEWEB)

    Vanier, Peter

    2018-05-07

    BNL and INL propose to perform a scoping study, using heavily collimated gamma and fast neutron detectors, to obtain passive radiation templates of dry storage casks containing spent fuel. The goal is to demonstrate sufficient spatial resolution and sensitivity to detect a missing fuel assembly. Such measurements, combined with detailed modeling and decay corrections should provide confidence that the cask contents have not been altered, despite loss of continuity of knowledge (CoK). The concept relies on the leakage of high energy gammas and neutrons through the shielding of the casks. Tests will emphasize organic scintillators with pulse shape discrimination, but baseline comparisons will be made to high purity germanium (HPGe) and collimated moderated 3He detectors deployed in the same locations. Commercial off-the-shelf (COTS) detectors and data acquisition electronics will be used with custom-built collimators and shielding.

  4. CASTOR {sup registered} 1000/19. Transport and storage cask for the disposal of spent fuel from the nuclear power plant Temelin (Czech Republic); CASTOR {sup registered} 1000/19. Transport- und Lagerbehaelter zur Entsorgung abgebrannter Brennelemente aus dem Kernkraftwerk Temelin in Tschechien

    Energy Technology Data Exchange (ETDEWEB)

    Fopp, Stefan; Kuehne, Bernhard; Schroeder, Jens [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany)

    2011-07-01

    The transport and storage cask CASTOR {sup registered} 1000/19 was designed for a dry interim storage of 19 spent fuel elements of WWER-1000 reactors. The project performed by GNS mbH included design, manufacture, licensing and delivery of 36 casks. The specific requirements for NPP Temelin concern loading and dispatch of the casks to be performed during the outage period of the reactor, thus high reliability and functionality of the casks and the manipulation equipment. The paper describes the mechanical design of the cask, stress analyses for a hypothetical fall accident from 9 m height, performed using the FEM program ANSYS and LS-DYNA. The 3D simulation models are based on conservative material characteristics and upper-bound boundary conditions. The safety analysis was performed using qualified software programs validated by the Czech authorities.

  5. Develop an piezoelectric sensing based on SHM system for nuclear dry storage system

    Science.gov (United States)

    Ma, Linlin; Lin, Bin; Sun, Xiaoyi; Howden, Stephen; Yu, Lingyu

    2016-04-01

    In US, there are over 1482 dry cask storage system (DCSS) in use storing 57,807 fuel assemblies. Monitoring is necessary to determine and predict the degradation state of the systems and structures. Therefore, nondestructive monitoring is in urgent need and must be integrated into the fuel cycle to quantify the "state of health" for the safe operation of nuclear power plants (NPP) and radioactive waste storage systems (RWSS). Innovative approaches are desired to evaluate the degradation and damage of used fuel containers under extended storage. Structural health monitoring (SHM) is an emerging technology that uses in-situ sensory system to perform rapid nondestructive detection of structural damage as well as long-term integrity monitoring. It has been extensively studied in aerospace engineering over the past two decades. This paper presents the development of a SHM and damage detection methodology based on piezoelectric sensors technologies for steel canisters in nuclear dry cask storage system. Durability and survivability of piezoelectric sensors under temperature influence are first investigated in this work by evaluating sensor capacitance and electromechanical admittance. Toward damage detection, the PES are configured in pitch catch setup to transmit and receive guided waves in plate-like structures. When the inspected structure has damage such as a surface defect, the incident guided waves will be reflected or scattered resulting in changes in the wave measurements. Sparse array algorithm is developed and implemented using multiple sensors to image the structure. The sparse array algorithm is also evaluated at elevated temperature.

  6. Conceptual aspects of the safety evaluation of a project of complementary spent nuclear fuel dry storage unit

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Rafaela da S. A.; Fontes, Gladson S., E-mail: rafaaelaandrade@hotmail.com, E-mail: gsfontes@hotmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Saldanha, Pedro L. C., E-mail: saldanha@cnen.gov.br [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Based on the number of cycles and the amount of new fuel elements exchanged in the reactor cores at each cycle, the forecast for the exhaustion of the spent nuclear fuel pools of the Brazil plants has provision until 2021. As are still in the studies the availability of a long-term storage facility for spent fuel, the short-term solution will be the construction of the Complementary Storage Spent Nuclear Fuel Unit, it will build inside the site in Angra Plants. The dry cask is a method of storage in which the fuel elements of high-level radioactive waste are stored, such as spent nuclear fuel, which already cooled in the fuel pool for at least one year and up to ten years. The purpose of the present paper is to discuss a conceptual study of the safety analysis of a project of licensing of a Dry Storage Unit (DSU) with the objective of verifying the application of national and international criteria, requirements and standards. The safety analysis will make on the principles adopted by the US Nuclear USNRC and the standards adopted at CNEN for dry storage. The concept of installation, seismic, geological and other analysis will be approached for approval of the site to be installed at DSU, the approved permit for the construction and finally the external and internal events that may occur being incidents and / or accidents and which are The necessary mitigations if something occurs within a period of time. (author)

  7. Conceptual aspects of the safety evaluation of a project of complementary spent nuclear fuel dry storage unit

    International Nuclear Information System (INIS)

    Freitas, Rafaela da S. A.; Fontes, Gladson S.; Saldanha, Pedro L. C.

    2017-01-01

    Based on the number of cycles and the amount of new fuel elements exchanged in the reactor cores at each cycle, the forecast for the exhaustion of the spent nuclear fuel pools of the Brazil plants has provision until 2021. As are still in the studies the availability of a long-term storage facility for spent fuel, the short-term solution will be the construction of the Complementary Storage Spent Nuclear Fuel Unit, it will build inside the site in Angra Plants. The dry cask is a method of storage in which the fuel elements of high-level radioactive waste are stored, such as spent nuclear fuel, which already cooled in the fuel pool for at least one year and up to ten years. The purpose of the present paper is to discuss a conceptual study of the safety analysis of a project of licensing of a Dry Storage Unit (DSU) with the objective of verifying the application of national and international criteria, requirements and standards. The safety analysis will make on the principles adopted by the US Nuclear USNRC and the standards adopted at CNEN for dry storage. The concept of installation, seismic, geological and other analysis will be approached for approval of the site to be installed at DSU, the approved permit for the construction and finally the external and internal events that may occur being incidents and / or accidents and which are The necessary mitigations if something occurs within a period of time. (author)

  8. Spent fuel transport and storage system for NOK: The TN52L, TN97L, TN24 BHL and TN24 GB casks

    International Nuclear Information System (INIS)

    Wattez, L.; Verdier, A.; Monsigny, P.-A.

    2007-01-01

    NOK nuclear power plants in Switzerland, LEIBSTADT (KKL) BWR nuclear power plant and BEZNAU (KKB) PWR nuclear power plant have opted to ship spent fuel to a central facility called ZWILAG for interim storage. In the mid-nineties, COGEMA LOGISTICS was contracted by KKL for the supply of the TN52L and TN97L transport and storage casks for BWR fuel types. In 2003, KKL also ordered from COGEMA LOGISTICS the supply of six TN24 BHL transport and storage casks. This paper shows how all the three cask designs have responded to the KKL needs to ship and store BWR spent fuel. In addition, it highlights the already significant operational feedback of the TN52L and TN97L casks by the KKL and ZWILAG operators. In 2004, NOK also ordered three TN24 GB transport and storage casks for PWR fuel types. These casks are presently being manufactured. (author)

  9. Re-evaluation of monitored retrievable storage concepts

    International Nuclear Information System (INIS)

    Fletcher, J.F.; Smith, R.I.

    1989-04-01

    In 1983, as a prelude to the monitored retrievable storage (MRS) facility conceptual design, the Pacific Northwest Laboratory (PNL) conducted an evaluation for the US Department of Energy (DOE) that examined alternative concepts for storing spent LWR fuel and high- level wastes from fuel reprocessing. The evaluation was made considering nine concepts for dry away-from-reactor storage. The nine concepts evaluated were: concrete storage cask, tunnel drywell, concrete cask-in-trench, open-cycle vault, metal casks (transportable and stationary), closed-cycle vault, field drywell, and tunnel-rack vault. The purpose and scope of the re-evaluation did not require a repetition of the expert-based examinations used earlier. Instead, it was based on more detailed technical review by a small group, focusing on changes that had occurred since the initial evaluation was made. Two additional storage concepts--the water pool and the horizontal modular storage vault (NUHOMS system)--were ranked along with the original nine. The original nine concepts and the added two conceptual designs were modified as appropriate for a scenario with storage capacity for 15,000 MTU of spent fuel. Costs, area requirements, and technical and historical data pertaining to MRS storage were updated for each concept

  10. Re-evaluation of monitored retrievable storage concepts

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, J.F.; Smith, R.I.

    1989-04-01

    In 1983, as a prelude to the monitored retrievable storage (MRS) facility conceptual design, the Pacific Northwest Laboratory (PNL) conducted an evaluation for the US Department of Energy (DOE) that examined alternative concepts for storing spent LWR fuel and high- level wastes from fuel reprocessing. The evaluation was made considering nine concepts for dry away-from-reactor storage. The nine concepts evaluated were: concrete storage cask, tunnel drywell, concrete cask-in-trench, open-cycle vault, metal casks (transportable and stationary), closed-cycle vault, field drywell, and tunnel-rack vault. The purpose and scope of the re-evaluation did not require a repetition of the expert-based examinations used earlier. Instead, it was based on more detailed technical review by a small group, focusing on changes that had occurred since the initial evaluation was made. Two additional storage concepts--the water pool and the horizontal modular storage vault (NUHOMS system)--were ranked along with the original nine. The original nine concepts and the added two conceptual designs were modified as appropriate for a scenario with storage capacity for 15,000 MTU of spent fuel. Costs, area requirements, and technical and historical data pertaining to MRS storage were updated for each concept.

  11. Investigation of water-logged spent fuel rods under dry storage conditions

    International Nuclear Information System (INIS)

    Kohli, R.; Pasupathi, V.

    1986-09-01

    Tests were conducted to determine the amount of moisture contained in breached, water-logged spent fuel rods and the rate of release. Two well-characterized BWR fuel rods with reactor-induced breaches were tested in a hot cell. These rods contained approximately 6 to 10 g of moisture, most of which was released during heating tests simulating normal cask drying operations. Additional testing with two intentionally defected fuel rods (BWR and PWR) was performed to evaluate the effect of the cladding breach on migration of moisture along the length of the fuel rod. The results showed that the moisture released from reactor-breached spent fuel rods was insufficient to cause degradation of fuel or dry storage system components

  12. Annex D 200 Area Interim Storage Area Final Safety Analysis Report Volume 5 (FSAR) (Section 1 and 2)

    International Nuclear Information System (INIS)

    CARRELL, R.D.

    2003-01-01

    The 200 Area Interim Storage Area (200 Area ISA) at the Hanford Site provides for the interim storage of non-defense reactor spent nuclear fuel (SNF) housed in aboveground dry cask storage systems. The 200 Area ISA is a relatively simple facility consisting of a boundary fence with gates, perimeter lighting, and concrete and gravel pads on which to place the dry storage casks. The fence supports safeguards and security and establishes a radiation protection buffer zone. The 200 Area ISA is nominally 200,000 ft 2 and is located west of the Canister Storage Building (CSB). Interim storage at the 200 Area ISA is intended for a period of up to 40 years until the materials are shipped offsite to a disposal facility. This Final Safety Analysis Report (FSAR) does not address removal from storage or shipment from the 200 Area ISA. Three different SNF types contained in three different dry cask storage systems are to be stored at the 200 Area ISA, as follows: (1) Fast Flux Test Facility (FFTF) Fuel--Fifty-three interim storage casks (ISC), each holding a core component container (CCC), will be used to store the FFTF SNF currently in the 400 Area. (2) Neutron Radiography Facility (NRF)TRIGA--One Rad-Vault container stores two DOT-6M 3 containers and six NRF TRIGA casks. (3) Commercial Light Water Reactor Fuel--Six International Standards Organization (ISO) containers, each holding a NAC-1 cask with an inner commercial light water reactor (LWR) canister, are used for storing commercial LWR SNF from the 300 Area. An aboveground dry cask storage location is necessary for the spent fuel because the current storage facilities are being shut down and deactivated. The spent fuel is being transferred to interim storage because there is no permanent repository storage currently available

  13. Monitored Retrievable Storage conceptual system study: metal storage casks

    International Nuclear Information System (INIS)

    Unterzuber, R.; Cross, T.E.; Krasicki, B.R.

    1983-08-01

    A description of the metal cask storage facility concept is presented with the operations required to handle the spent fuel or high-level wastes and transuranic wastes. A generic Receiving and Handling Facility, provided by PNL, has been used for this study. Modifications to the storage delivery side of the handling facility, necessary to couple the Receiving and Handling Facility with the storage facility, are described. The equipment and support facilities needed for the storage facility are also described. Two separate storage facilities are presented herein: one for all spent fuel storage, and one for storage of high-level waste (HLW) and transuranic waste (TRU). Each facility is described for the capacities and rates defined by PNL in the Concept Technical Performance Criteria and Base Assumptions (see Table 1.3-1). Estimates of costs and time-distributions of expenditures have been developed to construct, operate, and decommission the conceptual MRS facilities in mid-1983 dollars, for the base cases given using the cost categories and percentages provided by PNL. Cost estimates and time-distributions of expenditures have also been developed to expand the facility throughput rate from 1800 MTU to 3000 MTU, and to expand the facility storage capacity from 15,000 MTU to 72,00 MTU. The life cycle cost of the facility for the bounding cases of all spent fuel and all HLW and TRU, using the time-distributions of costs developed above and assuming a two percent per year discount rate, are also presented. 3 references, 16 figures, 18 tables

  14. Evaluation of impact limiter performance during end-on and slapdown drop tests of a one-third scale model storage/transport cask system

    International Nuclear Information System (INIS)

    Yoshimura, H.R.; Bronowski, D.R.; Uncapher, W.L.; Attaway, S.W.; Bateman, V.I.; Carne, T.G.; Gregory, D.L.; Huerta, M.

    1990-12-01

    This report describes drop testing of a one-third scale model shipping cask system. Two casks were designed and fabricated by Transnuclear, Inc., to ship spent fuel from the former Nuclear Fuel Services West Valley reprocessing facility in New York to the Idaho National Engineering Laboratory for a long-term spent fuel dry storage demonstration project. As part of the NRC's regulatory certification process, one-third scale model tests were performed to obtain experimental data on impact limiter performance during impact testing. The objectives of the testing program were to (1) obtain deceleration and displacement information for the cask and impact limiter system, (2) obtain dynamic force-displacement data for the impact limiters, (3) verify the integrity of the impact limiter retention system, and (4) examine the crush behavior of the limiters. Two 30-ft (9-m) drop tests were conducted on a mass model of the cask body and scaled balsa and redwood-filled impact limiters. This report describes the results of both tests in terms of measured decelerations, posttest deformation measurements, and the general structural response of the system. 3 refs., 32 figs

  15. NAC international dry spent fuel transfer technology

    International Nuclear Information System (INIS)

    Shelton, Thomas A.; Malone, James P.; Patterson, John R.

    1996-01-01

    Full text: For more than ten years NAC International (NAC) has designed, fabricated, tested and operated a variety of Dry Transfer Systems (DTS's) to transfer spent nuclear fuel from facilities with limited crane capabilities, limited accesses or limiting features to IAEA and USNRC licensed spent fuel transport casks or vice-versa. These DTS's have been operated in diverse environments in the United States and throughout the world and have proven to be a significant enhancement in transferring fuel between spent fuel pools, dry storage and hot cell facilities and spent fuel transport casks. Over the years, NAC has successfully and safely transferred more than two thousand fuel assemblies in DTS's. Our latest generation DTS incorporates years of extensive design and operating experience. It consists of a transfer cask with integrated fuel canister grapple, fuel canisters, and facility and cask adapters as well as a complement of related tools and equipment. The transfer cask is used to move irradiated HEU and LEU MTR fuel onsite in those instances where direct loading or unloading of the shipping cask is not possible due to dimensional, weight or other restrictions. The transfer cask is used to move canisters of fuel from the fuel storage location to the shipping cask. Adapters are employed to ensure proper interfacing of the transfer cask with fuel storage locations and shipping casks (NAC-LWT and NLI-1/2). Our existing fuel storage location adapter is designed for use with a storage pool; however, site or equipment specific adapters can easily be developed to allow interfacing with virtually any storage facility. Prior to movement of the first fuel canister in the transfer cask, the shipping cask is prepared for loading by proper set up of the base plate, shipping cask and shipping cask adapter. The fuel canisters are loaded with fuel and then retracted into the transfer cask via the fuel storage location adapter. The transfer cask is then moved to the shipping

  16. Annex D-200 Area Interim Storage Area Final Safety Analysis Report [FSAR] [Section 1 & 2

    Energy Technology Data Exchange (ETDEWEB)

    CARRELL, R D

    2002-07-16

    The 200 Area Interim Storage Area (200 Area ISA) at the Hanford Site provides for the interim storage of non-defense reactor spent nuclear fuel (SNF) housed in aboveground dry cask storage systems. The 200 Area ISA is a relatively simple facility consisting of a boundary fence with gates, perimeter lighting, and concrete and gravel pads on which to place the dry storage casks. The fence supports safeguards and security and establishes a radiation protection buffer zone. The 200 Area ISA is nominally 200,000 ft{sup 2} and is located west of the Canister Storage Building (CSB). Interim storage at the 200 Area ISA is intended for a period of up to 40 years until the materials are shipped off-site to a disposal facility. This Final Safety Analysis Report (FSAR) does not address removal from storage or shipment from the 200 Area ISA. Three different SNF types contained in three different dry cask storage systems are to be stored at the 200 Area ISA, as follows: (1) Fast Flux Test Facility Fuel--Fifty-three interim storage casks (ISC), each holding a core component container (CCC), will be used to store the Fast Flux Test Facility (FFTF) SNF currently in the 400 Area. (2) Neutron Radiography Facility (NRF) TRIGA'--One Rad-Vault' container will store two DOT-6M3 containers and six NRF TRIGA casks currently stored in the 400 Area. (3) Commercial Light Water Reactor Fuel--Six International Standards Organization (ISO) containers, each holding a NAC-I cask4 with an inner commercial light water reactor (LWR) canister, will be used for commercial LWR SNF from the 300 Area. An aboveground dry cask storage location is necessary for the spent fuel because the current storage facilities are being shut down and deactivated. The spent fuel is being transferred to interim storage because there is no permanent repository storage currently available.

  17. ''MOSAIK {sup registered}'' 20 years of experience with a cask system for transportation, conditioning and storage of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Gestermann, G. [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany)

    2004-07-01

    In Europe shielding casks for transportation and storage of radioactive waste with higher specific activity are in use. These casks developed by GNS and fabricated from ductile cast iron are called MOSAIK {sup registered} cask. At the moment 4 main types with some subtypes, named MOSAIK {sup registered} I, II, III and 80 T, are in use. The MOSAIK {sup registered} casks are licensed for the German interim storages and the planned final repository MOSAIK {sup registered} II and MOSAIK {sup registered} 80 T are licensed as a type B(U) cask also. Till now more then 4100 MOSAIK {sup registered} cask have been built and loaded with radioactive MAW material.

  18. Experience with the transport and storage casks CASTOR (registered) MTR 2 for spent nuclear fuel assemblies from research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jack, Allen; Rettenbacher, Katharina; Skrzyppek, Juergen [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany)

    2011-07-01

    The CASTOR (registered) MTR 2 cask was designed and manufactured by the company GNS during the 1990's for the transport and interim storage of spent nuclear fuel assemblies from various types of research reactors. Casks of this type have been used at the VKTA Research Centre in Rossendorf near Dresden, Germany as well as at the European Commission's Joint Research Centre at Petten and at the HOR reactor at Delft in the Netherlands. A total of 24 units have been used for the functions of transport and storage with various spent fuel types (VVER, HFR-HEU, and HOR-HEU) for more than ten years now. This type of packaging for radioactive material is a member of the CASTOR (registered) family of spent nuclear fuel casks used worldwide. Over 1000 units are loaded and in storage in Europe, Asia, Africa and North America. This paper presents the experience from the use of the casks for transport and storage in the past, as well as the prospects for the future. (author)

  19. Annex D-200 Area Interim Storage Area Final Safety Analysis Report [FSAR] [Section 1 and 2

    International Nuclear Information System (INIS)

    CARRELL, R.D.

    2002-01-01

    The 200 Area Interim Storage Area (200 Area ISA) at the Hanford Site provides for the interim storage of non-defense reactor spent nuclear fuel (SNF) housed in aboveground dry cask storage systems. The 200 Area ISA is a relatively simple facility consisting of a boundary fence with gates, perimeter lighting, and concrete and gravel pads on which to place the dry storage casks. The fence supports safeguards and security and establishes a radiation protection buffer zone. The 200 Area ISA is nominally 200,000 ft 2 and is located west of the Canister Storage Building (CSB). Interim storage at the 200 Area ISA is intended for a period of up to 40 years until the materials are shipped off-site to a disposal facility. This Final Safety Analysis Report (FSAR) does not address removal from storage or shipment from the 200 Area ISA. Three different SNF types contained in three different dry cask storage systems are to be stored at the 200 Area ISA, as follows: (1) Fast Flux Test Facility Fuel--Fifty-three interim storage casks (ISC), each holding a core component container (CCC), will be used to store the Fast Flux Test Facility (FFTF) SNF currently in the 400 Area. (2) Neutron Radiography Facility (NRF) TRIGA'--One Rad-Vault' container will store two DOT-6M3 containers and six NRF TRIGA casks currently stored in the 400 Area. (3) Commercial Light Water Reactor Fuel--Six International Standards Organization (ISO) containers, each holding a NAC-I cask4 with an inner commercial light water reactor (LWR) canister, will be used for commercial LWR SNF from the 300 Area. An aboveground dry cask storage location is necessary for the spent fuel because the current storage facilities are being shut down and deactivated. The spent fuel is being transferred to interim storage because there is no permanent repository storage currently available

  20. 75 FR 33678 - List of Approved Spent Fuel Storage Casks: MAGNASTOR System, Revision 1

    Science.gov (United States)

    2010-06-15

    ... Fuel Storage Casks: MAGNASTOR System, Revision 1 AGENCY: Nuclear Regulatory Commission. ACTION: Direct final rule. SUMMARY: The U. S. Nuclear Regulatory Commission (NRC) is amending its spent fuel storage regulations by revising the NAC International Inc. (NAC) MAGNASTOR System listing within the ``List of...

  1. 75 FR 49813 - List of Approved Spent Fuel Storage Casks: MAGNASTOR System, Revision 1, Confirmation of...

    Science.gov (United States)

    2010-08-16

    ... Storage Casks: MAGNASTOR System, Revision 1, Confirmation of Effective Date AGENCY: Nuclear Regulatory... spent fuel storage regulations at 10 CFR 72.214 to revise the MAGNASTOR System listing to include...

  2. State environmental review of a proposed utility independent spent fuel storage installation

    International Nuclear Information System (INIS)

    Sabel, G.; Halstead, R.

    1991-01-01

    This paper describes the environmental review process which was applied by the State of Minnesota to a proposed dry cask storage facility. An environmental analysis of the proposed project is summarized, as are alternatives including other dry storage technologies, increased in-pool storage, transhipment, reprocessing, use of higher burnup fuel and conservation. Public comments and concerns included potential cask failures, health impacts, and the possibility of the site becoming a open-quotes permanentclose quotes storage facility. State intervention in the federal license process is also described

  3. 75 FR 42292 - List of Approved Spent Fuel Storage Casks: NAC-MPC System, Revision 6

    Science.gov (United States)

    2010-07-21

    ... Fuel Storage Casks: NAC-MPC System, Revision 6 AGENCY: Nuclear Regulatory Commission. ACTION: Direct...-MPC storage system as noted in Appendix B of the Technical Specifications (TS): Incorporation of a... include the following changes to the configuration of the NAC-MPC storage system as noted in Appendix B of...

  4. Spent fuel element storage facility

    International Nuclear Information System (INIS)

    Ukaji, Hideo; Yamashita, Rikuo.

    1981-01-01

    Purpose: To always keep water level of a spent fuel cask pit equal with water level of spent fuel storage pool by means of syphon principle. Constitution: The pool water of a spent fuel storage pool is airtightly communicated through a pipe with the pool water of a spent fuel cask, and a gate is provided between the pool and the cask. Since cask is conveyed into the cask pit as the gate close while conveying, the pool water level is raised an amount corresponding to the volume of the cask, and water flow through scattering pipe and the communication pipe to the storage pool. When the fuel is conveyed out of the cask, the water level is lowered in the amount corresponding to the volume in the cask pit, and the water in the pool flow through the communication pipe to the cask pit. (Sekiya, K.)

  5. Application of dose evaluation of the MCNP code for interim spent fuel cask storage facility

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Iimoto, Takeshi; Ishikawa, Satoshi; Tsuboi, Takafumi; Teramura, Masahiro; Okamura, Tomomi; Narumiya, Yoshiyuki

    2007-01-01

    The interim storage facility for spent fuel metallic cask is designed as a concrete building structure with air inlet and outlet for circulating the natural cooling. The feature of the interim storage facility is big capacity of spent fuel at several thousands MTU and restricted site usage. It is important to evaluate realistic dose rate in shielding design of the interim storage facility, therefore the three-dimensional continuous-energy Monte Carlo radiation transport code MCNP that exactly treating the complicated geometry was applied. The validation of dose evaluation for interim storage facility by MCNP code were performed by three kinds of neutron shielding benchmark experiments; cask shadow shielding experiment, duct streaming experiment and concrete deep penetration experiment. Dose rate distributions at each benchmark were measured and compared with the calculated results. The comparison showed a good consistency between calculation and experiment results. (author)

  6. Criticality effects of longitudinal gaps in poison for storage/transport casks

    International Nuclear Information System (INIS)

    Wells, A.H.

    1985-01-01

    A series of criticality calculations was performed with the AMPX/KENO system to determine the sensitivity of the NAC S/T cask 31 assembly basket, which is optimized for a design-basis fuel enrichment of 3.7 wt % 235 U, to axial gaps in the boron neutron poison. The results of these calculations show that axial gaps in the boron cause no statistically detectable change in k/sub eff/ until a minimum gap size is reached. The minimum gap size to change k/sub eff/ is dependent on the basket segment length, because a longer segment length results in fewer gaps for a given active fuel length. Longer segment lengths are less sensitive to gaps in the neutron poison. A typical segment length of 12 to 18 in. is projected for a casting of aluminum/boron alloy, indicating that axial gaps in the neutron poison of 1 in. would be acceptable. This gap thickness is much greater than the intersegment gap produced by modern casting techniques. The investigation described here demonstrated that an axial gap in neutron poison is acceptable for basket castings of large storage/transport casks. A precedent for such gaps is the NLI-6502 cask, so a cask basket with intersegment gaps should be licensable

  7. Spent fuel metal storage cask performance testing and future spent fuel concrete module performance testing

    International Nuclear Information System (INIS)

    McKinnon, M.A.; Creer, J.M.

    1988-10-01

    REA-2023 Gesellshaft fur Nuklear Service (GNS) CASTOR-V/21, Transnuclear TN-24P, and Westinghouse MC-10 metal storage casks, have been performance tested under the guidance of the Pacific Northwest Laboratory to determine their thermal and shielding performance. The REA-2023 cask was tested under Department of Energy (DOE) sponsorship at General Electric's facilities in Morris, Illinois, using BWR spent fuel from the Cooper Reactor. The other three casks were tested under a cooperative agreement between Virginia Power Company and DOE at the Idaho National Engineering Laboratory (INEL) by EGandG Idaho, Inc., using intact spent PWR fuel from the Surry reactors. The Electric Power Research Institute (EPRI) made contributions to both programs. A summary of the various cask designs and the results of the performance tests is presented. The cask designs include: solid and liquid neutron shields; lead, steel, and nodular cast iron gamma shields; stainless steel, aluminum, and copper baskets; and borated materials for criticality control. 4 refs., 8 figs., 6 tabs

  8. Verification of maximum impact force for interim storage cask for the Fast Flux Testing Facility

    International Nuclear Information System (INIS)

    Chen, W.W.; Chang, S.J.

    1996-01-01

    The objective of this paper is to perform an impact analysis of the Interim Storage Cask (ISC) of the Fast Flux Test Facility (FFTF) for a 4-ft end drop. The ISC is a concrete cask used to store spent nuclear fuels. The analysis is to justify the impact force calculated by General Atomics (General Atomics, 1994) using the ILMOD computer code. ILMOD determines the maximum force developed by the concrete crushing which occurs when the drop energy has been absorbed. The maximum force, multiplied by the dynamic load factor (DLF), was used to determine the maximum g-level on the cask during a 4-ft end drop accident onto the heavily reinforced FFTF Reactor Service Building's concrete surface. For the analysis, this surface was assumed to be unyielding and the cask absorbed all the drop energy. This conservative assumption simplified the modeling used to qualify the cask's structural integrity for this accident condition

  9. Thermal Analysis of a Dry Storage Concept for Capsule Dry Storage Project

    International Nuclear Information System (INIS)

    JOSEPHSON, W.S.

    2003-01-01

    There are 1,936 cesium (Cs) and strontium (Sr) capsules stored in pools at the Waste Encapsulation and Storage Facility (WESF). These capsules will be moved to dry storage on the Hanford Site as an interim measure to reduce risk. The Cs/Sr Capsule Dry Storage Project is conducted under the assumption that the capsules will eventually be moved to the repository at Yucca Mountain, and the design criteria include requirements that will facilitate acceptance at the repository. The storage system must also permit retrieval of capsules in the event that vitrification of the capsule contents is pursued. The Capsule Advisory Panel (CAP) was created by the Project Manager for the Hanford Site Capsule Dry Storage Project (CDSP). The purpose of the CAP is to provide specific technical input to the CDSP; to identify design requirements; to ensure design requirements for the project are conservative and defensible; to identify and resolve emerging, critical technical issues, as requested; and to support technical reviews performed by regulatory organizations, as requested. The CAP will develop supporting and summary documents that can be used as part of the technical and safety bases for the CDSP. The purpose of capsule dry storage thermal analysis is to: (1) Summarize the pertinent thermal design requirements sent to vendors, (2) Summarize and address the assumptions that underlie those design requirements, (3) Demonstrate that an acceptable design exists that satisfies the requirements, (4) Identify key design features and phenomena that promote or impede design success, (5) Support other CAP analyses such as corrosion and integrity evaluations, and (6) Support the assessment of proposed designs. It is not the purpose of this report to optimize or fully analyze variations of postulated acceptable designs. The present evaluation will indicate the impact of various possible design features, but not systematically pursue design improvements obtainable through analysis

  10. Safety analysis report for packaging (onsite) multicanister overpack cask

    International Nuclear Information System (INIS)

    Edwards, W.S.

    1997-01-01

    This safety analysis report for packaging (SARP) documents the safety of shipments of irradiated fuel elements in the MUlticanister Overpack (MCO) and MCO Cask for a highway route controlled quantity, Type B fissile package. This SARP evaluates the package during transfers of (1) water-filled MCOs from the K Basins to the Cold Vacuum Drying Facility (CVDF) and (2) sealed and cold vacuum dried MCOs from the CVDF in the 100 K Area to the Canister Storage Building in the 200 East Area

  11. Safety analysis report for packaging (onsite) multicanister overpack cask

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, W.S.

    1997-07-14

    This safety analysis report for packaging (SARP) documents the safety of shipments of irradiated fuel elements in the MUlticanister Overpack (MCO) and MCO Cask for a highway route controlled quantity, Type B fissile package. This SARP evaluates the package during transfers of (1) water-filled MCOs from the K Basins to the Cold Vacuum Drying Facility (CVDF) and (2) sealed and cold vacuum dried MCOs from the CVDF in the 100 K Area to the Canister Storage Building in the 200 East Area.

  12. Dry reloading and packaging of spent fuel at TRIGA MARK I reactor of Medical University Hanover (MHH), Germany

    International Nuclear Information System (INIS)

    Haferkamp, D.

    2008-01-01

    Between 1994 and 1998 the equipment for dry reloading of a research reactor was developed by Noell, which was funded by the German Federal Government and State of Saxonia. The task of this development programme was the design and delivery of an equipment able to load the spent fuel into the shipping casks in a dry mode for research reactors, where wet loading inside the storage pool is impossible. ALARA and infrastructure conditions had to be taken into consideration. Most of the research reactors of TRIGA MARK I type or WWR-SM have operating modes for handling of spent fuel inside the pond or for transfer of spent fuel from pond to dry/wet storage pools. On the other hand, most of them cannot handle heavy weighted shipping casks inside the reactor building because of the crane capacity, or inside water pool because of dimensions and weight of shipping casks. A typical licensed normal operating procedure for spent fuel in research reactors (TRIGA MARK I) is shown. Dry unloading procedure is described. Additionally to the normal operating procedures at the MHH research reactor the following steps were necessary: - dry packaging of spent fuel elements into the loading units (six packs) in order to minimise the transfer and loading steps between the pool and shipping cask; - transfer of spent fuel loading units from dry storage pool to the shipping cask (outside the reactor building) in a shielded transfer cask; - dry reloading of loading units, into the shipping casks outside the reactor building. The Dry Reloading Equipment implies the following 5 items: 1. loading units (six packs), which includes: - capacity up to six spent fuel elements; - criticality safe placement of spent fuel elements; - handling of several spent fuel elements in an aluminium loading unit. 2. Special Transfer Cask, which includes: - shielded housing with locks; - gripper inside housing; - hoist outside housing; - computer aided operation mode for loading and unloading. 3. Transfer Vehicle

  13. Status of spent fuel shipping cask development

    International Nuclear Information System (INIS)

    Hall, I.K.; Hinschberger, S.T.

    1989-01-01

    This paper discusses how several new-generation shopping cask systems are being developed for safe and economical transport of commercial spent nuclear fuel and other radioactive wastes for the generating sites to a federal geologic repository or monitored retrievable storage (MRS) facility. Primary objectives of the from-reactor spent fuel cask development work are: to increase cask payloads by taking advantage of the increased at-reactor storage time under the current spent fuel management scenario, to facilitate more efficient cask handling operations with reduced occupational radiation exposure, and to promote standardization of the physical interfaces between casks and the shipping and receiving facilities. Increased cask payloads will significantly reduce the numbers of shipments, with corresponding reductions in transportation costs and risks to transportation workers, cask handling personnel, and the general public

  14. UO{sub 2} oxidation under dry storage conditions: From data gaps to research needs

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L. E. [CIEMAT, Andalucia (Spain)

    2008-10-15

    Dry interim storage is becoming a major activity of today's fuel cycle. The potential contact between no grossly damaged fuel rods (i.e., rods containing tiny defects like pinhole leaks and hairline cracks) and an oxidizing atmosphere during the cask water removal might lead to unacceptable consequences. One way to prevent it is to determine the time to propagation of a defect at given conditions. This paper compiles and critically reviews the existing database concerning time at temperature profile of fuel rods containing tiny defects that are exposed to oxidizing atmospheres. This review has pointed out significant drawbacks and limitations that would hinder its reliable application to assess the potential for defect propagation of current LWR fuels to be loaded in dry storage casks. Those weaknesses come essentially from data scarcity and lack of tests representativity. Based on this study, three main areas of work are recommended to fill the existing knowledge gaps: sound characterization of fuel rod responses in the low burnup range (<30 GWd/tU), extension of the database to high burnups characteristic of current discharged LWR fuels (<60GWd/tU), assessment of availability (i.e., amount and nature) of oxidizing agents. The result of the work suggested would result in a more complete and extensive database that would strongly support the potential use of 'time at temperature' curves.

  15. Assessment of dry storage performance of spent LWR fuel assemblies with increasing burnup

    International Nuclear Information System (INIS)

    Peehs, M.; Garzarolli, F.; Goll, W.

    1999-01-01

    Although the safety of a dry long-term spent fuel store is scarcely influenced if a few fuel rods start to leak during extended storage - since all confinement systems are designed to retain gaseous activity safely - it is a very conservative safety goal to avoid the occurrence of systematic rod defects. To assess the extended storage performance of a spent fuel assembly (FA), the experience can be collated into 3 storage modes: I - fast rate of temperature decrease δ max ≥ δ ≥ 300 deg. C, II - medium rate of decrease for the fuel rod dry storage temperature 300 deg. C > δ ≥ 200 deg. C, III - slow to negligible rate of temperature decrease for δ 2 -fuel are practically immobile during storage. Consequently all fission-product-driven defect mechanisms will not take place. The leading defect mechanism - also for fuel rods with increased burnup - remains creep due to the hoop strain resulting from the fuel rod internal fission gas pressure. Limiting the creep to its primary and secondary stages prevents fuel rod degradation. The allowable uniform strain of the cladding is 1 - 2%. Calculations were performed to predict the dry storage performance of fuel assemblies with a burnup ≤ 55 GW · d/tHM based on the fuel assemblies end of life (EOL)-data and on a representative curve T = f(t). The maximum allowable hot spot temperature of a fuel rod in the CASTOR V cask was between 348 deg. C (U FA) and 358 deg. C (MOX FA). The highest hoop strain predicted after 40 years of storage is 0.77% proving that spent LWR fuel dry storage is safe. (author)

  16. Burnup credit effect on proposed cask payloads

    International Nuclear Information System (INIS)

    Hall, I.K.

    1989-01-01

    The purpose of the Cask Systems Development Program (CSDP) is to develop a variety of cask systems which will allow safe and economical movement of commercial spent nuclear fuel and high-level waste from the generator to the Federal repository or Monitored Retrievable Storage (MRS) facility. Program schedule objectives for the initial phase of the CSDP include the development of certified spent fuel cask systems by 1995 to support Office of Civilian Radioactive Waste Management shipments from the utilities beginning in the late 1990s. Forty-nine proposals for developing a family of spent fuel casks were received and comparisons made. General conclusions that can be drawn from the comparisons are that (1) the new generation of casks will have substantially increased payloads in comparison to current casks, and (2) an even greater payload increase may be achievable with burnup credit. The ranges in the payload estimates do not allow a precise separation of the payload increase attributable to the proposed allowance of fuel burnup credit, as compared wilt the no-burnup-credit case. The beneficial effects of cask payload increases on overall costs and risks of transporting spent fuel are significant; therefore further work aimed toward taking advantage of burnup credit is warranted

  17. Monitored Retrievable Storage/Multi-Purpose Canister analysis: Simulation and economics of automation

    International Nuclear Information System (INIS)

    Bennett, P.C.; Stringer, J.B.

    1994-01-01

    Robotic automation is examined as a possible alternative to manual spent nuclear fuel, transport cask and Multi-Purpose canister (MPC) handling at a Monitored Retrievable Storage (MRS) facility. Automation of key operational aspects for the MRS/MPC system are analyzed to determine equipment requirements, through-put times and equipment costs is described. The economic and radiation dose impacts resulting from this automation are compared to manual handling methods

  18. Logistics management for storing multiple cask plug and remote handling systems in ITER

    International Nuclear Information System (INIS)

    Ventura, Rodrigo; Ferreira, João; Filip, Iulian; Vale, Alberto

    2013-01-01

    Highlights: ► We model the logistics management problem in ITER, taking into account casks of multiple typologies. ► We propose a method to determine the best position of the casks inside a given storage area. ► Our method obtains the sequence of operations required to retrieve or store an arbitrary cask, given its storage place. ► We illustrate our method with simulation results in an example scenario. -- Abstract: During operation, maintenance inside the reactor building at ITER (International Thermonuclear Experimental Reactor) has to be performed by remote handling, due to the presence of activated materials. Maintenance operations involve the transportation and storage of large, heavyweight casks from and to the tokamak building. The transportation is carried out by autonomous vehicles that lift and move beneath these casks. The storage of these casks face several challenges, since (1) the cask storage area is limited in space, and (2) all casks have to be accessible for transportation by the vehicles. In particular, casks in the storage area may block other casks, so that the former has to be moved to a temporary position to give way to the latter. This paper addresses the challenge of managing the logistics of cask storage, where casks may have different typologies. In particular, we propose an approach to (1) determine the best position of the casks inside the storage area, and to (2) obtain the sequence of operations required to retrieve and store an arbitrary cask from/to a given storage place. A combinatorial optimization approach is used to obtain solutions to both these problems. Simulation results illustrate the application of the proposed method to a simple scenario

  19. Logistics management for storing multiple cask plug and remote handling systems in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Ventura, Rodrigo, E-mail: rodrigo.ventura@isr.ist.utl.pt [Laboratório de Robótica e Sistemas em Engenharia e Ciência – Laboratório Associado, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Ferreira, João, E-mail: jftferreira@ipfn.ist.utl.pt [Instituto de Plasmas e Fusão Nuclear – Laboratório Associado, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Filip, Iulian, E-mail: ifilip@gmail.com [Faculty of Mechanical Engineering – Technical University Gheorghe Asachi of Iasi, 61 Dimitrie Mangeron Bldv., Iasi 700050 (Romania); Vale, Alberto, E-mail: avale@ipfn.ist.utl.pt [Instituto de Plasmas e Fusão Nuclear – Laboratório Associado, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2013-10-15

    Highlights: ► We model the logistics management problem in ITER, taking into account casks of multiple typologies. ► We propose a method to determine the best position of the casks inside a given storage area. ► Our method obtains the sequence of operations required to retrieve or store an arbitrary cask, given its storage place. ► We illustrate our method with simulation results in an example scenario. -- Abstract: During operation, maintenance inside the reactor building at ITER (International Thermonuclear Experimental Reactor) has to be performed by remote handling, due to the presence of activated materials. Maintenance operations involve the transportation and storage of large, heavyweight casks from and to the tokamak building. The transportation is carried out by autonomous vehicles that lift and move beneath these casks. The storage of these casks face several challenges, since (1) the cask storage area is limited in space, and (2) all casks have to be accessible for transportation by the vehicles. In particular, casks in the storage area may block other casks, so that the former has to be moved to a temporary position to give way to the latter. This paper addresses the challenge of managing the logistics of cask storage, where casks may have different typologies. In particular, we propose an approach to (1) determine the best position of the casks inside the storage area, and to (2) obtain the sequence of operations required to retrieve and store an arbitrary cask from/to a given storage place. A combinatorial optimization approach is used to obtain solutions to both these problems. Simulation results illustrate the application of the proposed method to a simple scenario.

  20. Documentation for initial testing and inspections of Beneficial Uses Shipping System (BUSS) Cask

    International Nuclear Information System (INIS)

    Lundeen, J.E.

    1994-01-01

    The purpose of this report is to compile data generated during the initial tests and inspections of the Beneficial Uses Shipping System (BUSS) Cask. In addition, this report will verify that the testing criteria identified in section 8.1 of the BUSS Cask Safety Analysis Report for Packaging (SARP) was met. The BUSS Cask Model R-1 is a type B shipping container used for shipment of radioactive cesium-137 and strontium-90 capsules to Waste Encapsulation and Storage Facility (WESF). The BUSS Cask body and lid are each one-piece forgings fabricated from ASTM A473, Type 304 stainless steel. The primary purpose of the BUSS Cask is to provide shielding and confinement as well as impact, puncture, and thermal protection for the capsules under both normal and accident conditions. Chapter 8 of the BUSS Cask SARP requires several acceptance tests and inspections, each intended to evaluate the performance of different components of the BUSS Cask system, to be performed before its first use. The results of the tests and inspections required are included in this document

  1. CSER 94-014: Storage of metal-fuel loaded EBR-II casks in concrete vault on PFP grounds

    International Nuclear Information System (INIS)

    Hess, A.L.

    1994-01-01

    A criticality safety evaluation is presented to permit EBR-2 spent fuel casks loaded with metallic fuel rods to be stored in an 8-ft diameter, cylindrical concrete vault inside the PFP security perimeter. The specific transfer of three casks with Pu alloy fuel from the Los Alamos Molten Plutonium Reactor Experiment from the burial grounds to the vault is thus covered. Up to seven casks may be emplaced in the casing with 30 inches center to center spacing. Criticality safety is assured by definitive packaging rules which keep the fissile medium dry and at a low effective volumetric density

  2. ROCKING. A computer program for seismic response analysis of radioactive materials transport AND/OR storage casks

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1995-11-01

    The computer program ROCKING has been developed for seismic response analysis, which includes rocking and sliding behavior, of radioactive materials transport and/or storage casks. Main features of ROCKING are as follows; (1) Cask is treated as a rigid body. (2) Rocking and sliding behavior are considered. (3) Impact forces are represented by the spring dashpot model located at impact points. (4) Friction force is calculated at interface between a cask and a floor. (5) Forces of wire ropes against tip-over work only as tensile loads. In the paper, the calculation model, the calculation equations, validity calculations and user's manual are shown. (author)

  3. Development of the nuclear ship MUTSU spent fuel shipping cask

    International Nuclear Information System (INIS)

    Ishizuka, M.; Umeda, M.; Nawata, Y.; Sato, H.; Honami, M.; Nomura, T.; Ohashi, M.; Higashino, A.

    1989-01-01

    After the planned trial voyage (4700 MWD/MTU) of the nuclear ship MUTSU in 1990, her spent fuel assemblies, initially made of two types of enriched UO 2 (3.2wt% and 4.4wt%), will be transferred to the reprocessing plant soon after cooling down in the ship reactor for more than one year. For transportation, the MUTSU spent fuel shipping casks will be used. Prior to transportation to the reprocessing plant, the cooled spent fuel assemblies will be removed from the reactor to the shipping casks and housed at the spent fuel storage facility on site. In designing the MUTSU spent fuel shipping cask, considerations were given to make the leak-tightness and integrity of the cask confirmable during storage. The development of the cask and the storage function demonstration test were performed by Japan Atomic Energy Research Institute (JAERI) and Mitsubishi Heavy Industries, Ltd. (MHI). One prototype cask for the storage demonstration test and licensed thirty-five casks were manufactured between 1987 and 1988

  4. Corrosion experiments on stainless steels used in dry storage canisters of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ryskamp, J.M.; Adams, J.P.; Faw, E.M.; Anderson, P.A.

    1996-09-01

    Nonradioactive (cold) experiments have been set up in the Idaho Chemical Processing Plant (ICPP)-1634, and radioactive (hot) experiments have been set up in the Irradiated Fuel Storage Facility (IFSF) at ICPP. The objective of these experiments is to provide information on the interactions (corrosion) between the spent nuclear fuel currently stored at the ICPP and the dry storage canisters and containment materials in which this spent fuel will be stored for the next several decades. This information will be used to help select canister materials that will retain structural integrity over this period within economic, criticality, and other constraints. The two purposes for Dual Purpose Canisters (DPCs) are for interim storage of spent nuclear fuel and for shipment to a final geological repository. Information on how corrosion products, sediments, and degraded spent nuclear fuel may corrode DPCs will be required before the DPCs will be allowed to be shipped out of the State of Idaho. The information will also be required by the Nuclear Regulatory Commission (NRC) to support the licensing of DPCs. Stainless steels 304L and 316L are the most likely materials for dry interim storage canisters. Welded stainless steel coupons are used to represent the canisters in both hot and cold experiments.

  5. Corrosion experiments on stainless steels used in dry storage canisters of spent nuclear fuel

    International Nuclear Information System (INIS)

    Ryskamp, J.M.; Adams, J.P.; Faw, E.M.; Anderson, P.A.

    1996-09-01

    Nonradioactive (cold) experiments have been set up in the Idaho Chemical Processing Plant (ICPP)-1634, and radioactive (hot) experiments have been set up in the Irradiated Fuel Storage Facility (IFSF) at ICPP. The objective of these experiments is to provide information on the interactions (corrosion) between the spent nuclear fuel currently stored at the ICPP and the dry storage canisters and containment materials in which this spent fuel will be stored for the next several decades. This information will be used to help select canister materials that will retain structural integrity over this period within economic, criticality, and other constraints. The two purposes for Dual Purpose Canisters (DPCs) are for interim storage of spent nuclear fuel and for shipment to a final geological repository. Information on how corrosion products, sediments, and degraded spent nuclear fuel may corrode DPCs will be required before the DPCs will be allowed to be shipped out of the State of Idaho. The information will also be required by the Nuclear Regulatory Commission (NRC) to support the licensing of DPCs. Stainless steels 304L and 316L are the most likely materials for dry interim storage canisters. Welded stainless steel coupons are used to represent the canisters in both hot and cold experiments

  6. Development and Experimental Benchmark of Simulations to Predict Used Nuclear Fuel Cladding Temperatures during Drying and Transfer Operations

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Miles [Univ. of Nevada, Reno, NV (United States)

    2017-03-31

    Radial hydride formation in high-burnup used fuel cladding has the potential to radically reduce its ductility and suitability for long-term storage and eventual transport. To avoid this formation, the maximum post-reactor temperature must remain sufficiently low to limit the cladding hoop stress, and so that hydrogen from the existing circumferential hydrides will not dissolve and become available to re-precipitate into radial hydrides under the slow cooling conditions during drying, transfer and early dry-cask storage. The objective of this research is to develop and experimentallybenchmark computational fluid dynamics simulations of heat transfer in post-pool-storage drying operations, when high-burnup fuel cladding is likely to experience its highest temperature. These benchmarked tools can play a key role in evaluating dry cask storage systems for extended storage of high-burnup fuels and post-storage transportation, including fuel retrievability. The benchmarked tools will be used to aid the design of efficient drying processes, as well as estimate variations of surface temperatures as a means of inferring helium integrity inside the canister or cask. This work will be conducted effectively because the principal investigator has experience developing these types of simulations, and has constructed a test facility that can be used to benchmark them.

  7. Sustainable Solutions for Nuclear used Fuels Interim Storage

    International Nuclear Information System (INIS)

    Arslan, Marc; Favet, Dominique; Issard, Herve; Le Jemtel, Amaury; Drevon, Caroline

    2014-01-01

    AREVA has a unique experience in providing sustainable solutions for used fuel management, fitted with the needs of different customers in the world and with regulation in different countries. These solutions entail both recycling and interim storage technologies. In a first part, we will describe the various types of solutions for Interim Storage of UNF that have been implemented around the world for interim storage at reactor or centralized Pad solution in canisters dry storage, vault type storages for dry storage, dry storage of transportation casks (dual purpose) pools for wet storage, The experience for all these different families of interim storages in which AREVA is involved is extensive and will be discussed with respect to the new challenges: increase of the duration of the interim storage (long term interim storage) increase of burn up of the fuels In a second part of the presentation, special recycling features will be presented. In that case, interim storage of the used fuels is ensured in pools. This provides in the long term good conditions for the behaviour of the fuel and its retrievability. With recycling, the final waste (Universal Canister of vitrified fission products and compacted hulls and end pieces): is stable and licensed in many countries for the final disposal (France, UK, Belgium, NL, Switzerland, Germany, Japan, upcoming: Spain, Australia, Italy). Presents neither safety criticality risks nor proliferation risks (AREVA conditioned HLW and LL-ILW are free of IAEA safeguard constraints thanks to AREVA process high recovery and purification yields). It can therefore be safely stored in interim storage for more than 100 years before final disposal. Some economic considerations will also be discussed. In particular, in the case of long term interim storage of used fuels, there are growing uncertainties regarding the future needs of repackaging and transportation, which can result in future cost overruns. Meanwhile, in the recycling policy

  8. Structural evaluation of spent nuclear fuel storage facilities under aircraft crash impact. Numerical study on evaluation of sealing performance of metal cask subjected to impact force

    International Nuclear Information System (INIS)

    Namba, Kosuke; Shirai, Koji; Saegusa, Toshiari

    2008-01-01

    A lot of safety evaluations on the important nuclear facilities against the aircraft crash have been reported in other countries. But the condition and the evaluation method to define impact force of aircraft crash have not been described clearly in the reports. In Japan, public concern with the safety evaluation against aircraft crash is increasing. It is important to make clear the behavior of the storage facilities installing the metal casks on impact loading due to aircraft crash. In this study, concerning crash between commercial aircraft and storage facility, impact analysis using dynamic analysis code LS-DYNA has been executed. The results showed that the storage facility was not completely destroyed. But the rigid aircraft engine may penetrate into the storage facility with local failure. Thus, we assumed the engine hit a metal cask in the storage facility and evaluated sealing performance of the metal cask under the impact loading. If the engine with 90m/s crashed the storage facility having concrete wall of 85cm in thickness, the remaining velocity became 60m/s after penetration. We calculated impact force of the engine with 60m/s crashing into the metal cask. Concerning the metal cask loaded the impact force, impact analysis was executed. We assumed two directions of impact force. One is vertical load and another is horizontal load against the cask. The result showed that plastic strain was not generated on flanges of the 1st lid and the sealing performance of the cask was maintained in each impact case. (author)

  9. Spent-fuel shipping and cask-handling studies in wet and dry environments. Studies and research concerning BNFP

    International Nuclear Information System (INIS)

    McCreery, P.N.

    1982-09-01

    A demonstration cask system has been constructed specifically to be used in examining unconventional techniques in handling spent fuel and fuel-hauling casks. This report demonstrates, through a series of photographs, some of these techniques and discusses others. It includes wet and dry operations, loading and unloading horizontally and vertically, mobile on-site carriers that can eliminate the need for some cranes and, in general, many of the operational options that are open in the design of future fuel handling systems

  10. ASME codification of ductile cast iron cask for transport and storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Saegusa, Toshiari; Arai, Taku

    2012-01-01

    The CRIEPI has been executing research and development on ductile cast iron cask for transport and storage of spent nuclear fuel in order to diversify options of the casks. Based on the research results, the CRIEPI proposed materials standards (Section II) and structural design standards (Section III) for the ductile cast iron cask to the authoritative and international ASME (American Society of Mechanical Engineers) Codes. For the Section II, the CRIEPI proposed the JIS G 5504 material with additional requirement prohibiting repair of cast body by welding, etc. as well as the ASTM A874 material to the Part A. In addition, the CRIEPI proposed design stress allowables, physical properties (thermal conductivity, modulus of elasticity, etc.), and external pressure chart to the Part D. For the Section III, the CRIEPI proposed a fracture toughness requirement of the ductile cast iron cask at -40degC to WB and WC of Division 3. Additionally, the CRIEPI proposed a design fatigue curve of the ductile cast iron cask to Appendix of Division 1. This report describes the outline of the proposed standards, their bases, and the deliberation process in order to promote proper usage of the code, future improvement, etc. (author)

  11. Post-Irradiation Examinations for Resolving Fuel Issues in Long Term Storage

    International Nuclear Information System (INIS)

    Karlsson, Joakim K.H.; Alvarez Holston, Anna-Maria

    2014-01-01

    In many countries extended long term dry storage is the solution for storage of spent nuclear fuel for the foreseeable future. The expected storage times have increased over the last years and today storage times of up to 300 years is anticipated. With such long storage times, requirements on transportability and retrievability of the fuel have become more important. Hitherto most investigations on fuel behaviour during dry storage have been focused on cladding creep and the impact of hydrogen and hydrides in the cladding. Creep data gives input to creep models and creep to rupture data helps to set criteria for maximum allowable internal rod pressure. Hydrides lower the ductility of the cladding and this is more pronounced with radially oriented hydrides. As the temperature decreases over time in a dry storage cask dissolved hydrogen will precipitate forming hydrides in addition to hydrides already present. Assuming there is sufficient hoop stress in the cladding, the new hydrides would be radially oriented. Together with lost ductility Delayed Hydride Cracking (DHC) could be a potential mechanism for rod failure over tens of years of dry storage as the temperature drops from about 350 deg. C to 150 deg. C. Hydride embrittlement and the DHC mechanism have been studied in the first Studsvik Cladding Integrity Project (SCIP), although the focus in this program has mainly been on higher temperatures relevant for operating conditions rather than on dry storage conditions. In addition to the mechanisms mentioned there are other failure mechanisms that could potentially threaten the cladding fuel integrity and retrievability. In case there is residual water or moisture available in the cask, or even in the fuel due to existing fuel failures, radiolysis gives free hydrogen and oxygen. In failed fuel this may cause fuel oxidation and swelling affecting fuel integrity. The hydrogen gas pressure will not threaten the cask but be available for cladding uptake. Furthermore

  12. Thermal-hydraulic analysis of spent fuel storage systems

    International Nuclear Information System (INIS)

    Rector, D.R.; Wheeler, C.L.; Lombardo, N.J.

    1987-01-01

    This paper describes the COBRA-SFS (Spent Fuel Storage) computer code, which is designed to predict flow and temperature distributions in spent nuclear fuel storage and transportation systems. The decay heat generated by spent fuel in a dry storage cask is removed through a combination of conduction, natural convection, and thermal radiation. One major advantage of COBRA-SFS is that fluid recirculation within the cask is computed directly by solving the mass and momentum conservation equations. In addition, thermal radiation heat transfer is modeled using detailed radiation exchange factors based on quarter-rod segments. The equations governing mass, momentum, and energy conservation for incompressible flows are presented, and the semi-implicit solution method is described. COBRA-SFS predictions are compared to temperature data from a spent fuel storage cask test and the effect of different fill media on the cladding temperature distribution is discussed. The effect of spent fuel consolidation on cask thermal performance is also investigated. 16 refs., 6 figs., 2 tabs

  13. Test program of the drop tests with full scale and 1/2.5 scale models of spent nuclear fuel transport and storage cask

    International Nuclear Information System (INIS)

    Kuri, S.; Matsuoka, T.; Kishimoto, J.; Ishiko, D.; Saito, Y.; Kimura, T.

    2004-01-01

    MHI have been developing 5 types of spent nuclear fuel transport and storage cask (MSF cask fleet) as a cask line-up. In order to demonstrate their safety, a representative cask model for the cask fleet have been designed for drop test regulated in IAEA TS-R-1. The drop test with a full and a 1/2.5 scale models are to be performed. It describes the test program of the drop test and manufacturing process of the scale models used for the tests

  14. Improved bolt models for use in global analyses of storage and transportation casks subject to extra-regulatory loading

    International Nuclear Information System (INIS)

    Kalan, R.J.; Ammerman, D.J.; Gwinn, K.W.

    2004-01-01

    Transportation and storage casks subjected to extra-regulatory loadings may experience large stresses and strains in key structural components. One of the areas susceptible to these large stresses and strains is the bolted joint retaining any closure lid on an overpack or a canister. Modeling this joint accurately is necessary in evaluating the performance of the cask under extreme loading conditions. However, developing detailed models of a bolt in a large cask finite element model can dramatically increase the computational time, making the analysis prohibitive. Sandia National Laboratories used a series of calibrated, detailed, bolt finite element sub-models to develop a modified-beam bolt-model in order to examine the response of a storage cask and closure to severe accident loadings. The initial sub-models were calibrated for tension and shear loading using test data for large diameter bolts. Next, using the calibrated test model, sub-models of the actual joints were developed to obtain force-displacement curves and failure points for the bolted joint. These functions were used to develop a modified beam element representation of the bolted joint, which could be incorporated into the larger cask finite element model. This paper will address the modeling and assumptions used for the development of the initial calibration models, the joint sub-models and the modified beam model

  15. Impact design of reinforced concrete fuel storage structures

    International Nuclear Information System (INIS)

    Nickell, R.E.; Rashid, Y.R.; Williams, R.F.

    1987-01-01

    We characterize the loading experienced by reinforced concrete slabs, as the result of a drop or a tip-over of a dry storage cask, and we provide simple design charts and formulas by which the margin of safety of such slabs can be readily demonstrated. These charts are based on the calculation of crack patterns in the concrete and yielding in the reinforcement as the pad is loaded by the dropping or tip-over of a dry storage cask to a point of collapse. This ultimate-strength design approach is appropriate for unlikely loading events provided that adequate margin against slab collapse is maintained. (orig./HP)

  16. Cask crush pad analysis using detailed and simplified analysis methods

    International Nuclear Information System (INIS)

    Uldrich, E.D.; Hawkes, B.D.

    1997-01-01

    A crush pad has been designed and analyzed to absorb the kinetic energy of a hypothetically dropped spent nuclear fuel shipping cask into a 44-ft. deep cask unloading pool at the Fluorinel and Storage Facility (FAST). This facility, located at the Idaho Chemical Processing Plant (ICPP) at the Idaho national Engineering and Environmental Laboratory (INEEL), is a US Department of Energy site. The basis for this study is an analysis by Uldrich and Hawkes. The purpose of this analysis was to evaluate various hypothetical cask drop orientations to ensure that the crush pad design was adequate and the cask deceleration at impact was less than 100 g. It is demonstrated herein that a large spent fuel shipping cask, when dropped onto a foam crush pad, can be analyzed by either hand methods or by sophisticated dynamic finite element analysis using computer codes such as ABAQUS. Results from the two methods are compared to evaluate accuracy of the simplified hand analysis approach

  17. An independent spent-fuel storage installation at Surry Station: Design and operation

    International Nuclear Information System (INIS)

    McKay, H.S.; Wakeman, B.H.; Pickworth, J.M.; Routh, S.D.; Hopkins, W.C.

    1989-07-01

    Design and licensing of the Surry Power Station Independent Spent Fuel Storage Installation (ISFSI) was initiated in 1982 by Virginia Power as part of a comprehensive strategy to increase spent fuel storage capacity at the Station. Designed to use large, metal dry storage casks, the Surry ISFSI will accommodate 84 such casks with a total storage capacity of 811 MTU of spent PWR fuel assemblies. The ISFSI is located at the Surry Station in a wooded area approximately 1000 meters (3300 feet) east of the reactor facilities. Construction of the first of three reinforced concrete storage pads and its associated support systems was completed in March 1986. The operating license and Technical Specifications were issued by the US NRC on July 2, 1986. Initial loading operations of a General Nuclear Systems, Inc., CASTOR V/21 storage cask began in September 1986. The first two CASTOR V/21 casks were placed in storage at the ISFSI in December 1986. 16 refs., 33 figs., 16 tabs

  18. Documentation for fiscal year 1995 annual BUSS cask SARP testing and inspections

    International Nuclear Information System (INIS)

    Saueressig, P.T.

    1994-01-01

    The purpose of this report is to compile the data generated during the Fiscal Year (FY) 1995 annual tests and inspections performed on the Beneficial Uses Shipping System (BUSS) cask. The BUSS Cask Model R-1 is a type B shipping container used for shipment of radioactive cesium-137 and strontium-90 capsules to Waste Encapsulation and Storage Facility (WESF). The primary purpose of the BUSS Cask is to provide shielding and confinement as well as impact, puncture, and thermal protection for the capsules under both normal and accident conditions. Section 8.2 ''Maintenance and Periodic Inspection Program'' of the BUSS Cask SARP requires that the following tests and inspections be performed on an annual basis: hydrostatic pressure test; helium leak test; dye penetrant test on the trunnions and life lugs; torque test on all permanent bolts; and impact limiter inspection and weight test. In addition to compiling the generated data, this report will verify that the testing criteria identified in section 8.2 of the BUSS Cask Safety Analysis Report for Packaging (SARP) was met

  19. Documentation for fiscal year 1995 annual BUSS cask SARP testing and inspections

    Energy Technology Data Exchange (ETDEWEB)

    Saueressig, P.T.

    1994-11-08

    The purpose of this report is to compile the data generated during the Fiscal Year (FY) 1995 annual tests and inspections performed on the Beneficial Uses Shipping System (BUSS) cask. The BUSS Cask Model R-1 is a type B shipping container used for shipment of radioactive cesium-137 and strontium-90 capsules to Waste Encapsulation and Storage Facility (WESF). The primary purpose of the BUSS Cask is to provide shielding and confinement as well as impact, puncture, and thermal protection for the capsules under both normal and accident conditions. Section 8.2 ``Maintenance and Periodic Inspection Program`` of the BUSS Cask SARP requires that the following tests and inspections be performed on an annual basis: hydrostatic pressure test; helium leak test; dye penetrant test on the trunnions and life lugs; torque test on all permanent bolts; and impact limiter inspection and weight test. In addition to compiling the generated data, this report will verify that the testing criteria identified in section 8.2 of the BUSS Cask Safety Analysis Report for Packaging (SARP) was met.

  20. CASTOR registered HAW28M - a high heat load cask for transport and storage of vitrified high level waste containers

    International Nuclear Information System (INIS)

    Vossnacke, A.; Klein, K.; Kuehne, B.

    2004-01-01

    Within the German return programme for vitrified high level waste (HLW) from reprocessing at COGEMA and BNFL up to now 39 casks loaded with 28 containers each were transported back to Germany and are stored in the Interim Storage Facility Gorleben (TBL-G) for up to 40 years. For transport and storage in all but one case the GNB casks CASTOR registered HAW 20/28 CG have been used. This cask type is designed to accommodate 20 or 28 HLW containers with a total thermal power of 45 kW maximum. In the near future, among the high level waste, which has to be returned to Germany, there will be an increasing number of containers of which the heat capacity and radioactive inventory will exceed the technical limits of the CASTOR registered HAW 20/28 CG. Therefore GNB has started the development of a new cask generation, named CASTOR registered HAW28M, meeting these future requirements. The CASTOR registered HAW28M is especially developed for the transport of vitrified residues from France and Great Britain to Germany. It complies with the international regulations for type B packages according to IAEA (International Atomic Energy Agency). It is thus guaranteed that even in case of any accident the cask body and the lid system remain functional and the safe confinement of the radioactive contents remains intact during transport. The CASTOR registered HAW28M fulfills not only the requirements for transport but also the acceptance criteria of interim storage: radiation shielding, heat dissipation, safe confinement under both normal and hypothetical accident conditions. Storage buildings such as the TBL-G simply support the safety functions of the cask. The challenge for the development results from higher requirements of the technical specification, particularly related to fuel which is reprocessed. As a consequence of the reprocessing of fuel with increased enrichment and burn up, higher heat capacity and sophisticated shielding measures have to be considered. For the CASTOR

  1. Dual purpose or not? The significant factors

    International Nuclear Information System (INIS)

    Bak, W.; Roland, V.

    1999-01-01

    The development of spent fuel storage systems requires consideration of many factors in making design decisions. A significant issue affecting the design is the need to incorporate transportability of the canister or cask system design, which results in major changes to the storage system design. This paper presents a review of the significant factors affecting storage system design to incorporate transportation requirements and looks at the trends in both the United States and Europe where Transnucleaire and its US affiliated companies Transnuclear Inc., Transnuclear West and PacTec are active. A discussion is also presented relative to the pros and cons of whether the spent fuel storage system vendor should anticipate these transportation needs in the design of their systems. (author)

  2. Dry Transfer Systems for Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  3. 75 FR 57841 - List of Approved Spent Fuel Storage Casks: NAC-MPC System, Revision 6, Confirmation of Effective...

    Science.gov (United States)

    2010-09-23

    ... Spent Fuel Storage Casks: NAC-MPC System, Revision 6, Confirmation of Effective Date AGENCY: Nuclear... amended the NRC's spent fuel storage regulations at 10 CFR 72.214 to revise the NAC-MPC System listing to... configuration of the NAC-MPC storage system by the incorporation of a single closure lid with a welded closure...

  4. 76 FR 12825 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1; Confirmation of...

    Science.gov (United States)

    2011-03-09

    ... Storage Casks: NUHOMS[supreg] HD System Revision 1; Confirmation of Effective Date AGENCY: Nuclear... direct final rule amended the NRC's spent fuel storage regulations at Title 10 of the Code of Federal Regulations (10 CFR 72.214) to revise the NUHOMS[supreg] HD System listing to include Amendment Number 1 to...

  5. Combined storage system for LWR spent fuel and high-level waste

    International Nuclear Information System (INIS)

    Baxter, B.J.; Ganley, J.T.; Washington, J.A.

    1983-01-01

    The MODREX storage system consists of four basic elements: (1) the storage canister, (2) the storage module, (3) the storage cask, and (4) the transport cask. The storage canister is the heart of the system and, when used in combination with the module or either of the casks, allows the MODREX system to respond quickly to varied storage system requirements. The MODREX system can be used to hold either spent fuel assemblies or canistered solidified HLW. The ability to combine a basic storage canister with either a concrete module or a metal cask provides flexibility to meet a wide range of storage requirements. The spent fuel is stored in a dry, inert atmosphere, which essentially eliminates corrosion or deterioration of the cladding during extended storage periods. The storage canister and concrete storage module provide additional barriers against radioactivity release, enhancing long-term safety. Heat dissipation is passive, eliminating the need for additional emergency cooling systems or special redundancy. Modular, expandable construction permits minimum initial investment and capital carrying charges; additional capacity is built and paid for only as it is needed, retaining flexibility. 6 references, 2 figures, 1 table

  6. Study on heat removal capability concrete cask system with horizontal orientation

    International Nuclear Information System (INIS)

    Nabemoto, Toyonobu; Sakai, Mikio; Fujiwara, Hiroaki; Sakaya, Tadatsugu

    2002-01-01

    In Japan, nuclear fuel cycle, has been promoted, so the recycle fuels formed at nuclear power stations are planned to be processed at reprocessing facilities in future. However, as forming quantities of the recycle fuels are more than reprocessing quantities of the facilities, it is needed to practice a facility (interim storage facility (ISF)) to temporarily store them among the recycle fuels will be reprocessed. The Ishikawajima-Harima Heavy Industries, Co., Ltd. has investigated on vault system and concrete cask system for dry storage system with excellent economical efficiency among various systems on ISFs. As the latter method has a number of actual results in U.S.A., its practice is progressed after some improvements suitable for Japan. When progressing this practice on the latter method on fiscal year 1999, at first, a concrete cask with actual size was experimentally produced, to confirm its productivity. On fiscal year 2000, aiming to establish heat removal evaluation at storage, a thermal load test simulated at the storage was carried out by using this trial product. Here was reported results obtained at a test simulated at repacking carried out on fiscal year 2001. (G.K.)

  7. CASTOR {sup registered} HAW28M - a high heat load cask for transport and storage of vitrified high level waste containers

    Energy Technology Data Exchange (ETDEWEB)

    Vossnacke, A.; Klein, K.; Kuehne, B. [GNS Gesellschaft fuer Nuklear-Service mbH/GNB, Essen (Germany)

    2004-07-01

    Within the German return programme for vitrified high level waste (HLW) from reprocessing at COGEMA and BNFL up to now 39 casks loaded with 28 containers each were transported back to Germany and are stored in the Interim Storage Facility Gorleben (TBL-G) for up to 40 years. For transport and storage in all but one case the GNB casks CASTOR {sup registered} HAW 20/28 CG have been used. This cask type is designed to accommodate 20 or 28 HLW containers with a total thermal power of 45 kW maximum. In the near future, among the high level waste, which has to be returned to Germany, there will be an increasing number of containers of which the heat capacity and radioactive inventory will exceed the technical limits of the CASTOR {sup registered} HAW 20/28 CG. Therefore GNB has started the development of a new cask generation, named CASTOR {sup registered} HAW28M, meeting these future requirements. The CASTOR {sup registered} HAW28M is especially developed for the transport of vitrified residues from France and Great Britain to Germany. It complies with the international regulations for type B packages according to IAEA (International Atomic Energy Agency). It is thus guaranteed that even in case of any accident the cask body and the lid system remain functional and the safe confinement of the radioactive contents remains intact during transport. The CASTOR {sup registered} HAW28M fulfills not only the requirements for transport but also the acceptance criteria of interim storage: radiation shielding, heat dissipation, safe confinement under both normal and hypothetical accident conditions. Storage buildings such as the TBL-G simply support the safety functions of the cask. The challenge for the development results from higher requirements of the technical specification, particularly related to fuel which is reprocessed. As a consequence of the reprocessing of fuel with increased enrichment and burn up, higher heat capacity and sophisticated shielding measures have to be

  8. Development of neutron shielding material for cask

    International Nuclear Information System (INIS)

    Najima, K.; Ohta, H.; Ishihara, N.; Matsuoka, T.; Kuri, S.; Ohsono, K.; Hode, S.

    2001-01-01

    Since 1980's Mitsubishi Heavy Industries, Ltd (MHI) has established transport and storage cask design 'MSF series' which makes higher payload and reliability for long term storage. MSF series transport and storage cask uses new-developed neutron shielding material. This neutron shielding material has been developed for improving durability under high condition for long term. Since epoxy resin contains a lot of hydrogen and is comparatively resistant to heat, many casks employ epoxy base neutron shielding material. However, if the epoxy base neutron shielding material is used under high temperature condition for a long time, the material deteriorates and the moisture contained in it is released. The loss of moisture is in the range of several percents under more than 150 C. For this reason, our purpose was to develop a high durability epoxy base neutron shielding material which has the same self-fire-extinction property, high hydrogen content and so on as conventional. According to the long-time heating test, the weight loss of this new neutron shielding material after 5000 hours heating has been lower than 0.04% at 150 C and 0.35% at 170 C. A thermal test was also performed: a specimen of neutron shielding material covered with stainless steel was inserted in a furnace under condition of 800 C temperature for 30 minutes then was left to cool down in ambient conditions. The external view of the test piece shows that only a thin layer was carbonized

  9. Radiation analysis for a generic centralized interim storage facility

    International Nuclear Information System (INIS)

    Gillespie, S.G.; Lopez, P.; Eble, R.G.

    1997-01-01

    This paper documents the radiation analysis performed for the storage area of a generic Centralized Interim Storage Facility (CISF) for commercial spent nuclear fuel (SNF). The purpose of the analysis is to establish the CISF Protected Area and Restricted Area boundaries by modeling a representative SNF storage array, calculating the radiation dose at selected locations outside the storage area, and comparing the results with regulatory radiation dose limits. The particular challenge for this analysis is to adequately model a large (6000 cask) storage array with a reasonable amount of analysis time and effort. Previous analyses of SNF storage systems for Independent Spent Fuel Storage Installations at nuclear plant sites (for example in References 5.1 and 5.2) had only considered small arrays of storage casks. For such analyses, the dose contribution from each storage cask can be modeled individually. Since the large number of casks in the CISF storage array make such an approach unrealistic, a simplified model is required

  10. NAC's Modular, Advanced Generation, Nuclear All-purpose STORage (MAGNASTOR) system: new generation multipurpose spent fuel storage for global application

    International Nuclear Information System (INIS)

    Pennington, C.W.

    2004-01-01

    Multipurpose canister systems (MCS) have been designed, licensed, fabricated, constructed, and loaded over the last decade within the U.S. These systems are characterized as concrete-based storage overpacks containing transportable canisters utilizing redundantly welded closures. Canisters are designed and intended to be transferred into transport packagings for shipment off-site, and canister designs do not preclude their use in waste disposal overpacks. NAC has learned a number of significant lessons in the deployment of its first generation MCS. During this period prior to the next procurement phase, NAC has developed a new generation MCS, incorporating the lessons learned from the first generation while considering the capabilities of the plants populating the next phase. The system is identified as the Modular, Advanced Generation, Nuclear All-purpose STORage (MAGNASTOR) system, and this paper addresses its unique design, fabrication, and operations features. Among these are: a unique developed cell basket design, under patent review, that increases spent fuel capacities and simplifies fabrication while providing high strength and heat removal efficiency: a significantly enhanced canister closure design that improves welding time, personnel dose, and drying performance: a low profile vertical concrete cask design that improves on-site handling and site dose rates, offers tangible threat limitations for beyond-design-basis events, and maintains proven and simple construction/operation features: a simple, proven transfer system that facilitates transfer without excessive dose or handling: a new approach to water removal and canister drying, using a moisture entrainment, gas absorption vacuum (MEGAVAC) system. The paper includes design and licensing status of the MAGNASTOR system, and prototyping development that NAC has performed to date

  11. Interim Storage of Spent Nuclear Fuel before Final Disposal in Germany - Regulator's view

    International Nuclear Information System (INIS)

    Arens, G.; Goetz, Ch.; Geupel, Sandra; Gmal, B.; Mester, W.

    2014-01-01

    For spent nuclear fuel management in Germany the concept of dry interim storage in dual purpose casks before direct disposal is applied. The Federal Office for Radiation Protection (BfS) is the competent authority for licensing of interim storage facilities. The competent authority for surveillance of operation is the responsible authority of the respective federal state (Land). Currently operation licenses for storage facilities have been granted for a storage time of 40 years and are based on safety demonstrations for all safety issues as safe enclosure, shielding, sub-criticality and decay heat removal under consideration of operation conditions. In addition, transportability of the casks for the whole storage period has to be provided. Due to current delay in site selection and exploration of a disposal site, an extension of the storage time beyond 40 years could be needed. This will cause appropriate actions by the licensee and the competent authorities as well. A brief description of the regulatory base of licensing and surveillance of interim storage is given from the regulators view. Furthermore the current planning for final disposal of spent nuclear fuel and high level waste and its interconnections between storage and disposal concepts are shortly explained. Finally the relevant aspects for licensing of extended storage time beyond 40 years will be discussed. Current activities on this issue, which have been initiated by the Federal Government, will be addressed. On the regulatory side a review and amendment of the safety guideline for interim storage of spent fuel has been performed and the procedure of periodic safety review is being implemented. A guideline for implementing an ageing management programme is available in a draft version. Regarding safety of long term storage a study focussing on the identification and evaluation of long term effects as well as gaps of knowledge has been finished in 2010. A continuation and update is currently underway

  12. Proposal of a dry storage installation in Angra NPP for spent nuclear fuel

    International Nuclear Information System (INIS)

    Romanato, Luiz S.; Rzyski, Barbara M.

    2009-01-01

    When nuclear fuel is removed from a power reactor core after the depletion of efficiency in generating energy is called Spent Nuclear Fuel (SNF). After its withdrawal from the reactor core, SNF is temporarily stored in pools usually at the same site of the reactor. During this time, short-living radioactive elements and generated heat undergo decay until levels that allow removing the SNF from the pool and sending it for reprocessing or a temporary storage whether any of its final destinations has not yet been defined. It can be loaded in casks and disposed during years in a dry storage installations until be sent to a reprocessing plant or deep repositories. Before any decision, reprocessing or disposal, the SNF needs to be safely and efficiently isolated in one of many types of storages that exist around the world. Worldwide, the amount of SNF increases annually and in the next years this amount will be higher as a consequence of new Nuclear Power Plants (NPP) construction. In Brazil, that is about to construct the Angra 3 nuclear power reactor, a project about the final destination of the SNF is not yet ready. This paper presents a proposal for a dry storage installation in the Angra NPP site since it can be an initial solution for the Brazilian's SNF, until a final decision is taken. (author)

  13. 77 FR 24585 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8

    Science.gov (United States)

    2012-04-25

    ... Storage Casks: HI-STORM 100, Revision 8 AGENCY: Nuclear Regulatory Commission. ACTION: Direct final rule... revising the Holtec International HI-STORM 100 System listing within the ``List of Approved Spent Fuel...) 72.214, by revising the Holtec International HI-STORM 100 System listing within the ``List of...

  14. A criticality analysis of the GBC-32 dry storage cask with Hanbit nuclear power plant unit 3 fuel assemblies from the viewpoint of burnup credit

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyung Ju; Kim, Do Yeon; Park, Kwang Heon; Hong, Ser Gi [Dept. of Nuclear Engineering, Kyung Hee University, Seoul (Korea, Republic of)

    2016-06-15

    Nuclear criticality safety analyses (NCSAs) considering burnup credit were performed for the GBC-32 cask. The used nuclear fuel assemblies (UNFAs) discharged from Hanbit Nuclear Power Plant Unit 3 Cycle 6 were loaded into the cask. Their axial burnup distributions and average discharge burnups were evaluated using the DeCART and Multi-purpose Analyzer for Static and Transient Effects of Reactors (MASTER) codes, and NCSAs were performed using SCALE 6.1/STandardized Analysis of Reactivity for Burnup Credit using SCALE (STARBUCS) and Monte Carlo N-Particle transport code, version 6 (MCNP 6). The axial burnup distributions were determined for 20 UNFAs with various initial enrichments and burnups, which were applied to the criticality analysis for the cask system. The UNFAs for 20- and 30-year cooling times were assumed to be stored in the cask. The criticality analyses indicated that keff values for UNFAs with nonuniform axial burnup distributions were larger than those with a uniform distribution, that is, the end effects were positive but much smaller than those with the reference distribution. The axial burnup distributions for 20 UNFAs had shapes that were more symmetrical with a less steep gradient in the upper region than the reference ones of the United States Department of Energy. These differences in the axial burnup distributions resulted in a significant reduction in end effects compared with the reference.

  15. Safety Assessment of a Metal Cask under Aircraft Engine Crash

    Directory of Open Access Journals (Sweden)

    Sanghoon Lee

    2016-04-01

    Full Text Available The structural integrity of a dual-purpose metal cask currently under development by the Korea Radioactive Waste Agency (KORAD was evaluated, through numerical simulations and a model test, under high-speed missile impact reflecting targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from literature. In the impact scenario, a missile flying horizontally hits the top side of the cask, which is freestanding on a concrete pad, with a velocity of 150 m/s. A simplified missile simulating a commercial aircraft engine was designed from an impact load–time function available in literature. In the analyses, the dynamic behavior of the metal cask and the integrity of the containment boundary were assessed. The simulation results were compared with the test results for a 1:3 scale model. Although the dynamic behavior of the cask in the model test did not match exactly with the prediction from the numerical simulation, other structural responses, such as the acceleration and strain history during the impact, showed very good agreement. Moreover, the containment function of the cask survived the missile impact as expected from the numerical simulation. Thus, the procedure and methodology adopted in the structural numerical analyses were successfully validated.

  16. Extra-regulatory accident safety evaluation for the PWR S/F transport and storage system

    International Nuclear Information System (INIS)

    Seo, K. S.; Lee, J. C.; Bang, K. S.; Choi, W. S.; Lee, S. H.; Seo, J. S.; Kim, K. Y.; Jeon, J. E.

    2011-06-01

    In the field of high speed crash, high speed impact analyses and test were performed for two systems, the dual purpose metal cask and the concrete cask considering the aircraft crash condition. Through the tests, the procedure and methodology of the assessment were successfully validated. In the field of transient fire, the computer simulation method for transient fire was drawn through the overseas status and methodology analysis. In the field of cumulative damage evaluation for transport accident, the analysis technique for assessment for cumulative damages which occurred from successive accident conditions was developed and proposed. And the sequential tests for the dual purpose cask were performed

  17. Test Plan for Cask Identification Detector

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Eric Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-29

    This document serves to outline the testing of a Used Fuel Cask Identification Detector (CID) currently being designed under the DOE-NE MPACT Campaign. A bench-scale prototype detector will be constructed and tested using surrogate neutron sources. The testing will serve to inform the design of the full detector that is to be used as a way of fingerprinting used fuel storage casks based on the neutron signature produced by the used fuel inside the cask.

  18. Thick nickel plating of spent fuel transport and storage casks CASTOR and POLLUX

    International Nuclear Information System (INIS)

    Wilbuer, K.

    1991-01-01

    Spent fuel elements have to be safely handled in containers for transport and storage. These large casks (100-120 t) are made by various firms according to the specifications given by the nuclear plant operator. For shielding and protection of the hazardous material, the casks' inner surface is coated with a nickel plating about 3000 μm thick. The product and the production process are subject to very stringent requirements, due to the hazardous potential of the material to be shipped or stored. Therefore, both the extremely high quality standards to be met by the nickel plating and the dimensions and capability of the plating plant required for the process are problems that cannot be solved by a usual commercial plating plant. The new concept and process that had to be established are explained in the paper. (orig./MM) [de

  19. New generation of CASTOR registered casks for high enriched, high burn-up fuel from German NPP

    International Nuclear Information System (INIS)

    Gartz, R.; Kuehne, B.; Diersch, R.

    2004-01-01

    Requirements for new cask designs for transport and long-term dry storage of spent fuel assemblies (FA) from LWR-reactors are based on both increased source terms of the LWR FA including MOX FA, as well as the demand for economical optimisation of decommissioning costs by increased cask capacities. For this, cask development is the challenge to create and establish cask designs that can accommodate more FA with higher source terms, each under fixed boundary conditions (i.e. transport requirements and limitations of the power plants as crane loads and/or fixed maximum dimensions). This task has been elaborated by working simultaneously on different development actions each focussed to improve the cask performance. In the following a brief summary will be presented to give an overview which developments and investigations have been and are still will be performed for development and safety analyses of the new CASTOR registered -designs under the main subjects: material investigation and qualification, component tests and verifications, detailed design analysis and not at least design verification

  20. Extended used Fuel Storage: EPRI Perspective and Collaboration Initiatives

    International Nuclear Information System (INIS)

    Kessler, John; Waldrop, Keith

    2014-01-01

    This paper describes three main activities the Electric Power Research Institute (EPRI) is undertaking to establish the technical bases for extended (long-term) storage: the Extended Storage Collaboration Program (ESCP); inspection of stainless steel (SS) used fuel dry storage canisters currently in service; and a proposed data collection from a full-scale, bolted lid, metal cask containing high burnup (>45 GWd/MTU) used fuel (the 'Demo'). ESCP is a voluntary organization focused on information sharing and providing the opportunity for more formal collaboration. The SS canister inspection program involves visual examination, canister surface temperature measurements, and collection of contaminants accumulating on the canister surfaces during operation. The Demo program involves the use of a specially instrumented lid allowing for the introduction of thermocouples inside the loaded cask as was as providing the ability to collect cask cavity gas samples. (authors)

  1. Heat transfer modelling in a spent-fuel dry storage system

    International Nuclear Information System (INIS)

    Ritz, J.B.; Le Bonhomme, S.

    2001-01-01

    The purpose of this paper is to present a numerical modelling of heat transfers in a Spent-Fuel horizontal dry storage. The horizontal dry storage is an interesting issue to momentary store spent fuel containers before the final storage. From a thermal point of view, the cooling of spent fuel container by natural convection is a suitable and inexpensive process but it necessitates to well define the dimensions of the concept due to the difficulty to control the thermal environment. (author)

  2. Report on UQ and PCMM Analysis of Vacuum Drying for UFD S&T Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Fluss, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-31

    This report discusses two phenomena that could affect the safety, licensing, transportation, storage, and disposition of the spent fuel storage casks and their contents (radial hydriding during drying and water retention after drying) associated with the drying of canisters for dry spent fuel storage. The report discusses modeling frameworks and evaluations that are, or have been, developed as a means to better understand these phenomena. Where applicable, the report also discusses data needs and procedures for monitoring or evaluating the condition of storage containers during and after drying. A recommendation for the manufacturing of a fully passivated fuel rod, resistant to oxidation and hydriding is outlined.

  3. NAC's Modular, Advanced Generation, Nuclear All-purpose STORage (MAGNASTOR) system: new generation multipurpose spent fuel storage for global application

    Energy Technology Data Exchange (ETDEWEB)

    Pennington, C.W. [NAC International, Norcross, GA (United States)

    2004-07-01

    Multipurpose canister systems (MCS) have been designed, licensed, fabricated, constructed, and loaded over the last decade within the U.S. These systems are characterized as concrete-based storage overpacks containing transportable canisters utilizing redundantly welded closures. Canisters are designed and intended to be transferred into transport packagings for shipment off-site, and canister designs do not preclude their use in waste disposal overpacks. NAC has learned a number of significant lessons in the deployment of its first generation MCS. During this period prior to the next procurement phase, NAC has developed a new generation MCS, incorporating the lessons learned from the first generation while considering the capabilities of the plants populating the next phase. The system is identified as the Modular, Advanced Generation, Nuclear All-purpose STORage (MAGNASTOR) system, and this paper addresses its unique design, fabrication, and operations features. Among these are: a unique developed cell basket design, under patent review, that increases spent fuel capacities and simplifies fabrication while providing high strength and heat removal efficiency: a significantly enhanced canister closure design that improves welding time, personnel dose, and drying performance: a low profile vertical concrete cask design that improves on-site handling and site dose rates, offers tangible threat limitations for beyond-design-basis events, and maintains proven and simple construction/operation features: a simple, proven transfer system that facilitates transfer without excessive dose or handling: a new approach to water removal and canister drying, using a moisture entrainment, gas absorption vacuum (MEGAVAC) system. The paper includes design and licensing status of the MAGNASTOR system, and prototyping development that NAC has performed to date.

  4. Transportation capabilities of the existing cask fleet

    International Nuclear Information System (INIS)

    Johnson, P.E.; Wankerl, M.W.; Joy, D.S.

    1991-01-01

    This paper describes a number of scenarios estimating the amount of spent nuclear fuel that could be transported to a Monitored Retrievable Storage (MRS) Facility by various combinations of existing cask fleets. To develop the scenarios, the data provided by the Transportation System Data Base (TSDB) were modified to reflect the additional time for cask turnaround resulting from various startup and transportation issues. With these more realistic speed and cask-handling assumptions, the annual transportation capability of a fleet consisting of all of the existing casks is approximately 465 metric tons of uranium (MTU). The most likely fleet of existing casks that would be made available to the DOE consists of two rail, three overweight truck, and six legal weight truck casks. Under the same transportation assumptions, this cask fleet is capable of approximately transporting 270 MTU/year. These ranges of capability is a result of the assumptions pertaining to the number of casks assumed to be available. It should be noted that this assessment assumes additional casks based on existing certifications are not fabricated

  5. Transportation capabilities of the existing cask fleet

    International Nuclear Information System (INIS)

    Johnson, P.E.; Joy, D.S.; Wankerl, M.W.

    1991-01-01

    This paper describes a number of scenarios estimating the amount of spent nuclear fuel that could be transported to a Monitored Retrievable Storage (MRS) Facility by various combinations of existing cask fleets. To develop the scenarios, the data provided by the Transportation System Data Base (TSDB) were modified to reflect the additional time for cask turnaround resulting from various startup and transportation issues. With these more realistic speed and cask-handling assumptions, the annual transportation capability of a fleet consisting of all of the existing casks is approximately 46 metric tons of uranium (MTU). The most likely fleet of existing casks that would be made available to the Department of Energy (DOE) consists of two rail, three overweight truck, and six legal weight truck casks. Under the same transportation assumptions, this cask fleet is capable of approximately transporting 270 MTU/year. These ranges of capability is a result of the assumptions pertaining to the number of casks assumed to be available. It should be noted that this assessment assumes additional casks based on existing certifications are not fabricated. 5 refs., 4 tabs

  6. Thermal performance of a concrete cask: Methodology to model helium leakage from the steel canister

    International Nuclear Information System (INIS)

    Penalva, J.; Feria, F.; Herranz, L.E.

    2017-01-01

    Highlights: • A thermal analysis of the canister during a loss of leaktightness has been performed. • Methodologies that predict fuel temperatures and heat up rates have been developed. • Casks with heat loads below 20 kW would never exceed the thermal threshold. - Abstract: Concrete cask storage systems used in dry storage allocate spent fuel within containers that are usually filled with helium at a certain pressure. Potential leaks from the container would result in a cooling degradation of fuel that might jeopardize fuel integrity if temperature exceeded a threshold value. According to ISG-11, temperatures below 673 K ensure fuel integrity preservation. Therefore, the container thermal response to a loss of leaktightness is of utmost importance in terms of safety. In this work, a thermo-fluid dynamic analysis of the canister during a loss of leaktightness has been performed. To do so, steady-state and transient Computational Fluid Dynamics (CFD) simulations have been carried out. Likewise, it has been developed two methodologies capable of estimating peak fuel temperatures and heat up rates resulting from a postulated depressurization in a dry storage cask. One methodology is based on control theory and transfers functions, and the other methodology is based on a linear relationship between the inner pressure and the maximum temperature. Both methodologies have been verified through comparisons with CFD calculations. The period of time to achieve the temperature threshold (673 K) is a function of pressure loss rate and decay heat of the fuel stored in the container; in case of a fuel canister with 30 kW the period of time to reach the thermal limit takes between half day (fast pressure loss) and one week (slow pressure loss). In case of a 15% reduction of the decay heat, the period of time to achieve the thermal limit increase up to a few weeks. The results highlight that casks with heat loads below 20 kW would never exceed the thermal threshold (673 K).

  7. SNF shipping cask shielding analysis

    International Nuclear Information System (INIS)

    Johnson, J.O.; Pace, J.V. III.

    1996-01-01

    The Waste Management and Remedial Action Division has planned a modification sequence for storage facility 7827 in the Solid Waste Storage Area (SWSA). The modification cycle is: (1) modify an empty caisson, (2) transfer the spent nuclear fuel (SNF) of an occupied caisson to a hot cell in building 3525 for inspection and possible repackaging, and (3) return the package to the modified caisson in the SWSA. Although the SNF to be moved is in the solid form, it has different levels of activity. Thus, the following 5 shipping casks will be available for the task: the Loop Transport Carrier, the In- Pile Loop LITR HB-2 Carrier, the 6.5-inch HRLEL Carrier, the HFIR Hot Scrap Carrier, and the 10-inch ORR Experiment Removal Shield Cask. This report describes the shielding tasks for the 5 casks: determination of shielding characteristics, any streaming avenues, estimation of thermal limits, and shielding calculational uncertainty for use in the transportation plan

  8. Status of the Beneficial Uses Shipping System cask (BUSS)

    International Nuclear Information System (INIS)

    Yoshimura, H.R.; Eakes, R.G.; Bronowski, D.R.

    1994-01-01

    The Beneficial Uses Shipping System cask is a Type B packaging developed by Sandia National Laboratories for the U.S. Department of Energy. The cask is designed to transport special form radioactive source capsules (cesium chloride and strontium fluoride) produced by the Department of Energy's Hanford Waste Encapsulation and Storage Facility. This paper describes the cask system and the analyses performed to predict the response of the cask in impact, puncture, and fire accident conditions as specified in the regulations. The cask prototype has been fabricated and Certificates of Compliance have been obtained

  9. Interfacing the existing cask fleet with the MRS

    International Nuclear Information System (INIS)

    Doman, J.W.; Hahn, R.E.

    1992-01-01

    This paper reports that the Department of Energy (DOE) is considering the possibility of using the existing fleet of casks to achieve spent fuel receipt at the Monitored Retrievable Storage (MRS) facility. The existing cask fleet includes the NLI-1/2, the NAC-LWT, the TN-8 (and TN-8L), the TN-9, and the IF-300 casks. Other casks may be available, but their status is not certain. Use of the existing cask fleet at the MRS places additional design requirements on the system, and specifically affects the cask-to-MRS interface. The decision to use the existing cask fleet also places additional demands on training needs and operator certification, and the configuration management system. Some existing cask designs may not be able to mate with a bottom opening hot cell MRS. Use of the existing cask fleet also greatly increases the number of shipments that must be received, to the point that a facility larger than originally envisioned may be required

  10. Development of integrated cask body and base plate

    International Nuclear Information System (INIS)

    Sasaki, T.; Koyama, Y.; Yoshida, T.; Wada, T.

    2015-01-01

    The average of occupancy of stored spent-fuel in the nuclear power plants have reached 70 percent and it is anticipated that the demand of metal casks for the storage and transportation of spent-fuel rise after resuming the operations. The main part of metal cask consists of main body, neutron shield and external cylinder. We have developed the manufacturing technology of Integrated Cask Body and Base Plate by integrating Cask Body and Base Plate as monolithic forging with the goal of cost reduction, manufacturing period shortening and further reliability improvement. Here, we report the manufacturing technology, code compliance and obtained properties of Integrated Cask body and Base Plate. (author)

  11. Results on Technical and Consultants Service Meetings on Lessons Learned from Operating Experience in Wet and Dry Spent Fuel Storage

    International Nuclear Information System (INIS)

    White, B.; Zou, X.

    2015-01-01

    Spent fuel storage has been and will continue to be a vital portion of the nuclear fuel cycle, regardless of whether a member state has an open or closed nuclear fuel cycle. After removal from the reactor core, spent fuel cools in the spent fuel pool, prior to placement in dry storage or offsite transport for disposal or reprocessing. Additionally, the inventory of spent fuel at many reactors worldwide has or will reach the storage capacity of the spent fuel pool; some facilities are alleviating their need for additional storage capacity by utilizing dry cask storage. While there are numerous differences between wet and dry storage; when done properly both are safe and secure. The nuclear community shares lessons learned worldwide to gain knowledge from one another’s good practices as well as events. Sharing these experiences should minimize the number of incidents worldwide and increase public confidence in the nuclear industry. Over the past 60 years, there have been numerous experiences storing spent fuel, in both wet and dry mediums, that when shared effectively would improve operations and minimize events. These lessons learned will also serve to inform countries, who are new entrants into the nuclear power community, on designs and operations to avoid and include as best practices. The International Atomic Energy Agency convened a technical and several consultants’ meetings to gather these experiences and produce a technical document (TECDOC) to share spent fuel storage lessons learned among member states. This paper will discuss the status of the TECDOC and briefly discuss some lessons learned contained therein. (author)

  12. ENSA: History and success of first ENSA-DPT cask. A new evolution, ENUN 32P; ENSA: Historia y éxito del primer contenedor ENSA-DPT. Una nueva evolución, el ENUN 32P

    Energy Technology Data Exchange (ETDEWEB)

    Soto López, A.

    2016-07-01

    In 1991, Ensa received ENRESA’s order to develop and to license in Spain a fuel cask of dual purpose destined to store the spent fuel of the Trillo´s Nuclear power plant. With this, there was born the fuel cask Ensa-DPT (Ensa Dual Purpose Trillo) that Ensa has made, loaded and stored satisfactorily up to the date thirty units. During October and November, there will take place the last two loadings of spent fuel of the ENSA-DPT´s fuel cask, numbers 31 and 32, giving finished this project that will give a new and exciting challenge: the fuel cask ENSA Universal ENUN 32P. Let’s hope that the experience acquired during these almost two decades uses as precedent for the future that waits for us in the development, supply and load of equipments for the management of the spent fuel in the Spanish nuclearpower plants.

  13. EBRII cask characterization measurements

    International Nuclear Information System (INIS)

    Haggard, D.L.; Brackenbush, L.W.

    1996-01-01

    This report describes the measurements performed to provide the radionuclide content and verify the stated mass of special nuclear material (SNM) in Experimental Breeder Reactor EBRII casks stored in Trench 1, Burial Ground 4C, 218-WAC 200 West Area. this information is needed to characterize the curie content of each cask and the total curies in the storage area. Gamma assay techniques typically employed for nondestructive assay (NDA) were used to determine the gamma-emitting isotopes in each cask, which were fission and activation products from the spent fuel. Passive neutron counting was selected to verify the stated plutonium content because the fission and activation products masked any gamma emissions from plutonium. The fast neutrons emitted by plutonium are highly penetrating and easily detected through several inches of shielding. A slab neutron detector containing five 3 He proportional counters was used to determine the neutron emission rates and estimate the mass of plutonium present. The measurements followed the methods and procedures routinely used for nuclear waste assay and safeguard measurements. The measured neutron yields confirmed the declared plutonium content for the fuel elements, with the exception of several casks that contained recycled plutonium or americium target material. In these casks, the 244 Cm content masked the neutron emissions from any plutonium. For these casks, the plutonium content was estimated by correlation with the 244 Cm neutron emissions

  14. Actinide-only and full burn-up credit in criticality assessment of RBMK-1500 spent nuclear fuel storage cask using axial burn-up profile

    Energy Technology Data Exchange (ETDEWEB)

    Barkauskas, V., E-mail: vytenis.barkauskas@ftmc.lt; Plukiene, R., E-mail: rita.plukiene@ftmc.lt; Plukis, A., E-mail: arturas.plukis@ftmc.lt

    2016-10-15

    Highlights: • RBMK-1500 fuel burn-up impact on k{sub eff} in the SNF cask was calculated using SCALE 6.1. • Positive end effect was noticed at certain burn-up for the RBMK-1500 spent nuclear fuel. • The non-uniform uranium depletion is responsible for the end effect in RBMK-1500 SNF. • k{sub eff} in the SNF cask does not exceed a value of 0.95 which is set in the safety requirements. - Abstract: Safe long-term storage of spent nuclear fuel (SNF) is one of the main issues in the field of nuclear safety. Burn-up credit application in criticality analysis of SNF reduces conservatism of usually used fresh fuel assumption and implies a positive economic impact for the SNF storage. Criticality calculations of spent nuclear fuel in the CONSTOR® RBMK-1500/M2 cask were performed using pre-generated ORIGEN-ARP spent nuclear fuel composition libraries, and the results of the RBMK-1500 burn-up credit impact on the effective neutron multiplication factor (k{sub eff}) have been obtained and are presented in the paper. SCALE 6.1 code package with the STARBUCKS burn-up credit evaluation tool was used for modeling. Pre-generated ARP (Automatic Rapid Processing) crosssection libraries based on ENDF/B-VII cross section library were used for fast burn-up inventory modeling. Different conditions in the SNF cask were modeled: 2.0% and 2.8% initial enrichment fuel of various burn-up and water density inside cavities of the SNF cask. The fuel composition for the criticality analysis was chosen taking into account main actinides and most important fission products used in burn-up calculations. A significant positive end effect is noticed from 15 GWd/tU burn-up for 2.8% enrichment fuel and from 9 GWd/tU for 2.0% enrichment fuel applying the actinide-only approach. The obtained results may be applied in further evaluations of the RBMK type reactor SNF storage as well as help to optimize the SNF storage volume inside the CONSTOR® RBMK-1500/M2 cask without compromising criticality

  15. Actinide-only and full burn-up credit in criticality assessment of RBMK-1500 spent nuclear fuel storage cask using axial burn-up profile

    International Nuclear Information System (INIS)

    Barkauskas, V.; Plukiene, R.; Plukis, A.

    2016-01-01

    Highlights: • RBMK-1500 fuel burn-up impact on k_e_f_f in the SNF cask was calculated using SCALE 6.1. • Positive end effect was noticed at certain burn-up for the RBMK-1500 spent nuclear fuel. • The non-uniform uranium depletion is responsible for the end effect in RBMK-1500 SNF. • k_e_f_f in the SNF cask does not exceed a value of 0.95 which is set in the safety requirements. - Abstract: Safe long-term storage of spent nuclear fuel (SNF) is one of the main issues in the field of nuclear safety. Burn-up credit application in criticality analysis of SNF reduces conservatism of usually used fresh fuel assumption and implies a positive economic impact for the SNF storage. Criticality calculations of spent nuclear fuel in the CONSTOR® RBMK-1500/M2 cask were performed using pre-generated ORIGEN-ARP spent nuclear fuel composition libraries, and the results of the RBMK-1500 burn-up credit impact on the effective neutron multiplication factor (k_e_f_f) have been obtained and are presented in the paper. SCALE 6.1 code package with the STARBUCKS burn-up credit evaluation tool was used for modeling. Pre-generated ARP (Automatic Rapid Processing) crosssection libraries based on ENDF/B-VII cross section library were used for fast burn-up inventory modeling. Different conditions in the SNF cask were modeled: 2.0% and 2.8% initial enrichment fuel of various burn-up and water density inside cavities of the SNF cask. The fuel composition for the criticality analysis was chosen taking into account main actinides and most important fission products used in burn-up calculations. A significant positive end effect is noticed from 15 GWd/tU burn-up for 2.8% enrichment fuel and from 9 GWd/tU for 2.0% enrichment fuel applying the actinide-only approach. The obtained results may be applied in further evaluations of the RBMK type reactor SNF storage as well as help to optimize the SNF storage volume inside the CONSTOR® RBMK-1500/M2 cask without compromising criticality safety.

  16. Information handbook on independent spent fuel storage installations

    International Nuclear Information System (INIS)

    Raddatz, M.G.; Waters, M.D.

    1996-12-01

    In this information handbook, the staff of the U.S. Nuclear Regulatory Commission describes (1) background information regarding the licensing and history of independent spent fuel storage installations (ISFSIs), (2) a discussion of the licensing process, (3) a description of all currently approved or certified models of dry cask storage systems (DCSSs), and (4) a description of sites currently storing spent fuel in an ISFSI. Storage of spent fuel at ISFSIs must be in accordance with the provisions of 10 CFR Part 72. The staff has provided this handbook for information purposes only. The accuracy of any information herein is not guaranteed. For verification or for more details, the reader should refer to the respective docket files for each DCSS and ISFSI site. The information in this handbook is current as of September 1, 1996

  17. Thermal Analysis of Concrete Storage Cask with Bird Screen Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-Chan; Bang, K.S.; Yu, S.H.; Cho, S.S.; Choi, W.S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, a thermal analysis of the cask with bird screen meshes has been performed using a porous media model. The overpack consists of a structural material, a concrete shielding, and a ventilation system. Heat is removed from the cask to the environment by a passive means only. Air inlet and outlet ducts are installed at the bottom and top of the cask for a ventilation system. Bird screen meshes are installed at the air inlet and outlet ducts to inhibit intrusion of debris from the external environment. The presence of this screens introduce an additional resistance to air flow through the ducts. Five types of meshes for bird screen were considered in this study. The bird screen meshes at the inlet and outlet vents reduce the open area for flow by about 44 - 79 %. Flow resistance coefficients for porous media model were deduced from the fluid flow analysis of bird screen meshes. Thermal analyses for the concrete cask have been carried out using a porous media model. The analysis results agreed well with the test results. Therefore, it was shown that the porous media model for the screen mesh was established to estimate the cask temperatures.

  18. Thermal Analysis of Concrete Storage Cask with Bird Screen Meshes

    International Nuclear Information System (INIS)

    Lee, Ju-Chan; Bang, K.S.; Yu, S.H.; Cho, S.S.; Choi, W.S.

    2016-01-01

    In this study, a thermal analysis of the cask with bird screen meshes has been performed using a porous media model. The overpack consists of a structural material, a concrete shielding, and a ventilation system. Heat is removed from the cask to the environment by a passive means only. Air inlet and outlet ducts are installed at the bottom and top of the cask for a ventilation system. Bird screen meshes are installed at the air inlet and outlet ducts to inhibit intrusion of debris from the external environment. The presence of this screens introduce an additional resistance to air flow through the ducts. Five types of meshes for bird screen were considered in this study. The bird screen meshes at the inlet and outlet vents reduce the open area for flow by about 44 - 79 %. Flow resistance coefficients for porous media model were deduced from the fluid flow analysis of bird screen meshes. Thermal analyses for the concrete cask have been carried out using a porous media model. The analysis results agreed well with the test results. Therefore, it was shown that the porous media model for the screen mesh was established to estimate the cask temperatures

  19. The NINO [No Inspector, No Operator system] cask-loading safeguards system

    International Nuclear Information System (INIS)

    Fiarman, S.

    1987-01-01

    It is, in general difficult to determine by means of camera-surveillance techniques what is loaded into spent-fuel casks being prepared for shipment from light-water reactors to other reactors, reprocessing facilities, or long-term storage. Furthermore, the expected high frequency of cask loadings in the coming years would place too great a burden on the IAEA and Euratom inspectorates if each had to be observed by an inspector. For the case of shipment to other reactors and reprocessing facilities, the casks are soon opened and, in principle, their contents could be ascertained by direct inspection. In the case of long-term-storage facilities, the casks would stay sealed for years, thereby requiring the IAEA to know positively how many spent-fuel assemblies were loaded at the reactor and to have a continuity of knowledge of the cask's contents. It has been proposed instead that the facility operator place the cask seal on the cask within the field of view of a surveillance system linked to the cask seal. This solution, however, may not provide enough credibility for acceptance by the safeguards community. This paper presents an alternative to both inspector presence at cask loading and operator assistance in applying seals; this alternative is called the No Inspector, No Operator system (NINO)

  20. Topical safety analysis report for the transportation of the NUHOMS reg-sign dry shielded canister

    International Nuclear Information System (INIS)

    1993-08-01

    This Topical Safety Analysis Report (SAR) describes the design and the generic transportation licensing basis for utilizing the NUTECH HORIZONTAL MODULAR STORAGE (NUHOMS reg-sign) system dry shielded canister (DSC) containing twenty-four pressurized water reactor (PWR) spent fuel assemblies (SFA) in conjunction with a conceptually designed Transportation Cask. This SAR documents the design qualification of the NUHOMS reg-sign DSC as an integral part of a 10CFR71 Fissile Material Class III, Type B(M) Transportation Package. The package consists of the canister and a conceptual transportation cask (NUHOMS reg-sign Transportation Cask) with impact limiters. Engineering analysis is performed for the canister to confirm that the existing canister design complies with 10CFR71 transportation requirements. Evaluations and/or analyses is performed for criticality safety, shielding, structural, and thermal performance. Detailed engineering analysis for the transportation cask will be submitted in a future SAR requesting 10CFR71 certification of the complete waste package. Transportation operational considerations describe various operational aspects of the canister/transportation cask system. operational sequences are developed for canister transfer from storage to the transportation cask and interfaces with the cask auxiliary equipment for on- and off-site transport

  1. Anthology of dry storage solutions

    Energy Technology Data Exchange (ETDEWEB)

    Allimann, Nathalie; Otton, Camille [AREVA, Paris (France)

    2012-03-15

    Around 35,000 PWR, BWR or Veer used fuel elements with various enrichment value up to 5%, various cooling time down to 2 years and various burn-ups up to 60,000 Mwd/tU are currently stored in AREVA dry storage solutions. These solutions are delivered in the United States, in Japan and in many European countries like Belgium, Switzerland, Italy, Armenia and Germany. With more than 1000 dry storage solutions delivered all over the world AREVA is the leader on this market. Dealing with dry storage is not an easy task. Products have to be flexible, to be adapted to customer needs and to the national regulations which may stipulate very strict tests such as airplane crash or simulation of earthquake. To develop a dry storage solution for a foreign country means to deal with its national competent authorities. All the national competent authorities do not have the same requirements. Storage conditions may also be different.

  2. Anthology of dry storage solutions

    International Nuclear Information System (INIS)

    Allimann, Nathalie; Otton, Camille

    2012-01-01

    Around 35,000 PWR, BWR or Veer used fuel elements with various enrichment value up to 5%, various cooling time down to 2 years and various burn-ups up to 60,000 Mwd/tU are currently stored in AREVA dry storage solutions. These solutions are delivered in the United States, in Japan and in many European countries like Belgium, Switzerland, Italy, Armenia and Germany. With more than 1000 dry storage solutions delivered all over the world AREVA is the leader on this market. Dealing with dry storage is not an easy task. Products have to be flexible, to be adapted to customer needs and to the national regulations which may stipulate very strict tests such as airplane crash or simulation of earthquake. To develop a dry storage solution for a foreign country means to deal with its national competent authorities. All the national competent authorities do not have the same requirements. Storage conditions may also be different

  3. Tests for removal of decay heat by natural convection

    International Nuclear Information System (INIS)

    Kashiwagi, E.; Wataru, M.; Gomi, Y.; Hattori, Y.; Ozaki, S.

    1993-01-01

    Interim storage technology for spent fuel by dry storage casks have been investigated. The casks are vertically placed in a storage building. The decay heat is removed from the outer cask surface by natural convection of air entering from the building wall to the roof. The air flow pattern in the storage building was governed by the natural driving pressure difference and circulating flow. The purpose of this study is to understand the mechanism of the removal of decay heat from casks by natural convection. The simulated flow conditions in the building were assumed as a natural and forced combined convection and were investigated by the turbulent quantities near wall. (author)

  4. Cask ownership: Options and strategic factors

    International Nuclear Information System (INIS)

    Smith, C.W.

    1986-01-01

    Because of the potential number of casks available through utility modular storage programs, it is imperative that the planning for the provision and operation of casks under the NWPA program include consideration of the utility owned casks. As to the remainder of the cask requirements for implementation of the NWPA, the author believes that the cost factor is an artificial one for determining the benefits to the taxpayers and ratepayers for cask ownership and that the decision should be made on the basis of capability of the industry to perform on a competitive bid basis and assurance that the shipments will be made on a timely, safe and cost effective basis. If the procurement process is structured to rally permit competitive bidding on spent fuel shipping services, the competition in the market place will assure that DOE and the ratepayers, receive safe, high quality, and cost effective transportation proposals from very capable companies

  5. Analysis of DCI cask drop test onto reinforced concrete pad

    International Nuclear Information System (INIS)

    Ito, C.; Kato, Y.; Hattori, S.; Shirai, K.; Misumi, M.; Ozaki, S.

    1993-01-01

    In a cask-storage facility, a cask may be subjected to an impact load as a result of a free drop onto the floor because of cask mishandling. We performed drop tests of casks onto a reinforced concrete (RC) slab representing the floor of a facility as well as simulation analysis [Kato et al]. This paper describes the details of the FEM analysis and calculated results and compares them with the drop test results. (J.P.N.)

  6. Used Fuel Cask Identification through Neutron Profile

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Eric Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-20

    Currently, most spent fuel is stored near reactors. An interim consolidated fuel storage facility would receive fuel from multiple sites and store it in casks on site for decades. For successful operation of such a facility there is need for a way to restore continuity of knowledge if lost as well as a method that will indicate state of fuel inside the cask. Used nuclear fuel is identifiable by its radiation emission, both gamma and neutron. Neutron emission from fission products, multiplication from remaining fissile material, and the unique distribution of both in each cask produce a unique neutron signature. If two signatures taken at different times do not match, either changes within the fuel content or misidentification of a cask occurred. It was found that identification of cask loadings works well through the profile of emitted neutrons in simulated real casks. Even casks with similar overall neutron emission or average counts around the circumference can be distinguished from each other by analyzing the profile. In conclusion, (1) identification of unaltered casks through neutron signature profile is viable; (2) collecting the profile provides insight to the condition and intactness of the fuel stored inside the cask; and (3) the signature profile is stable over time.

  7. Validation of CFD-methods to predict heat transfer and temperatures during the transport and storage of casks under a cover

    International Nuclear Information System (INIS)

    Leber, A.; Graf, W.; Hueggenberg, R.

    2004-01-01

    With respect to the transport of casks for radioactive material, the proof of the safe heat removal can be accomplished by validated calculation methods. The boundary conditions for thermal tests for type B packages are specified in the ADR based on the regulations defined by the International Atomic Energy Agency. The varying boundary conditions under transport or storage conditions are based on the varying thermal conditions true for different cask types. In most cases the cask will be transported in lying position under a cover (e.g. canopy or tarpaulin) and stored in standing position in an array with other casks. The main heat transport mechanisms are natural convection and thermal radiation. The cover or the storage building are furnished with vents that create an air flow, which will improve the natural convection. Depending on the thermal boundary conditions, the cask design and the heat power, about 50 - 95% of the heat power will be removed from the finned cask surface by natural convection. Consequently the convection by air flow is the main heat transport mechanism. The air flow can be approximated with analytical methods by solving the integral heat and flow balances for the domain. In a stationary state the overpressure due the buoyancy and the pressure loss in the flow resistances are equal. Based on the air flow, the relevant temperatures of the cask can be calculated in an iterative process. Due to the fast development of numerical calculation methods and computer hardware, the use of Computational- Fluid-Dynamics(CFD) calculations plays an important role. CFD-calculations are based on solving the equations of conservation (Navier-Stokes equations) using a finite element mesh or a finite volume mesh of the model. For a finned cask lying under a cover, where the main contributing element for heat removal is natural convection in combination with the thermal radiation, a CFD-calculation can be the most appropriate method. Common CFD-Codes are FLUENT

  8. Study of shielding analysis methods for casks of spent fuel and radioactive waste

    International Nuclear Information System (INIS)

    Saito, Ai

    2017-01-01

    Casks are used for storage or transport spent fuels or radioactive waste. Because high shielding performances are required, it is very important to confirm the validity of shielding analysis methods in order to evaluate cask shielding abilities appropriately. For this purpose, following studies were carried out. 1) A series of parameter survey for several codes to evaluated the difference of the results. 2) Calculations using the MCNP code are effective and theoretically have better accuracy. However setting reasonable variance reduction parameters is indispensable. Therefore, effectiveness of the ADVANTG code which produces automatically reasonable variance reduction parameters is carried out by comparison with conventional method. As a result, the validity of shielding analysis methods for casks is confirmed. The results will be taken into consideration in our future shielding analysis. (author)

  9. Homogeneous versus heterogeneous shielding modeling of spent-fuel casks

    International Nuclear Information System (INIS)

    Carbajo, J.J.; Lindner, C.N.

    1992-01-01

    The design of spent-fuel casks for storage and transport requires modeling the cask for criticality, shielding, thermal, and structural analyses. While some parts of the cask are homogeneous, other regions are heterogeneous with different materials intermixed. For simplicity, some of the heterogeneous regions may be modeled as homogeneous. This paper evaluates the effect of homogenizing some regions of a cask on calculating radiation dose rates outside the cask. The dose rate calculations were performed with the one-dimensional discrete ordinates shielding XSDRNPM code coupled with the XSDOSE code and with the three-dimensional QAD-CGGP code. Dose rates were calculated radially at the midplane of the cask at two locations, cask surface and 2.3 m from the radial surface. The last location corresponds to a point 2 m from the lateral sides of a transport railroad car

  10. Monitored retrievable storage and multi-purpose canister robotic applications: Feasibility, dose savings and cost analysis

    International Nuclear Information System (INIS)

    Bennett, P.C.

    1995-01-01

    Robotic automation is examined as a possible alternative to manual spent nuclear fuel, transport cask and Multi-Purpose Canister (MPC) handling at a Monitored Retrievable Storage (MRS) facility, and as an alternative to current MPC closure and welding methods at commercial nuclear reactor sites. Automation of key operational aspects is analyzed to determine equipment requirements, through-put times and equipment costs. The economic analysis approach is described, and economic and radiation dose impacts resulting from this automation are compared to manual handling methods. (author). 5 refs, 5 figs, 3 tabs

  11. Topical safety analysis report for the transportation of the NUHOMS{reg_sign} dry shielded canister. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-08-01

    This Topical Safety Analysis Report (SAR) describes the design and the generic transportation licensing basis for utilizing the NUTECH HORIZONTAL MODULAR STORAGE (NUHOMS{reg_sign}) system dry shielded canister (DSC) containing twenty-four pressurized water reactor (PWR) spent fuel assemblies (SFA) in conjunction with a conceptually designed Transportation Cask. This SAR documents the design qualification of the NUHOMS{reg_sign} DSC as an integral part of a 10CFR71 Fissile Material Class III, Type B(M) Transportation Package. The package consists of the canister and a conceptual transportation cask (NUHOMS{reg_sign} Transportation Cask) with impact limiters. Engineering analysis is performed for the canister to confirm that the existing canister design complies with 10CFR71 transportation requirements. Evaluations and/or analyses is performed for criticality safety, shielding, structural, and thermal performance. Detailed engineering analysis for the transportation cask will be submitted in a future SAR requesting 10CFR71 certification of the complete waste package. Transportation operational considerations describe various operational aspects of the canister/transportation cask system. operational sequences are developed for canister transfer from storage to the transportation cask and interfaces with the cask auxiliary equipment for on- and off-site transport.

  12. 1/3-scale model testing program

    International Nuclear Information System (INIS)

    Yoshimura, H.R.; Attaway, S.W.; Bronowski, D.R.; Uncapher, W.L.; Huerta, M.; Abbott, D.G.

    1989-01-01

    This paper describes the drop testing of a one-third scale model transport cask system. Two casks were supplied by Transnuclear, Inc. (TN) to demonstrate dual purpose shipping/storage casks. These casks will be used to ship spent fuel from DOEs West Valley demonstration project in New York to the Idaho National Engineering Laboratory (INEL) for long term spent fuel dry storage demonstration. As part of the certification process, one-third scale model tests were performed to obtain experimental data. Two 9-m (30-ft) drop tests were conducted on a mass model of the cask body and scaled balsa and redwood filled impact limiters. In the first test, the cask system was tested in an end-on configuration. In the second test, the system was tested in a slap-down configuration where the axis of the cask was oriented at a 10 degree angle with the horizontal. Slap-down occurs for shallow angle drops where the primary impact at one end of the cask is followed by a secondary impact at the other end. The objectives of the testing program were to (1) obtain deceleration and displacement information for the cask and impact limiter system, (2) obtain dynamic force-displacement data for the impact limiters, (3) verify the integrity of the impact limiter retention system, and (4) examine the crush behavior of the limiters. This paper describes both test results in terms of measured deceleration, post test deformation measurements, and the general structural response of the system

  13. Behaviour of Spent WWER fuel under long term storage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kadarmetov, I M [A.A.Bochvar All-Russia Research Institute of Inorganic Materials, Moscow (Russian Federation)

    1999-07-02

    Results of experimental investigation into thermomechanical properties of pre-irradiated Zr-1%Nb alloy over a range temperatures 500-570 grad C are presented. Safety examination of the Ventilation Storage Casks dry storage system has been carried out. Preliminary safety criteria under dry storage conditions in an environment of inert gas are follows: maximum cladding temperature under normal conditions of dry storage should not exceed 330 grad C after 5-year cooling in water-filled pools; maximum allowable temperature of spent fuel rod cladding under operational mode with infringement of heat removal should not exceed 440 grad C over 8 hours. As each SFA dry storage project comprises its individual technology of spent fuel management, it is necessary to evaluate allowable parameters (terms of storage, maximum temperatures of fuel) for each project respectively. The programme of experimental investigations for the justification of safety criteria for WWER-1000 dry spent fuel storage systems is underway. (author)

  14. Development of high-strength aluminum alloys for basket in transport and storage cask for high burn-up spent fuel

    International Nuclear Information System (INIS)

    Maeguchi, T.; Sakaguchi, Y.; Kamiwaki, Y.; Ishii, M.; Yamamoto, T.

    2004-01-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has developed high-strength borated aluminum alloys (high-strength B-Al alloys), suitable for application to baskets in transport and storage casks for high burn-up spent fuels. Aluminum is a suitable base material for the baskets due to its low density and high thermal conductivity. The aluminum basket would reduce weight of the cask, and effectively release heat generated by spent fuels. MHI had already developed borated aluminum alloys (high-toughness B-Al alloy), and registered them as ASME Code Case ''N-673''. However, there has been a strong demand for basket materials with higher strength in the case of MSF (Mitsubishi Spent Fuel) casks for high-burn up spent fuels, since the basket is required to stand up to higher stress at higher temperature. The high-strength basket material enables the design of a compact cask under a limitation of total size and weight. MHI has developed novel high-strength B-Al alloys which meet these requirements, based on a new manufacturing process. The outline of mechanical and metallurgical characteristics of the high-strength B-Al alloys is described in this paper

  15. Management of spent fuel from power and research reactors using CASTOR and CONSTOR casks and licensing experience worldwide

    International Nuclear Information System (INIS)

    Becher, D.

    2003-01-01

    An overview of the spent fuel storage in CASTOR and CONSTOR casks during the last 30 years is made. Design characteristics of the both types of casks are presented. CASTOR casks fulfill both the requirements for type B packages according to the IAEA requirements covering different accident situations in storage sites. Analyses of nuclear and thermal behavior and strength are carried out for CONSTOR concept. Special experimental program for verification of mechanical and thermomechanical properties is implemented. Licensing experience of the casks in German storage facilities is presented. Special modifications of CASTOR casks for WWER-440 and RBMK fuel assemblies have been designed for implementation in Eastern Europe. Contracts for GNB spent fuel casks delivery are concluded with Czech Republic, Slovakia, Hungary and Lithuania

  16. Dry storage of Magnox fuel

    International Nuclear Information System (INIS)

    1986-09-01

    This work, commissioned by the CEGB, studies the feasibility of a combination of short-term pond storage and long-term dry storage of Magnox spent fuel as a cheaper alternative to reprocessing. Storage would be either at the reactor site or a central site. Two designs are considered, based on existing design work done by GEC-ESL and NNC; the capsule design developed by NNC and with storage in passive vaults for up to 100 yrs and the GEC-ESL tube design developed at Wylfa for the interim storage of LWR. For the long-term storage of Magnox spent fuel the GEC-ESL tubed vault all-dry storage method is recommended and specifications for this method are given. (U.K.)

  17. Thermal model of spent fuel transport cask

    International Nuclear Information System (INIS)

    Ahmed, E.E.M.; Rahman, F.A.; Sultan, G.F.; Khalil, E.E.

    1996-01-01

    The investigation provides a theoretical model to represent the thermal behaviour of the spent fuel elements when transported in a dry shipping cask under normal transport conditions. The heat transfer process in the spent fuel elements and within the cask are modeled which include the radiant heat transfer within the cask and the heat transfer by thermal conduction within the spent fuel element. The model considers the net radiant method for radiant heat transfer process from the inner most heated element to the surrounding spent elements. The heat conduction through fuel interior, fuel-clad interface and on clad surface are also presented. (author) 6 figs., 9 refs

  18. Performances of TN {sup registered} 24 E. An AREVA used fuel transport and interim storage cask for the German market

    Energy Technology Data Exchange (ETDEWEB)

    Brion, Thomas [AREVA TN International, Montigny Le Bretonneux (France)

    2013-07-01

    Part of the AREVA Group, TN International offers a complete range of transport and interim storage solutions for radioactive materials throughout the entire nuclear fuel cycle. A world leader in its sector, TN International has supported for 50 years the expansion of the nuclear industry, in particular by providing expertise in secure packing systems for the storage of used fuel assemblies. As an answer to EON and EnBW, two German utilities, needs, TN International has designed and manufactured the TN {sup registered} 24E cask, offering the following high level performances: 1. transport and storage over a period of 40 years of up to 21 PWR spent nuclear fuel (SNF), allowing for example to load up to 17 MOX fuel assemblies and 4 UOX SNF. 2. high flexibility in the fuel assemblies loading plans, inducing no general predefined constraints with regards to the MOX or UOX fuel positions in the basket of the cask Safety margin related to radioprotection, thermal and mechanical behaviour of the fuel assemblies can be calculated loading plan per loading plan. (orig.)

  19. Safety analysis of casks under extreme impact conditions

    International Nuclear Information System (INIS)

    Wieser, G.; Qiao, L.; Voelzke, H.; Wolff, D.; Droste, B.

    2004-01-01

    The determination of the inherent safety of casks under extreme impact conditions has been of increasing interest since the terrorist attacks of 11 September 2001. For nearly three decades BAM has been investigating cask safety under severe accident conditions like drop tests from more than 9 m onto different targets and without impact limiters as well as artificially damaged prototype casks. One of the most critical scenarios for a cask is the centric impact of a dynamic load onto the lid-seal system. This can be caused, for example, by a direct aircraft crash (or just its engine) as well as by an impact due to the collapse of a building, e.g. a nuclear facility storage hall. In this context BAM is developing methods to calculate the deformation of cask components and-with respect to leak-tightness-relative displacements between the metallic seals and their counterparts. This paper presents reflections on modelling of cask structures for finite-element analyses and discusses calculated results of stresses and deformations. Another important aspect is the behaviour of a cask under a lateral impact by aircraft or fragments of a building. Examples of the kinetic reaction (cask acceleration due to the fragments, subsequent contact with neighbouring structures like the ground, buildings or casks) are shown and discussed in correlation to cask stresses which are to be expected. (author)

  20. Safety analysis of casks under extreme impact conditions

    International Nuclear Information System (INIS)

    Wieser, G.; Qiao Linan; Voelzke, H.; Wolff, D.; Droste, B.

    2004-01-01

    The determination of the inherent safety of casks also under extreme impact conditions has been of increasing interest since the terrorist attacks from 11th September 2001. For nearly three decades BAM has been investigating cask safety under severe accident conditions like drop tests from more than 9 m onto different targets and without impact limiters as well as artificially damaged prototype casks. One of the most critical scenarios for a cask is the centric impact of a dynamic load onto the lid seal system. This can be caused e.g. by direct aircraft crash or its engine as well as by an impact due to the collapse of a building e.g. a nuclear facility storage hall. In this context BAM is developing methods to calculate the deformation of cask components and - with respect to leak tightness - relative displacements between the metallic seals and their counterparts. This paper presents reflections on modelling of cask structures for Finite Element analyses and discusses calculated results of stresses and deformations. Another important aspect is the behaviour of a cask under a lateral impact by aircraft and fragments of a building. Examples of the kinetic reaction (cask acceleration due to the fragments, subsequent contact with neighbouring structures like ground, buildings or casks) are shown and discussed in correlation to cask stresses which are to be expected

  1. Safety aspects of spent nuclear fuel interim storage installations

    Energy Technology Data Exchange (ETDEWEB)

    Romanato, Luiz Sergio [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil). Dept. da Qualidade. Div. de Sistemas da Qualidade]. E-mail: romanato@ctmsp.mar.mil.br; Rzyski, Barbara Maria [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Div. de Ensino]. E-mail: bmrzyski@ipen.br

    2007-07-01

    Nowadays safety and security of spent nuclear fuel (SNF) interim storage installations are very important, due to a great concentration of fission products, actinides and activation products. In this kind of storage it is necessary to consider the physical security. Nuclear installations have become more vulnerable. New types of accidents must be considered in the design of these installations, which in the early days were not considered like: fissile material stolen, terrorists' acts and war conflicts, and traditional accidents concerning the transport of the spent fuel from the reactor to the storage location, earthquakes occurrence, airplanes crash, etc. Studies related to airplane falling had showed that a collision of big commercials airplanes at velocity of 800 km/h against SNF storage and specially designed concrete casks, do not result in serious structural injury to the casks, and not even radionuclides liberation to the environment. However, it was demonstrated that attacks with modern military ammunitions, against metallic casks, are calamitous. The casks could not support a direct impact of this ammo and the released radioactive materials can expose the workers and public as well the local environment to harmful radiation. This paper deals about the main basic aspects of a dry SNF storage installation, that must be physically well protected, getting barriers that difficult the access of unauthorized persons or vehicles, as well as, must structurally resist to incidents or accidents caused by unauthorized intrusion. (author)

  2. Safety aspects of spent nuclear fuel interim storage installations

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2007-01-01

    Nowadays safety and security of spent nuclear fuel (SNF) interim storage installations are very important, due to a great concentration of fission products, actinides and activation products. In this kind of storage it is necessary to consider the physical security. Nuclear installations have become more vulnerable. New types of accidents must be considered in the design of these installations, which in the early days were not considered like: fissile material stolen, terrorists' acts and war conflicts, and traditional accidents concerning the transport of the spent fuel from the reactor to the storage location, earthquakes occurrence, airplanes crash, etc. Studies related to airplane falling had showed that a collision of big commercials airplanes at velocity of 800 km/h against SNF storage and specially designed concrete casks, do not result in serious structural injury to the casks, and not even radionuclides liberation to the environment. However, it was demonstrated that attacks with modern military ammunitions, against metallic casks, are calamitous. The casks could not support a direct impact of this ammo and the released radioactive materials can expose the workers and public as well the local environment to harmful radiation. This paper deals about the main basic aspects of a dry SNF storage installation, that must be physically well protected, getting barriers that difficult the access of unauthorized persons or vehicles, as well as, must structurally resist to incidents or accidents caused by unauthorized intrusion. (author)

  3. Studies and research concerning BNFP: cask handling equipment standardization

    International Nuclear Information System (INIS)

    McCreery, P.N.

    1980-10-01

    This report covers the activities of one of the sub-tasks within the Spent LWR Fuel Transportation Receiving, Handling, and Storage program. The sub-task is identified as Cask Handling Equipment Standardization. The objective of the sub-task specifies: investigate and identify opportunities for standardization of cask interface equipment. This study will examine the potential benefits of standardized yokes, decontamination barriers and special tools, and, to the extent feasible, standardized methods and software for handling the variety of casks presently available in the US fleet. The result of the investigations is a compilation of reports that are related by their common goal of reducing cask turnaround time

  4. Shipping cask demand associated with United States Government storage of commercial spent fuel

    International Nuclear Information System (INIS)

    Daling, P.M.; Engel, R.L.

    1983-05-01

    There were primarily two objectives of this study. The first was to develop estimates of the shipping cask fleet size that will be needed in the United States in the near future. These estimates were compared with current US spent fuel cask fleet size to determine its adequacy to provide the transportation services. The second objective was to develop estimates of the transportation costs associated with future movements of spent fuel. The results of this study were based on assumptions that were made prior to passage of the Nuclear Waste Policy Act of 1982 which authorizes the Department of Energy (DOE) to provide Federal Interim Storage of spent fuel from commercial reactors. The Act requires that the DOE is responsible for transportation of the fuel, although private industry is to provide these services. This paper examined the impacts of various spent fuel management strategies on spent fuel transportation hardware requirements and transportation costs. Conclusions related to optimization of the spent fuel transportation system can be drawn from the results of this study. The conclusions can be affected by changing the given set of assumptions used in this analysis. 3 tables

  5. On-site interim storage of spent nuclear fuel: Emerging public issues

    International Nuclear Information System (INIS)

    Feldman, D.L.; Tennessee Univ., Knoxville, TN

    1992-01-01

    Failure to consummate plans for a permanent repository or above- ground interim Monitored Retrievable Storage (MRS) facility for spent nuclear fuel has spurred innovative efforts to ensure at-reactor storage in an environmentally safe and secure manner. This article examines the institutional and socioeconomic impacts of Dry Cask Storage Technology (DCST)-an approach to spent fuel management that is emerging as the preferred method of on-site interim spent fuel storage by utilities that exhaust existing storage capacity

  6. Human Error Prediction and Countermeasures based on CREAM in Loading and Storage Phase of Spent Nuclear Fuel (SNF)

    International Nuclear Information System (INIS)

    Kim, Jae San; Kim, Min Su; Jo, Seong Youn

    2007-01-01

    With the steady demands for nuclear power energy in Korea, the amount of accumulated SNF has inevitably increased year by year. Thus far, SNF has been on-site transported from one unit to a nearby unit or an on-site dry storage facility. In the near future, as the amount of SNF generated approaches the capacity of these facilities, a percentage of it will be transported to another SNF storage facility. In the process of transporting SNF, human interactions involve inspecting and preparing the cask and spent fuel, loading the cask, transferring the cask and storage or monitoring the cask, etc. So, human actions play a significant role in SNF transportation. In analyzing incidents that have occurred during transport operations, several recent studies have indicated that 'human error' is a primary cause. Therefore, the objectives of this study are to predict and identify possible human errors during the loading and storage of SNF. Furthermore, after evaluating human error for each process, countermeasures to minimize human error are deduced

  7. Neutron and Gamma Shielding Evaluation for KN-12 Spent Nuclear Fuel Transport Cask

    Energy Technology Data Exchange (ETDEWEB)

    Cho, I. J.; Min, D. K.; Lee, J. C.; You, G. S.; Yoon, J. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Chang, G. H.; Jeong, Y. C.; Ko, Y. W. [Korea Hydro and Nuclear Power Co., LTD., Kori (Korea, Republic of)

    2007-07-01

    The CASTOR KN-12 is designed to transport 12 intact PWR spent fuel assemblies for dry and wet transportation conditions. The overall cask length is 480.1 cm with a wall thickness 37.5 cm. Shield for the KN-12 is maintained by the thick walled cask body and the lid. For neutron shielding, polyethylene rods (PE) are arranged in longitudinal boreholes in the vessel wall and PE-plates are inserted between the cask lid and lid side shock absorber and between the cask bottom and bottom steel plate. The shielding evaluation of the cask has been performed with MCNP to confirm the shielding integrity of cask for pre-service inspection of transport cask.

  8. Occupational radiation dose assessment for a non site specific spent fuel storage facility

    International Nuclear Information System (INIS)

    Hadley, J.; Eble, R.G. Jr.

    1997-01-01

    To expedite the licensing process of the non site specific Centralized Interim Storage Facility (CISF) the Department of Energy has completed a phase I CISF Topical Safety Analysis Report (TSAR). The TSAR will be used in licensing the phase I CISF if a site is designated. An occupational radiation does assessment of the facility operations is performed as part of the phase I CISF design. The first phase of the CISF has the capability to receive, transfer, and store SNF in dual-purpose cask/canister systems (DPC's). Currently there are five vendor technologies under consideration. The preliminary dose assessment is based on estimated occupational exposures using traditional power plant ISFSI and transport cask handling processes. The second step in the process is to recommend ALARA techniques to reduce potential exposures. A final dose assessment is completed implementing the ALARA techniques and a review is performed to ensure that the design is in compliance with regulatory criteria. The dose assessment and ALARA evaluation are determined using the following input information: Dose estimates from vendor SAR's; ISFSI experience with similar systems; Traditional methods of operations; Expected CISF cask receipt rates; and feasible ALARA techniques. 5 refs., 1 tab

  9. Dry well storage of spent LWBR fuel

    International Nuclear Information System (INIS)

    Christensen, A.B.; Fielding, K.D.

    1985-01-01

    Recently, 50 dry wells were constructed at the Idaho Chemical Processing Plant (ICPP) to temporarily store the Light Water Breeder Reactor (LWBR) fuel. Over 400 dry wells of the same design are projected to be constructed in the next 5 yr at the ICPP to store unreprocessible fuels until a permanent repository becomes available. This summary describes the LWBR fuel storage dry wells and the enhancements made over the Peach Bottom fuel and Fermi blanket dry wells that have been in use for up to 4 yr. Dry well storage at the ICPP has historically been found to be a safe and efficient method of temporary fuel storage. The LWBR dry wells should be more reliable than the original dry wells and provide data not previously available

  10. Spent nuclear fuel storage. (Latest citations from the NTIS bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1997-07-01

    The bibliography contains citations concerning spent nuclear fuel storage technologies, facilities, sites, and assessment. References review wet and dry storage, spent fuel casks and pools, underground storage, monitored and retrievable storage systems, and aluminum-clad spent fuels. Environmental impact, siting criteria, regulations, and risk assessment are also discussed. Computer codes and models for storage safety are covered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  11. An optimized cask technology for conditioning, transportation and long term interim storage of 'End of Life' nuclear waste

    International Nuclear Information System (INIS)

    Lefort-Mary, Florence; Clement, Gilles; Lamouroux, Christine; Dumont, Bruno

    2016-01-01

    When preparing for the decommissioning of a nuclear facility, during its 'end of life' management and while performing the actual dismantling operations, one has to consider a large diversity of nuclear waste in term of types, volumes and activities. Customers are frequently faced with the obligation to undertake multiple and costly waste management operations including handling, reconditioning or re-transferring from one package to another, for example when moving from on-site storage to transportation. To address this issue, a new - highly flexible - cask system named TN R MW is being developed. This cask has a total weight of 10 T and is compliant with the 2012 IAEA regulations. It is developed on a flexible concept basis, adaptable to the various nuclear needs, including: from IP2 to B(U) / B(U)F; on-site/ international transportation; long term interim storage. Licensing and manufacturing of number of items of this TN R MW family is underway. (authors)

  12. International symposium on storage of spent fuel from power reactors. Book of extended synopses

    International Nuclear Information System (INIS)

    1998-11-01

    This book of extended synopses includes papers presented at the International Symposium on Storage of Spent Fuel from Power Reactors organized by IAEA and held in Vienna from 9 to 13 November 1998. It deals with the problems of spent fuel management being an outstanding stage in the nuclear fuel cycle, strategy of interim spent fuel storage, transportation and encapsulation of spent fuel elements from power reactors. Spent fuel storage facilities at reactor sites are always wet while spent fuel storage facilities away from reactor are either wet or dry including casks and vaults. Different design solutions and constructions of storage or transportation casks as well as storing facilities are presented, as well as status of spent fuel storage together with experiences achieved in a number of member states, in the frame of safety, licensing and regulating procedures

  13. International symposium on storage of spent fuel from power reactors. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    This book of extended synopses includes papers presented at the International Symposium on Storage of Spent Fuel from Power Reactors organized by IAEA and held in Vienna from 9 to 13 November 1998. It deals with the problems of spent fuel management being an outstanding stage in the nuclear fuel cycle, strategy of interim spent fuel storage, transportation and encapsulation of spent fuel elements from power reactors. Spent fuel storage facilities at reactor sites are always wet while spent fuel storage facilities away from reactor are either wet or dry including casks and vaults. Different design solutions and constructions of storage or transportation casks as well as storing facilities are presented, as well as status of spent fuel storage together with experiences achieved in a number of member states, in the frame of safety, licensing and regulating procedures Refs, figs, tabs

  14. Criticality and shielding calculations of an interim dry storage system for the spent fuel from Atucha I Nuclear Power Plant

    International Nuclear Information System (INIS)

    Silva, M

    2006-01-01

    The Atucha I Nuclear Power Plant (CNA-I) has enough room to store its spent fuel (SF) in damp in its two pool houses until the middle of 2015.Before that date there is the need to have an interim dry storage system for spent fuel that would make possible to empty at least one of the pools, whether to keep the plant operating if its useful life is extended, or to be able to empty the reactor core in case of decommissioning.Nucleolectrica Argentina S.A. (NA-SA) and the Comision Nacional de Energia Atomica (CNEA), due to their joint responsibility in the management of the SF, have proposed interim dry storage systems.These systems have to be evaluated in order to choose one of them by the end of 2006.In this work the Monte Carlo code MCNP was used to make the criticality and shielding calculations corresponding to the model proposed by CNEA.This model suggests the store of sealed containers with 36 or 37 SF in concrete modules.Each one of the containers is filled in the pool houses and transported to the module in a transference cask with lead walls.The results of the criticality calculations indicates that the solutions of SF proposed have widely fulfilled the requirements of subcriticality, even in supposed extreme accidental situations.Regarding the transference cask, the SF dose rate estimations allow us to make a feedback for the design aiming to the geometry and shielding improvements.Regarding the store modules, thicknesses ranges of concrete walls are suggested in order to fulfill the dose requirements stated by the Autoridad Regulatoria Nuclear Argentina [es

  15. Quivers For Special Fuel Rods-Disposal Of Special Fuel Rods In CASTOR V Casks

    International Nuclear Information System (INIS)

    Bannani, Amin; Cebula, Wojciech; Buchmuller, Olga; Huggenberg, Roland; Helmut Kuhl

    2015-01-01

    While GNS casks of the CASTOR family are a suitable means to transfer fuel assemblies (FA) from the NPP to an interim dry storage site, Germanys phase-out of nuclear energy has triggered the demand for an additional solution to dispose of special fuel rods (SFR), normally remaining in the fuel pond until the final shutdown of the NPP. SFR are fuel rods that had to be removed from fuel assemblies mainly due to their special condition, e. g. damages in the cladding of the fuel rods which may have occurred during reactor operations. SFR are usually stored in the spent fuel pond after they are removed from the FA. The quiver for special fuel rods features a robust yet simple design, with a high mechanical stability, a reliable leak-tightness and large safety margins for future requirements on safety analysis. The quiver for special fuel rods can be easily adapted to a large variety of different damaged fuel rods and tailored to the specific need of the customer. The quiver for special fuel rods is adaptable e.g. in length and diameter for use in other types of transport and storage casks and is applicable in other countries as well. The overall concept presented here is a first of its kind solution for the disposal of SFRs via Castor V-casks. This provides an important precondition in achieving the status 'free from nuclear fuel' of the shut down German NPPs

  16. Quivers For Special Fuel Rods-Disposal Of Special Fuel Rods In CASTOR V Casks

    Energy Technology Data Exchange (ETDEWEB)

    Bannani, Amin; Cebula, Wojciech; Buchmuller, Olga; Huggenberg, Roland [GNS, Essen (Germany); Helmut Kuhl [WTI, Julich (Germany)

    2015-05-15

    While GNS casks of the CASTOR family are a suitable means to transfer fuel assemblies (FA) from the NPP to an interim dry storage site, Germanys phase-out of nuclear energy has triggered the demand for an additional solution to dispose of special fuel rods (SFR), normally remaining in the fuel pond until the final shutdown of the NPP. SFR are fuel rods that had to be removed from fuel assemblies mainly due to their special condition, e. g. damages in the cladding of the fuel rods which may have occurred during reactor operations. SFR are usually stored in the spent fuel pond after they are removed from the FA. The quiver for special fuel rods features a robust yet simple design, with a high mechanical stability, a reliable leak-tightness and large safety margins for future requirements on safety analysis. The quiver for special fuel rods can be easily adapted to a large variety of different damaged fuel rods and tailored to the specific need of the customer. The quiver for special fuel rods is adaptable e.g. in length and diameter for use in other types of transport and storage casks and is applicable in other countries as well. The overall concept presented here is a first of its kind solution for the disposal of SFRs via Castor V-casks. This provides an important precondition in achieving the status 'free from nuclear fuel' of the shut down German NPPs.

  17. Rethinking the MRS

    International Nuclear Information System (INIS)

    Colglazier, E.W.

    1989-01-01

    In this paper various options for utilizing monitored retrievable storage of civilian spent fuel have been compared using the criteria of maximizing the likelihood of implementing successfully a comprehensive U.S. nuclear waste management system (taking into account scientific and institutional uncertainties) and minimizing the costs, risks, and other impacts. The option that appears to be most robust for dealing with the key uncertainties has two components: an integrated management system that maximizes dry-storage at reactors using dual purpose casks and shipment via dedicated trains and a more experimental approach to the development of the repository at Yucca Mountain and authorization of an unconstrained MRS facility on the Nevada Test Site

  18. BWR spent fuel storage cask performance test. Volume 2. Pre- and post-test decay heat, heat transfer, and shielding analyses

    International Nuclear Information System (INIS)

    Wiles, L.E.; Lombardo, N.J.; Heeb, C.M.; Jenquin, U.P.; Michener, T.E.; Wheeler, C.L.; Creer, J.M.; McCann, R.A.

    1986-06-01

    This report describes the decay heat, heat transfer, and shielding analyses conducted in support of performance testing of a Ridhihalgh, Eggers and Associates REA 2033 boiling water reactor (BWR) spent fuel storage cask. The cask testing program was conducted for the US Department of Energy (DOE) Commercial Spent Fuel Management Program by the Pacific Northwest Laboratory (PNL) and by General Electric at the latters' Morris Operation (GE-MO) as reported in Volume I. The analyses effort consisted of performing pretest calculations to (1) select spent fuel for the test; (2) symmetrically load the spent fuel assemblies in the cask to ensure lateral symmetry of decay heat generation rates; (3) optimally locate temperature and dose rate instrumentation in the cask and spent fuel assemblies; and (4) evaluate the ORIGEN2 (decay heat), HYDRA and COBRA-SFS (heat transfer), and QAD and DOT (shielding) computer codes. The emphasis of this second volume is on the comparison of code predictions to experimental test data in support of the code evaluation process. Code evaluations were accomplished by comparing pretest (actually pre-look, since some predictions were not completed until testing was in progress) predictions with experimental cask testing data reported in Volume I. No attempt was made in this study to compare the two heat transfer codes because results of other evaluations have not been completed, and a comparison based on one data set may lead to erroneous conclusions

  19. FUEL CASK IMPACT LIMITER VULNERABILITIES

    International Nuclear Information System (INIS)

    Leduc, D.; England, J.; Rothermel, R.

    2009-01-01

    Cylindrical fuel casks often have impact limiters surrounding just the ends of the cask shaft in a typical 'dumbbell' arrangement. The primary purpose of these impact limiters is to absorb energy to reduce loads on the cask structure during impacts associated with a severe accident. Impact limiters are also credited in many packages with protecting closure seals and maintaining lower peak temperatures during fire events. For this credit to be taken in safety analyses, the impact limiter attachment system must be shown to retain the impact limiter following Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC) impacts. Large casks are often certified by analysis only because of the costs associated with testing. Therefore, some cask impact limiter attachment systems have not been tested in real impacts. A recent structural analysis of the T-3 Spent Fuel Containment Cask found problems with the design of the impact limiter attachment system. Assumptions in the original Safety Analysis for Packaging (SARP) concerning the loading in the attachment bolts were found to be inaccurate in certain drop orientations. This paper documents the lessons learned and their applicability to impact limiter attachment system designs

  20. Development of tipping-over analysis of cask subjected to earthquake strong motion

    International Nuclear Information System (INIS)

    Shirai, Koji; Ito, Chihiro; Ryu, Hiroshi

    1993-01-01

    Since a cask is vertically oriented during loading in cask-storage, it is necessary to investigate the integrity of the cask against tipping-over during strong earthquakes. The rocking and sliding behavior of the cask during strong earthquakes can be analyzed as a dynamic vibration problem for a rigid cylinder. In this paper, in order to clarify the tipping-over characteristics of a cask during strong earthquakes, the authors applied the Distinct Element Method (DEM) to the seismic response analysis of the cask. DEM was introduced by Cundall P.A. in 1971. It is based on the use of an explicit numerical scheme. The cask was considered to be a rigid polygonal element, which satisfied the equation of motion and the law of action and reaction. They examined the applicability of this code by comparison with experimental results obtained from shaking table tests using scale model casks considering the dimension of a 100 ton class full-scale cask

  1. Project management for the Virginia power spent fuel storage project

    International Nuclear Information System (INIS)

    Smith, M.

    1992-01-01

    Like Duke Power, Virginia Power has been involved in spent fuel storage expansion studies for a long time - possibly a little longer than Duke Power. Virginia Power's initial studies date back to the late 70s and into the early 80s. Large variety of storage techniques are reviewed including reracking and transshipment. Virginia Power also considered construction a new spent fuel pool. This was one of the options that was considered early on since Virginia Power started this process before any dry storage techniques had been proven. Consolidation of spent fuel is something that was also studied. Finally, construction of dry storage facility was determined to be the technology of choice. They looked a large variety of dry storage technologies and eventually selected dry storage in metal casks at Surry. There are many of reasons why a utility may choose one technology over another. In Virginia Power's situation, additional storage was needed at Surry much earlier than at other utilities. Virginia Power was confronted with selecting a storage technique and having to be a leader in that it was the first U.S. utility to implement a dry storage system

  2. Nuclear Industry Input to the Development of Concepts for the Consolidated Storage of Used Nuclear Fuel - 13411

    International Nuclear Information System (INIS)

    Phillips, Chris; Thomas, Ivan; McNiven, Steven; Lanthrum, Gary

    2013-01-01

    EnergySolutions and its team partners, NAC International, Exelon Nuclear Partners, Talisman International, TerranearPMC, Booz Allen Hamilton and Sargent and Lundy, have carried out a study to develop concepts for a Consolidated Storage Facility (CSF) for the USA's stocks of commercial Used Nuclear Fuel (UNF), and the packaging and transport provisions required to move the UNF to the CSF. The UNF is currently stored at all 65 operating nuclear reactor sites in the US, and at 10 shutdown sites. The study was funded by the US Department of Energy and followed the recommendations of the Blue Ribbon Commission on America's Nuclear Future (BRC), one of which was that the US should make prompt efforts to develop one or more consolidated storage facilities for commercial UNF. The study showed that viable schemes can be devised to move all UNF and store it at a CSF, but that a range of schemes is required to accommodate the present widely varying UNF storage arrangements. Although most UNF that is currently stored at operating reactor sites is in water-filled pools, a significant amount is now dry stored in concrete casks. At the shutdown sites, the UNF is dry stored at all but two of the ten sites. Various types of UNF dry storage configurations are used at the operating sites and shutdown sites that include vertical storage casks that are also licensed for transportation, vertical casks that are licensed for storage only, and horizontally orientated storage modules. The shutdown sites have limited to nonexistent UNF handling infrastructure and several no longer have railroad connections, complicating UNF handling and transport off the site. However four methods were identified that will satisfactorily retrieve the UNF canisters within the storage casks and transport them to the CSF. The study showed that all of the issues associated with the transportation and storage of UNF from all sites in the US can be accommodated by adopting a staged approach to the construction of

  3. Nuclear Industry Input to the Development of Concepts for the Consolidated Storage of Used Nuclear Fuel - 13411

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Chris; Thomas, Ivan; McNiven, Steven [EnergySolutions Federal EPC., 2345 Stevens Drive, Richland, WA, 99354 (United States); Lanthrum, Gary [NAC International, 3930 East Jones Bridge Road, Norcross, GA, 30092 (United States)

    2013-07-01

    EnergySolutions and its team partners, NAC International, Exelon Nuclear Partners, Talisman International, TerranearPMC, Booz Allen Hamilton and Sargent and Lundy, have carried out a study to develop concepts for a Consolidated Storage Facility (CSF) for the USA's stocks of commercial Used Nuclear Fuel (UNF), and the packaging and transport provisions required to move the UNF to the CSF. The UNF is currently stored at all 65 operating nuclear reactor sites in the US, and at 10 shutdown sites. The study was funded by the US Department of Energy and followed the recommendations of the Blue Ribbon Commission on America's Nuclear Future (BRC), one of which was that the US should make prompt efforts to develop one or more consolidated storage facilities for commercial UNF. The study showed that viable schemes can be devised to move all UNF and store it at a CSF, but that a range of schemes is required to accommodate the present widely varying UNF storage arrangements. Although most UNF that is currently stored at operating reactor sites is in water-filled pools, a significant amount is now dry stored in concrete casks. At the shutdown sites, the UNF is dry stored at all but two of the ten sites. Various types of UNF dry storage configurations are used at the operating sites and shutdown sites that include vertical storage casks that are also licensed for transportation, vertical casks that are licensed for storage only, and horizontally orientated storage modules. The shutdown sites have limited to nonexistent UNF handling infrastructure and several no longer have railroad connections, complicating UNF handling and transport off the site. However four methods were identified that will satisfactorily retrieve the UNF canisters within the storage casks and transport them to the CSF. The study showed that all of the issues associated with the transportation and storage of UNF from all sites in the US can be accommodated by adopting a staged approach to the

  4. Technology Development for Integrated Safety Test of Spent Nuclear Fuel Transportation and Storage System

    International Nuclear Information System (INIS)

    Seo, Kiseog; Seo, J. S.; Lee, J. C.

    2012-05-01

    A dedicated review on the U. S. NRC Regulation 10 CFR Part 72 and regulatory guide NUREG/1536 has been performed. The safety requirements for spent nuclear fuel dry storage cask are analyzed and summarized in structural, thermal, shielding, criticality, materials, tests and maintenance aspects. Also a guideline for preparing the safety analysis report is provided. The heat flow analysis was performed by varying the dimensions of the heat flow test facility. From the heat flow analysis for the test facility, as the test facility became test facility. From the heat flow analysis for the test facility, as the test facility became bigger; the thermal effect became smaller. Therefore, the dimensions of the heat flow test facility was designed with 5m Χ 5m Χ 6m(H). Analyses of heat transfer characteristics and mechanism for spent PWR fuel assemblies, option study for production of the effective thermal conductivity and option study for effective thermal conductivity test have been performed to obtain the basic data for production of the effective thermal conductivity. It became clear that the diffusion coefficient of chloride ion of concrete remarkably increases along with the temperature rise, and that there is a linear relation between the logarithm values of the diffusion coefficients and the reciprocal of the temperature. It is understood to be able to express the temperature dependency of the diffusion coefficient roughly by an Arrhenius equation as the velocity coefficient is provided as the diffusion coefficient. The specifications and characteristics of storage facilities under operation including dual purpose casks were investigated. Components subject to material degradation were examined. Based on literature survey, investigating a drop analysis incorporating with material degradation, the basic data to develop an analysis methodology was obtained

  5. Development of cask body integrated with bottom plate

    International Nuclear Information System (INIS)

    Yoshida, Takuji; Sasaki, Tomoharu; Koyama, Yoichi; Kumagai, Yasuyuki; Watanabe, Yuichi; Takasa, Seiju

    2017-01-01

    The main parts of a metal cask for storage and transport of spent nuclear fuel consists of main body, neutron shield material and external cylinder. The forged main body has been manufactured as a cup shape by welding of 'forged body' and 'forged bottom plate' which are independently forged. JSW has developed the manufacturing technology of 'cask body integrated with bottom plate' which has no weld line with the goal of cost reduction, manufacturing period shortening and further reliability improvement. Manufacturing for the prototype of 'cask body integrated with bottom plate' has completed to verify mechanical properties and uniformity of the product which satisfy the specified values stipulated in JSME Code S FA1 2007 edition. Here, we report the manufacturing technology and obtained properties of 'cask body integrated with bottom plate'. (author)

  6. Conceptual design of fuel transfer cask for Reactor TRIGA PUSPATI (RTP)

    Energy Technology Data Exchange (ETDEWEB)

    Muhamad, Shalina Sheik [Prototype and Plant Development Center, Technical Support Division, Malaysian Nuclear Agency, Bangi, 43000, Kajang, Selangor (Malaysia); Hamzah, Mohd Arif Arif B. [Prototype and Plant Development Center, Technical Support Division Malaysian Nuclear Agency, Bangi, 43000, Kajang, Selangor (Malaysia)

    2014-02-12

    Spent fuel transfer cask is used to transfer a spent fuel from the reactor tank to the spent fuel storage or for spent fuel inspection. Typically, the cask made from steel cylinders that are either welded or bolted closed. The cylinder is enclosed with additional steel, concrete, or other material to provide radiation shielding and containment of the spent fuel. This paper will discuss the Conceptual Design of fuel transfer cask for Reactor TRIGA Puspati (RTP)

  7. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    2000-01-01

    The mission of the Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying Facility (CVDF) is to achieve the earliest possible removal of free water from Multi-Canister Overpacks (MCOs). The MCOs contain metallic uranium SNF that have been removed from the 100K Area fuel storage water basins (i.e., the K East and K West Basins) at the US. Department of Energy Hanford Site in Southeastern Washington state. Removal of free water is necessary to halt water-induced corrosion of exposed uranium surfaces and to allow the MCOs and their SNF payloads to be safely transported to the Hanford Site 200 East Area and stored within the SNF Project Canister Storage Building (CSB). The CVDF is located within a few hundred yards of the basins, southwest of the 165KW Power Control Building and the 105KW Reactor Building. The site area required for the facility and vehicle circulation is approximately 2 acres. Access and egress is provided by the main entrance to the 100K inner area using existing roadways. The CVDF will remove free. water from the MCOs to reduce the potential for continued fuel-water corrosion reactions. The cold vacuum drying process involves the draining of bulk water from the MCO and subsequent vacuum drying. The MCO will be evacuated to a pressure of 8 torr or less and backfilled with an inert gas (helium). The MCO will be sealed, leak tested, and then transported to the CSB within a sealed shipping cask. (The MCO remains within the same shipping Cask from the time it enters the basin to receive its SNF payload until it is removed from the Cask by the CSB MCO handling machine.) The CVDF subproject acquired the required process systems, supporting equipment, and facilities. The cold vacuum drying operations result in an MCO containing dried fuel that is prepared for shipment to the CSB by the Cask transportation system. The CVDF subproject also provides equipment to dispose of solid wastes generated by the cold vacuum drying process and transfer process water removed

  8. The UK approach to desalination and nuclear power dual purpose operation

    International Nuclear Information System (INIS)

    Pugh, O.

    1974-01-01

    Nuclear desalination is a particular example of dual purpose operation and the majority of desalting units installed around the world are operated in this way. A nuclear dual purpose concept has to be very large if present economic reactor designs are utilised. It is the size which has defeated the concept to date. Present fossil fired dual purpose installations are either in an economic situation (generally low fuel cost) where the inefficiencies introduced by operating away from the optimum water/power ratio are acceptable or, if optimised, the water and power blocks are small enough to allow introduction into the existing utility networks. As part of the United Kingdom, Water Resources Board (WRB) report 'Desalination 1972' the Central Electricity Generating Board (CEGB) and WRB identified nine coastal sites in the United Kingdom where nuclear power stations might be built during the next 15 years. The difficulties of dual purpose operation were recognised in the report, including additional water storage to cover the summer shutdown (turbine overhaul) period, modification of station design to facilitate the extraction of steam, etc. More seriously, as a given power station had higher fuelling costs relative to the newer station, the electrical utility might require compensation for continuing to operate it because of the associated desalting plant. Taking account of these factors and the replacement of the lost electricity production from other, maybe less efficient stations on the system

  9. Interim dry fuel storage for magnox reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, N [National Nuclear Corporation, Risley, Warrington (United Kingdom); Ealing, C [GEC Energy Systems Ltd, Whetstone, Leicester (United Kingdom)

    1985-07-01

    In the UK the practice of short term buffer storage in water ponds prior to chemical reprocessing had already been established on the early gas cooled reactors in Calder Hall. Thus the choice of water pond buffer storage for MGR power plants logically followed the national policy decision to reprocess. The majority of the buffer storage period would take place at the reprocessing plant with only a nominal of 100 days targeted at the station. Since Magnox clad fuel is not suitable for long term pond storage, alternative methods of storage on future stations was considered desirable. In addition to safeguards considerations the economic aspects of the fuel cycle has influenced the conclusion that today the purchase of a MGR power plant with dry spent fuel storage and without commitment to reprocess would be a rational decision for a country initiating a nuclear programme. Dry storage requirements are discussed and two designs of dry storage facilities presented together with a fuel preparation facility.

  10. Interim dry fuel storage for magnox reactors

    International Nuclear Information System (INIS)

    Bradley, N.; Ealing, C.

    1985-01-01

    In the UK the practice of short term buffer storage in water ponds prior to chemical reprocessing had already been established on the early gas cooled reactors in Calder Hall. Thus the choice of water pond buffer storage for MGR power plants logically followed the national policy decision to reprocess. The majority of the buffer storage period would take place at the reprocessing plant with only a nominal of 100 days targeted at the station. Since Magnox clad fuel is not suitable for long term pond storage, alternative methods of storage on future stations was considered desirable. In addition to safeguards considerations the economic aspects of the fuel cycle has influenced the conclusion that today the purchase of a MGR power plant with dry spent fuel storage and without commitment to reprocess would be a rational decision for a country initiating a nuclear programme. Dry storage requirements are discussed and two designs of dry storage facilities presented together with a fuel preparation facility

  11. The subtle attractions of dry vault storage

    International Nuclear Information System (INIS)

    Ealing, C.J.

    1993-01-01

    Utilities in the United States of America, Scotland and Hungary have all adopted dry vault technology in their plans for spent fuel storage. This article looks at what makes dry storage an attractive option. (author)

  12. Retrievable surface storage: interim storage of solidified high-level waste

    International Nuclear Information System (INIS)

    LaRiviere, J.R.; Nelson, D.C.

    1976-01-01

    Studies have been conducted on retrievable-surface-storage concepts for the interim storage of solidified high-level wastes. These studies have been reviewed by the Panel on Engineered Storage, convened by the Committee on Radioactive Waste Management of the National Research Council-National Academy of Sciences. The Panel has concluded that ''retrievable surface storage is an acceptable interim stage in a comprehensive system for managing high-level radioactive wastes.'' The scaled storage cask concept, which was recommended by the Panel on Engineered Storage, consists of placing a canister of waste inside a carbon-steel cask, which in turn is placed inside a thick concrete cylinder. The waste is cooled by natural convection air flow through an annulus between the cask and the inner wall of the concrete cylinder. The complete assembly is placed above ground in an outdoor storage area

  13. Structural evaluation of spent nuclear fuel storage facilities under aircraft crash impact (2). Horizontal impact test onto reduced scale metal cask due to aircraft engine missile

    International Nuclear Information System (INIS)

    Namba, Kosuke; Shirai, Koji; Saegusa, Toshiari

    2009-01-01

    In this study, to confirm the sealing performance of a metal cask subjected to impact force due to possible commercial aircraft crash against a spent fuel storage facility, the horizontal impact test was carried out. In the test, an aircraft engine missile with a speed of 57.3 m/s attacked the reduced scale metal cask containing helium gas, which stands vertically. Then the leak rate and sliding displacement of the lid were measured. The leak rate increased rapidly and reached to 4.0 x 10 -6 Pa·m 3 /sec. After that, the leak rate decreased slowly and converged to 1.0x10 -6 Pa·m 3 /sec after 20 hours from the impact test. The leak rate of a full scale cask was evaluated using that of reduced scale cask obtained by the test. Then the leak rate of the full scale cask was 3.5x10 -5 Pa·m 3 /sec. This result showed that the sealing performance of the full scale metal cask would not be affected immediately by the horizontal impact of the aircraft engine with a speed of 57.3 m/s. (author)

  14. A cask maintenance facility feasibility study

    International Nuclear Information System (INIS)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1989-01-01

    The Oak Ridge National Laboratory (ORNL) is developing a transportation system for spent nuclear fuel (SNF) and defense high level waste (HLW) as a part of the Federal Waste Management System (FWMS). In early 1988, a feasibility study was undertaken to design a stand-alone, ''green field'' facility for maintaining the FWMS casks. The feasibility study provided an initial layout facility design, an estimate of the construction cost, and an acquisition schedule for a Cask Maintenance Facility (CMF). The study also helped to define the interfaces between the transportation system and the waste generators, the repository, and a Monitored Retrievable Storage (MRS) facility. The data, design, and estimated costs resulting from the study have been organized for use in the total transportation system decision-making process. Most importantly, the feasibility study also provides a foundation for continuing design and planning efforts. Fleet servicing facility studies, operational studies from current cask system operators, a definition of the CMF system requirements, and the experience of others in the radioactive waste transportation field were used as a basis for the feasibility study. In addition, several cask handling facilities were visited to observe and discuss cask operations to establish the functions and methods of cask maintenance expected to be used in the facility. Finally, a peer review meeting was held at Oak Ridge, Tennessee in August, 1988, in which the assumptions, design, layout, and functions of the CMF were significantly refined. Attendees included representatives from industry, the repository and transportation operations

  15. Peak cladding temperature in a spent fuel storage or transportation cask

    International Nuclear Information System (INIS)

    Li, J.; Murakami, H.; Liu, Y.; Gomez, P.E.A.; Gudipati, M.; Greiner, M.

    2007-01-01

    From reactor discharge to eventual disposition, spent nuclear fuel assemblies from a commercial light water reactor are typically exposed to a variety of environments under which the peak cladding temperature (PCT) is an important parameter that can affect the characteristics and behavior of the cladding and, thus, the functions of the spent fuel during storage, transportation, and disposal. Three models have been identified to calculate the peak cladding temperature of spent fuel assemblies in a storage or transportation cask: a coupled effective thermal conductivity and edge conductance model developed by Manteufel and Todreas, an effective thermal conductivity model developed by Bahney and Lotz, and a computational fluid dynamics model. These models were used to estimate the PCT for spent fuel assemblies for light water reactors under helium, nitrogen, and vacuum environments with varying decay heat loads and temperature boundary conditions. The results show that the vacuum environment is more challening than the other gas environments in that the PCT limit is exceeded at a lower boundary temperature for a given decay heat load of the spent fuel assembly. This paper will highlight the PCT calculations, including a comparison of the PCTs obtained by different models.

  16. Development of new type concrete for spent fuel storage cask

    International Nuclear Information System (INIS)

    Shimojo, J.; Mantani, K.; Owaki, E.; Sugihara, Y.; Hata, A.; Shimono, M.; Taniuchi, H.

    2004-01-01

    Heat resistant concrete has been developed to make it possible to design a new type cask that has been designed on the same concept of metal cask technologies for use in high temperature conditions. The allowable temperature of conventional concrete is limited to less than 100 degrees Celsius because most of its moisture is free water and therefore hydrogen, which is effective for neutron shielding, can be easily lost. Our newly developed concrete uses chemically bonded water and as a result can be used under high temperatures

  17. Development of new type concrete for spent fuel storage cask

    Energy Technology Data Exchange (ETDEWEB)

    Shimojo, J.; Mantani, K. [Kobe Steel, Ltd., Hyogo (Japan); Owaki, E.; Sugihara, Y.; Hata, A.; Shimono, M. [Taisei Corp., Tokyo (Japan); Taniuchi, H. [Transnuclear, Ltd., Tokyo (Japan)

    2004-07-01

    Heat resistant concrete has been developed to make it possible to design a new type cask that has been designed on the same concept of metal cask technologies for use in high temperature conditions. The allowable temperature of conventional concrete is limited to less than 100 degrees Celsius because most of its moisture is free water and therefore hydrogen, which is effective for neutron shielding, can be easily lost. Our newly developed concrete uses chemically bonded water and as a result can be used under high temperatures.

  18. EPRI/DOE High-Burnup Fuel Sister Rod Test Plan Simplification and Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Saltzstein, Sylvia J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorenson, Ken B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hanson, B. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shimskey, R. W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Klymyshyn, N. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webster, R. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jensen, P. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); MacFarlan, P. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Billone, Mike [Argonne National Lab. (ANL), Argonne, IL (United States); Scaglione, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Montgomery, Rose [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevard, Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-15

    The EPRI/DOE High-Burnup Confirmatory Data Project (herein called the “Demo”) is a multi-year, multi-entity test with the purpose of providing quantitative and qualitative data to show if high-burnup fuel mechanical properties change in dry storage over a ten-year period. The Demo involves obtaining 32 assemblies of high-burnup PWR fuel of common cladding alloys from the North Anna Nuclear Power Plant, loading them in an NRC-licensed TN-32B cask, drying them according to standard plant procedures, and then storing them on the North Anna dry storage pad for ten years. After the ten-year storage time, the cask will be opened and the mechanical properties of the rods will be tested and analyzed.

  19. Dry rod consolidation technology development

    International Nuclear Information System (INIS)

    Rasmussen, T.L.; Schoonen, D.H.; Feldman, E.M.; Fisher, M.W.

    1987-01-01

    The Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is funding a program to consolidate commercial spent fuel for testing in dry storage casks and to develop technology that will be fed into other OCRWM programs, e.g., Prototypical Consolidation Demonstration Program (PCDP). The program is being conducted at the Idaho National Engineering Laboratory (INEL) by the INEL Operating Contractor EG and G Idaho, Inc. Hardware and software have been designed and fabricated for installation in a hot cell adjacent to the Test Area North (TAN) Hot Shop Facility. This equipment is used to perform dry consolidation of commercial spent fuel from the Virginia Power (VP) Cooperative Agreement Spent Fuel Storage Cask (SFSC) Demonstration Program and assemblies that had previously been stored at the Engine Maintenance and Disassembly (EMAD) facility in Nevada. Consolidation is accomplished by individual, horizontal rod pulling. A computerized semiautomatic control system with operator involvement is utilized to conduct consolidation operations. During consolidation operations, data is taken to characterize this technology. Still photo, video tape, and other documentation will be generated to make developed information available to interested parties. Cold checkout of the hardware and software was completed in September of 1986. Following installation in the hot cell, consolidation operations begins in May 1987. Resulting consolidated fuel will be utilized in the VP Cooperative Agreement SFSC Program

  20. Dry storage

    International Nuclear Information System (INIS)

    Arnott, Don.

    1985-01-01

    The environmental movement has consistently argued against disposal of nuclear waste. Reasons include its irretrievability in the event of leakage, the implication that reprocessing will continue and the legitimacy attached to an expanding nuclear programme. But there is an alternative. The author here sets out the background and a possible future direction of a campaign based on a call for dry storage. (author)

  1. Development of Neutron Shielding Material for Cask and Accelerator

    International Nuclear Information System (INIS)

    Kang, Hee Young; Seo, Ki Seog; Lee, Byung Chul; Park, Chang Jae; Kim, Ho Dong

    2008-01-01

    The neutron shielding materials are used as a neutron shield for spent fuel shipping cask, beam accelerators and neutron generators. At early stage, the neutron attenuations of materials were evaluated with the cross sections. After that, benchmark or mock-up experiments on the multi-layer problem to confirm the shielding characteristics or to evaluate analysis accuracy were reported. Recently, the need to transport spent nuclear fuels is increasing due to the current limited storage capacity. The on-site storage capacity at some of nuclear power plants is expected to be full in near future. With a growing inventory of spent fuels at power plants, these spent fuels need to be transported to other storage facilities. Shipping casks have been developed to safely transport spent fuels that emit high neutrons and gamma-ray radiation. The external radiation level of the shipping cask from the spent fuel must be limited to meet the standards specified by the IAEA radioactive material package regulation, so it is important to develop a proper neutron shielding material for a shipping cask. Neutron shielding experiments and analyses on the shielding effects of materials have been conducted, and some experiments have been performed to examine the shielding effects of selected materials. The shielding experiments consist of evaluating not only the shielding effects of a material alone but also the effects of the material thickness. The experimental results were compared with those obtained by using the MCNP-5c code

  2. Dry storage systems with free convection air cooling

    International Nuclear Information System (INIS)

    Kioes, S.R.

    1980-01-01

    Several design principles to remove heat from the spent fuel by free air convection are illustrated and described. The key safety considerations were felt to be: loss of coolant is impossible as the passive system uses air as a coolant; overheating is precluded because as the temperatures of the containers rises the coolant flow rate increases; mass of the storage building provides a large heat sink and therefore a rapid temperature rise is impossible; and lack of any active external support requirements makes the cooling process less likely to equipment or operator failures. An example of this type of storage already exists. The German HTGR is operated with spherical graphite fuel elements which are stored in canister and in storage cells. The concept is a double cooling system with free convection inside the cells and heat exchange via two side walls of the cell to the ambient air in the cooling ducts. Technical description of the TN 1300 cask is also presented

  3. Rail-Cask Tests: Normal-Conditionsof- Transport Tests of Surrogate PWR Fuel Assemblies in an ENSA ENUN 32P Cask.

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ross, Steven [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Grey, Carissa Ann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Uncapher, William Leonard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Arviso, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Garmendia, Rafael [Equipos Nucleares Sociedad Anonima, Madrid (Spain); Fernandez Perez, Ismael [Equipos Nucleares Sociedad Anonima, Madrid (Spain); Palacio, Alejandro [Equipos Nucleares Sociedad Anonima, Madrid (Spain); Calleja, Guillermo [Equipos Nucleares Sociedad Anonima, Madrid (Spain); Garrido, David [COORDINADORA, Madrid (Spain); Rodriguez Casas, Ana [COORDINADORA, Madrid (Spain); Gonzalez Garcia, Luis [COORDINADORA, Madrid (Spain); Chilton, Lyman Wes [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ammerman, Douglas J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walz, Jacob [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gershon, Sabina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Saltzstein, Sylvia J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorenson, Ken [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klymyshyn, Nicholas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanson, Brady [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pena, Ruben [Transportation Technology Center, Inc., Pueblo, CO (United States); Walker, Russell [Transportation Technology Center, Inc., Pueblo, CO (United States)

    2018-01-01

    This report describes tests conducted using a full-size rail cask, the ENSA ENUN 32P, involving handling of the cask and transport of the cask via truck, ships, and rail. The purpose of the tests was to measure strains and accelerations on surrogate pressurized water reactor fuel rods when the fuel assemblies were subjected to Normal Conditions of Transport within the rail cask. In addition, accelerations were measured on the transport platform, the cask cradle, the cask, and the basket within the cask holding the assemblies. These tests were an international collaboration that included Equipos Nucleares S.A., Sandia National Laboratories, Pacific Northwest National Laboratory, Coordinadora Internacional de Cargas S.A., the Transportation Technology Center, Inc., the Korea Radioactive Waste Agency, and the Korea Atomic Energy Research Institute. All test results in this report are PRELIMINARY – complete analyses of test data will be completed and reported in FY18. However, preliminarily: The strains were exceedingly low on the surrogate fuel rods during the rail-cask tests for all the transport and handling modes. The test results provide a compelling technical basis for the safe transport of spent fuel.

  4. Sampled control of vibration in suspended cask by using vibration manipulation functions

    International Nuclear Information System (INIS)

    Kotake, Shigeo

    2014-01-01

    Safe and reliable operation is most important for decommissioning the Fukushima 1 nuclear power plant. Especially it requires for transferring spent nuclear fuels from fuel pool to storage cask. Since the heavy cask will be suspended during the transferring operation, there is a risk of dropping it in case of the strike of large earthquakes. In this study, we introduce analytical functions to suppress residual vibration of a suspended cask by using vibration manipulation function. Hence the oscillation of the cask can be feedforward or sampled-data controlled by moving a trolley with analog actuator, the possible risk could be reduced. (author)

  5. Evolution of spent fuel dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Standring, Paul Nicholas [International Atomic Energy Agency, Vienna (Austria). Div. of Nuclear Fuel Cycle and Waste Technology; Takats, Ferenc [TS ENERCON KFT, Budapest (Hungary)

    2016-11-15

    Around 10,000 tHM of spent fuel is discharged per year from the nuclear power plants in operation. Whilst the bulk of spent fuel is still held in at reactor pools, 24 countries have developed storage facilities; either on the reactor site or away from the reactor site. Of the 146 operational AFR storage facilities about 80 % employ dry storage; the majority being deployed over the last 20 years. This reflects both the development of dry storage technology as well as changes in politics and trading relationships that have affected spent fuel management policies. The paper describes the various approaches to the back-end of the nuclear fuel cycle for power reactor fuels and provides data on deployed storage technologies.

  6. Spent Fuel Transfer to Dry Storage Using Unattended Monitoring System

    International Nuclear Information System (INIS)

    Park, Jae Hwan; Park, Soo Jin

    2009-01-01

    There are 4 CANDU reactors at Wolsung site together with a spent fuel dry storage associated with unit 1. These CANDU reactors, classified as On-Load Reactor (OLR) for Safeguards application, change 16- 24 fuel bundles with fresh fuel in everyday. Especially, the spent fuel bundles are transferred from spent fuel bays to dry storage throughout a year because of the insufficient capacity of spent fuel pond. Safeguards inspectors verify the spent fuel transfer to meet safeguards purposes according to the safeguards criteria by means of inspector's presence during the transfer campaign. For the verification, 60-80 person-days of inspection (PDIs) are needed during approximately 3 months for each unit. In order to reduce the inspection effort and operators' burden, an Unattended Monitoring System (UMS) was designed and developed by the IAEA for the verification of spent fuel bundles transfers from wet storage to dry storage. Based on the enhanced cooperation of CANDU reactors between the ROK and the IAEA, the IAEA installed the UMS at Wolsung unit 2 in January 2005 at first. After some field trials during the transfer campaign, this system is being replaced the traditional human inspection since September 1, 2006 combined with a Short Notice Inspection (SNI) and a near-real time Mailbox Declaration

  7. Post-test fuel basket evaluations of the CASTOR-V/21 cask

    International Nuclear Information System (INIS)

    Anderson, R.T.; Kingsley, K.R.

    1986-01-01

    Following an extensive testing program of the CASTOR-V/21 cask at INEL, eight symmetrically positioned indications were observed on the fuel basket. Since the presence of fuel in the cask permitted only remote visual inspection, it could not be conclusively determined if the indications represented material failure. The cask was not functionally limited since vertical movement of various fuel assemblies was possible and the structure remained intact. The basket is a redundant structure and criticality safety is maintained by fluxtrap boxes which were not in affected regions of the basket. The indications were observed at plate joints, which are stitch-welded for basket-manufacturing purposes. An extensive analysis was made of the basket design, manufacture, and test sequence to determine the possible cause and nature of the indications. This test cask had been tested under stringent thermal operating conditions. The cask was held at a power level 45% over rated conditions (28.5 kW vs. 21 kW). Also, the cask was held for two days with a vacuum in the cavity rather than helium (a conductive, inert gas), which is used during fuel storage. An evaluation was performed which included the following considerations: history under similar conditions, unique aspects of the test, basket construction techniques, fatigue, metallurgy and welding, and thermal stress. The consensus of several experts was that high thermal stress due to constrained thermal expansion of the fuel basket components caused the indications. This situation was remedied for future baskets by ensuring that certain manufacturing tolerance be measured and controlled. These limiting dimensions were established to permit sufficient space for thermal expansion. An extensive stress analysis was performed to define the dimensional requirements and demonstrate that the resulting basket stresses are acceptably low

  8. Impact Analyses and Tests of Concrete Overpacks of Spent Nuclear Fuel Storage Casks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sanghoon; Cho, Sangsoon; Jeon, Jeeon; Kim, Kiyoung; Seo, Kiseog [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-02-15

    A concrete cask is an option for spent nuclear fuel interim storage. A concrete cask usually consists of a metallic canister which confines the spent nuclear fuel assemblies and a concrete overpack. When the overpack undergoes a missile impact, which might be caused by a tornado or an aircraft crash, it should sustain an acceptable level of structural integrity so that its radiation shielding capability and the retrievability of the canister are maintained. A missile impact against a concrete overpack produces two damage modes, local damage and global damage. In conventional approaches, those two damage modes are decoupled and evaluated separately. The local damage of concrete is usually evaluated by empirical formulas, while the global damage is evaluated by finite element analysis. However, this decoupled approach may lead to a very conservative estimation of both damages. In this research, finite element analysis with material failure models and element erosion is applied to the evaluation of local and global damage of concrete overpacks under high speed missile impacts. Two types of concrete overpacks with different configurations are considered. The numerical simulation results are compared with test results, and it is shown that the finite element analysis predicts both local and global damage qualitatively well, but the quantitative accuracy of the results are highly dependent on the fine-tuning of material and failure parameters.

  9. Impact Analyses and Tests of Concrete Overpacks of Spent Nuclear Fuel Storage Casks

    International Nuclear Information System (INIS)

    Lee, Sanghoon; Cho, Sangsoon; Jeon, Jeeon; Kim, Kiyoung; Seo, Kiseog

    2014-01-01

    A concrete cask is an option for spent nuclear fuel interim storage. A concrete cask usually consists of a metallic canister which confines the spent nuclear fuel assemblies and a concrete overpack. When the overpack undergoes a missile impact, which might be caused by a tornado or an aircraft crash, it should sustain an acceptable level of structural integrity so that its radiation shielding capability and the retrievability of the canister are maintained. A missile impact against a concrete overpack produces two damage modes, local damage and global damage. In conventional approaches, those two damage modes are decoupled and evaluated separately. The local damage of concrete is usually evaluated by empirical formulas, while the global damage is evaluated by finite element analysis. However, this decoupled approach may lead to a very conservative estimation of both damages. In this research, finite element analysis with material failure models and element erosion is applied to the evaluation of local and global damage of concrete overpacks under high speed missile impacts. Two types of concrete overpacks with different configurations are considered. The numerical simulation results are compared with test results, and it is shown that the finite element analysis predicts both local and global damage qualitatively well, but the quantitative accuracy of the results are highly dependent on the fine-tuning of material and failure parameters

  10. Evaluation of cover gas impurities and their effects on the dry storage of LWR [light-water reactor] spent fuel

    International Nuclear Information System (INIS)

    Knoll, R.W.; Gilbert, E.R.

    1987-11-01

    The purposes of this report are to (1) identify the sources of impurity gases in spent fuel storage casks; (2) identify the expected concentrations and types of reactive impurity gases from these sources over an operating lifetime of 40 years; and (3) determine whether these impurities could significantly degrade cladding or exposed fuel during this period. Four potential sources of impurity gases in the helium cover gas in operating casks were identified and evaluated. Several different bounding cases have been considered, where the reactive gas inventory is either assumed to be completely gettered by the cladding or where all oxygen is assumed to react completely with the exposed fuel. It is concluded that the reactive gas inventory will have no significant effect on the cladding unless all available oxygen reacts with the UO 2 fuel to produce U 3 O 8 at one or two cladding breaches. Based on Zircaloy oxidation data, the oxygen inventory in a fully loaded pressurized water reactor cask such as the Castor-V/21 will be gettered by the Zircaloy cladding in about 1 year if the peak cladding temperature within the task is ≥300 0 C. Only a negligible decrease in the thickness of the cladding would result. 24 refs., 4 tabs

  11. Criticality safety evaluation report for the Cold Vacuum Drying Facility's process water handling system

    International Nuclear Information System (INIS)

    Roblyer, S.D.

    1998-01-01

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility (CVDF). The controls and limitations on equipment design and operations to control potential criticality occurrences are identified. The effectiveness of equipment design and operation controls in preventing criticality occurrences during normal and abnormal conditions is evaluated and documented in this report. Spent nuclear fuel (SNF) is removed from existing canisters in both the K East and K West Basins and loaded into a multicanister overpack (MCO) in the K Basin pool. The MCO is housed in a shipping cask surrounded by clean water in the annulus between the exterior of the MCO and the interior of the shipping cask. The fuel consists of spent N Reactor and some single pass reactor fuel. The MCO is transported to the CVDF near the K Basins to remove process water from the MCO interior and from the shipping cask annulus. After the bulk water is removed from the MCO, any remaining free liquid is removed by drawing a vacuum on the MCO's interior. After cold vacuum drying is completed, the MCO is filled with an inert cover gas, the lid is replaced on the shipping cask, and the MCO is transported to the Canister Storage Building. The process water removed from the MCO contains fissionable materials from metallic uranium corrosion. The process water from the MCO is first collected in a geometrically safe process water conditioning receiver tank. The process water in the process water conditioning receiver tank is tested, then filtered, demineralized, and collected in the storage tank. The process water is finally removed from the storage tank and transported from the CVDF by truck

  12. Effects of T-type Channel on Natural Convection Flows in Airflow-Path of Concrete Storage Cask

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Gyeong Uk; Kim, Hyoung Jin; Cho, Chun Hyung [KORAD, Daejeon (Korea, Republic of)

    2016-05-15

    The natural convection flows occurring in airflow-path are not simple due to complex flow-path configurations such as horizontal ducts, bent tube and annular flow-path. In addition, 16 T type channels acting as the shroud are attached vertically and 16 channel supporting the canister are attached horizontally on the inner surface of over-pack. The existence and nonexistence of T type channels have influences on the flow fields in airflow- path. The concrete storage cask has to satisfy the requirements to secure the thermal integrity under the normal, off-normal, and accident conditions. The present work is aiming at investigating the effects of T type channels on the flows in airflow-path under the normal conditions using the FLUENT 16.1 code. In order to focus on the flows in airflow-path, fuel regions in the canister are regarded as a single cylinder with heat sources and other components are fully modeled. This study investigated the flow fields in airflow-path of concrete storage cask, numerically. It was found that excepting for the fuel regions, maximum temperatures on other components were evaluated below allowable values. The location of maximum velocities depended on support channels, T type channels and flow area. The flows through air inlets developed along annular flow- path with forming the hot plumes. According to the existence and nonexistence of T type channel, the plume behavior showed the different flow patterns.

  13. Criticality safety study of dry spent fuel cask loaded with increased enrichment fuel

    International Nuclear Information System (INIS)

    Bznuni, S.; Baghdasaryan, N.; Amirjanyan, A.

    2013-01-01

    Existing Dry Spent Fuel Casks (DSC) for transporting and storing of Armenian NPP fuel was licensed for WWER-440 fuel assemblies with 3.6% enrichment. Having in mind that ANPP introduced new fuel assemblies with increased enrichment (3.82 %) re-assessment of criticality safety analysis for DSC is required. Criticality safety analysis of DSC was performed by KENO-VI program using 238-GROUP ENDF/B-VII.0 LIBRARY (V7-238). Results of analysis showed that additional 8 borated racks for fuel assemblies should be included in the design of DSC. In addition feasibility study was performed to find out level of burnup-credit approach implementation to keep current design of DSC unchanged. Burnup-credit analysis was performed by STARBUCS program using axial burnup profiles from Armenian NPP neutronics analysis carried out by BIPR code. (authors)

  14. Preliminary study on recycling of metallic waste from decommissioning of nuclear power plant for cask

    International Nuclear Information System (INIS)

    Ohe, Koichiro; Kato, Osamu; Saegusa, Toshiari

    1999-01-01

    Preliminary study was made on technology required to recycle of metallic waste from decommissioning for spent fuel storage cask and on quantity of the cask which can be produced by the metallic waste. The technical and institutional issues for the recycling were studied. The metallic waste from decommissioning may be technically used to a certain degree for manufacturing the casks. However, there were some technical issues to be solved. For example, the manufacturing factories should be established. The radioactive waste from the factories with radiation control should be handled and treated carefully. Quality of the cask should be properly controlled. The 'Clearance Levels' which allows to recycle decommissioning waste have been hardly enacted in Japan. Technical and economic evaluation on recycling of metallic waste from decommissioning for spent fuel storage cask should be conducted again after progress in recycling of radioactive waste of which radioactivity is below the 'Clearance Levels' in Japan. (author)

  15. Free drop impact analysis of shipping cask

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kennedy, J.M.

    1989-01-01

    The WHAMS-2D and WHAMS-3D codes were used to analyze the dynamic response of the RAS/TREAT shielded shipping cask subjected to transient leadings for the purpose of assessing potential damage to the various components that comprise the the cask. The paper describes how these codes can be used to provide and intermediate level of detail between full three-dimensional finite element calculations and hand calculations which are cost effective for design purposes. Three free drops were adressed: (1) a thirty foot axial drop on either end; (2) a thirty foot oblique angle drop with the cask having several different orientations from the vertical with impact on the cask corner; and (3) a thirty foot side drop with simultaneous impact on the lifting trunnion and the bottom end. Results are presented for two models of the side and oblique angle drops; one model includes only the mass of the lapped sleeves of depleted uranium (DU) while the other includes the mass and stiffness of the DU. The results of the end drop analyses are given for models with and without imperfections in the cask. Comparison of the analysis to hand calculations and simplified analyses are given. (orig.)

  16. United States Department of Energy commercial reactor spent fuel programs being conducted at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Piscitella, R.R.; Rasmussen, T.L.; Uhl, D.L.

    1987-01-01

    The Idaho National Engineering Laboratory participation in OCRWM programs includes the Spent Fuel Storage Cask Testing Program, Dry Rod Consolidation Technology Program, Prototypical Consolidation Demonstration Program, the Nuclear Fuel Services Project, and the Cask Systems Acquisition Program. The DOE has entered into a cooperative agreement with Virginia Power and the Electric Power Research Institute to demonstrate storage of commercial spent fuel in steel storage casks. The Program conducted heat transfer and shielding tests with three storage casks with intact spent fuel assemblies and two casks with consolidated spent fuel rods, one of which was previously tested with intact fuel, and provides test information in support of Virginia Power's at-reactor dry storage licensing effort. 3 figs., 1 tab

  17. Development of boronated aluminum alloy for basket of cask for nuclear spent fuel

    International Nuclear Information System (INIS)

    Sakaguchi, Y.; Saida, T.; Matsuoka, T.; Kuri, S.; Ohsono, K.; Hode, S.

    2001-01-01

    Since 1980's Mitsubishi Heavy Industries, Ltd. (MHI) has been contributing to develop metal cask technologies for utilities and competent authorities in Japan, and have established transport and storage cask design ''MSF series'' which realizes higher payload and reliability for long term storage. MSF series transport and storage cask uses new-developed boronated aluminum as basket material. This boronated aluminum has been developed to improve characteristics of material. To achieve this object, powder metallurgy method has been adopted for manufacturing boronated material. It is well known that this method provides excellent characteristics for the material and this boronated aluminum alloy has obtained excellent both mechanical and neutron absorbing characteristics. In addition, in order to maintain material properties for long-term use this boronated material is not strengthened by aging treatment. This paper summarizes an outline of the boronated aluminum alloy for basket assemblies by powder metallurgy. (author)

  18. Status of the Virginia Power/DOE Cooperative Cask Testing/Demonstration Program: A video presentation

    International Nuclear Information System (INIS)

    McKinnon, M.A.; Creer, J.M.; Collantes, C.E.

    1990-01-01

    This paper is documentation of a video presentation and provides a brief summary of the Virginia power/US Department of Energy Cooperative Cask Testing/Demonstration Program. The program consists of two phases. The first phase has been completed and involved the unlicensed performance testing (heat transfer and shielding) of three metal spent fuel storage casks at the federally owned Idaho National Engineering Laboratory. The second phase is ongoing and consists of licensed demonstrations of standard casks from two different vendors and of one or two enhanced capacity casks. 6 refs., 1 tab

  19. Spent fuel dry storage technology development: report of consolidated thermal data

    International Nuclear Information System (INIS)

    Lundberg, W.L.

    1980-09-01

    Experiments indicate that PWR fuel with decay heat levels in excess of 2 kW could be stored in isolated drywells in Nevada Test Site soil without exceeding the current fuel clad temperature limit (715 0 F). The document also assesses the ability to thermally analyze near-surface drywells and above-ground storage casks and it identifies analysis development areas. It is concluded that the required analysis procedures, computer programs, etc., are already developed and available. Analysis uncertainties, however, still exist but they lie mainly in the numerical input area. Soil thermal conductivity, of primary importance in analysis, requires additional study to better understand the soil drying mechanism and effects of moisture. Work is also required to develop an internal canister subchannel model. In addition, the ability of the overall drywell thermal model to accommodate thermal interaction effects between adjacent drywells should be confirmed. In the experimental area, tests with two BWR spent fuel assemblies encapsulated in a single canister should be performed to establish the fuel clad and canister temperature relationship. This is needed to supplement similar experimental work which has already been completed with PWR fuel

  20. Dry rod consolidation technology development

    International Nuclear Information System (INIS)

    Rasmussen, T.L.; Schoonen, D.H.; Fisher, M.W.

    1986-01-01

    The Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is funding a Program to consolidate commercial spent fuel for testing in dry storage casks and to develop technology that will be fed into other OCRWM Programs, e.g., Prototypical Consolidation Demonstration Program. The Program is being conducted at the Idaho National Engineering Laboratory (INEL) by the Operating Contractor, EGandG Idaho, Inc. Hardware and software have been designed and fabricated for installation in a hot cell adjacent to the Test Area North (TAN) Hot Shop Facility. This equipment will be used to perform dry consolidation of commercial spent fuel from the Virginia Power (VP) Cooperative Agreement Spent Fuel Storage Cask (SPSC) Demonstration Program and assemblies that had previously been stored at the Engine Maintenance and Disassembly (EMAD) facility in Nevada. Consolidation will be accomplished by individual, horizontal rod pulling. A computerized semi-automatic control system with operator involvement will be utilized to conduct consolidation operations. Special features have been incorporated in the design to allow crud collection and measurement of rod pulling forces. During consolidation operations, data will be taken to characterize this technology. Still photo, video tape, and other documentation will be generated to make developed information available to interested parties. Cold checkout of the hardware and software will complete in September of 1986. Following installation in the hot cell, consolidation operations will begin in January 1987. Resulting consolidated fuel will be utilized in the VP Cooperative Agreement SFSC Program

  1. A present status for dry storage of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Park, H. Y.; Seo, K. S

    2003-04-01

    National policy for management of a spent nuclear fuel does not establish in Korea yet. A storage capacity of a storage pool that is to store the spent nuclear fuel will be exceeded an amount of accumulation from the first Woljin nuclear power plant in 2007. Therefore it is necessary that dry storage facility is secured to store safely the spent nuclear fuel on site of the nuclear power plant until national policy for a back-end spent nuclear fuel cycle is established. In order to store safely spent nuclear fuel, it is important that the present status and technology on dry storage of spent nuclear fuel is looked over. Therefore, the present status on dry storage of spent nuclear fuel was analyzed so as to develop dry storage system and choose a proper dry storage method domestic.

  2. Preliminary design report: Babcock and Wilcox BR-100 100-ton rail/barge spent fuel shipping cask

    International Nuclear Information System (INIS)

    1990-02-01

    The purpose of this document is to provide information on burnup credit as applied to the preliminary design of the BR-100 shipping cask. There is a brief description of the preliminary basket design and the features used to maintain a critically safe system. Following the basket description is a discussion of various criticality analyses used to evaluate burnup credit. The results from these analyses are then reviewed in the perspective of fuel burnups expected to be shipped to either the final repository or a Monitored Retrievable Storage (MRS) facility. The hurdles to employing burnup credit in the certification of any cask are then outlines and reviewed. the last section gives conclusions reached as to burnup credit for the BR-100 cask, based on our analyses and experience. All information in this study refers to the cask configured to transport PWR fuel. Boiling Water Reactor (BWR) fuel satisfies the criticality requirements so that burnup credit is not needed. All calculations generated in the preparation of this report were based upon the preliminary design which will be optimized during the final design. 8 refs., 19 figs., 16 tabs

  3. Nutritional value of dual-purpose wheat genotypes pastures under grazing by dairy cows

    Directory of Open Access Journals (Sweden)

    Mauricio Pase Quatrin

    2017-07-01

    Full Text Available In the south of Brazil, one of the major limitations to milk production is the low forage availability during autumn and early winter. The use of dual-purpose wheat genotypes is one alternative to minimize the impact of low forage availability in addition to produce grains. Therefore, this study aimed to evaluate the nutritional value of two dual-purpose wheat genotypes (BRS Tarumã and BRS Umbu. Structural composition and forage nitrogen uptake were evaluated. The nutritional value of the forage was analyzed for mineral matter (MM, organic matter (OM, neutral detergent fiber (NDF, crude protein (CP, total digestible nutrients (TDN, in situ organic matter digestibility (ISOMD and in situ dry matter digestibility (ISDMD. Differences in NDF (49.03 vs. 46.44%, CP (24.4 vs. 27.4%, ISOMD (83.53 vs. 85.45%, ISDMD (83.59 vs. 86.65% and TDN (75.37 vs. 78.39 for BRS Umbu and BRS Tarumã genotypes were detected, respectively. The BRS Umbu genotype had a lower leaf blade proportion and forage nitrogen uptake. The dual-purpose wheat genotype BRS Tarumã was superior in nutritive value.

  4. Criticality impacts on LWR fuel storage efficiency

    International Nuclear Information System (INIS)

    Napolitano, D.

    1992-01-01

    This presentation discusses the criticality impacts throughout storage of fuel onsite including new fuel storage, spent fuel storage, consolidation, and dry storage. The general principles for criticality safety are also be discussed. There is first an introduction which explains today's situation for criticality safety concerns. This is followed by a discussion of criticality safety Regulatory Guides, safety limits and fundamental principles. Design objectives for criticality safety in the 1990's include higher burnups, longer cycles, and higher enrichments which impact the criticality safety design. Criticality safety for new fuel storage, spent fuel storage, fuel consolidation, and dry storage are followed by conclusions. Today's situation is one in which the US does not reprocess, and does not have an operating MRS facility or repository. High density fuel storage rack designs of the 1980s, are filling up. Dry cask storage systems for spent fuel storage are being utilized. Enrichments continue to increase PWR fuel assemblies with enrichments of 4.5 to 5.0 weight percent U-235 and BWR fuel assemblies with enrichments of 3.25 to 3.5 weight percent U-235 are common. Criticality concerns affect the capacity and the economics of light water reactor (LWR) fuel storage arrays by dictating the spacing of fuel assemblies in a storage system, or the use of poisons or exotic materials in the storage system design

  5. Development of the GA-4 and GA-9 legal weight truck spent fuel casks

    International Nuclear Information System (INIS)

    Grenier, R.M.; Meyer, R.J.; Mings, W.J.

    1993-01-01

    General Atomics (GA) has designed two new truck casks under contract to the U.S. Department of Energy as part of the Office of Civilian Radioactive Waste Management (OCRWM) Cask System Development Program. The GA-4 and GA-9 Casks, when licensed by the U.S. Nuclear Regulatory Commission, will transport intact spent fuel assemblies from commercial nuclear reactor sites to a monitored retrievable storage facility or permanent repository. (J.P.N.)

  6. Engineering and safety features of modular vault dry storage

    International Nuclear Information System (INIS)

    Deacon, D.; Wheeler, D.J.

    1984-01-01

    This paper discusses the need for interim dry storage and reviews detailed features of the Modular Vault Dry storage concept. The concept meets three basic utility requirements. Firstly, the technology and safety features have been demonstrated on existing plant; secondly, it can be built and licensed in an acceptably short timescale; and thirdly, economic analysis shows that a modular vault dry store is often the cheapest option for interim storage

  7. Quality assurance and design control problems associated with the fabrication and use of spent fuel dry storage components

    International Nuclear Information System (INIS)

    Kobetz, T.J.; Matula, T.O.; Shankman, S.F.

    1999-01-01

    This paper presents the concerns of the staff of the U.S. Nuclear Regulatory Commission (NRC) regarding vendor and utility quality assurance (QA) oversight during the design and fabrication of spent fuel dry storage cask (DSC) systems. Deficient QA and design control programmes have resulted in significant enforcement actions against both vendors and utilities. In addition, the utilities, vendors, and NRC, have expended a considerable amount of resources on resolving these problems. As a result, some utilities have been forced to explore other options for long-term storage of spent fuel, including reracking the spent fuel pool and switching DSC vendors. Some vendors stopped fabricating DSCs until appropriate corrective actions were implemented. This resulted in significant financial and operational burdens on both utilities and vendors. In fiscal years 1996 and 1997, NRC reallocated resources from licensing activities to increased inspection and enforcement activities, thus causing delays in the licensing of new DSC designs. It is imperative that vendors and utilities learn from these mistakes and implement effective QA and DC programmes. (author)

  8. SCOPE, Shipping Cask Optimization and Parametric Evaluation

    International Nuclear Information System (INIS)

    2002-01-01

    number (1-25) of 1-, 2-, 3-, 4-, 7-, or 10-year-old PWR spent fuel assemblies. 3 - Restrictions on the complexity of the problem: The key physical features of those casks considered by the SCOPE code include: an inner steel shell, a gamma-ray shield, an outer steel shell, a neutron shield, and an outside barrel. Depending on the amount of decay heat that must be dissipated, the cask(s) may or may not have circumferential fins. Inside the cask(s), the spent fuel assemblies (or canisters) may be separated by means of an aluminium or copper insert. It is assumed that the spent fuel is to be shipped dry (i.e., casks with forced circulation cooling systems are not considered). Lead, iron, or uranium metal may be specified as the gamma-ray shielding material, while the neutron shield is always assumed to be a common mixture of water and ethylene glycol containing approximately 1 wt% boron

  9. Fuel consolidation and compaction and storage of NFBC

    International Nuclear Information System (INIS)

    Fuierer, T.

    1992-01-01

    Rochester Gas and Electric Corporation (RG ampersand E) has been involved in two separate fuel consolidation demonstration programs. One of those programs resulted in identifying some problems that may be resolved in consolidation hardware compaction and storage in order for consolidation to be attractive. In conjunction with the Electric Power Research Institute (EPRI), a study was recently performed on hardware compaction and storage. Consolidation is probably not a commercial alternative at this point in time because there are still several problems that must be resolved. There are some potential advantages of fuel consolidation. Consolidation has attractive economics and can minimize the institutional impacts of expanding spent fuel storage by internalizing spent fuel storage operations. The licensing effort is fairly simple. Consolidation may be less likely to have public intervention since the storage expansion will occur inside the plant. Consolidation can be subcontracted and the equipment is temporary. It can be used in conjunction with other storage expansion technologies such as dry storage. Fewer dry storage casks would be needed to store consolidated fuel than would be necessary for intact spent fuel

  10. Impact analysis of shipping casks

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kennedy, J.M.

    1989-01-01

    Shipping casks are being used in the United States Department of Energy to transport irradiated experiments, reactor fuel, radioactive waste, etc. One of the critical requirements in shipping cask analysis is the necessity to withstand severe impact environments. It is still conventional to develop the design and to verify the design requirements by hand calculations. Full three dimensional computations of impact scenarios have been performed but they are too expensive and time consuming for design purposes. Typically, on the order of more than an hour of CRAY time is required for a detailed, three dimensional analysis. The paper describes how simpler two- and three-dimensional models can be used to provide an intermediate level of detail between full three dimensional finite element calculations and hand calculations. The regulation that is examined here is: 10 CFR-71.73 hypothetical accident conditions, free drop. Free drop for an accident condition of a Class I package (approximate weight of 22,000 lb) is defined as a 30 foot drop onto a flat, essentially unyielding, horizontal surface, striking the surface in a position for which maximum damage is expected. Three free drop scenarios are analyzed to assess the integrity of the cask when subjected to large bending and axial stresses. These three drop scenarios are: (1) a thirty foot axial drop on either end, (2) a thirty foot oblique angle drop with the cask having several different orientations from the vertical with impact on the top end cask corner, and (3) a thirty foot side drop with simultaneous impact on the strength of the various components that comprise the cask. The predicted levels of deformation and stresses in the cask will be used to assess the potential damage level. 5 refs., 5 figs., 1 tab

  11. What drives Greek consumer preferences for cask wine?

    DEFF Research Database (Denmark)

    Chrysochou, Polymeros; Corsi, A. M.; Krystallis Krontalis, Athanasios

    2012-01-01

    PurposeCask wine (bag-in-box, soft pack) has not received considerable attention in wine marketing research, but interest among winemakers and consumers has been increasing steadily. However, little is known about what drives consumer preferences for cask wine and, furthermore, what the profile...... a sustainable eco-friendly positioning. Originality/value – This study contributes to the understanding of what drives consumers’ preferences for cask wine, something that few studies have done until now. Moreover, this is the first study to use the BWS method for this type of product....

  12. Safety of spent fuel elements storage under water at La Hague facility

    International Nuclear Information System (INIS)

    Guezenec, J.Y.

    1990-12-01

    Awaiting for a decision about radioactive waste repository, the spent fuel elements are stored in the storage pools at the La Hague facility. The water in the pools is permanently cooled and purified to maintain the temperature, radioactivity and chemical pollution under preset limits. The first safety problem is concerned with the spent fuel transport casks. Opening of the casks is done under water in a number of facilities. The most recent approach is done by the company To, which established dry manipulation which enables to minimise the risk of possible cask failures as well as external contamination of cooling fins of the casks. Another general safety related problem is related to criticality risk caused by possible cooling failures or by external events like earthquakes. Special probability limit is set up for seismic events to be less than 10 -7 /year. Equally, risk of fuel assembly failures due to possible chocs and possibility of defects in pool isolation are taken into account [fr

  13. Economical evaluation on spent fuel storage technology away from reactor

    International Nuclear Information System (INIS)

    Itoh, Chihiro; Nagano, Koji; Saegusa, Toshiari

    2000-01-01

    Concerning the spent fuel storage away from reactor, economical comparison was carried out between metal cask and water pool storage technology. The economic index was defined by levelized cost (Unit storage cost) calculated on the assumption that the storage cost is paid at the receipt of the spent fuel at the storage facility. It is found that the cask storage is economical for small and large storage capacity. Unit storage cost of pool storage, however, is getting close to that of cask storage in case of storage capacity of 10,000 ton. Then, the unit storage cost is converted to power generation cost using data of the burn up of the fuel, etc. The cost is obtained as yen 0.09/kWh and yen 0. 15/kWh for cask storage and pool storage, respectively in case of the capacity of 5,000 tonU and the cooling time of 5 years. (author)

  14. Development of technology to utilize existing tobacco kilns and/or tobacco storage barns for curing (drying) and/or storage of other crops

    Energy Technology Data Exchange (ETDEWEB)

    VanHooren, D L; Scott, J J

    1988-01-01

    This report investigates methods to utilize existing bulk tobacco kilns for curing (drying) of shelled corn, peanuts, and baled hay. In recent years Ontario tobacco producers have had to reduce production levels due to a declining demand for flue-cured tobacco. Many tobacco producers are currently diversifying into other crops. Some of these crops require curing and/or storage. Because of high capital costs to purchase conventional curing and/or storage facilities, tobacco producers wish to reduce their initial diversification costs by modifying their existing tobacco kilns (tobacco drying structures) and/or tobacco storage barns for this purpose. The investigation included high profile and low profile downdraft stick kilns, bulk kilns, and tobacco storage (pack) barns. Corn, peanuts, and hay were considered in relation to bulk kiln specifications and modifications, handling, drying and storage methods, energy requirements, cost, and quality of end product. The conclusions drawn from the study of each product are presented. Results from the projects indicate that: shelled corn can be dried from about 26% moisture content (w.b.) or less; baled hay can be dried from about 27% moisture content (w.b.) or less; and peanuts cured at airflow rates ranging from 169 to 645 l/s/m/sup 3/ of peanuts exhibited no significant differences when evaluated for appearance and flavour. 1 ref., 23 figs., 15 tabs.

  15. Selection of concepts for monitored retrievable storage of spent nuclear fuel and high-level radioactive wastes

    International Nuclear Information System (INIS)

    1984-04-01

    The monitored retrievable storage (MRS) concepts considered are: metal cask (stationary and transportable); concrete cask (sealed storage cask); concrete cask-in-trench; field drywell; tunnel drywell; open cycle vault; closed cycle vault; and tunnel rack vault. These concepts were compared primarily upon the relative performance of the storage units on seven criteria which together encompass the key considerations for selecting an MRS concept, namely their ability to satisfy the MRS mission requirements. These criteria were: safety and licensing; environmental impacts; socioeconomic impacts; siting requirements; cost; concept maturity; and flexibility. Evaluations of the candidate concepts indicate that all of the concepts could satisfactorily serve in an MRS facility. However, using the above criteria, the two concepts selected for further design studies are the concrete cask (primary concept), better entitled the sealed storage cask, and the field drywell (alternate concept). It was recognized that the transportable metal storage cask may be used to supplement at-reactor storage until such time as the repository or MRS becomes available. Consequently, a hybrid storage facility may be required (e.g., one using concrete casks or field drywells, with the capability of receiving and storing the transportable cask). Both the concrete cask and the field drywell concepts can easily accommodate the transportable cask. Further design efforts will ensure the compatibility of the MRS designs with the transportable cask

  16. Review of Current Criteria of Spent Fuel Rod Integrity during Dry Storage

    International Nuclear Information System (INIS)

    Yang, Yong Sik; Kim, Sun Ki; Bang, Je Geon; Song, Kun Woo

    2006-01-01

    A PWR spent fuel has been stored in a wet storage pool in Korea. However, the amount of spent fuel is expected to exceed the capacity of a wet storage pool within 10∼15 years. From the early 1970's, a research on the PWR spent fuel dry storage started because the dry storage system has been economical compared with the wet storage system. The dry storage technology for Zircaloy-clad fuel was assessed and licensed in many countries such as USA, Canada, FRG and Switzerland. In the dry storage system, a clad temperature may be higher than in the wet storage system and can reach up to 400 .deg.. A higher clad temperature can cause cladding failures during the period of dry storage, and thus a dry storage related research has essentially dealt with the prevention of clad degradation. It is temperature and rod internal pressure that cause cladding failures through the mechanisms such as clad creep rupture, hydride re-orientation, and stress-corrosion cracking etc.. In this paper, the current licensing criteria are summarized for the PWR spent fuel dry storage system, especially on spent fuel rod integrity. And it is investigated that an application propriety of existing criteria to Korea spent fuel dry storage system

  17. Summary Report for Capsule Dry Storage Project

    Energy Technology Data Exchange (ETDEWEB)

    JOSEPHSON, W S

    2003-09-04

    There are 1.936 cesium (Cs) and strontium (Sr) capsules stored in pools at the Waste Encapsulation and Storage Facility (WESF). These capsules will be moved to dry storage on the Hanford Site as an interim measure to reduce risk. The Cs/Sr Capsule Dry Storage Project (CDSP) is conducted under the assumption the capsules will eventually be moved to the repository at Yucca Mountain, and the design criteria include requirements that will facilitate acceptance at the repository. The storage system must also permit retrieval of capsules in the event vitrification of the capsule contents is pursued. A cut away drawing of a typical cesium chloride (CsCI) capsule and the capsule property and geometry information are provided in Figure 1.1. Strontium fluoride (SrF{sub 2}) capsules are similar in design to CsCl capsules. Further details of capsule design, current state, and reference information are given later in this report and its references. Capsule production and life history is covered in WMP-16938, Capsule Characterization Report for Capsule Dry Storage Project, and is briefly summarized in Section 5.2 of this report.

  18. Multi Canister Overpack (MCO) Design Report [SEC 1 Thru 3

    Energy Technology Data Exchange (ETDEWEB)

    GOLDMANN, L.H.

    2000-02-29

    The MCO is designed to facilitate the removal, processing and storage of the spent nuclear fuel currently stored in the East and West K-Basins. The MCO is a stainless steel canister approximately 24 inches in diameter and 166 inches long with cover cap installed. The shell and the collar which is welded to the shell are fabricated from 304/304L dual certified stainless steel for the shell and F304/F304L dual certified for the collar. The shell has a nominal thickness of 1/2 inch. The top closure consists of a shield plug with four processing ports and a locking ring with jacking bolts to pre-load a metal seal under the shield plug. The fuel is placed in one of four types of baskets, excluding the SPR fuel baskets, in the fuel retention basin. Each basket is then loaded into the MCO which is inside the transfer cask. Once all of the baskets are loaded into the MCO, the shield plug with a process tube is placed into the open end of the MCO. This shield plug provides shielding for workers when the transfer cask, containing the MCO, is lifted from the pool. After being removed from the pool, the locking ring is installed and the jacking bolts are tightened to pre-load the metal main closure seal. The cask is then sealed and the MCO taken to the Cold Vacuum Drying (CVD) facility for bulk water removal and vacuum drying through the process ports. Covers for the process ports may be installed or removed as needed per operating procedures. The MCO is then transferred to the Canister Storage Building (CSB), in the closed transfer cask. At the CSB, the MCO is then removed from the cask and becomes one of two MCOs stacked in a storage tube. MCOs will have a cover cap welded over the shield plug providing a complete welded closure. A number of MCOs may be stored with just the mechanical seal to allow monitoring of the MCO pressure, temperature, and gas composition.

  19. Modular vault dry storage system for interim storage of irradiated fuel

    International Nuclear Information System (INIS)

    Cundill, B.R.; Ealing, C.J.; Agarwal, B.K.

    1988-01-01

    The Foster Wheeler Energy Application (FWEA) Modular Vault Dry Store (MVDS) is a dry storage concept for the storage of all types of irradiated reactor fuel. For applications in the US, FWEA submitted an MVDS Topical Report to the US NRC during 1986. Following NRC approval of the MVDS Topical Report concept for unconsolidated LWR fuel, US utilities have available a new, compact, economic and flexible system for the storage of irradiated fuel at the reactor site for time periods of at least 20 years (the period of the first license). The MVDS concept jointly developed by FWEA and GEC in the U.K., has other applications for large central away from reactor storage facilities such as a Monitorable Retrievable Storage (MRS) installation. This paper describes the licensed MVDS design, aspects of performance are discussed and capital costs compared with alternative concepts. Alternative configurations of MVDS are outlined

  20. Pickering dry storage - commissioning and initial operation

    International Nuclear Information System (INIS)

    Jonjev, S.

    1996-01-01

    Having commissioned all individual conventional and nuclear systems, the first Dry Storage Container (DSC) was loaded with four modules of 17 year cooled irradiated fuel (366 bundles) in the Auxiliary Irradiated Fuel Bay (AIFB) on November 29, 1995. After decontamination of the outer surface, and draining of water, the DSC was transported to the Used Fuel Dry Storage Facility (UFDSF) workshop, where it was vacuum dried, and then the lid was welded on. Following successful radiography test of the lid weld, the DSC was vacuum dried again and backfilled with Helium to a pressure of 930 mbar(a). The Helium leak test showed zero leakage (allowable leak rate is 1x10 -5 cc/sec). Finally, after loose contamination checks were performed and permanent safeguards seals were applied, the DSC was placed in the UFDSF storage area on January 23, 1996. Radiation fields at contact with the DSC surface were < 0.6 mrem/hr, and at the exterior surface of the storage building wall only 33 micro-rem/hr (far below the target of 250 micro-rem/hr). Therefore, the actual dose rates to general public (at the exclusion zone boundary) will be well below the design target of 1 % of the regulatory limit. (author). 3 refs., 2 tabs., 5 figs