WorldWideScience

Sample records for drum waste assay

  1. On the efficiency calibration of a drum waste assay system

    CERN Document Server

    Dinescu, L; Cazan, I L; Macrin, R; Caragheorgheopol, G; Rotarescu, G

    2002-01-01

    The efficiency calibration of a gamma spectroscopy waste assay system, constructed by IFIN-HH, was performed. The calibration technique was based on the assumption of a uniform distribution of the source activity in the drum and also a uniform sample matrix. A collimated detector (HPGe--20% relative efficiency) placed at 30 cm from the drum was used. The detection limit for sup 1 sup 3 sup 7 Cs and sup 6 sup 0 Co is approximately 45 Bq/kg for a sample of about 400 kg and a counting time of 10 min. A total measurement uncertainty of -70% to +40% was estimated.

  2. Low-Level Waste Drum Assay Intercomparison Study

    International Nuclear Information System (INIS)

    Greutzmacher, K.; Kuzminski, J.; Myers, S. C.

    2003-01-01

    Nuclear waste assay is an integral element of programs such as safeguards, waste management, and waste disposal. The majority of nuclear waste is packaged in drums and analyzed by various nondestructive assay (NDA) techniques to identify and quantify the radioactive content. Due to various regulations and the public interest in nuclear issues, the analytical results are required to be of high quality and supported by a rigorous Quality Assurance (QA) program. A valuable QA tool is an intercomparison program in which a known sample is analyzed by a number of different facilities. While transuranic waste (TRU) certified NDA teams are evaluated through the Performance Demonstration Program (PDP), low-level waste (LLW) assay specialists have not been afforded a similar opportunity. NDA specialists from throughout the DOE complex were invited to participate in this voluntary drum assay intercomparison study that was organized and facilitated by the Solid Waste Operations and the Safeguards Science and Technology groups at the Los Alamos National Laboratory and by Eberline Services. Each participating NDA team performed six replicate blind measurements of two 55-gallon drums with relatively low-density matrices (a 19.1 kg shredded paper matrix and a 54.4 kg mixed metal, rubber, paper and plastic matrix). This paper presents the results from this study, with an emphasis on discussing the lessons learned as well as desirable follow up programs for the future. The results will discuss the accuracy and precision of the replicate measurements for each NDA team as well as any issues that arose during the effort

  3. Techniques for improving shuffler assay results for 55-gallon waste drums

    International Nuclear Information System (INIS)

    Rinard, P.M.; Prettyman, T.H.; Stuenkel, D.

    1994-01-01

    Accurate assays of the fissile contents in waste drums are needed to ensure the most proper and economical handling and disposal of the waste. An improvement of accuracy will mean fewer drums disposed as transuranic waste when they really contain low-level waste, saving both money and burial sites. Shufflers are used for assaying waste drums and are very accurate with nonmoderating matrices (such as iron). In the active mode they count delayed neutrons released after fissions are induced by irradiation neutrons from a 252 Cf source. However, as the hydrogen density from matrices such as paper or gloves increases, the accuracy can suffer without proper attention. The neutron transport and fission probabilities change with the hydrogen density, causing the neutron count rate to vary with the position of the fissile material within the drum. The magnitude of this variation grows with the hydrogen density

  4. Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program

    International Nuclear Information System (INIS)

    2005-01-01

    The Performance Demonstration Program (PDP) for Nondestructive Assay (NDA) is a test program designed to yield data on measurement system capability to characterize drummed transuranic (TRU) waste generated throughout the Department of Energy (DOE) complex. The tests are conducted periodically and provide a mechanism for the independent and objective assessment of NDA system performance and capability relative to the radiological characterization objectives and criteria of the Office of Characterization and Transportation (OCT). The primary documents requiring an NDA PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC), which requires annual characterization facility participation in the PDP, and the Quality Assurance Program Document (QAPD). This NDA PDP implements the general requirements of the QAPD and applicable requirements of the WAC. Measurement facilities must demonstrate acceptable radiological characterization performance through measurement of test samples comprised of pre-specified PDP matrix drum/radioactive source configurations. Measurement facilities are required to analyze the NDA PDP drum samples using the same procedures approved and implemented for routine operational waste characterization activities. The test samples provide an independent means to assess NDA measurement system performance and compliance per criteria delineated in the NDA PDP Plan. General inter-comparison of NDA measurement system performance among DOE measurement facilities and commercial NDA services can also be evaluated using measurement results on similar NDA PDP test samples. A PDP test sample consists of a 55-gallon matrix drum containing a waste matrix type representative of a particular category of the DOE waste inventory and nuclear material standards of known radionuclide and isotopic composition typical of DOE radioactive material. The PDP sample components are made available to participating measurement facilities as designated by the

  5. Considerations for an active and passive scanner to assay nuclear waste drums

    International Nuclear Information System (INIS)

    Martz, H.E.; Azevedo, S.G.; Roberson, G.P.; Schneberk, D.J.; Koenig, Z.M.; Camp, D.C.

    1990-01-01

    Radioactive wastes are generated at many DOE laboratories, military facilities, fuel fabrication and enrichment plants, reactors, hospitals, and university research facilities. At all of these sites, wastes must be separated, packaged, categorized, and packed into some sort of container--usually 208-L (55-gal) drums--for shipment to waste-storage sites. Prior to shipment, the containers must be labeled, assayed, and certified; the assay value determines the ultimate disposition of the waste containers. An accurate nondestructive assay (NDA) method would identify all the radioisotopes present and provide a quantitative measurement of their activity in the drum. In this way, waste containers could be routed in the most cost-effective manner and without having to reopen them. Currently, the most common gamma-ray method used to assay nuclear waste drums is segmented gamma-ray scanning (SGS) spectrometer that crudely measures only the amount of 235 U or 239 Pu present in the drum. This method uses a spatially-averaged, integrated, emitted gamma-ray-intensity value. The emitted intensity value is corrected by an assumed constant-attenuation value determined by a spatially-averaged, transmission (or active) measurement. Unfortunately, this typically results in an inaccurate determination of the radioactive activities within a waste drum because this measurement technique is valid only for homogeneous-attenuation or known drum matrices. However, since homogeneous-attenuation matrices are not common and may be unknown, other NDA techniques based on active and Passive CT (A ampersand PCT) are under development. The active measurement (ACT) yields a better attenuation matrix for the drum, while the passive measurement (PCT) more accurately determines the identity of the radioisotopes present and their activities. 9 refs., 2 figs

  6. Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program

    International Nuclear Information System (INIS)

    DOE Carlsbad Field Office

    2001-01-01

    The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAO's). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the drummed waste PDP, a simulated waste container consists of a 55-gallon matrix drum emplaced with radioactive standards and fabricated matrix inserts. These PDP sample components are distributed to the participating measurement facilities that have been designated and authorized by the Carlsbad Field Office (CBFO). The NDA Drum PDP materials are stored at these sites under secure conditions to

  7. Characterizing and improving passive-active shufflers for assays of 208-Liter waste drums

    International Nuclear Information System (INIS)

    Rinard, P.M.; Adams, E.L.; Menlove, H.O.; Sprinkle, J.K. Jr.

    1992-01-01

    A passive and active neutron shuffler for 208-L waste drums has been used to perform over 1500 active and 500 passive measurements on uranium and plutonium samples in 28 different matrices. The shuffler is now better characterized and improvements have been implemented or suggested. An improved correction for the effects of the matrix material was devised from flux-monitor responses. The most important cause of inaccuracies in assays is a localized instead of a uniform distribution of fissile material in a drum; a technique for deducing the distribution from the assay data and then applying a correction is suggested and will be developed further. A technique is given to detect excessive amounts of moderator that could make hundreds of grams of 235 U assay as zero grams. Sensitivities (minimum detectable masses) for 235 U with active assays and for 240 Pu eff with passive assays are presented and the effects of moderators and absorbers on sensitivities noted

  8. Automated box/drum waste assay (252Cf shuffler) through the material access and accountability boundary

    International Nuclear Information System (INIS)

    Horley, E.C.; Bjork, C.W.; Bourret, S.C.; Polk, P.J.; Schneider, C.J.; Studley, R.V.

    1992-01-01

    For the first time, a shuffler waste-assay system has been made a part of material access and accountability boundary (MAAB). A 252 Cf Pass-Thru shuffler integrated with a conveyor handling system, will process box or drum waste across the MAAB. This automated system will significantly reduce personnel operating costs because security forces will not be required at the MAAB during waste transfer. Further, the system eliminates the chance of a mix-up between measured and nonmeasured waste. This Pass-Thru shuffler is to be installed in the Westinghouse Savannah River Company 321M facility to screen waste boxes and drums for 235 U. An automated conveyor will load waste containers into the shuffler, and upon verification, will transfer the containers across the MAAB. Verification will consist of a weight measurement followed by active neutron interrogation. Containers that pass low-level waste criteria will be conveyed to an accumulator section outside the MAAB. If a container fails to meet the waste criteria, it will be rejected and sent back to the load station for manual inspection and repackaging

  9. Los Alamos waste drum shufflers users manual

    International Nuclear Information System (INIS)

    Rinard, P.M.; Adams, E.L.; Painter, J.

    1993-01-01

    This user manual describes the Los Alamos waste drum shufflers. The primary purpose of the instruments is to assay the mass of 235 U (or other fissile materials) in drums of assorted waste. It can perform passive assays for isotopes that spontaneously emit neutrons or active assays using the shuffler technique as described on this manual

  10. Waste drum refurbishment

    International Nuclear Information System (INIS)

    Whitmill, L.J.

    1996-01-01

    Low-carbon steel, radioactive waste containers (55-gallon drums) are experiencing degradation due to moisture and temperature fluctuations. With thousands of these containers currently in use; drum refurbishment becomes a significant issue for the taxpayer and stockholders. This drum refurbishment is a non-intrusive, portable process costing between 1/2 and 1/25 the cost of repackaging, depending on the severity of degradation. At the INEL alone, there are an estimated 9,000 drums earmarked for repackaging. Refurbishing drums rather than repackaging can save up to $45,000,000 at the INEL. Based on current but ever changing WIPP Waste Acceptance Criteria (WAC), this drum refurbishment process will restore drums to a WIPP acceptable condition plus; drums with up to 40% thinning o the wall can be refurbished to meet performance test requirements for DOT 7A Type A packaging. A refurbished drum provides a tough, corrosion resistant, waterproof container with longer storage life and an additional containment barrier. Drums are coated with a high-pressure spray copolymer material approximately .045 inches thick. Increase in internal drum temperature can be held to less than 15 F. Application can be performed hands-on or the equipment is readily adaptable and controllable for remote operations. The material dries to touch in seconds, is fully cured in 48 hours and has a service temperature of -60 to 500 F. Drums can be coated with little or no surface preparation. This research was performed on drums however research results indicate the coating is very versatile and compatible with most any material and geometry. It could be used to provide abrasion resistance, corrosion protection and waterproofing to almost anything

  11. Metrological tests of a 200 L calibration source for HPGE detector systems for assay of radioactive waste drums.

    Science.gov (United States)

    Boshkova, T; Mitev, K

    2016-03-01

    In this work we present test procedures, approval criteria and results from two metrological inspections of a certified large volume (152)Eu source (drum about 200L) intended for calibration of HPGe gamma assay systems used for activity measurement of radioactive waste drums. The aim of the inspections was to prove the stability of the calibration source during its working life. The large volume source was designed and produced in 2007. It consists of 448 identical sealed radioactive sources (modules) apportioned in 32 transparent plastic tubes which were placed in a wooden matrix which filled the drum. During the inspections the modules were subjected to tests for verification of their certified characteristics. The results show a perfect compliance with the NIST basic guidelines for the properties of a radioactive certified reference material (CRM) and demonstrate the stability of the large volume CRM-drum after 7 years of operation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A prototype of radioactive waste drum monitor by non-destructive assays using gamma spectrometry

    International Nuclear Information System (INIS)

    Thanh, Tran Thien; Trang, Hoang Thi Kieu; Chuong, Huynh Dinh; Nguyen, Vo Hoang; Tran, Le Bao; Tam, Hoang Duc; Tao, Chau Van

    2016-01-01

    In this work, segmented gamma scanning and the gamma emission tomography were used to locate unknown sources in a radioactive waste drum. The simulated detector response function and full energy peak efficiency are compared to corresponding experimental data and show about 5.3% difference for an energy ranging from 81 keV to 1332.5 keV for point sources. Computation of the corresponding activity is in good agreement with the true values. - Highlights: • Segmented gamma scanning and gamma emission tomography are used to locate point source in waste drums. • The PENELOPE software is used to compute the detection efficiency of the localized point source in the waste drum. • The activity of "1"3"7Cs and "6"0Co point source could be determined with an accuracy better than 10% for air and sand matrices.

  13. Metrological tests of a 200 L calibration source for HPGE detector systems for assay of radioactive waste drums

    International Nuclear Information System (INIS)

    Boshkova, T.; Mitev, K.

    2016-01-01

    In this work we present test procedures, approval criteria and results from two metrological inspections of a certified large volume "1"5"2Eu source (drum about 200 L) intended for calibration of HPGe gamma assay systems used for activity measurement of radioactive waste drums. The aim of the inspections was to prove the stability of the calibration source during its working life. The large volume source was designed and produced in 2007. It consists of 448 identical sealed radioactive sources (modules) apportioned in 32 transparent plastic tubes which were placed in a wooden matrix which filled the drum. During the inspections the modules were subjected to tests for verification of their certified characteristics. The results show a perfect compliance with the NIST basic guidelines for the properties of a radioactive certified reference material (CRM) and demonstrate the stability of the large volume CRM-drum after 7 years of operation. - Highlights: • Large (200 L) volume drum source designed, produced and certified as CRM in 2007. • Source contains 448 identical sealed radioactive "1"5"2Eu sources (modules). • Two metrological inspections in 2011 and 2014. • No statistically significant changes of the certified characteristics over time. • Stable calibration source for HPGe-gamma radioactive waste assay systems.

  14. Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program

    International Nuclear Information System (INIS)

    2009-01-01

    Each testing and analytical facility performing waste characterization activities for the Waste Isolation Pilot Plant (WIPP) participates in the Performance Demonstration Program (PDP) to comply with the Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC) (DOE/WIPP-02-3122) and the Quality Assurance Program Document (QAPD) (CBFO-94-1012). The PDP serves as a quality control check for data generated in the characterization of waste destined for WIPP. Single blind audit samples are prepared and distributed to each of the facilities participating in the PDP. The PDP evaluates analyses of simulated headspace gases, constituents of the Resource Conservation and Recovery Act (RCRA), and transuranic (TRU) radionuclides using nondestructive assay (NDA) techniques.

  15. Preliminary report of the comparison of multiple non-destructive assay techniques on LANL Plutonium Facility waste drums

    International Nuclear Information System (INIS)

    Bonner, C.; Schanfein, M.; Estep, R.

    1999-01-01

    Prior to disposal, nuclear waste must be accurately characterized to identify and quantify the radioactive content. The DOE Complex faces the daunting task of measuring nuclear material with both a wide range of masses and matrices. Similarly daunting can be the selection of a non-destructive assay (NDA) technique(s) to efficiently perform the quantitative assay over the entire waste population. In fulfilling its role of a DOE Defense Programs nuclear User Facility/Technology Development Center, the Los Alamos National Laboratory Plutonium Facility recently tested three commercially built and owned, mobile nondestructive assay (NDA) systems with special nuclear materials (SNM). Two independent commercial companies financed the testing of their three mobile NDA systems at the site. Contained within a single trailer is Canberra Industries segmented gamma scanner/waste assay system (SGS/WAS) and neutron waste drum assay system (WDAS). The third system is a BNFL Instruments Inc. (formerly known as Pajarito Scientific Corporation) differential die-away imaging passive/active neutron (IPAN) counter. In an effort to increase the value of this comparison, additional NDA techniques at LANL were also used to measure these same drums. These are comprised of three tomographic gamma scanners (one mobile unit and two stationary) and one developmental differential die-away system. Although not certified standards, the authors hope that such a comparison will provide valuable data for those considering these different NDA techniques to measure their waste as well as the developers of the techniques

  16. The nondestructive assay of 55-gallon drums containing uranium and transuranic waste using passive-active shufflers

    International Nuclear Information System (INIS)

    Rinard, P.M.; Adams, E.L.; Menlove, H.O.; Sprinkle, J.K. Jr.

    1992-11-01

    This study has been completed to characterize and improve the performance of passive-active neutron (PAN) shufflers in assaying 55gal. drums of nuclear facility waste for uranium and transuranic elements. Over 1700 active measurements and 800 passive measurements were made using 28 different matrices. Some of the matrices had homogeneous distributions of known amounts of moderating and absorbing materials, whereas others were less well characterized. Some of the well-characterized matrices simulate facility waste better than the others,especially matrices of paper, iron, polyethylene in nine different densities (with and without neutron poisons), alumina trap material, and concrete blocks

  17. Neutron and gamma-ray nondestructive examination of contact-handled transuranic waste at the ORNL TRU Waste Drum Assay Facility

    International Nuclear Information System (INIS)

    Schultz, F.J.; Coffey, D.E.; Norris, L.B.; Haff, K.W.

    1985-03-01

    A nondestructive assay system, which includes the Neutron Assay System (NAS) and the Segmented Gamma Scanner (SGS), for the quantification of contact-handled (<200 mrem/h total radiation dose rate at contact with container) transuranic elements (CH-TRU) in bulk solid waste contained in 208-L and 114-L drums has been in operation at the Oak Ridge National Laboratory since April 1982. The NAS has been developed and demonstrated by Los Alamos National Laboratory (LANL) and the Oak Ridge National Laboratory (ORNL) for use by most US Department of Energy Defense Plant (DOE-DP) sites. More research and development is required, however, before the NAS can provide complete assay results for other than routine defense waste. To date, 525 ORNL waste drums have been assayed, with varying degrees of success. The isotopic complexity of the ORNL waste creates a correspondingly complex assay problem. The NAS and SGS assay data are presented and discussed. Neutron matrix effects, the destructive examination facility, and enriched uranium fuel-element assays are also discussed

  18. The design of a high-efficiency neutron counter for waste drums to provide optimized sensitivity for plutonium assay

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, H.O.; Beddingfield, D.H.; Pickrell, M.M. [Los Alamos National Lab., NM (United States)] [and others

    1997-11-01

    An advanced passive neutron counter has been designed to improve the accuracy and sensitivity for the nondestructive assay of plutonium in scrap and waste containers. The High-Efficiency Neutron Counter (HENC) was developed under a Cooperative Research Development Agreement between the Los Alamos National Laboratory and Canberra Industries. The primary goal of the development was to produce a passive assay system for 200-L drums that has detectability limits and multiplicity counting features that are superior to previous systems. A detectability limit figure of merit (FOM) was defined that included the detector efficiency, the neutron die-away time, and the detector`s active volume and density that determine the cosmic-ray background. Monte Carlo neutron calculations were performed to determine the parameters to provide an optimum FOM. The system includes the {sup 252}Cf {open_quotes}add-a-source{close_quotes} feature to improve the accuracy as well as statistical filters to reduce the cosmic-ray spallation neutron background. The final decision gave an efficiency of 32% for plutonium with a detector {sup 3}He tube volume that is significantly smaller than for previous high-efficiency systems for 200-L drums. Because of the high efficiency of the HENC, we have incorporated neutron multiplicity counting for matrix corrections for those cases where the plutonium is localized in nonuniform hydrogenous materials. The paper describes the design and performance testing of the advanced system. 5 refs., 8 figs., 3 tabs.

  19. The design of a high-efficiency neutron counter for waste drums to provide optimized sensitivity for plutonium assay

    International Nuclear Information System (INIS)

    Menlove, H.O.; Beddingfield, D.H.; Pickrell, M.M.

    1997-01-01

    An advanced passive neutron counter has been designed to improve the accuracy and sensitivity for the nondestructive assay of plutonium in scrap and waste containers. The High-Efficiency Neutron Counter (HENC) was developed under a Cooperative Research Development Agreement between the Los Alamos National Laboratory and Canberra Industries. The primary goal of the development was to produce a passive assay system for 200-L drums that has detectability limits and multiplicity counting features that are superior to previous systems. A detectability limit figure of merit (FOM) was defined that included the detector efficiency, the neutron die-away time, and the detector's active volume and density that determine the cosmic-ray background. Monte Carlo neutron calculations were performed to determine the parameters to provide an optimum FOM. The system includes the 252 Cf open-quotes add-a-sourceclose quotes feature to improve the accuracy as well as statistical filters to reduce the cosmic-ray spallation neutron background. The final decision gave an efficiency of 32% for plutonium with a detector 3 He tube volume that is significantly smaller than for previous high-efficiency systems for 200-L drums. Because of the high efficiency of the HENC, we have incorporated neutron multiplicity counting for matrix corrections for those cases where the plutonium is localized in nonuniform hydrogenous materials. The paper describes the design and performance testing of the advanced system. 5 refs., 8 figs., 3 tabs

  20. Development of SGS for various waste drums

    International Nuclear Information System (INIS)

    Kim, Ki-Hong; Ryu, Young-Gerl; Kwak, Kyung-Kil; Ji, Yong-Young

    2006-01-01

    Radioactive waste assay system was manufactured to measure the individual nuclides' activity in homogeneous and non-homogeneous waste drums and to exclude worker's exposure. After measuring the activities of all individual γ-emitters, our system was programmed to calculate the activities of α, Β emitters, automatically and then calculated total activities of drum by utilizing scaling factor (relationship between α, Β emitters and Co-60, Cs-137). In general, SGS (Segmented gamma Scanning system) divided a waste drum into 8 segments vertically, and also 8 sectors in one segment to minimize the error. And SGS can be determined the density of drum by using the several matrix correction methods such as transmission ratio, differential peak absorption and mean density correction, individually or by combination. However, from the NPPs and other nuclear facilities, various drum (100∼350L) could be generated. To analyze the activities of γ-emitters from various drums, we modified the collimator (horizontal and vertical) and added detector mover to the existing SGS system. As a results, the measurement error was <12% in a short distance (10 segments, Co-60; 47.87μCi and Cs-137; 101.16μCi) and was <25% in a long distance (8 segments, same sources). This system can be applied to the drum which TGS system does not analyze drum (for example, high density, high activities and large volume). (author)

  1. Relative performance of a TGS for the assay of drummed waste as function of collimator opening

    International Nuclear Information System (INIS)

    Kane, S.C.; Croft, S.; McClay, P.; Venkataraman, R.; Villani, M.F.

    2007-01-01

    Improving the safety, accuracy and overall cost effectiveness of the processes and methods used to characterize and handle radioactive waste is an on-going mission for the nuclear industry. An important contributor to this goal is the development of superior non-destructive assay instruments. The Tomographic Gamma Scanner (TGS) is a case in point. The TGS applies low spatial resolution experimental computed tomography (CT) linear attenuation coefficient maps with three-dimensional high-energy resolution single photon emission reconstructions. The results are presented as quantitative matrix attenuation corrected images and assay values for gamma-emitting radionuclides. Depending on a number of operational factors, this extends the diversity of waste forms that can be assayed, to a given accuracy, to items containing more heterogeneous matrix distributions and less uniform emission activity distributions. Recent advances have significantly extended the capability to a broader range of matrix density and to a wider dynamic range of surface dose rate. Automated systems sense the operational conditions, including the container type, and configure themselves accordingly. The TGS also provides a flexible data acquisition platform and can be used to perform far-field style measurements, classical segmented gamma scanner measurements, or to implement hybrid methods, such as reconstructions that use a priori knowledge to constrain the image reconstruction or the underlying energy dependence of the attenuation. A single, yet flexible, general purpose instrument of this kind adds several tiers of strategic and tactical value to facilities challenged by a diverse and difficult to assay waste streams. The TGS is still in the early phase of industrial uptake. There are only a small number of general purpose TGS systems operating worldwide, most being configured to automatically select between a few configurations appropriate for routine operations. For special investigations

  2. Multimodality characterization of nuclear waste drums using emerging techniques for nondestructive examination and assay

    International Nuclear Information System (INIS)

    Bernardi, R.T.

    1993-01-01

    We are developing an x-ray imaging system that incorporates several inspection technologies for complete, nondestructive evaluation of containers of nuclear waste. In Phase I and Phase II SBIR programs for the DOE, we proved the feasibility of using x-ray computed tomography (CT) and digital radiography (DR)-imaging techniques using x-rays transmitted through the object-for container inspection. Now, with further funding from DOE and working with scientists at Lawrence Livermore National Lab., we are designing a mobile inspection system that will use CT and DR as well as two x-ray emission imaging techniques-single photon emission computed tomography and nondestructive assay. This system will provide much more information about the contents of containers than currently used inspection methods, and will provide archiving of digital data. In this paper, we describe inspection system and present recent results from the CT and DR evaluations

  3. An improved segmented gamma scanning for radioactive waste drums

    International Nuclear Information System (INIS)

    Liu Cheng; Wang Dezhong; Bai Yunfei; Qian Nan

    2010-01-01

    In this paper, the equivalent radius of radioactive sources in each segment is determined by analyzing the different responses of the two identical detectors, and an improved segmented gamma scanning is used to assay waste drums containing mainly organic materials, and proved by an established simulation model. The simulated radioactivity distributions in homogenous waste drum and an experimental heterogeneous waste drum were compared with those of traditional segmented gamma scanning. The results show that our method is good in performance and can be used for analyzing the waste drums. (authors)

  4. A neutron well counter for plutonium assay in 200 l waste drums

    International Nuclear Information System (INIS)

    Eyrich, W.; Kuechle, M.; Shafiee, M.

    1979-05-01

    A neutron well counter is briefly described which will be used for monitoring the plutonium content of 200 l barrels in the waste treatment plant of the Kernforschungszentrum Karlsruhe. Measurements on simulated waste were made to study the influence of matrix material and non-homogeneous plutonium distribution. The variation in detection efficiency could be reduced from 28% to 10% when the signals from inner and outer neutron detectors in the polyethylene annulus are counted separately and a correction is applied, using this information. This method is superior to the source addition technique. Coincidence counting shows a larger variation which could not be reduced to below 18%. (orig.) [de

  5. Expected precision of neutron multiplicity measurements of waste drums

    International Nuclear Information System (INIS)

    Ensslin, N.; Krick, M.S.; Menlove, H.O.

    1995-01-01

    DOE facilities are beginning to apply passive neutron multiplicity counting techniques to the assay of plutonium scrap and residues. There is also considerable interest in applying this new measurement technique to 208-liter waste drums. The additional information available from multiplicity counting could flag the presence of shielding materials or improve assay accuracy by correcting for matrix effects such as (α,n) induced fission or detector efficiency variations. The potential for multiplicity analysis of waste drums, and the importance of better detector design, can be estimated by calculating the expected assay precision using a Figure of Merit code for assay variance. This paper reports results obtained as a function of waste drum content and detector characteristics. We find that multiplicity analysis of waste drums is feasible if a high-efficiency neutron counter is used. However, results are significantly poorer if the multiplicity analysis must be used to solve for detection efficiency

  6. Solid waste drum array fire performance

    International Nuclear Information System (INIS)

    Louie, R.L.; Haecker, C.F.; Beitel, J.J.; Gottuck, D.T.; Rhodes, B.T.; Bayier, C.L.

    1995-09-01

    Fire hazards associated with drum storage of radioactively contaminated waste are a major concern in DOE waste storage facilities. This report is the second of two reports on fire testing designed to provide data relative to the propagation of a fire among storage drum arrays. The first report covers testing of individual drums subjected to an initiating fire and the development of the analytical methodology to predict fire propagation among storage drum arrays. This report is the second report, which documents the results of drum array fire tests. The purpose of the array tests was to confirm the analytical methodology developed by Phase I fire testing. These tests provide conclusive evidence that fire will not propagate from drum to drum unless an continuous fuel source other than drum contents is provided

  7. Characterization of alpha low level waste in 118 litre drums by passive and active neutron measurements in the promethee assay system

    International Nuclear Information System (INIS)

    Jallu, F.; Passard, C.; Mariani, A.; Ma, J.L.; Baudry, G.; Romeyer-Dherbey, J.; Recroix, H.; Rodriguez, M.; Loridon, J.; Denis, C.; Toubon, H.

    2003-01-01

    This paper deals with the PROMETHEE (PROMpt, epithermal and THErmal interrogation experiment) waste assay system for alpha low level waste (LLW) characterization. This device, including both passive and active neutron measurement methods, is developed at the French Atomic Energy Commission (C.E.A.), Cadarache Centre, in cooperation with COGEMA. Its purpose is to reach the requirements for incinerating alpha waste (less than 50 Bq[α], i.e. about 50 μg of Pu per gram of raw waste) in 118 litre- > drums. The PROMETHEE development and progress are performed with the help of simulation based on the Monte Carlo code MCNP4 [1]. These calculations are coupled with specific experiments in order to confirm calculated results and to obtain characteristics that can not be approached by the simulation (background for example). This paper presents the PROMETHEE measurement cell, its current performances, and studies performed at the laboratory about the most limiting parameters such as the matrix of the drum - its composition (H, Cl..), its density and its heterogeneity degree -the localization and the self-shielding properties of the contaminant. (orig.)

  8. Characterization of alpha low level waste in 118 litre drums by passive and active neutron measurements in the promethee assay system

    Energy Technology Data Exchange (ETDEWEB)

    Jallu, F.; Passard, C.; Mariani, A.; Ma, J.L.; Baudry, G.; Romeyer-Dherbey, J.; Recroix, H.; Rodriguez, M.; Loridon, J.; Denis, C. [French Atomic Energy Commission (C.E.A./Cadarache), DED/SCCD/LDMN, Durance (France); Toubon, H. [COGEMA, VELIZY-VILLACOUBLAY (France)

    2003-07-01

    This paper deals with the PROMETHEE (PROMpt, epithermal and THErmal interrogation experiment) waste assay system for alpha low level waste (LLW) characterization. This device, including both passive and active neutron measurement methods, is developed at the French Atomic Energy Commission (C.E.A.), Cadarache Centre, in cooperation with COGEMA. Its purpose is to reach the requirements for incinerating alpha waste (less than 50 Bq[{alpha}], i.e. about 50 {mu}g of Pu per gram of raw waste) in 118 litre-<> drums. The PROMETHEE development and progress are performed with the help of simulation based on the Monte Carlo code MCNP4 [1]. These calculations are coupled with specific experiments in order to confirm calculated results and to obtain characteristics that can not be approached by the simulation (background for example). This paper presents the PROMETHEE measurement cell, its current performances, and studies performed at the laboratory about the most limiting parameters such as the matrix of the drum - its composition (H, Cl..), its density and its heterogeneity degree -the localization and the self-shielding properties of the contaminant. (orig.)

  9. Storage drums for radio-active waste

    International Nuclear Information System (INIS)

    Knights, H.C.

    1982-01-01

    The lid of a storage drum for radioactive waste is secured by a series of clamps each of which has a hook for engaging the rim of the drum. Each clamp has an indicating means whereby a remote operator can check that the lid is secured to the drum. In a second embodiment, the position of an arm acts as a visual indication as to whether or not the clamp is in engagement with the container rim. (author)

  10. Development of nuclear waste concrete drum

    International Nuclear Information System (INIS)

    Wen Yinghui

    1995-06-01

    The raw materials selection and the properties for nuclear waste concrete drum, the formula and properties of the concrete, the specification and technical quality requirement of the drum were described. The manufacture essentials and technology, the experiments and checks as well as the effective quality control and quality assurance carried out in the course of production were presented. The developed nuclear waste drum has a simple structure, easily available raw materials and rational formula for concrete. The compressive strength of the drum is more than 70 MPa, the tensile strength is more than 5 MPa, the nitrogen permeability is (2.16∼3.6) x 10 -18 m 2 . The error of the drum in dimensions is +-2 mm. The external surface of the drum is smooth. The drum accords with China standards in the sandy surface, void and crack. The results shows China has the ability to develop and manufacture nuclear waste concrete container and lays the foundation for standardization and series of the nuclear waste container for packing and transporting nuclear wastes in China. (5 figs., 10 tabs.)

  11. Modeling VOC transport in simulated waste drums

    International Nuclear Information System (INIS)

    Liekhus, K.J.; Gresham, G.L.; Peterson, E.S.; Rae, C.; Hotz, N.J.; Connolly, M.J.

    1993-06-01

    A volatile organic compound (VOC) transport model has been developed to describe unsteady-state VOC permeation and diffusion within a waste drum. Model equations account for three primary mechanisms for VOC transport from a void volume within the drum. These mechanisms are VOC permeation across a polymer boundary, VOC diffusion across an opening in a volume boundary, and VOC solubilization in a polymer boundary. A series of lab-scale experiments was performed in which the VOC concentration was measured in simulated waste drums under different conditions. A lab-scale simulated waste drum consisted of a sized-down 55-gal metal drum containing a modified rigid polyethylene drum liner. Four polyethylene bags were sealed inside a large polyethylene bag, supported by a wire cage, and placed inside the drum liner. The small bags were filled with VOC-air gas mixture and the VOC concentration was measured throughout the drum over a period of time. Test variables included the type of VOC-air gas mixtures introduced into the small bags, the small bag closure type, and the presence or absence of a variable external heat source. Model results were calculated for those trials where the VOC permeability had been measured. Permeabilities for five VOCs [methylene chloride, 1,1,2-trichloro-1,2,2-trifluoroethane (Freon-113), 1,1,1-trichloroethane, carbon tetrachloride, and trichloroethylene] were measured across a polyethylene bag. Comparison of model and experimental results of VOC concentration as a function of time indicate that model accurately accounts for significant VOC transport mechanisms in a lab-scale waste drum

  12. Identification of the fast and thermal neutron characteristics of transuranic waste drums

    Energy Technology Data Exchange (ETDEWEB)

    Storm, B.H. Jr.; Bramblett, R.L. [Lockheed Martin Specialty Components, Largo, FL (United States); Hensley, C. [Oak Ridge National Lab., TN (United States)

    1997-11-01

    Fissile and spontaneously fissioning material in transuranic waste drums can be most sensitively assayed using an active and passive neutron assay system such as the Active Passive Neutron Examination and Assay. Both the active and the passive assays are distorted by the presence of the waste matrix and containerization. For accurate assaying, this distortion must be characterized and accounted for. An External Matrix Probe technique has been developed that accomplishes this task. Correlations between in-drum neutron flux measurements and monitors in the Active Passive Neutron Examination and Assay chamber with various matrix materials provide a non-invasive means of predicting the thermal neutron flux in waste drums. Similarly, measures of the transmission of fast neutrons emitted from sources in the drum. Results obtained using the Lockheed Martin Specialty Components Active Passive Neutron Examination and Assay system are discussed. 12 figs., 1 tab.

  13. Press to compress contaminated wastes drums

    International Nuclear Information System (INIS)

    Prevost, J.

    1993-01-01

    This patent describes a press for contaminated wastes drums pressing. The press is made of a structure comprising a base and an upper stringer bind to the base by vertical bearers, a compression system comprising a main cylinder and a ram, connected to the upper stringer

  14. Gas formation in drum waste packages of Paks NPP

    International Nuclear Information System (INIS)

    Molnar, M.; Palcsu, L.; Svingor, E.; Szanto, Z.; Futo, I.; Ormai, P.

    2000-01-01

    Gas composition measurements have been carried out by mass spectrometry analysis of samples taken from the headspace of ten drum waste packages generated and temporarily stored at Paks NPP. Four drums contained compacted solid waste, three drums were filled with grouted (solidified) sludge and three drums contained solid waste without compaction. The drums have been equipped with a special gas outlet system to make repeated sampling possible. Based on the first measurements significant differences in the gas composition and the rate of gas generation among the drums were found. (author)

  15. Improvement of non-destructive fissile mass assays in α low-level waste drums: A matrix correction method based on neutron capture gamma-rays and a neutron generator

    Science.gov (United States)

    Jallu, F.; Loche, F.

    2008-08-01

    Within the framework of radioactive waste control, non-destructive assay (NDA) methods may be employed. The active neutron interrogation (ANI) method is now well-known and effective in quantifying low α-activity fissile masses (mainly 235U, 239Pu, 241Pu) with low densities, i.e. less than about 0.4, in radioactive waste drums of volumes up to 200 l. The PROMpt Epithermal and THErmal interrogation Experiment (PROMETHEE [F. Jallu, A. Mariani, C. Passard, A.-C. Raoux, H. Toubon, Alpha low level waste control: improvement of the PROMETHEE 6 assay system performances. Nucl. Technol. 153 (January) (2006); C. Passard, A. Mariani, F. Jallu, J. Romeyer-Dherber, H. Recroix, M. Rodriguez, J. Loridon, C. Denis, PROMETHEE: an alpha low level waste assay system using passive and active neutron measurement methods. Nucl. Technol. 140 (December) (2002) 303-314]) based on ANI has been under development since 1996 to reach the incinerating α low level waste (LLW) criterion of about 50 Bq[α] per gram of crude waste (≈50 μg Pu) in 118 l drums on the date the drums are conditioned. Difficulties arise when dealing with matrices containing neutron energy moderators such as H and neutron absorbents such as Cl. These components may have a great influence on the fissile mass deduced from the neutron signal measured by ANI. For example, the calibration coefficient measured in a 118 l drum containing a cellulose matrix (density d = 0.144 g cm -3) may be 50 times higher than that obtained in a poly-vinyl-chloride matrix ( d = 0.253 g cm -3). Without any information on the matrix, the fissile mass is often overestimated due to safety procedures and by considering the most disadvantageous calibration coefficient corresponding to the most absorbing and moderating calibration matrix. The work discussed in this paper was performed at the CEA Nuclear Measurement Laboratory in France. It concerns the development of a matrix effect correction method, which consists in identifying and quantifying

  16. Improvement of non-destructive fissile mass assays in α low-level waste drums: A matrix correction method based on neutron capture gamma-rays and a neutron generator

    International Nuclear Information System (INIS)

    Jallu, F.; Loche, F.

    2008-01-01

    Within the framework of radioactive waste control, non-destructive assay (NDA) methods may be employed. The active neutron interrogation (ANI) method is now well-known and effective in quantifying low α-activity fissile masses (mainly 235 U, 239 Pu, 241 Pu) with low densities, i.e. less than about 0.4, in radioactive waste drums of volumes up to 200 l. The PROMpt Epithermal and THErmal interrogation Experiment (PROMETHEE [F. Jallu, A. Mariani, C. Passard, A.-C. Raoux, H. Toubon, Alpha low level waste control: improvement of the PROMETHEE 6 assay system performances. Nucl. Technol. 153 (January) (2006); C. Passard, A. Mariani, F. Jallu, J. Romeyer-Dherber, H. Recroix, M. Rodriguez, J. Loridon, C. Denis, PROMETHEE: an alpha low level waste assay system using passive and active neutron measurement methods. Nucl. Technol. 140 (December) (2002) 303-314]) based on ANI has been under development since 1996 to reach the incinerating α low level waste (LLW) criterion of about 50 Bq[α] per gram of crude waste (∼50 μg Pu) in 118 l drums on the date the drums are conditioned. Difficulties arise when dealing with matrices containing neutron energy moderators such as H and neutron absorbents such as Cl. These components may have a great influence on the fissile mass deduced from the neutron signal measured by ANI. For example, the calibration coefficient measured in a 118 l drum containing a cellulose matrix (density d = 0.144 g cm -3 ) may be 50 times higher than that obtained in a poly-vinyl-chloride matrix (d = 0.253 g cm -3 ). Without any information on the matrix, the fissile mass is often overestimated due to safety procedures and by considering the most disadvantageous calibration coefficient corresponding to the most absorbing and moderating calibration matrix. The work discussed in this paper was performed at the CEA Nuclear Measurement Laboratory in France. It concerns the development of a matrix effect correction method, which consists in identifying and

  17. Improvement of non-destructive fissile mass assays in {alpha} low-level waste drums: A matrix correction method based on neutron capture gamma-rays and a neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Jallu, F. [Commissariat a l' Energie Atomique, CEA, DEN, Nuclear Measurement Laboratory, Bat. 224, 13108 Saint Paul lez Durance (France)], E-mail: fanny.jallu@cea.fr; Loche, F. [Commissariat a l' Energie Atomique, CEA, DEN, Nuclear Measurement Laboratory, Bat. 224, 13108 Saint Paul lez Durance (France)

    2008-08-15

    Within the framework of radioactive waste control, non-destructive assay (NDA) methods may be employed. The active neutron interrogation (ANI) method is now well-known and effective in quantifying low {alpha}-activity fissile masses (mainly {sup 235}U, {sup 239}Pu, {sup 241}Pu) with low densities, i.e. less than about 0.4, in radioactive waste drums of volumes up to 200 l. The PROMpt Epithermal and THErmal interrogation Experiment (PROMETHEE [F. Jallu, A. Mariani, C. Passard, A.-C. Raoux, H. Toubon, Alpha low level waste control: improvement of the PROMETHEE 6 assay system performances. Nucl. Technol. 153 (January) (2006); C. Passard, A. Mariani, F. Jallu, J. Romeyer-Dherber, H. Recroix, M. Rodriguez, J. Loridon, C. Denis, PROMETHEE: an alpha low level waste assay system using passive and active neutron measurement methods. Nucl. Technol. 140 (December) (2002) 303-314]) based on ANI has been under development since 1996 to reach the incinerating {alpha} low level waste (LLW) criterion of about 50 Bq[{alpha}] per gram of crude waste ({approx}50 {mu}g Pu) in 118 l drums on the date the drums are conditioned. Difficulties arise when dealing with matrices containing neutron energy moderators such as H and neutron absorbents such as Cl. These components may have a great influence on the fissile mass deduced from the neutron signal measured by ANI. For example, the calibration coefficient measured in a 118 l drum containing a cellulose matrix (density d = 0.144 g cm{sup -3}) may be 50 times higher than that obtained in a poly-vinyl-chloride matrix (d = 0.253 g cm{sup -3}). Without any information on the matrix, the fissile mass is often overestimated due to safety procedures and by considering the most disadvantageous calibration coefficient corresponding to the most absorbing and moderating calibration matrix. The work discussed in this paper was performed at the CEA Nuclear Measurement Laboratory in France. It concerns the development of a matrix effect correction

  18. Fire propagation through arrays of solid-waste storage drums

    International Nuclear Information System (INIS)

    Smith, S.T.; Hinkle, A.W.

    1995-01-01

    The extent of propagation of a fire through drums of solid waste has been an unresolved issue that affects all solid-waste projects and existing solid-waste storage and handling facilities at the Hanford site. The issue involves the question of how many drums of solid waste within a given fire area will be consumed in a design-basis fire for given parameters such as drum loading, storage arrays, initiating events, and facility design. If the assumption that all drums of waste within a given fire area are consumed proves valid, then the construction costs of solid waste facilities may be significantly increased

  19. Infrared thermography applied to monitoring of radioactive waste drums

    International Nuclear Information System (INIS)

    Kelmer, P.; Camarano, D.M.; Calado, F.; Phillip, B.; Viana, C.; Andrade, R.M.

    2013-01-01

    The use of thermography in the inspection of drums containing radioactive waste is being stimulated by the absence of physical contact. In Brazil the majority of radioactive wastes are compacted solids packed in metal drums stored temporarily for decades and requires special attention. These drums have only one qualitative indication of the radionuclides present. However, its structural condition is not followed systematically. The aim of this work is presents a methodology by applying thermography for monitoring the structural condition of drums containing radioactive waste in order to detect degraded regions of the drums. (author)

  20. Waste streams that preferentially corrode 55-gallon steel storage drums

    International Nuclear Information System (INIS)

    Zirker, L.R.; Beitel, G.A.; Reece, C.M.

    1995-06-01

    When 55-gal steel drum waste containers fail in service, i.e., leak, corrode or breach, the standard fix has been to overpack the drum. When a drum fails and is overpacked into an 83-gal overpack drum, there are several negative consequences. Identifying waste streams that preferentially corrode steel drums is essential to the pollution prevention philosophy that ''an ounce of prevention is worth a pound of cure.'' It is essential that facilities perform pollution prevention measures at the front end of processes to reduce pollution on the back end. If these waste streams can be identified before they are packaged, the initial drum packaging system could be fortified or increased to eliminate future drum failures, breaches, clean-ups, and the plethora of other consequences. Therefore, a survey was conducted throughout the US Department of Energy complex for information concerning waste streams that have demonstrated preferential corrosion of 55-gal steel drums. From 21 site contacts, 21 waste streams were so identified. The major components of these waste streams include acids, salts, and solvent liquids, sludges, and still bottoms. The solvent-based waste streams typically had the shortest time to failure, 0.5 to 2 years. This report provides the results of this survey and research

  1. Modeling unsteady-state VOC transport in simulated waste drums

    International Nuclear Information System (INIS)

    Liekhus, K.J.; Gresham, G.L.; Peterson, E.S.; Rae, C.; Hotz, N.J.; Connolly, M.J.

    1994-01-01

    This report is a revision of an EG ampersand G Idaho informal report originally titled Modeling VOC Transport in Simulated Waste Drums. A volatile organic compound (VOC) transport model has been developed to describe unsteady-state VOC permeation and diffusion within a waste drum. Model equations account for three primary mechanisms for VOC transport from a void volume within the drum. These mechanisms are VOC permeation across a polymer boundary, VOC diffusion across an opening in a volume boundary, and VOC solubilization in a polymer boundary. A series of lab-scale experiments was performed in which the VOC concentration was measured in simulated waste drums under different conditions. A lab-scale simulated waste drum consisted of a sized-down 55-gal metal drum containing a modified rigid polyethylene drum liner. Four polyethylene bags were sealed inside a large polyethylene bag, supported by a wire cage, and placed inside the drum liner. The small bags were filled with VOC-air gas mixture and the VOC concentration was measured throughout the drum over a period of time. Test variables included the type of VOC-air gas mixtures introduced into the small bags, the small bag closure type, and the presence or absence of a variable external heat source. Model results were calculated for those trials where the permeability had been measured

  2. Remote radioactive waste drum inspection with an autonomous mobile robot

    International Nuclear Information System (INIS)

    Heckendorn, F.M.; Ward, C.R.; Wagner, D.G.

    1992-01-01

    An autonomous mobile robot is being developed to perform remote surveillance and inspection task on large numbers of stored radioactive waste drums. The robot will be self guided through narrow storage aisles and record the visual image of each viewable drum for subsequent off line analysis and archiving. The system will remove the personnel from potential exposure to radiation, perform the require inspections, and improve the ability to assess the long term trends in drum conditions

  3. Field test results for radioactive waste drum characterization with Waste Inspection Tomography (WIT)

    Energy Technology Data Exchange (ETDEWEB)

    Bernardi, R.T. [Bio-Imaging Research, Inc., Lincolnshire, IL (United States)

    1997-11-01

    This paper summarizes the design, fabrication, factory testing, evaluation and demonstration of waste inspection tomography (WIT). WIT consists of a self-sufficient, mobile semi-trailer for Non-Destructive Evaluation and Non-Destructive Assay (NDE/NDA) characterization of nuclear waste drums using X-ray and gamma-ray tomographic techniques. The 23-month WIT Phase I initial test results include 2 MeV Digital Radiography (DR), Computed Tomography (CT), Anger camera imaging, Single Photon Emission Computed Tomography (SPECT), Gamma-Ray Spectroscopy, Collimated Gamma Scanning (CGS), and Active and Passive Computed Tomography (A&PCT) using a 1.4 mCi source of {sup 166}Ho. These techniques were initially demonstrated on a 55-gallon phantom drum with three simulated waste matrices of combustibles, heterogeneous metals, and cement using check sources of gamma active isotopes. Waste matrix identification, isotopic identification, and attenuation-corrected gamma activity determination were all demonstrated nondestructively and noninvasively. Preliminary field tests results with nuclear waste drums are summarized. WIT has inspected drums with 0 to 20 grams plutonium 239. The minimum measured was 0.131 gram plutonium 239 in cement. 8 figs.

  4. Safety evaluation for packaging (onsite) for concrete-shielded RHTRU waste drum for the 327 postirradiation testing laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Adkins, H.E.

    1996-10-29

    This safety evaluation for packaging authorizes onsite transport of Type B quantities of radioactive material in the Concrete- Shielded Remote-Handled Transuranic Waste (RH TRU) Drum per WHC-CM-2-14, Hazardous Material Packaging and Shipping. The drum will be used for transport of 327 Building legacy waste from the 300 Area to the Transuranic Waste Storage and Assay Facility in the 200 West Area and on to a Solid Waste Storage Facility, also in the 200 Area.

  5. Development of a Radioactive Waste Assay System

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Duck Won; Song, Myung Jae; Shin, Sang Woon; Sung, Kee Bang; Ko, Dae Hach [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Kim, Kil Jeong; Park, Jong Mook; Jee, Kwang Yoong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    Nuclear Act of Korea requires the manifest of low and intermediate level radioactive waste generated at nuclear power plants prior to disposal sites.Individual history records of the radioactive waste should be contained the information about the activity of nuclides in the drum, total activity, weight, the type of waste. A fully automated nuclide analysis assay system, non-destructive analysis and evaluation system of the radioactive waste, was developed through this research project. For the nuclides that could not be analysis directly by MCA, the activities of the representative {gamma}-emitters(Cs-137, Co-60) contained in the drum were measured by using that system. Then scaling factors were used to calculate the activities of {alpha}, {beta}-emitters. Furthermore, this system can automatically mark the analysis results onto the drum surface. An automated drum handling system developed through this research project can reduce the radiation exposure to workers. (author). 41 refs., figs.

  6. Direct measurement of γ-emitting radionuclides in waste drum

    International Nuclear Information System (INIS)

    Ma Ruwei; Mao Yong; Zhang Xiuzhen; Xia Xiaobin; Guo Caiping; Han Yueqin

    1993-01-01

    The low-level rad waste produced from nuclear power plant, nuclear facilities, and in the process of their decommissioning is stored in waste depository. For the safety of transport and storage of these wastes, some test must be done. One of them is to analyse the kinds and activities of radionuclides in each waste drum. Segmented scanning gamma spectrum analysis can be used for direct measurement of gamma-emitting radionuclides in drum. Gamma emitters such as Co-60, Cs-137, Ra-226 can be measured directly from outside of drum. A method and system for direct measuring gamma emitters in waste drum are described, and measuring apparatus and measurement results as well

  7. Real-time radiography, digital radiography, and computed tomography for nonintrusive waste drum characterization

    International Nuclear Information System (INIS)

    Martz, H.E.; Schneberk, D.J.; Roberson, G.P.

    1994-07-01

    We are investigating and developing the application of x-ray nondestructive evaluation (NDE) and gamma-ray nondestructive assay (NDA) methods to nonintrusively characterize 208-liter (55-gallon) mixed waste drums. Mixed wastes contain both hazardous and radioactive materials. We are investigating the use of x-ray NDE methods to verify the content of documented waste drums and determine if they can be used to identify hazardous and nonconforming materials. These NDE methods are also being used to help waste certification and hazardous waste management personnel at LLNL to verify/confirm and/or determine the contents of waste. The gamma-ray NDA method is used to identify the intrinsic radioactive source(s) and to accurately quantify its strength. The NDA method may also be able to identify some hazardous materials such as heavy metals. Also, we are exploring techniques to combine both NDE and NDA data sets to yield the maximum information from these nonintrusive, waste-drum characterization methods. In this paper, we report an our x-ray NDE R ampersand D activities, while our gamma-ray NDA activities are reported elsewhere in the proceedings. We have developed a data, acquisition scanner for x-ray NDE real-time radiography (RTR), as well as digital radiography transmission computed tomography (TCT) along with associated computational techniques for image reconstruction, analysis, and display. We are using this scanner and real-waste drums at Lawrence Livermore National Laboratory (LLNL). In this paper, we discuss some issues associated with x-ray imaging, describe the design construction of an inexpensive NDE drum scanner, provide representative DR and TCT results of both mock- and real-waste drums, and end with a summary of our efforts and future directions. The results of these scans reveal that RTR, DR, and CT imaging techniques can be used in concert to provide valuable information about the interior of low-level-, transuranic-, and mock-waste drums without

  8. Passive neutron design study for 200-L waste drums

    International Nuclear Information System (INIS)

    Menlove, H.O.; Beddingfield, D.B.; Pickrell, M.M.

    1997-09-01

    We have developed a passive neutron counter for the measurement of plutonium in 200-L drums of scrap and waste. The counter incorporates high efficiency for the multiplicity counting in addition to the traditional coincidence counting. The 252 Cf add-a-source feature is used to provide an accurate assay over a wide range of waste matrix materials. The room background neutron rate is reduced by using 30 cm of external polyethylene shielding and the cosmic-ray background is reduced by statistical filtering techniques. Monte Carlo Code calculations were used to determine the optimum detector design, including the gas pressure, size, number, and placement of the 3 He tubes in the moderator. Various moderators, including polyethylene, plastics, teflon, and graphite, were evaluated to obtain the maximum efficiency and minimum detectable mass of plutonium

  9. Case studies of corrosion of mixed waste and transuranic waste drums

    International Nuclear Information System (INIS)

    Kosiewicz, S.T.

    1993-01-01

    This paper presents three case studies of corrosion of waste drums at the Los Alamos National Laboratory (LANL). Corrosion was not anticipated by the waste generators, but occurred because of subtle chemical or physical mechanisms. In one case, drums of a cemented transuranic (TRU) sludge experienced general and pitting corrosion. In the second instance, a chemical from a commercial paint stripper migrated from its primary containment drums to chemically attack overpack drums made of mild carbon steel. In the third case, drums of mixed low level waste (MLLW) soil corroded drum packaging even though the waste appeared to be dry when it was placed in the drums. These case studies are jointly discussed as ''lessons learned'' to enhance awareness of subtle mechanisms that can contribute to the corrosion of radioactive waste drums during interim storage

  10. Expert system for transuranic waste assay

    Energy Technology Data Exchange (ETDEWEB)

    Zoolalian, M.L.; Gibbs, A.; Kuhns, J.D.

    1989-01-01

    Transuranic wastes are generated at the Savannah River Site (SRS) as a result of routine production of nuclear materials. These wastes contain Pu-238 and Pu-239 and are placed into lined 55-gallon waste drums. The drums are placed on monitored storage pads pending shipment to the Waste Isolation Pilot Plant in New Mexico. A passive-active neutron (PAN) assay system is used to determine the mass of the radioactive material within the waste drums. Assay results are used to classify the wastes as either low-level or transuranic (TRU). During assays, the PAN assay system communicates with an IBM-AT computer. A Fortran computer program, called NEUT, controls and performs all data analyses. Unassisted, the NEUT program cannot adequately interpret assay results. To eliminate this limitation, an expert system shell was used to write a new algorithm, called the Transuranic Expert System (TRUX), to drive the NEUT program and add decision making capabilities for analysis of the assay results. The TRUX knowledge base was formulated by consulting with human experts in the field of neutron assay, by direct experimentation on the PAN assay system, and by observing operations on a daily basis. TRUX, with its improved ability to interpret assay results, has eliminated the need for close supervision by a human expert, allowing skilled technicians to operate the PAN assay system. 4 refs., 1 fig., 4 tabs.

  11. Expert system for transuranic waste assay

    International Nuclear Information System (INIS)

    Zoolalian, M.L.; Gibbs, A.; Kuhns, J.D.

    1989-01-01

    Transuranic wastes are generated at the Savannah River Site (SRS) as a result of routine production of nuclear materials. These wastes contain Pu-238 and Pu-239 and are placed into lined 55-gallon waste drums. The drums are placed on monitored storage pads pending shipment to the Waste Isolation Pilot Plant in New Mexico. A passive-active neutron (PAN) assay system is used to determine the mass of the radioactive material within the waste drums. Assay results are used to classify the wastes as either low-level or transuranic (TRU). During assays, the PAN assay system communicates with an IBM-AT computer. A Fortran computer program, called NEUT, controls and performs all data analyses. Unassisted, the NEUT program cannot adequately interpret assay results. To eliminate this limitation, an expert system shell was used to write a new algorithm, called the Transuranic Expert System (TRUX), to drive the NEUT program and add decision making capabilities for analysis of the assay results. The TRUX knowledge base was formulated by consulting with human experts in the field of neutron assay, by direct experimentation on the PAN assay system, and by observing operations on a daily basis. TRUX, with its improved ability to interpret assay results, has eliminated the need for close supervision by a human expert, allowing skilled technicians to operate the PAN assay system. 4 refs., 1 fig., 4 tabs

  12. Contamination control aspects of attaching waste drums to the WIPP Waste Characterization Chamber

    International Nuclear Information System (INIS)

    Rubick, L.M.; Burke, L.L.

    1998-01-01

    Argonne National Laboratory West (ANL-W) is verifying the characterization and repackaging of contact-handled transuranic (CH-TRU) mixed waste in support of the Waste Isolation Pilot Program (WIPP) project located in Carlsbad, New Mexico. The WIPP Waste Characterization Chamber (WCC) was designed to allow opening of transuranic waste drums for this process. The WCC became operational in March of 1994 and has characterized approximately 240 drums of transuranic waste. The waste drums are internally contaminated with high levels of transuranic radionuclides. Attaching and detaching drums to the glove box posed serious contamination control problems. Prior to characterizing waste, several drum attachment techniques and materials were evaluated. An inexpensive HEPA filter molded into the bagging material helps with venting during detachment. The current techniques and procedures used to attach and detach transuranic waste drums to the WCC are described

  13. Evaluation of overturning capacity of low level radioactive waste drum during earthquake. Part 2. Investigation of drum weight distribution effect and drum columns interaction by numerical analysis

    International Nuclear Information System (INIS)

    Tochigi, Hitoshi

    2011-01-01

    Numerical analysis case study is carried out for three layered and four layered low level radioactive waste drums by numerical models based on the results of shaking table test. First of all, numerical analysis results about drums displacement due to uplift and sliding on pallets during earthquake are compared with the experimental results and it is shown good agreement in both results. By this analytical model effects of drum weight distribution along height direction and drum columns interaction followed by each other drum's collisions on overturning capacity during earthquake are researched. From numerical analysis results the limit acceleration which is minimum value of input acceleration at storage building floor when three layered or four layered waste drums overturn is researched. It is shown that overturning capacity during earthquake decline when height of gravity center of three layered and four layered drums get large. So it is available to get down height of gravity center by controlling drum weight distribution along height direction. And as effect of drum columns interaction it is indicated that overturning capacity of single column arrangement drums is larger than that of many columns arrangement drums because phase deference between drum columns occur and decrease vibration amplitude by each other collisions. (author)

  14. Cookoff Modeling of a WIPP waste drum (68660)

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, Michael L. [Sandia National Laboratories, Albuquerque, NM (United States)

    2014-11-24

    A waste drum located 2150 feet underground may have been the root cause of a radiation leak on February 14, 2014. Information provided to the WIPP Technical Assessment Team (TAT) was used to describe the approximate content of the drum, which included an organic cat litter (Swheat Scoop®, or Swheat) composed of 100% wheat products. The drum also contained various nitrate salts, oxalic acid, and a nitric acid solution that was neutralized with triethanolamine (TEA). CTH-TIGER was used with the approximate drum contents to specify the products for an exothermic reaction for the drum. If an inorganic adsorbent such as zeolite had been used in lieu of the kitty litter, the overall reaction would have been endothermic. Dilution with a zeolite adsorbent might be a useful method to remediate drums containing organic kitty litter. SIERRA THERMAL was used to calculate the pressurization and ignition of the drum. A baseline simulation of drum 68660 was performed by assuming a background heat source of 0.5-10 W of unknown origin. The 0.5 W source could be representative of heat generated by radioactive decay. The drum ignited after about 70 days. Gas generation at ignition was predicted to be 300-500 psig with a sealed drum (no vent). At ignition, the wall temperature increases modestly by about 1°C, demonstrating that heating would not be apparent prior to ignition. The ignition location was predicted to be about 0.43 meters above the bottom center portion of the drum. At ignition only 3-5 kg (out of 71.6 kg total) has been converted into gas, indicating that most of the material remained available for post-ignition reaction.

  15. Automation of a measurement systems of waste drum alpha activity

    International Nuclear Information System (INIS)

    Labarre, S.; Bardy, N.

    1985-10-01

    The alpha radiator activity in the two-hundred liter waste drums is found by an IN96, computerized analyzer of the society Intertechnique, from data delivered by a gamma detector (GeHP) and by neutron detection blocks (He counter). This computerized analyzer manages not only the drum rotation and position in front of the detector, but also the experimental data monitoring and their processing from specific programs (background noise, calibration, drum measurements). Thanks to this automation, the measurement number and their reliability are optimized [fr

  16. The method study for nuclide analysis of waste drum

    International Nuclear Information System (INIS)

    Ruan Guanglin; Huang Xianguo; Xing Shixiong

    2001-01-01

    The principle of waste drum nuclide analysis system and the principle of the detector chosen are introduced. The linear attenuation coefficient and mass attenuation coefficient of five environmental medium (water, soil, red brick, concrete and sands) have been measured with γ transmission method simulative equipment. The absorption coefficient and nuclide activity of three measuring conditions (collimation-columnar source, un-collimation-columnar source, and un-collimation-rotation-drum source) have been calculated

  17. Nondestructive assay of TRU waste using gamma-ray active and passive computed tomography

    International Nuclear Information System (INIS)

    Roberson, G.P.; Decman, D.; Martz, H.; Keto, E.R.; Johansson, E.M.

    1995-01-01

    The authors have developed an active and passive computed tomography (A and PCT) scanner for assaying radioactive waste drums. Here they describe the hardware components of their system and the software used for data acquisition, gamma-ray spectroscopy analysis, and image reconstruction. They have measured the performance of the system using ''mock'' waste drums and calibrated radioactive sources. They also describe the results of measurements using this system to assay a real TRU waste drum with relatively low Pu content. The results are compared with X-ray NDE studies of the same TRU waste drum as well as assay results from segmented gamma scanner (SGS) measurements

  18. Fire testing of 55 gallon metal waste drums for dry waste storage

    International Nuclear Information System (INIS)

    Hasegawa, H.K.; Staggs, K.J.; Doughty, S.M.

    1993-07-01

    The primary goal of this test program was to conduct a series of fire test to provide information on the fire performance of 55 gallon metal waste drums used for solid waste disposal at Department Of Energy (DOE) facilities. This program was limited in focus to three different types of 55 gallon drums, one radiant heat source, and one specific fire size. The initial test was a single empty 55 gallon drum exposed to a standard ASTME-119 time temperature curve for over 10 minutes. The full scale tests involved metal drums exposed to a 6' diameter flammable liquid fire for a prescribed period of time. The drums contained simulated dry waste materials of primarily class A combustibles. The test results showed that a conventional 55 gallon drum with a 1in. bung would blow its lid consistently

  19. Handling 78,000 drums of mixed-waste sludge

    International Nuclear Information System (INIS)

    Berry, J.B.; Gilliam, T.M.; Harrington, E.S.; Youngblood, E.L.; Baer, M.B.

    1991-01-01

    The Oak Ridge Gaseous Diffusion Plant (now know as the Oak Ridge K-25 Site) prepared two mixed-waste surface impoundments for closure by removing the sludge and contaminated pond-bottom clay and attempting to process it into durable, nonleachable, concrete monoliths. Interim, controlled, above-ground storage of the stabilized waste was planned until final disposition. The strategy for disposal included delisting the stabilized pond sludge from hazardous to nonhazardous and disposing of the delisted monoliths as radioactive waste. Because of schedule constraints and process design and control deficiencies, ∼46,000 drums of material in various stages of solidification and ∼32,000 drums of unprocessed sludge are presently being stored. In addition, the abandoned treatment facility still contains ∼16,000 gal of raw sludge. Such conditions do not comply with the requirements set forth by the Resource Conservation and Recovery Act (RCRA) for the storage of listed waste. Various steps are being taken to bring the storage of ∼78,000 drums of mixed waste into compliance with RCRA. This paper (1) reviews the current situation, (2) discusses the plan for remediation of regulatory noncompliances, including decanting liquid from stabilized waste and dewatering untreated waste, and (3) provides an assessment of alternative raw-waste treatment processes. 1 ref., 6 figs., 2 tabs

  20. Qualitative and quantitative analysis of plutonium in solid waste drums

    International Nuclear Information System (INIS)

    Anno, Jacques; Escarieux, Emile

    1977-01-01

    An assessment of the results given by a study carried out for the development of qualitative and quantitative analysis, by γ spectrometry, of plutonium in solid waste drums is presented. After having reminded the standards and their incidence on the quantities of plutonium to be measured (application at industrial Pu: 20% of Pu 240 ) the equipment used is described. Measurement station provided with a mechanical system consisting of: a rail and a pulley block to bring the drums; a pit and a hydraulic jack with a rotating platform. The detection instrumentation consisting of: a high volume coaxial Ge(Li) detector with a γ ray resolution of 2 keV; an associated electronic; a processing of data by a 'Plurimat 20' minicomputer. Principles of the identification and measurements are specified and supported by experimental results. They are the following: determination of the quality of Pu by measuring the ratio between the γ ray intensities of the 239 Pu 129 keV and of the 241 Pu 148 keV; measurement of the 239 Pu mass by estimating the γ ray counting rate of the 375 keV from the calibrating curves given by plutonium samples varying from 32 mg to 80 g; correction of the results versus the source position into the drum and versus the filling in plastic materials into this drum. The experimental results obtained over 40 solid waste drums are presented along with the error estimates [fr

  1. Method of estimating maximum VOC concentration in void volume of vented waste drums using limited sampling data: Application in transuranic waste drums

    International Nuclear Information System (INIS)

    Liekhus, K.J.; Connolly, M.J.

    1995-01-01

    A test program has been conducted at the Idaho National Engineering Laboratory to demonstrate that the concentration of volatile organic compounds (VOCs) within the innermost layer of confinement in a vented waste drum can be estimated using a model incorporating diffusion and permeation transport principles as well as limited waste drum sampling data. The model consists of a series of material balance equations describing steady-state VOC transport from each distinct void volume in the drum. The primary model input is the measured drum headspace VOC concentration. Model parameters are determined or estimated based on available process knowledge. The model effectiveness in estimating VOC concentration in the headspace of the innermost layer of confinement was examined for vented waste drums containing different waste types and configurations. This paper summarizes the experimental measurements and model predictions in vented transuranic waste drums containing solidified sludges and solid waste

  2. Radioactive wastes assay technique and equipment

    International Nuclear Information System (INIS)

    Lee, K. M.; Hong, D. S; Kim, T. K.; Bae, S. M.; Shon, J. S.; Hong, K. P.

    2004-12-01

    The waste inventory records such as the activities and radio- nuclides contained in the waste packages are to be submitted with the radioactive wastes packages for the final disposal. The nearly around 10,000 drums of waste stocked in KAERI now should be assayed for the preparation of the waste inventory records too. For the successive execution of the waste assay, the investigation into the present waste assay techniques and equipment are to be taken first. Also the installation of the waste assay equipment through the comprehensive design, manufacturing and procurement should be proceeded timely. As the characteristics of the KAERI-stocked wastes are very different from that of the nuclear power plant and those have no regular waste streams, the application of the in-direct waste assay method using the scaling factors are not effective for the KAERI-generated wastes. Considering for the versal conveniency including the accuracy over the wide range of waste forms and the combination of assay time and sensitivity, the TGS(Tomographic Gamma Scanner) is appropriate as for the KAERI -generated radioactive waste assay equipment

  3. Computed tomography of human joints and radioactive waste drums

    International Nuclear Information System (INIS)

    Martz, Harry E.; Roberson, G. Patrick; Hollerbach, Karin; Logan, Clinton M.; Ashby, Elaine; Bernardi, Richard

    1999-01-01

    X- and gamma-ray imaging techniques in nondestructive evaluation (NDE) and assay (NDA) have seen increasing use in an array of industrial, environmental, military, and medical applications. Much of this growth in recent years is attributed to the rapid development of computed tomography (CT) and the use of NDE throughout the life-cycle of a product. Two diverse examples of CT are discussed, 1.) Our computational approach to normal joint kinematics and prosthetic joint analysis offers an opportunity to evaluate and improve prosthetic human joint replacements before they are manufactured or surgically implanted. Computed tomography data from scanned joints are segmented, resulting in the identification of bone and other tissues of interest, with emphasis on the articular surfaces. 2.) We are developing NDE and NDA techniques to analyze closed waste drums accurately and quantitatively. Active and passive computed tomography (A and PCT) is a comprehensive and accurate gamma-ray NDA method that can identify all detectable radioisotopes present in a container and measure their radioactivity

  4. Analytical and experimental evaluation of solid waste drum fire performance volumes I and II

    Energy Technology Data Exchange (ETDEWEB)

    Hecker, C.F., [Los Alamos Technical Associates, Inc., Kennewick, WA (United States); Rhodes, B.T.; Beitel, J.J.; Gottuk, D.T.; Beyler, C.L.; Rosenbaum, E.R., [Hughes Associates, Inc., Columbia, MD (United States)

    1995-04-28

    Fire hazards associated with drum storage of radioactively contaminated wastes are a major concern in DOE facilities design for long term storage of solid wastes in drums. These facilities include drums stored in pallet arrays and in rack storage systems. This report details testing in this area

  5. Expert system technology for nondestructive waste assay

    International Nuclear Information System (INIS)

    Becker, G.K.; Determan, J.C.

    1998-01-01

    Nondestructive assay waste characterization data generated for use in the National TRU Program must be of known and demonstrable quality. Each measurement is required to receive an independent technical review by a qualified expert. An expert system prototype has been developed to automate waste NDA data review of a passive/active neutron drum counter system. The expert system is designed to yield a confidence rating regarding measurement validity. Expert system rules are derived from data in a process involving data clustering, fuzzy logic, and genetic algorithms. Expert system performance is assessed against confidence assignments elicited from waste NDA domain experts. Performance levels varied for the active, passive shielded, and passive system assay modes of the drum counter system, ranging from 78% to 94% correct classifications

  6. Calculation of calibration factors and layout criteria for gamma scanning of waste drums from nuclear plants

    International Nuclear Information System (INIS)

    Inder Schmitten, W.; Sohnius, B.; Wehner, E.

    1990-01-01

    This paper present a procedure to calculate calibration factors for converting the measured gamma rate of waste drums into activity content and a layout and free release measurement criterion for waste drums. A computer program is developed that simulates drum scanning technique, which calculates calibration factors and eliminates laborious experimental measurements. The calculated calibration factors exhibit good agreement with experimentally determined values. By checking the calculated calibration factors for trial equipment layouts (including the waste drum and the scanning facility) using the layout and free release measurement criterion, a layout can be achieved that clearly determines whether there can be free release of a waste drum

  7. Monte Carlo method to characterize radioactive waste drums

    International Nuclear Information System (INIS)

    Lima, Josenilson B.; Dellamano, Jose C.; Potiens Junior, Ademar J.

    2013-01-01

    Non-destructive methods for radioactive waste drums characterization have being developed in the Waste Management Department (GRR) at Nuclear and Energy Research Institute IPEN. This study was conducted as part of the radioactive wastes characterization program in order to meet specifications and acceptance criteria for final disposal imposed by regulatory control by gamma spectrometry. One of the main difficulties in the detectors calibration process is to obtain the counting efficiencies that can be solved by the use of mathematical techniques. The aim of this work was to develop a methodology to characterize drums using gamma spectrometry and Monte Carlo method. Monte Carlo is a widely used mathematical technique, which simulates the radiation transport in the medium, thus obtaining the efficiencies calibration of the detector. The equipment used in this work is a heavily shielded Hyperpure Germanium (HPGe) detector coupled with an electronic setup composed of high voltage source, amplifier and multiport multichannel analyzer and MCNP software for Monte Carlo simulation. The developing of this methodology will allow the characterization of solid radioactive wastes packed in drums and stored at GRR. (author)

  8. MCNP Modeling Results for Location of Buried TRU Waste Drums

    International Nuclear Information System (INIS)

    Steinman, D K; Schweitzer, J S

    2006-01-01

    In the 1960's, fifty-five gallon drums of TRU waste were buried in shallow pits on remote U.S. Government facilities such as the Idaho National Engineering Laboratory (now split into the Idaho National Laboratory and the Idaho Completion Project [ICP]). Subsequently, it was decided to remove the drums and the material that was in them from the burial pits and send the material to the Waste Isolation Pilot Plant in New Mexico. Several technologies have been tried to locate the drums non-intrusively with enough precision to minimize the chance for material to be spread into the environment. One of these technologies is the placement of steel probe holes in the pits into which wireline logging probes can be lowered to measure properties and concentrations of material surrounding the probe holes for evidence of TRU material. There is also a concern that large quantities of volatile organic compounds (VOC) are also present that would contaminate the environment during removal. In 2001, the Idaho National Engineering and Environmental Laboratory (INEEL) built two pulsed neutron wireline logging tools to measure TRU and VOC around the probe holes. The tools are the Prompt Fission Neutron (PFN) and the Pulsed Neutron Gamma (PNG), respectively. They were tested experimentally in surrogate test holes in 2003. The work reported here estimates the performance of the tools using Monte-Carlo modelling prior to field deployment. A MCNP model was constructed by INEEL personnel. It was modified by the authors to assess the ability of the tools to predict quantitatively the position and concentration of TRU and VOC materials disposed around the probe holes. The model was used to simulate the tools scanning the probe holes vertically in five centimetre increments. A drum was included in the model that could be placed near the probe hole and at other locations out to forty-five centimetres from the probe-hole in five centimetre increments. Scans were performed with no chlorine in the

  9. Characterization of voic volume VOC concentration in vented TRU waste drums. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liekhus, K.J.

    1994-12-01

    A test program has been conducted at the Idaho National Engineering Laboratory to demonstrate that the concentration of volatile organic compounds within the innermost layer of confinement in a vented waste drum can be estimated using a model incorporating diffusion and permeation transport principles and limited waste drum sampling data. This final report summarizes the experimental measurements and model predictions for transuranic waste drums containing solidified sludges and solid waste.

  10. Handling 78,000 drums of mixed-waste sludge

    International Nuclear Information System (INIS)

    Berry, J.B.; Harrington, E.S.; Mattus, A.J.

    1991-01-01

    The Oak Ridge Gaseous Diffusion Plant (now known as the Oak Ridge K-25 Site) closed two mixed-waste surface impoundments by removing the sludge and contaminated pond-bottom clay and attempting to process it into durable, nonleachable, concrete monoliths. Interim, controlled, above-ground storage included delisting the stabilized sludge from hazardous to nonhazardous and disposing of the delisted monoliths as Class 1 radioactive waste. Because of schedule constraints and process design and control deficiencies, ∼46,000 drums of material in various stages of solidification and ∼32,000 barrels of unprocessed sludge are stored. The abandoned treatment facility still contains ∼16,000 gal of raw sludge. Such storage of mixed waste does not comply with the Resource Conservation and Recovery Act (RCRA) guidelines. This paper describes actions that are under way to bring the storage of ∼78,000 drums of mixed waste into compliance with RCRA. Remediation of this problem by treatment to meet regulatory requirements is the focus of the discussion. 3 refs., 2 figs., 4 tabs

  11. Developments in plutonium waste assay at AWE

    International Nuclear Information System (INIS)

    Miller, T J

    2009-01-01

    In 2002 a paper was presented at the 43rd Annual Meeting of the Institute of Nuclear Materials Management (INMM) on the assay of low level plutonium (Pu) in soft drummed waste (Miller 2002 INMM Ann. Meeting (Orlando, FL, 23-27 July 2002)). The technique described enabled the Atomic Weapons Establishment (AWE), at Aldermaston in the UK, to meet the stringent Low Level Waste Repository at Drigg (LLWRD) conditions for acceptance for the first time. However, it was initially applied to only low density waste streams because it relied on measuring the relatively low energy (60 keV) photon yield from Am-241 during growth. This paper reviews the results achieved when using the technique to assay over 10 000 waste packages and presents the case for extending the range of application to denser waste streams.

  12. Unvented Drum Handling Plan

    International Nuclear Information System (INIS)

    MCDONALD, K.M.

    2000-01-01

    This drum-handling plan proposes a method to deal with unvented transuranic drums encountered during retrieval of drums. Finding unvented drums during retrieval activities was expected, as identified in the Transuranic (TRU) Phase I Retrieval Plan (HNF-4781). However, significant numbers of unvented drums were not expected until excavation of buried drums began. This plan represents accelerated planning for management of unvented drums. A plan is proposed that manages unvented drums differently based on three categories. The first category of drums is any that visually appear to be pressurized. These will be vented immediately, using either the Hanford Fire Department Hazardous Materials (Haz. Mat.) team, if such are encountered before the facilities' capabilities are established, or using internal capabilities, once established. To date, no drums have been retrieved that showed signs of pressurization. The second category consists of drums that contain a minimal amount of Pu isotopes. This minimal amount is typically less than 1 gram of Pu, but may be waste-stream dependent. Drums in this category are assayed to determine if they are low-level waste (LLW). LLW drums are typically disposed of without venting. Any unvented drums that assay as TRU will be staged for a future venting campaign, using appropriate safety precautions in their handling. The third category of drums is those for which records show larger amounts of Pu isotopes (typically greater than or equal to 1 gram of Pu). These are assumed to be TRU and are not assayed at this point, but are staged for a future venting campaign. Any of these drums that do not have a visible venting device will be staged awaiting venting, and will be managed under appropriate controls, including covering the drums to protect from direct solar exposure, minimizing of container movement, and placement of a barrier to restrict vehicle access. There are a number of equipment options available to perform the venting. The

  13. An autonomous mobil robot to perform waste drum inspections

    International Nuclear Information System (INIS)

    Peterson, K.D.; Ward, C.R.

    1994-01-01

    A mobile robot is being developed by the Savannah River Technology Center (SRTC) Robotics Group of Westinghouse Savannah River company (WSRC) to perform mandated inspections of waste drums stored in warehouse facilities. The system will reduce personnel exposure and create accurate, high quality documentation to ensure regulatory compliance. Development work is being coordinated among several DOE, academic and commercial entities in accordance with DOE's technology transfer initiative. The prototype system was demonstrated in November of 1993. A system is now being developed for field trails at the Fernald site

  14. A model of gas generation and transport within TRU [transuranic] waste drums

    International Nuclear Information System (INIS)

    Smith, F.G. III.

    1987-01-01

    Gas generation from the radiolytic decomposition of organic material contaminated with plutonium is modeled. Concentrations of gas throughout the waste drum are determined using a diffusional transport model. The model accurately reproduces experimentally measured gas concentrations. With polyethylene waste in unvented drums, the model predicts that hydrogen gas can accumulate to concentrations greater than 4 mole percent (lower flammable limit) with about 5 Ci of plutonium. Polyethylene provides a worst case for combustible waste material. If the drum liner is punctured and a carbon composite filter vent is installed in the drum lid, the plutonium loading can be increased to 240 Ci without generating flammable gas mixtures. 5 refs., 7 figs., 4 tabs

  15. Estimated Uncertainty in Segmented Gamma Scanner Assay Results due to the Variation in Drum Tare Weights

    International Nuclear Information System (INIS)

    Bosko, A.; Croft, St.; Gulbransen, E.

    2009-01-01

    General purpose gamma scanners are often used to assay unknown drums that differ from those used to create the default calibration. This introduces a potential source of bias into the matrix correction when the correction is based on the estimation of the mean density of the drum contents from a weigh scale measurement. In this paper we evaluate the magnitude of this bias that may be introduced by performing assay measurements with a system whose matrix correction algorithm was calibrated with a set of standard drums but applied to a population of drums whose tare weight may be different. The matrix correction factors are perturbed in such cases because the unknown difference in tare weight gets reflected as a bias in the derived matrix density. This would be the only impact if the difference in tare weight was due solely to the weight of the lid or base, say. But in reality the reason for the difference may be because the steel wall of the drum is of a different thickness. Thus, there is an opposing interplay at work which tends to compensate. The purpose of this work is to evaluate and bound the magnitude of the resulting assay uncertainty introduced by tare weight variation. We compare the results obtained using simple analytical models and the 3-D ray tracing with ISOCS software to illustrate and quantify the problem. The numerical results allow a contribution to the Total Measurement Uncertainty (TMU) to be propagated into the final assay result. (authors)

  16. Characterization of radioactive-waste drum contents using real-time x-radiography

    International Nuclear Information System (INIS)

    Barna, B.A.; Bishoff, J.R.; Reinhardt, W.W.

    1982-01-01

    Low-level transuranic (TRU) waste is stored in a retrievable manner at the Radioactive Waste Management Complex (RWMC) operated by EG and G Idaho, Inc., for the Department of Energy. The waste, consisting of contaminated rags, paper, plastic, laboratory glassware, tools, scrap metal, wood, electrical components and parts, sludges, etc., is packed in various sized sealed containers, including 55 gallon drums. Waste which can be accurately characterized will be sent to the Waste Isolation Pilot Plant (WIPP) in New Mexico for long term storage if it is certified to meet the WIPP waste acceptance criteria. EG and G Idaho, Inc. is planning to install a real-time x-ray system designed for the automated and semi-automated examination of low-level TRU waste containers including 30, 55, and 83 gallon drums, 4 x 4 x 7 foot plywood boxes, and 4 x 5 x 6 foot metal bins during 1982. This system, designed for production, is capable of examining up to 20,000 waste containers per year using automated container handling, and features real-time x-ray imaging with a 420 kV, 10 ma constant potential source, digital image processing equipment, and video taping facilities (every container examination is required to be taped, for archival documentation). Work planned for the near future involves tests using real-time neutron radiography for waste characterization as a complement to real-time x-ray radiography. Ultimately, the NDE examinations will be combined with automated nondestructive assay (NDA) techniques for complete characterization of a given waste container's contents

  17. MCNP efficiency calculations of INEEL passive active neutron assay system for simulated TRU waste assays

    International Nuclear Information System (INIS)

    Yoon, W.Y.; Meachum, T.R.; Blackwood, L.G.; Harker, Y.D.

    2000-01-01

    The Idaho National Engineering and Environmental Laboratory Stored Waste Examination Pilot Plant (SWEPP) passive active neutron (PAN) radioassay system is used to certify transuranic (TRU) waste drums in terms of quantifying plutonium and other TRU element activities. Depending on the waste form involved, significant systematic and random errors need quantification in addition to the counting statistics. To determine the total uncertainty of the radioassay results, a statistical sampling and verification approach has been developed. In this approach, the total performance of the PAN nondestructive assay system is simulated using the computer models of the assay system, and the resultant output is compared with the known input to assess the total uncertainty. The supporting steps in performing the uncertainty analysis for the passive assay measurements in particular are as follows: (1) Create simulated waste drums and associated conditions; (2) Simulate measurements to determine the basic counting data that would be produced by the PAN assay system under the conditions specified; and (3) Apply the PAN assay system analysis algorithm to the set of counting data produced by simulating measurements to determine the measured plutonium mass. The validity of this simulation approach was verified by comparing simulated output against results from actual measurements using known plutonium sources and surrogate waste drums. The computer simulation of the PAN system performance uses the Monte Carlo N-Particle (MCNP) Code System to produce a neutron transport calculation for a simulated waste drum. Specifically, the passive system uses the neutron coincidence counting technique, utilizing the spontaneous fission of 240 Pu. MCNP application to the SWEPP PAN assay system uncertainty analysis has been very useful for a variety of waste types contained in 208-ell drums measured by a passive radioassay system. The application of MCNP to the active radioassay system is also feasible

  18. Validation testing of radioactive waste drum filter vents

    Energy Technology Data Exchange (ETDEWEB)

    Weber, L.D. [Pall Corp., Port Washington, NY (United States); Rahimi, R.S. [Pall Corp., Cortland, NY (United States); Edling, D. [Edling & Associates, Inc., Russel Springs, KY (United States)

    1997-08-01

    The minimum requirements for Drum Filter Vents (DFVs) can be met by demonstrating conformance with the Waste Isolation Pilot Plant (WIPP) Trupact II Safety Assessment Report (SAR), and conformance with U.S. Federal shipping regulations 49 CFR 178.350, DOT Spec 7A, for Type A packages. These together address a number of safety related performance parameters such as hydrogen diffusivity, flow related pressure drop, filtration efficiency and, separately, mechanical stability and the ability to prevent liquid water in-leakage. In order to make all metal DFV technology (including metallic filter medium) available to DOE sites, Pall launched a product development program to validate an all metal design to meet these requirements. Numerous problems experienced by DOE sites in the past came to light during this development program. They led us to explore enhancements to DFV design and performance testing addressing these difficulties and concerns. The result is a patented all metal DFV certified to all applicable regulatory requirements, which for the first time solves operational and health safety problems reported by DOE site personnel but not addressed by previous DFV`s. The new technology facilitates operations (such as manual, automated and semi-automated drum handling/redrumming), sampling, on-site storage, and shipping. At the same time, it upgrades filtration efficiency in configurations documented to maintain filter efficiency following mechanical stress. 2 refs., 2 figs., 10 tabs.

  19. Preliminary minimum detectable limit measurements in 208-L drums for selected actinide isotopes in mock-waste matrices

    International Nuclear Information System (INIS)

    Camp, D.C.; Wang, Tzu-Fang; Martz, H.E.

    1992-01-01

    Preliminary minimum detectable levels (MDLS) of selected actinide isotopes have been determined in full-scale, 55-gallon drums filled with a range of mock-waste materials from combustibles (0.14 g/CM 3 ) to sand (1.7 g/CM 3 ). Measurements were recorded from 100 to 10,000 seconds with selected actinide sources located in these drums at an edge position, on the center axis of a drum and midway between these two positions. Measurements were also made with a 166 Ho source to evaluate the attenuation of these mock-matrix materials as a function of energy. By knowing where the source activity is located within a drum, our preliminary results show that a simply collimated 90% HPGE detector can differentiate between TRU (>100 nCi/g) and LLW amounts of 239 Pu in only 100s of measurement time and with sufficient accuracy in both low and medium density, low Z materials. Other actinides measured so far include 235 U, 241 Am, and 244 Cm. These measurements begin to establish the probable MDLs achievable in the nondestructive assays of real waste drums when using active and passive CT. How future measurements may differ from these preliminary measurements is also discussed

  20. Survey of DOE NDA practices for CH-Tru waste certification--illustrated with a greater than 10,000 drum NDA data base

    International Nuclear Information System (INIS)

    Schultz, F.J.; Caldwell, J.T.; Smith, J.R.

    1988-01-01

    We have compiled a greater than 10,000 CH-TRU waste drum data base from seven DOE sites which have utilized such multiple NDA measurements within the past few years. Most of these nondestructive assay (NDA) technique assay result comparisons have been performed on well-characterized, segregated waste categories such as cemented sludges, combustibles, metals, graphite residues, glasses, etc., with well-known plutonium isotopic compositions. Waste segregation and categorization practices vary from one DOE site to another. Perhaps the most systematic approach has been in use for several years at the Rocky Flats Plant (RFP), operated by Rockwell International, and located near Golden, Colorado. Most of the drum assays in our data base result from assays of RFP wastes, with comparisons available between the original RFP assays and PAN assays performed independently at the Idaho National Engineering Laboratory (INEL) Solid Waste Examination Pilot Plant (SWEPP) facility. Most of the RFP assays were performed with hyperpure germanium (HPGe)-based SGS assay units. However, at least one very important waste category, processed first-stage sludges, is assayed at RFP using a sludge batch-sampling procedure, prior to filling of the waste drums. 5 refs., 5 figs

  1. Investigations with respect to pressure build-up in 200 l drums with supercompacted low level waste (LLW)

    International Nuclear Information System (INIS)

    Kroth, K.; Lammertz, H.

    1988-04-01

    In the drum storage facilities of various nuclear power stations, ballooning effects have recently been observed on a limited number of 200 l drums filled with hypercompacted mixed LLW. The ballooning of the drums lid and bottom is due to internal overpressure caused by gas formation in the waste. The internal drum pressures and the composition of the drum gases were measured on a considerable number of 200 l drums. Hydrogen, formed by chemical reactions between the waste components, was identified as the pressure generating gas. The reasons for the hydrogen formation were investigated on both real and simulated wastes. (orig.) [de

  2. Nondestructive testing methods for 55-gallon, waste storage drums

    International Nuclear Information System (INIS)

    Ferris, R.H.; Hildebrand, B.P.; Hockey, R.L.; Riechers, D.M.; Spanner, J.C.; Duncan, D.R.

    1993-06-01

    The Westinghouse Hanford Company (WHC) authorized Pacific Northwest Laboratory (PNL) to conduct a feasibility study to identify promising nondestructive testing (NDT) methods for detecting general and localized (both pitting and pinhole) corrosion in the 55-gal drums that are used to store solid waste materials at the Hanford Site. This document presents results obtained during a literature survey, identifies the relevant reference materials that were reviewed, provides a technical description of the methods that were evaluated, describes the laboratory tests that were conducted and their results, identifies the most promising candidate methods along with the rationale for these selections, and includes a work plan for recommended follow-on activities. This report contains a brief overview and technical description for each of the following NDT methods: magnetic testing techniques; eddy current testing; shearography; ultrasonic testing; radiographic computed tomography; thermography; and leak testing with acoustic detection

  3. Characterization of void volume VOC concentration in vented TRU waste drums - an interim report

    International Nuclear Information System (INIS)

    Liekhus, K.J.

    1994-09-01

    A test program is underway at the Idaho National Engineering Laboratory to determine if the concentration of volatile organic compounds (VOCs) in the drum headspace is representative of the VOC concentration in the entire drum void space and to demonstrate that the VOC concentration in the void space of each layer of confinement can be estimated using a model incorporating diffusion and permeation transport principles and limited waste drum sampling data. An experimental test plan was developed requiring gas sampling of 66 transuranic (TRU) waste drums. This interim report summarizes the experimental measurements and model predictions of VOC concentration in the innermost layer of confinement from waste drums sampled and analyzed in FY 1994

  4. A method to quantify tritium inside waste drums: He{sup 3} ingrowth method

    Energy Technology Data Exchange (ETDEWEB)

    Godot, A.; Lepeytre, C.; Hubinois, J.C. [CEA Valduc, Dept. Traitement Materiaux Nucleaires, Service Analyses- Dechets, Lab. Chimie Analytique, 21 - Is-sur-Tille (France); Arseguel, A.; Daclin, J.P.; Douche, C. [CEA Valduc, Dept. Traitement Materiaux Nucleaires, Service Analyses- Dechets, Lab. de Gestion des Dechets Trities, 21 - Is-sur-Tille (France)

    2008-07-15

    This method enables an indirect, non intrusive and non destructive measurement of the Tritium activity in wastes drums. The amount of tritium enclosed inside a wastes drum can be determined by the measurement of the leak rate of {sup 3}He of this latter. The simulation predicts that a few months are necessary for establishing the equilibrium between the {sup 3}He production inside the drum and the {sup 3}He drum leak. In practice, after one year of storage, sampling {sup 3}He outside the drum can be realized by the mean of a confining chamber that collect the {sup 3}He outflow. The apparatus, the experimental procedure and the calculation of tritium activity from mass spectrometric {sup 3}He measurements are detailed. The industrial device based on a confinement cell and the automated process to measure the {sup 3}He amount at the initial time and after the confinement time is described. Firstly, reference drums containing a certified tritium activity (HTO) in addition to organic materials have been measured to qualify the method and to evaluate its performances. Secondly, tritium activity of organic wastes drums issued from the storage building in Valduc have been determined. Results of the qualification and optimised values of the experimental parameters are reported in order to determine the performances of this industrial device. As a conclusion, the apparatus enables the measurement of an activity as low as 1 GBq of tritium in a 200 liters drum containing organic wastes. (authors)

  5. The Welding Effect on Mechanical Strength of Low Level Radioactive Waste Drum Container

    International Nuclear Information System (INIS)

    Aisyah; Herlan Martono

    2007-01-01

    The treatment of compactable low level solid waste was started by compaction of 100 liter drum containing the waste using 600 kN hydraulic press in 200 liters drum. The 200 liter drum of waste container containing of compacted waste then immobilized with cement and stored in interm storage. The 200 liter drum of waste container made of carbon steel material to comply with a good mechanical strength request in order to be able to retain the waste content for long period. Welding is a one step in a waste drum container fabrication process that has an opportunity in decreasing these mechanical strength. The research is carried out by welding the waste drum container material sample by electric arc welding. Mechanical strength test carried out by measuring the tensile strength by using the tensile strength machine, hardness test by using Vickers hardness test and microstructure observation by using the optic microscope. The result shows that the welding cause the microstructure changes, its meaning of forming ferro oxide phase on welding area that leads to the brittle material, so that the mechanical strength has a decreasing slightly. Nevertheless the decreasing of mechanical strength is still in the range of safety limit. (author)

  6. Analytical Chemistry and Materials Characterization Results for Debris Recovered from Nitrate Salt Waste Drum S855793

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Patrick Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chamberlin, Rebecca M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schwartz, Daniel S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Worley, Christopher Gordon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Garduno, Katherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lujan, Elmer J. W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Borrego, Andres Patricio [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Castro, Alonso [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Colletti, Lisa Michelle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fulwyler, James Brent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holland, Charlotte S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Keller, Russell C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Klundt, Dylan James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martin, Frances Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Montoya, Dennis Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Steven Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Porterfield, Donivan R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schake, Ann Rene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schappert, Michael Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Soderberg, Constance B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Spencer, Khalil J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanley, Floyd E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Thomas, Mariam R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Townsend, Lisa Ellen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Xu, Ning [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-16

    Solid debris was recovered from the previously-emptied nitrate salt waste drum S855793. The bulk sample was nondestructively assayed for radionuclides in its as-received condition. Three monoliths were selected for further characterization. Two of the monoliths, designated Specimen 1 and 3, consisted primarily of sodium nitrate and lead nitrate, with smaller amounts of lead nitrate oxalate and lead oxide by powder x-ray diffraction. The third monolith, Specimen 2, had a complex composition; lead carbonate was identified as the predominant component, and smaller amounts of nitrate, nitrite and carbonate salts of lead, magnesium and sodium were also identified. Microfocused x-ray fluorescence (MXRF) mapping showed that lead was ubiquitous throughout the cross-sections of Specimens 1 and 2, while heteroelements such as potassium, calcium, chromium, iron, and nickel were found in localized deposits. MXRF examination and destructive analysis of fragments of Specimen 3 showed elevated concentrations of iron, which were broadly distributed through the sample. With the exception of its high iron content and low carbon content, the chemical composition of Specimen 3 was within the ranges of values previously observed in four other nitrate salt samples recovered from emptied waste drums.

  7. Feasibility study of {sup 235}U and {sup 239}Pu characterization in radioactive waste drums using neutron-induced fission delayed gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Nicol, T. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); FZJ, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety, Wilhelm-Johnen-Straße, d-52425 Jülich (Germany); Pérot, B., E-mail: bertrand.perot@cea.fr [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Carasco, C. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Brackx, E. [CEA, DEN, Marcoule, Metallography and Chemical Analysis Laboratory, F-30207 Bagnols-sur-Cèze (France); Mariani, A.; Passard, C. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Mauerhofer, E. [FZJ, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety, Wilhelm-Johnen-Straße, d-52425 Jülich (Germany); Collot, J. [Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble Alpes, CNRS/IN2P3 Grenoble (France)

    2016-10-01

    This paper reports a feasibility study of {sup 235}U and {sup 239}Pu characterization in 225 L bituminized waste drums or 200 L concrete waste drums, by detecting delayed fission gamma rays between the pulses of a deuterium-tritium neutron generator. The delayed gamma yields were first measured with bare samples of {sup 235}U and {sup 239}Pu in REGAIN, a facility dedicated to the assay of 118 L waste drums by Prompt Gamma Neutron Activation Analysis (PGNAA) at CEA Cadarache, France. Detectability in the waste drums is then assessed using the MCNPX model of MEDINA (Multi Element Detection based on Instrumental Neutron Activation), another PGNAA cell dedicated to 200 L drums at FZJ, Germany. For the bituminized waste drum, performances are severely hampered by the high gamma background due to {sup 137}Cs, which requires the use of collimator and shield to avoid electronics saturation, these elements being very penalizing for the detection of the weak delayed gamma signal. However, for lower activity concrete drums, detection limits range from 10 to 290 g of {sup 235}U or {sup 239}Pu, depending on the delayed gamma rays of interest. These detection limits have been determined by using MCNPX to calculate the delayed gamma useful signal, and by measuring the experimental gamma background in MEDINA with a 200 L concrete drum mock-up. The performances could be significantly improved by using a higher interrogating neutron emission and an optimized experimental setup, which would allow characterizing nuclear materials in a wide range of low and medium activity waste packages.

  8. Rover waste assay system

    Energy Technology Data Exchange (ETDEWEB)

    Akers, D.W.; Stoots, C.M.; Kraft, N.C.; Marts, D.J. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-11-01

    The Rover Waste Assay System (RWAS) is a nondestructive assay system designed for the rapid assay of highly-enriched {sup 235}U contaminated piping, tank sections, and debris from the Rover nuclear rocket fuel processing facility at the Idaho Chemical Processing Plant. A scanning system translates a NaI(Tl) detector/collimator system over the structural components where both relative and calibrated measurements for {sup 137}Cs are made. Uranium-235 concentrations are in operation and is sufficiently automated that most functions are performed by the computer system. These functions include system calibration, problem identification, collimator control, data analysis, and reporting. Calibration of the system was done through a combination of measurements on calibration standards and benchmarked modeling. A description of the system is presented along with the methods and uncertainties associated with the calibration and analysis of the system for components from the Rover facility. 4 refs., 2 figs., 4 tabs.

  9. Rover waste assay system

    International Nuclear Information System (INIS)

    Akers, D.W.; Stoots, C.M.; Kraft, N.C.; Marts, D.J.

    1997-01-01

    The Rover Waste Assay System (RWAS) is a nondestructive assay system designed for the rapid assay of highly-enriched 235 U contaminated piping, tank sections, and debris from the Rover nuclear rocket fuel processing facility at the Idaho Chemical Processing Plant. A scanning system translates a NaI(Tl) detector/collimator system over the structural components where both relative and calibrated measurements for 137 Cs are made. Uranium-235 concentrations are in operation and is sufficiently automated that most functions are performed by the computer system. These functions include system calibration, problem identification, collimator control, data analysis, and reporting. Calibration of the system was done through a combination of measurements on calibration standards and benchmarked modeling. A description of the system is presented along with the methods and uncertainties associated with the calibration and analysis of the system for components from the Rover facility. 4 refs., 2 figs., 4 tabs

  10. Evaluation of X-ray System for Nondestructive Testing on Radioactive Waste Drums

    International Nuclear Information System (INIS)

    Park, Jong Kil; Maeng, Seong Jun; Lee, Yeon Ee; Hwang, Tae Won

    2008-01-01

    The physical and chemical properties of radioactive waste drums, which have been temporarily stored on site, should be characterized before their shipment to a disposal facility in order to prove that the properties meet the acceptance guideline. The investigation of NDT(Nondestructive Test) method was figured out that the contents in drum, the quantitative analysis of free standing water and void fraction can be examined with X-ray NDT techniques. This paper describes the characteristics of X-ray NDT such as its principles, the considerations for selection of X-ray system, etc. And then, the waste drum characteristics such as drum type and dimension, contents in drum, etc. were examined, which are necessary to estimate the optimal X-ray energy for NDT of a drum. The estimation results were that: the proper X-ray energy is under 3 MeV to test the drums of 320 β and less; both X-ray systems of 450 keV and/or 3 MeV might be needed considering the economical efficiency and the realization. The number of drums that can be tested with 450 keV and 3 MeV X-ray system was figured out as 42,327 and 18,105 drums (based on storage of 2006. 12), respectively. Four testing scenarios were derived considering equipment procurement method, outsourcing or not, etc. The economical and feasibility assessment for the scenarios was resulted in that an optimal scenario is dependent on the acceptance guide line, the waste generator's policy on the waste treatment and the delivery to a disposal facility, etc. For example, it might be desirable that a waste generator purchases two 450 keV mobile system to examine the drums containing low density waste, and that outsourcing examination for the high density drums, if all NDT items such as quantitative analysis for 'free standing water' and 'void fraction', and confirmation of contents in drum have to be characterized. However, one 450 keV mobile system seems to be required to test only the contents in 13,000 drums per year.

  11. Composition and activity variations in bulk gas of drum waste packages of Paks NPP

    International Nuclear Information System (INIS)

    Molnar, M.; Palcsu, L.; Svingor, E.; Szanto, Zs.; Futo, I.; Ormai, P.

    2001-01-01

    To obtain reliable estimates of the quantities and rates of the gas production a series of measurements was carried out in drum waste packages generated and temporarily stored at the site of Paks Nuclear Power Plant (Paks NPP). Ten drum waste packages were equipped with sampling valves for repeated sampling. Nine times between 04/02/2000 and 19/07/2001 qualitative gas component analyses of bulk gases of drums were executed. Gas samples were delivered to the laboratory of the ATOMKI for tritium and radiocarbon content measurements.(author)

  12. Infrared thermography applied to monitoring of radioactive waste drums; Termografia infravermelha aplicada ao monitoramento de tambores de rejeitos radioativos

    Energy Technology Data Exchange (ETDEWEB)

    Kelmer, P.; Camarano, D.M. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Calado, F.; Phillip, B.; Viana, C.; Andrade, R.M., E-mail: paulafuziki@yahoo.com.br, E-mail: flavio.arcalado@gmail.com, E-mail: bruno.phil@gmail.com, E-mail: criisviana@hotmail.com, E-mail: rma@ufmg.br, E-mail: dmc@cdtn.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Eletrica

    2013-07-01

    The use of thermography in the inspection of drums containing radioactive waste is being stimulated by the absence of physical contact. In Brazil the majority of radioactive wastes are compacted solids packed in metal drums stored temporarily for decades and requires special attention. These drums have only one qualitative indication of the radionuclides present. However, its structural condition is not followed systematically. The aim of this work is presents a methodology by applying thermography for monitoring the structural condition of drums containing radioactive waste in order to detect degraded regions of the drums. (author)

  13. 40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Science.gov (United States)

    2010-07-01

    ... HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 264.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste in overpacked... hazardous waste in overpacked drums (lab packs). 264.316 Section 264.316 Protection of Environment...

  14. 40 CFR 265.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Science.gov (United States)

    2010-07-01

    ... OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 265.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste... hazardous waste in overpacked drums (lab packs). 265.316 Section 265.316 Protection of Environment...

  15. Application of artificial neural networks on the characterization of radioactive waste drums

    International Nuclear Information System (INIS)

    Potiens Junior, Ademar Jose; Hiromoto, Goro

    2011-01-01

    The methodology consist of system simulation of drum-detector by Monte Carlo for obtention of counting efficiency. The obtained data were treated and a neural artificial network (RNA) were constructed for evaluation of total activity of drum. For method evaluation measurements were performed in ten position parallel to the drum axis and the results submitted to the RNA. The developed methodology showed to be effective for isotopic characterization of gamma emitter radioactive wastes distributed in a heterogeneous way in a 200 litters drum. The objective of this work as to develop a methodology of analyse for quantification and localization of radionuclides not homogeneous distributed in a 200 liters drum based on the mathematical techniques

  16. Artificial neural networks in the evaluation of the radioactive waste drums activity

    International Nuclear Information System (INIS)

    Potiens, J.R.A.J.; Hiromoto, G.

    2006-01-01

    The mathematical techniques are becoming more important to solve geometry and standard identification problems. The gamma spectrometry of radioactive waste drums would be a complex solution problem. The main difficulty is the detectors calibration for this geometry; the waste is not homogeneously distributed inside the drums, therefore there are many possible combinations between the activity and the position of these radionuclides inside the drums, making the preparation of calibration standards impracticable. This work describes the development of a methodology to estimate the activity of a 200 L radioactive waste drum, as well as a mapping of the waste distribution, using Artificial Neural Network. The neural network data set entry obtaining was based on the possible detection efficiency combination with 10 sources activities varying from 0 to 74 x 10 3 Bq. The set up consists of a 200 L drum divided in 5 layers. Ten detectors were positioned all the way through a parallel line to the drum axis, from 15 cm of its surface. The Cesium -137 radionuclide source was used. The 50 efficiency obtained values (10 detectors and 5 layers), combined with the 10 source intensities resulted in a 100,000 lines for 15 columns matrix, with all the possible combinations of source intensity and the Cs-137 position in the 5 layers of the drum. This archive was divided in 2 parts to compose the set of training: input and target files. The MatLab 7.0 module of neural networks was used for training. The net architecture has 10 neurons in the input layer, 18 in the hidden layer and 5 in the output layer. The training algorithm was the 'traincgb' and after 300 'epoch s' the medium square error was 0.00108172. This methodology allows knowing the detection positions answers in a heterogeneous distribution of radionuclides inside a 200 L waste drum; in consequence it is possible to estimate the total activity of the drum in the training neural network limits. The results accuracy depends

  17. Radioactive waste package assay facility. Volume 1. Application of assay technology

    International Nuclear Information System (INIS)

    Findlay, D.J.S.; Green, T.H.; Molesworth, T.V.; Staniforth, D.; Strachan, N.R.; Rogers, J.D.; Wise, M.O.; Forrest, K.R.

    1992-01-01

    This report, in three volumes, covers the work carried out by Taylor Woodrow Construction Ltd., and two major sub-contractors: Harwell Laboratory (AEA Technology) and Siemens Plessey Controls Ltd., on the development of a radioactive waste package assay facility, for cemented 500 litre intermediate level waste drums. In volume 1, the reasons for assay are considered together with the various techniques that can be used, and the information that can be obtained. The practical problems associated with the use of the various techniques in an integrated assay facility are identified, and the key parameters defined. Engineering and operational features are examined and provisional designs proposed for facilities at three throughput levels: 15,000, 750 and 30 drums per year respectively. The capital and operating costs for such facilities have been estimated. A number of recommendations are made for further work. 16 refs., 14 figs., 13 tabs

  18. Predictions and implications of a poisson process model to describe corrosion of transuranic waste drums

    International Nuclear Information System (INIS)

    Lyon, B.F.; Holmes, J.A.; Wilbert, K.A.

    1995-01-01

    A risk assessment methodology is described in this paper to compare risks associated with immediate or near-term retrieval of transuranic (TRU) waste drums from bermed storage versus delayed retrieval. Assuming a Poisson process adequately describes corrosion, significant breaching of drums is expected to begin at - 15 and 24 yr for pitting and general corrosion, respectively. Because of this breaching, more risk will be incurred by delayed than by immediate retrieval

  19. Corrosion of steel drums containing simulated radioactive waste of low and intermediate level

    International Nuclear Information System (INIS)

    Farina, S.B.; Schulz Rodríguez, F.; Duffó, G.S.

    2013-01-01

    Ion-exchange resins are frequently used during the operation of nuclear power plants and constitute radioactive waste of low and intermediate level. For the final disposal inside the repository the resins are immobilized by cementation and placed inside steel drums. The eventful contamination of the resins with aggressive species may cause corrosion problems to the drums. In order to assess the incidence of this phenomenon and to estimate the lifespan of the steel drums, in the present work, the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins contaminated with different aggressive species was studied. The aggressive species studied were chloride ions (main ionic species of concern) and sulphate ions (produced during radiolysis of the cationic exchange-resins after cementation). The corrosion rate of the steel was monitored over a time period of 900 days and a chemical and morphological analysis of the corrosion products formed on the steel in each condition was performed. When applying the results obtained in the present work to estimate the corrosion depth of the drums containing the cemented radioactive waste after a period of 300 years (foreseen durability of the Low and Intermediate Level Radioactive Waste facility in Argentina), it was found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. (author)

  20. Application of the Monte Carlo method to estimate doses in a radioactive waste drum environment

    International Nuclear Information System (INIS)

    Rodenas, J.; Garcia, T.; Burgos, M.C.; Felipe, A.; Sanchez-Mayoral, M.L.

    2002-01-01

    During refuelling operation in a Nuclear Power Plant, filtration is used to remove non-soluble radionuclides contained in the water from reactor pool. Filter cartridges accumulate a high radioactivity, so that they are usually placed into a drum. When the operation ends up, the drum is filled with concrete and stored along with other drums containing radioactive wastes. Operators working in the refuelling plant near these radwaste drums can receive high dose rates. Therefore, it is convenient to estimate those doses to prevent risks in order to apply ALARA criterion for dose reduction to workers. The Monte Carlo method has been applied, using MCNP 4B code, to simulate the drum containing contaminated filters and estimate doses produced in the drum environment. In the paper, an analysis of the results obtained with the MCNP code has been performed. Thus, the influence on the evaluated doses of distance from drum and interposed shielding barriers has been studied. The source term has also been analysed to check the importance of the isotope composition. Two different geometric models have been considered in order to simplify calculations. Results have been compared with dose measurements in plant in order to validate the calculation procedure. This work has been developed at the Nuclear Engineering Department of the Polytechnic University of Valencia in collaboration with IBERINCO in the frame of an RD project sponsored by IBERINCO

  1. Analytical and empirical evaluation of low-level waste drum response to accident environments

    International Nuclear Information System (INIS)

    May, R.A.; Romesberg, L.E.; Yoshimura, H.R.; Baker, W.E.; Hokanson, J.C.

    1980-01-01

    Based on results of tests to date, it was found that the structural response of low-level waste drums to impact environments can be generally predicted, both analytically and with subscale models. As currently represented, only the 1/4 scale models would adequately represent full scale drum deformation; however, additional work has shown that with proper heat treating the strength of the material used in the 1/8 scale containers can be reduced to the correct value. Both analytical models give results that are expected to be within the range of behavior of the full scale drums. Failure of the drum closure can be adequately inferred from the radial deformation results of both subscale tests and computer analyses. 6 figures

  2. Three dimensional reconstruction of activity profiles in 220 liters radioactive waste packages containing super-compacted 100 liters drums

    International Nuclear Information System (INIS)

    Van Velzen, L.P.M.; Maes, J.

    2007-01-01

    The 3DRedact project's main objective is the development of a non-destructive assay (NDA) system that can replace emission computer tomography (ECT) and transmission computer tomography (TCT) for the routine characterization of decayed radioactive waste 220 liters drums. The existing fast NDA scan system has been extended with a transmission system that fulfils the requirements of fast scan measurements. The design parameters and engineering are described. As a consequence of this extension the analyze program HOLIS had to be updated, so that HOLIS can make full advantage of the transmission data generated by the analysis of a 220 liters waste drum, containing different super compacted drums. The achievements of the new HOLIS version are presented. As a first assessment, based on the presented tests results, the accuracy of the calculated coordinates of hotspots can be assessed for all coordinates ± 1 cm and for the activity of the hot-spot ± 5 %. These accuracies are within the predefined requirements e.g. coordinates uncertainty ± 2 cm and activity less than 10 %. Further, additional safety systems have been installed to improve a healthy and save working environment. (authors)

  3. Radiological analyses of intermediate and low level supercompacted waste drums by VQAD code

    International Nuclear Information System (INIS)

    Bace, M.; Trontl, K.; Gergeta, K.

    2004-01-01

    In order to increase the possibilities of the QAD-CGGP code, as well as to make the code more user friendly, modifications of the code have been performed. A general multisource option has been introduced into the code and a user friendly environment has been created through a Graphical User Interface. The improved version of the code has been used to calculate gamma dose rates of a single supercompacted waste drum and a pair of supercompacted waste drums. The results of the calculation were compared with the standard QAD-CGGP results. (author)

  4. Detection of free liquid in cement-solidified radioactive waste drums using computed tomography

    International Nuclear Information System (INIS)

    Steude, J.S.; Tonner, P.D.

    1991-01-01

    Acceptance criteria for disposal of radioactive waste drums require that the cement-solidified material in the drum contain minimal free liquid after the cement has hardened. Free liquid is to be avoided because it may corrode the drum, escape and cause environmental contamination. The DOE has requested that a nondestructive evaluation method be developed to detect free liquid in quantities in excess of 0.5% by volume. This corresponds to about 1 liter in a standard 208 liter (55 gallon) drum. In this study, the detection of volumes of free liquid in a 57 cm (2 ft.) diameter cement-solidified drum is demonstrated using high-energy X-ray computed tomography (CT0. In this paper it is shown that liquid concentrations of simulated radioactive waste inside glass tubes imbedded in cement can easily be detected, even for tubes with inner diameters less than 2 mm (0.08 in.). Furthermore, it is demonstrated that tubes containing water and liquid concentrations of simulated radioactive waste can be distinguished from tubes of the same size containing air. The CT images were obtained at a rate of about 6 minutes per slice on a commercially available CT system using a 9 MeV linear accelerator source

  5. Reconstruction of the isotope activity content of heterogeneous nuclear waste drums.

    Science.gov (United States)

    Krings, Thomas; Mauerhofer, Eric

    2012-07-01

    Radioactive waste must be characterized in order to verify its conformance with national regulations for intermediate storage or its disposal. Segmented gamma scanning (SGS) is a most widely applied non-destructive analytical technique for the characterization of radioactive waste drums. The isotope specific activity content is generally calculated assuming a homogeneous matrix and activity distribution for each measured drum segment. However, real radioactive waste drums exhibit non-uniform isotope and density distributions most affecting the reliability and accuracy of activities reconstruction in SGS. The presence of internal shielding structures in the waste drum contributes generally to a strong underestimation of the activity and this in particular for radioactive sources emitting low energy gamma-rays independently of their spatial distribution. In this work we present an improved method to quantify the activity of spatially concentrated gamma-emitting isotopes (point sources or hot spots) in heterogeneous waste drums with internal shielding structures. The isotope activity is reconstructed by numerical simulations and fits of the angular dependent count rate distribution recorded during the drum rotation in SGS using an analytical expression derived from a geometric model. First results of the improved method and enhancements of this method are shown and are compared to each other as well as to the conventional method which assumes a homogeneous matrix and activity distribution. It is shown that the new model improves the accuracy and the reliability of the activity reconstruction in SGS and that the presented algorithm is suitable with respect to the framework requirement of industrial application. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Equipment for capping drums, especially with radioactive waste

    International Nuclear Information System (INIS)

    Bednarik, F.

    1987-01-01

    The equipment consists of a pneumatic cylinder, lever systems with jaws, guide bars, and of securing pins. The top cylinder lid and the bottom cylinder lid provided with openings are slidably attached to a shaft firmly connected to a piston and a support plate. Firmly attached to the bottom lid using brackets are pins holding connecting rods controlling the double-arm levers pivoted on pins, featuring jaws pivoted on forks firmly attached to the support plate and provided with a replaceable spacer insert. The guide bars are firmly attached to the support plate via braces and stiffeners. The securing pins are loaded with springs seated in the braces. The benefits of the equipment include that the lid closing levers with jaws, mechanically controlled using one pneumatic cylinder, thanks to their number and configuration, close the lid around the drum border provided with small recesses which do not reach above the circumference of the drum being closed. The equipment can also be used for carrying closed drums, this also during compressed air failures because the levers with jaws are secured in position with the pneumatic cylinder leg. (J.B.). 1 fig

  7. Criticality safety study of Pu contaminated carbon waste stored in 100 L steel drums

    International Nuclear Information System (INIS)

    Anno, J.; Simonneau, M.

    1995-01-01

    The notion of the minimum critical areal density (D minca ) used to ensure the Criticality-Safety of poor solid waste is recalled with its deficiencies. D minca is assumed constant, independent of the fissile material concentration. This assumption is only true for unreflected mediums. Corrective factors are established. Furthermore, the usual norm of the Pu-H 2 O, which is 0.20 g/cm 2 , (concrete reflected) is greater than that for other mediums, such as Pu contaminated graphite waste (Pu-C), which is 0.036 g/cm 2 . D minca calculated on infinite slabs is confirmed by calculations on infinite planar multilayers arrays of 100 l cubical waste drums. Moreover, d minca increases linearly with the steel thickness of the drums' walls and goes up to 0.17 g/cm 2 for 0.105 cm of steel. The safety analysis on a real storage case takes into account the limited amount of Pu (100 g) and C (100 kg), the minimum thickness of 0.07 cm of drums' steel, their geometrical arrangement, the heterogeneity and size of contamination and the occurrence of neutronic poison (N and Cl) in the waste. Because of these parameters, the Keff are very less than 0.95 and the taken norm of 0.1 g/cm 2 for the Pu-C waste is fulfilled. Finally, it is demonstrated that the mixing of Pu-C waste drums and Pu-H 2 O wastes drums is allowed. (authors). 14 refs., 5 figs., 6 tabs

  8. Design of benign matrix drums for the non-destructive assay performance demonstration program for the National TRU Program

    International Nuclear Information System (INIS)

    Becker, G.K.

    1996-09-01

    Regulatory compliance programs associated with the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Transuranic (TRU) Waste Characterization Program (the Program) require the collection of waste characterization data of known quality to support repository performance assessment, permitting, and associated activities. Blind audit samples, referred to as PDP (performance demonstration program) samples, are devices used in the NDA PDP program to acquire waste NDA system performance data per defined measurement routines. As defined under the current NDA PDP Program Plan, a PDP sample consists of a DOT 17C 55-gallon PDP matrix drum configured with insertable radioactive standards, working reference materials (WRMs). The particular manner in which the matrix drum and PDP standard(s) are combined is a function of the waste NDA system performance test objectives of a given cycle. The scope of this document is confined to the design of the PDP drum radioactive standard internal support structure, the matrix type and the as installed configuration. The term benign is used to designate a matrix possessing properties which are nominally non-interfering to waste NDA measurement techniques. Measurement interference sources are technique specific but include attributes such as: high matrix density, heterogeneous matrix distributions, matrix compositions containing high moderator/high Z element concentrations, etc. To the extent practicable the matrix drum design should not unduly bias one NDA modality over another due to the manner in which the matrix drum configuration manifests itself to the measurement system. To this end the PDP matrix drum configuration and composition detailed below is driven primarily by the intent to minimize the incorporation of matrix attributes known to interfere with fundamental waste NDA modalities, i.e. neutron and gamma based techniques

  9. Analysis, scale modeling, and full-scale tests of low-level nuclear-waste-drum response to accident environments

    International Nuclear Information System (INIS)

    Huerta, M.; Lamoreaux, G.H.; Romesberg, L.E.; Yoshimura, H.R.; Joseph, B.J.; May, R.A.

    1983-01-01

    This report describes extensive full-scale and scale-model testing of 55-gallon drums used for shipping low-level radioactive waste materials. The tests conducted include static crush, single-can impact tests, and side impact tests of eight stacked drums. Static crush forces were measured and crush energies calculated. The tests were performed in full-, quarter-, and eighth-scale with different types of waste materials. The full-scale drums were modeled with standard food product cans. The response of the containers is reported in terms of drum deformations and lid behavior. The results of the scale model tests are correlated to the results of the full-scale drums. Two computer techniques for calculating the response of drum stacks are presented. 83 figures, 9 tables

  10. On performance experience and measurements with Ningyo Waste Assay System (NWAS). 3

    International Nuclear Information System (INIS)

    Zaima, Naoki; Nakashima, Shin'ichi; Nakatsuka, Yoshiaki; Kado, Kazumi; Fujiki, Naoki

    2014-03-01

    A uranium mass assay system, NWAS (Ningyo Waste Assay System), for 200-litter wastes drums applied by NDA method was developed and accumulated the data of the actual uranium bearing wastes drums. The system consists of the 16 pieces of Helium-3 proportional counters for neutron detection generated from U-234(α,n) reaction or U-238 spontaneous fissions with polyethylene moderation and a Germanium solid state detector (Ge-SSD) for gamma ray detection as to determine uranium enrichment. In previous report, some measurement experiences had been introduced briefly. After that the measurements campaigns against the actual wastes drums stored in URCP had been carried out successfully, the uranium determination data of 850 drums had been accumulated approximately. Those characteristics were rich in variety including various kinds of matrices, uranium chemical compositions and range of uranium mass and so on. These works have contributed the decrease of the MUF in URCP, for which was the first purpose of introduction of NWAS. On the other hand several considerable problems on the system or methodology had been revealed technically or analytically through the measurements experiences. Such experiences are to be described precisely, in addition newly gained knowledge will be marshaled. Furthermore as the next improvement plans, the active neutrons assay for uranium bearing wastes drums are now progressing. The results of complications will lead us to the progressive next steps. (author)

  11. Radioactive waste package assay facility. Volume 3. Data processing

    International Nuclear Information System (INIS)

    Creamer, S.C.; Lalies, A.A.; Wise, M.O.

    1992-01-01

    This report, in three volumes, covers the work carried out by Taylor Woodrow Construction Ltd, and two major sub-contractors: Harwell Laboratory (AEA Technology) and Siemens Plessey Controls Ltd, on the development of a radioactive waste package assay facility, for cemented 500 litre intermediate level waste drums. Volume 3, describes the work carried out by Siemens Plessey Controls Ltd on the data-processing aspects of an integrated waste assay facility. It introduces the need for a mathematical model of the assay process and develops a deterministic model which could be tested using Harwell experimental data. Relevant nuclear reactions are identified. Full implementation of the model was not possible within the scope of the Harwell experimental work, although calculations suggested that the model behaved as predicted by theory. 34 figs., 52 refs., 5 tabs

  12. Corrosion susceptibility of steel drums containing cemented intermediate level nuclear wastes

    Science.gov (United States)

    Duffó, Gustavo S.; Farina, Silvia B.; Schulz, Fátima M.; Marotta, Francesca

    2010-10-01

    Cementation processes are used as immobilization techniques for low or intermediate level radioactive waste for economical and safety reasons and for being a simple operation. In particular, ion-exchange resins commonly used for purification of radioactive liquid waste from nuclear reactors are immobilized before being stored to improve the leach resistance of the waste matrix and to maintain mechanical stability. Combustible solid radioactive waste can be incinerated and the resulting ashes can also be immobilized before storage. The immobilized resins and ashes are then contained in steel drums that may undergo corrosion depending on the presence of certain contaminants. The work described in this paper was aimed at evaluating the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins and incineration ashes containing different concentrations of aggressive species (mostly chloride and sulphate ions). A special type of specimen was designed to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 1 year. The results show the deleterious effect of chloride on the expected lifespan of the waste containers.

  13. Corrosion susceptibility of steel drums containing cemented intermediate level nuclear wastes

    International Nuclear Information System (INIS)

    Duffo, Gustavo S.; Farina, Silvia B.; Schulz, Fatima M.; Marotta, Francesca

    2010-01-01

    Cementation processes are used as immobilization techniques for low or intermediate level radioactive waste for economical and safety reasons and for being a simple operation. In particular, ion-exchange resins commonly used for purification of radioactive liquid waste from nuclear reactors are immobilized before being stored to improve the leach resistance of the waste matrix and to maintain mechanical stability. Combustible solid radioactive waste can be incinerated and the resulting ashes can also be immobilized before storage. The immobilized resins and ashes are then contained in steel drums that may undergo corrosion depending on the presence of certain contaminants. The work described in this paper was aimed at evaluating the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins and incineration ashes containing different concentrations of aggressive species (mostly chloride and sulphate ions). A special type of specimen was designed to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 1 year. The results show the deleterious effect of chloride on the expected lifespan of the waste containers.

  14. Microbial degradation of lignocellulosic fractions during drum composting of mixed organic waste

    Directory of Open Access Journals (Sweden)

    Vempalli Sudharsan Varma

    2017-11-01

    Full Text Available The study aimed to characterize the microbial population involved in lignocellulose degradation during drum composting of mixed organic waste i.e. vegetable waste, cattle manure, saw dust and dry leaves in a 550 L rotary drum composter. Lignocellulose degradation by different microbial populations was correlated by comparing results from four trials, i.e., Trial 1 (5:4, Trial 2 (6:3, Trial 3 (7:2 and Trial 4 (8:1 of varying waste combinations during 20 days of composting period. Due to proper combination of waste materials and agitation in drum composter, a maximum of 66.5 and 61.4 °C was achieved in Trial 1 and 2 by observing a temperature level of 55 °C for 4–6 d. The study revealed that combinations of waste materials had a major effect on the microbial degradation of waste material and quality of final compost due to its physical properties. However, Trial 1 was observed to have longer thermophilic phase leading to higher degradation of lignocellulosic fractions. Furthermore, Fourier transform infrared spectrometer and fluorescent spectroscopy confirmed the decrease in aliphatic to aromatic ratio and increase in polyphenolic compounds of the compost. Heterotrophic bacteria were observed predominantly due to the readily available organic matter during the initial period of composting. However, fungi and actinomycetes were active in the degradation of lignocellulosic fractions.

  15. Nuclear waste calorimeter for very large drums with 385 litres sample volume

    Energy Technology Data Exchange (ETDEWEB)

    Jossens, G.; Mathonat, C. [SETARAM Instrumentation, Caluire (France); Bachelet, F. [CEA Valduc, Is sur Tille (France)

    2015-03-15

    Calorimetry is a very precise and well adapted tool for the classification of drums containing nuclear waste material depending on their level of activities (low, medium, high). A new calorimeter has been developed by SETARAM Instrumentation and the CEA Valduc in France. This new calorimeter is designed for drums having a volume bigger than 100 liters. It guarantees high operator safety by optimizing drum handling and air circulation for cooling, and optimized software for direct measurement of the quantity of nuclear material. The LVC1380 calorimeter makes it possible to work over the range 10 to 3000 mW, which corresponds to approximately 0.03 to 10 g of tritium or 3 to 955 g of {sup 241}Pu in a volume up to 385 liters. This calorimeter is based on the heat flow measurement using Peltier elements which surround the drum in the 3 dimensions and therefore measure all the heat coming from the radioactive stuff whatever its position inside the drum. Calorimeter's insulating layers constitute a thermal barrier designed to filter disturbances until they represent less than 0.001 Celsius degrees and to eliminate long term disturbances associated, for example, with laboratory temperature variations between day and night. A calibration device based on Joule effect has also been designed. Measurement time has been optimized but remains long compared with other methods of measurement such as gamma spectrometry but its main asset is to have a good accuracy for low level activities.

  16. Plasma processing of compacted drums of simulated radioactive waste

    International Nuclear Information System (INIS)

    Geimer, R.; Batdorf, J.; Larsen, M.M.

    1991-01-01

    The charter of the Department of Energy (DOE) Office of Technology Development (OTD) is to identify and develop technologies that have potential application in the treatment of DOE wastes. One particular waste of concern within the DOE is transuranic (TRU) waste, which is generated and stored at several DOE sites. High temperature DC arc generated plasma technology is an emerging treatment method for TRU waste, and its use has the potential to provide many benefits in the management of TRU. This paper begins by discussing the need for development of a treatment process for TRU waste, and the potential benefits that a plasma waste treatment system can provide in treating TRU waste. This is followed by a discussion of the results of a project conducted for the DOE to demonstrate the effectiveness of a plasma process for treating supercompacted TRU waste. 1 fig., 1 tab

  17. The crane handling system for 500 litre drums of cemented radioactive waste

    International Nuclear Information System (INIS)

    Staples, A.T.

    1991-01-01

    As part of the AEA Technology strategy for dealing with radioactive wastes new waste treatment facilities are being built at the Winfrith Technology Centre (WTC), Dorset. One of the facilities at WTC is the Treated Radwaste Store (TRS) which is designed to store sealed 500 litre capacity drums of treated waste for an interim period until the national disposal facility is operational. Within the TRS two cranes have been incorporated, one spanning the entire width and travelling the length of the Store. The second operates within the area designated for drum handling during inspection work. The development of the design of these cranes and their associated control systems, to meet the complex requirements of operations whilst also satisfying the reliability and safety criteria, is discussed within the paper. (author)

  18. Artificial neural network application in isotopic characterization of radioactive waste drums

    International Nuclear Information System (INIS)

    Potiens Junior, Ademar Jose

    2005-01-01

    One of the most important aspects to the development of the nuclear technology is the safe management of the radioactive waste arising from several stages of the nuclear fuel cycles, as well as from production and use of radioisotope in the medicine, industry and research centers. The accurate characterization of this waste is not a simple task, given to its diversity in isotopic composition and non homogeneity in the space distribution and mass density. In this work it was developed a methodology for quantification and localization of radionuclides not non homogeneously distributed in a 200 liters drum based in the Monte Carlo Method and Artificial Neural Network (RNA), for application in the isotopic characterization of the stored radioactive waste at IPEN. Theoretical arrangements had been constructed involving the division of the radioactive waste drum in some units or cells and some possible configurations of source intensities. Beyond the determination of the detection positions, the respective detection efficiencies for each position in function of each cell of the drum had been obtained. After the construction and the training of the RNA's for each developed theoretical arrangement, the validation of the method were carried out for the two arrangements that had presented the best performance. The results obtained show that the methodology developed in this study could be an effective tool for isotopic characterization of radioactive wastes contained in many kind of packages. (author)

  19. Corrosion susceptibility of steel drums to be used as containers for intermediate level nuclear waste

    International Nuclear Information System (INIS)

    Farina, S.; Schulz Rodriguez, F.; Duffo, G.

    2013-01-01

    The present work is a study of the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins contaminated with different types and concentrations of aggressive species. A special type of specimen was manufactured to simulate the cemented ion-exchange resins in the drum. The evolution of the corrosion potential and the corrosion rate of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 900 days. The aggressive species studied were chloride ions (the main ionic species of concern) and sulphate ions (produced during radiolysis of the cationic exchange-resins after cementation). The work was complemented with an analysis of the corrosion products formed on the steel in each condition, as well as the morphology of the corrosion products. When applying the results obtained in the present work to estimate the corrosion depth of the steel drums containing the cemented radioactive waste after a period of 300 years (foreseen durability of the Intermediate Level Radioactive Waste facility in Argentina), it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. (authors)

  20. Radioactive waste slurry dehydrating and drum filling device

    International Nuclear Information System (INIS)

    Ichihashi, Toshio; Abe, Kazuaki; Hasegawa, Akira

    1981-01-01

    Purpose: To obtain a device for simultaneously filling and dehydrating radioactive waste in a waste can without the necessity of a special device for dehydration. Constitution: This device includes a radioactive waste storage tank, a pump for supplying the waste from the tank to a can, a drain tube having a filter at the lower end and installed displaceable in the axial direction of the can, and a drain pump. The slurry stored in the radioactive waste storage tank is supplied by the pump to the can, and the feedwater in the slurry is removed by another pump through a drain pipe having a filter which does not pass solid content from the can. Accordingly, as the slurry is filled in the can, the feedwater contained therein is removed. Consequently, it can simultaneously dehydrate and fill the dehydrated waste in the can. (Yoshihara, H.)

  1. Corrosion of steel drums containing cemented ion-exchange resins as intermediate level nuclear waste

    Science.gov (United States)

    Duffó, G. S.; Farina, S. B.; Schulz, F. M.

    2013-07-01

    Exhausted ion-exchange resins used in nuclear reactors are immobilized by cementation before being stored. They are contained in steel drums that may undergo internal corrosion depending on the presence of certain contaminants. The objective of this work is to evaluate the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins with different aggressive species. The corrosion potential and the corrosion rate of the steel, and the electrical resistivity of the matrix were monitored for 900 days. Results show that the cementation of ion-exchange resins seems not to pose special risks regarding the corrosion of the steel drums. The corrosion rate of the steel in contact with cemented ion-exchange resins in the absence of contaminants or in the presence of 2.3 wt.% sulphate content remains low (less than 0.1 μm/year) during the whole period of the study (900 days). The presence of chloride ions increases the corrosion rate of the steel at the beginning of the exposure but, after 1 year, the corrosion rate drops abruptly reaching a value close to 0.1 μm/year. This is probably due to the lack of water to sustain the corrosion process. When applying the results obtained in the present work to estimate the corrosion depth of the steel drums containing the cemented radioactive waste after a period of 300 years, it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. Cementation of ion-exchange resins does not seem to pose special risks regarding the corrosion of the steel drums that contained them; even in the case the matrix is highly contaminated with chloride ions.

  2. Final environmental assessment: TRU waste drum staging building, Technical Area 55, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    1996-01-01

    Much of the US Department of Energy's (DOE's) research on plutonium metallurgy and plutonium processing is performed at Los Alamos National Laboratory (LANL), in Los Alamos, New Mexico. LANL's main facility for plutonium research is the Plutonium Facility, also referred to as Technical Area 55 (TA-55). The main laboratory building for plutonium work within the Plutonium Facility (TA-55) is the Plutonium Facility Building 4, or PF-4. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if DOE were to stage sealed containers of transuranic (TRU) and TRU mixed waste in a support building at the Plutonium Facility (TA-55) that is adjacent to PF-4. At present, the waste containers are staged in the basement of PF-4. The proposed project is to convert an existing support structure (Building 185), a prefabricated metal building on a concrete foundation, and operate it as a temporary staging facility for sealed containers of solid TRU and TRU mixed waste. The TRU and TRU mixed wastes would be contained in sealed 55-gallon drums and standard waste boxes as they await approval to be transported to TA-54. The containers would then be transported to a longer term TRU waste storage area at TA-54. The TRU wastes are generated from plutonium operations carried out in PF-4. The drum staging building would also be used to store and prepare for use new, empty TRU waste containers

  3. Non-intrusive measurement of tritium activity in waste drums by modelling a 3He leak quantified by mass spectrometry

    International Nuclear Information System (INIS)

    Demange, D.

    2002-01-01

    This study deals with a new method that makes it possible to measure very low tritium quantities inside radioactive waste drums. This indirect method is based on measuring the decaying product, 3 He, and requires a study of its behaviour inside the drum. Our model considers 3 He as totally free and its leak through the polymeric joint of the drum as two distinct phenomena: permeation and laminar flow. The numerical simulations show that a pseudo-stationary state takes place. Thus, the 3 He leak corresponds to the tritium activity inside the drum but it appears, however, that the leak peaks when the atmospheric pressure variations induce an overpressure in the drum. Nevertheless, the confinement of a drum in a tight chamber makes it possible to quantify the 3 He leak. This is a non-intrusive measurement of its activity, which was experimentally checked by using reduced models, representing the drum and its confinement chamber. The drum's confinement was optimised to obtain a reproducible 3 He leak measurement. The gaseous samples taken from the chamber were purified using selective adsorption onto activated charcoals at 77 K to remove the tritium and pre-concentrate the 3 He. The samples were measured using a leak detector mass spectrometer. The adaptation of the signal acquisition and the optimisation of the analysis parameters made it possible to reach the stability of the external calibrations using standard gases with a 3 He detection limit of 0.05 ppb. Repeated confinement of the reference drums demonstrated the accuracy of this method. The uncertainty of this non-intrusive measurement of the tritium activity in 200-liter drums is 15% and the detection limit is about 1 GBq after a 24 h confinement. These results led to the definition of an automated tool able to systematically measure the tritium activity of all storage waste drums. (authors)

  4. Validation of radioactive isotope activity measurement in homogeneous waste drum using Monte Carlo codes

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Tran Thien; Tran, Le Bao; Ton, Thai Van; Chuong, Huynh Dinh; Tao, Chau Van [VNUHCM-Univ. of Science, Ho Chi Minh City (Viet Nam). Dept. of Nuclear Physics; VNUHCM-Univ. of Science, Ho Chi Minh City (Viet Nam). Nuclear Technique Lab.; Tam, Hoang Duc [Ho Chi Minh City Univ. of Pedagogy (Viet Nam). Faculty of Physics; Quang, Ma Thuy [VNUHCM-Univ. of Science, Ho Chi Minh City (Viet Nam). Dept. of Nuclear Physics

    2017-07-15

    In this work, the angular dependent efficiency recorded by collimated NaI(Tl) detector is determined a quantification of the activity of mono- and multi-energy gamma emitting isotopes positioning in a waste drum. The simulated efficiencies using both MCNP5 and Geant4 are in good agreement with experimental results. Referring to these simulated efficiencies, we recalculated the source activity with the highest deviation of 13%.

  5. Validation of radioactive isotope activity measurement in homogeneous waste drum using Monte Carlo codes

    International Nuclear Information System (INIS)

    Thanh, Tran Thien; Tran, Le Bao; Ton, Thai Van; Chuong, Huynh Dinh; Tao, Chau Van; VNUHCM-Univ. of Science, Ho Chi Minh City; Tam, Hoang Duc; Quang, Ma Thuy

    2017-01-01

    In this work, the angular dependent efficiency recorded by collimated NaI(Tl) detector is determined a quantification of the activity of mono- and multi-energy gamma emitting isotopes positioning in a waste drum. The simulated efficiencies using both MCNP5 and Geant4 are in good agreement with experimental results. Referring to these simulated efficiencies, we recalculated the source activity with the highest deviation of 13%.

  6. Waste receiving and processing drum weight measurement uncertainty review findings

    International Nuclear Information System (INIS)

    LANE, M.P.

    1999-01-01

    The purpose of reviewing the weight scale operation at the WRAP facility was to determine the uncertainty associated with weight measurements. Weight measurement uncertainty is needed to support WRAP Nondestructive Examination (NDE) and Non-destructive Assay (NDA) analysis

  7. Simultaneous Thermal Analysis of WIPP and LANL Waste Drum Samples: A Preliminary Report

    Energy Technology Data Exchange (ETDEWEB)

    Wayne, David M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-19

    On Friday, February 14, 2014, an incident in P7R7 of the WIPP underground repository released radioactive material into the environment. The direct cause of the event was a breached transuranic (TRU) waste container, subsequently identified as Drum 68660. Photographic and other evidence indicates that the breach of 68660 was caused by an exothermic event. Subsequent investigations (Britt, 2015; Clark and Funk, 2015; Wilson et al., 2015; Clark, 2015) indicate that the combination of nitrate salts, pH neutralizing chemicals, and organic-based adsorbent represented a potentially energetic mixture. The materials inside the breached steel drum consisted of remediated, 30- to 40-year old, Pu processing wastes from LANL. The contents were processed and repackaged in 2014. Processing activities at LANL included: 1) neutralization of acidic liquid contents, 2) sorption of the neutralized liquid, and 3) mixing of acidic nitrate salts with an absorber to meet waste acceptance criteria. The contents of 68660 and its sibling, 68685, were derived from the same parent drum, S855793. Drum S855793 originally contained ten plastic bags of acidic nitrate salts, and four bags of mixed nitrate and oxalate salts generated in 1985 by Pu recovery operations. These salts were predominantly oxalic acid, hydrated nitrate salts of Mg, Ca, and Fe, anhydrous Na(NO3), and minor amounts of anhydrous and hydrous nitrate salts of Pb, Al, K, Cr, and Ni. Other major components include sorbed water, nitric acid, dissolved nitrates, an absorbent (Swheat Scoop®) and a neutralizer (KolorSafe®). The contents of 68660 are described in greater detail in Appendix E of Wilson et al. (2015)

  8. Characterization of uranium in bituminized radioactive waste drums by self-induced X-ray fluorescence

    International Nuclear Information System (INIS)

    Pin, Patrick; Perot, Bertrand

    2013-06-01

    This paper reports the experimental qualification of an original uranium characterization method based on fluorescence X rays induced by the spontaneous gamma emission of bituminized radioactive waste drums. The main 661.7 keV gamma ray following the 137 Cs decay produces by Compton scattering in the bituminized matrix an intense photon continuum around 100 keV, i.e. in the uranium X-ray fluorescence region. 'Self-induced' X-rays produced without using an external source allow a quantitative assessment of uranium as 137 Cs and uranium are homogeneously mixed and distributed in the bituminized matrix. The paper presents the experimental qualification of the method with real waste drums, showing a detection limit well below 1 kg of uranium in 20 min acquisitions while the usual gamma rays of 235 U (185 keV) or 238 U (1001 keV of 234m Pa in the radioactive decay chain) are not detected. The relative uncertainty on the uranium mass assessed by self-induced X-ray fluorescence (SXRF) is about 50%, with a 95% confidence level, taking into account the correction of photon attenuation in the waste matrix. This last indeed contains high atomic numbers elements like uranium, but also barium, in quantities which are not known for each drum. Attenuation is estimated thanks to the peak-to-Compton ratio to limit the corresponding uncertainty. The SXRF uranium masses measured in the real drums are in good agreement with long gamma-ray spectroscopy measurements (1001 keV peak) or with radiochemical analyses. (authors)

  9. Simultaneous Thermal Analysis of WIPP and LANL Waste Drum Samples: A Preliminary Report

    International Nuclear Information System (INIS)

    Wayne, David M.

    2015-01-01

    On Friday, February 14, 2014, an incident in P7R7 of the WIPP underground repository released radioactive material into the environment. The direct cause of the event was a breached transuranic (TRU) waste container, subsequently identified as Drum 68660. Photographic and other evidence indicates that the breach of 68660 was caused by an exothermic event. Subsequent investigations (Britt, 2015; Clark and Funk, 2015; Wilson et al., 2015; Clark, 2015) indicate that the combination of nitrate salts, pH neutralizing chemicals, and organic-based adsorbent represented a potentially energetic mixture. The materials inside the breached steel drum consisted of remediated, 30- to 40-year old, Pu processing wastes from LANL. The contents were processed and repackaged in 2014. Processing activities at LANL included: 1) neutralization of acidic liquid contents, 2) sorption of the neutralized liquid, and 3) mixing of acidic nitrate salts with an absorber to meet waste acceptance criteria. The contents of 68660 and its sibling, 68685, were derived from the same parent drum, S855793. Drum S855793 originally contained ten plastic bags of acidic nitrate salts, and four bags of mixed nitrate and oxalate salts generated in 1985 by Pu recovery operations. These salts were predominantly oxalic acid, hydrated nitrate salts of Mg, Ca, and Fe, anhydrous Na(NO 3 ), and minor amounts of anhydrous and hydrous nitrate salts of Pb, Al, K, Cr, and Ni. Other major components include sorbed water, nitric acid, dissolved nitrates, an absorbent (Swheat Scoop®) and a neutralizer (KolorSafe®). The contents of 68660 are described in greater detail in Appendix E of Wilson et al. (2015)

  10. Liquide waste volume reduction by in-drum drying system

    International Nuclear Information System (INIS)

    Volaric, B.; Zorko, M.

    1998-01-01

    The disposal of radioactive waste is becoming increasingly difficult because of the lack of available volume on site, the rising disposal costs and the lack of ultimate disposal sites. Optimized treatment and volume reduction of concentrates and spent resins prior to interim storage, final disposal, and solidification processes are major step to counteract the situation.(author)

  11. Application of the dose conversion factor for a NaI(Tl) detector to the radwaste drum assay

    International Nuclear Information System (INIS)

    Ji, Young-Yong; Hong, Dae-Seok; Kim, Tae-Kuk; Kwak, Kyung-Kil; Ryu, Woo-Seog

    2011-01-01

    The dose-to-curie (DTC) conversion method has been known that there could be extremely high uncertainty associated with establishing the radioactivity of gamma emitters in a drum. However, the DTC conversion method is still an effective assay method to calculate the radioisotope inventory because of the simple and easy procedures to be applied. In order to make the DTC conversion method practical, numerous assumptions and limitations placed on its use. These assumptions and limitations are related to the dose rate measurement and the relative abundance of gamma emitters in a drum. However, these two variables were generally obtained from the different detection mechanisms even using the different radwaste each other. Unfortunately, that expanded the limitation of using the DTC conversion method. In order to obtain two variables in a drum to be assayed at once, the dose conversion factor for a NaI(Tl) detector was first calculated from the MCNP code. The pulse height spectrum from a simulated drum inserted into a standard source was measured by a NaI(Tl) detector, and then, two variables were calculated from the dose conversion factor and the net count rate of detected gamma emitters in the pulse height spectrum.

  12. Corrosion susceptibility of steel drums to be used as containers for intermediate level nuclear waste

    Science.gov (United States)

    Farina, S.; Schulz Rodriguez, F.; Duffó, G.

    2013-07-01

    The present work is a study of the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins contaminated with different types and concentrations of aggressive species. A special type of specimen was manufactured to simulate the cemented ion-exchange resins in the drum. The evolution of the corrosion potential and the corrosion rate of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 900 days. The aggressive species studied were chloride ions (the main ionic species of concern) and sulphate ions (produced during radiolysis of the cationic exchange-resins after cementation). The work was complemented with an analysis of the corrosion products formed on the steel in each condition, as well as the morphology of the corrosion products. When applying the results obtained in the present work to estimate the corrosion depth of the steel drumscontaining the cemented radioactive waste after a period of 300 years (foreseen durability of the Intermediate Level Radioactive Waste facility in Argentina) , it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums.

  13. Gamma-ray spectrometry method used for radioactive waste drums characterization for final disposal at National Repository for Low and Intermediate Radioactive Waste--Baita, Romania.

    Science.gov (United States)

    Done, L; Tugulan, L C; Dragolici, F; Alexandru, C

    2014-05-01

    The Radioactive Waste Management Department from IFIN-HH, Bucharest, performs the conditioning of the institutional radioactive waste in concrete matrix, in 200 l drums with concrete shield, for final disposal at DNDR - Baita, Bihor county, in an old exhausted uranium mine. This paper presents a gamma-ray spectrometry method for the characterization of the radioactive waste drums' radionuclides content, for final disposal. In order to study the accuracy of the method, a similar concrete matrix with Portland cement in a 200 l drum was used. © 2013 The Authors. Published by Elsevier Ltd All rights reserved.

  14. Simultaneous correction of attenuation and geometric response in emission tomography applied to nuclear waste drums

    International Nuclear Information System (INIS)

    Thierry, Raphael

    1999-01-01

    Multi-photonic emission tomography is a non destructive technique applied to the control of radioactive waste drums. The emitted gamma rays are detected on the range [50 keV, 2 MeV] by a hyper pure germanium, of high resolution in energy, which enables to set up a detailed list of radionuclides contained within the drum. From different points of measurement located in a transaxial plane of the drum, the activity distribution is computed by a reconstruction algorithm. An algebraic modelling of the physical process has been developed in order to correct the different degrading phenomenon, in particular the attenuation and the detector geometric response. Attenuation through the materials constituting the barrel is the preponderant phenomena. Its ignorance prevents from accurate activity quantification. Its correction has been realised from an attenuation map obtained by a transmission tomograph. The detector geometric response, introducing a blurring within the detection, is compensated by an analytic model. An adequate modelling of those phenomenon is primordial: it highly contributes on a large scale the image quality and the quantification. The image reconstruction, requiring the resolution of sparse linear system, is realised by iterative algorithms. Due to the 'ill-posed' nature of tomographic reconstruction, it is necessary to use regularisation: by introducing an a priori information on the solution, the stabilisation of the methods is carried out. We chose to minimise the Maximum A Posteriori criterion. Its resolution is considered with a half-quadratic regularisation: it permits the preservation of natural discontinuities, and avoids global-over smoothing of the image. It is evaluated on real phantoms and waste drums. Efficient sampling of the data is considered. (author) [fr

  15. Capability and limitation study of the DDT passive-active neutron waste assay instrument

    International Nuclear Information System (INIS)

    Nicholas, N.J.; Coop, K.L.; Estep, R.J.

    1992-05-01

    The differential-dieaway-technique passive-active neutron assay system is widely used by transuranic waste generators to certify their drummed waste for eventual shipment to the Waste Isolation Pilot Plant (WIPP). Stricter criteria being established for waste emplacement at the WIPP site has led to a renewed interest in improvements to and a better understanding of current nondestructive assay (NDA) techniques. Our study includes the effects of source position, extreme matrices, high neutron backgrounds, and source self-shielding to explore the system's capabilities and limitations and to establish a basis for comparison with other NDA systems. 11 refs

  16. Type B Drum packages

    International Nuclear Information System (INIS)

    Edwards, W.S.

    1995-11-01

    The Type B Drum package is a container in which a single drum containing Type B quantities of radioactive material will be packaged for shipment. The Type B Drum containers are being developed to fill a void in the packaging and transportation capabilities of the US Department of Energy (DOE), as no double containment packaging for single drums of Type B radioactive material is currently available. Several multiple-drum containers and shielded casks presently exist. However, the size and weight of these containers present multiple operational challenges for single-drum shipments. The Type B Drum containers will offer one unshielded version and, if needed, two shielded versions, and will provide for the option of either single or double containment. The primary users of the Type B Drum container will be any organization with a need to ship single drums of Type B radioactive material. Those users include laboratories, waste retrieval facilities, emergency response teams, and small facilities

  17. Multi-isotopic gamma-ray assay system for alpha-contaminated waste

    International Nuclear Information System (INIS)

    Close, D.A.; Pratt, J.C.; Caldwell, J.T.; Kunz, W.E.; Schultz, F.J.; Haff, K.W.

    1983-01-01

    The capability of an existing segmented gamma-ray system is being expanded for the analysis of alpha-contaminated waste drums. A cursory assay of 114 transuranic waste drums of 208-l capacity has been made. Analysis of these data indicates a detection limit better than 100 nCi/g of waste for 237 Np/ 233 Pa, 239 Pu, 241 Am, 243 Am/ 239 Np, 60 Co, 125 Sb, 134 137 Cs, and 154 Eu. A pending Code of Federal Regulation (10CFR61) stipulates that the nuclear industry quantify not only its transuranic waste, but also certain beta- and gamma-ray-emitting fission products. An assay system based on gamma-ray spectroscopy is the only system that can meet this requirement for the fission products

  18. Design and construction of a 208-L drum containing representative LLNL transuranic and low-level wastes

    International Nuclear Information System (INIS)

    Camp, D.C.; Pickering, J.; Martz, H.E.

    1994-01-01

    At the Lawrence Livermore National Laboratory (LLNL), we are developing the nondestructive analysis (NDA) technique of active (A) computed tomography (CT) to measure waste matrix attenuation as a function of gamma-ray energy (ACT); and passive. (P) Cr to locate and identify all gamma-ray emitting isotopes within a waste container. Coupling the ACT and PCT results will quantify each isotope identified, thereby categorize the amount of radioactivity within waste drums having volumes up to 416-liters (L), i.e., 110-gallon drums

  19. Pre-title I safety evaluation for the retrieval operations of transuranic waste drums in the Solid Waste Disposal Facility. Revision 2

    International Nuclear Information System (INIS)

    Rabin, M.S.

    1992-08-01

    Phase I of the Transuranic (TRU) Waste Facility Line Item Project includes the retrieval and safe storage of the pad drums that are stored on TRU pads 2-6 in the Solid Waste Disposal Facility (SWDF). Drums containing TRU waste were placed on these pads as early as 1974. The pads, once filled, were mounded with soil. The retrieval activities will include the excavation of the soil, retrieval of the pad drums, placing the drums in overpacks (if necessary) and venting and purging the retrieved drums. Once the drums have been vented and purged, they will be transported to other pads within the SWDF or in a designated area until they are eventually treated as necessary for ultimate shipment to the Waste Isolation Pilot Plant in Carlsbad, New Mexico. This safety evaluation provides a bounding assessment of the radiological risk involved with the drum retrieval activities to the maximally exposed offsite individual and the co-located worker. The results of the analysis indicate that the risk to the maximally exposed offsite individual and the co-located worker using maximum frequencies and maximum consequences are within the acceptance criteria defined in WSRC Procedural Manual 9Q. The purpose of this evaluation is to demonstrate the incremental risk from the SWDF due to the retrieval activities for use as design input only. As design information becomes available, this evaluation can be revised to satisfy the safety analysis requirements of DOE Orders 4700 and 5480.23

  20. Seawater corrosion tests for low-level radioactive waste drum containers

    International Nuclear Information System (INIS)

    Maeda, Sho; Wadachi, Yoshiki

    1985-11-01

    This report is a part of corrosion tests of drums under various environmental conditions (seawater, river water, coastal sand, inland soil and indoor and outdoor atmosphere) done at Japan Atomic Energy Research Institute sponsored by the Science and Technology Agency. The corrosion tests were started in November, 1977 and complated at March, 1984. This report describes the results of the seawater corrosion tests which are part of the final report, ''Corrosion Safety Demonstration Test'' (Japanese), and it is expected to contribute the safety assessment of sea dumping of low-level radioactive waste packages. (author)

  1. The potential use of transmission tomographic techniques for the quality checking of cemented waste drums

    International Nuclear Information System (INIS)

    Huddleston, J.; Hutchinson, I.G.

    1986-01-01

    In support of the programme for the quality checking of encapsulated intermediate level waste, the possibilities of using transmission tomographic techniques for the determination of the physical properties of the drum are being considered. A literature survey has been undertaken and the possibilities of extracting data from video recordings of real time radiographs are considered. This work was carried out with financial support from British Nuclear Fuels plc and the UK Department of the Environment. In the DoE context, the results will be used in the formulation of Government Policy, but at this stage they do not necessarily represent Government Policy. (author)

  2. Statistical sampling plan for the TRU waste assay facility

    International Nuclear Information System (INIS)

    Beauchamp, J.J.; Wright, T.; Schultz, F.J.; Haff, K.; Monroe, R.J.

    1983-08-01

    Due to limited space, there is a need to dispose appropriately of the Oak Ridge National Laboratory transuranic waste which is presently stored below ground in 55-gal (208-l) drums within weather-resistant structures. Waste containing less than 100 nCi/g transuranics can be removed from the present storage and be buried, while waste containing greater than 100 nCi/g transuranics must continue to be retrievably stored. To make the necessary measurements needed to determine the drums that can be buried, a transuranic Neutron Interrogation Assay System (NIAS) has been developed at Los Alamos National Laboratory and can make the needed measurements much faster than previous techniques which involved γ-ray spectroscopy. The previous techniques are reliable but time consuming. Therefore, a validation study has been planned to determine the ability of the NIAS to make adequate measurements. The validation of the NIAS will be based on a paired comparison of a sample of measurements made by the previous techniques and the NIAS. The purpose of this report is to describe the proposed sampling plan and the statistical analyses needed to validate the NIAS. 5 references, 4 figures, 5 tables

  3. X-Ray, Digital Imaging with Volumetric Density Measurement and Profiling, Applied to the Characterization of Waste Drums

    International Nuclear Information System (INIS)

    Huhtiniemi, I.; Gupta, N.; Halliwell, S.

    2006-01-01

    The European Commission's Joint Research Centre Ispra Site (JRC-Ispra) has initiated a decommissioning and waste management program that will span about two decades. The program includes a requirement to characterize the contents of about 6,500 radioactive, 220 litre waste drums whose documented history is incomplete. To render the characterization process more efficient, the drums will be initially divided into homogeneous groups, an activity that will be based on existing documentation and non-destructive examination (NDE) by X-ray digital imaging. This paper describes the X-ray imaging techniques chosen, and the planned performance validation of the equipment. (authors)

  4. Application of PINS and GNAT to the assay of 55-gal containers of radioactive waste

    International Nuclear Information System (INIS)

    Gehrke, R.J.; Aryaeinejad, R.; Watts, K.D.; Staples, D.R.; Akers, D.W.

    1994-03-01

    The Portable Isotropic Neutron Spectroscopy (PINS) and Gamma Neutron Assay Technique (GNAT) assay systems that were developed with funding from the office of Research and Development (NN20), were taken to the Stored Waste Examination Pilot Plant (SWEPP) facility at the Radioactive Waste Management Complex (RWMC) and applied to the assay of surrogate and Rocky Flats Plant waste contained in 55-gal drums. PINS, a portable prompt γ neutron activation analysis technique, was able to identify key elements in both the surrogate and real waste so that three-main waste categories: metal, combustible material, and cemented chlorinated sludge wastes could be identified. GNAT, a γ, neutron assay technique for the identification and quantification of fissioning isotopes, was able to identify 240 Pu in surrogate waste in which nine 1-g nuclear accident dosimeters were inserted. GNAT was also able to identify 24O Pu in real 55-gal waste drums containing 15- and 40-g of plutonium even in the presence of high activity concentrations of 241 Am

  5. Radioactive waste package assay facility. Volume 2. Investigation of active neutron and active gamma interrogation

    International Nuclear Information System (INIS)

    Bailey, M.; Bunce, L.J.; Findlay, D.J.S.; Jolly, J.E.; Parsons, T.V.; Sene, M.R.; Swinhoe, M.T.

    1992-01-01

    Volume 2 of this report describes the theoretical and experimental work carried out at Harwell on active neutron and active gamma interrogation of 500 litre cemented intermediate level waste drums. The design of a suitable neutron generating target in conjunction with a LINAC was established. Following theoretical predictions of likely neutron responses, an experimental assay assembly was built. Responses were measured for simulated drums of ILW, based on CAGR, Magnox and PCM wastes. Good correlations were established between quantities of 235 -U, nat -U and D 2 O contained in the drums, and the neutron signals. Expected sensitivities are -1g of fissile actinide and -100g of total actinide. A measure of spatial distribution is obtainable. The neutron time spectra obtained during neutron interrogation were more complex than expected, and more analysis is needed. Another area of discrepancy is the difference between predicted and measured thermal neutron flux in the drum. Clusters of small 3 He proportional counters were found to be much superior for fast neutron detection than larger diameter counters. It is necessary to ensure constancy of electron beam position relative to target(s) and drum, and prudent to measure the target neutron or gamma output as appropriate. 59 refs., 77 figs., 11 tabs

  6. Low-level waste drum staging building at Weapons Engineering Tritium Facility, TA-16, Los Alamos National Laboratory, Los Alamos, New Mexico. Environmental Assessment

    International Nuclear Information System (INIS)

    1994-08-01

    The proposed action is to place a 3 meter (m) by 4.5 m (10 ft x 15 ft) prefabricated storage building (transportainer) adjacent to the existing Weapons Engineering Tritium Facility (WETF) at Technical Area (TA-) 16, Los Alamos National Laboratory (LANL), and to use the building as a staging site for sealed 55 galllon drums of noncompactible waste contaminated with low levels of tritium (LLW). Up to eight drums of waste would be accumulated before the waste is moved by LANL Waste Management personnel to the existing on-site LLW disposal area at TA-54. The drum staging building would be placed on a bermed asphalt pad, near other existing accumulation structures for office trash and compactible LLW. The no-action alternative is to continue storing drums of LLW in the WETF laboratories where they occupy valuable work space, hamper movement of personnel and equipment, and require waste management personnel to enter those laboratories in order to remove filled drums. No new waste would be generated by implementing the proposed action; no changes or increases in WETF operations or waste production rate are anticipated as a result of staging drums of LLW outside the main laboratory building. The site for the LLW drum staging building would not impact any sensitive areas. Tritium emissions from the drums of LLW were included within the source term for normal operations at the WETF; the cumulative impacts would not be increased

  7. Uncertainty analysis of the SWEPP PAN assay system for glass waste (content codes 440, 441 and 442)

    International Nuclear Information System (INIS)

    Blackwood, L.G.; Harker, Y.D.; Meachum, T.R.; Yoon, W.Y.

    1996-10-01

    INEL is being used as a temporary storage facility for transuranic waste generated by the Nuclear Weapons program at the Rocky Flats Plant. Currently, there is a large effort in progress to prepare to ship this waste to WIPP. In order to meet the TRU Waste Characterization Quality Assurance Program Plan nondestructive assay compliance requirements and quality assurance objectives, it is necessary to determine the total uncertainty of the radioassay results produced by the Stored Waste Examination Pilot Plant (SWEPP) Passive Action Neutron (PAN) radioassay system. This paper discusses a modified statistical sampling and verification approach used to determine the total uncertainty of SWEPP PAN measurements for glass waste (content codes 440, 441, and 442) contained in 208 liter drums. In the modified statistical sampling and verification approach, the total performance of the SWEPP PAN nondestructive assay system for specifically selected waste conditions is simulated using computer models. A set of 100 cases covering the known conditions exhibited in glass waste was compiled using a combined statistical sampling and factorial experimental design approach. Parameter values assigned in each simulation were derived from reviews of approximately 100 real-time radiography video tapes of RFP glass waste drums, results from previous SWEPP PAN measurements on glass waste drums, and shipping data from RFP where the glass waste was generated. The data in the 100 selected cases form the multi-parameter input to the simulation model. The reported plutonium masses from the simulation model are compared with corresponding input masses. From these comparisons, the bias and total uncertainty associated with SWEPP PAN measurements on glass waste drums are estimated. The validity of the simulation approach is verified by comparing simulated output against results from calibration measurements using known plutonium sources and two glass waste calibration drums

  8. Uncertainty analysis of the SWEPP PAN assay system for glass waste (content codes 440, 441 and 442)

    Energy Technology Data Exchange (ETDEWEB)

    Blackwood, L.G.; Harker, Y.D.; Meachum, T.R.; Yoon, W.Y.

    1996-10-01

    INEL is being used as a temporary storage facility for transuranic waste generated by the Nuclear Weapons program at the Rocky Flats Plant. Currently, there is a large effort in progress to prepare to ship this waste to WIPP. In order to meet the TRU Waste Characterization Quality Assurance Program Plan nondestructive assay compliance requirements and quality assurance objectives, it is necessary to determine the total uncertainty of the radioassay results produced by the Stored Waste Examination Pilot Plant (SWEPP) Passive Action Neutron (PAN) radioassay system. This paper discusses a modified statistical sampling and verification approach used to determine the total uncertainty of SWEPP PAN measurements for glass waste (content codes 440, 441, and 442) contained in 208 liter drums. In the modified statistical sampling and verification approach, the total performance of the SWEPP PAN nondestructive assay system for specifically selected waste conditions is simulated using computer models. A set of 100 cases covering the known conditions exhibited in glass waste was compiled using a combined statistical sampling and factorial experimental design approach. Parameter values assigned in each simulation were derived from reviews of approximately 100 real-time radiography video tapes of RFP glass waste drums, results from previous SWEPP PAN measurements on glass waste drums, and shipping data from RFP where the glass waste was generated. The data in the 100 selected cases form the multi-parameter input to the simulation model. The reported plutonium masses from the simulation model are compared with corresponding input masses. From these comparisons, the bias and total uncertainty associated with SWEPP PAN measurements on glass waste drums are estimated. The validity of the simulation approach is verified by comparing simulated output against results from calibration measurements using known plutonium sources and two glass waste calibration drums.

  9. Determination of the germanium detector efficiency for measurements of the radionuclide activity contained in a radioactive waste drum

    International Nuclear Information System (INIS)

    Rodenas, J.; Gallardo, S.; Ballester, S.; Hoyler, F.

    2006-01-01

    One of the features in the characterization of a drum containing radioactive wastes is to verify the activity of radionuclides contained in the drum. An H.P. Ge detector can be used for this measurement. However, it is necessary to perform an efficiency calibration for all geometries involved. In the framework of a joint project between the Departamento de Ingenieria Quimica y Nuclear (Universidad Politecnica de Valencia, Spain) and the Fachbereich Angewandte Naturwissenschaften und Technik (Fachhochschule Aachen, Abteilung Julich, Germany), different configurations for a drum containing radioactive sources have been implemented in the laboratory. A cylindrical drum of 850 mm height, a diameter equal to 560 mm and 3 mm of steel thickness has been used in the experimental measurements. The drum contains a clay ceramic matrix whose chemical composition is 55% SiO 2 , 40% of Al 2 O 3 and 5% of TiO 2 . Several vertical PVC tubes having a diameter of 30 mm are inserted in the drum at different distances from the central axis. In the experiment, a pack of point sources with 133 Ba, 60 Co and 137 Cs is introduced into each one of the tubes. A ring-shape distributed source is generated by rotating the drum around its axis during the measurement. The detector efficiency is determined experimentally for these configurations. On the other hand, a Monte Carlo model, using the M.C.N.P. code, has been developed to simulate the drum, the clay matrix and the PVC tubes. The effect of the drum spinning has been reproduced simulating a ring source with different diameters. The model also includes detailed detector geometry. Using this Monte Carlo model, the detector efficiency is calculated for each configuration implemented in the laboratory. Comparison of results from Monte Carlo simulation and experimental measurements should permit the validation of the M.C.N.P. model. Consequently it will be possible to obtain efficiency curves without experimental measurements. Therefore, these

  10. PROMETHEE: a versatile R and D measurement device for low level waste assay

    International Nuclear Information System (INIS)

    Romeyer Dherby, J.; Passard, C.; Mariani, A.

    1996-01-01

    The accurate measurement of heavy nuclide masses and activities in radioactive wastes drums is an important part of waste management. The Active/Passive non destructive assay of radioactive waste drums using a 14 MeV neutron generator is particularly interesting for alpha low level measurements or for gamma irradiating wastes. The development, optimisation, and validation of such a device for industrial use necessitate the building of a demonstrator. In 1985, the CEA decided to build at Cadarache the PROMETHEE modular system for experimenting the pulsed generator techniques, and since then, this device has led us to define several specific systems. At the present time, in the frame of COGEMA actions to reduce the volume of the reprocessing waste, a new strategy of drumming and incineration is going to start at LA HAGUE and MARCOULE, for the low level waste planned for surface storage. This strategy depends on the performance improvement of non destructive measurements systems used for the alpha waste evaluation. In this goal, a developments and tests are carried out on the PROMETHEE research and development facility at CEA CADARACHE, in order to obtain the required performances

  11. PROMETHEE: a versatile R and D measurement device for low level waste assay

    Energy Technology Data Exchange (ETDEWEB)

    Romeyer Dherby, J.; Passard, C.; Mariani, A

    1996-12-31

    The accurate measurement of heavy nuclide masses and activities in radioactive wastes drums is an important part of waste management. The Active/Passive non destructive assay of radioactive waste drums using a 14 MeV neutron generator is particularly interesting for alpha low level measurements or for gamma irradiating wastes. The development, optimisation, and validation of such a device for industrial use necessitate the building of a demonstrator. In 1985, the CEA decided to build at Cadarache the PROMETHEE modular system for experimenting the pulsed generator techniques, and since then, this device has led us to define several specific systems. At the present time, in the frame of COGEMA actions to reduce the volume of the reprocessing waste, a new strategy of drumming and incineration is going to start at LA HAGUE and MARCOULE, for the low level waste planned for surface storage. This strategy depends on the performance improvement of non destructive measurements systems used for the alpha waste evaluation. In this goal, a developments and tests are carried out on the PROMETHEE research and development facility at CEA CADARACHE, in order to obtain the required performances.

  12. The differential dieaway technique applied to the measurement of the fissile content of drums of cement encapsulated waste

    International Nuclear Information System (INIS)

    Swinhoe, M.T.

    1986-01-01

    This report describes calculations of the differential dieaway technique as applied to cement encapsulated waste. The main difference from previous applications of the technique are that only one detector position is used (diametrically opposite the neutron source) and the chamber walls are made of concrete. The results show that by rotating the drum the response to fissile material across the central plane of the drum can be made relatively uniform. The absolute size of the response is about 0.4. counts per minute per gram fissile for a neutron source of 10 8 neutrons per second. Problems of neutron and gamma background and water content are considered. (author)

  13. PROMETHEE: An Alpha Low Level Waste Assay System Using Passive and Active Neutron Measurement Methods

    International Nuclear Information System (INIS)

    Passard, Christian; Mariani, Alain; Jallu, Fanny; Romeyer-Dherbey, Jacques; Recroix, Herve; Rodriguez, Michel; Loridon, Joel; Denis, Caroline; Toubon, Herve

    2002-01-01

    The development of a passive-active neutron assay system for alpha low level waste characterization at the French Atomic Energy Commission is discussed. Less than 50 Bq[α] (about 50 μg Pu) per gram of crude waste must be measured in 118-l 'European' drums in order to reach the requirements for incinerating wastes. Detection limits of about 0.12 mg of effective 239 Pu in total active neutron counting, and 0.08 mg of effective 239 Pu coincident active neutron counting, may currently be detected (empty cavity, measurement time of 15 min, neutron generator emission of 1.6 x 10 8 s -1 [4π]). The most limiting parameters in terms of performances are the matrix of the drum - its composition (H, Cl...), its density, and its heterogeneity degree - and the localization and self-shielding properties of the contaminant

  14. Evalution of NDA techniques and instruments for assay of nuclear waste at a waste terminal storage facility

    International Nuclear Information System (INIS)

    Blakeman, E.D.; Allen, E.J.; Jenkins, J.D.

    1978-05-01

    The use of Nondestructive Assay (NDA) instrumentation at a nuclear waste terminal storage facility for purposes of Special Nuclear Material (SNM) accountability is evaluated. Background information is given concerning general NDA techniques and the relative advantages and disadvantages of active and passive NDA methods are discussed. The projected characteristics and amounts of nuclear wastes that will be delivered to a waste terminal storage facility are presented. Wastes are divided into four categories: High Level Waste, Cladding Waste, Intermediate Level Waste, and Low Level Waste. Applications of NDA methods to the assay of these waste types is discussed. Several existing active and passive NDA instruments are described and, where applicable, results of assays performed on wastes in large containers (e.g., 55-gal drums) are given. It is concluded that it will be difficult to routinely achieve accuracies better than approximately 10--30% with ''simple'' NDA devices or 5--20% with more sohpisticated NDA instruments for compacted wastes. It is recommended that NDA instruments not be used for safeguards accountability at a waste storage facility. It is concluded that item accountability methods be implemented. These conclusions and recommendations are detailed in a concurrent report entitled ''Recommendations on the Safeguards Requirements Related to the Accountability of Special Nuclear Material at Waste Terminal Storage Facilities'' by J.D. Jenkins, E.J. Allen and E.D. Blakeman

  15. High-Energy X-Ray Imaging Applied to Nondestructive Characterization of Large Nuclear Waste Drums

    Science.gov (United States)

    Estre, Nicolas; Eck, Daniel; Pettier, Jean-Luc; Payan, Emmanuel; Roure, Christophe; Simon, Eric

    2015-12-01

    As part of its R&D programs on non-destructive testing of nuclear waste drums, CEA is commissioning an irradiation cell named CINPHONIE, at Cadarache. This cell allows high-energy imaging (radiography and tomography) on large volumes (up to 5 m3) and heavy weights (up to 5 tons). A demonstrator has been finalized, based on existing components. The X-ray source is a 9 MeV LINAC which produces Bremsstrahlung X-rays (up to 23 Gy/min at 1 meter in the beam axis). The mechanical bench is digitally controlled on three axes (translation, rotation, elevation) and can handle objects up to 2 t. This bench performs trajectories necessary for acquisition of projections (sinograms) according to different geometries: Translation-Rotation, Fan-Beam and Cone-Beam. Two detection systems both developed by CEA-Leti are available. The first one is a large GADOX scintillating screen ( 800 ×600 mm2) coupled to a low-noise pixelated camera. The second one is a multi-CdTe semiconductor detector, offering measurements up to 5 decades of attenuation (equivalent to 25 cm of lead or 180 cm of standard concrete). At the end of the acquisition, a Filtered Back Projection-based algorithm is performed. Then, a density slice (fan-beam tomography) or a density volume (cone-beam tomography or helical tomography) is produced and used to examine the waste. Characterization of LINAC, associated detectors as well as the full acquisition chain, are presented. Experimental performances on phantoms and real drum are discussed and expected limits on defect detectability are evaluated by simulation. The final system, designed to handle objects up to 5 tons is then presented.

  16. Development of the ''measurement and sorting'' device for bituminized waste drums at Cogema Marcoule

    International Nuclear Information System (INIS)

    Chabalier, B.; Artaud, J.L.; Perot, B.; Passard, C.; Romeyer Dherbey, J.; Raoux, A.; Misraki, J.

    2000-01-01

    This programme is included in the scope of a specific task to retrieve bituminized waste drums stored on the Marcoule site. The objective is to define a non-destructive nuclear measurement facility that makes it possible to: - sort the packages stored on the site according to the radiological acceptance criteria for the waste packages in the surface storage facility, - establish the β and α activities of the packages to be stored in the surface storage facility, - estimate the activity of the packages that will be stored in the ''Entreposage Intermediaire Polyvalent'' (multiple purpose intermediate storage) built on the Marcoule site. A measurement facility, with measurement times compatible with the industrial flow of retrieval of the waste drums was studied, developed and will be validated. It features gamma spectrometry measurements and neutron measurement devices, associated to an imaging device by photonic transmission and an expert system. Studies associated to the definition of this facility mainly concern: - the imaging station: it enables to know up to what height the packages are filled, the actual density of the matrix, and to detect lacks of homogeneity. These data are required for a correct analysis of the neutron or gamma measurements and to minimise uncertainties, - the interpretation of active neutron measurement signals: a simultaneous detection of the prompt and delayed neutrons makes it possible to differentiate the masses of U-235 and of Pu-239 present in the packages, - the reduction of the detection limits: to that end, an ''asti-Compton'' detector was defined providing a gain on the detection limits at low energies according to the type of GeHP semi-conductor detector. - the expert system which performs the interpretation and coupling of measured data with data coming from the waste production files in order to determine the activity of the β γ, pure β and α radionuclides at 300 years. The validation program that will be conducted on a

  17. First Industrial Tests of a Matrix Monitor Correction for the Differential Die-away Technique of Historical Waste Drums

    Energy Technology Data Exchange (ETDEWEB)

    Antoni, Rodolphe; Passard, Christian; Perot, Bertrand [CEA Cadarache DEN/Nuclear Measurement Laboratory, 13108 Saint-Paul lez Durance (France); Batifol, Marc; Vandamme, Jean-Christophe [Nuclear Measurement Team, AREVA NC, La Hague plant F-50444 Beaumont-Hague (France); Grassi, Gabriele [AREVA NC, 1 place Jean-Millier, 92084 Paris-La-Defense cedex (France)

    2015-07-01

    The fissile mass in radioactive waste drums filled with compacted metallic residues (spent fuel hulls and nozzles) produced at AREVA NC La Hague reprocessing plant is measured by neutron interrogation with the Differential Die-away measurement Technique (DDT). In the next years, old hulls and nozzles mixed with Ion-Exchange Resins will be measured. The ion-exchange resins increase neutron moderation in the matrix, compared to the waste measured in the current process. In this context, the Nuclear Measurement Laboratory (LMN) of CEA Cadarache has studied a matrix effect correction method, based on a drum monitor, namely a 3He proportional counter located inside the measurement cavity. After feasibility studies performed with LMN's PROMETHEE 6 laboratory measurement cell and with MCNPX simulations, this paper presents first experimental tests performed on the industrial ACC (hulls and nozzles compaction facility) measurement system. A calculation vs. experiment benchmark has been carried out by performing dedicated calibration measurements with a representative drum and {sup 235}U samples. The comparison between calculation and experiment shows a satisfactory agreement for the drum monitor. The final objective of this work is to confirm the reliability of the modeling approach and the industrial feasibility of the method, which will be implemented on the industrial station for the measurement of historical wastes. (authors)

  18. First Industrial Tests of a Matrix Monitor Correction for the Differential Die-away Technique of Historical Waste Drums

    International Nuclear Information System (INIS)

    Antoni, Rodolphe; Passard, Christian; Perot, Bertrand; Batifol, Marc; Vandamme, Jean-Christophe; Grassi, Gabriele

    2015-01-01

    The fissile mass in radioactive waste drums filled with compacted metallic residues (spent fuel hulls and nozzles) produced at AREVA NC La Hague reprocessing plant is measured by neutron interrogation with the Differential Die-away measurement Technique (DDT). In the next years, old hulls and nozzles mixed with Ion-Exchange Resins will be measured. The ion-exchange resins increase neutron moderation in the matrix, compared to the waste measured in the current process. In this context, the Nuclear Measurement Laboratory (LMN) of CEA Cadarache has studied a matrix effect correction method, based on a drum monitor, namely a 3He proportional counter located inside the measurement cavity. After feasibility studies performed with LMN's PROMETHEE 6 laboratory measurement cell and with MCNPX simulations, this paper presents first experimental tests performed on the industrial ACC (hulls and nozzles compaction facility) measurement system. A calculation vs. experiment benchmark has been carried out by performing dedicated calibration measurements with a representative drum and 235 U samples. The comparison between calculation and experiment shows a satisfactory agreement for the drum monitor. The final objective of this work is to confirm the reliability of the modeling approach and the industrial feasibility of the method, which will be implemented on the industrial station for the measurement of historical wastes. (authors)

  19. Feasibility of composting combinations of sewage sludge, olive mill waste and winery waste in a rotary drum reactor.

    Science.gov (United States)

    Fernández, Francisco J; Sánchez-Arias, Virginia; Rodríguez, Lourdes; Villaseñor, José

    2010-10-01

    Representative samples of the following biowastes typically generated in Castilla La Mancha (Spain) were composted using a pilot-scale closed rotary drum composting reactor provided with adequate control systems: waste from the olive oil industry (olive mill waste; OMW), winery-distillery waste containing basically grape stalk and exhausted grape marc (WDW), and domestic sewage sludge. Composting these biowastes was only successful when using a bulking agent or if sufficient porosity was supported. OMW waste composting was not possible, probably because of its negligible porosity, which likely caused anaerobic conditions. WDW was successfully composted using a mixture of solid wastes generated from the same winery. SS was also successfully composted, although its higher heavy metal content was a limitation. Co-composting was an adequate strategy because the improved mixture characteristics helped to maintain optimal operating conditions. By co-composting, the duration of the thermophilic period increased, the final maturity level improved and OMW was successfully composted. Using the proposed reactor, composting could be accelerated compared to classical outdoor techniques, enabling easy control of the process. Moisture could be easily controlled by wet air feeding and leachate recirculation. Inline outlet gas analysis helped to control aerobic conditions without excessive aeration. The temperature reached high values in a few days, and sufficient thermal requirements for pathogen removal were met. The correct combination of biowastes along with appropriate reactor design would allow composting as a management option for such abundant biowastes in this part of Spain. (c) 2010 Elsevier Ltd. All rights reserved.

  20. Quarter-scale modeling of room convergence effects on CH [contact-handled] TRU drum waste emplacements using WIPP [Waste Isolation Pilot Plant] reference design geometries

    International Nuclear Information System (INIS)

    VandeKraats, J.

    1987-11-01

    This study investigates the effect of horizontal room convergence on CH waste packages emplaced in the WIPP Reference Design geometry (rooms 13 feet high by 33 feet wide, with minus 3/8 inch screened backfill emplaced over and around the waste packages) as a function of time. Based on two tests, predictions were made with regard to full-scale 6-packs emplaced in the Reference Design geometry. These are that load will be transmitted completely through the stack within the first five years after waste emplacement and all drums in all 6-packs will be affected; that virtually all drums will show some deformation eight years after emplacement; that some drums may breach before the eighth year after emplacement has elapsed; and that based on criteria developed during testing, it is predicted that 1% of the drums emplaced will be breached after 8 years and, after 15 years, approximately 12% of the drums are predicted to be breached. 8 refs., 41 figs., 3 tabs

  1. Phenomenological study and modeling of tritium trapping in tritiated waste drums

    International Nuclear Information System (INIS)

    Le-Floch, Anais

    2016-01-01

    ITER (International Tokamak Experimental Reactor) is a fusion machine which should demonstrate scientific and technological feasibility of fusion energy by means of D-T fusion reaction. Therefore, most of the solid radioactive waste produced during operation and dismantling phase (around 34000 tons) will result not only from activation by 14 MeV neutrons, but also from contamination by tritium. One of the main issues in tritiated waste management is the confinement of tritium which presents a good ability to diffusion. One of the solutions is to trap the tritium directly in waste drums. In containers tritium is under gaseous form (HT and T_2), tritiated water vapor (HTO and T_2O) and organic bounded tritium species (OBT). as an hydrogen isotope, HT and T_2 trapping and conversion is possible thanks to a reaction with a mix of metal oxides MnO_2 and Ag_2O, which can be used for hydrogen hazards mitigation. an experimental study was conducted at the CEA on the study of tritium trapping by a mixture of 90% of manganese oxide and 10% of silver oxide. The tests showed that the addition of Pt and Pd catalysts did not improve the trapping capacity of the powder mixture, such as impregnation of the powder mixture when preparing the mixture, with solutions of KOH or NaOH. Crystal-chemical analysis revealed the formation of a mixed oxide in the preparation of powders, questioning the mechanisms previously established. Two new mechanisms have been proposed and a model on the trapping kinetics was presented. The results of modeling the competition between the trapping phenomenon and the diffusion of tritium through the wall of the waste package showed that the trapper decreased the value of the quantity of tritiated hydrogen degassed from the package. (author) [fr

  2. Nondestructive assay of boxed radioactive waste

    International Nuclear Information System (INIS)

    Gilles, W.P.; Roberts, R.J.; Jasen, W.G.

    1992-12-01

    This paper describes the problems related to the nondestructive assay (NDA) of boxed radioactive waste at the Hanford Site and how Westinghouse Hanford company (WHC) is solving the problems. The waste form and radionuclide content are described. The characteristics of the combined neutron and gamma-based measurement system are described

  3. Radioactive waste package assay facility. Final report - V. A

    International Nuclear Information System (INIS)

    Molesworth, T.V.; Strachan, N.R.; Findlay, D.J.S.; Wise, M.O.; Forrest, K.R.; Rogers, J.D.

    1993-01-01

    This report provides a summary of research work carried out in support of the development of an integrated assay system for the quality checking of Intermediate Level Waste encapsulated in cement. Four non-destructive techniques were originally identified as being viable methods for obtaining radiometric inventory data from a cemented 500 litre ILW package. The major part of the programme was devoted to the development of two interrogation techniques; active neutron for measuring the total fissile content and active gamma for measuring the total actinide content. An electron linear accelerator was used to supply the interrogating beam for these two methods. In addition the linear accelerator beam could be used for high energy radiography. The results of this work are described and the performances and limitations of the non-destructive methods are summarised. The main engineering and operational features which influence the design of an integrated assay facility are outlined and a conceptual layout for a facility to inspect 750 ILW drums a year is described. Details of the detection methods, data processing and potential application of the assay facility are given in three associated HMIP reports. (Author)

  4. SWEPP PAN assay system uncertainty analysis: Passive mode measurements of graphite waste

    International Nuclear Information System (INIS)

    Blackwood, L.G.; Harker, Y.D.; Meachum, T.R.; Yoon, Woo Y.

    1997-07-01

    The Idaho National Engineering and Environmental Laboratory is being used as a temporary storage facility for transuranic waste generated by the U.S. Nuclear Weapons program at the Rocky Flats Plant (RFP) in Golden, Colorado. Currently, there is a large effort in progress to prepare to ship this waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. In order to meet the TRU Waste Characterization Quality Assurance Program Plan nondestructive assay compliance requirements and quality assurance objectives, it is necessary to determine the total uncertainty of the radioassay results produced by the Stored Waste Examination Pilot Plant (SWEPP) Passive Active Neutron (PAN) radioassay system. To this end a modified statistical sampling and verification approach has been developed to determine the total uncertainty of a PAN measurement. In this approach the total performance of the PAN nondestructive assay system is simulated using computer models of the assay system and the resultant output is compared with the known input to assess the total uncertainty. This paper is one of a series of reports quantifying the results of the uncertainty analysis of the PAN system measurements for specific waste types and measurement modes. In particular this report covers passive mode measurements of weapons grade plutonium-contaminated graphite molds contained in 208 liter drums (waste code 300). The validity of the simulation approach is verified by comparing simulated output against results from measurements using known plutonium sources and a surrogate graphite waste form drum. For actual graphite waste form conditions, a set of 50 cases covering a statistical sampling of the conditions exhibited in graphite wastes was compiled using a Latin hypercube statistical sampling approach

  5. Application of artificial neural networks on the characterization of radioactive waste drums; Aplicacao de redes neurais artificiais na caracterizacao de tambores de rejeito radioativo

    Energy Technology Data Exchange (ETDEWEB)

    Potiens Junior, Ademar Jose; Hiromoto, Goro, E-mail: apotiens@ipen.b, E-mail: hiromoto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-10-26

    The methodology consist of system simulation of drum-detector by Monte Carlo for obtention of counting efficiency. The obtained data were treated and a neural artificial network (RNA) were constructed for evaluation of total activity of drum. For method evaluation measurements were performed in ten position parallel to the drum axis and the results submitted to the RNA. The developed methodology showed to be effective for isotopic characterization of gamma emitter radioactive wastes distributed in a heterogeneous way in a 200 litters drum. The objective of this work as to develop a methodology of analyse for quantification and localization of radionuclides not homogeneous distributed in a 200 liters drum based on the mathematical techniques

  6. Passive neutron coincidence counting with plastic scintillators for the characterization of radioactive waste drums

    Energy Technology Data Exchange (ETDEWEB)

    Deyglun, C.; Simony, B.; Perot, B.; Carasco, C. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Saurel, N.; Colas, S. [CEA, DAM, Valduc, F-21120 Is-sur-Tille (France); Collot, J. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Grenoble Alpes, CNRS/IN2P3, Grenoble (France)

    2015-07-01

    passive neutron coincidence counting system for radioactive waste drums using plastic scintillators have been studied using the Monte Carlo radiation transport code MCNPX-PoliMi v2.0 coupled to data processing algorithms developed with ROOT data analysis software. In addition to the correlated background, accidental coincidences are taken into account in the simulation by randomly merging pulses from different calculations with fission and (α,n) sources. (authors)

  7. Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221F-HET/Drums

    Energy Technology Data Exchange (ETDEWEB)

    Lunsford, G.F.

    1998-10-26

    Since beginning operations in 1954, the Savannah River Site FB-Line produced Weapons Grade Plutonium for the United States National Defense Program. The facility mission was mainly to process dilute plutonium solution received from the 221-F Canyon into highly purified plutonium metal. As a result of various activities (maintenance, repair, clean up, etc.) in support of the mission, the facility generated a transuranic heterogeneous debris waste stream. Prior to January 25, 1990, the waste stream was considered suspect mixed transuranic waste (based on potential for inclusion of F-Listed solvent rags/wipes) and is not included in this characterization. Beginning January 25, 1990, Savannah River Site began segregation of rags and wipes containing F-Listed solvents thus creating a mixed transuranic waste stream and a non-mixed transuranic waste stream. This characterization addresses the non-mixed transuranic waste stream packaged in 55-gallon drums after January 25, 1990.Characterization of the waste stream was achieved using knowledge of process operations, facility safety basis documentation, facility specific waste management procedures and storage / disposal records. The report is fully responsive to the requirements of Section 4.0 "Acceptable Knowledge" from the WIPP Transuranic Waste Characterization Quality Assurance Plan, CAO-94-1010, and provides a sound, (and auditable) characterization that satisfies the WIPP criteria for Acceptable Knowledge.

  8. Potential use of transmission tomographic techniques for the quality checking of cemented waste drums. Progress report to 31 March 1985

    Energy Technology Data Exchange (ETDEWEB)

    Huddleston, J; Hutchinson, I G

    1986-01-01

    In support of the programme for the quality checking of encapsulated intermediate level waste, the possibilities of using transmission tomographic techniques for the determination of the physical properties of the drum are being considered. A literature survey has been undertaken and the possibilities of extracting data from video recordings of real time radiographs are considered. This work was carried out with financial support from British Nuclear Fuels plc and the UK Department of the Environment. In the DoE context, the results will be used in the formulation of Government Policy, but at this stage they do not necessarily represent Government Policy.

  9. Development of a method for determining the location of heterogeneous activity present in 200 litre waste drum using USB based MCS system

    International Nuclear Information System (INIS)

    Singh, Sarbjit; Mhatre, Amol; Sagar, Veena; Gupta, Nidhi

    2014-01-01

    A method was developed for determining the location of activity present in 200 litre waste drum using USB based MCS system coupled to a segmented gamma ray scanner. 137 Cs source was kept at various distances from centre of the drum along the axis of the detector. Drum was rotated and the activity profiles were determined as a function of angle of rotation. The plot of the count rate as a function of angle of rotation was found to have two peaks. The experimental and calculated data were found to match well at all angles. Present studies have shown that the ratio of height and width of the profile at angles of 0 ° and 180° can be used to determine the location of the activity in the drum. (author)

  10. TRU waste-sampling program

    International Nuclear Information System (INIS)

    Warren, J.L.; Zerwekh, A.

    1985-08-01

    As part of a TRU waste-sampling program, Los Alamos National Laboratory retrieved and examined 44 drums of 238 Pu- and 239 Pu-contaminated waste. The drums ranged in age from 8 months to 9 years. The majority of drums were tested for pressure, and gas samples withdrawn from the drums were analyzed by a mass spectrometer. Real-time radiography and visual examination were used to determine both void volumes and waste content. Drum walls were measured for deterioration, and selected drum contents were reassayed for comparison with original assays and WIPP criteria. Each drum tested at atmospheric pressure. Mass spectrometry revealed no problem with 239 Pu-contaminated waste, but three 8-month-old drums of 238 Pu-contaminated waste contained a potentially hazardous gas mixture. Void volumes fell within the 81 to 97% range. Measurements of drum walls showed no significant corrosion or deterioration. All reassayed contents were within WIPP waste acceptance criteria. Five of the drums opened and examined (15%) could not be certified as packaged. Three contained free liquids, one had corrosive materials, and one had too much unstabilized particulate. Eleven drums had the wrong (or not the most appropriate) waste code. In many cases, disposal volumes had been inefficiently used. 2 refs., 23 figs., 7 tabs

  11. Type B drum packages

    International Nuclear Information System (INIS)

    McCoy, J.C.

    1994-08-01

    The Type B drum packages (TBD) are conceptualized as a family of containers in which a single 208 L or 114 L (55 gal or 30 gal) drum containing Type B quantities of radioactive material (RAM) can be packaged for shipment. The TBD containers are being developed to fill a void in the packaging and transportation capabilities of the U.S. Department of Energy as no container packaging single drums of Type B RAM exists offering double containment. Several multiple-drum containers currently exist, as well as a number of shielded casks, but the size and weight of these containers present many operational challenges for single-drum shipments. As an alternative, the TBD containers will offer up to three shielded versions (light, medium, and heavy) and one unshielded version, each offering single or optional double containment for a single drum. To reduce operational complexity, all versions will share similar design and operational features where possible. The primary users of the TBD containers are envisioned to be any organization desiring to ship single drums of Type B RAM, such as laboratories, waste retrieval activities, emergency response teams, etc. Currently, the TBD conceptual design is being developed with the final design and analysis to be completed in 1995 to 1996. Testing and certification of the unshielded version are planned to be completed in 1996 to 1997 with production to begin in 1997 to 1998

  12. Use of drum driers for processing various industrial wastes into high-grade animal feeding stuffs

    Energy Technology Data Exchange (ETDEWEB)

    Fritze, H

    1976-01-01

    Strict anti-pollution legislation governing admissible effluent concentrations and high charges are forcing certain industries (potato starch and dried potato flake factories, sugar factories and dairies) to install facilities for recovering valuable substances, which are used mainly as fodder. In this way the effluent charges can be reduced and a return is obtained on the investment and operating costs. Processes are described whereby such substances can be extracted efficiently when using Escher Wyss drum driers.

  13. Neutron coincidence counting based on time interval analysis with dead time corrected one and two dimensional Rossi-alpha distributions: an application for passive neutron waste assay

    International Nuclear Information System (INIS)

    Bruggeman, M.; Baeten, P.; De Boeck, W.; Carchon, R.

    1996-03-01

    The report describes a new neutron multiplicity counting method based on Rossi-alpha distributions. The report also gives the necessary dead time correction formulas for the multiplicity counting method. The method was tested numerically using a Monte Carlo simulation of pulse trains. The use of this multiplicity method in the field of waste assay is explained: it can be used to determine the amount of fissile material in a waste drum without prior knowledge of the actual detection efficiency

  14. Thermal Neutron Die-Way-Time Studies for P and DGNAA of Radioactive Waste Drums at the MEDINA Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mildenberger, Frank; Mauerhofer, Eric [Institute of Energy and Climate Research - Nuclear Waste Management and Reactor Safety, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany)

    2015-07-01

    In Germany, radioactive waste with negligible heat production has to pass through a process of quality checking in order to check its conformance with national regulations prior to its transport, intermediate storage and final disposal. Additionally to its radioactive components, the waste may contain non-radioactive chemically toxic substances that can adversely affect human health and pollute the environment, especially the ground water. After an adequate decay time, the waste radioactivity will become harmless but the non-radioactive substances will persist over time. In principle, these hazardous substances may be quantified from traceability and quality controls performed during the production of the waste packages. As a consequence, a research and development program was initiated in 2007 with the aim to develop a nondestructive analytical technique for radioactive waste packages based on prompt and delayed gamma neutron activation analysis (P and DGNAA) employing a DT-neutron generator in pulsed mode. In a preliminary study it was experimentally demonstrated that P and DGNAA is suitable to determine the chemical composition of large samples. In 2010 a facility called MEDINA (Multi Element Detection based on Instrumental Neutron Activation) was developed for the qualitative and quantitative determination of nonradioactive, toxic elements and substances in 200-l steel drums. The determination of hazardous substances and elements is generally achieved measuring the prompt gamma-rays induced by thermal neutrons. Additional information about the composition of the waste matrix could be derived measuring the delayed gamma-rays from short life activation products. However a sensitive detection of these delayed gamma-rays requires that thermal neutrons have almost vanished. Therefore, the thermal neutron die-away-time has to be known in order to achieve an optimal discrimination between prompt and delayed gamma-ray spectra acquisition. Measurements Thermal neutron

  15. Test procedure for boxed waste assay system

    International Nuclear Information System (INIS)

    Wachter, J.

    1994-01-01

    This document, prepared by Los Alamos National Laboratory's NMT-4 group, details the test methodology and requirements for Acceptance/Qualification testing of a Boxed Waste Assay System (BWAS) designed and constructed by Pajarito Scientific Corporation. Testing of the BWAS at the Plutonium Facility (TA55) at Los Alamos National Laboratory will be performed to ascertain system adherence to procurement specification requirements. The test program shall include demonstration of conveyor handling capabilities, gamma ray energy analysis, and imaging passive/active neutron accuracy and sensitivity. Integral to these functions is the system's embedded operating and data reduction software

  16. The simultaneous neutron and photon interrogation method for fissile and non-fissile element separation in radioactive waste drums

    International Nuclear Information System (INIS)

    Jallu, F.; Lyoussi, A.; Passard, C.; Payan, E.; Recroix, H.; Nurdin, G.; Buisson, A.; Allano, J.

    2000-01-01

    Measuring α-emitters such as ( 234,235,236,238 U, 238,239,240,242,244 Pu, 237 Np, 241,243 Am, ...), in solid radioactive waste allows us to quantify the α-activity in a drum and then to classify it. The simultaneous photon and neutron interrogation experiment (SIMPHONIE) method dealt with in this paper, combines both active neutron interrogation and induced photofission interrogation techniques simultaneously. Its purpose is to quantify fissile ( 235 U, 239,241 Pu, ...) and non-fissile ( 236,238 U, 238,240 Pu, ...) elements separately in only one measurement. This paper presents the principle of the method, the experimental setup, and the first experimental results obtained using the DGA/ETCA Linac and MiniLinatron pulsed linear electron accelerators located at Arcueil, France. First studies were carried out with U and Pu bare samples

  17. High-Energy X-ray imaging applied to non destructive characterization of large nuclear waste drums

    International Nuclear Information System (INIS)

    Estre, Nicolas; Eck, Daniel; Pettier, Jean-Luc; Payan, Emmanuel; Roure, Christophe; Simon, Eric

    2013-06-01

    As part of its R and D programs on non-destructive testing of nuclear waste drums, CEA is commissioning an irradiation cell named CINPHONIE, at Cadarache. This cell allows high-energy imaging (radiography and tomography) on large volumes (up to 5 m 3 ) and heavy weights (up to 5 tons). A demonstrator has been finalized, based on existing components. The X-ray source is a 9 MeV LINAC which produces Bremsstrahlung X-rays (up to 23 Gy/min at 1 meter in the beam axis). The mechanical bench is digitally controlled on three axes (translation, rotation, elevation) and can handle objects up to 2 t. This bench performs trajectories necessary for acquisition of projections (sinograms) according to different geometries: Translation-Rotation, Fan-Beam and Cone-Beam. Two detection systems both developed by CEA-Leti are available. The first one is a large GADOX scintillating screen (800*600 mm 2 ) coupled to a low-noise pixelated camera. The second one is a multi- CdTe semiconductor detector, offering measurements up to 5 decades of attenuation (equivalent to 25 cm of lead or 180 cm of standard concrete). At the end of the acquisition, a Filtered Back Projection-based algorithm is performed. Then, a density slice (fan-beam tomography) or a density volume (cone-beam tomography or helical tomography) is produced and used to examine the waste. Characterization of LINAC, associated detectors as well as the full acquisition chain, are presented. Experimental performances on phantoms and real drum are discussed and expected limits on defect detectability are evaluated by simulation. The final system, designed to handle objects up to 5 tons is then presented. (authors)

  18. SWEPP PAN assay system uncertainty analysis: Active mode measurements of solidified aqueous sludge waste

    International Nuclear Information System (INIS)

    Blackwood, L.G.; Harker, Y.D.; Meachum, T.R.

    1997-12-01

    The Idaho National Engineering and Environmental Laboratory is being used as a temporary storage facility for transuranic waste generated by the US Nuclear Weapons program at the Rocky Flats Plant (RFP) in Golden, Colorado. Currently, there is a large effort in progress to prepare to ship this waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. In order to meet the TRU Waste Characterization Quality Assurance Program Plan nondestructive assay compliance requirements and quality assurance objectives, it is necessary to determine the total uncertainty of the radioassay results produced by the Stored Waste Examination Pilot Plant (SWEPP) Passive Active Neutron (PAN) radioassay system. This paper is one of a series of reports quantifying the results of the uncertainty analysis of the PAN system measurements for specific waste types and measurement modes. In particular this report covers active mode measurements of weapons grade plutonium-contaminated aqueous sludge waste contained in 208 liter drums (item description codes 1, 2, 7, 800, 803, and 807). Results of the uncertainty analysis for PAN active mode measurements of aqueous sludge indicate that a bias correction multiplier of 1.55 should be applied to the PAN aqueous sludge measurements. With the bias correction, the uncertainty bounds on the expected bias are 0 ± 27%. These bounds meet the Quality Assurance Program Plan requirements for radioassay systems

  19. Waste assay measurement integration system user interface

    International Nuclear Information System (INIS)

    Mousseau, K.C.; Hempstead, A.R.; Becker, G.K.

    1995-01-01

    The Waste Assay Measurement Integration System (WAMIS) is being developed to improve confidence in and lower the uncertainty of waste characterization data. There are two major components to the WAMIS: a data access and visualization component and a data interpretation component. The intent of the access and visualization software is to provide simultaneous access to all data sources that describe the contents of any particular container of waste. The visualization software also allows the user to display data at any level from raw to reduced output. Depending on user type, the software displays a menuing hierarchy, related to level of access, that allows the user to observe only those data sources s/he has been authorized to view. Access levels include system administrator, physicist, QA representative, shift operations supervisor, and data entry. Data sources are displayed in separate windows and presently include (1) real-time radiography video, (2) gamma spectra, (3) passive and active neutron, (4) radionuclide mass estimates, (5) total alpha activity (Ci), (6) container attributes, (7) thermal power (w), and (8) mass ratio estimates for americium, plutonium, and uranium isotopes. The data interpretation component is in the early phases of design, but will include artificial intelligence, expert system, and neural network techniques. The system is being developed on a Pentium PC using Microsoft Visual C++. Future generations of WAMIS will be UNIX based and will incorporate more generically radiographic/tomographic, gamma spectroscopic/tomographics, neutron, and prompt gamma measurements

  20. Portable non-destructive assay methods for screening and segregation of radioactive waste

    International Nuclear Information System (INIS)

    Simpson, Alan; Jones, Stephanie; Clapham, Martin; Lucero, Randy

    2011-01-01

    Significant cost-savings and operational efficiency may be realised by performing rapid non-destructive classification of radioactive waste at or near its point of retrieval or generation. There is often a need to quickly categorize and segregate bulk containers (drums, crates etc.) into waste streams defined at various boundary levels (based on its radioactive hazard) in order to meet disposal regulations and consignor waste acceptance criteria. Recent improvements in gamma spectroscopy technologies have provided the capability to perform rapid in-situ analysis using portable and hand-held devices such as battery-operated medium and high resolution detectors including lanthanum halide and high purity germanium (HPGe). Instruments and technologies that were previously the domain of complex lab systems are now widely available as touch-screen 'off-the-shelf' units. Despite such advances, the task of waste stream screening and segregation remains a complex exercise requiring a detailed understanding of programmatic requirements and, in particular, the capability to ensure data quality when operating in the field. This is particularly so when surveying historical waste drums and crates containing heterogeneous debris of unknown composition. The most widely used portable assay method is based upon far-field High Resolution Gamma Spectroscopy (HRGS) assay using HPGe detectors together with a well engineered deployment cart (such as the PSC TechniCART TM technology). Hand-held Sodium Iodide (NaI) detectors are often also deployed and may also be used to supplement the HPGe measurements in locating hot spots. Portable neutron slab monitors may also be utilised in cases where gamma measurements alone are not suitable. Several case histories are discussed at various sites where this equipment has been used for in-situ characterization of debris waste, sludge, soil, high activity waste, depleted and enriched uranium, heat source and weapons grade plutonium, fission products

  1. neutron multiplicity measurements on 220 l waste drums containing Pu in the range 0.1-1 g 240Pueff with the time interval analysis method

    International Nuclear Information System (INIS)

    Baeten, P.; Bruggeman, M.; Carchon, R.; De Boeck, W.

    1998-01-01

    Measurement results are presented for the assay of plutonium in 220 l waste drums containing Pu-masses in the range 0.1-1 g 240 Pu eff obtained with the time interval analysis (TIA) method. TIA is a neutron multiplicity method based on the concept of one- and two-dimensional Rossi-alpha distributions. The main source of measurement bias in neutron multiplicity measurements at low count-rates is the impredictable variation of the high-multiplicity neutron background of spallation neutrons induced by cosmic rays. The TIA-method was therefore equipped with a special background filter, which is designed and optimized to reduce the influence of these spallation neutrons by rejecting the high-multiplicity events. The measurement results, obtained with the background correction filter outlined in this paper, prove the repeatability and validity of the TIA-method and show that multiplicity counting with the TIA-technique is applicable for masses as low as 0.1 g 240 Pu eff even at a detection efficiency of 12%. (orig.)

  2. Methods of Reducing Bias in Combined Thermal/Epithermal Neutron (CTEN) Assays of Heterogeneous Waste

    Energy Technology Data Exchange (ETDEWEB)

    Estep, R.J.; Melton, S.; Miko, D.

    1998-11-17

    We examined the effectiveness of two different methods for correcting CTEN passive and active assays for bias due to variations in the source position in different drum types. Both use the same drum-averaged correction determined from a neural network trained to active flux monitor ratios as a starting point. One method then uses a neural network to obtain a spatial correction factor sensitive to the source location. The other method uses emission tomography. Both methods were found to give significantly improved assay accuracy over the drum-averaged correction, although more study is needed to determine which method works better.

  3. Methods of Reducing Bias in Combined Thermal/Epithermal Neutron (CTEN) Assays of Heterogeneous Waste

    International Nuclear Information System (INIS)

    Estep, R.J.; Melton, S.; Miko, D.

    1998-01-01

    We examined the effectiveness of two different methods for correcting CTEN passive and active assays for bias due to variations in the source position in different drum types. Both use the same drum-averaged correction determined from a neural network trained to active flux monitor ratios as a starting point. One method then uses a neural network to obtain a spatial correction factor sensitive to the source location. The other method uses emission tomography. Both methods were found to give significantly improved assay accuracy over the drum-averaged correction, although more study is needed to determine which method works better

  4. Quantitative radiological characterization of waste. Integration of gamma spectrometry and passive/active neutron assay

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Gianluca; Mauro, Egidio; Gagliardi, Filippo; Gorello, Edoardo [Nucleco S.p.A., Rome (Italy)

    2016-06-15

    The radiological characterization of drums through Non-Destructive Assay (NDA) techniques commonly relies on gamma spectrometry. This paper introduces the procedure developed in Nucleco for the NDA radiological characterization of drums when the presence of Special Nuclear Material (SNM) is expected/observed. The procedure is based on the integration of a gamma spectrometry in SGS mode (Segmented Gamma Scanner) and a passive/active neutron assay. The application of this procedure is discussed on a real case of drums. The extension of the integration procedure to other gamma spectrometry systems is also discussed.

  5. Site health and safety plan/work plan for further characterization of waste drums at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Abston, J.P.; Burman, S.N.; Jones, D.L.

    1995-10-01

    The health and safety plan/work plan describes a strategy for characterizing the contents of 172 liquid waste and 33 solid waste drums. It also addresses the control measures that will be taken to (1) prevent or minimize any adverse impact on the environment or personnel safety and health and (2) meet standards that define acceptable management of hazardous and radioactive materials and wastes. When writing this document, the authors considered past experiences, recommendations, and best management practices to minimize possible hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or unplanned releases of hazardous or radioactive materials to air, soil, or surface water

  6. INEL test plan for evaluating waste assay systems

    International Nuclear Information System (INIS)

    Mandler, J.W.; Becker, G.K.; Harker, Y.D.; Menkhaus, D.E.; Clements, T.L. Jr.

    1996-09-01

    A test bed is being established at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). These tests are currently focused on mobile or portable radioassay systems. Prior to disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP), radioassay measurements must meet the quality assurance objectives of the TRU Waste Characterization Quality Assurance Program Plan. This test plan provides technology holders with the opportunity to assess radioassay system performance through a three-tiered test program that consists of: (a) evaluations using non-interfering matrices, (b) surrogate drums with contents that resemble the attributes of INEL-specific waste forms, and (c) real waste tests. Qualified sources containing a known mixture and range of radionuclides will be used for the non-interfering and surrogate waste tests. The results of these tests will provide technology holders with information concerning radioassay system performance and provide the INEL with data useful for making decisions concerning alternative or improved radioassay systems that could support disposal of waste at WIPP

  7. INEL test plan for evaluating waste assay systems

    Energy Technology Data Exchange (ETDEWEB)

    Mandler, J.W.; Becker, G.K.; Harker, Y.D.; Menkhaus, D.E.; Clements, T.L. Jr.

    1996-09-01

    A test bed is being established at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). These tests are currently focused on mobile or portable radioassay systems. Prior to disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP), radioassay measurements must meet the quality assurance objectives of the TRU Waste Characterization Quality Assurance Program Plan. This test plan provides technology holders with the opportunity to assess radioassay system performance through a three-tiered test program that consists of: (a) evaluations using non-interfering matrices, (b) surrogate drums with contents that resemble the attributes of INEL-specific waste forms, and (c) real waste tests. Qualified sources containing a known mixture and range of radionuclides will be used for the non-interfering and surrogate waste tests. The results of these tests will provide technology holders with information concerning radioassay system performance and provide the INEL with data useful for making decisions concerning alternative or improved radioassay systems that could support disposal of waste at WIPP.

  8. Components for containment enclosures - Part 3: Transfer systems such as plain doors, airlock chambers, double door transfer systems, leaktight connections for waste drums. 1. ed.

    International Nuclear Information System (INIS)

    1998-01-01

    This part of ISO 11933 specifies requirements for the selection, construction and use of the following leak tight components: doors, airlock chambers, double door transfer systems, leaktight connections for waste drums. Some of the elements, double doors or airlock chambers are described in ISO 11933-1 and ISO 11933-2 as well. Doors having bigger dimensions used for personnel od larger objects are not covered by this document

  9. Passive non destructive assay of hull waste by gross neutron counting method

    International Nuclear Information System (INIS)

    Andola, Sanjay; Sur, Amit; Rawool, A.M.; Sharma, B.; Kaushik, T.C.; Gupta, S.C.; Basu, Sekhar; Raman Kumar; Agarwal, K.

    2014-01-01

    The special nuclear material accounting (SNMA) is an important and necessary issue now in nuclear waste management. The hull waste generated from dissolution of spent fuel contains small amounts of Uranium and Plutonium and other actinides due to undissolved trapped material inside zircoalloy tubes. We report here on the development of a Passive Hull monitoring system using gross neutron counting technique and its implementation with semiautomatic instrumentation. The overall sensitivity of the 3 He detector banks placed at 75 cm from the centre of loaded hull cask comes out to 5.2 x 10 -3 counts per neutron (c/n) while with standard Pu-Be source placed in same position it comes out to be 3.1 x 10 3 c/n. The difference in the efficiency is mainly because of the differences in the geometry and size of hull cask as well as difference in the energy spectrum of hull waste and Pu-Be source. This is accounted through Monte Carlo computations. The Pu mass in solid waste comes out as expected and varies with the surface dose rate of drum in almost a proportional manner. Being simple and less time consuming, this setup has been installed for routine assay of solid Hull waste at NRB, Tarapur

  10. Steam drums

    International Nuclear Information System (INIS)

    Crowder, R.

    1978-01-01

    Steam drums are described that are suitable for use in steam generating heavy water reactor power stations. They receive a steam/water mixture via riser headers from the reactor core and provide by means of separators and driers steam with typically 0.5% moisture content for driving turbines. The drums are constructed as prestressed concrete pressure vessels in which the failure of one or a few of the prestressing elements does not significantly affect the overall strength of the structure. The concrete also acts as a radiation shield. (U.K.)

  11. Waste Inspection Tomography (WIT)

    International Nuclear Information System (INIS)

    Bernardi, R.T.

    1995-01-01

    Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU. The mobile feature of WIT allows inspection technologies to be brought to the nuclear waste drum storage site without the need to relocate drums for safe, rapid, and cost-effective characterization of regulated nuclear waste. The combination of these WIT characterization modalities provides the inspector with an unprecedented ability to non-invasively characterize the regulated contents of waste drums as large as 110 gallons, weighing up to 1,600 pounds. Any objects that fit within these size and weight restrictions can also be inspected on WIT, such as smaller waste bags and drums that are five and thirty-five gallons

  12. The assay of encapsulated alpha-bearing waste: feasibility study

    International Nuclear Information System (INIS)

    Curry, R.G.

    1983-09-01

    This report contains a review of potentially applicable techniques for the determination of actinide isotopes in radioactive waste and a summary of results obtained with various prototype instruments. A schematic design of a complete assay station is derived with consideration given to practical aspects like remote handling, maintenance etc. and recommendations for further work are made. The place of waste assay in the overall quality assurance of packaged waste is also considered. (author)

  13. Drum inspection robots: Application development

    International Nuclear Information System (INIS)

    Hazen, F.B.; Warner, R.D.

    1996-01-01

    Throughout the Department of Energy (DOE), drums containing mixed and low level stored waste are inspected, as mandated by the Resource Conservation and Recovery Act (RCRA) and other regulations. The inspections are intended to prevent leaks by finding corrosion long before the drums are breached. The DOE Office of Science and Technology (OST) has sponsored efforts towards the development of robotic drum inspectors. This emerging application for mobile and remote sensing has broad applicability for DOE and commercial waste storage areas. Three full scale robot prototypes have been under development, and another project has prototyped a novel technique to analyze robotically collected drum images. In general, the robots consist of a mobile, self-navigating base vehicle, outfitted with sensor packages so that rust and other corrosion cues can be automatically identified. They promise the potential to lower radiation dose and operator effort required, while improving diligence, consistency, and documentation

  14. Improving shuffler assay accuracy

    International Nuclear Information System (INIS)

    Rinard, P.M.

    1995-01-01

    Drums of uranium waste should be disposed of in an economical and environmentally sound manner. The most accurate possible assays of the uranium masses in the drums are required for proper disposal. The accuracies of assays from a shuffler are affected by the type of matrix material in the drums. Non-hydrogenous matrices have little effect on neutron transport and accuracies are very good. If self-shielding is known to be a minor problem, good accuracies are also obtained with hydrogenous matrices when a polyethylene sleeve is placed around the drums. But for those cases where self-shielding may be a problem, matrices are hydrogenous, and uranium distributions are non-uniform throughout the drums, the accuracies are degraded. They can be greatly improved by determining the distributions of the uranium and then applying correction factors based on the distributions. This paper describes a technique for determining uranium distributions by using the neutron count rates in detector banks around the waste drum and solving a set of overdetermined linear equations. Other approaches were studied to determine the distributions and are described briefly. Implementation of this correction is anticipated on an existing shuffler next year

  15. Utilization of metal scrap for the production of waste drums for ultimate disposal

    International Nuclear Information System (INIS)

    Janberg, K.; Rittscher, D.

    1988-01-01

    The contribution reviews the history of development of the techniques for treatment of decommissioning scrap from the beginning of the 1980's onwards (decommissioning of the Niederaichbach and Gundremmingen nuclear power stations), together with the radiological measuring methods required for regulatory purposes. The advantages of the recycling of the metal scrap by means of melting, and of materials utilization for production of waste containers for ultimate storage are discussed together with product quality assurance criteria. (RB) [de

  16. Non-destructive assay of radioactive waste

    International Nuclear Information System (INIS)

    Eid, C.; Bernard, P.

    1990-01-01

    The nuclear fuel cycle generates a large variety of waste containing Pu. After treatment and conditioning the final destination of this waste is either to be disposed by shallow land burial or in underground geological repositories. The method of disposal is determined by the quantity of Pu contained in the waste to be disposed of. For this reason and taking into account the rigorous requirements of the safety authorities concerning the protection of people and the environment, it is most important to determine accurately the Pu contents in the waste. Separate abstracts were prepared for 28 papers in this book

  17. Performance Demonstration Program Plan for Nondestructive Assay for the TRU Waste Characterization Program. Revision 1

    International Nuclear Information System (INIS)

    1997-01-01

    The Performance Demonstration Program (PDP) for Nondestructive Assay (NDA) consists of a series of tests conducted on a regular frequency to evaluate the capability for nondestructive assay of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed with TRU waste characterization systems. Measurement facility performance will be demonstrated by the successful analysis of blind audit samples according to the criteria set by this Program Plan. Intercomparison between measurement groups of the DOE complex will be achieved by comparing the results of measurements on similar or identical blind samples reported by the different measurement facilities. Blind audit samples (hereinafter referred to as PDP samples) will be used as an independent means to assess the performance of measurement groups regarding compliance with established Quality Assurance Objectives (QAOs). As defined for this program, a PDP sample consists of a 55-gallon matrix drum emplaced with radioactive standards and fabricated matrix inserts. These PDP sample components, once manufactured, will be secured and stored at each participating measurement facility designated and authorized by Carlsbad Area Office (CAO) under secure conditions to protect them from loss, tampering, or accidental damage

  18. Experimental study on the properties of drum-packed, cement solidified waste package of pre and after sea dumping test of sea depth 30m and 100m

    International Nuclear Information System (INIS)

    Maki, Yasuro; Abe, Hirotoshi; Hattori, Seiichi

    1976-01-01

    Japan Marine Science and Technology Center has been tackling with the development of the monitoring system to confirm the soundness of drum-packed, cement-solidified low level radioactive waste (the package) during falling and after reaching at sea bed when it is dumped into sea. The test was carried out at Sagami Bay of 30 m and 100 m sea depth using non-radioactive packages. The observation of the falling behaviour of packages in sea was carried out by taking photographs of the motion of packages with an underwater 16 mm movie camera and an underwater industrial TV (ITV), and the observation of the soundness and the area of packages scattered on sea bed was carried out with an underwater ITV and an underwater 70 mm snap camera which were set up on the frame. The proportion of cement-solidified waste was decided so that the uni-axial compressive strength of the cement-solidified waste satisfies the condition of ''The tentative guideline''. Prior to tests at sea, hydrostatic pressure test of packages are carried out on land. After that, core specimens were sampled to obtain the uniaxial compressive strength from packages and were tested. After sea dumping tests, 6 packages were recovered from sea bed, and the soundness were tested. As the results, the deformation and damage of drums and cement solidified waste packages did not occur at all. (Kako, I.)

  19. Gamma ray scanner systems for nondestructive assay of heterogeneous waste barrels

    International Nuclear Information System (INIS)

    Martz, H.E.; Decman, B.J.; Roberson, G.P.; Levai, F.

    1997-01-01

    Traditional gamma safeguards measurements have usually been performed using a segmented gamma scanning (SGS) system. The accuracy of this technique relies on the assumption that the sample matrix and the activity are both uniform for a segment. Waste barrels are often highly heterogeneous, span a wide range of composition and matrix type. The primary sources of error are all directly or indirectly related to a non-uniform measurement response associated with unknown radioactive source spatial distribution and heterogeneity of the matrix. These errors can be significantly reduced by some imaging techniques that measure exact spatial locations of sources and attenuation maps. In this paper we describe a joint R ampersand D effort between the Lawrence Livermore National Laboratory (LLNL) and the Institute of Nuclear Techniques (INT) of the Technical University, Budapest, to compare results obtained by two different gamma-ray nondestructive assay (NDA) systems used for imaging waste barrels. The basic principles are the same, but the approaches are different. Key factors to judge the adequacy of a method are the detection limit and the accuracy. Test drums representing waste to be measured are used to determine basic parameters of these techniques

  20. Volume reduction and conditioning campaigns, upon low level solid waste drums, realised in ENEA centres of Trisaia (ITREC plant) and Saluggia (EUTREX plant)

    International Nuclear Information System (INIS)

    Gili, M.

    1995-09-01

    The volume reduction and conditioning campaigns, upon low level solid waste drums, realized between 1989 and 1993 in the ENEA (Italian Agency for New Technologies, Energy and the Environment) centres of Trisaia (ITREC plant) and Saluggia (EUREX plant), by the mean of supercompactation, and cement immobilization inside over packs, are hereby described. The operational techniques and the equipments used, the whole volume reduction factors obtained and some final considerations over this solid rad wastes treatment procedure are shown. This method, where correctly operated and coupled to an accurate radiological characterization, permits to save space for the waste storage in the short period and to obtain final manufacts, certified suitable for shallow burial disposal, according to italian technical guide n. 26

  1. Method for assay of radioactivity in waste soil

    International Nuclear Information System (INIS)

    Bramlitt, E.T.; Willhoite, S.B.

    1991-01-01

    Contaminated soil is a result of many nuclear operations. During facility decommissioning or site cleanup, it may be packaged for disposal. The waste soil must be assayed for contaminants to follow transport regulations and waste handling facility requirements. Methods used for assay include the following: (1) sampling the ground before excavation and assuming ground data apply to soil when packaged; (2) analyzing samples taken from the soil added to a package; (3) counting radiation at the exterior of the package; and (4) measuring neutron absorption by packaged waste soil. The Defense Nuclear Agency (DNA) worked with Eberline Instruments Corporation (EIC) to develop an automated assay method for the waste stream in a plutonium-contaminated soil cleanup at Johnston Atoll in the North Pacific Ocean. The perfected method uses a personal computer, an electronic weighing scale, and a programmable radiation counter. Computer programs get weight and radiation counts at frequent intervals as packages fill, calculate activity in the waste, and produce reports. The automated assay method is an efficient one-person routine that steadfastly collects data and produces a comprehensive record on packaged waste

  2. Innovative Applications of In Situ Gamma Spectroscopy for Non-destructive Assay of Transuranic Wastes

    International Nuclear Information System (INIS)

    Watters, D.J.; Weismann, J.J.; Duke, S.J.; Nicosia, W.C.

    2009-01-01

    Cabrera Services (CABRERA), under contract to National Security Technologies, LLC (NSTec), supported the transuranic (TRU) waste reduction initiative at the Radioactive Waste Management Complex of the Nevada Test Site (NTS). CABRERA developed advanced NDA techniques for oversized boxes (OSB) and drums using in situ gamma spectroscopy during several phases of the project. A more thorough characterization method was employed during the planning phase of the project to better understand the TRU content and distribution within each container, while a comprehensive NDA program was designed and implemented during the intrusive phase that guided waste segregation and re-packaging of both TRU and low-level wastes (LLW). NSTec took receipt of 58 oversized boxes of suspect TRU waste from Lawrence Livermore National Lab (LLNL). TRU waste is defined as greater than 3.7 kilobecquerels per gram [kBq/g] (100 nanocuries (nCi)/g) activity from alpha-emitting radionuclides with atomic number greater than 92 having a half-life greater than 20 years. Each box was custom-made to house a variety of suspect TRU wastes resulting from years of weapons program research, development, and testing. Since their arrival at NTS, the boxes have undergone several iterations of non-destructive assay (NDA) in preparation for the comprehensive repackaging effort. NDA has included two rounds of in situ gamma spectroscopy and real-time radiography (RTR) scans that were videotaped. Contents have been confirmed to include glove boxes, HEPA filters and their housings, and assorted process equipment and piping. TRU content was determined via directly measuring plutonium-239 (Pu-239), americium-241 (Am-241), and other radionuclides, while adding calculated results for non-measurable nuclides using reliable scaling factors developed from acceptable knowledge (AK). Advantages of CABRERA's NDA methods included: - More NDA information is available in the same amount of counting time, allowing NSTec to make more

  3. Design and operation of a passive neutron monitor for assaying the TRU content of solid wastes

    International Nuclear Information System (INIS)

    Brodzinski, R.L.; Brown, D.P.; Rieck, H.G. Jr.; Rogers, L.A.

    1984-02-01

    A passive neutron monitor has been designed and built for determining the residual transuranic (TRU) and plutonium content of chopped leached fuel hulls and other solid wastes from spent Fast Flux Test Facility (FFTF) fuel. The system was designed to measure as little as 8 g of plutonium or 88 mg of TRU in a waste package as large as a 208-l drum which could be emitting up to 220,000 R/hr of gamma radiation. For practical purposes, maximum assay times were chosen to be 10,000 sec. The monitor consists of 96 10 BF 3 neutron sensitive proportional counting tubes each 5.08 cm in diameter and 183 cm in active length. Tables of neutron emission rates from both spontaneous fission and (α,n) reactions on oxygen are given for all contributing isotopes expected to be present in spent FFTF fuel. Tables of neutron yeilds from isotopic compositions predicted for various exposures and cooling times are also given. Methods of data reduction and sources, magnitude, and control of errors are discussed. Backgrounds and efficiencies have been measured and are reported. A section describing step-by-step operational procedures is included. Guidelines and procedures for quality control and troubleshooting are also given. 13 references, 15 figures, 4 tables

  4. Verification of Representative Sampling in RI waste

    International Nuclear Information System (INIS)

    Ahn, Hong Joo; Song, Byung Cheul; Sohn, Se Cheul; Song, Kyu Seok; Jee, Kwang Yong; Choi, Kwang Seop

    2009-01-01

    For evaluating the radionuclide inventories for RI wastes, representative sampling is one of the most important parts in the process of radiochemical assay. Sampling to characterized RI waste conditions typically has been based on judgment or convenience sampling of individual or groups. However, it is difficult to get a sample representatively among the numerous drums. In addition, RI waste drums might be classified into heterogeneous wastes because they have a content of cotton, glass, vinyl, gloves, etc. In order to get the representative samples, the sample to be analyzed must be collected from selected every drum. Considering the expense and time of analysis, however, the number of sample has to be minimized. In this study, RI waste drums were classified by the various conditions of the half-life, surface dose, acceptance date, waste form, generator, etc. A sample for radiochemical assay was obtained through mixing samples of each drum. The sample has to be prepared for radiochemical assay and although the sample should be reasonably uniform, it is rare that a completely homogeneous material is received. Every sample is shredded by a 1 ∼ 2 cm 2 diameter and a representative aliquot taken for the required analysis. For verification of representative sampling, classified every group is tested for evaluation of 'selection of representative drum in a group' and 'representative sampling in a drum'

  5. Design of a neutron interrogation cell based on an electron accelerator and performance assessment on 220 liter nuclear waste mock-up drums

    International Nuclear Information System (INIS)

    Sari, A.; Carrel, F.; Laine, F.; Lyoussi, A.

    2013-01-01

    Radiological characterization of nuclear waste drums is an important task for the nuclear industry. The amount of actinides, such as 235 U or 239 Pu, contained in a package can be determined using non-destructive active methods based on the fission process. One of these techniques, known as neutron interrogation, uses a neutron beam to induce fission reactions on the actinides. Optimization of the neutron flux is an important step towards improving this technique. Electron accelerators enable to achieve higher neutron flux intensities than the ones delivered by deuterium-tritium generators traditionally used on neutron interrogation industrial facilities. In this paper, we design a neutron interrogation cell based on an electron accelerator by MCNPX simulation. We carry out photoneutron interrogation measurements on uranium samples placed at the center of 220 liter nuclear waste drums containing different types of matrices. We quantify impact of the matrix on the prompt neutron signal, on the ratio between the prompt and delayed neutron signals, and on the interrogative neutron half-life time. We also show that characteristics of the conversion target of the electron accelerator enable to improve significantly measurement performances. (authors)

  6. CT examination of radwaste drums

    International Nuclear Information System (INIS)

    Duwe, R.; Jansen, P.

    1988-01-01

    In order to garantee safe operation of the waste disposal site it is inevitable for the operator to know the radioactive inventory as well as the physical and chemical properties of the conditioned waste. The declarations of the waste producers describing the type, amount and conditioning of the wastes are taken as a basis for specifications of waste forms. The aim of the work till now was to install simple measuring desk for emission computed tomography in order to count γ-activity levels in drums, and to detect density distributions by transmission computed tomography. (orig.) [de

  7. Matrix effects of TRU [transuranic] assays using the SWEPP PAN assay system

    International Nuclear Information System (INIS)

    Smith, J.R.

    1990-08-01

    The Drum Assay System (DAS) at the Stored Waste Experimental Pilot Plant (SWEPP) is a second-generation active-passive neutron assay system. It has been used to assay over 5000 208-liter drums of transuranic waste from the Rocky Flats Plant (RFP). Data from these assays have been examined and compared with the assays performed at Rocky Flats, mainly utilize counting of 239 Pu gamma rays. For the most part the passive assays are in very good agreement with the Rocky Flats assays. The active assays are strongly correlated with the results of the other two methods, but require matrix-dependent correction factors beyond those provided by the system itself. A set of matrix-dependent correction factors has been developed from the study of the assay results. 3 refs., 4 figs., 3 tabs

  8. Management of solid wastes during decommissioning of research reactors. Evaluation of gross clearance levels and mathematical simulation of solid waste assay techniques

    International Nuclear Information System (INIS)

    Gopalakrishnan, R.K.; Sobhan Babu, K.; Sharma, D.N.

    2008-01-01

    estimation is warranted to satisfy the clearance level values. Several standard designs were studied using mathematical simulation and it was observed that for estimation of such low levels of activity concentration, detection system using the principle of Computed Tomography is the best suitable method. By detecting and measuring the attenuated gamma-ray intensity levels at specific energies, using an external gamma source, a map of the attenuation coefficient (a function of material density and atomic number) of the waste drum and its contents can be arrived. These maps are reconstructed to depict a drum's waste matrix attenuation per volume element and energy. Several measurements of the gamma activity emitted from a source inside different volume elements of the drum are simulated using a combination of several detectors. The attenuation, caused by material between the isotope and the detector, is corrected by suitable algorithms using the attenuation map derived. This correction leads to a far more accurate assay of radioactivity within the drum thereby reducing the error in measurements to acceptable values as desired.(author)

  9. 224-T Transuranic Waste Storage and Assay Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-01-01

    Westinghouse Hanford Company is a major contractor to the US Department of Energy Richland Field Office and serves as cooperator of the 224-T Transuranic Waste Storage and Assay Facility, the storage unit addressed in this permit application. At the time of submission of this portion of the Hanford Facility. Dangerous Waste Permit Application covering the 224-T Transuranic Waste Storage and Assay Facility, many issues identified in comments to the draft Hanford Facility Dangerous Waste Permit remain unresolved. This permit application reflects the positions taken by the US Department of Energy, Company on the draft Hanford Facility Dangerous Waste Permit and may not be read to conflict with those comments. The 224-T Transuranic Waste Storage and Assay Facility Dangerous Waste Permit Application (Revision 0) consists of both a Part A and Part B permit application. An explanation of the Part A revisions associated with this unit, including the Part A revision currently in effect, is provided at the beginning of the Part A section. The Part B consists of 15 chapters addressing the organization and content of the Part B Checklist prepared by the Washington State Department of Ecology (Ecology 1987). The 224-T Transuranic Waste Storage and Assay Facility Dangerous Waste Permit Application contains information current as of March 1, 1992

  10. FIFTY-FIVE GALLON DRUM STANDARD STUDY

    International Nuclear Information System (INIS)

    Puigh, R.J.

    2009-01-01

    Fifty-five gallon drums are routinely used within the U.S. for the storage and eventual disposal of fissionable materials as Transuranic or low-level waste. To support these operations, criticality safety evaluations are required. A questionnaire was developed and sent to selected Endusers at Hanford, Idaho National Laboratory, Lawrence Livermore National Laboratory, Oak Ridge and the Savannah River Site to solicit current practices. This questionnaire was used to gather information on the kinds of fissionable materials packaged into drums, the models used in performing criticality safety evaluations in support of operations involving these drums, and the limits and controls established for the handling and storage of these drums. The completed questionnaires were reviewed and clarifications solicited through individual communications with each Enduser to obtain more complete and consistent responses. All five sites have similar drum operations involving thousands to tens of thousands of fissionable material waste drums. The primary sources for these drums are legacy (prior operations) and decontamination and decommissioning wastes at all sites except Lawrence Livermore National Laboratory. The results from this survey and our review are discussed in this paper

  11. Waste inspection tomography (WIT)

    Energy Technology Data Exchange (ETDEWEB)

    Bernardi, R.T. [Bio-Imaging Research, Inc., Lincolnshire, IL (United States)

    1995-10-01

    Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting, isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU.

  12. Waste inspection tomography (WIT)

    International Nuclear Information System (INIS)

    Bernardi, R.T.

    1995-01-01

    Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting, isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU

  13. TRU drum corrosion task team report

    Energy Technology Data Exchange (ETDEWEB)

    Kooda, K.E.; Lavery, C.A.; Zeek, D.P.

    1996-05-01

    During routine inspections in March 1996, transuranic (TRU) waste drums stored at the Radioactive Waste Management Complex (RWMC) were found with pinholes and leaking fluid. These drums were overpacked, and further inspection discovered over 200 drums with similar corrosion. A task team was assigned to investigate the problem with four specific objectives: to identify any other drums in RWMC TRU storage with pinhole corrosion; to evaluate the adequacy of the RWMC inspection process; to determine the precise mechanism(s) generating the pinhole drum corrosion; and to assess the implications of this event for WIPP certifiability of waste drums. The task team investigations analyzed the source of the pinholes to be Hcl-induced localized pitting corrosion. Hcl formation is directly related to the polychlorinated hydrocarbon volatile organic compounds (VOCs) in the waste. Most of the drums showing pinhole corrosion are from Content Code-003 (CC-003) because they contain the highest amounts of polychlorinated VOCs as determined by headspace gas analysis. CC-001 drums represent the only other content code with a significant number of pinhole corrosion drums because their headspace gas VOC content, although significantly less than CC-003, is far greater than that of the other content codes. The exact mechanisms of Hcl formation could not be determined, but radiolytic and reductive dechlorination and direct reduction of halocarbons were analyzed as the likely operable reactions. The team considered the entire range of feasible options, ranked and prioritized the alternatives, and recommended the optimal solution that maximizes protection of worker and public safety while minimizing impacts on RWMC and TRU program operations.

  14. TRU drum corrosion task team report

    International Nuclear Information System (INIS)

    Kooda, K.E.; Lavery, C.A.; Zeek, D.P.

    1996-05-01

    During routine inspections in March 1996, transuranic (TRU) waste drums stored at the Radioactive Waste Management Complex (RWMC) were found with pinholes and leaking fluid. These drums were overpacked, and further inspection discovered over 200 drums with similar corrosion. A task team was assigned to investigate the problem with four specific objectives: to identify any other drums in RWMC TRU storage with pinhole corrosion; to evaluate the adequacy of the RWMC inspection process; to determine the precise mechanism(s) generating the pinhole drum corrosion; and to assess the implications of this event for WIPP certifiability of waste drums. The task team investigations analyzed the source of the pinholes to be Hcl-induced localized pitting corrosion. Hcl formation is directly related to the polychlorinated hydrocarbon volatile organic compounds (VOCs) in the waste. Most of the drums showing pinhole corrosion are from Content Code-003 (CC-003) because they contain the highest amounts of polychlorinated VOCs as determined by headspace gas analysis. CC-001 drums represent the only other content code with a significant number of pinhole corrosion drums because their headspace gas VOC content, although significantly less than CC-003, is far greater than that of the other content codes. The exact mechanisms of Hcl formation could not be determined, but radiolytic and reductive dechlorination and direct reduction of halocarbons were analyzed as the likely operable reactions. The team considered the entire range of feasible options, ranked and prioritized the alternatives, and recommended the optimal solution that maximizes protection of worker and public safety while minimizing impacts on RWMC and TRU program operations

  15. Treatment/Disposal Plan for Drummed Waste from the 300-FF-1 Operable Unit, 618-4 Burial Ground

    International Nuclear Information System (INIS)

    Lerch, J.A.

    1999-01-01

    The objective of this plan is to support selection of a safe, environmentally responsible, and cost-effective treatment and disposal method for drums containing depleted uranium metal chips submerged in oil that have been and will be excavated from the 618-4 Burial Ground. Remediation of the 300-FF-1 Operable Unit, 618-4 Burial Ground was initiated in fiscal year (FY) 1998 as an excavation and removal operation. Routine processes were established to excavate and ship contaminated soil and debris to the Environmental Restoration Disposal Facility (ERDF) for disposal

  16. Application of neutron multiplicity counting to waste assay

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, M.M.; Ensslin, N. [Los Alamos National Lab., NM (United States); Sharpe, T.J. [North Carolina State Univ., Raleigh, NC (United States)

    1997-11-01

    This paper describes the use of a new figure of merit code that calculates both bias and precision for coincidence and multiplicity counting, and determines the optimum regions for each in waste assay applications. A {open_quotes}tunable multiplicity{close_quotes} approach is developed that uses a combination of coincidence and multiplicity counting to minimize the total assay error. An example is shown where multiplicity analysis is used to solve for mass, alpha, and multiplication and tunable multiplicity is shown to work well. The approach provides a method for selecting coincidence, multiplicity, or tunable multiplicity counting to give the best assay with the lowest total error over a broad spectrum of assay conditions. 9 refs., 6 figs.

  17. Standard test method for non-destructive assay of nuclear material in waste by passive and active neutron counting using a differential Die-away system

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers a system that performs nondestructive assay (NDA) of uranium or plutonium, or both, using the active, differential die-away technique (DDT), and passive neutron coincidence counting. Results from the active and passive measurements are combined to determine the total amount of fissile and spontaneously-fissioning material in drums of scrap or waste. Corrections are made to the measurements for the effects of neutron moderation and absorption, assuming that the effects are averaged over the volume of the drum and that no significant lumps of nuclear material are present. These systems are most widely used to assay low-level and transuranic waste, but may also be used for the measurement of scrap materials. The examples given within this test method are specific to the second-generation Los Alamos National Laboratory (LANL) passive-active neutron assay system. 1.1.1 In the active mode, the system measures fissile isotopes such as 235U and 239Pu. The neutrons from a pulsed, 14-MeV ne...

  18. Computerized low-level waste assay system operation manual

    International Nuclear Information System (INIS)

    Jones, D.F.; Cowder, L.R.; Martin, E.R.

    1976-01-01

    An operation and maintenance manual for the computerized low-level waste box counter is presented, which describes routine assay techniques as well as theory of operation treated in sufficient depth so that an experienced assayist can make nonroutine assays. In addition, complete system schematics are included, along with a complete circuit description to facilitate not only maintenance and troubleshooting, but also reproduction of the instrument if desired. Complete software system descriptions are included so far as calculational algorithms are concerned, although detailed instruction listings would have to be obtained from Group R-1 at LASL in order to make machine-language code changes

  19. ASSESSMENT OF TOXICITY OF INDUSTRIAL WASTES USING CROP PLANT ASSAYS

    OpenAIRE

    Carmen Alice Teacă; Ruxanda Bodîrlău

    2008-01-01

    Environmental pollution has a harmful action on bioresources, including agricultural crops. It is generated through many industrial activities such as mining, coal burning, chemical technology, cement production, pulp and paper industry, etc. The toxicity of different industrial wastes and heavy metals excess was evaluated using crop plant assays (germination and hydroponics seedlings growth tests). Experimental data regarding the germination process of wheat (from two cultivars) and rye seed...

  20. Structural safety test and analysis of type IP-2 transport packages with bolted lid type and thick steel plate for radioactive waste drums in a NPP

    International Nuclear Information System (INIS)

    Kim, Dong Hak; Seo, Ki Seog; Lee, Sang Jin; Lee, Kyung Ho; Kim, Jeong Mook

    2007-01-01

    If a type IP-2 transport package were to be subjected to a free drop test and a penetration test under the normal conditions of transport, it should prevent a loss or dispersal of the radioactive contents and a more than 20% increase in the maximum radiation level at any external surface of the package. In this paper, we suggested the analytic method to evaluate the structural safety of a type IP-2 transport package using a thick steel plate for a structure part and a bolt for tying a bolt. Using an analysis a loss or disposal of the radioactive contents and a loss of shielding integrity were confirmed for two kinds of type IP-2 transport packages to transport radioactive waste drums from a waste facility to a temporary storage site in a nuclear power plant. Under the free drop condition the maximum average stress at the bolts and the maximum opening displacement of a lid were compared with the tensile stress of a bolt and the steps in a lid, which were made to avoid a streaming radiation in the shielding path, to evaluate a loss or dispersal of radioactive waste contents. Also a loss of shielding integrity was evaluated using the maximum decrease in a shielding thickness. To verify the impact dynamic analysis for free drop test condition and evaluate experimentally the safety of two kinds of type IP-2 transport packages, free drop tests were conducted with various drop directions

  1. Rotary drum for centrifuge

    International Nuclear Information System (INIS)

    Sakurai, Mitsuo; Ichinoto, Seiichi.

    1972-01-01

    An outwardly concaved metallic end plate is fitted into each end of a metallic rotary drum for a centrifuge until each end face of the drum is brought to bear upon a section of the end plate radially projected in a direction perpendicular to the axis of rotation of the drum, said section being provided at the marginal edge of the end plate. Following completion of the fitting operation, the end plate is welded to the rotary drum. During high speed rotation, the drum contracts axially and expands radially, while the concave end plate, radially tensioned due to the radial expansion of the drum, undergoes a reduction in its degree of concavity resulting in outwardly directed axial displacement of the end plate proper its marginal edge remaining unaffected relative to the drum. Such displacement conpensates for axial contraction of the drum. Since displacement of the end plate and contraction of the drum depend upon the speed of rotation, substantial axial distortion of the drum can be avoided relative to the end plates at both low and high speeds to permit a high degree of balance for the rotary drum. (Ohno, Y.)

  2. Assay of plutonium contaminated waste by gamma spectrometry

    International Nuclear Information System (INIS)

    Adsley, I.; Bull, R.; Davies, M.; Green, M.

    2011-01-01

    The extreme toxicity of plutonium necessitates the segregation of plutonium contaminated materials (PCM) with extremely small (sub-μg) levels of contamination. The driver to measure accurately these small quantities of plutonium within (relatively) large volumes of waste is (in part) financial. In particular the cost of disposal (per unit volume) rises steeply with increasing waste-category. Within the UK, there has been a historical reluctance to use low energy gamma radiation to sentence PCM because of the potential for self attenuation by dense materials. This is unfortunate because the low-energy gamma radiation from PCM offers the only practicable technique for segregating PCM within the various Low Level Waste (LLW) (>0.4Bq/g) and sub-LLW categories. Whilst passive neutron counting techniques have proved successful for assay of waste well into the Intermediate Level Waste (ILW) (>100Bq/g) category, a cursory study reveals that these techniques are barely capable of detecting mg quantities of plutonium -- let alone the sub-μg quantities present in LLW. This paper considers the use of two types of gamma detector for assay of PCM: the thin sodium iodide FIDLER (Field Instrument for the Detection of Low Energy Radiation) and the HPGe (High Purity Germanium) detector. Systems utilising these two types of detector can provide complementary information. FIDLER measurements are conducted by careful, local, systematic monitoring of surfaces. By contrast a HPGe detector can be used to monitor entire walls, or even rooms, in one measurement. Thus, a HPGe detector placed in the centre of room (from which any radioactive hot-spots have previously been removed) could be used to demonstrate that the average activity remaining close to the surface of the walls/floor/ceiling is below a given limit. The Monte Carlo Code MCNP 1 has been used to model both FIDLER probe and HPGe detector in the measurement geometries described above. The MCNP simulations have been validated

  3. Challenges of Non-Destructive Assay Waste Measurement

    International Nuclear Information System (INIS)

    Shull, A.H.

    2003-01-01

    Historically, the Savannah River Site (SRS) routinely produced special nuclear material (SNM), which provided stable measurement conditions for the non-destructive assay (NDA) methods. However, the main mission of SRS has changed from the production of SNM to the processing of waste and material stabilization. Currently, the purpose of processing is to recover the SNM from the waste and stabilization materials, much of which is from other DOE facilities. These missions are usually of a short duration, but require non-destructive assay (NDA) accountability measurements on materials of varying composition and geometric configuration. These missions usually have cost and time constraints, which sometimes require re-application of existing NDA methods to waste measurements. Usually, each new material or re-application of the NDA method to a different SNM campaign requires new standards and timely re-calibration of the method. These constraints provide numerous challenges for the NDA methods, particularly in the area of measurement uncertainty. This paper will discuss the challenges of these situations, mainly from a measurement and statistical point of view and provide some possible solutions to the problems encountered. Specific examples will be discussed for the segmented gamma scanner (SGS), neutron multiplicity counter (NMC) and passive neutron coincidence counter (PNCC), which are some of the most common NDA instruments at SRS

  4. Development of a numerical experiment technique to solve inverse gamma-ray transport problems with application to nondestructive assay of nuclear waste barrels

    International Nuclear Information System (INIS)

    Chang, C.J.; Anghaie, S.

    1998-01-01

    A numerical experimental technique is presented to find an optimum solution to an undetermined inverse gamma-ray transport problem involving the nondestructive assay of radionuclide inventory in a nuclear waste drum. The method introduced is an optimization scheme based on performing a large number of numerical simulations that account for the counting statistics, the nonuniformity of source distribution, and the heterogeneous density of the self-absorbing medium inside the waste drum. The simulation model uses forward projection and backward reconstruction algorithms. The forward projection algorithm uses randomly selected source distribution and a first-flight kernel method to calculate external detector responses. The backward reconstruction algorithm uses the conjugate gradient with nonnegative constraint or the maximum likelihood expectation maximum method to reconstruct the source distribution based on calculated detector responses. Total source activity is determined by summing the reconstructed activity of each computational grid. By conducting 10,000 numerical simulations, the error bound and the associated confidence level for the prediction of total source activity are determined. The accuracy and reliability of the simulation model are verified by performing a series of experiments in a 208-ell waste barrel. Density heterogeneity is simulated by using different materials distributed in 37 egg-crate-type compartments simulating a vertical segment of the barrel. Four orthogonal detector positions are used to measure the emerging radiation field from the distributed source. Results of the performed experiments are in full agreement with the estimated error and the confidence level, which are predicted by the simulation model

  5. Seismic behavior analysis of piled drums

    International Nuclear Information System (INIS)

    Aoki, H.; Kosaka, T.; Mizushina, T.; Shimizu, M.; Uji, S.; Tsuchiya, H.

    1987-01-01

    In general, low level radioactive waste is packed in drums and stored in a warehouse being piled vertically, or laid horizontally. To observe the behavior of piled drums during an earthquake, an experimental study was reported. The experimental study is limited by the vibrating platform capacity. To carry out these tests up to the supporting limit is not recommended, in view of the vibrating platform curing as well as the operators' security. It is very useful to develop the analytical method for simulating the behavior of the drums. In this report, a computer program of piled drum's dynamic motion is shown, and the analytical result is referred to the experimental result. From the result of experiment on piled drums, the sliding effect has been found to be very important for the stability of drum, and the rocking motion observed, showing a little acceleration is less than the static estimated value. Behavior of piled drums is a complex phenomena comprising of sliding, rocking and jumping

  6. ANALYSIS OF SPECIAL WASTE CONFIGURATIONS AT THE SRS WASTE MANAGEMENT FACILITIES

    International Nuclear Information System (INIS)

    Casella, V; Raymond Dewberry, R

    2007-01-01

    Job Control Waste (JCW) at the Savannah River Site (SRS) Solid Waste Management Facilities (SWMF) may be disposed of in special containers, and the analysis of these containers requires developing specific analysis methodologies. A method has been developed for the routine assay of prohibited items (liquids, etc.) contained in a 30-gallon drum that is then placed into a 55-gallon drum. Method development consisted of system calibration with a NIST standard at various drum-to-detector distances, method verification with a liquid sample containing a known amount of Pu-238, and modeling the inner container using Ortec Isotopic software. Using this method for measurement of the known standard in the drum-in-drum configuration produced excellent agreement (within 15%) with the known value. Savannah River Site Solid Waste Management also requested analysis of waste contained in large black boxes (commonly 18-feet x 12-feet x 7-feet) stored at the SWMF. These boxes are frequently stored in high background areas and background radiation must be considered for each analysis. A detection limit of less than 150 fissile-gram-equivalents (FGE) of TRU waste is required for the black-box analyses. There is usually excellent agreement for the measurements at different distances and measurement uncertainties of about 50% are obtained at distances of at least twenty feet from the box. This paper discusses the experimental setup, analysis and data evaluation for drum-in-drum and black box waste configurations at SRS

  7. Computed neutron coincidence counting applied to passive waste assay

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, M.; Baeten, P.; De Boeck, W.; Carchon, R. [Nuclear Research Centre, Mol (Belgium)

    1997-11-01

    Neutron coincidence counting applied for the passive assay of fissile material is generally realised with dedicated electronic circuits. This paper presents a software based neutron coincidence counting method with data acquisition via a commercial PC-based Time Interval Analyser (TIA). The TIA is used to measure and record all time intervals between successive pulses in the pulse train up to count-rates of 2 Mpulses/s. Software modules are then used to compute the coincidence count-rates and multiplicity related data. This computed neutron coincidence counting (CNCC) offers full access to all the time information contained in the pulse train. This paper will mainly concentrate on the application and advantages of CNCC for the non-destructive assay of waste. An advanced multiplicity selective Rossi-alpha method is presented and its implementation via CNCC demonstrated. 13 refs., 4 figs., 2 tabs.

  8. Computed neutron coincidence counting applied to passive waste assay

    International Nuclear Information System (INIS)

    Bruggeman, M.; Baeten, P.; De Boeck, W.; Carchon, R.

    1997-01-01

    Neutron coincidence counting applied for the passive assay of fissile material is generally realised with dedicated electronic circuits. This paper presents a software based neutron coincidence counting method with data acquisition via a commercial PC-based Time Interval Analyser (TIA). The TIA is used to measure and record all time intervals between successive pulses in the pulse train up to count-rates of 2 Mpulses/s. Software modules are then used to compute the coincidence count-rates and multiplicity related data. This computed neutron coincidence counting (CNCC) offers full access to all the time information contained in the pulse train. This paper will mainly concentrate on the application and advantages of CNCC for the non-destructive assay of waste. An advanced multiplicity selective Rossi-alpha method is presented and its implementation via CNCC demonstrated. 13 refs., 4 figs., 2 tabs

  9. Non-intrusive measurement of tritium activity in waste drums by modelling a {sup 3}He leak quantified by mass spectrometry; Mesure non intrusive de l'activite de futs de dechets trities par modelisation d'une fuite {sup 3}He et sa quantification par spectrometrie de masse

    Energy Technology Data Exchange (ETDEWEB)

    Demange, D

    2002-07-03

    This study deals with a new method that makes it possible to measure very low tritium quantities inside radioactive waste drums. This indirect method is based on measuring the decaying product, {sup 3}He, and requires a study of its behaviour inside the drum. Our model considers {sup 3}He as totally free and its leak through the polymeric joint of the drum as two distinct phenomena: permeation and laminar flow. The numerical simulations show that a pseudo-stationary state takes place. Thus, the {sup 3}He leak corresponds to the tritium activity inside the drum but it appears, however, that the leak peaks when the atmospheric pressure variations induce an overpressure in the drum. Nevertheless, the confinement of a drum in a tight chamber makes it possible to quantify the {sup 3}He leak. This is a non-intrusive measurement of its activity, which was experimentally checked by using reduced models, representing the drum and its confinement chamber. The drum's confinement was optimised to obtain a reproducible {sup 3}He leak measurement. The gaseous samples taken from the chamber were purified using selective adsorption onto activated charcoals at 77 K to remove the tritium and pre-concentrate the {sup 3}He. The samples were measured using a leak detector mass spectrometer. The adaptation of the signal acquisition and the optimisation of the analysis parameters made it possible to reach the stability of the external calibrations using standard gases with a {sup 3}He detection limit of 0.05 ppb. Repeated confinement of the reference drums demonstrated the accuracy of this method. The uncertainty of this non-intrusive measurement of the tritium activity in 200-liter drums is 15% and the detection limit is about 1 GBq after a 24 h confinement. These results led to the definition of an automated tool able to systematically measure the tritium activity of all storage waste drums. (authors)

  10. Non-intrusive measurement of tritium activity in waste drums by modelling a {sup 3}He leak quantified by mass spectrometry; Mesure non intrusive de l'activite de futs de dechets trities par modelisation d'une fuite {sup 3}He et sa quantification par spectrometrie de masse

    Energy Technology Data Exchange (ETDEWEB)

    Demange, D

    2002-07-03

    This study deals with a new method that makes it possible to measure very low tritium quantities inside radioactive waste drums. This indirect method is based on measuring the decaying product, {sup 3}He, and requires a study of its behaviour inside the drum. Our model considers {sup 3}He as totally free and its leak through the polymeric joint of the drum as two distinct phenomena: permeation and laminar flow. The numerical simulations show that a pseudo-stationary state takes place. Thus, the {sup 3}He leak corresponds to the tritium activity inside the drum but it appears, however, that the leak peaks when the atmospheric pressure variations induce an overpressure in the drum. Nevertheless, the confinement of a drum in a tight chamber makes it possible to quantify the {sup 3}He leak. This is a non-intrusive measurement of its activity, which was experimentally checked by using reduced models, representing the drum and its confinement chamber. The drum's confinement was optimised to obtain a reproducible {sup 3}He leak measurement. The gaseous samples taken from the chamber were purified using selective adsorption onto activated charcoals at 77 K to remove the tritium and pre-concentrate the {sup 3}He. The samples were measured using a leak detector mass spectrometer. The adaptation of the signal acquisition and the optimisation of the analysis parameters made it possible to reach the stability of the external calibrations using standard gases with a {sup 3}He detection limit of 0.05 ppb. Repeated confinement of the reference drums demonstrated the accuracy of this method. The uncertainty of this non-intrusive measurement of the tritium activity in 200-liter drums is 15% and the detection limit is about 1 GBq after a 24 h confinement. These results led to the definition of an automated tool able to systematically measure the tritium activity of all storage waste drums. (authors)

  11. Performance Demonstration Program Plan for Nondestructive Assay of Boxed Wastes for the TRU Waste Characterization Program

    International Nuclear Information System (INIS)

    2001-01-01

    The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP for boxed waste assay systems. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAO's). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the boxed waste PDP, a simulated waste container consists of a modified standard waste box (SWB) emplaced with radioactive standards and fabricated matrix inserts. An SWB is a waste box with ends designed specifically to fit the TRUPACT-II shipping container. SWB's will be used to package a substantial volume of the TRU waste for disposal. These PDP sample components

  12. Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221F-HET/Drums

    International Nuclear Information System (INIS)

    Lunsford, G.F.

    1999-01-01

    This report is fully responsive to the requirements of Section 4.0 ''Acceptable Knowledge'' from the WIPP Transuranic Waste Characterization Quality Assurance Plan, CAO-94-1010, and provides a sound, (and auditable) characterization that satisfies the WIPP criteria for Acceptable Knowledge

  13. Development of new non destructive methods for bituminized radioactive waste drums characterization; Developpement de nouvelles methodes de caracterisation non destructive pour des dechets radioactifs enrobes dans du bitume

    Energy Technology Data Exchange (ETDEWEB)

    Pin, P

    2004-10-15

    Radioactive waste constitute a major issue for the nuclear industry. One of the key points is their characterization to optimize their management: treatment and packaging, orientation towards the suited disposal. This thesis proposes an evaluation method of the low-energy photon attenuation, based on the gamma-ray spectra Compton continuum. Effectively, the {sup 241}Am measurement by gamma-ray spectrometry is difficult due to the low energy of its main gamma-ray (59.5 keV). The photon attenuation strongly depends on the bituminous mix composition, which includes very absorbing elements. As the Compton continuum also depends on this absorption, it is possible to link the 59.5 keV line attenuation to the Compton level. Another technique is proposed to characterize uranium thanks to its fluorescence X-rays induced by the gamma emitters already present in the waste. The uranium present in the drums disturbs the neutron measurements and its measurement by self-induced X-ray fluorescence allows to correct this interference. Due to various causes of error, the total uncertainty is around 50 % on the activity of the radioisotope {sup 241}Am, corrected by the peak to Compton technique. The same uncertainty is announced on the uranium mass measured by self induced X-ray fluorescence. As a consequence of these promising results, the two methods were included in the industrial project of the 'Marcoule Sorting Unit'. One major advantage is that they do not imply any additional material because they use information already present in the gamma-ray spectra. (author)

  14. Assessment of the Microscreen phage-induction assay for screening hazardous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Houk, V.S.; DeMarini, D.M.

    1987-09-01

    The Microscreen phage-induction assay, which quantitatively measures the induction of prophage lambda in Escherichia coli WP2s(lambda), was used to test 14 crude (unfractionated) hazardous industrial waste samples for genotoxic activity in the presence and absence of metabolic activation. Eleven of the 14 wastes induced prophage, and induction was observed at concentrations as low as 0.4 picograms per ml. Comparisons between the mutagenicity of these waste samples in Salmonella and their ability to induce prophage lambda indicate that the Microscreen phage-induction assay detected genotoxic activity in all but one of the wastes that were mutagenic in Salmonella. Moreover, the Microscreen assay detected as genotoxic 5 additional wastes that were not detected in the Salmonella assay. The applicability of the Microscreen phage-induction assay for screening hazardous wastes for genotoxic activity is discussed along with some of the problems associated with screening highly toxic wastes containing toxic volatile compounds.

  15. Test plan for a live drum survey using the gamma-neutron sensor

    International Nuclear Information System (INIS)

    Gehrke, R.J.; Roybal, L.G.; Thompson, D.N.

    1995-07-01

    This plan describes performance tests to be made with the Gamma/Neutron Sensor (GNS), which that was designed and built for infield assay at an excavation site. The performance tests will be performed in Building WMF-628 in the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory on stored 55-gal drums of transuranic waste from the Rocky Flats Plant. The GNS is mounted on a wooden pallet that will allow horizontal and vertical scans of the stacked drums. Scanning speed and GNS sensitivity for gamma and neutron radiation fields will be estimated. Effects of temperature, electronic, and acoustic noise will be evaluated. Two- and three-dimensional plots of radiation field as a function of position will be developed from the data

  16. A high-sensitivity neutron counter and waste-drum counting with the high-sensitivity neutron instrument

    International Nuclear Information System (INIS)

    Hankins, D.E.; Thorngate, J.H.

    1993-04-01

    At Lawrence Livermore National Laboratory (LLNL), a highly sensitive neutron counter was developed that can detect and accurately measure the neutrons from small quantities of plutonium or from other low-level neutron sources. This neutron counter was originally designed to survey waste containers leaving the Plutonium Facility. However, it has proven to be useful in other research applications requiring a high-sensitivity neutron instrument

  17. Transuranic waste assay instrumentation: new developments and directions at the Los Alamos Scientific Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Close, D.A.; Umbarger, C.J.; West, L.; Smith, W.J.; Cates, M.R.; Noel, B.W.; Honey, F.J.; Franks, L.A.; Pigg, J.L.; Trundle, A.S.

    1978-01-01

    The Los Alamos Scientific Laboratory is developing assay instrumentation for the quantitative analysis of transuranic materials found in bulk solid wastes generated by Department of Energy facilities and by the commercial nuclear power industry. This also includes wastes generated in the decontamination and decommissioning of facilities and wastes generated during burial ground exhumation. The assay instrumentation will have a detection capability for the transuranics of less than 10 nCi of activity per gram of waste whenever practicable.

  18. Transuranic waste assay instrumentation: new developments and directions at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Close, D.A.; Umbarger, C.J.; West, L.; Smith, W.J.; Cates, M.R.; Noel, B.W.; Honey, F.J.; Franks, L.A.; Pigg, J.L.; Trundle, A.S.

    1978-01-01

    The Los Alamos Scientific Laboratory is developing assay instrumentation for the quantitative analysis of transuranic materials found in bulk solid wastes generated by Department of Energy facilities and by the commercial nuclear power industry. This also includes wastes generated in the decontamination and decommissioning of facilities and wastes generated during burial ground exhumation. The assay instrumentation will have a detection capability for the transuranics of less than 10 nCi of activity per gram of waste whenever practicable

  19. Hydrogen explosion testing with a simulated transuranic drum

    International Nuclear Information System (INIS)

    Dykes, K.L.; Meyer, M.L.

    1990-01-01

    Transuranic (TRU) waste generated at the Savannah River Site (SRS) is currently stored onsite for future retrieval and permanent disposal at the Waste Isolation Pilot Plant (WIPP). Some of the TRU waste is stored in vented 210-liter (55-gallon) drums and consists of gloves, wipes, plastic valves, tools, etc. Gas generation caused by radiolysis and biodegradation of these organic waste materials may produce a flammable hydrogen-air mixture (>4% v/v) in the multi-layer plastic waste bags. Using a worst case scenario, a drum explosion test program was carried out to determine the hydrogen concentration necessary to cause removal of the drum lid. Test results indicate an explosive mixture up to 15% v/v of hydrogen can be contained in an SRS TRU drum without total integrity failure via lid removal

  20. Performance validation of commercially available mobile waste-assay systems: Preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Schanfein, M.; Bonner, C.; Maez, R. [Los Alamos National Lab., NM (United States)] [and others

    1997-11-01

    Prior to disposal, nuclear waste must be accurately characterized to identify and quantify the radioactive content to reduce the radioactive hazard to the public. Validation of the waste-assay systems` performance is critical for establishing the credibility of the assay results for storage and disposal purposes. Canberra Nuclear has evaluated regulations worldwide and identified standard, modular, neutron- and gamma-waste-assay systems that can be used to characterize a large portion of existing and newly generated transuranic (TRU) and low-level waste. Before making claims of guaranteeing any system`s performance for specific waste types, the standardized systems` performance be evaluated. 7 figs., 11 tabs.

  1. Performance validation of commercially available mobile waste-assay systems: Preliminary report

    International Nuclear Information System (INIS)

    Schanfein, M.; Bonner, C.; Maez, R.

    1997-01-01

    Prior to disposal, nuclear waste must be accurately characterized to identify and quantify the radioactive content to reduce the radioactive hazard to the public. Validation of the waste-assay systems' performance is critical for establishing the credibility of the assay results for storage and disposal purposes. Canberra Nuclear has evaluated regulations worldwide and identified standard, modular, neutron- and gamma-waste-assay systems that can be used to characterize a large portion of existing and newly generated transuranic (TRU) and low-level waste. Before making claims of guaranteeing any system's performance for specific waste types, the standardized systems' performance be evaluated. 7 figs., 11 tabs

  2. Radwaste disposal drum centrifuge

    International Nuclear Information System (INIS)

    Rubin, L.S.; Deltete, C.P.; Crook, M.R.

    1988-01-01

    The drum or processing bowl of the DDC becomes the disposal container when the filling operation is completed. Rehandling of the processed resin is eliminated. By allowing the centrifugally compacted resin to remain in the processing container, extremely efficient waste packaging can be achieved. The dewatering results and volume reductions reported during 1986 were based upon laboratory scale testing sponsored by the Electric Power Research Institute (EPRI) and the Department of Energy (DOE). Since the publication of these preliminary results, additional testing using a full-scale prototype DDC has been completed, again under the auspices of the DOE. Full-scale testing has substantiated the results of earlier testing and has formed the basis for preliminary discussions with the U.S. Nuclear Regulatory Commission (NRC) regarding DDC licensing for radioactive applications. A comprehensive Topical Report and Process Control Program is currently being prepared for submittal to the NRC for review under a utility licensing action. Detailed cost-benefit analyses for actual plant operations have been prepared to substantiate the attractiveness of the DDC. Several methods to physically integrate a DDC into a nuclear power plant have also been developed

  3. Pu-238 assay performance with the Canberra IQ3 system

    Energy Technology Data Exchange (ETDEWEB)

    Booth, L.; Gillespie, B.; Seaman, G.

    1997-11-01

    Canberra Industries has recently completed a demonstration project at the Westinghouse Savannah River Site (WSRC) to characterize 55-gallon drums containing Pu-238 contaminated waste. The goal of this project was to detect and quantify Pu-238 contaminated waste. The goal of this project was to detect and quantify Pu-238 waste to detection limits of less than 50 nCi/g using gamma assay techniques. This would permit reclassification of these drums from transuranic (TRU) waste to low-level waste (LLW). The instrument used for this assay was a Canberra IQ3 high sensitivity gamma assay system, mounted in a trailer. The results of the measurements demonstrate achievement of detection levels as low as 1 nCi/g for low density waste drums, and good correlation with known concentrations in several test drums. In addition, the data demonstrates significant advantages for using large area low-energy germanium detectors for achieving the lowest possible MDAs for gamma rays in the 80-250 keV range. 1 fig., 2 tabs.

  4. ASSESSMENT OF TOXICITY OF INDUSTRIAL WASTES USING CROP PLANT ASSAYS

    Directory of Open Access Journals (Sweden)

    Carmen Alice Teacă

    2008-11-01

    Full Text Available Environmental pollution has a harmful action on bioresources, including agricultural crops. It is generated through many industrial activities such as mining, coal burning, chemical technology, cement production, pulp and paper industry, etc. The toxicity of different industrial wastes and heavy metals excess was evaluated using crop plant assays (germination and hydroponics seedlings growth tests. Experimental data regarding the germination process of wheat (from two cultivars and rye seeds in the presence of industrial wastes (thermal power station ash, effluents from a pre-bleaching stage performed on a Kraft cellulose – chlorinated lignin products or chlorolignin, along with use of an excess of some heavy metals (Zn and Cu are presented here. Relative seed germination, relative root elongation, and germination index (a factor of relative seed germination and relative root elongation were determined. Relative root elongation and germination index were more sensitive indicators of toxicity than seed germination. The toxic effects were also evaluated in hydroponics experiments, the sensitivity of three crop plant species, namely Triticum aestivum L. (wheat, Secale cereale (rye, and Zea mays (corn being compared. Physiological aspects, evidenced both by visual observation and biometric measurements (mean root, aerial part and plant length, as well as the cellulose and lignin content were examined.

  5. Characterization of In-Drum Drying Products

    International Nuclear Information System (INIS)

    Kroselj, V.; Jankovic, M.; Skanata, D.; Medakovic, S.; Harapin, D.; Hertl, B.

    2006-01-01

    A few years ago Krsko NPP decided to introduce In-Drum Drying technology for treatment and conditioning of evaporator concentrates and spent ion resins. The main reason to employ this technology was the need for waste volume reduction and experience with vermiculite-cement solidification that proved inadequate for Krsko NPP. Use of In-Drum Drying technology was encouraged by good experience in the field at some German and Spanish NPP's. In the paper, solidification techniques in vermiculite-cement matrix and In-Drum Drying System are described briefly. The resulting waste forms (so called solidification and dryer products) and containers that are used for interim storage of these wastes are described as well. A comparison of the drying versus solidification technology is performed and advantages as well as disadvantages are underlined. Experience gained during seven years of system operation has shown that crying technology resulted in volume reduction by factor of 20 for evaporator concentrates, and by factor of 5 for spent ion resin. Special consideration is paid to the characterization of dryer products. For evaporator concentrates the resulting waste form is a solid salt block with up to 5% bound water. It is packaged in stainless steel drums (net volume of 200 l) with bolted lids and lifting rings. The fluidized spent ion resins (primary and blow-down) are sluiced into the spent resin drying tank. The resin is dewatered and dried by electrical jacket heaters. The resulting waste (i.e. fine granulates) is directly discharged into a shielded stainless steel drum with bolted lid and lifting rings. Characterization of both waste forms has been performed in accordance with recommendations given in Characterization of Radioactive Waste Forms and Packages issued by International Atomic Energy Agency, 1997. This means that radiological, chemical, physical, mechanical, biological and thermal properties of the waste form has been taken into consideration. In the paper

  6. Nondestructive testing of the low-level radioactive waste drums for uni-axial compressive strength and free liquid content

    International Nuclear Information System (INIS)

    Yu Geping; Chang Mingyu; Wang Yeajeng; Chu, David S.L.; Ju Yihzen

    1992-01-01

    This paper summarizes the nondestructive test to determine the uni-axial compressive strength and free water content of solidified low level radioactive waste. The uni-axial compressive strength is determined by ultrasonic wave propagation speed, and the results are compared with those of compressive tests. Three methods of detecting the surface free water by ultrasonic testing are established, the ultrasonic wave speed, wave form and pulse height are used to determine the existence and amount of the surface free liquid. Possible difficulties are discussed. (author)

  7. Neutronic measurements of radioactive waste; Les mesures neutroniques des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Perot, B

    1997-12-31

    This document presents the general matters involved in the radioactive waste management and the different non destructive assays of radioactivity. The neutronic measurements used in the characterization of waste drums containing emitters are described with more details, especially the active neutronic interrogation assays with prompt or delayed neutron detection: physical principle, signal processing and evaluation of the detection limit. (author).

  8. Evaluation of the rotary drum reactor process as pretreatment technology of municipal solid waste for thermophilic anaerobic digestion and biogas production.

    Science.gov (United States)

    Gikas, Petros; Zhu, Baoning; Batistatos, Nicolas Ion; Zhang, Ruihong

    2018-06-15

    Municipal solid waste (MSW) contains a large fraction of biodegradable organic materials. When disposed in landfills, these materials can cause adverse environmental impact due to gaseous emissions and leachate generation. This study was performed with an aim of effectively separating the biodegradable materials from a Mechanical Biological Treatment (MBT) facility and treating them in well-controlled anaerobic digesters for biogas production. The rotary drum reactor (RDR) process (a sub-process of the MBT facilities studied in the present work) was evaluated as an MSW pretreatment technology for separating and preparing the biodegradable materials in MSW to be used as feedstock for anaerobic digestion. The RDR processes used in six commercial MSW treatment plants located in the USA were surveyed and sampled. The samples of the biodegradable materials produced by the RDR process were analyzed for chemical and physical characteristics as well as anaerobically digested in the laboratory using batch reactors under thermophilic conditions. The moisture content, TS, VS and C/N of the samples varied between 64.7 and 44.4%, 55.6 to 35.3%, 27.0 to 41.3% and 24.5 to 42.7, respectively. The biogas yield was measured to be between 533.0 and 675.6 mL g -1 VS after 20 days of digestion. Approximately 90% of the biogas was produced during the first 13 days. The average methane content of the biogas was between 58.0 and 59.9%. The results indicated that the biodegradable materials separated from MSW using the RDR processes could be used as an excellent feedstock for anaerobic digestion. The digester residues may be further processed for compost production or further energy recovery by using thermal conversion processes such as combustion or gasification. Copyright © 2017. Published by Elsevier Ltd.

  9. DOE assay methods used for characterization of contact-handled transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, F.J. (Oak Ridge National Lab., TN (United States)); Caldwell, J.T. (Pajarito Scientific Corp., Los Alamos, NM (United States))

    1991-08-01

    US Department of Energy methods used for characterization of contact-handled transuranic (CH-TRU) waste prior to shipment to the Waste Isolation Pilot Plant (WIPP) are described and listed by contractor site. The methods described are part of the certification process. All CH-TRU waste must be assayed for determination of fissile material content and decay heat values prior to shipment and prior to storage on-site. Both nondestructive assay (NDA) and destructive assay methods are discussed, and new NDA developments such as passive-action neutron (PAN) crate counter improvements and neutron imaging are detailed. Specifically addressed are assay method physics; applicability to CH-TRU wastes; calibration standards and implementation; operator training requirements and practices; assay procedures; assay precision, bias, and limit of detection; and assay limitation. While PAN is a new technique and does not yet have established American Society for Testing and Materials. American National Standards Institute, or Nuclear Regulatory Commission guidelines or methods describing proper calibration procedures, equipment setup, etc., comparisons of PAN data with the more established assay methods (e.g., segmented gamma scanning) have demonstrated its reliability and accuracy. Assay methods employed by DOE have been shown to reliable and accurate in determining fissile, radionuclide, alpha-curie content, and decay heat values of CH-TRU wastes. These parameters are therefore used to characterize packaged waste for use in certification programs such as that used in shipment of CH-TRU waste to the WIPP. 36 refs., 10 figs., 7 tabs.

  10. DOE assay methods used for characterization of contact-handled transuranic waste

    International Nuclear Information System (INIS)

    Schultz, F.J.; Caldwell, J.T.

    1991-08-01

    US Department of Energy methods used for characterization of contact-handled transuranic (CH-TRU) waste prior to shipment to the Waste Isolation Pilot Plant (WIPP) are described and listed by contractor site. The methods described are part of the certification process. All CH-TRU waste must be assayed for determination of fissile material content and decay heat values prior to shipment and prior to storage on-site. Both nondestructive assay (NDA) and destructive assay methods are discussed, and new NDA developments such as passive-action neutron (PAN) crate counter improvements and neutron imaging are detailed. Specifically addressed are assay method physics; applicability to CH-TRU wastes; calibration standards and implementation; operator training requirements and practices; assay procedures; assay precision, bias, and limit of detection; and assay limitation. While PAN is a new technique and does not yet have established American Society for Testing and Materials. American National Standards Institute, or Nuclear Regulatory Commission guidelines or methods describing proper calibration procedures, equipment setup, etc., comparisons of PAN data with the more established assay methods (e.g., segmented gamma scanning) have demonstrated its reliability and accuracy. Assay methods employed by DOE have been shown to reliable and accurate in determining fissile, radionuclide, alpha-curie content, and decay heat values of CH-TRU wastes. These parameters are therefore used to characterize packaged waste for use in certification programs such as that used in shipment of CH-TRU waste to the WIPP. 36 refs., 10 figs., 7 tabs

  11. Examination of representative drum from 618-9 Burial Ground

    International Nuclear Information System (INIS)

    Duncan, D.R.; Bunnell, L.R.

    1992-10-01

    The work described in this report was conducted in pursuance of Task E of the Pacific Northwest Laboratory Solid Waste Technology Support Program for Westinghouse Hanford Company. Task E calls for a determination of the corrosion rate of low-carbon steels under typical Hanford Site conditions. To meet this objective, Pacific Northwest Laboratory examined one intact drum that was judged to be representative of the largely intact drums excavated at the 618-9 Burial Ground located west of the 300 Area at the Hanford Site. Six samples were examined to characterize the drum, its composition, and its corrosion and corrosion products. The drum, which was found empty, was constructed of low-carbon steel. Its surface appeared relatively sound. The drum metal varied in thickness, but the minimum thickness in the samples was near 0.020 in. The corrosion corresponds to approximately 25 to 35 mils of metal loss, roughly a 1 mil/yr corrosion rate. Corrosion products were goethite and maghymite, expected products of iron buried in soil. Apparently, the drum leaked some time ago, but the cause of the leakage is unknown because records of the drums and their burial are limited. The drum was empty when found, and it is possible that it could have failed by pitting rather than by general corrosion. A pitting rate of about 3.5 mils/yr would have caused loss of drum integrity in the time since burial

  12. Development of an integrated assay facility

    International Nuclear Information System (INIS)

    Molesworth, T.V.; Bailey, M.; Findlay, D.J.S.; Parsons, T.V.; Sene, M.R.; Swinhoe, M.T.

    1990-01-01

    The I.R.I.S. concept proposed the use of passive examination and active interrogation techniques in an integrated assay facility. A linac would generate the interrogating gamma and neutron beams. Insufficiently detailed knowledge about active neutron and gamma interrogation of 500 litre drums of cement immobilised intermediate level waste led to a research programme which is now in its main experimental stage. Measurements of interrogation responses are being made using simulated waste drums containing actinide samples and calibration sources, in an experimental assay assembly. Results show that responses are generally consistent with theory, but that improvements are needed in some areas. A preliminary appraisal of the engineering and economic aspects of integrated assay shows that correct operational sequencing is required to achieve the short cycle time needed for high throughput. The main engineering features of a facility have been identified

  13. West Valley Demonstration Project low-level and transuranic waste assay and methodology

    International Nuclear Information System (INIS)

    McVay, C.W.

    1987-03-01

    In the decontamination and decommissioning of the West Valley Nuclear Facility, waste materials are being removed and packaged in a variety of waste containers which require classification in accordance with USNRC 10 CFR 61 and DOE 5820.2 criteria. Low-Level and Transuranic waste assay systems have been developed to efficiently assay and classify the waste packages. The waste is assayed by segmented gamma scanning, passive neutron techniques, dose rate conversion, and/or radiochemical laboratory analysis. The systems are capable of handling all the waste forms currently packaged as part of the Project. The above systems produce a list of nuclides present with their concentrations and determines the classification of the waste packages based on criteria outlined in DOE Order 5820.2 and USNRC 10 CFR 61.55. 9 refs., 12 figs., 8 tabs

  14. TRU waste-assay instrumentation and application in nuclear-facility decommissioning

    International Nuclear Information System (INIS)

    Umbarger, C.J.

    1982-01-01

    The Los Alamos TRU waste assay program is developing measurement techniques for TRU and other radioactive waste materials generated by the nuclear industry, including decommissioning programs. Systems are now being fielded for test and evaluation purposes at DOE TRU waste generators. The transfer of this technology to other facilities and the commercial instrumentation sector is well in progress. 6 figures

  15. HANFORD Pu-238 DRUM INTEGRITY ASSESSMENT

    International Nuclear Information System (INIS)

    CANNELL, G.R.

    2004-01-01

    Hanford is presently retrieving contact-handled, transuranic (CH-TRU) waste drums from the site's Low-Level Burial Grounds (LLBG) for processing and disposition. A subgroup of these drums (12 total), referred to as Pu-238 drums, has some unique characteristics that may impact the current drum handling and processing activities. These characteristics include content, shielding, thermal, pressurization and criticality issues. An effort to evaluate these characteristics, for the purpose of developing a specific plan for safe retrieval of the Pu-238 drums, is underway. In addition to the above evaluation, the following integrity assessment of the inner container material and/or confinement properties, with primary emphasis on the Source Capsule (primary confinement barrier) and Shipping Container has been performed. Assessment included review of the inner container materials and the potential impact the service history may have had on material and/or confinement properties. Several environmental degradation mechanisms were considered with the objective of answering the following question: Is it likely the container material and/or confinement properties have been significantly altered as a result of service history?

  16. Mechanical Modeling of a WIPP Drum Under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeffrey A. [Sandia National Laboratories, Albuquerque, NM (United States)

    2014-11-25

    Mechanical modeling was undertaken to support the Waste Isolation Pilot Plant (WIPP) technical assessment team (TAT) investigating the February 14th 2014 event where there was a radiological release at the WIPP. The initial goal of the modeling was to examine if a mechanical model could inform the team about the event. The intention was to have a model that could test scenarios with respect to the rate of pressurization. It was expected that the deformation and failure (inability of the drum to contain any pressure) would vary according to the pressurization rate. As the work progressed there was also interest in using the mechanical analysis of the drum to investigate what would happen if a drum pressurized when it was located under a standard waste package. Specifically, would the deformation be detectable from camera views within the room. A finite element model of a WIPP 55-gallon drum was developed that used all hex elements. Analyses were conducted using the explicit transient dynamics module of Sierra/SM to explore potential pressurization scenarios of the drum. Theses analysis show similar deformation patterns to documented pressurization tests of drums in the literature. The calculated failure pressures from previous tests documented in the literature vary from as little as 16 psi to 320 psi. In addition, previous testing documented in the literature shows drums bulging but not failing at pressures ranging from 69 to 138 psi. The analyses performed for this study found the drums failing at pressures ranging from 35 psi to 75 psi. When the drums are pressurized quickly (in 0.01 seconds) there is significant deformation to the lid. At lower pressurization rates the deformation of the lid is considerably less, yet the lids will still open from the pressure. The analyses demonstrate the influence of pressurization rate on deformation and opening pressure of the drums. Analyses conducted with a substantial mass on top of the closed drum demonstrate that the

  17. Assessment of the microscreen phage-induction assay for screening hazardous wastes (1989)

    Energy Technology Data Exchange (ETDEWEB)

    Houk, V.S.; DeMarini, D.M.

    1989-01-01

    The Microscreen phage-induction assay, which quantitatively measures the induction of prophage Lambda in Escherichia coli WP2s(Lambda), was used to test 14 crude (unfractionated) hazardous industrial-waste samples for genotoxic activity in the presence and absence of metabolic activation. Eleven of the 14 wastes induced prophage, and induction was observed at concentrations as low as 0.4 picograms per ml. Comparisons of the mutagenic activity of these waste samples in Salmonella and their ability to induce prophage Lambda indicate that the phage-induction assay was a more-sensitive indicator of genetic damage for this group of wastes. All but one of the wastes that were mutagenic to Salmonella were detected by the phage-induction assay, and 5 wastes not mutagenic to Salmonella were genetically active in the phage assay. The enhanced ability of the phage-induction assay to detect genotoxic activity may be related to the constituents comprising these waste samples. Partial chemical characterizations of the wastes showed high concentrations of carcinogenic metals, solvents, and chlorinated compounds, most of which are detected poorly by the Salmonella assay.

  18. A passive-active neutron device for assaying remote-handled transuranic waste

    International Nuclear Information System (INIS)

    Estep, R.J.; Coop, K.L.; Deane, T.M.; Lujan, J.E.

    1990-01-01

    A combined passive-active neutron assay device was constructed for assaying remote-handled transuranic waste. A study of matrix and source position effects in active assays showed that a knowledge of the source position alone is not sufficient to correct for position-related errors in highly moderating or absorbing matrices. An alternate function for the active assay of solid fuel pellets was derived, although the efficacy of this approach remains to be established

  19. JUSTIFICATION FOR A LIMIT OF 15 PERCENT HYDROGEN IN A 55-GALLON DRUM

    International Nuclear Information System (INIS)

    MARUSICH, R.M.

    2007-01-01

    The concentration of 15% hydrogen in air in a waste drum is used as the concentration at which the drum remains intact in the case of a deflagration. The following describes what could happen to the drum if 15% hydrogen or more in air were ignited. Table 2 of the Savannah River report WSRC-TR-90-165 ''TRU Drum Hydrogen Explosion Tests'' provides the results of tests performed in 55-gallon drums filled with hydrogen and air mixtures. The hydrogen-air mixtures were ignited by a hot-wire igniter. The results of the tests are shown in Table 1. They concluded that drums can withstand deflagration involving hydrogen concentration up to 15% hydrogen. Testing was performed at Idaho Falls and documented in a letter from RH Beers, Waste Technology Programs Division, EG and G Idaho, to CP Gertz, Radioactive Waste Technology Branch, DOE dated Sept. 29, 1983. In these tests, 55-gallon drums were filled with hydrogen-air mixtures which were ignited. The results in Table 2.2 showed that ignition for drums containing 11% and 14% hydrogen, the drum lid remained on the drum. Ignition in drum with 30% hydrogen resulted in lid loss. It is concluded from the results of these two tests that, for uncorroded drums, a 15% hydrogen in air mixture will not result in loss of drum integrity (i.e., lid remains on, walls remain intact). The drum walls however, may be thinned due to corrosion. The effect of the deflagration on thinner walls is assessed next. Assume a 15% hydrogen in air mixture exists in a drum. The pressure assuming adiabatic isochoric complete combustion (AICC) conditions is 69 psig (using the same deflagration pressure calculation method as in HNF-19492, ''Revised Hydrogen Deflagration Analysis which got 82 psig for 20% hydrogen in air)

  20. An expert system framework for nondestructive waste assay

    International Nuclear Information System (INIS)

    Becker, G.K.

    1996-01-01

    Management and disposition of transuranic (RU) waste forms necessitates determining entrained RU and associated radioactive material quantities as per National RU Waste Characterization Program requirements. Technical justification and demonstration of a given NDA method used to determine RU mass and uncertainty in accordance with program quality assurance is difficult for many waste forms. Difficulties are typically founded in waste NDA methods that employ standards compensation and/or employment of simplifying assumptions on waste form configurations. Capability to determine and justify RU mass and mass uncertainty can be enhanced through integration of waste container data/information using expert system and empirical data-driven techniques with conventional data acquisition and analysis. Presented is a preliminary expert system framework that integrates the waste form data base, alogrithmic techniques, statistical analyses, expert domain knowledge bases, and empirical artificial intelligence modules into a cohesive system. The framework design and bases in addition to module development activities are discussed

  1. Development of an integrated assay facility

    International Nuclear Information System (INIS)

    Molesworth, T.V.; Bailey, M.; Findlay, D.J.S.; Sene, M.R.; Swinhoe, M.T.

    1990-01-01

    Initial results of active neutron and active gamma-ray interrogation of a 500 liter cemented simulated CAGR intermediate level radioactive waste drum are described. The basis of the interrogation systems was the Harwell electron linear accelerator HELIOS, which was used to produce the interrogating neutrons and gamma-rays. Several sets of neutron detectors were located around the drum to count signature neutrons. The responses of the system were measured by placing known samples at many different locations within the drum. In general, measured responses confirmed calculated responses. Good agreement was obtained for the azimuthal angle dependences. The absolute responses agreed well for gamma-ray interrogation, but the calculations were apparently over-estimates for neutron interrogation. Those aspects requiring consideration in the practical application of assay techniques are identified. 8 refs., 6 figs

  2. Packaging design criteria for the Type B Drum

    International Nuclear Information System (INIS)

    Edwards, W.S.; Smith, R.J.; Wells, A.H.

    1995-09-01

    The Type B Drum package is a transportation cask capable of shipping a single 55-gal (208 L) drum of transuranic (TRU) waste. The Type B Drum is smaller than existing certified packages, such as the TRUPACT-II cask, but will allow payloads with higher thermal and gas generation rates, thus providing greater operational flexibility. The Type B Drum package has double containment so that plutonium contents and other radioactive material may be transported in Type B quantities. Conceptual designs of unshielded and shielded versions of the Type B Drum were completed in Report on the Conceptual Design of the Unshielded Type B Drum Packaging and Report on the Conceptual Design of the Shielded type B Drum Packaging (WEC 1994a, WEC 1994b), which demonstrated the Type B Drum to be a viable packaging system. A Type B package containment system must withstand the normal conditions of transport and the hypothetical accident conditions, which include a 9-m (30-ft) drop onto an unyielding surface and a 1-m (3-ft) drop onto a 15-cm (6-in.) diameter pin, and a fire and immersion scenarios

  3. Source imaging of drums in the APNEA system

    International Nuclear Information System (INIS)

    Hensley, D.

    1995-01-01

    The APNea System is a neutron assay device utilizing both a passive mode and a differential-dieaway active mode. The total detection efficiency is not spatially uniform, even for an empty chamber, and a drum matrix in the chamber can severely distort this response. In order to achieve a response which is independent of the way the source material is distributed in a drum, an imaging procedure has been developed which treats the drum as a number of virtual (sub)volumes. Since each virtual volume of source material is weighted with the appropriate instrument parameters (detection efficiency and thermal flux), the final assay result is essentially independent of the actual distribution of the source material throughout the drum and its matrix

  4. Characterization of legacy low level waste at the Svafo facility using gamma non-destructive assay and X-ray non-destructive examination techniques - 59289

    International Nuclear Information System (INIS)

    Halliwell, Stephen; Mottershead, Gary; Ekenborg, Fredrik

    2012-01-01

    Document available in abstract form only. Full text of publication follows: Over 7000 drums containing legacy, low level radioactive waste are stored at four SVAFO facilities on the Studsvik site which is located near Nykoeping, Sweden. The vast majority of the waste drums (>6000) were produced between 1969 and 1979. The remainder were produced from 1980 onwards. Characterization of the waste was achieved using a combination of non-destructive techniques via mobile equipment located in the AU building at the Studsvik site. Each drum was weighed and a dose rate measurement was recorded. Gamma spectroscopy was used to measure and estimate radionuclide content. Real time xray examination was performed to identify such prohibited items as free liquids. (authors)

  5. Quality Assistance Objectives for Nondestructive Assay at the Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    CANTALOUB, M.G.

    2000-01-01

    The Waste Receiving and Processing (WRAP) facility, located on the Word Site in southeast Washington, is a key link in the certification of transuranic (TRU) waste for shipment to the Waste Isolation Pilot Plant (WIPP). Waste characterization is one of the vital functions performed at WRAP, and nondestructive assay (NDA) measurements of TRU waste containers is one of two required methods used for waste characterization. The Waste Acceptance Criteria for the Waste Isolation Pilot Plant, DOE/WIPP-069 (WIPP-WAC) delineates the quality assurance objectives which have been established for NDA measurement systems. Sites must demonstrate that the quality assurance objectives can be achieved for each radioassay system over the applicable ranges of measurement. This report summarizes the validation of the WRAP NDA systems against the radioassay quality assurance objectives or QAOs. A brief description of the each test and significant conclusions are included. Variables that may have affected test outcomes and system response are also addressed

  6. Micronucleus Assay and Heavy Metals Characterization of E-waste ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2018-03-28

    Mar 28, 2018 ... Ba) in the sediments, water, leachate and aquatic fauna (Tilapia guineensis, Callinectes amnicola and Cardiosoma ..... (2003) limit standard (0.01mg/L) for treated waste water .... the erythrocyte of grey mullet (Mugil cephalus).

  7. Heat load limits for TRU drums on pads

    International Nuclear Information System (INIS)

    Steimke, J.L.; McKinley, M.S.

    1993-08-01

    Some of the Trans-Uranic (TRU) waste generated at SRS is packaged in 55 gallon, galvanized steel drums and stored on concrete pads that are exposed to the weather. It was necessary to compute how much heat can be generated by the waste in these drums without exceeding the temperature limits of the contents of the drum. This report documents the calculation of heat load limits for the drum, which depend on the temperature limits of the contents of the drum. The applicable temperature limits for the contents of the drum are the melting temperature of the polyethylene liner, 284 ± 8 F, the combustion temperature of paper, 450 F and the decomposition temperature of anionic resin, 190 F. One part of the analysis leading to the heat load limits was the collection of weather records on solar flux, wind speed and air temperature. Another part of the task was an experimental measurement of two important properties of the drum lid, the emittance and the absorptance. As used here, emittance is the rate at which an object emits infrared thermal radiation divided by the rate at which a perfect black body at the same temperature emits thermal radiation. Absorptance is the rate at which an object absorbs solar radiation divided by the rate at which a perfect black body absorbs radiation. For nine locations on each of eight typical weathered drum lids the measured emittance ranged from 0.73 ± 0.05 to 1.00 ± 0.07 (95% confidence level) and the average emittance for the eight lids was 0.85. For the eight drum lids the measured absorptance ranged from 0.64 ± 0.07 to 0.79 ± 0.07 with an average absorptance for the eight lids of 0.739

  8. Alternatives to reduce corrosion of carbon steel storage drums

    International Nuclear Information System (INIS)

    Zirker, L.R.; Beitel, G.A.

    1995-11-01

    The major tasks of this research were (a) pollution prevention opportunity assessments on the overpacking operations for failed or corroded drums, (b) research on existing container corrosion data, (c) investigation of the storage environment of the new Resource Conservation and Recovery Act Type II storage modules, (d) identification of waste streams that demonstrate deleterious corrosion affects on drum storage life, and (e) corrosion test cell program development. Twenty-one waste streams from five US Department of Energy (DOE) sites within the DOE Complex were identified to demonstrate a deleterious effect to steel storage drums. The major components of these waste streams include acids, salts, and solvent liquids, sludges, and still bottoms. The solvent-based waste streams typically had the shortest time to failure: 0.5 to 2 years. The results of this research support the position that pollution prevention evaluations at the front end of a project or process will reduce pollution on the back end

  9. The validation of waste assay systems during active test at Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Tamura, Takayuki; Miura, Yasushi; Iwamoto, Tomonori

    2007-01-01

    In order to implement accurate material accountancy at Rokkasho Reprocessing Plant (RRP) as a large scale reprocessing plant, it is necessary to introduce accurate measurement systems not only for mainstream material, but also appropriate measurement systems for solid waste materials. In this sense, the generated wastes by the active test operation have been measured with the Non-Destructive Assay Systems, such as Rokkasho Hulls Measurement System (RHMS) and Waste Crate Assay System (WCAS) for accountancy. This paper describes the experience of the NDA operation and the evaluation results for accountancy. (author)

  10. Fully automated laboratory for the assay of plutonium in wastes and recoverable scraps

    International Nuclear Information System (INIS)

    Guiberteau, P.; Michaut, F.; Bergey, C.; Debruyne, T.

    1990-01-01

    To determine the plutonium content of wastes and recoverable scraps in intermediate size containers (ten liters) an automated laboratory has been carried out. Two passive methods of measurement are used. Gamma ray spectrometry allows plutonium isotopic analysis, americium determination and plutonium assay in wastes and poor scraps. Calorimetry is used for accurate (± 3%) plutonium determination in rich scraps. A full automation was realized with a barcode management and a supply robot to feed the eight assay set-ups. The laboratory works on a 24 hours per day and 365 days per year basis and has a capacity of 8,000 assays per year

  11. TRU-ART: A cost-effective prototypical neutron imaging technique for transuranic waste certification systems

    International Nuclear Information System (INIS)

    Horton, W.S.

    1989-01-01

    The certification of defense radioactive waste as either transuranic or low-level waste requires very sensitive and accurate assay instrumentation to determine the specific radioactivity within an individual waste package. An assay instrument that employs a new technique (TRU-ART), which can identify the location of the radioactive material within a waste package, was designed, fabricated, and tested to potentially enhance the certification of problem defense waste drums. In addition, the assay instrumentation has potential application in radioactive waste reprocessing and neutron tomography. The assay instrumentation uses optimized electronic signal responses from an array of boral- and cadmium-shielded polyethylene-moderated 3 H detector packages. Normally, thermal neutrons that are detected by 3 H detectors have very poor spatial dependency that may be used to determine the location of the radioactive material. However, these shielded-detector packages of the TRU-ART system maintain the spatial dependency of the radioactive material in that the point of fast neutron thermalization is immediately adjacent to the 3 H detector. The TRU-ART was used to determine the location of radioactive material within three mock-up drums (empty, peat moss, and concrete) and four actual waste drums. The TRU-ART technique is very analogous to emission tomography. The mock-up drum and actual waste drum data, which were collected by the TRU-ART, were directly input into a algebraic reconstruction code to produce three-dimensional isoplots. Finally, a comprehensive fabrication cost estimate of the fielded drum assay system and the TRU-ART system was determined, and, subsequently, these estimates were used in a cost-benefit analysis to compare the economic advantage of the respective systems

  12. Process Description for the Retrieval of Earth Covered Transuranic (TRU) Waste Containers at the Hanford Site

    International Nuclear Information System (INIS)

    DEROSA, D.C.

    2000-01-01

    This document describes process and operational options for retrieval of the contact-handled suspect transuranic waste drums currently stored below grade in earth-covered trenches at the Hanford Site. Retrieval processes and options discussed include excavation, container retrieval, venting, non-destructive assay, criticality avoidance, incidental waste handling, site preparation, equipment, and shipping

  13. Process Description for the Retrieval of Earth Covered Transuranic (TRU) Waste Containers at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    DEROSA, D.C.

    2000-01-13

    This document describes process and operational options for retrieval of the contact-handled suspect transuranic waste drums currently stored below grade in earth-covered trenches at the Hanford Site. Retrieval processes and options discussed include excavation, container retrieval, venting, non-destructive assay, criticality avoidance, incidental waste handling, site preparation, equipment, and shipping.

  14. Use of the microscreen phage-induction assay to assess the genotoxicity of 14 hazardous industrial wastes

    Energy Technology Data Exchange (ETDEWEB)

    Houk, V.S.; DeMarini, D.M.

    1988-01-01

    The Microscreen phage-induction assay, which quantitatively measures the induction of prophage lambda in Escherichia coli WP2s(lambda), was used to test 14 crude (unfractionated) hazardous industrial waste samples for genotoxic activity in the presence and absence of metabolic activation. Eleven of the 14 wastes induced prophage, and induction was observed at concentrations as low as 0.4 pg per ml. Comparisons between the ability of these waste samples to induce prophage and their mutagenicity in the Salmonella reverse mutation assay indicate that the phage-induction assay detected genotoxic activity in all but one of the wastes that were mutagenic in Salmonella. Moreover, the Microscreen assay detected as genotoxic five additional wastes that were not detected in the Salmonella assay. The applicability of the Microscreen phage-induction assay for screening hazardous wastes for genotoxic activity is discussed, as are some of the problems associated with screening highly toxic wastes containing toxic volatile compounds.

  15. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes

    International Nuclear Information System (INIS)

    Sun, Mei; Sun, Wenjie; Barlaz, Morton A.

    2016-01-01

    Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H 2 S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H 2 S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H 2 S produced by different types of sulfur-containing wastes in a relatively fast (30 days) and inexpensive (125 mL serum bottles) batch assay. This study confirmed the toxic effect of H 2 S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H 2 S by base adsorption was effective for mitigating inhibition. H 2 S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30 days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8 mL H 2 S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H 2 S yield. A 60 day incubation in selected samples resulted in 39–86% additional sulfide production. H 2 S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H 2 S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating the importance of assays to estimate the

  16. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mei, E-mail: msun8@uncc.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC (United States); Sun, Wenjie, E-mail: wsun@smu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC (United States); Department of Civil and Environmental Engineering, Southern Methodist University, PO Box 750340, Dallas, TX (United States); Barlaz, Morton A., E-mail: barlaz@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC (United States)

    2016-05-01

    Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H{sub 2}S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H{sub 2}S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H{sub 2}S produced by different types of sulfur-containing wastes in a relatively fast (30 days) and inexpensive (125 mL serum bottles) batch assay. This study confirmed the toxic effect of H{sub 2}S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H{sub 2}S by base adsorption was effective for mitigating inhibition. H{sub 2}S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30 days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8 mL H{sub 2}S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H{sub 2}S yield. A 60 day incubation in selected samples resulted in 39–86% additional sulfide production. H{sub 2}S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H{sub 2}S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating

  17. Super compacting of drums with dry solid radioactive waste in the nuclear power plant of Laguna Verde;Super compactacion de bidones con desecho radiactivo solido seco en la central nucleo electrica Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez G, R.; Lara H, M. A.; Cabrera Ll, M.; Verdalet de la Torre, O., E-mail: marco.lara@cfe.gob.m [Comision Federal de Electricidad, Central Nucleoelectrica de Laguna Verde, Carretera Nautla-Cardel Km. 42.5, Alto Lucero, Veracruz (Mexico)

    2009-10-15

    The nuclear power plant of Laguna Verde located in the Gulf of Mexico, completes in this 2009, nineteen years to produce by nuclear means 4.78% of the electric power that Mexico requires daily. During this time, the Unit 1 has generated more of 88.85 million mega watt-hour and the Unit 2 more of 69.48 million mega watt-hour with an availability average of 83.55%. Derived of their operation cycles, the nuclear power plant has generated (as any other installation of its type) radioactive wastes of low activity that at the moment are temporarily stored in the site. Due to the life cycle of the nuclear power plant, actually has become necessary to begin a project series focused to continue guaranteeing the storage of these wastes, guarantee that is a license requirement for the operation of this nuclear installation before the National Commission of Nuclear Security and Safeguards. The Federal Commission of Electricity beginning a project that allows continue guaranteeing space of sufficient storage for the wastes that the nuclear power plant of Laguna Verde could generate for the rest of its useful life, this project consisted on a process of physical volume reduction of dry solid radioactive wastes denominated super compacting, it has made possible to reduce the volume that these wastes occupy in the temporary storage noted Dry Solid Radioactive Wastes Deposit located inside the site that occupies the nuclear power plant of Laguna Verde. This work presents the super compacting results, as well as a description of the realization of this task until concluding with the super compacting of 5,854 drums with dry solid radioactive waste of low activity. We will enunciate which were the radiological controls that the Department of Radiological Protection of the nuclear power plant of Laguna Verde applied to this work that was realized for first time in Mexico and the nuclear power plant. (Author)

  18. Transuranic and Low-Level Boxed Waste Form Nondestructive Assay Technology Overview and Assessment

    International Nuclear Information System (INIS)

    Becker, G.; Connolly, M.; McIlwain, M.

    1999-01-01

    The Mixed Waste Focus Area (MWFA) identified the need to perform an assessment of the functionality and performance of existing nondestructive assay (NDA) techniques relative to the low-level and transuranic waste inventory packaged in large-volume box-type containers. The primary objectives of this assessment were to: (1) determine the capability of existing boxed waste form NDA technology to comply with applicable waste radiological characterization requirements, (2) determine deficiencies associated with existing boxed waste assay technology implementation strategies, and (3) recommend a path forward for future technology development activities, if required. Based on this assessment, it is recommended that a boxed waste NDA development and demonstration project that expands the existing boxed waste NDA capability to accommodate the indicated deficiency set be implemented. To ensure that technology will be commercially available in a timely fashion, it is recommended this development and demonstration project be directed to the private sector. It is further recommended that the box NDA technology be of an innovative design incorporating sufficient NDA modalities, e.g., passive neutron, gamma, etc., to address the majority of the boxed waste inventory. The overall design should be modular such that subsets of the overall NDA system can be combined in optimal configurations tailored to differing waste types

  19. Use of the Microscreen phage-induction assay to assess the genotoxicity of 14 hazardous industrial wastes

    Energy Technology Data Exchange (ETDEWEB)

    Houk, V.S.; DeMarini, D.M.

    1988-01-01

    The Microscreen phage-induction assay, which quantitatively measures the induction of prophage lambda in Escherichia coli WP2s lambda, was used to test 14 crude (unfractionated) hazardous industrial-waste samples for genotoxic activity in the presence and absence of metabolic activation. Eleven of the 14 wastes induced prophage, and induction was observed at concentrations as low as 0.4 picograms per ml. Comparisons between the mutagenicity of these waste samples in Salmonella and their ability to induce prophage lambda indicate that the Microscreen phage-induction assay detected genotoxic activity in all but one of the wastes that were mutagenic in Salmonella. Moreover, the Microscreen assay detected as genotoxic 5 additional wastes that were not detected in the Salmonella assay. The applicability of the Microscreen phage-induction assay for screening hazardous wastes for genotoxic activity is discussed along with some of the problems associated with screening highly toxic wastes containing toxic volatile compounds.

  20. First Industrial Tests of a Drum Monitor Matrix Correction for the Fissile Mass Measurement in Large Volume Historic Metallic Residues with the Differential Die-away Technique

    Energy Technology Data Exchange (ETDEWEB)

    Antoni, R.; Passard, C.; Perot, B.; Batifol, M.; Vandamme, J.C. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 St Paul-lez-Durance, (France); Grassi, G. [AREVA NC, 1 place Jean-Millier, 92084 Paris-La-Defense cedex (France)

    2015-07-01

    The fissile mass in radioactive waste drums filled with compacted metallic residues (spent fuel hulls and nozzles) produced at AREVA La Hague reprocessing plant is measured by neutron interrogation with the Differential Die-away measurement Technique (DDT. In the next years, old hulls and nozzles mixed with Ion-Exchange Resins will be measured. The ion-exchange resins increase neutron moderation in the matrix, compared to the waste measured in the current process. In this context, the Nuclear Measurement Laboratory (NML) of CEA Cadarache has studied a matrix effect correction method, based on a drum monitor ({sup 3}He proportional counter inside the measurement cavity). A previous study performed with the NML R and D measurement cell PROMETHEE 6 has shown the feasibility of method, and the capability of MCNP simulations to correctly reproduce experimental data and to assess the performances of the proposed correction. A next step of the study has focused on the performance assessment of the method on the industrial station using numerical simulation. A correlation between the prompt calibration coefficient of the {sup 239}Pu signal and the drum monitor signal was established using the MCNPX computer code and a fractional factorial experimental design composed of matrix parameters representative of the variation range of historical waste. Calculations have showed that the method allows the assay of the fissile mass with an uncertainty within a factor of 2, while the matrix effect without correction ranges on 2 decades. In this paper, we present and discuss the first experimental tests on the industrial ACC measurement system. A calculation vs. experiment benchmark has been achieved by performing dedicated calibration measurement with a representative drum and {sup 235}U samples. The preliminary comparison between calculation and experiment shows a satisfactory agreement for the drum monitor. The final objective of this work is to confirm the reliability of the

  1. First Industrial Tests of a Drum Monitor Matrix Correction for the Fissile Mass Measurement in Large Volume Historic Metallic Residues with the Differential Die-away Technique

    International Nuclear Information System (INIS)

    Antoni, R.; Passard, C.; Perot, B.; Batifol, M.; Vandamme, J.C.; Grassi, G.

    2015-01-01

    The fissile mass in radioactive waste drums filled with compacted metallic residues (spent fuel hulls and nozzles) produced at AREVA La Hague reprocessing plant is measured by neutron interrogation with the Differential Die-away measurement Technique (DDT. In the next years, old hulls and nozzles mixed with Ion-Exchange Resins will be measured. The ion-exchange resins increase neutron moderation in the matrix, compared to the waste measured in the current process. In this context, the Nuclear Measurement Laboratory (NML) of CEA Cadarache has studied a matrix effect correction method, based on a drum monitor ( 3 He proportional counter inside the measurement cavity). A previous study performed with the NML R and D measurement cell PROMETHEE 6 has shown the feasibility of method, and the capability of MCNP simulations to correctly reproduce experimental data and to assess the performances of the proposed correction. A next step of the study has focused on the performance assessment of the method on the industrial station using numerical simulation. A correlation between the prompt calibration coefficient of the 239 Pu signal and the drum monitor signal was established using the MCNPX computer code and a fractional factorial experimental design composed of matrix parameters representative of the variation range of historical waste. Calculations have showed that the method allows the assay of the fissile mass with an uncertainty within a factor of 2, while the matrix effect without correction ranges on 2 decades. In this paper, we present and discuss the first experimental tests on the industrial ACC measurement system. A calculation vs. experiment benchmark has been achieved by performing dedicated calibration measurement with a representative drum and 235 U samples. The preliminary comparison between calculation and experiment shows a satisfactory agreement for the drum monitor. The final objective of this work is to confirm the reliability of the modeling approach

  2. Application of expert system technology to nondestructive waste assay - initial prototype model

    Energy Technology Data Exchange (ETDEWEB)

    Becker, G.K.; Determan, J.C. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

    1997-11-01

    Expert system technology has been identified as a technique useful for filling certain types of technology/capability gaps in existing waste nondestructive assay (NDA) applications. In particular, expert system techniques are being investigated with the intent of providing on-line evaluation of acquired data and/or directed acquisition of data in a manner that mimics the logic and decision making process a waste NDA expert would employ. The space from which information and data sources utilized in this process is much expanded with respect to the algorithmic approach typically utilized in waste NDA. Expert system technology provides a mechanism to manage and reason with this expanded information/data set. The material presented in this paper concerns initial studies and a resultant prototype expert system that incorporates pertinent information, and evaluation logic and decision processes, for the purpose of validating acquired waste NDA measurement assays. 6 refs., 6 figs.

  3. Application of expert system technology to nondestructive waste assay - initial prototype model

    International Nuclear Information System (INIS)

    Becker, G.K.; Determan, J.C.

    1997-01-01

    Expert system technology has been identified as a technique useful for filling certain types of technology/capability gaps in existing waste nondestructive assay (NDA) applications. In particular, expert system techniques are being investigated with the intent of providing on-line evaluation of acquired data and/or directed acquisition of data in a manner that mimics the logic and decision making process a waste NDA expert would employ. The space from which information and data sources utilized in this process is much expanded with respect to the algorithmic approach typically utilized in waste NDA. Expert system technology provides a mechanism to manage and reason with this expanded information/data set. The material presented in this paper concerns initial studies and a resultant prototype expert system that incorporates pertinent information, and evaluation logic and decision processes, for the purpose of validating acquired waste NDA measurement assays. 6 refs., 6 figs

  4. Operability test procedure for TRUSAF assayer software upgrade

    International Nuclear Information System (INIS)

    Cejka, C.C.

    1995-01-01

    This OTP is to be used to ensure the operability of the Transuranic Waste Assay System (TRUWAS). The system was upgraded and requires a retest to assure satisfactory operation. The upgrade consists of an AST 486 computer to replace the IBM-PC/XT, and a software upgrade (CNEUT). The software calculations are performed in the same manner as in the previous system (NEUT), however, the new software is written in C Assembly Language. CNEUT is easier to use and far more powerful than the previous program. The TRUWAS is used to verify the TRU content of waste packages sent for storage in the Transuranic Storage and Assay Facility (TRUSAF). The TRUSAF is part of Westinghouse Hanford's certification program for waste to be shipped to the Waste Isolation Pilot Plant (WIPP) in New Mexico. The Transuranic Waste Assayer uses a combination passive-active neutron interrogation system to determine the TRU content of 55-gallon waste drums. The system consists of a shielded assay chamber; Deuterium-Tritium neutron generator; Helium-3 proportional counters; drum handling system; electronics including preamplifier, amplifier, and discriminator for each of the counter packages; and an AST 486 computer/printer system for data acquisition and analysis. The system can detect down to TRU levels of 10 nCi/g in the waste matrix. The equipment to be tested is: Assay Chamber Door Drum Turntable and Automatic Loading Platform Interlocks Assayer Software; and IBM computer/printer software. The objective of the test is to verify that the system is operational with the AST 486 computer, the software used in the new computer system correctly calculates TRU levels, and the new computer system is capable of storing and retrieving data

  5. High speed rotary drum

    Energy Technology Data Exchange (ETDEWEB)

    Sagara, H

    1970-03-25

    A high speed rotary drum is disclosed in which the rotor vessel is a double-wall structure comprising an inner wave-shaped pipe inserted coaxially within an outer straight pipe, the object being to provide a strengthened composite light-weight structure. Since force induced axial deformation of the straight pipe and radial deformation of the corrugated pipe are small, the composite effectively resists external forces and, if the waves of the inner pipe are given a sufficient amplitude, the thickness of both pipes may be reduced to lower the overall weight. Thus high angular velocities can be obtained to separate U/sup 235/ from gaseous UF/sub 6/.

  6. Disposal of radioactive waste

    International Nuclear Information System (INIS)

    Critchley, R.J.; Swindells, R.J.

    1984-01-01

    A method and apparatus for charging radioactive waste into a disposable steel drum having a plug type lid. The drum is sealed to a waste dispenser and the dispenser closure and lid are withdrawn into the dispenser in back-to-back manner. Before reclosing the dispenser the drum is urged closer to it so that on restoring the dispenser closure to the closed position the lid is pressed into the drum opening

  7. Shearer drums - the cutting edge

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, M.; Wright, C.

    2004-09-15

    The paper discusses continuous miner and shearer cutters. It claims cutting drum require the same level of engineering know-how and technical expertise as do the machines driving them, and that the cutting drum, whether on a longwall shearer or continuous miner, comprises, the steel, pedestals, bit holders and the bits.

  8. Compound drum for a centrifugal separator

    International Nuclear Information System (INIS)

    1972-01-01

    This invention concerns a method for centrifugal separation of UF 6 . The invention provides a composite drum capable of rapid rotation for use in a centrifugal separating arrangement for gaseous materials. The drum is provided with a first drum section comprised of a metal and a second drum section comprised of a fiber-reinforced synthetic material. The second drum section is applied on the outside peripheral surface of the first drum section, where the second drum section is provided with a number of annular components, each of which is shorter than the first drum section

  9. Proceedings for the nondestructive assay and nondestructive examination waste characterization conference. No. 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report contains paper presented at the 5th Nondestructive Assay and nondestructive Examination Waste Characterization conference. Topics included compliance, neutron NDA techniques, gamma NDA techniques, tomographic methods, and NDA modality and information combination techniques. Individual reports have been processed separately for the United States Department of Energy databases.

  10. Proceedings for the nondestructive assay and nondestructive examination waste characterization conference. No. 5

    International Nuclear Information System (INIS)

    1997-01-01

    This report contains paper presented at the 5th Nondestructive Assay and nondestructive Examination Waste Characterization conference. Topics included compliance, neutron NDA techniques, gamma NDA techniques, tomographic methods, and NDA modality and information combination techniques. Individual reports have been processed separately for the United States Department of Energy databases

  11. Waste assaying and radiation monitoring equipment at the waste management centre of NPP Leningrad

    Directory of Open Access Journals (Sweden)

    Šokčić-Kostić Marina

    2006-01-01

    Full Text Available The waste accumulated in the past at the Nuclear Power Plant Leningrad has to be sorted and packed in an optimal way. In the area of waste treatment and management, the completeness and quality of direct monitoring are of the outmost importance for the validity of, and confidence in, both practicable waste management options and calculations of radiological impacts. Special monitoring systems are needed for this purpose. Consistent with the scale of work during the waste treatment procedures and the complexity of the plant data have to be collected from characteristic parts in various treatment stages. To combine all the information, a tracking procedure is needed during the waste treatment process to characterize the waste for interim and/or final disposal. RWE NUKEM GmbH has developed special customer-tailored systems which fulfill the specifications required by plant operation and by the authorities.

  12. Plutonium assay of large waste burial containers at the Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Haggard, D.L.; Newman, D.F.

    1987-01-01

    As one phase of an upgrade program at one of the Battelle Pacific Northwest Laboratory facilities, two plutonium glovebox hoods were replaced. They were dismantled, packaged in plastic for contamination control, and loaded into waste burial boxes. All of the plutonium-contaminated waste material from the two glovebox hoods was placed into six stainless steel boxes with identification letters A through F. Boxes A through E have 104.8- x 196.2- x 119.4-cm i.d.'s. Box F has an i.d. of 154.9 x 266.7 x 192.4 cm. The loaded boxes were assayed for plutonium content using both neutron and gamma-ray techniques. The difference between the results were greater than anticipated. Because of the importance of accurate plutonium assay measurements, additional measurements of box contents were made using a variety of techniques and assumptions including downloading of boxes and measurement of individual packages. These measurements have shown that a far-field, gamma-ray assay of a loaded waste box usually provides adequate measurement of low-density plutonium content, such as that found in packages of plastic, cellulose, and clothing. Comparing the far-field assays of the loaded waste boxes to the quantities determined by the assays of the downloaded packages resulted in good agreement between the two methods for boxes with low attenuation. Based on these results, it was concluded that it was valid to use the far-field assay results for the boxes that were not downloaded

  13. Transuranic (TRU) Waste Phase I Retrieval Plan

    International Nuclear Information System (INIS)

    MCDONALD, K.M.

    1999-01-01

    From 1970 to 1987, TRU and suspect TRU wastes at Hanford were placed in the SWBG. At the time of placement in the SWBG these wastes were not regulated under existing Resource Conservation and Recovery Act (RCRA) regulations, since they were generated and disposed of prior to the effective date of RCRA at the Hanford Site (1987). From the standpoint of DOE Order 5820.2A', the TRU wastes are considered retrievably stored, and current plans are to retrieve these wastes for shipment to WIPP for disposal. This plan provides a strategy for the Phase I retrieval that meets the intent of TPA milestone M-91 and Project W-113, and incorporates the lessons learned during TRU retrieval campaigns at Hanford, LANL, and SRS. As in the original Project W-I13 plans, the current plan calls for examination of approximately 10,000 suspect-TRU drums located in the 218-W-4C burial ground followed by the retrieval of those drums verified to contain TRU waste. Unlike the older plan, however, this plan proposes an open-air retrieval scenario similar to those used for TRU drum retrieval at LANL and SRS. Phase I retrieval consists of the activities associated with the assessment of approximately 10,000 55-gallon drums of suspect TRU-waste in burial ground 218-W-4C and the retrieval of those drums verified to contain TRU waste. Four of the trenches in 218-W-4C (Trenches 1,4,20, and 29) are prime candidates for Phase I retrieval because they contain large numbers of suspect TRU drums, stacked from 2 to 5 drums high, on an asphalt pad. In fact, three of the trenches (Trenches 1,20, and 29) contain waste that has not been covered with soil, and about 1500 drums can be retrieved without excavation. The other three trenches in 218-W-4C (Trenches 7, 19, and 24) are not candidates for Phase I retrieval because they contain significant numbers of boxes. Drums will be retrieved from the four candidate trenches, checked for structural integrity, overpacked, if necessary, and assayed at the burial

  14. Transuranic (TRU) Waste Phase I Retrieval Plan

    International Nuclear Information System (INIS)

    MCDONALD, K.M.

    2000-01-01

    From 1970 to 1987, TRU and suspect TRU wastes at Hanford were placed in the SWBG. At the time of placement in the SWBG these wastes were not regulated under existing Resource Conservation and Recovery Act (RCRA) regulations, since they were generated and disposed of prior to the effective date of RCRA at the Hanford Site (1987). From the standpoint of DOE Order 5820.2A1, the TRU wastes are considered retrievably stored, and current plans are to retrieve these wastes for shipment to WIPP for disposal. This plan provides a strategy for the Phase I retrieval that meets the intent of TPA milestone M-91 and Project W-113, and incorporates the lessons learned during TRU retrieval campaigns at Hanford, LANL, and SRS. As in the original Project W-113 plans, the current plan calls for examination of approximately 10,000 suspect-TRU drums located in the 218-W-4C burial ground followed by the retrieval of those drums verified to contain TRU waste. Unlike the older plan, however, this plan proposes an open-air retrieval scenario similar to those used for TRU drum retrieval at LANL and SRS. Phase I retrieval consists of the activities associated with the assessment of approximately 10,000 55-gallon drums of suspect TRU-waste in burial ground 218-W-4C and the retrieval of those drums verified to contain TRU waste. Four of the trenches in 218-W-4C (Trenches 1, 4, 20, and 29) are prime candidates for Phase I retrieval because they contain large numbers of suspect TRU drums, stacked from 2 to 5 drums high, on an asphalt pad. In fact, three of the trenches (Trenches 1 , 20, and 29) contain waste that has not been covered with soil, and about 1500 drums can be retrieved without excavation. The other three trenches in 218-W-4C (Trenches 7, 19, and 24) are not candidates for Phase I retrieval because they contain significant numbers of boxes. Drums will be retrieved from the four candidate trenches, checked for structural integrity, overpacked, if necessary, and assayed at the burial

  15. The help of simulation codes in designing waste assay systems using neutron measurement methods: Application to the alpha low level waste assay system PROMETHEE 6

    Energy Technology Data Exchange (ETDEWEB)

    Mariani, A.; Passard, C.; Jallu, F. E-mail: fanny.jallu@cea.fr; Toubon, H

    2003-11-01

    The design of a specific nuclear assay system for a dedicated application begins with a phase of development, which relies on information from the literature or on knowledge resulting from experience, and on specific experimental verifications. The latter ones may require experimental devices which can be restricting in terms of deadline, cost and safety. One way generally chosen to bypass these difficulties is to use simulation codes to study particular aspects. This paper deals with the potentialities offered by the simulation in the case of a passive-active neutron (PAN) assay system for alpha low level waste characterization; this system has been carried out at the Nuclear Measurements Development Laboratory of the French Atomic Energy Commission. Due to the high number of parameters to be taken into account for its development, this is a particularly sophisticated example. Since the PAN assay system, called PROMETHEE (prompt epithermal and thermal interrogation experiment), must have a detection efficiency of more than 20% and preserve a high level of modularity for various applications, an improved version has been studied using the MCNP4 (Monte Carlo N-Particle) transport code. Parameters such as the dimensions of the assay system, of the cavity and of the detection blocks, and the thicknesses of the nuclear materials of neutronic interest have been optimised. Therefore, the number of necessary experiments was reduced.

  16. The help of simulation codes in designing waste assay systems using neutron measurement methods: Application to the alpha low level waste assay system PROMETHEE 6

    International Nuclear Information System (INIS)

    Mariani, A.; Passard, C.; Jallu, F.; Toubon, H.

    2003-01-01

    The design of a specific nuclear assay system for a dedicated application begins with a phase of development, which relies on information from the literature or on knowledge resulting from experience, and on specific experimental verifications. The latter ones may require experimental devices which can be restricting in terms of deadline, cost and safety. One way generally chosen to bypass these difficulties is to use simulation codes to study particular aspects. This paper deals with the potentialities offered by the simulation in the case of a passive-active neutron (PAN) assay system for alpha low level waste characterization; this system has been carried out at the Nuclear Measurements Development Laboratory of the French Atomic Energy Commission. Due to the high number of parameters to be taken into account for its development, this is a particularly sophisticated example. Since the PAN assay system, called PROMETHEE (prompt epithermal and thermal interrogation experiment), must have a detection efficiency of more than 20% and preserve a high level of modularity for various applications, an improved version has been studied using the MCNP4 (Monte Carlo N-Particle) transport code. Parameters such as the dimensions of the assay system, of the cavity and of the detection blocks, and the thicknesses of the nuclear materials of neutronic interest have been optimised. Therefore, the number of necessary experiments was reduced

  17. Performance Values for Non-Destructive Assay (NDA) Technique Applied to Wastes: Evaluation by the ESARDA NDA Working Group

    International Nuclear Information System (INIS)

    Rackham, Jamie; Weber, Anne-Laure; Chard, Patrick

    2012-01-01

    The first evaluation of NDA performance values was undertaken by the ESARDA Working Group for Standards and Non Destructive Assay Techniques and was published in 1993. Almost ten years later in 2002 the Working Group reviewed those values and reported on improvements in performance values and new measurement techniques that had emerged since the original assessment. The 2002 evaluation of NDA performance values did not include waste measurements (although these had been incorporated into the 1993 exercise), because although the same measurement techniques are generally applied, the performance is significantly different compared to the assay of conventional Safeguarded special nuclear material. It was therefore considered more appropriate to perform a separate evaluation of performance values for waste assay. Waste assay is becoming increasingly important within the Safeguards community, particularly since the implementation of the Additional Protocol, which calls for declaration of plutonium and HEU bearing waste in addition to information on existing declared material or facilities. Improvements in the measurement performance in recent years, in particular the accuracy, mean that special nuclear materials can now be accounted for in wastes with greater certainty. This paper presents an evaluation of performance values for the NDA techniques in common usage for the assay of waste containing special nuclear material. The main topics covered by the document are: 1- Techniques for plutonium bearing solid wastes 2- Techniques for uranium bearing solid wastes 3 - Techniques for assay of fissile material in spent fuel wastes. Originally it was intended to include performance values for measurements of uranium and plutonium in liquid wastes; however, as no performance data for liquid waste measurements was obtained it was decided to exclude liquid wastes from this report. This issue of the performance values for waste assay has been evaluated and discussed by the ESARDA

  18. Performance Values for Non-Destructive Assay (NDA) Technique Applied to Wastes: Evaluation by the ESARDA NDA Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Rackham, Jamie [Babcock International Group, Sellafield, Seascale, Cumbria, (United Kingdom); Weber, Anne-Laure [Institut de Radioprotection et de Surete Nucleaire Fontenay-Aux-Roses (France); Chard, Patrick [Canberra, Forss Business and Technology park, Thurso, Caithness (United Kingdom)

    2012-12-15

    The first evaluation of NDA performance values was undertaken by the ESARDA Working Group for Standards and Non Destructive Assay Techniques and was published in 1993. Almost ten years later in 2002 the Working Group reviewed those values and reported on improvements in performance values and new measurement techniques that had emerged since the original assessment. The 2002 evaluation of NDA performance values did not include waste measurements (although these had been incorporated into the 1993 exercise), because although the same measurement techniques are generally applied, the performance is significantly different compared to the assay of conventional Safeguarded special nuclear material. It was therefore considered more appropriate to perform a separate evaluation of performance values for waste assay. Waste assay is becoming increasingly important within the Safeguards community, particularly since the implementation of the Additional Protocol, which calls for declaration of plutonium and HEU bearing waste in addition to information on existing declared material or facilities. Improvements in the measurement performance in recent years, in particular the accuracy, mean that special nuclear materials can now be accounted for in wastes with greater certainty. This paper presents an evaluation of performance values for the NDA techniques in common usage for the assay of waste containing special nuclear material. The main topics covered by the document are: 1- Techniques for plutonium bearing solid wastes 2- Techniques for uranium bearing solid wastes 3 - Techniques for assay of fissile material in spent fuel wastes. Originally it was intended to include performance values for measurements of uranium and plutonium in liquid wastes; however, as no performance data for liquid waste measurements was obtained it was decided to exclude liquid wastes from this report. This issue of the performance values for waste assay has been evaluated and discussed by the ESARDA

  19. Enhancing anaerobic digestion of food waste through biochemical methane potential assays at different substrate: inoculum ratios.

    Science.gov (United States)

    Hobbs, Shakira R; Landis, Amy E; Rittmann, Bruce E; Young, Michelle N; Parameswaran, Prathap

    2018-01-01

    Food waste has a high energy potential that can be converted into useful energy in the form of methane via anaerobic digestion. Biochemical Methane Potential assays (BMPs) were conducted to quantify the impacts on methane production of different ratios of food waste. Anaerobic digester sludge (ADS) was used as the inoculum, and BMPs were performed at food waste:inoculum ratios of 0.42, 1.42, and 3.0g chemical oxygen demand/g volatile solids (VS). The 1.42 ratio had the highest CH 4 -COD recovery: 90% of the initial total chemical oxygen demand (TCOD) was from food waste, followed by ratios 0.42 and 3.0 at 69% and 57%, respectively. Addition of food waste above 0.42 caused a lag time for CH 4 production that increased with higher ratios, which highlighted the negative impacts of overloading with food waste. The Gompertz equation was able to represent the results well, and it gave lag times of 0, 3.6 and 30days and maximum methane productions of 370, 910, and 1950mL for ratios 0.42, 1.42 and 3.0, respectively. While ratio 3.0 endured a long lag phase and low VSS destruction, ratio 1.42 achieved satisfactory results for all performance criteria. These results provide practical guidance on food-waste-to-inoculum ratios that can lead to optimizing methanogenic yield. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A method for assay of special nuclear material in high level liquid waste streams

    International Nuclear Information System (INIS)

    Venkata Subramani, C.R.; Swaminathan, K.; Asuvathraman, R.; Kutty, K.V.G.

    2003-01-01

    The assay of special nuclear material in the high level liquid waste streams assumes importance as this is the first stage in the extraction cycle and considerable losses of plutonium could occur here. This stream contains all the fission products as also the minor actinides and hence normal nuclear techniques cannot be used without prior separation of the special nuclear material. This paper presents the preliminary results carried out using wavelength dispersive x-ray fluorescence as part of the developmental efforts to assay SNM in these streams by instrumental techniques. (author)

  1. A l-nCi/g sensitivity transuranic waste assay system using pulsed neutron interrogation

    International Nuclear Information System (INIS)

    Kunz, W.E.; Atencio, J.D.; Caldwell, J.T.

    1980-01-01

    We have developed a pulsed thermal neutron interrogation system and have demonstrated a sub-1-nCi/g assay sensitivity for high density TRU wastes contained in 200-liter barrels. We detect prompt fission neutrons, resulting in greatly enhanced sensitivity compared to techniques in which delayed fission neutrons are detected. We observe a linear assay response over at least three orders of magnitude in 235 U (or 239 Pu) mass. We also have measured a flat (to +-10%) interrogation flux profile throughout the volume of a 200-liter barrel filled with 200 kg of sand and vermiculite, which indicates flatness of response to fissile material at different locations within the barrel

  2. Monitoring of plutonium contaminated solid waste streams. Chapter II: principles and theory of radiometric assay

    International Nuclear Information System (INIS)

    Birkhoff, G.; Bondar, L.; Notea, A.; Segal, Y.

    1977-01-01

    The interpretation of a count rate distribution obtained from radiometric assay of a given waste items population in terms of source strength distribution is discussed. A model for the evaluation of errors, arising from non uniform source density distribution (Pu) within the item volume and heterogeneity of matrix materials, is presented. Points concerning calibration procedures and representativity of reference materials are dealt with. Qualification procedures for possible monitoring systems are outlined on the basis of comparison with reference systems. The latter are composed of reference monitors based on high resolution gamma spectrometry and passive and active neutron techniques. The importance of information upon the elemental composition and density distribution of matrix materials for the interpretation of radiometric assay of solid wastes is stressed

  3. The design, construction, and operation of the Integrated Radwaste Treatment System (IRTS) Drum Cell

    International Nuclear Information System (INIS)

    Landau, B.; Russillo, A.; Frank, D.; Garland, D.

    1989-12-01

    This report describes the design, construction, and the operation of the Integrated Radwaste Treatment Systems (IRTS) Drum Cell at the West Valley Demonstration Project (WVDP), West Valley, New York. The IRTS Drum Cell was designed to provide a shielded, secure storage area for the remote handling and placement of low-level Class C radioactive waste produced in the IRTS. The Drum Cell was designed to contain up to approximately 8,804 drums from decontaminated supernatant processing. This waste is to be poured into 0.27m 3 in a temperature controlled environment to ensure the cement will not be subjected to freezing and thawing cycles. A Temporary Weather Structure (TWS), a pre-engineered building, now encloses the Drum Cell and associated equipment so that remote waste-handling and placement operations can continue without regard to weather conditions. The Drum Cell was designed so that this TWS could be removed and the low-level waste entombed in place. Final disposition of this low-level waste is currently being evaluated in an Environmental Impact Statement (EIS). 10 refs., 11 figs., 1 tab

  4. SRTC Spreadsheet to Determine Relative Percent Difference (RPD) for Duplicate Waste Assay Results and to Perform the RPD Acceptance Test

    International Nuclear Information System (INIS)

    Casella, V.R.

    2002-01-01

    This report documents the calculations and logic used for the Microsoft(R) Excel spreadsheet that is used at the 773-A Solid Waste Assay Facility for evaluating duplicate analyses, and validates that the spreadsheet is performing these functions correctly

  5. The development of an expert system for the characterization of waste assay data

    Energy Technology Data Exchange (ETDEWEB)

    Bridges, S.; Hodges, J.; Sparrow, C. [Mississippi State Univ., Mississippi State, MS (United States)] [and others

    1997-11-01

    Containers of transuranic and low-level alpha contaminated waste generated as a byproduct of Department of Energy defense-related programs must be characterized before their proper disposition can be determined. Nondestructive assay methods are the most desirable means for assessing the mass and activity of the entrained transuranic radionuclides. However, there are other sources of information that may be useful in the characterization of the entrained waste (e.g., container manifests, information about the generation process, and destructive assay techniques performed on representative samples). This paper describes initial work on an expert system being developed to analyze and characterize containerized radiological waste. This system is being developed by scientists at the Mississippi State University Diagnostic and Instrumentation Laboratory (DIAL) in collaboration with scientists at the Idaho National Engineering Laboratory. The DIAL scientists are responsible for (1) the development of techniques to represent and reason with evidence from a variety of sources, and (2) the development of appropriate method(s) to represent and reason with confidence levels associated with that evidence. This paper describes exploratory versions of the expert system developed to evaluate four techniques for representing and reasoning with the confidence in the evidence: MYCIN-style certainty factors, Dempster-Shafer Theory, Bayesian networks, and fuzzy logic. 16 refs., 8 figs., 4 tabs.

  6. The development of an expert system for the characterization of waste assay data

    International Nuclear Information System (INIS)

    Bridges, S.; Hodges, J.; Sparrow, C.

    1997-01-01

    Containers of transuranic and low-level alpha contaminated waste generated as a byproduct of Department of Energy defense-related programs must be characterized before their proper disposition can be determined. Nondestructive assay methods are the most desirable means for assessing the mass and activity of the entrained transuranic radionuclides. However, there are other sources of information that may be useful in the characterization of the entrained waste (e.g., container manifests, information about the generation process, and destructive assay techniques performed on representative samples). This paper describes initial work on an expert system being developed to analyze and characterize containerized radiological waste. This system is being developed by scientists at the Mississippi State University Diagnostic and Instrumentation Laboratory (DIAL) in collaboration with scientists at the Idaho National Engineering Laboratory. The DIAL scientists are responsible for (1) the development of techniques to represent and reason with evidence from a variety of sources, and (2) the development of appropriate method(s) to represent and reason with confidence levels associated with that evidence. This paper describes exploratory versions of the expert system developed to evaluate four techniques for representing and reasoning with the confidence in the evidence: MYCIN-style certainty factors, Dempster-Shafer Theory, Bayesian networks, and fuzzy logic. 16 refs., 8 figs., 4 tabs

  7. Safety evaluation for packaging (onsite) for the concrete-shielded RH TRU drum for the 327 Postirradiation Testing Laboratory

    International Nuclear Information System (INIS)

    Smith, R.J.

    1998-01-01

    This safety evaluation for packaging authorizes onsite transport of Type B quantities of radioactive material in the Concrete Shielded Remote-Handled Transuranic Waste (RH TRU) Drum per HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments. The drum will be used for transport of 327 Building legacy waste from the 300 Area to a solid waste storage facility on the Hanford Site

  8. Rotary drum for distilling bituminous material

    Energy Technology Data Exchange (ETDEWEB)

    1921-11-02

    A rotary drum with insert tubes for distilling bituminous materials, like mineral coal, brown coal, wood, peat, and oil-shale, is characterized in that the insert tube is heated also by superheated steam introduced into the drum.

  9. Vapor generator steam drum spray heat

    International Nuclear Information System (INIS)

    Fasnacht, F.A. Jr.

    1978-01-01

    A typical embodiment of the invention provides a combination feedwater and cooldown water spray head that is centrally disposed in the lower portion of a nuclear power plant steam drum. This structure not only discharges the feedwater in the hottest part of the steam drum, but also increases the time required for the feedwater to reach the steam drum shell, thereby further increasing the feedwater temperature before it contacts the shell surface, thus reducing thermal shock to the steam drum structure

  10. Survey of EEC solid waste arisings and performance of non-destructive assay systems

    International Nuclear Information System (INIS)

    Bremner, W.B.; Adaway, D.W.; Yates, A.

    1992-01-01

    This report covers the work carried out during an one-year contract which surveyed the radioactive solid waste arisings in EEC Member States and also tabulated information on the performance of the non-destructive assay (NDA) system used. The work was jointly carried out with CEA partners at Cadarache and Paris. The tabulated data give information on types, packaging, associated activity, and NDA capability of the utilities or research organisations. Some short comings in NDA capabilities are identified and possible solutions are given

  11. 21 CFR 886.1200 - Optokinetic drum.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Optokinetic drum. 886.1200 Section 886.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... optokinetic drum is a drum-like device covered with alternating white and dark stripes or pictures that can be...

  12. Re-evaluation of the 1995 Hanford Large Scale Drum Fire Test Results

    International Nuclear Information System (INIS)

    Yang, J M

    2007-01-01

    A large-scale drum performance test was conducted at the Hanford Site in June 1995, in which over one hundred (100) 55-gal drums in each of two storage configurations were subjected to severe fuel pool fires. The two storage configurations in the test were pallet storage and rack storage. The description and results of the large-scale drum test at the Hanford Site were reported in WHC-SD-WM-TRP-246, ''Solid Waste Drum Array Fire Performance,'' Rev. 0, 1995. This was one of the main references used to develop the analytical methodology to predict drum failures in WHC-SD-SQA-ANAL-501, 'Fire Protection Guide for Waste Drum Storage Array,'' September 1996. Three drum failure modes were observed from the test reported in WHC-SD-WM-TRP-246. They consisted of seal failure, lid warping, and catastrophic lid ejection. There was no discernible failure criterion that distinguished one failure mode from another. Hence, all three failure modes were treated equally for the purpose of determining the number of failed drums. General observations from the results of the test are as follows: (lg b ullet) Trash expulsion was negligible. (lg b ullet) Flame impingement was identified as the main cause for failure. (lg b ullet) The range of drum temperatures at failure was 600 C to 800 C. This is above the yield strength temperature for steel, approximately 540 C (1,000 F). (lg b ullet) The critical heat flux required for failure is above 45 kW/m 2 . (lg b ullet) Fire propagation from one drum to the next was not observed. The statistical evaluation of the test results using, for example, the student's t-distribution, will demonstrate that the failure criteria for TRU waste drums currently employed at nuclear facilities are very conservative relative to the large-scale test results. Hence, the safety analysis utilizing the general criteria described in the five bullets above will lead to a technically robust and defensible product that bounds the potential consequences from postulated

  13. Bremsstrahlung-Based Imaging and Assays of Radioactive, Mixed and Hazardous Waste

    Science.gov (United States)

    Kwofie, J.; Wells, D. P.; Selim, F. A.; Harmon, F.; Duttagupta, S. P.; Jones, J. L.; White, T.; Roney, T.

    2003-08-01

    A new nondestructive accelerator based x-ray fluorescence (AXRF) approach has been developed to identify heavy metals in large-volume samples. Such samples are an important part of the process and waste streams of U.S Department of Energy sites, as well as other industries such as mining and milling. Distributions of heavy metal impurities in these process and waste samples can range from homogeneous to highly inhomogeneous, and non-destructive assays and imaging that can address both are urgently needed. Our approach is based on using high-energy, pulsed bremsstrahlung beams (3-6.5 MeV) from small electron accelerators to produce K-shell atomic fluorescence x-rays. In addition we exploit pair-production, Compton scattering and x-ray transmission measurements from these beams to probe locations of high density and high atomic number. The excellent penetrability of these beams allows assays and images for soil-like samples at least 15 g/cm2 thick, with elemental impurities of atomic number greater than approximately 50. Fluorescence yield of a variety of targets was measured as a function of impurity atomic number, impurity homogeneity, and sample thickness. We report on actual and potential detection limits of heavy metal impurities in a soil matrix for a variety of samples, and on the potential for imaging, using AXRF and these related probes.

  14. Hanford contact-handled transuranic drum retrieval project planning document

    International Nuclear Information System (INIS)

    DEMITER, J.A.

    1998-01-01

    The Hanford Site is one of several US Department of Energy (DOE) sites throughout the US that has generated and stored transuranic (TRU) wastes. The wastes were primarily placed in 55-gallon drums, stacked in trenches, and covered with soil. In 1970, the Nuclear Regulatory Commission ordered that TRU wastes be segregated from other radioactive wastes and placed in retrievable storage until such time that the waste could be sent to a geologic repository and permanently disposed. Retrievable storage also defined container storage life by specifying that a container must be retrievable as a contamination-free container for 20 years. Hanford stored approximately 37,400 TRU containers in 20-year retrievable storage from 1970 to 1988. The Hanford TRU wastes placed in 20-year retrievable storage are considered disposed under existing Resource Conservation and Recovery Act (RCRA) regulations since they were placed in storage prior to September 1988. The majority of containers were 55-gallon drums, but 20-year retrievable storage includes several TRU wastes covered with soil in different storage methods

  15. Small-Scale Experiments.10-gallon drum experiment summary

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, David M.

    2015-02-05

    A series of sub-scale (10-gallon) drum experiments were conducted to characterize the reactivity, heat generation, and gas generation of mixtures of chemicals believed to be present in the drum (68660) known to have breached in association with the radiation release event at the Waste Isolation Pilot Plant (WIPP) on February 14, 2014, at a scale expected to be large enough to replicate the environment in that drum but small enough to be practical, safe, and cost effective. These tests were not intended to replicate all the properties of drum 68660 or the event that led to its breach, or to validate a particular hypothesis of the release event. They were intended to observe, in a controlled environment and with suitable diagnostics, the behavior of simple mixtures of chemicals in order to determine if they could support reactivity that could result in ignition or if some other ingredient or event would be necessary. There is a significant amount of uncertainty into the exact composition of the barrel; a limited sub-set of known components was identified, reviewed with Technical Assessment Team (TAT) members, and used in these tests. This set of experiments was intended to provide a framework to postulate realistic, data-supported hypotheses for processes that occur in a “68660-like” configuration, not definitively prove what actually occurred in 68660.

  16. Monte Carlo calculational design of an NDA instrument for the assay of waste products from high enriched uranium spent fuels

    International Nuclear Information System (INIS)

    Eccleston, G.W.; Schrandt, R.G.; MacDonald, J.L.; Cverna, F.H.

    1979-01-01

    The Monte Carlo design of the waste assay region of a dual assay system, to be installed at the Fluorinal and Storage Facility, is described. The instrument will be used by the facility operator to assay high-enriched spent fuel packages and waste solids produced from dissolution of the fuels. The fissile content discharged in the waste is expected to vary between 0 and 400 g of 235 U. Material accountability measurements of the waste must be obtained in the presence of large neutron (0.5 x 10 6 n/s) and gamma (50,000 R/hr) backgrounds. The assay system employs fast-neutron irradiation of the sample, using a 5 mg 252 Cf source, followed by delayed neutron counting after the source is transferred to storage. Calculations indicate a +-4-g (2 sigma) assay for a waste canister containing 300 g of 235 U is achievable with an end-of-life (1 mg) 252 Cf source and a background rate of 0.5 x 10 6 n/s

  17. Comparison of solid-phase and eluate assays to gauge the ecotoxicological risk of organic wastes on soil organisms

    International Nuclear Information System (INIS)

    Domene, Xavier; Alcaniz, Josep M.; Andres, Pilar

    2008-01-01

    Development of methodologies to assess the safety of reusing polluted organic wastes in soil is a priority in Europe. In this study, and coupled with chemical analysis, seven organic wastes were subjected to different aquatic and soil bioassays. Tests were carried out with solid-phase waste and three different waste eluates (water, methanol, and dichloromethane). Solid-phase assays were indicated as the most suitable for waste testing not only in terms of relevance for real situations, but also because toxicity in eluates was generally not representative of the chronic effects in solid-phase. No general correlations were found between toxicity and waste pollutant burden, neither in solid-phase nor in eluate assays, showing the inability of chemical methods to predict the ecotoxicological risks of wastes. On the contrary, several physicochemical parameters reflecting the degree of low organic matter stability in wastes were the main contributors to the acute toxicity seen in collembolans and daphnids. - Comparison of solid-phase and eluate bioassays for organic waste testing

  18. Status of the WAND (Waste Assay for Nonradioactive Disposal) project as of July 1997

    International Nuclear Information System (INIS)

    Arnone, G.J.; Foster, L.A.; Foxx, C.L.; Hagan, R.C.; Martin, E.R.; Myers, S.C.; Parker, J.L.

    1998-03-01

    The WAND (Waste Assay for Nonradioactive Disposal) system can scan thought-to-be-clean, low-density waste (mostly paper and plastics) to determine whether the levels of any contaminant radioactivity are low enough to justify their disposal in normal public landfills or similar facilities. Such a screening would allow probably at least half of the large volume of low-density waste now buried at high cost in LANL's Rad Waste Landfill (Area G at Technical Area 54) to be disposed of elsewhere at a much lower cost. The WAND System consists of a well-shielded bank of six 5-in.-diam. phoswich scintillation detectors; a mechanical conveyor system that carries a 12-in.-wide layer of either shredded material or packets of paper sheets beneath the bank of detectors; the electronics needed to process the outputs of the detectors; and a small computer to control the whole system and to perform the data analysis. WAND system minimum detectable activities (MDAs) for point sources range from ∼20 dps for 241 Am to approximately 10 times that value for 239 Pu, with most other nuclides of interest being between those values, depending upon the emission probabilities of the radiations emitted (usually gamma rays and/or x-rays). The system can also detect beta particles that have energies ≥100 keV, but it is not easy to define an MDA based on beta radiation detection because of the greater absorption of beta particles relative to photons in low Z-materials. The only radioactive nuclides not detectable by the WAND system are pure alpha emitters and very-low-energy beta emitters. At this time, operating procedures and quality assurance procedures are in place and training materials are available to operators. The system is ready to perform useful work; however, it would be both possible and desirable to upgrade the electronic components and the analysis algorithms

  19. Field experience with a mobile tomographic nondestructive assay system

    International Nuclear Information System (INIS)

    Prettyman, T.H.; Betts, S.E.; Taggart, D.P.; Estep, R.J.; Nicholas, N.J.; Lucas, M.C.; Harlan, R.A.

    1995-01-01

    A mobile tomographic gamma-ray scanner (TGS) developed by Los Alamos National Laboratory was recently demonstrated at the Rocky Flats Environmental Technology Site and is currently in use at Los Alamos waste storage areas. The scanner was developed to assay radionuclides in low-level, transuranic, and mixed waste in containers ranging in size from 2 ft 3 boxes to 83-gallon overpacks. The tomographic imaging capability provides a complete correction for source distribution and matrix attenuation effects, enabling accurate assays of Pu-239 and other gamma-ray emitting isotopes. In addition, the system can reliably detect self-absorbing material such as plutonium metal shot, and can correct for bias caused by self-absorption. The system can be quickly configured to execute far-field scans, segmented gamma-ray scans, and a host of intermediate scanning protocols, enabling higher throughput (up to 20 drums per 8-hour shift). In this paper, we will report on the results of field trials of the mobile system at Rocky Flats and Los Alamos. Assay accuracy is confirmed for cases in which TGS assays can be compared with assays (e.g. with calorimetry) of individual packages within the drums. The mobile tomographic technology is expected to considerably reduce characterization costs at DOE production and environmental technology sites

  20. Relative mass resolution technique for optimum design of a gamma nondestructive assay system

    International Nuclear Information System (INIS)

    Koh, Duck Joon

    1995-02-01

    Nondestructive assay(NDA) is a widely used nuclear technology for quantitative elemental and isotopic assay. Nondestructive assay is performed by the detection of an identifying radiation emerging from the sample, which can be unambiguously related to the element or isotope of interest. In every assay we can identify two distinct factors that lead to measurement uncertainty. We refer to these as statistical and spatial uncertainties. If the spatial distribution of the analyte and the matrix material in the sample are known and fairly constant from sample to sample, then the major source of measurement uncertainty is the statistical uncertainty resulting from randomness in the counting process. The spatial uncertainty is independent of the measurement time and therefore sets a lower limit to the measurement uncertainty, which is inherent in the assay system in conjunction with the population of samples to be measured. The only way to minimize the spatial uncertainty is an optimized design of the assay system. Therefore we have to decide on the type and number of detectors to be used, their deployment around the sample, the type of radiation to be measured, the duration of each measurement, the size and shape of the sample drum. The design procedure leading to the optimal assay system should be based on a quantitative(RMR:Relative Mass Resolution) comparison of the performance of each proposed design. For NDA system design of low level radwaste, a specific purpose Monte Carlo code has been developed to simulate point-source responses for sources within an assayed radwaste drum and to analyze the effect of scattered gammas from higher energy gammas on the spectrum of a low energy gamma-ray. We could use the well-known Monte Carlo code, such as MCNP for the simulation of NDA in the case of low level radwaste. But, MCNP is a multi-purpose Monte Carlo transport code for several geometries which requires large memory and long CPU time. For some cases in nuclear

  1. Are Fish and Standardized FETAX Assays Protective Enough for Amphibians? A Case Study on Xenopus laevis Larvae Assay with Biologically Active Substances Present in Livestock Wastes

    Directory of Open Access Journals (Sweden)

    Federica Martini

    2012-01-01

    Full Text Available Biologically active substances could reach the aquatic compartment when livestock wastes are considered for recycling. Recently, the standardized FETAX assay has been questioned, and some researchers have considered that the risk assessment performed on fish could not be protective enough to cover amphibians. In the present study a Xenopus laevis acute assay was developed in order to compare the sensitivity of larvae relative to fish or FETAX assays; veterinary medicines (ivermectin, oxytetracycline, tetracycline, sulfamethoxazole, and trimethoprim and essential metals (zinc, copper, manganese, and selenium that may be found in livestock wastes were used for the larvae exposure. Lethal (LC50 and sublethal effects were estimated. Available data in both, fish and FETAX studies, were in general more protective than values found out in the current study, but not in all cases. Moreover, the presence of nonlethal effects, caused by ivermectin, zinc, and copper, suggested that several physiological mechanisms could be affected. Thus, this kind of effects should be deeply investigated. The results obtained in the present study could expand the information about micropollutants from livestock wastes on amphibians.

  2. A PC-based discrete tomography imaging software system for assaying radioactive waste containers

    International Nuclear Information System (INIS)

    Palacios, J.C.; Longoria, L.C.; Santos, J.; Perry, R.T.

    2003-01-01

    A PC-based discrete tomography imaging software system for assaying radioactive waste containers for use in facilities in Mexico has been developed. The software system consists of three modules: (i) for reconstruction transmission tomography, (ii) for reconstruction emission tomography, and (iii) for simulation tomography. The Simulation Module is an interactive computer program that is used to create simulated databases for input to the Reconstruction Modules. These databases may be used in the absence of physical measurements to insure that the tomographic theoretical models are valid and that the coding accurately describes these models. Simulation may also be used to determine the detection limits of the reconstruction methodology. A description of the system, the theory, and a demonstration of the systems capabilities is provided in the paper. The hardware for this system is currently under development

  3. Waste characterization: What's on second?

    International Nuclear Information System (INIS)

    Schultz, F.J.; Smith, M.A.

    1989-07-01

    Waste characterization is the process whereby the physical properties and chemical composition of waste are determined. Waste characterization is an important element which is necessary to certify that waste meets the acceptance criteria for storage, treatment, or disposal. Department of Energy (DOE) Orders list and describe the germane waste form, package, and container criteria for the storage of both solid low-level waste package, and container criteria for the storage of both solid low-level waste (SLLW) and transuranic (TRU) waste, including chemical composition and compatibility, hazardous material content (e.g., lead), fissile material content, radioisotopic inventory, particulate content, equivalent alpha activity, thermal heat output, and absence of free liquids, explosives, and compressed gases. At the Oak Ridge National Laboratory (ORNL), the responsibility for waste characterization begins with the individual or individuals who generate the waste. The generator must be able to document the type and estimate the quantity of various materials (e.g., waste forms -- physical characteristics, chemical composition, hazardous materials, major radioisotopes) which have been placed into the waste container. Analyses of process flow sheets and a statistically valid sampling program can provide much of the required information as well as a documented level of confidence in the acquired data. A program is being instituted in which major generator facilities perform radionuclide assay of small packets of waste prior to being placed into a waste drum. 17 refs., 1 fig., 4 tabs

  4. Electronics system for transuranic waste assays using a photon interrogation technique

    International Nuclear Information System (INIS)

    Johnson, L.O.; Lawrence, R.S.

    1979-12-01

    This report documents the development of electronics for a neutron detection system used in experiments to demonstrate the feasibility of a photon interrogation technique for transuranic (TRU) waste assays. The system consists of the neutron detection and signal conditioning circuits, variable time-gate generators, and a data acquisition system. The data acquisition system is configured using commercially available scalers, timers, teletype, and control components. The remainder of the system, with the exception of the neutron detectors, uses components designed in-house. The neutron detection system consists of 3 He proportional counters installed in a polyethylene moderator assembly. The counters are direct-coupled to a high-count-rate, current-sensitive preamplifier. The preamplifier and an additional two-stage amplifier are also installed in the moderator assembly. Signal conditioning includes baseline restoration and fast discrimination. A variable time-gate generator with logic gates allows for separation of prompt and delayed neutron counts, and generation of prompt and delayed deadtimes. The 3 He proportional counters will detect not only the neutrons from the TRU waste sample, but also the high-energy photons used to induce fission in the sample. The burst of photons (gamma flash) tends to overload and paralyze the electronics. This system has been designed to recover from a worst-case gamma flash overload within 10 microseconds. The system has met all the requirements generated for the photon interrogation experiments

  5. The eigenspectra of Indian musical drums.

    Science.gov (United States)

    Sathej, G; Adhikari, R

    2009-02-01

    In a family of drums used in the Indian subcontinent, the circular drum head is made of material of nonuniform density. Remarkably, and in contrast to a circular membrane of uniform density, the low eigenmodes of the nonuniform membrane are harmonic. In this work the drum head is modeled as a nonuniform membrane whose density varies smoothly between two prescribed values. The eigenmodes and eigenvalues of the drum head are obtained using a high-resolution numerical method. The mathematical model and the numerical method are able to handle both concentric and eccentric nonuniformities, which correspond, respectively, to the dayan and the bayan drums. For a suitable choice of parameters, which are found by optimizing the harmonicity of the drum, the eigenspectra obtained from the model are in excellent agreement with experiment. The model and the numerical method should find application in numerical sound synthesis.

  6. The coke drum thermal kinetic effects

    Energy Technology Data Exchange (ETDEWEB)

    Aldescu, Maria M.; Romero, Sim; Larson, Mel [KBC Advanced Technologies plc, Surrey (United Kingdom)

    2012-07-01

    The coke drum thermal kinetic dynamics fundamentally affect the coker unit yields as well as the coke product properties and unit reliability. In the drum the thermal cracking and polymerization or condensation reactions take place in a semi-batch environment. Understanding the fundamentals of the foaming kinetics that occur in the coke drums is key to avoiding a foam-over that could result in a unit shutdown for several months. Although the most dynamic changes with time occur during drum filling, other dynamics of the coker process will be discussed as well. KBC has contributed towards uncovering and modelling the complexities of heavy oil thermal dynamics. (author)

  7. On the influence of matrix's heterogeneity on uncertainty of gamma-spectrometry at activity assay of radioactive waste

    Directory of Open Access Journals (Sweden)

    V. S. Prokopenko

    2009-09-01

    Full Text Available The influence of the waste matrix heterogeneity on the flux density value of initial gamma quanta at the transport of quanta in the matrix was considered. It is shown that the waste heterogeneity leads to the positive shift of the average flux density value comparing with corresponding value for homogeneous waste if average value of the attenuation factor in heterogeneous matrix is equal to the attenuation factor of homogeneous matrix. Due to this the activity assay of heterogeneous waste by a technique which was calibrated by using a homogeneous standard (surrogate container the measurement results will be positively shifted, or, in other words, conservative estimation of the waste activity will be obtained.

  8. Nonradioactive air emissions notice of construction for the Waste Receiving And Processing facility

    International Nuclear Information System (INIS)

    1993-02-01

    The mission of the Waste Receiving And Processing (WRAP) Module 1 facility (also referred to as WRAP 1) is to examine assay, characterize, treat, and repackage solid radioactive and mixed waste to enable permanent disposal of the wastes in accordance with all applicable regulations. WRAP 1 will contain equipment and facilities necessary for non-destructive examination (NDE) of wastes and to perform a non-destructive examination assay (NDA) of the total radionuclide content of the wastes, without opening the outer container (e.g., 55-gal drum). WRAP 1 will also be equipped to open drums which do not meet waste acceptance and shipping criteria, and to perform limited physical treatment of the wastes to ensure that storage, shipping, and disposal criteria are met. The solid wastes to be handled in the WRAP 1 facility include low level waste (LLW), transuranic (TRU) waste, and transuranic and low level mixed wastes (LLMW). The WRAP 1 facility will only accept contact handler (CH) waste containers. A Best Available Control Technology for Toxics (TBACT) assessment has been completed for the WRAP 1 facility (WHC 1993). Because toxic emissions from the WRAP 1 facility are sufficiently low and do not pose any health or safety concerns to the public, no controls for volatile organic compounds (VOCs), and installation of HEPA filters for particulates satisfy TBACT for the facility

  9. Neutron absorber inserts for 55-gal drums

    International Nuclear Information System (INIS)

    Wilson, R.E.; Kim, Y.S.; Toffer, H.

    2000-01-01

    Transport and temporary storage of more than 200 g of fissile material in 55-gal drums at the Rocky Flats Environmental Technology Site (RFETS) have received significant attention during the cleanup mission. This paper discusses successful applications and results of extensive computer studies. Interim storage and movement of fissile material in excess of standard drum limits (200 g) in a safe configuration have been accomplished using special drum inserts. Such inserts have constrained the contents of a drum to two 4-ell bottles. The content of the bottles was limited to 600 g Pu or U in solution or a total of 1200 g for the entire drum. The inserts were a simple design constructed of stainless steel, forming a vertical cylindrical pipe into which two bottles, one on top of the other, could be centered in the drum. The remaining drum volume was configured to preclude any additional bottle placement external to the vertical cylinder. Such inserts in drums were successfully used in moving high-concentration solution from one building to another for chemical processing. Concern about the knowledge of fissile material concentration in bottles prompted another study for drum inserts. The past practice had been to load up to fourteen 4-ell bottles into 55-gal drums, provided the fissile material concentration was < 6 g fissile/ell, and the total drum contents of 200 g fissile was not exceeded. Only one determination of the solution concentration was needed. An extensive safety analysis concluded that a single measurement of bottle content could not ensure compliance with double-contingency-criterion requirements. A second determination of the bottle contents was required before bottles could be placed in a 55-gal drum. Al alternative to a dual-measurement protocol, which is for bolstering administrative control, was to develop an engineered safety feature that would eliminate expensive tests and administrative decisions. A drum insert design was evaluated that would

  10. An investigation of the neutron die-away time in passive neutron waste assay systems

    International Nuclear Information System (INIS)

    Baeten, P.; Bruggeman, M.; Carchon, R.

    1997-02-01

    Neutron coincidence counting applied to the assay of Pu-bearing waste is commonly based on the assumption that the time intervals between detected fission neutrons are distributed according to a mono-exponential function, often called Rossi-alpha distribution. The time constant of this characteristic exponential function is generally referred to as the die-away time of the detector assembly. In fact, the distribution of time intervals is derived from the more fundamental arrival time distribution, which is also assumed to obey a mono-exponential law. In view of the design studies for a neutron counter, the validity of this basic assumption was investigated. Different parameters such as neutron moderation and absorption in the sample and the presence of cadmium-lining were investigated by means of Monte Carlo simulations using the NCNP-code. The simulation results lead to the conclusion that the description of the arrival time function with a mono-exponential function with a sample-independent die-away time is only a first approximations. The mono-exponential decay is perturbed by a second time component related to the detection of neutrons already thermalized in the sample. This thermal component cannot be described by a mono-exponential function, but has a characteristic shape with a fast build-up reaching a maximum followed by a slow decay as a function of the arrival time. The relative contribution of this component strongly depends on the absorption and moderation of the sample matrix. This component cannot be described by a simple analytical expression involving sample related parameters. Hence, no direct useful information can be withdrawn from the arrival time probability function to characterize the waste matrix. The thermal component can be strongly suppressed by the use of cadmium-lining in front of the detector blocks simplifying the mathematical description of the arrival time probability function. Indications of the bias introduced by an inaccurate

  11. Listening to the Shape of a Drum

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 9. Listening to the Shape of a Drum - The Mathematics of Vibrating Drums. S Kesavan. General Article Volume 3 Issue 9 September 1998 pp 26-34. Fulltext. Click here to view fulltext PDF. Permanent link:

  12. Listening to the Shape of a Drum

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 10. Listening to the Shape of a Drum - You Cannot Hear the Shape of a Drum! S Kesavan. General Article Volume 3 Issue 10 October 1998 pp 49-58. Fulltext. Click here to view fulltext PDF. Permanent link:

  13. WIPP WAC Equivalence Support Measurements for Low-Level Sludge Waste at Los Alamos National Laboratory - 12242

    Energy Technology Data Exchange (ETDEWEB)

    Gruetzmacher, Kathleen M.; Bustos, Roland M.; Ferran, Scott G.; Gallegos, Lucas E. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Lucero, Randy P. [Pajarito Scientific Corporation, Santa Fe, New Mexico 87507 (United States)

    2012-07-01

    Los Alamos National Laboratory (LANL) uses the Nevada National Security Site (NNSS) as an off-site disposal facility for low-level waste (LLW), including sludge waste. NNSS has issued a position paper that indicates that systems that are not certified by the Carlsbad Field Office (CBFO) for Waste Isolation Pilot Plant (WIPP) disposal of Transuranic (TRU) waste must demonstrate equivalent practices to the CBFO certified systems in order to assign activity concentration values to assayed items without adding in the Total Measurement Uncertainty (TMU) when certifying waste for NNSS disposal. Efforts have been made to meet NNSS requirements to accept sludge waste for disposal at their facility. The LANL LLW Characterization Team uses portable high purity germanium (HPGe) detector systems for the nondestructive assay (NDA) of both debris and sludge LLW. A number of performance studies have been conducted historically by LANL to support the efficacy and quality of assay results generated by the LANL HPGe systems, and, while these detector systems are supported by these performance studies and used with LANL approved procedures and processes, they are not certified by CBFO for TRU waste disposal. Beginning in 2009, the LANL LLW Characterization Team undertook additional NDA measurements of both debris and sludge simulated waste containers to supplement existing studies and procedures to demonstrate full compliance with the NNSS position paper. Where possible, Performance Demonstration Project (PDP) drums were used for the waste matrix and PDP sources were used for the radioactive sources. Sludge drums are an example of a matrix with a uniform distribution of contaminants. When attempting to perform a gamma assay of a sludge drum, it is very important to adequately simulate this uniform distribution of radionuclides in order to accurately model the assay results. This was accomplished by using a spiral radial source tube placement in a sludge drum rather than the standard

  14. Sound analysis of a cup drum

    International Nuclear Information System (INIS)

    Kim, Kun ho

    2012-01-01

    The International Young Physicists’ Tournament (IYPT) is a worldwide tournament that evaluates a high-school student's ability to solve various physics conundrums that have not been fully resolved in the past. The research presented here is my solution to the cup drum problem. The physics behind a cup drum has never been explored or modelled. A cup drum is a musical instrument that can generate different frequencies and amplitudes depending on the location of a cup held upside-down over, on or under a water surface. The tapping sound of a cup drum can be divided into two components: standing waves and plate vibration. By individually researching the nature of these two sounds, I arrived at conclusions that could accurately predict the frequencies in most cases. When the drum is very close to the surface, qualitative explanations are given. In addition, I examined the trend of the tapping sound amplitude at various distances and qualitatively explained the experimental results. (paper)

  15. High-sensitivity measurements for low-level TRU wastes using advanced passive neutron techniques

    International Nuclear Information System (INIS)

    Menlove, H.O.; Eccleston, G.W.

    1992-01-01

    In recent years, both passive- and active-neutron nondestructive assay (NDA) systems have been used to measure the uranium and plutonium content in 200-ell drums. Because of the heterogeneity of the wastes, representative sampling is not possible and NDA methods are preferred over destructive analysis. Active-neutron assay systems are used to measure the fissile isotopes such as 235 U, 23 Pu, and 241 Pu; the isotopic ratios are used to infer the total plutonium content and thus the specific disintegration rate. The active systems include 14-MeV-neutron (DT) generators with delayed-neutron counting, (D,T) generators with the differential die-away technique, and 252 Cf delayed-neutron shufflers. Passive assay systems (for example, segmented gamma-ray scanners)5 have used gamma-ray sessions, while others (for example, passive drum counters) used passive-neutron signals. We have developed a new passive-neutron measurement technique to improve the accuracy and sensitivity of the NDA of plutonium scrap and waste. This new 200-ell-drum assay system combines the classical NDA method of counting passive-neutron totals and coincidences from plutonium with the new features of ''add-a-source'' (AS) and multiplicity counting to improve the accuracy of matrix corrections and statistical techniques that improve the low-level detectability limits. This paper describes the improvements we have made in passive-neutron assay systems and compares the accuracies and detectability limits of passive- and active-neutron assay systems

  16. Epithermal interrogation of fissile waste

    International Nuclear Information System (INIS)

    Coop, K.L.; Hollas, C.L.

    1996-01-01

    Self-shielding of interrogating thermal neutrons in lumps of fissile material can be a major source of error in transuranic waste assay using the widely employed differential dieaway technique. We are developing a new instrument, the combined thermal/epithermal neutron (CTEN) interrogation instrument to detect the occurrence of self- shielding and mitigate its effects. Neutrons are moderated in the graphite walls of the CTEN instrument to provide an interrogating flux of epithermal and thermal neutrons. The induced prompt fission neutrons are detected in proportional counters. We report the results of measurements made with the CTEN instrument, using minimal and highly self-shielding plutonium and uranium sources in 55 gallon drums containing a variety of mock waste matrices. Fissile isotopes and waste forms for which the method is most applicable, and limitations associated with the hydrogen content of the waste package/matrix are described

  17. Burning test on a storage drum filled with a mixture of sodiumnitrate and bitumen

    International Nuclear Information System (INIS)

    Knotik, K.; Leichter, P.; Spalek, K.

    1979-01-01

    A burning test on a common storage drum filled with a mixture of sodiumnitrate and bitumen was carried out to show the incinerability of said mixture. A 50 l mild steel drum was filled with 80,7 kg sodiumnitrate/bitumen-mixture. The drum was packed in a 200 l mild steel drum, the remaining space was filled with enough sand to cover the top of the inner drum with 15 cm of sand. The sand packing was then soaked with 70 l of light distillate fuel and ignited. The fuel burned until self-extinguishing occurred. 30 % (22,2 l) of the fuel was burned. 0,7 % of the energy potential was absorbed in the sand layer. The highest measured temperature was 34 0 C at the top of the test drum. It can be concluded, that even under severe external actions the ignition temperature of 400 0 C for bitumen/waste mixtures cannot be reached, providing correct technical storage conditions, which means that the void space in the cavities is filled with unburnable absorbing material like sand or salt. (author)

  18. Recent developments at French atomic energy commission relating to non destructive nuclear waste assay by using electron accelerator

    International Nuclear Information System (INIS)

    Lvoussi, A.; Romeyer-Dhebey, J.; Jallu, F.; Passard, C.; Mariani, A.; Recroix, H.; Payan, E.; Denis, C.; Loridon, J.; Buisson, A.; Nurdin, G.; Allano, J.; Jaureguy, J.C.

    2000-01-01

    An important program is currently in progress at several laboratories over the world for the development of sensitive, practical non-destructive assay techniques for the quantification of low level transuranics (TRU) in solid wastes. The wide variety of materials and contaminants, the low concentrations and large volumes involve, all make this kind of assay a complicated affair. Over the last few years, considerable progress has been made in the field of assay techniques for low level contaminated wastes. This report describes the methods being developed at French Atomic Energy Commission (C.E.A.) in Cadarache to assay high density TRU waste packages by using photon, neutron or both photon and neutron as interrogating particles. All of these particles are produced by using a pulsed electron linear accelerator from which the photons are produced following Bremsstrahlung phenomena on a heavy metallic converter and the neutrons are generated in appropriate low level photoneutron threshold target (e.g. Beryllium). The dynamic of photonuclear interactions and photoneutron production, use of an electron linear accelerator as a particle source, experimental and electronics details, experimental results, simulation to experiment performances and future experimental and theoretical studies are discussed. (authors)

  19. Demonstration test on manufacturing 200 l drum inner shielding material for recycling of reactor operating metal scrap

    International Nuclear Information System (INIS)

    Umemura, A.; Kimura, K.; Ueno, H.

    1993-01-01

    Low-level reactor wastes should be safely recycled considering those resource values, the reduction of waste disposal volume and environmental effects. The reasonable recycling system of reactor operating metal scrap has been studied and it was concluded that the 200 liter drum inner shielding material is a very promising product for recycling within the nuclear industry. The drum inner shielding material does not require high quality and so it is expected to be easily manufactured by melting and casting from roughly sorted scrap metals. This means that the economical scrap metal recycling system can be achieved by introducing it. Furthermore its use will ensure safety because of being contained in a drum. In order to realize this recycling system with the drum inner shielding material, the demonstration test program is being conducted. The construction of the test facility, which consists of a melting and refining furnace, a casting apparatus, a machining apparatus etc., was finishing in September, 1992

  20. Results of the gamma-neutron mapper performance test on 55-gallon drums at the RWMC

    International Nuclear Information System (INIS)

    Gehrke, R.J.; Lawrence, R.S.; Roybal, L.G.; Svoboda, J.M.; Harker, D.J.; Thompson, D.N.; Carpenter, M.V.; Josten, N.E.

    1995-07-01

    The primary purpose of the gamma-neutron mapper (G at sign) is to provide accurate and quantitative spatial information of the gamma-ray and neutron radiation fields as a function of position about the excavation of a radioactive waste site. The GNM is designed to operate remotely and can be delivered to any point on an excavation by the robotic gantry crane developed by the dig-face project at the Idaho National Engineering Laboratory (INEL). It can also be easily adapted to other delivery systems. The GNM can be deployed over a waste site at a predetermined scan rate and has sufficient accuracy to identify and quantify radioactive contaminants of importance. The results reported herein are from a performance test conducted at the Transuranic Storage Area, Building 628, of the Radioactive Waste Management Complex located at the INEL. This building is an active interim-storage area for 55-gal drums of transuranic waste from the Department of Energy's Rocky Flats Plant. The performance test consisted of scanning a stack of drums five high by five wide. Prior to the test, radiation fields were measured by a health physicist at the center of the drums and ranged from 0.5 mR/h to 35 mR/h. Scans of the drums using the GNM were taken at standoff distances from the vertical drum stack of 15 cm, 30 cm, 45 cm, and 90 cm. Data were acquired at scan speeds of 7.5 cm/s and 15 cm/s. The results of these scans and a comparison of these results with the manifests of these drums are compared and discussed

  1. Color image digitization and analysis for drum inspection

    International Nuclear Information System (INIS)

    Muller, R.C.; Armstrong, G.A.; Burks, B.L.; Kress, R.L.; Heckendorn, F.M.; Ward, C.R.

    1993-01-01

    A rust inspection system that uses color analysis to find rust spots on drums has been developed. The system is composed of high-resolution color video equipment that permits the inspection of rust spots on the order of 0.25 cm (0.1-in.) in diameter. Because of the modular nature of the system design, the use of open systems software (X11, etc.), the inspection system can be easily integrated into other environmental restoration and waste management programs. The inspection system represents an excellent platform for the integration of other color inspection and color image processing algorithms

  2. Measurement of dose rate and estimation of beta activity in zircaloy hull drum

    International Nuclear Information System (INIS)

    Pandey, J.P.N.; Kumar, Pankaj; Shinde, A.M.; Purohit, R.G.; Sarkar, P.K.

    2012-01-01

    Fuel Reprocessing Plant is designed for the processing of spent fuel from reactor for the recovery of plutonium and uranium as PuO 2 and U 3 O 8 respectively. Zircaloy is used as cladding material of natural uranium fuel pins used in the reactors. In reprocessing plants chop and leach method is used to remove the zircaloy clad from the fuel matrix during Head End Treatment. Initially spent fuel bundles are chopped into pieces and collected in perforated baskets kept in dissolvers. All chopped pieces are dissolved in HNO 3 in the dissolvers followed by heating and boiling. Dissolved solutions are transferred to Filtrate Tank (FT) leaving behind un-dissolved zircoloy hull pieces in the dissolver baskets. Un-dissolved and almost dry hull pieces are transferred in hull drum from the dissolver baskets using the Hull Tilting Facility. Hull drums are made of stainless steel having 500 litre capacity and two third of its volume is filled with zircoloy pieces. Hull drums filled with hull pieces are loaded in Hull Removal Cask (HRC) and transported to SWMF (Solid Waste Management Facility) site for interim storage/disposal in tile holes. Hull pieces are high active solid wastes which contain significant amount of fission products. Radiation levels on hull drums are in the range of few hundreds of mGy/h which has high potential of external hazards if not handled properly. Therefore hull drums are handled remotely in specially designed lead shielded cask

  3. Nondestructive radioassay for waste management: an assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lehmkuhl, G.D.

    1981-06-01

    Nondestructive Assay (NDA) for Transuranic Waste Management is used to mean determining the amount of transuranic (TRU) isotopes in crates, drums, boxes, cans, or other containers without having to open the container. It also means determining the amount of TRU in soil, bore holes, and other environmental testing areas without having to go through extensive laboratory wet chemistry analyses. it refers to radioassay techniques used to check for contamination on objects after decontamination and to determine amounts of TRU in waste processing streams without taking samples to a laboratory. Gednerally, NDA instrumentation in this context refers to all use of radioassay which does not involve taking samples and using wet chemistry techniques. NDA instruments have been used for waste assay at some sites for over 10 years and other sites are just beginning to consider assay of wastes. The instrumentation used at several sites is discussed in this report. Almost all these instruments in use today were developed for special nuclear materials safeguards purposes and assay TRU waste down to the 500 nCi/g range. The need for instruments to assay alpha particle emitters at 10 nCi/g or less has risen from the wish to distinguish between Low Level Waste (LLW) and TRU Waste at the defined interface of 10 nCi/g. Wastes have historically been handled as TRU wastes if they were just suspected to be transuranically contaminated but their exact status was unknown. Economic and political considerations make this practice undesirable since it is easier and less costly to handle LLW. This prompted waste generators to want better instrumentation and led the Transuranic Waste Management Program to develop and test instrumentation capable of assaying many types of waste at the 10 nCi/g level. These instruments are discussed.

  4. Energy Expenditure in Rock/Pop Drumming

    OpenAIRE

    De La Rue, S; Draper, Stephen B; Potter, Christopher R; Smith, M.

    2013-01-01

    Despite the vigorous nature of rock/pop drumming, there are no precise data on the energy expenditure of this activity. The aim of this study was to quantify the energy cost of rock/pop drumming. Fourteen male drummers (mean +/- SD; age 27 +/- 8 yrs.) completed an incremental drumming test to establish the relationship between energy expenditure and heart rate for this activity and a ramped cycle ergometer test to exhaustion as a criterion measure for peak values (oxygen uptake and heart rate...

  5. 29 CFR 1915.173 - Drums and containers.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Drums and containers. 1915.173 Section 1915.173 Labor... Vessels, Drums and Containers, Other Than Ship's Equipment § 1915.173 Drums and containers. (a) Shipping drums and containers shall not be pressurized to remove their contents. (b) A temporarily assembled...

  6. 49 CFR 178.505 - Standards for aluminum drums.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for aluminum drums. 178.505 Section 178... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.505 Standards for aluminum drums. (a) The following are the identification codes for aluminum drums: (1) 1B1 for a non-removable head aluminum drum...

  7. Quality control of radioactive waste products

    International Nuclear Information System (INIS)

    Martens, B.R.; Warnecke, E.; Odoj, R.

    1986-01-01

    The variety of incoming untreated wastes, treatment methods, waste forms and containers requires a great variety of controlling methods and principles to be applied both during waste treatment and on the final product. The paper describes product control schemes and methods, sampling systems and transportable testing equipment for waste drums, and equipment for waste cementation using in-drum stirring and subsequent fixation of solid wastes in the flowable product. (DG) [de

  8. Rotary drum for a centrifugal separator

    International Nuclear Information System (INIS)

    Fukai, Tamotsu.

    1970-01-01

    Herein provided is a rotary drum designed to prevent strength reduction and eccentric weight redistribution at the joints between the drum body and the end cups therefore when materials having divergent specific gravities, strengths and Young's Modulus are employed as the construction materials for the drum body and end cups. The drum body is fabricated by combining glass, carbon boron or similar high strength fibers with a thermosetting hardenable resin. This composite material is then molded into the finished cylindrical product the ends of which are bent slightly inward to receive a rigid, high-strength, ring-shaped end fitting to be integrally joined thereto during the molding operation. Each ring is further adapted to retain an end cap by a procedure which entails lowering the temperature of the end cap and applying heat to the ring, thus joining both members tightly together by employing the differences in thermal expansion of each. (Owens, K. J.)

  9. Buoy-Rope-Drum Wave Power System

    Directory of Open Access Journals (Sweden)

    Linsen Zhu

    2013-01-01

    Full Text Available A buoy-rope-drum wave power system is a new type of floating oscillating buoy wave power device, which absorbs energy from waves by buoy-rope-drum device. Based on the linear deep water wave theory and pure resistive load, with cylinder buoy as an example, the research sets up the theoretical model of direct-drive buoy-rope-drum wave power efficiency and analyzes the influence of the mass and load of the system on its generating efficiency. It points out the two main categories of the efficient buoy-rope-drum wave power system: light thin type and resonance type, and optimal designs of their major parameters are carried out on the basis of the above theoretical model of generating efficiency.

  10. DRUM DRYER FOR DRYING THE PARTICULATE PRODUCTS

    Directory of Open Access Journals (Sweden)

    I. S. Iurova

    2014-01-01

    Full Text Available Summary. For raise effectiveness drying process drum-type installation in which drum the mechanism of creation of various zones providing a necessary temperature and hydrodynamic regime of process of drying in process of product passage on a drum and changes in it of a relationship of various forms of communication of a moisture, and also a process intensification at last stage of drying by creation разряжения in a continuous technological stream of drying is provided is offered. The drum provides formation of a zone of separation of heat-transfer agent by means of the dissector, zones of intensive drying by disposing lobate nozzles in chessboard order with a dividing ring, zones of separation of the completed heat-transfer agent from жома as a result of separator installation in which the elliptic disk having cuts on a straight line from edge to the centre places, with formation of the triangular slot for passage dried pulp and heat-transfer agent, and also zones the final drying by performance of a section of a drum matching to a zone perforated on which length are had spring-loaded lobate nozzles representing the blades connected bow-shaped rod with metal plates, had with outer side of a drum and under the form repeating its contour, thus the bow-shaped rod from the interior of a drum which ends are supplied by springs rest against overhead and bottom persistent screw nuts, and blades and metal plates are installed with possibility of twirl concerning a fastening place on a drum and supplied by reinforcing ribs.

  11. Rotary drum dryers for coal slurries

    Energy Technology Data Exchange (ETDEWEB)

    Baunack, F

    1983-04-01

    The suitability, sizing and internal equipment of rotary drum dryers for high-ash coal slurries are discussed. Rotary dryers will handle also difficult slurries; by suitable drum sizes, lifter blades and chains not only high specific evaporation capacities can be achieved but also very high throughputs of up to 400 tons/h of finished product and high evaporation capacities of 60 tons/h.

  12. Intelligent mobile sensor system for drum inspection and monitoring: Phase 1

    International Nuclear Information System (INIS)

    1993-06-01

    The objective of this project was to develop an operational system for monitoring and inspection activities for waste storage facility operations at several DOE sites. Specifically, the product of this effort is a robotic device with enhanced intelligence and maneuverability capable of conducting routine inspection of stored waste drums. The device is capable of operating in narrow aisles and interpolating the free aisle space between rows of stacked drums. The system has an integrated sensor suite for leak detection, and is interfaced with a site database both for inspection planning and for data correlation, updating, and report generation. The system is capable of departing on an assigned mission, collecting required data, recording which positions of its mission had to be aborted or modified due to environmental constraints, and reporting back when the mission is complete. Successful identification of more than 90% of all drum defects has been demonstrated in a high fidelity waste storage facility mockup. Identified anomalies included rust spots, rust streaks, areas of corrosion, dents, and tilted drums. All drums were positively identified and correlated with the site database. This development effort is separated into three phases of which phase one is now complete. The first phase has demonstrated an integrated system for monitoring and inspection activities for waste storage facility operations. This demonstration system was quickly fielded and evaluated by leveraging technologies developed from previous NASA and DARPA contracts and internal research. The second phase will demonstrate a prototype system appropriate for operational use in an actual storage facility. The prototype provides an integrated design that considers operational requirements, hardware costs, maintenance, safety, and robustness. The final phase will demonstrate commercial viability using the prototype vehicle in a pilot waste operations and inspection project

  13. WRAP Module 1 waste characterization plan

    International Nuclear Information System (INIS)

    Mayancsik, B.A.

    1995-01-01

    The purpose of this document is to present the characterization methodology for waste generated, processed, or otherwise the responsibility of the Waste Receiving and Processing (WRAP) Module 1 facility. The scope of this document includes all solid low level waste (LLW), transuranic (TRU), mixed waste (MW), and dangerous waste. This document is not meant to be all-inclusive of the waste processed or generated within WRAP Module 1, but to present a methodology for characterization. As other streams are identified, the method of characterization will be consistent with the other streams identified in this plan. The WRAP Module 1 facility is located in the 200 West Area of the Hanford Site. The facility's function is two-fold. The first is to verify/characterize, treat and repackage contact handled (CH) waste currently in retrievable storage in the LLW Burial Grounds, Hanford Central Waste Complex, and the Transuranic Storage and Assay Facility (TRUSAF). The second is to verify newly generated CH TRU waste and LLW, including MW. The WRAP Module 1 facility provides NDE and NDA of the waste for both drums and boxes. The NDE is used to identify the physical contents of the waste containers to support waste characterization and processing, verification, or certification. The NDA results determine the radioactive content and distribution of the waste

  14. Measurement of VOC permeability of polymer bags and VOC solubility in polyethylene drum liner

    International Nuclear Information System (INIS)

    Liekhus, K.J.; Peterson, E.S.

    1995-03-01

    A test program conducted at the Idaho National Engineering Laboratory (INEL) investigated the use of a transport model to estimate the volatile organic compound (VOC) concentration in the void volume of a waste drum. Unsteady-state VOC transport model equations account for VOC permeation of polymer bags, VOC diffusion across openings in layers of confinement, and VOC solubility in a polyethylene drum liner. In support of this program, the VOC permeability of polymer bags and VOC equilibrium concentration in a polyethylene drum liner were measured for nine VOCs. The VOCs used in experiments were dichloromethane, carbon tetrachloride, cyclohexane, toluene, 1,1,1-trichloroethane, methanol, 1,1,2-trichloro-1,2,2-trifluoroethane (Freon-113), trichloroethylene, and p-xylene. The experimental results of these measurements as well as a method of estimating both parameters in the absence of experimental data are described in this report

  15. Validation of Non-Invasive Waste Assay System (Gamma Box Counter) Performance at AECL Whiteshell Laboratories - 13136

    International Nuclear Information System (INIS)

    Attas, E.M.; Bialas, E.; Rhodes, M.J.

    2013-01-01

    Low-level radioactive waste (LLW) in solid form, resulting from decommissioning and operations activities at AECL's Whiteshell Laboratories (WL), is packaged in B-25 and B-1000 standard waste containers and characterized before it is shipped to an on-site interim storage facility, pending AECL decisions on long term management of its LLW. Assay of the waste packages before shipment contributes to an inventory of the interim storage facility and provides data to support acceptance at a future repository. A key characterization step is a gamma spectrometric measurement carried out under standard conditions using an automated, multi-detector Waste Assay System (WAS), purchased from Antech Corporation. A combination of ORTEC gamma acquisition software and custom software is used in this system to incorporate multiple measurements from two collimated high-resolution detectors. The software corrects the intensities of the gamma spectral lines for geometry and attenuation, and generates a table of calculated activities or limits of detection for a user-defined list of radioisotopes that may potentially be present. Validation of WAS performance was a prerequisite to routine operation. Documentation of the validation process provides assurance of the quality of the results produced, which may be needed one or two decades after they were generated. Aspects of the validation included setting up a quality control routine, measurements of standard point sources in reproducible positions, study of the gamma background, optimization of user-selectable software parameters, investigation of the effect of non-uniform distribution of materials and radionuclides, and comparison of results with measurements made using other gamma detector systems designed to assay bulk materials. The following key components of the validation process have been established. A daily quality control routine has been instituted, to verify stability of the gamma detector operation and the background levels

  16. APNEA/WIT system nondestructive assay capability evaluation plan for select accessibly stored INEL RWMC waste forms

    International Nuclear Information System (INIS)

    Becker, G.K.

    1997-01-01

    Bio-Imaging Research Inc. (BIR) and Lockheed Martin Speciality Components (LMSC) are engaged in a Program Research and Development Agreement and a Rapid Commercialization Initiative with the Department of Energy, EM-50. The agreement required BIR and LMSC to develop a data interpretation method that merges nondestructive assay and nondestructive examination (NDA/NDE) data and information sufficient to establish compliance with applicable National TRU Program (Program) waste characterization requirements and associated quality assurance performance criteria. This effort required an objective demonstration of the BIR and LMSC waste characterization systems in their standalone and integrated configurations. The goal of the test plan is to provide a mechanism from which evidence can be derived to substantiate nondestructive assay capability and utility statement for the BIT and LMSC systems. The plan must provide for the acquisition, compilation, and reporting of performance data thereby allowing external independent agencies a basis for an objective evaluation of the standalone BIR and LMSC measurement systems, WIT and APNEA respectively, as well as an expected performance resulting from appropriate integration of the two systems. The evaluation is to be structured such that a statement regarding select INEL RWMC waste forms can be made in terms of compliance with applicable Program requirements and criteria

  17. Monitoring of plutonium contaminated solid waste streams. Chapter IV: Passive neutron assay

    International Nuclear Information System (INIS)

    Birkhoff, G.; Bondar, L.

    1978-01-01

    The fundamentals of the passive neutron technique for the non destructive assay of plutonium bearing materials are summarized. A reference monitor for the passive neutron assay of Pu contaminated solids is described in terms of instrumental design principles and performances. The theoretical model of this reference monitor with pertinent nuclear data and functions for the interpretation of experimental data is given

  18. Metabolic Demands of Heavy Metal Drumming

    Directory of Open Access Journals (Sweden)

    Bryan Romero

    2016-07-01

    Full Text Available Background: The drum set involves dynamic movement of all four limbs. Motor control studies have been done on drum set playing, yet not much is known about the physiological responses to this activity. Even less is known about heavy metal drumming. Aims: The purpose of this study was to determine metabolic responses and demands of heavy metal drumming. Methods: Five semi-professional male drummers (mean ± SD age = 27.4 ± 2.6 y, height = 177.2 ± 3.8 cm, body mass = 85.1 ± 17.8 kg performed four prescribed and four self-selected heavy metal songs. Oxygen consumption (VO2, minute ventilation (VE and respiratory exchange ratio (RER were measured using a metabolic cart.  Heart rate (HR was measured using a heart rate monitor. VO2max was determined using a graded cycle ergometer test. Results: The results indicated a metabolic cost of 6.3 ± 1.4 METs and heart rate of 145.1 ± 15.7 beats·min-1 (75.4 ± 8.3% of age-predicted HRmax. VO2 peak values reached approximately 90% of the drummer’s VO2max when performing at the fastest speeds. According to these results, heavy metal drumming may be considered vigorous intensity activity (≥ 6.0 METs. The relative VO2max of 40.2 ± 9.5 mL·kg·min-1 leads to an aerobic fitness classification of “average” for adult males. Conclusions: The metabolic demands required during heavy metal drumming meet the American College of Sports Medicine guidelines for the development of health related fitness.  Keywords: Drum set, Exercise physiology, VO2, Music

  19. Status of operation of radionuclides assay system in Korean nuclear power plant

    International Nuclear Information System (INIS)

    Hwang, K.H.; Lee, K.J.; Jeong, C.W.; Ahn, S.M.

    2003-01-01

    In Korea, 17 nuclear power plants composed of 13 pressurized water reactors and 4 CANDU reactors are currently in operation. The cumulative amounts of low and intermediate level radioactive waste in nuclear power plant reached 58,718 drums (unit: 200 liter) in 2001. Efforts to construct LILW disposal facility are continued and its first operation is planned in the year 2008. Its first stage capacity is assumed to be 100,000 drums and total capacity will reach to 800,000 drums. Radwaste disposal site selection is an urgent national project at present time. Regulations and guidelines require detailed information about the radioactive waste package and its contents prior to the transport to the disposal sites. The Enforcement Decree of the Korean Atomic Energy Act (articles 234-17) requires the Minister of Science and Technology (MOST) of Korea to establish regulation for the waste acceptance (MOST notice. 1196-10). It requires detailed information about the radioactive waste package and its contents such as activity of radionuclides, total activities, types and characteristics of waste. For the measurement of the concentrations and activities of radionuclides in radwaste drum, a radionuclides assay system is installed at Korean nuclear power plant (KORI site) in 1996. The waste drum can be measured in the vertical direction with eight vertical segments while in the radial direction also with eight segments. Using this measurement method, homogeneous and non-homogeneous waste drum can be measured. Scaling factor methods have been played a dominant role in the determination of the radionuclides concentration in this system. For corrosion product, generic scaling factors were used due to the similarity and better-characterized properties of Korean analyzed data as compared with the worldwide data base of PWR industry. For fission product and TRU nuclides, it is not easy to determine the generic scaling factors. Thus simple model reflecting the operation history of power

  20. Final report of the 2. committee of investigation of the 11. legislative period. Drums

    International Nuclear Information System (INIS)

    1990-01-01

    On the subject of 'drums', the questions concerning treatment, transport, and storage and disposal, the content of the drums as well as procedures for persons and environment were in the fore. The Committee dealt with the customary conditioning methods and with the occurrences at Studsvik Energiteknik AB and CEN/SCK in Mol/Belgium, the facilities charged by Transnuklear GmbH with the conditioning. The all in all 1534 drums with waste conditioned in CEN/SCK, which are in German intermediate waste stores, contain to a considerable extent elements from conditioned waste of Belgian origin, despite of having been declared to be waste of German origin. The reasons for this were partly of an operational nature, partly intentionally, in order to fulfil the contracts and to receive the full price. - European and national law were violated. - The Federal Government's main counter- measures consisted in restructuring the nculear energy industry, de-concentration of responsibility sectors, liquidation of Transnuklear GmbH in May 1988, and the guideline on safeguards of radioactive wastes of January 16, 1989. (HSCH) [de

  1. Status of ERDA TRU waste packaging study

    International Nuclear Information System (INIS)

    Doty, J.W. Jr.

    1977-01-01

    This paper discusses the status of Task 3 of the TRU Waste Cyclone Drum Incinerator and Treatment System program. This task covers acceptable TRU packaging for interim storage and terminal isolation. The kind of TRU wastes generated by contractors and its transport are discussed. Both drum and box systems are desirable

  2. Neutron interrogator assay system for the Idaho Chemical Processing Plant waste canisters and spent fuel: preliminary description and operating procedures manual

    International Nuclear Information System (INIS)

    Menlove, H.O.; Eccleston, G.; Close, D.A.; Speir, L.G.

    1978-05-01

    A neutron interrogation assay system is being designed for the measurement of waste canisters and spent fuel packages at the new Idaho Chemical Processing Plant to be operated by Allied Chemical Corp. The assay samples consist of both waste canisters from the fluorinel dissolution process and spent fuel assemblies. The assay system is a 252 Cf ''Shuffler'' that employs a cyclic sequence of fast-neutron interrogation with a 252 Cf source followed by delayed-neutron counting to determine the 235 U content

  3. Uncertainty analysis of a nondestructive radioassay system for transuranic waste

    International Nuclear Information System (INIS)

    Harker, Y.D.; Blackwood, L.G.; Meachum, T.R.; Yoon, W.Y.

    1996-01-01

    Radioassay of transuranic waste in 207 liter drums currently stored at the Idaho National Engineering Laboratory is achieved using a Passive Active Neutron (PAN) nondestructive assay system. In order to meet data quality assurance requirements for shipping and eventual permanent storage of these drums at the Waste Isolation Pilot Plant in Carlsbad, New Mexico, the total uncertainty of the PAN system measurements must be assessed. In particular, the uncertainty calculations are required to include the effects of variations in waste matrix parameters and related variables on the final measurement results. Because of the complexities involved in introducing waste matrix parameter effects into the uncertainty calculations, standard methods of analysis (e.g., experimentation followed by propagation of errors) could not be implemented. Instead, a modified statistical sampling and verification approach was developed. In this modified approach the total performance of the PAN system is simulated using computer models of the assay system and the resultant output is compared with the known input to assess the total uncertainty. This paper describes the simulation process and illustrates its application to waste comprised of weapons grade plutonium-contaminated graphite molds

  4. Intelligent Mobile Sensor System for drum inspection and monitoring - Volume 1. Final report, October 1, 1993 - April 22, 1995

    International Nuclear Information System (INIS)

    1995-01-01

    The objective of the Intelligent Mobile Sensor System (IMSS) project is to develop an operational system for monitoring and inspection activities for waste storage facility operations at several DOE sites. Specifically, the product of this effort is a robotic device with enhanced intelligence and maneuverability capable of conducting routine inspection of stored waste drums. The device is capable of operating in the narrow free aisle space between rows of stacked drums. The system has an integrated sensor suite for problem-drum detection, and is linked to a site database both for inspection planning and for data correlation, updating, and report generation. The system is capable of departing on an assigned mission, collecting required data, recording which portions of its mission had to be aborted or modified due to environmental constraints, and reporting back when the mission is complete. Successful identification of more than 96% of drum defects has been demonstrated in a high fidelity waste storage facility mockup. Identified anomalies included rust spots, rust streaks, areas of corrosion, dents, and tilted drums. All drums were positively identified and correlated with the site database. This development effort is separated into three phases of which phase two is now complete. The first phase demonstrated an integrated system (maturity level IVa) for monitoring and inspection activities for waste storage facility operations. The second phase demonstrated a prototype system appropriate for operational use in an actual storage facility. The prototype provides an integrated design that considers operational requirements, hardware costs, maintenance, safety, and robustness. The final phase will demonstrate commercial viability using the prototype vehicle in a pilot waste operations and inspection project. This report summarizes the design and evaluation of the new IMSS Phase 2 system and vehicle

  5. Use of segregation techniques to reduce stored low level waste

    International Nuclear Information System (INIS)

    Nascimento Viana, R.; Vianna Mariano, N.; Antonio do Amaral, M.

    2000-01-01

    This paper describes the use of segregation techniques in reducing the stored Low Level Waste on Intermediate Waste Repository 1, at Angra Nuclear Power Plant Site, from 1701 to 425 drums of compacted waste. (author)

  6. Complementary Therapy for Addiction: “Drumming Out Drugs”

    Science.gov (United States)

    Winkelman, Michael

    2003-01-01

    Objectives. This article examines drumming activities as complementary addiction treatments and discusses their reported effects. Methods. I observed drumming circles for substance abuse (as a participant), interviewed counselors and Internet mailing list participants, initiated a pilot program, and reviewed literature on the effects of drumming. Results. Research reviews indicate that drumming enhances recovery through inducing relaxation and enhancing theta-wave production and brain-wave synchronization. Drumming produces pleasurable experiences, enhanced awareness of preconscious dynamics, release of emotional trauma, and reintegration of self. Drumming alleviates self-centeredness, isolation, and alienation, creating a sense of connectedness with self and others. Drumming provides a secular approach to accessing a higher power and applying spiritual perspectives. Conclusions. Drumming circles have applications as complementary addiction therapy, particularly for repeated relapse and when other counseling modalities have failed. PMID:12660212

  7. Sealing of rotary drums for operation under pressurized conditions

    International Nuclear Information System (INIS)

    Shirvani, M.; Khanof, M. H.; Yousefi, M. R.; Sadighi, S.

    2006-01-01

    In practice, rotary drums are always designed for operation under vacuum conditions. In this paper, a novel technique is proposed for sealing the rotary drums under pressurized conditions. The proposed system is based on applying a secondary pressurized volume around the leaking gap of the drum. By controlling the pressure of this volume above the pressure of the drum, it will be possible to prevent from any leakage of gases to the ambient. The objective of a controller in this system is that the pressure of secondary volume be kept above the pressure of the drum in spite of the disturbances which may be exerted on the system by the wind outside the drum. The control system is also required to trace the variations in the drum pressure with the least fluctuations in the pressure difference among the drum and the volume

  8. Salt Composition Derived from Veazey Composition by Thermodynamic Modeling and Predicted Composition of Drum Contents

    Energy Technology Data Exchange (ETDEWEB)

    Weisbrod, Kirk Ryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Veirs, Douglas Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clark, David Lewis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    This report describes the derivation of the salt composition from the Veazey salt stream analysis. It also provides an estimate of the proportions of the kitty litter, nitrate salt and neutralizer that was contained in drum 68660. While the actinide content of waste streams was judiciously followed in the 1980s in TA-55, no record of the salt composition could be found. Consequently, a salt waste stream produced from 1992 to 1994 and reported by Gerry Veazey provided the basis for this study. While chemical analysis of the waste stream was highly variable, an average analysis provided input to the Stream Analyzer software to calculate a composition for a concentrated solid nitrate salt and liquid waste stream. The calculation predicted the gas / condensed phase compositions as well as solid salt / saturated liquid compositions. The derived composition provides an estimate of the nitrate feedstream to WIPP for which kinetic measurements can be made. The ratio of salt to Swheat in drum 68660 contents was estimated through an overall mass balance on the parent and sibling drums. The RTR video provided independent confirmation concerning the volume of the mixture. The solid salt layer contains the majority of the salt at a ratio with Swheat that potentially could become exothermic.

  9. Salt Composition Derived from Veazey Composition by Thermodynamic Modeling and Predicted Composition of Drum Contents

    International Nuclear Information System (INIS)

    Weisbrod, Kirk Ryan; Veirs, Douglas Kirk; Funk, David John; Clark, David Lewis

    2016-01-01

    This report describes the derivation of the salt composition from the Veazey salt stream analysis. It also provides an estimate of the proportions of the kitty litter, nitrate salt and neutralizer that was contained in drum 68660. While the actinide content of waste streams was judiciously followed in the 1980s in TA-55, no record of the salt composition could be found. Consequently, a salt waste stream produced from 1992 to 1994 and reported by Gerry Veazey provided the basis for this study. While chemical analysis of the waste stream was highly variable, an average analysis provided input to the Stream Analyzer software to calculate a composition for a concentrated solid nitrate salt and liquid waste stream. The calculation predicted the gas / condensed phase compositions as well as solid salt / saturated liquid compositions. The derived composition provides an estimate of the nitrate feedstream to WIPP for which kinetic measurements can be made. The ratio of salt to Swheat in drum 68660 contents was estimated through an overall mass balance on the parent and sibling drums. The RTR video provided independent confirmation concerning the volume of the mixture. The solid salt layer contains the majority of the salt at a ratio with Swheat that potentially could become exothermic.

  10. Lessons learned from a criticality safety case for historic PCM waste retrieval

    International Nuclear Information System (INIS)

    Kirkwood, David

    2003-01-01

    Plutonium Contaminated Material arises as a solid waste at the United Kingdom Sellafield Site. Its disposal route entails it being packaged into 200 litre mild steel drums which are currently placed in interim surface stores in large multi-layered arrays. Within one of the original Sellafield buildings, a large number of such drums accumulated in an area known as the South Solvent Cells during the late 1960s and early 1970s. They have remained there largely untouched until retrieval operations commenced in 2002. From the out-set, significant operational difficulties were encountered which led to a cessation of the retrieval operations after the processing of only twelve historic drums. These difficulties had their origins in the requirements of the criticality safety case and calibration of the plutonium assay instrumentation which supported the retrieval operations. This paper describes the remedial actions taken to address these difficulties which have allowed a successful resumption of waste retrieval operations and highlights learning points which have general applicability to any decommissioning or historic waste retrieval project that involves the fissile assay of plutonium (and 235 U) contaminated plant. (author)

  11. Sampling and analysis plan for the characterization of eight drums at the 200-BP-5 pump-and-treat systems

    International Nuclear Information System (INIS)

    Laws, J.R.

    1995-01-01

    Samples will be collected and analyzed to provide sufficient information for characterization of mercury and aluminum contamination in drums from the final rinse of the tanks in the two pump-and-treat systems supporting the 200-BP-5 Operable Unit. The data will be used to determine the type of contamination in the drums to properly designate the waste for disposal or treatment. This sampling plan does not substitute the sampling requirements but is a separate sampling event to manage eight drums containing waste generated during an unanticipated contamination of the process water with mercury and aluminum nitrate nonahydrate (ANN). The Toxicity Characteristic Leaching Procedure (TCLP) will be used for extraction, and standard US Environmental Protection Agency (EPA) methods will be used for analysis

  12. 21 CFR 886.4230 - Ophthalmic knife test drum.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic knife test drum. 886.4230 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4230 Ophthalmic knife test drum. (a) Identification. An ophthalmic knife test drum is a device intended to test the keenness of ophthalmic surgical...

  13. Beat my bass, pluck my drum

    NARCIS (Netherlands)

    Hengeveld, B.J.; Funk, M.; Doing, V.

    2014-01-01

    Beating a bass, plucking a drum -- new systems of instruments make it possible. In this paper we describe recent research into networked musical instruments for group improvisation; instruments that reciprocally influence each other's behaviour, making, contrary to what we are used to, the

  14. Q2 - a very low level quantitative and qualitative waste assay and release certification system

    International Nuclear Information System (INIS)

    Bronson, F.L.

    1990-01-01

    Low level radioactive waste disposal is very expensive, especially when all of the handling transportation and documentation costs are included. However for most generators, a large fraction of this low level waste is not contaminated at all, or only slightly so. The paper describes the development and performance of a low level counter that is convenient to use, and that can accurately identify and quantify the radioactivity of any gamma emitter thing that can be placed in a 55 gallon (200 liter) container. These measurement results can be used to verify the absence of radioactivity at a very low levels (10 nCi (370 Bq)/sample), and to identify the nuclides and quantities present, while differentiating against natural radioactivity (Radium, Thorium, Potassium). These results can be used as part of a 10CFR20.302 waste stream exemption program, and thus allow significant savings and a less than 1 year payback at a typical nuclear power plant. The Q1 system is fully shielded to allow it's use in the low level radwaste storage area. The detectors are either 3 Intrinsic Germanium detectors or 2 large NaI detectors. The software is fully automated for simple operation. Correlation factors can be entered to estimate non-gamma emitters from pre-established correlations to other nuclides. Typical Ge detector sensitivities are 8 nCi (300 Bq) LLD for Cs-137 at 0.8 g/cc for a 10 minute count time. NaI detector systems can achieve the same LLD in a 1 minute count. 5 figs., 1 tab

  15. Control of radioactive wastes and coupling of neutron/gamma measurements: use of radiative capture for the correction of matrix effects that penalize the fissile mass measurement by active neutron interrogation

    International Nuclear Information System (INIS)

    Loche, F.

    2006-10-01

    In the framework of radioactive waste drums control, difficulties arise in the nondestructive measurement of fissile mass ( 235 U, 239 Pu..) by Active Neutron Interrogation (ANI), when dealing with matrices containing materials (Cl, H...) influencing the neutron flux. The idea is to use the neutron capture reaction (n,γ) to determine the matrix composition to adjust the ANI calibration coefficient value. This study, dealing with 118 litres, homogeneous drums of density less than 0,4 and composed of chlorinated and/or hydrogenated materials, leads to build abacus linking the γ ray peak areas to the ANI calibration coefficient. Validation assays of these abacus show a very good agreement between the corrected and true fissile masses for hydrogenated matrices (max. relative standard deviation: 23 %) and quite good for chlorinated and hydrogenated matrices (58 %). The developed correction method improves the measured values. It may be extended to 0,45 density, heterogeneous drums. (author)

  16. Experimental and numerical studies of rotating drum grate furnace

    Directory of Open Access Journals (Sweden)

    Basista Grzegorz

    2017-01-01

    Full Text Available Waste material from the meat industry can be taken into account as a biofuel. Studies confirm, that calorific value is higher and ash content is lower comparing to some conventional fuels. EU directives regulate details of thermal disposal of the waste material from the meat industry - especially in range of the process temperature and time of the particle presence in area of the combustion zone. The paper describes design of the rotating drum grate stove, dedicated to thermal disposal of the meat wastes as well as solid biomass (pellet, small bricket, wood chips combustion. Device has been developed in frames of cooperation between AGH University of Science and Technology (Krakow, Poland and producer focused on technologies of energy utilization of biomass in distributed generation. Results of measurements of selected operational parameters performed during startup of the furnace have been presented and discussed. Furthermore, numerical model of the combustion process has been developed to complement experimental results in range of the temperature and oxygen distribution in the area of the combustion chamber. ANSYS CFX solver has been applied to perform simulations including rotational domain related with specifics of operation of the device. Results of numerical modelling and experimental studies have been summarized and compared.

  17. SGSreco. Radiological characterization of waste containers by segmented gamma-Scan measurements; SGSreco. Radiologische Charakterisierung von Abfallfaessern durch Segmentierte γ-Scan Messungen

    Energy Technology Data Exchange (ETDEWEB)

    Krings, Thomas Heinrich

    2014-04-01

    Starting from 2021, low and intermediate level radioactive waste produced in the Federal Republic of Germany will be finally disposed at a depth from 800 m to 1300 m in the Konrad Repository, close to the city Salzgitter. A prerequisite for the final disposal of radioactive waste packages is their conformance with national acceptance criteria. These acceptance criteria include among others radiological requirements for waste packages. To ensure a conformance of waste packages with these radiological requirements, experimental techniques are applied to characterize their radionuclide inventories. For this purpose, segmented γ-scanning is used worldwide as the standard non-destructive assay for the radiological characterization of waste drums. Segmented γ-scanning investigates predefined parts of a waste drum independently of each other using γ-spectrometry with a collimated detection system. Radionuclides are identified by their characteristic γ-lines in each recorded γ-spectrum, and two-dimensional count rate distributions are determined depending on the positions of the investigated predefined parts. The reconstruction of radionuclide specific activities by conventional methods requires a homogeneous matrix and radionuclide distribution within the whole drum. Thus, radionuclide specific activities are estimated using an analytical model based on the average count rate of a characteristic γ-line over all investigated parts of the waste drum. However, only 25% of all waste drums meet these requirements. It is therefore expected that the radionuclide specific activities for the majority of waste drums are miscalculated by several orders of magnitude. In this work, an analysis framework known as SGSreco is presented. SGSreco aims to ensure an accurate and a reliable reconstruction of radionuclide specific activities for homogeneous and spatially concentrated (point sources) radionuclide inventories. SGSreco uses an inverse approach. Within a first

  18. Criticality study of the storage of radioactive waste containing 235U

    International Nuclear Information System (INIS)

    Couasnon, O.

    1999-01-01

    The purpose of this study is to define the conditions of storage of nuclear waste drums containing 350 g of 235 U (per drum). This study is valid for a square pitch stacking of cylindrical drums whose height/diameter ratio does not exceed 3. The reflector effect of concrete is taken into account. This study defines a conservative case that can be used under any hypothesis of moderation, of radiation coupling between drums and of fissile material density. (A.C.)

  19. Simulating Lahars Using A Rotating Drum

    Science.gov (United States)

    Neather, Adam; Lube, Gert; Jones, Jim; Cronin, Shane

    2014-05-01

    A large (0.5 m in diameter, 0.15 m wide) rotating drum is used to investigate the erosion and deposition mechanics of lahars. To systematically simulate the conditions occurring in natural mass flows our experimental setup differs from the common rotating drum employed in industrial/engineering studies. Natural materials with their typical friction properties are used, as opposed to the frequently employed spherical glass beads; the drum is completely water-proof, so solid/air and solid/liquid mixtures can be investigated; the drum velocity and acceleration can be precisely controlled using a software interface to a micro-controller, allowing for the study of steady, unsteady and intermediate flow regimes. The drum has a toughened glass door, allowing high-resolution, high-speed video recording of the material inside. Vector maps of the velocities involved in the flows are obtained using particle image velocimetry (PIV). The changes in velocity direction and/or magnitude are used to locate the primary internal boundaries between layers of opposite flow direction, as well as secondary interfaces between shear layers. A range of variables can be measured: thickness and number of layers; the curvature of the free surface; frequency of avalanching; position of the centre of mass of the material; and the velocity profiles of the flowing material. Experiments to date have focussed on dry materials, and have had a fill factor of approximately 0.3. Combining these measured variables allows us to derive additional data of interest, such as mass and momentum flux. It is these fluxes that we propose will allow insight into the erosion/deposition mechanics of a lahar. A number of conclusions can be drawn to date. A primary interface separates flowing and passive region (this interface has been identified in previous studies). As well as the primary interface, the flowing layer separates into individual shear layers, with individual erosion/deposition and flow histories. This

  20. Intelligent Mobile Sensor System for drum inspection and monitoring - Volume 2. Final report, October 1, 1993 - April 22, 1995

    International Nuclear Information System (INIS)

    1995-01-01

    The objective of the Intelligent Mobile Sensor System (IMSS) project was to develop an operational system for monitoring and inspection activities for waste storage facility operations at several DOE sites. Specifically, the product of this effort was a robotic device with enhanced intelligence and maneuverability capable of conducting routine inspection of stored waste drums. The system has an integrated sensor suite for problem-drum detection, and creates and maintains a site database both for inspection planning and for data correlation, updating, and report generation. The system is capable of departing on an assigned mission, collecting required data, recording which portions of its mission had to be aborted or modified due to environmental constraints, and reporting back when the mission is complete. Successful identification of more than 96% of drum defects has been demonstrated in a high fidelity waste storage facility mockup. Identified anomalies included rust spots, rust streaks, areas of corrosion, dents, and tilted drums. All drums were positively identified and correlated with the site database. This development effort was separated into three phases of which phase three is now complete. The first phase demonstrated an integrated system (maturity level IVa) for monitoring and inspection activities for waste storage facility operations. The second phase demonstrated a prototype system appropriate for operational use in an actual storage facility. The prototype employed an integrated design that considered operational requirements, hardware costs, maintenance, safety, and robustness. The final phase has demonstrated the commercial viability of the vehicle in operating waste storage facilities at Fernald, Ohio and the Idaho National Engineering Laboratory (INEL). This report summarizes the system upgrades performed in phase 3 and the evaluation of the IMSS Phase 3 system and vehicle

  1. Intelligent mobile sensor system for drum inspection and monitoring: Phase 1. Topical report, October 1, 1992--June 8, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    The objective of this project was to develop an operational system for monitoring and inspection activities for waste storage facility operations at several DOE sites. Specifically, the product of this effort is a robotic device with enhanced intelligence and maneuverability capable of conducting routine inspection of stored waste drums. The device is capable of operating in narrow aisles and interpolating the free aisle space between rows of stacked drums. The system has an integrated sensor suite for leak detection, and is interfaced with a site database both for inspection planning and for data correlation, updating, and report generation. The system is capable of departing on an assigned mission, collecting required data, recording which positions of its mission had to be aborted or modified due to environmental constraints, and reporting back when the mission is complete. Successful identification of more than 90% of all drum defects has been demonstrated in a high fidelity waste storage facility mockup. Identified anomalies included rust spots, rust streaks, areas of corrosion, dents, and tilted drums. All drums were positively identified and correlated with the site database. This development effort is separated into three phases of which phase one is now complete. The first phase has demonstrated an integrated system for monitoring and inspection activities for waste storage facility operations. This demonstration system was quickly fielded and evaluated by leveraging technologies developed from previous NASA and DARPA contracts and internal research. The second phase will demonstrate a prototype system appropriate for operational use in an actual storage facility. The prototype provides an integrated design that considers operational requirements, hardware costs, maintenance, safety, and robustness. The final phase will demonstrate commercial viability using the prototype vehicle in a pilot waste operations and inspection project.

  2. DEGRADATION EVALUATION OF HEAVY WATER DRUMS AND TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Vormelker, P.

    2009-07-31

    Heavy water with varying chemistries is currently being stored in over 6700 drums in L- and K-areas and in seven tanks in L-, K-, and C-areas. A detailed evaluation of the potential degradation of the drums and tanks, specific to their design and service conditions, has been performed to support the demonstration of their integrity throughout the desired storage period. The 55-gallon drums are of several designs with Type 304 stainless steel as the material of construction. The tanks have capacities ranging from 8000 to 45600 gallons and are made of Type 304 stainless steel. The drums and tanks were designed and fabricated to national regulations, codes and standards per procurement specifications for the Savannah River Site. The drums have had approximately 25 leakage failures over their 50+ years of use with the last drum failure occurring in 2003. The tanks have experienced no leaks to date. The failures in the drums have occurred principally near the bottom weld, which attaches the bottom to the drum sidewall. Failures have occurred by pitting, crevice and stress corrosion cracking and are attributable, in part, to the presence of chloride ions in the heavy water. Probable degradation mechanisms for the continued storage of heavy water were evaluated that could lead to future failures in the drum or tanks. This evaluation will be used to support establishment of an inspection plan which will include susceptible locations, methods, and frequencies for the drums and tanks to avoid future leakage failures.

  3. Operation of the radioactive waste treatment facility

    International Nuclear Information System (INIS)

    Kim, Kil Jeong; Ahn, Seom Jin; Lee, Kang Moo; Lee, Young Hee; Sohn, Jong Sik; Bae, Sang Min; Kang, Kwon Ho; Lim, Kil Sung; Sohn, Young Joon; Kim, Tae Kook; Jeong, Kyung Hwan; Wi, Geum San; Park, Seung Chul; Park, Young Woong; Yoon, Bong Keun.

    1996-12-01

    The radioactive wasted generated at Korea Atomic Energy Research Institute (KAERI) in 1996 are about 118m 3 of liquid waste and 204 drums of solid waste. Liquid waste were treated by the evaporation process, the bituminization process, and the solar evaporation process. In 1996, 100.5m 3 of liquid waste was treated. (author). 84 tabs., 103 figs

  4. Chipping machines: disc and drum energy requirements

    Directory of Open Access Journals (Sweden)

    Alessio Facello

    2013-09-01

    Full Text Available Air pollution and fossil fuel reserves exhaustion are increasing the importance of the biomass-derived products, in particular wood, as source of clean and renewable energy for the production of electricity or steam. In order to improve the global efficiency and the entire production chain, we have to evaluate the energetic aspects linked to the process of transformation, handling and transport of these materials. This paper reports results on a comparison between two chippers of similar size using different cutting technology: disc and drum tool respectively. During trials, fuel consumption, PTO torque and speed, processing time and weight of processed material were recorded. Power demand, fuel consumption, specific energy and productivity were computed. The machine was fed with four different feedstock types (chestnut logs, poplar logs, poplar branches, poplar sawmill residues. 15 repetitions for each combination of feedstock-tool were carried out. The results of this study show that the disc tool requires, depending on the processed material, from 12 to 18% less fuel per unit of material processed than the drum tool, and consequently, from 12 to 16% less specific energy. In particular, the highest difference between tools was found in branches processing whereas the smallest was in poplar logs. Furthermore the results of the investigation indicate, that, in testing conditions, the productivity of drum tool is higher (8% than disc tool.

  5. Active Drumming Experience Increases Infants' Sensitivity to Audiovisual Synchrony during Observed Drumming Actions.

    Science.gov (United States)

    Gerson, Sarah A; Schiavio, Andrea; Timmers, Renee; Hunnius, Sabine

    2015-01-01

    In the current study, we examined the role of active experience on sensitivity to multisensory synchrony in six-month-old infants in a musical context. In the first of two experiments, we trained infants to produce a novel multimodal effect (i.e., a drum beat) and assessed the effects of this training, relative to no training, on their later perception of the synchrony between audio and visual presentation of the drumming action. In a second experiment, we then contrasted this active experience with the observation of drumming in order to test whether observation of the audiovisual effect was as effective for sensitivity to multimodal synchrony as active experience. Our results indicated that active experience provided a unique benefit above and beyond observational experience, providing insights on the embodied roots of (early) music perception and cognition.

  6. Active Drumming Experience Increases Infants' Sensitivity to Audiovisual Synchrony during Observed Drumming Actions.

    Directory of Open Access Journals (Sweden)

    Sarah A Gerson

    Full Text Available In the current study, we examined the role of active experience on sensitivity to multisensory synchrony in six-month-old infants in a musical context. In the first of two experiments, we trained infants to produce a novel multimodal effect (i.e., a drum beat and assessed the effects of this training, relative to no training, on their later perception of the synchrony between audio and visual presentation of the drumming action. In a second experiment, we then contrasted this active experience with the observation of drumming in order to test whether observation of the audiovisual effect was as effective for sensitivity to multimodal synchrony as active experience. Our results indicated that active experience provided a unique benefit above and beyond observational experience, providing insights on the embodied roots of (early music perception and cognition.

  7. Active Drumming Experience Increases Infants’ Sensitivity to Audiovisual Synchrony during Observed Drumming Actions

    Science.gov (United States)

    Timmers, Renee; Hunnius, Sabine

    2015-01-01

    In the current study, we examined the role of active experience on sensitivity to multisensory synchrony in six-month-old infants in a musical context. In the first of two experiments, we trained infants to produce a novel multimodal effect (i.e., a drum beat) and assessed the effects of this training, relative to no training, on their later perception of the synchrony between audio and visual presentation of the drumming action. In a second experiment, we then contrasted this active experience with the observation of drumming in order to test whether observation of the audiovisual effect was as effective for sensitivity to multimodal synchrony as active experience. Our results indicated that active experience provided a unique benefit above and beyond observational experience, providing insights on the embodied roots of (early) music perception and cognition. PMID:26111226

  8. Drum-mate: interaction dynamics and gestures in human-humanoid drumming experiments

    Science.gov (United States)

    Kose-Bagci, Hatice; Dautenhahn, Kerstin; Syrdal, Dag S.; Nehaniv, Chrystopher L.

    2010-06-01

    This article investigates the role of interaction kinesics in human-robot interaction (HRI). We adopted a bottom-up, synthetic approach towards interactive competencies in robots using simple, minimal computational models underlying the robot's interaction dynamics. We present two empirical, exploratory studies investigating a drumming experience with a humanoid robot (KASPAR) and a human. In the first experiment, the turn-taking behaviour of the humanoid is deterministic and the non-verbal gestures of the robot accompany its drumming to assess the impact of non-verbal gestures on the interaction. The second experiment studies a computational framework that facilitates emergent turn-taking dynamics, whereby the particular dynamics of turn-taking emerge from the social interaction between the human and the humanoid. The results from the HRI experiments are presented and analysed qualitatively (in terms of the participants' subjective experiences) and quantitatively (concerning the drumming performance of the human-robot pair). The results point out a trade-off between the subjective evaluation of the drumming experience from the perspective of the participants and the objective evaluation of the drumming performance. A certain number of gestures was preferred as a motivational factor in the interaction. The participants preferred the models underlying the robot's turn-taking which enable the robot and human to interact more and provide turn-taking closer to 'natural' human-human conversations, despite differences in objective measures of drumming behaviour. The results are consistent with the temporal behaviour matching hypothesis previously proposed in the literature which concerns the effect that the participants adapt their own interaction dynamics to the robot's.

  9. WRAP Module 1 sampling strategy and waste characterization alternatives study

    Energy Technology Data Exchange (ETDEWEB)

    Bergeson, C.L.

    1994-09-30

    The Waste Receiving and Processing Module 1 Facility is designed to examine, process, certify, and ship drums and boxes of solid wastes that have a surface dose equivalent of less than 200 mrem/h. These wastes will include low-level and transuranic wastes that are retrievably stored in the 200 Area burial grounds and facilities in addition to newly generated wastes. Certification of retrievably stored wastes processing in WRAP 1 is required to meet the waste acceptance criteria for onsite treatment and disposal of low-level waste and mixed low-level waste and the Waste Isolation Pilot Plant Waste Acceptance Criteria for the disposal of TRU waste. In addition, these wastes will need to be certified for packaging in TRUPACT-II shipping containers. Characterization of the retrievably stored waste is needed to support the certification process. Characterization data will be obtained from historical records, process knowledge, nondestructive examination nondestructive assay, visual inspection of the waste, head-gas sampling, and analysis of samples taken from the waste containers. Sample characterization refers to the method or methods that are used to test waste samples for specific analytes. The focus of this study is the sample characterization needed to accurately identify the hazardous and radioactive constituents present in the retrieved wastes that will be processed in WRAP 1. In addition, some sampling and characterization will be required to support NDA calculations and to provide an over-check for the characterization of newly generated wastes. This study results in the baseline definition of WRAP 1 sampling and analysis requirements and identifies alternative methods to meet these requirements in an efficient and economical manner.

  10. WRAP Module 1 sampling strategy and waste characterization alternatives study

    International Nuclear Information System (INIS)

    Bergeson, C.L.

    1994-01-01

    The Waste Receiving and Processing Module 1 Facility is designed to examine, process, certify, and ship drums and boxes of solid wastes that have a surface dose equivalent of less than 200 mrem/h. These wastes will include low-level and transuranic wastes that are retrievably stored in the 200 Area burial grounds and facilities in addition to newly generated wastes. Certification of retrievably stored wastes processing in WRAP 1 is required to meet the waste acceptance criteria for onsite treatment and disposal of low-level waste and mixed low-level waste and the Waste Isolation Pilot Plant Waste Acceptance Criteria for the disposal of TRU waste. In addition, these wastes will need to be certified for packaging in TRUPACT-II shipping containers. Characterization of the retrievably stored waste is needed to support the certification process. Characterization data will be obtained from historical records, process knowledge, nondestructive examination nondestructive assay, visual inspection of the waste, head-gas sampling, and analysis of samples taken from the waste containers. Sample characterization refers to the method or methods that are used to test waste samples for specific analytes. The focus of this study is the sample characterization needed to accurately identify the hazardous and radioactive constituents present in the retrieved wastes that will be processed in WRAP 1. In addition, some sampling and characterization will be required to support NDA calculations and to provide an over-check for the characterization of newly generated wastes. This study results in the baseline definition of WRAP 1 sampling and analysis requirements and identifies alternative methods to meet these requirements in an efficient and economical manner

  11. The Saami shaman drums: some reflexions from an archaelogical perspective

    Directory of Open Access Journals (Sweden)

    Inger Zachrisson

    1991-01-01

    Full Text Available The Saami shaman drums from northern Scandinavia can be discussed from many different points of view. For an archaeologist there are other questions of interest than those which generally occupy the historian of religions. One important question is how old the known Saami drums are. The known drums are as a rule assumed to be from the seventeenth or the eighteenth centuries, when most of them were collected. It has also been thought that, because of the materials they are made of, drums could not have been preserved any longer. Another perhaps more interesting question is how old the known types of Saami drums might be. When did they acquire their 'classical' form? What did the Viking Age Saami drums look like?

  12. Control of radioactive wastes and coupling of neutron/gamma measurements: use of radiative capture for the correction of matrix effects that penalize the fissile mass measurement by active neutron interrogation; Controle des dechets radioactifs et couplage de mesures neutron/gamma: exploitation de la capture radiative pour corriger les effets de matrice penalisant la mesure de la masse fissile par interrogation neutronique active

    Energy Technology Data Exchange (ETDEWEB)

    Loche, F

    2006-10-15

    In the framework of radioactive waste drums control, difficulties arise in the nondestructive measurement of fissile mass ({sup 235}U, {sup 239}Pu..) by Active Neutron Interrogation (ANI), when dealing with matrices containing materials (Cl, H...) influencing the neutron flux. The idea is to use the neutron capture reaction (n,{gamma}) to determine the matrix composition to adjust the ANI calibration coefficient value. This study, dealing with 118 litres, homogeneous drums of density less than 0,4 and composed of chlorinated and/or hydrogenated materials, leads to build abacus linking the {gamma} ray peak areas to the ANI calibration coefficient. Validation assays of these abacus show a very good agreement between the corrected and true fissile masses for hydrogenated matrices (max. relative standard deviation: 23 %) and quite good for chlorinated and hydrogenated matrices (58 %). The developed correction method improves the measured values. It may be extended to 0,45 density, heterogeneous drums. (author)

  13. The Hanford Site solid waste treatment project; Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    Roberts, R.J.

    1991-01-01

    The Waste Receiving and Processing (WRAP) Facility will provide treatment and temporary storage (consisting of in-process storage) for radioactive and radioactive/hazardous mixed waste. This facility must be constructed and operated in compliance with all appropriate US Department of Energy (DOE) orders and Resource Conservation and Recovery Act (RCRA) regulations. The WRAP Facility will examine and certify, segregate/sort, and treat for disposal suspect transuranic (TRU) wastes in drums and boxes placed in 20-yr retrievable storage since 1970; low-level radioactive mixed waste (RMW) generated and placed into storage at the Hanford Site since 1987; designated remote-handled wastes; and newly generated TRU and RMW wastes from high-level waste (HLW) recovery and processing operations. In order to accelerated the WRAP Project, a partitioning of the facility functions was done in two phases as a means to expedite those parts of the WRAP duties that were well understood and used established technology, while allowing more time to better define the processing functions needed for the remainder of WRAP. The WRAP Module 1 phase one, is to provide the necessary nondestructive examination and nondestructive assay services, as well as all transuranic package transporter (TRUPACT-2) shipping for both WRAP Project phases, with heating, ventilation, and air conditioning; change rooms; and administrative services. Phase two of the project, WRAP Module 2, will provide all necessary waste treatment facilities for disposal of solid wastes. 1 tab

  14. Intelligent mobile sensor system for drum inspection and monitoring: Topical report, October 1, 1993--April 22, 1995

    International Nuclear Information System (INIS)

    1997-01-01

    The objective of the Intelligent Mobile Sensor System (IMSS) project is to develop an operational system for monitoring and inspection activities for waste storage facility operations at several DOE sites. Specifically, the product of this effort is a robotic device with enhanced intelligence and maneuverability capable of conducting routine inspection of stored waste drums. The system has an integrated sensor suite for problem-drum detection, and is linked to a site database both for inspection planning and for data correlation, updating, and report generation. The system is capable of departing on an assigned mission, collecting required data, recording which portions of its mission had to be aborted or modified due to environmental constraints, and reporting back when the mission is complete. Successful identification of more than 96% of drum defects has been demonstrated in a high fidelity waste storage facility mockup. Identified anomalies included rust spots, rust streaks, areas of corrosion, dents, and tilted drums. All drums were positively identified and correlated with the site database. This development effort is separated into three phases of which phase two is now complete. The second phase demonstrated a prototype system appropriate for operational use in an actual storage facility. The prototype provides an integrated design that considers operational requirements, hardware costs, maintenance, safety, and robustness. The final phase will demonstrate commercial viability using the prototype vehicle in a pilot waste operations and inspection project. This report summarizes the design and evaluation of the new IMSS Phase 2 system and vehicle. Several parts of the IMSS Phase 1 Topical (Final) Report, which describes the requirements, design guidelines, and detailed design of the Phase 1 IMSS vehicle, are incorporated here, with modifications to reflect the changes in the design and the new elements added during the Phase 2 work

  15. Safety analysis report for packaging (onsite) steel drum

    International Nuclear Information System (INIS)

    McCormick, W.A.

    1998-01-01

    This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum

  16. Method of processing radioactive wastes

    International Nuclear Information System (INIS)

    Funabashi, Kiyomi; Sugimoto, Yoshikazu; Kikuchi, Makoto; Yusa, Hideo.

    1979-01-01

    Purpose: To obtain solidified radioactive wastes at high packing density by packing radioactive waste pellets in a container and then packing and curing a thermosetting resin therein. Method: Radioactive liquid wastes are dried into power and subjected to compression molding. The pellets thus obtained are supplied in a predetermined amount from the hopper to the inside of a drum can. Then, thermosetting plastic and a curing agent are filled in the drum can. Gas between the pellets is completely expelled by the intrusion of the thermosetting resin and the curing agent among the pellets. Thereafter, the drum can is heated by a heater and curing is effected. After the curing, the drum can is sealed. (Kawakami, Y.)

  17. Corrosion of steel drums containing immobilized ion exchange-resins and incineration ashes

    International Nuclear Information System (INIS)

    Marotta, F.; Schulz Rodriguez, F.M.; Farina, Silvia B.; Duffo, Gustavo S.

    2009-01-01

    The Argentine Atomic Energy Commission (CNEA) is responsible for developing the management nuclear waste disposal programme. This programme contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The proposed model is a near-surface monolithic repository similar to those in operation in El Cabril, Spain. The design of this type of repository is based on the use of multiple, independent and redundant barriers. The intermediate radioactive waste consists mostly in spent ionic exchange resins and filters from the nuclear power plants, research reactors and radioisotopes production facilities. The spent resins, as well as the incineration ashes, have to be immobilized before being stored to improve leach resistance of waste matrix and to maintain mechanical stability for safety requirements. Generally, cementation processes have been used as immobilization techniques for economical reasons as well as for being a simple operation. The immobilized resins and incineration ashes are thus contained in steel drums that, in turn, can undergo corrosion depending on the ionic content of the matrix. This work is a part of a systematic study of the corrosion susceptibility of steel drums in contact with immobilized cemented exchange-resins with different types and contents of aggressive species and incineration ashes. To this purpose, a special type of specimen was manufactured to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix are being monitored along time. The aggressive species studied were chloride ions (the main ionic species present in nature) and sulphate ions (produced during the radiolysis process of the cationic exchange-resins after cementation). Preliminary results show the strong effect of chloride on the corrosion susceptibility of the steel. Monitoring will continue for

  18. Performance in the WIPP nondestructive assay performance demonstration program

    Energy Technology Data Exchange (ETDEWEB)

    Marcinkiewicz, C.J. [Consolidated Technical Services, Inc., Frederick, MD (United States); Connolly, M.J.; Becker, G.K. [Lockheed Martin Idaho Technologies Company, Idaho Falls, ID (United States)

    1997-11-01

    Measurement facilities performing nondestructive assay (NDA) of wastes intended for disposal at the United States Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) are required to demonstrate their ability to meet specific Quality Assurance Objectives (QAOs). This demonstration is performed, in part, by participation in the NDA Performance Demonstration Program (PDP). The PDP is funded and managed by the Carlsbad Area Office (CAO) of DOE and is conducted by the Idaho National Engineering Laboratory. It tests the characteristics of precision, system bias and/or total uncertainty through the measurement of variable, blind combinations of simulated waste drums and certified radioactive standards. Each facility must successfully participate in the PDP using each different type of measurement system planned for use in waste characterization. The first cycle of the PDP using each different type of measurement system planned for use in waste characterization. The first cycle of the PDP was completed in July 1996 and the second is scheduled for completion by December 1996. Seven sites reported data in cycle 1 for 11 different measurement systems. This paper describes the design and operation of the PDP and provides the performance data from cycle 1. It also describes the preliminary results from cycle 2 and updates the status and future plans for the NDA PDP. 4 refs., 9 figs., 11 tabs.

  19. Special closures for steel drum shipping containers

    International Nuclear Information System (INIS)

    Bonzon, L.L.; Otts, J.V.

    1976-01-01

    The objective of this program was to develop special lid closures for typical, steel drum, radioactive material shipping containers. Previous experience and testing had shown that the existing container was adequate to withstand the required environmental tests for certification, but that the lid and closure were just marginally effective. Specifically, the lid closure failed to consistently maintain a tight seal between the container and the lid after drop tests, thus causing the package contents to be vulnerable in the subsequent fire test. Recognizing the deficiency, the United States Energy Research and Development Administration requested the development of new closure(s) which would: (1) be as strong and resistant to a drop as the bottom of the container; (2) have minimal economic impact on the overall container cost; (3) maximize the use of existing container designs; (4) consider crush loads; and (5) result in less dependence on personnel and loading procedures. Several techniques were evaluated and found to be more effective than the standard closure mechanism. Of these, three new closure techniques were designed, fabricated, and proven to be structurally adequate to provide containment when a 454-kg drum was drop tested from 9.14-m onto an unyielding surface. The three designs were: (1) a 152-mm long lid extension or skirt welded to the standard drum lid, (2) a separate inner lid, with 152-mm long skirt and (3) C-clamps used at the container-lid interface. Based upon structural integrity, economic impact, and minimal design change, the lid extension is the recommended special closure

  20. Chimpanzee drumming : a spontaneous performance with characteristics of human musical drumming

    NARCIS (Netherlands)

    Dufour, Valerie; Poulin, Nicolas; Cure, Charlotte; Sterck, Elisabeth H. M.

    2015-01-01

    Despite the quintessential role that music plays in human societies by enabling us to release and share emotions with others, traces of its evolutionary origins in other species remain scarce. Drumming like humans whilst producing music is practically unheard of in our most closely related species,

  1. Active drumming experience increases infants' sensitivity to audiovisual synchrony during observed drumming actions

    NARCIS (Netherlands)

    Gerson, S.A.; Schiavio, A.A.R.; Timmers, R.; Hunnius, S.

    2015-01-01

    In the current study, we examined the role of active experience on sensitivity to multisensory synchrony in six-month-old infants in a musical context. In the first of two experiments, we trained infants to produce a novel multimodal effect (i.e., a drum beat) and assessed the effects of this

  2. Multiloop control of a drum boiler

    Directory of Open Access Journals (Sweden)

    Alena Kozáková

    2014-05-01

    Full Text Available The Equivalent Subsystems Method (ESM (Kozáková et al., 2011 is methodology of decentralized controller design in the frequency domain which allows designing local controllers using any SISO frequency domain method. The paper deals with the digital ESM version where digital local PID controllers guaranteeing required performance for the full system are designed for individual equivalent subsystems using the practice-oriented Sine-wave method (Bucz et al., 2012. The proposed decentralized controller design procedure was verified on the nonlinear benchmark drum boiler simulation model (Morilla, 2012.

  3. Innovations in the Assay of Un-Segregated Multi-Isotopic Grade TRU Waste Boxes with SuperHENC and FRAM Technology

    International Nuclear Information System (INIS)

    Simpson, A. P.; Barber, S.; Abdurrahman, N. M.

    2006-01-01

    The Super High Efficiency Neutron Coincidence Counter (SuperHENC) was originally developed by BIL Solutions Inc., Los Alamos National Laboratory (LANL) and Rocky Flats Environmental Technology Site (RFETS) for assay of transuranic (TRU) waste in Standard Waste Boxes (SWB) at Rocky Flats. This mobile system was a key component in the shipment of over 4,000 SWBs to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The system was WIPP certified in 2001 and operated at the site for four years. The success of this system, a passive neutron coincidence counter combined with high resolution gamma spectroscopy, led to the order of two new units, delivered to Hanford in 2004. Several new challenges were faced at Hanford: For example, the original RFETS system was calibrated for segregated waste streams such that metals, plastics, wet combustibles and dry combustibles were separated by 'Item Description Codes' prior to assay. Furthermore, the RFETS mission of handling only weapons grade plutonium, enabled the original SuperHENC to benefit from the use of known Pu isotopics. Operations at Hanford, as with most other DOE sites, generate un-segregated waste streams, with a wide diversity of Pu isotopics. Consequently, the new SuperHENCs are required to deal with new technical challenges. The neutron system's software and calibration methodology have been modified to encompass these new requirements. In addition, PC-FRAM software has been added to the gamma system, providing a robust isotopic measurement capability. Finally a new software package has been developed that integrates the neutron and gamma data to provide a final assay results and analysis report. The new system's performance has been rigorously tested and validated against WIPP quality requirements. These modifications, together with the mobile platform, make the new SuperHENC far more versatile in handling diverse waste streams and allow for rapid redeployment around the DOE complex. (authors)

  4. 7 CFR 1434.8 - Containers and drums.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Containers and drums. 1434.8 Section 1434.8... REGULATIONS FOR HONEY § 1434.8 Containers and drums. (a)(1) To be eligible for assistance under this part, honey must be packed in: (i) CCC-approved, 5-gallon plastic containers; (ii) 5-gallon metal containers...

  5. Solar thermal drum drying performance of prune and tomato pomaces

    Science.gov (United States)

    Fruit and vegetable pomaces are co-products of the food processing industry; they are underutilized in part because their high water activity (aw) renders them unstable. Drum drying is one method that can dry/stabilize pomaces, but current drum drying methods utilize conventional, high-environmental...

  6. Device to measure level in a steam drum of NPP

    International Nuclear Information System (INIS)

    Vinogradov, Yu.A.

    1988-01-01

    Gravitation-hydrostatic device for measuring coolant level in a steam drum of NPP is described. The device enables to improve the accuracy and sensitivity of measuring coolant level above and below the submerged perforated sheet of the steam drum and decrease the amount of levelling vessels in the unit by 50%. 1 fig

  7. ANALYSIS OF DESIGN PECULIARITIES PERTAINING TO DRUMS OF CONTINUOUS MACHINES

    Directory of Open Access Journals (Sweden)

    V. Yu. Prushak

    2007-01-01

    Full Text Available The paper considers design peculiarities of belt conveyor drums in respect of their operational reliability; their advantages and disadvantages have been analyzed. There are some proposals presenting technical solutions to modernization of belt conveyor drum designs which presuppose reduction of their material consumption while preserving their strength and general rigidity. 

  8. A59 Drum Activity database (DRUMAC): system documentation

    International Nuclear Information System (INIS)

    Keel, Alan.

    1993-01-01

    This paper sets out the requirements, database design, software module designs and test plans for DRUMAC (the Active handling Building Drum Activity Database) - a computer-based system to record the radiological inventory for LLW/ILW drums dispatched from the Active Handling Building. (author)

  9. Application of curium measurements for safeguarding at reprocessing plants. Study 1: High-level liquid waste and Study 2: Spent fuel assemblies and leached hulls

    International Nuclear Information System (INIS)

    Rinard, P.M.; Menlove, H.O.

    1996-03-01

    In large-scale reprocessing plants for spent fuel assemblies, the quantity of plutonium in the waste streams each year is large enough to be important for nuclear safeguards. The wastes are drums of leached hulls and cylinders of vitrified high-level liquid waste. The plutonium amounts in these wastes cannot be measured directly by a nondestructive assay (NDA) technique because the gamma rays emitted by plutonium are obscured by gamma rays from fission products, and the neutrons from spontaneous fissions are obscured by those from curium. The most practical NDA signal from the waste is the neutron emission from curium. A diversion of waste for its plutonium would also take a detectable amount of curium, so if the amount of curium in a waste stream is reduced, it can be inferred that there is also a reduced amount of plutonium. This report studies the feasibility of tracking the curium through a reprocessing plant with neutron measurements at key locations: spent fuel assemblies prior to shearing, the accountability tank after dissolution, drums of leached hulls after dissolution, and canisters of vitrified high-level waste after separation. Existing pertinent measurement techniques are reviewed, improvements are suggested, and new measurements are proposed. The authors integrate these curium measurements into a safeguards system

  10. The Design and Construction of the Advanced Mixed Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Harrop, G.

    2003-02-27

    The Advanced Mixed Treatment Project (AMWTP) privatized contract was awarded to BNFL Inc. in December 1996 and construction of the main facility commenced in August 2000. The purpose of the advanced mixed waste treatment facility is to safely treat plutonium contaminated waste, currently stored in drums and boxes, for final disposal at the Waste Isolation Pilot Plant (WIPP). The plant is being built at the Idaho National Engineering and Environmental Laboratory. Construction was completed in 28 months, to satisfy the Settlement Agreement milestone of December 2002. Commissioning of the related retrieval and characterization facilities is currently underway. The first shipment of pre-characterized waste is scheduled for March 2003, with AMWTP characterized and certified waste shipments from June 2003. To accommodate these challenging delivery targets BNFL adopted a systematic and focused construction program that included the use of a temporary structure to allow winter working, proven design and engineering principles and international procurement policies to help achieve quality and schedule. The technology involved in achieving the AMWTP functional requirements is primarily based upon a BNFL established pedigree of plant and equipment; applied in a manner that suits the process and waste. This technology includes the use of remotely controlled floor mounted and overhead power manipulators, a high power shredder and a 2000-ton force supercompactor with the attendant glove box suite, interconnections and automated material handling. The characterization equipment includes real-time radiography (RTR) units, drum and box assay measurement systems, drum head space gas sampling / analysis and drum venting, drum coring and sampling capabilities. The project adopted a particularly stringent and intensive pre-installation testing philosophy to ensure that equipment would work safely and reliably at the required throughput. This testing included the complete off site

  11. The Design and Construction of the Advanced Mixed Waste Treatment Facility

    International Nuclear Information System (INIS)

    Harrop, G.

    2003-01-01

    The Advanced Mixed Treatment Project (AMWTP) privatized contract was awarded to BNFL Inc. in December 1996 and construction of the main facility commenced in August 2000. The purpose of the advanced mixed waste treatment facility is to safely treat plutonium contaminated waste, currently stored in drums and boxes, for final disposal at the Waste Isolation Pilot Plant (WIPP). The plant is being built at the Idaho National Engineering and Environmental Laboratory. Construction was completed in 28 months, to satisfy the Settlement Agreement milestone of December 2002. Commissioning of the related retrieval and characterization facilities is currently underway. The first shipment of pre-characterized waste is scheduled for March 2003, with AMWTP characterized and certified waste shipments from June 2003. To accommodate these challenging delivery targets BNFL adopted a systematic and focused construction program that included the use of a temporary structure to allow winter working, proven design and engineering principles and international procurement policies to help achieve quality and schedule. The technology involved in achieving the AMWTP functional requirements is primarily based upon a BNFL established pedigree of plant and equipment; applied in a manner that suits the process and waste. This technology includes the use of remotely controlled floor mounted and overhead power manipulators, a high power shredder and a 2000-ton force supercompactor with the attendant glove box suite, interconnections and automated material handling. The characterization equipment includes real-time radiography (RTR) units, drum and box assay measurement systems, drum head space gas sampling / analysis and drum venting, drum coring and sampling capabilities. The project adopted a particularly stringent and intensive pre-installation testing philosophy to ensure that equipment would work safely and reliably at the required throughput. This testing included the complete off site

  12. Conditioning of Radioactive Wastes Prior to disposal; Segregation and Repackaging

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Il Sik; Kim, Ki Hong; Hong, Dae Seok; Lee, Bum Chul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    We stored several types of radioactive wastes at interim storage facility of KAERI ; the combustible wastes (cloths, decontamination paper and vinyls) from Hanaro multipurpose research reactor, nuclear fuel cycle facility, RI production facility and laboratories, and the non-combustible wastes (metals and glass) dismantled and discarded from the apparatus of laboratories which deteriorated, and also the miscellaneous wastes (spent air-filters). After a segregation of these wastes as the same type, they were treated by using a proper method in order to meet both the national regulation and the waste acceptance criteria of Kyung-ju disposal site. For a safe disposal of waste drums, the waste characterization system including a scaling factor which is hard to measure special radionuclides is established completely. All data of those repackaged drums were input into an ANSIM system so that we could manage them clearly and effectively such like an easy transparent traceability. Through a decontamination of empty drums generated in a repackaging process of the stored drums, these drums can be reused or compressed to reduce their volume reduction for disposal. As a result, the space to store radioactive waste drums are secured more than before, and also the interim storage facility are maintained in a good state. The combustible wastes, which stored at the interim storage facility of KAERI, are managed safely in compliance with the specifications of the national regulations and disposal site. Through the classification and repackage of them, the storage space of drums at RWTF was secured more than before, and the storage facility was kept in a good state, and also the disposal cost of all stored waste drums of KAERI will be reduced due to the reduction of waste volume. Base on the experiences, the non-combustible wastes will be treated soon.

  13. Evaluation of hydrogen production from CO2 corrosion of steel drums in SFR, Part 2

    International Nuclear Information System (INIS)

    Dugstad, A.; Videm, K.

    1987-06-01

    An experimental program has been carried out for the investigation of the hydrogen formation due to corrosion of steel by water containing CO 2 produced by microbiologic decomposition of paper in waste drums. The hydrogen production will be limited by a limited rate of CO 2 production, as CO 2 is consumed by corrosive reactions producing carbonate containing corrosion products. Experiments indicated that also iron oxide and hydroxides were formed together with FeCO 3 at low CO 2 partial pressures but at a rate which leads to a rather slow increase in hydrogen production. Hydrogen evaluation has been overestimated in previous reports on this subject. (authors)

  14. Waste inventory, waste characteristics and waste repositories in Japan

    International Nuclear Information System (INIS)

    Shimooka, K.

    1997-01-01

    There are two types of repositories for the low level radioactive wastes in Japan. One is a trench type repository only for concrete debris generated from the dismantling of the research reactor. According to the safety assurance system, Japan Atomic Energy Research Institute (JAERI) has disposed of the concrete debris arose from the dismantling of the Japan Power Demonstration Reactor (JPDR). The other type is the concreted pit with engineered barriers. Rokkasho Low Level Radioactive Waste Disposal Center has this type of repository mainly for the power plant wastes. Japan Nuclear Fuel Ltd. (JNFL) established by electric power companies is the operator of the LLW disposal project. JNFL began the storage operation in 1992 and buried approximately 60,000 drums there. Two hundred thousand drums of uniformly solidified, waste may be buried ultimately. 4 refs, 3 tabs

  15. The aesthetic interpretation on Wooden Drum Dancing of Wa people

    Directory of Open Access Journals (Sweden)

    Youfeng Wang

    2017-02-01

    Full Text Available The Wa nationality, a typical ethnic group in Yunnan province, is an ancient one lives across Yunnan. The main residences of it are border area beside northern Yunnan and the Wa States in Burma. Among all the Wa dances, Wooden Drum Dancing leads a vital position, and it is also a symbolic dancing in the culture of Wa people. The feature of Wooden Drum Dancing is that every action expending by the beats of wooden drum, namely, first the wooden drum, then the Wooden Drum Dancing. Dancing is an important content in the life of Wa people, and the aesthetics of life comes from dancing, so they present their value on worship by the form of dancing. This article is going to interpret the aesthetic standard on Wa people’s Wooden Drum Dancing by the view of aesthetics, and come into a conclude that the inspiration of such dancing came from practice and their worship to nature and ancestor. The Wooden Drum Dancing displays totally the tough air and solidarity of Wa people, which also presents the fair society of them. The Wooden Drum Dancing is an enriched art that Wa People took from particle life, so dancing of Wa is often classified into the aesthetic area of plain. The information of people’s living situation displayed by Wa dancing also conveys their rich emotions. The sense of beauty within Wooden Drum Dancing will give others a solemn feeling. The formal beauty is displayed by the rhythm of upper part of body, and the power beauty is displayed by the rhythm of the lower part of body.

  16. Characterizing cemented TRU waste for RCRA hazardous constituents

    International Nuclear Information System (INIS)

    Yeamans, D.R.; Betts, S.E.; Bodenstein, S.A.

    1996-01-01

    Los Alamos National Laboratory (LANL) has characterized drums of solidified transuranic (TRU) waste from four major waste streams. The data will help the State of New Mexico determine whether or not to issue a no-migration variance of the Waste Isolation Pilot Plant (WIPP) so that WIPP can receive and dispose of waste. The need to characterize TRU waste stored at LANL is driven by two additional factors: (1) the LANL RCRA Waste Analysis Plan for EPA compliant safe storage of hazardous waste; (2) the WIPP Waste Acceptance Criteria (WAC) The LANL characterization program includes headspace gas analysis, radioassay and radiography for all drums and solids sampling on a random selection of drums from each waste stream. Data are presented showing that the only identified non-metal RCRA hazardous component of the waste is methanol

  17. Tritium waste package

    Science.gov (United States)

    Rossmassler, Rich; Ciebiera, Lloyd; Tulipano, Francis J.; Vinson, Sylvester; Walters, R. Thomas

    1995-01-01

    A containment and waste package system for processing and shipping tritium xide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen add oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB.

  18. Savannah River Site TRU Drum Waste Criticality Safety Margin Improvements

    International Nuclear Information System (INIS)

    Blanchard, A.; Hammer, K.

    1998-01-01

    The text of the paper will include an overview of the methodology used to determine the credible scenarios, summary of the analysis of the results, challenges overcome during compliance and implementation, and cost savings due to reduced operational expanses

  19. Criticality safety evaluation for TRU waste in storage at the RWMC

    International Nuclear Information System (INIS)

    Shaw, M.E.; Briggs, J.B.; Atkinson, C.A.; Briscoe, G.J.

    1993-11-01

    Stored containers (drums, boxes, and bins) of transuranic waste at the Radioactive Waste Management Complex (RWMC) facility located at the Idaho National Engineering Laboratory (INEL) were evaluated based on inherent neutron absorption characteristics of the waste materials. It was demonstrated that these properties are sufficient to preclude an accidental criticality accident at the actual fissile levels present in the waste stored at the RWMC. Based on the database information available, the results reported herein confirm that the waste drums, boxes, and bins currently stored at the RWMC will remain safely subcritical if rearranged, restacked, or otherwise handled. Acceptance criteria for receiving future drum shipments were established based on fully infinite systems

  20. Evaluation of anaerobic co-digestion of dairy manure with food wastes via bio-methane potential assay and CSTR reactor.

    Science.gov (United States)

    Ye, Yulin; Zamalloa, Carlos; Lin, Hongjian; Yan, Mi; Schmidt, David; Hu, Bo

    2015-01-01

    The introduction of food wastes into anaerobic digestion (AD) brings a promising scenario of increasing feedstock availability and overall energy production from AD. This study evaluated the biodegradability and methane potential from co-digestion of two typical food wastes, kitchen waste and chicken fat, with dairy manure. For single substrate, the bio-methane potential assays showed that kitchen waste had the highest methane yield of 352 L-CH4 kg(-1)-VS added, 92% more than dairy manure alone. Chicken fat at the same Volatile Solid (VS) level (2 g L(-1)) inhibited bio-methane production. Addition of kitchen waste and chicken fat to a VS percentage of up to 40% improved overall methane yield by 44% and 34%, respectively. Synergistic effect was observed when either combining two or three substrates as AD feedstock, possibly as a result of increased biodegradability of organic materials in chicken fat and kitchen waste compared with dairy manure. Addition of chicken fat improved methane yield more than kitchen waste. However, addition of chicken fat VS over 0.8 g L(-1) should be cautiously done because it may cause reactor failure due to decrease in pH. The maximum methane yield was 425 L-CH4 kg(-1)-VS, achieved at a VS ratio of 2:2:1 for kitchen waste, chicken fat, and dairy manure. Results from batch AD experiment demonstrated that supplementing dairy manure to chicken fat and/or kitchen waste improved alkalinity of substrate due to the inclusion of more titratable bases in dairy manure, and therefore stabilized the methanogenesis and substantially improved biogas yield. A mixture of substrates of kitchen waste, chicken fat, and dairy manure at a ratio of 1:1:3 was fed to a continuously stirred tank reactor operated at organic loading rates of 3.28, 6.55, and 2.18 g-COD L(-1)-day (hydraulic retention time of 20, 10, and 30 days, respectively) under mesophilic condition, and methane production rate reached 0.65, 0.95, and 0.34 L-CH4 L(-1)-reactor-day.

  1. Process and closure system for a radioactive waste container

    International Nuclear Information System (INIS)

    Meyer, Andre.

    1974-01-01

    The closure process described is for a cylindrical radioactive waste drum. It makes use of a closure system for the drum comprising two lids separated by a twin flange seal. It consists essentially in placing a double flange 'O' ring inside the upper lip of the drum, and after filling has been completed, fitting the first lid on the twin flange 'O' ring and pushing down this lid whilst squashing the upper flange and then putting on the second lid in the usual prescribed manner. A description is also given of the drum sealing apparatus [fr

  2. Robotic inspection of nuclear waste storage facilities

    International Nuclear Information System (INIS)

    Fulbright, R.; Stephens, L.M.

    1995-01-01

    The University of South Carolina and the Westinghouse Savannah River Company have developed a prototype mobile robot designed to perform autonomous inspection of nuclear waste storage facilities. The Stored Waste Autonomous Mobile Inspector (SWAMI) navigates and inspects rows of nuclear waste storage drums, in isles as narrow as 34 inches with drums stacked three high on each side. SWAMI reads drum barcodes, captures drum images, and monitors floor-level radiation levels. The topics covered in this article reporting on SWAMI include the following: overall system design; typical mission scenario; barcode reader subsystem; video subsystem; radiation monitoring subsystem; position determination subsystem; onboard control system hardware; software development environment; GENISAS, a C++ library; MOSAS, an automatic code generating tool. 10 figs

  3. A-Ha. Drum'n'bassi supernimi FABIO

    Index Scriptorium Estoniae

    2002-01-01

    7.sept. annab norra menukaim popansambel A-Ha Tallinnas Lauluväljakul kontserdi, kus presenteerib ka oma viimast albumit "Lifelines". 14. sept.tuleb drum'n'bassi spetsialist Fabio Tallinna üritusele Circulation

  4. Europa Drum Sampler (EDuS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of the proposed work is to develop a robust and effective sample acquisition system for the Europa lander called the Europa Drum Sampler (EDuS)....

  5. Feasibility study of a waste assay system and the possibility of volume reduction at the Puespoekszilagy RWTDF

    International Nuclear Information System (INIS)

    Takats, F.

    2001-05-01

    A review of the types and activities of the waste emplaced at the Pupokszilagy Radioactive Waste Treatment and Disposal Facility (RWTDF) was performed on the basis of the existing operational data. This provided a breakdown of all important parameters of the wastes as well as of the disposal conditions for each disposal unit. Prior to the detailed review, the behaviour of the compacted wastes, simulating those in the repository, was tested with a view to determine the efficiency of a further supercompaction. Based on the evaluation of market data, the cost of purchasing or renting a super-compactor unit and the resulting unit costs were calculated. A detailed review of the free release strategies and the available equipment was prepared. To provide an immediate remedy to the shortage of disposal volume, it is suggested to retrieve the old Institutional wastes and the sealed radioactive sources, and use the existing free space for further waste disposal. As an alternative, the use of residual free space in the vaults for further disposal, without waste recovery, is also reviewed. (author)

  6. Possibilities of rotating drums in ultra-high-speed cinematography

    International Nuclear Information System (INIS)

    Andre, Michel

    A theoretical study shows that it is possible to produce a drum rotating at a peripheral speed of 500m/s. A prototype has actually reached this speed and confirmed the feasibility of the system. It is driven by an electric motor and is made of titanium covered with boron fibres. The main performances to be expected of cameras (whole-image, slit or spectrographic) using such a drum is described [fr

  7. Drum of storing fuel assemblies of nuclear reactor

    International Nuclear Information System (INIS)

    Artemiev, L.N.; Batjukov, V.I.; Fadeev, A.I.

    1979-01-01

    The proposed drum for storing fuel assemblies of a nuclear reactor comprises a holder rotatable around its axis and provided with tubular sockets arranged in concentric rows along the circumference of the holder so that the axis of at least one socket of each row intersects the trajectory described by the grip of the recharging mechanism in the course of its movement. The proposed drum design makes it possible to facilitate and speed up the process of recharging fuel asemblies

  8. The management of radioactive wastes

    International Nuclear Information System (INIS)

    1998-01-01

    This educative booklet describes the role and missions of the ANDRA, the French national agency for the management of radioactive wastes, and the different aspects of the management of radioactive wastes: goal, national inventory, classification, transport (organisation, regulation, safety), drumming, labelling, surface storage of short life wastes, environmental control, management of long life wastes (composition, research, legal aspects) and the underground research laboratories (description, public information, projects, schedules). (J.S.)

  9. Active and passive computed tomography mixed waste focus area final report

    International Nuclear Information System (INIS)

    Becker, G K; Camp, D C; Decman, D J; Jackson, J A; Martz, H E; Roberson, G P.

    1998-01-01

    The Mixed Waste Focus Area (MWFA) Characterization Development Strategy delineates an approach to resolve technology deficiencies associated with the characterization of mixed wastes. The intent of this strategy is to ensure the availability of technologies to support the Department of Energy s (DOE) mixed-waste, low-level or transuranic (TRU) contaminated waste characterization management needs. To this end the MWFA has defined and coordinated characterization development programs to ensure that data and test results necessary to evaluate the utility of non-destructive assay technologies are available to meet site contact handled waste management schedules. Requirements used as technology development project benchmarks are based in the National TRU Program Quality Assurance Program Plan. These requirements include the ability to determine total bias and total measurement uncertainty. These parameters must be completely evaluated for waste types to be processed through a given nondestructive waste assay system constituting the foundation of activities undertaken in technology development projects. Once development and testing activities have been completed, Innovative Technology Summary Reports are generated to provide results and conclusions to support EM-30, -40, or -60 end user or customer technology selection. The active and passive computed tomography non-destructive assay system is one of the technologies selected for development by the MWFA. Lawrence Livermore National Laboratory (LLNL) has developed the active and passive computed tomography (A ampersand XT) nondestructive assay (NDA) technology to identify and accurately quantify all detectable radioisotopes in closed containers of waste. This technology will be applicable to all types of waste regardless of their classification-low level, transuranic or mixed. Mixed waste contains radioactivity and hazardous organic species. The scope of our technology is to develop a non-invasive waste-drum scanner that

  10. Coke degradation by surface breakage in a modified tumble drum

    Energy Technology Data Exchange (ETDEWEB)

    Litster, J D

    1987-01-01

    The surface breakage rate constant for three Australian battery cokes was measured in a specially modified tumble drum using a previously developed technique. The effect of experimental test parameters - coke size, sample mass, drum speed, lifter height and lifter number - on the surface breakage rate constant was examined. The motion of coke particles within a tumble drum was filmed in a simulation experiment with a 0.31 m diameter drum. Particles were raised on the lifters, fell and collided with the bottom of the drum. These collisions were the main source of fines (minus 1 mm) production rather than true abrasion as depicted by a rubbing, rolling action. Hence the term 'surface breakage' is more appropriate than 'abrasion' to describe the breakage process. By measuring the volume of coke carried by each lifter and the height of fall of the coke, the effect of drum speed, sample mass, lifter height and number on the rate of surface breakage was successfully explained. The surface breakage rate constant was found to be proportional to particle size to the power 0.33 for the three cokes studied. A normalized surface breakage rate constant was derived which allowed comparison of cokes with different size distributions. This parameter characterises the coke surface breakage resistance.

  11. Nonlinear vibrations analysis of rotating drum-disk coupling structure

    Science.gov (United States)

    Chaofeng, Li; Boqing, Miao; Qiansheng, Tang; Chenyang, Xi; Bangchun, Wen

    2018-04-01

    A dynamic model of a coupled rotating drum-disk system with elastic support is developed in this paper. By considering the effects of centrifugal and Coriolis forces as well as rotation-induced hoop stress, the governing differential equation of the drum-disk is derived by Donnell's shell theory. The nonlinear amplitude-frequency characteristics of coupled structure are studied. The results indicate that the natural characteristics of the coupling structure are sensitive to the supporting stiffness of the disk, and the sensitive range is affected by rotating speeds. The circumferential wave numbers can affect the characteristics of the drum-disk structure. If the circumferential wave number n = 1 , the vibration response of the drum keeps a stable value under an unbalanced load of the disk, there is no coupling effect if n ≠ 1 . Under the excitation, the nonlinear hardening characteristics of the forward traveling wave are more evident than that of the backward traveling wave. Moreover, because of the coupling effect of the drum and the disk, the supporting stiffness of the disk has certain effect on the nonlinear characteristics of the forward and backward traveling waves. In addition, small length-radius and thickness-radius ratios have a significant effect on the nonlinear characteristics of the coupled structure, which means nonlinear shell theory should be adopted to design rotating drum's parameter for its specific structural parameters.

  12. Revised RCRA closure plan for the Interim Drum Yard (S-030) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Smith, C.M.

    1994-09-01

    The Interim Drum Yard (IDY) facility is a containerized waste storage area located in the Y-12 exclusion area. It was used to store waste materials which are regulated by RCRA (Resource Conservation and Recovery Act); uranyl nitrate solutions were also stored there. The closure plan outlines the actions required to achieve closure of IDY and is being submitted in accordance with TN Rule 1200-1-11.05(7) and 40 CFR 265.110

  13. Magnetic anomalies of steel drums: a review of the literature and research results of the INGV

    Directory of Open Access Journals (Sweden)

    Marco Marchetti

    2013-04-01

    Full Text Available The detection and evaluation of the status of disposal sites that contain hazardous waste materials is becoming an increasingly important element in environmental investigations. Close cooperation between the Istituto Nazionale di Geofisica e Vulcanologia (INGV; National Institute of Volcanology and Geophysics in Rome and the Italian environmental police has resulted in numerous underground investigations of different buried materials. Among the geophysical investigation tools, magnetometry is the most effective, rapid and precise of all of the geophysical methods for localizing buried steel drums. Analysis of magnetic map anomalies can provide a variety of information about buried materials, including extension, distribution and depth, with processing of the acquired magnetic data. This information is also very useful in case of excavations that are aimed at the recovery of hazardous waste. This study determines the most relevant analyses reported in the literature, with modeling of magnetometric methods for environmental applications both theoretically and experimentally. Some studies and research results achieved by the INGV in relation to magnetic anomalies produced by buried steel drums are also reported, as found in field operations and as achieved from test sites.

  14. Investigation and analytical results of bituminized products in drums at filing room

    International Nuclear Information System (INIS)

    Shibata, Atsuhiro; Kato, Yoshiyuki; Sano, Yuichi; Kitajima, Takafumi; Fujita, Hideto

    1999-09-01

    This report describes the results of investigation of the bituminized products in drums, liquid waste in the receiving tank V21 and the bituminized mixture in the extruder. The investigation of the products in drums showed most of the unburned products filled after 28B had abnormality, such as hardened surfaces, caves and porous brittle products. The particle sizes of the salt fixed in bituminized products depended neither on batch number nor on feed rate. It indicates the fining of the salt particle caused by the decreased feed rate did not occur. The measured concentrations of metals and anions in the bituminized products showed no abnormality. The catalytic content was not recognized in the products. The infrared absorption spectra obtained with the bituminized products show the oxidation at the incident occurred without oxygen. There was no organic phase on the surface of liquid waste in V21. Chemical analysis and thermal analysis on the precipitate in V21 showed no abnormality. Concentration of sodium nitrate/nitrite in the mixture collected from the extruder was lower than normal products. These results show no chemical activation of the bituminized products. It can be concluded that the chemical characteristics of the products had little abnormality even around the incident. (author)

  15. Study of gas generation in drum L/ILW packages using hermetic containers

    International Nuclear Information System (INIS)

    Molnar, M.; Palcsu, L.; Svingor, E.; Futo, I.; Major, Z.; Veres, M.

    2005-01-01

    Complete text of publication follows. During the storage of low and intermediate level radioactive waste (L/ILW) significant quantities of gas may be produced. It is likely that a small proportion of the generated gas will be radioactive as a result of the incorporation of the isotopes 3 H and 14 C that are present within the waste. To obtain reliable estimates of the quantities and rates of the gas production in L/ILWa series of measurements was carried out of waste packages produced and temporarily stored at the site of Paks Nuclear Power Plant (NPP). Ten drums filled with selected original L/ILW were placed into hermetic containers equipped with sampling valves for repeated sampling. These hermetic containers were stored at the same site where the L/ILW is stored primarily in the Paks NPP. The pressure and the temperature of the headspace gas in the containers were monitored continuously. Qualitative gas component analyses of headspace gases of drums and their containers were executed by quadrupole mass spectrometer. The gas generation rate in the stored L/ILW was calculated by the measured state parameters and the composition variation of the gas in the closed containers. Stable isotope measurements were executed from the CO 2 , CH 4 and N 2 fractions by stable isotope ratio mass spectrometer. Helium measurements were done by noble gas mass spectrometer. The tritium content of the vapour, H 2 and CH 4 fractions was measured by a low background liquid scintillation counter. 14 C content of the CO 2 and CH 4 fractions was measured by a low background gas proportional counter system (ATOMKI). Our results showed that the main generated gases in L/ILW are carbon dioxide, methane, hydrogen and nitrogen. The typical rates were 0.05-0.2 normal litre gas/day for CO 2 and CH 4 generation, and less than 0.02 normal litre gas/day for H 2 . Because of the typical vanishing of the O 2 from the headspace gases no explosive gas mixture was indicated in the L/ILW drums during

  16. EMC: a new equipment for repackaging the ancient waste from Fontenay-aux-Roses CEA site

    International Nuclear Information System (INIS)

    Ithurbide, A.; Masy, J.C.; Serrano, R.; Blanc, S.

    2017-01-01

    A new equipment called EMC (Equipment for measuring and packaging) is being built on the Fontenay-aux Roses site in the framework of the cleaning-up of this CEA site. Studies on irradiated fuels and on radio-chemical processes were performed till 1995 and a large quantity of radioactive waste were generated and have stayed on the site so far in storage pits. EMC purpose is to prepare high level radioactive waste for their removal towards the Diadem storing facility that is being built on the Marcoule CEA site. EMC will deal with α-emitter contaminated waste and will be able to recover ancient 50 l waste drums from storage pits, to characterize their radioactive content, to open them, to package them in CDD1 drum (each CDD1 drum can contain up to 5 ancient drums), and to load CDD1 drums in transport packing. EMC is expected to operate for 4 years. (A.C.)

  17. INTERNATIONAL UNION OF OPERATING ENGINEERS NATIONAL HAZMAT PROGRAM - HANDSS-55 TRANSURANIC WASTE REPACKAGING MODULE

    International Nuclear Information System (INIS)

    2001-01-01

    The Transuranic waste generated at the Savannah River Site from nuclear weapons research, development, and production is currently estimated to be over 10,000 cubic meters. Over half of this amount is stored in 55-gallon drums. The waste in drums is primarily job control waste and equipment generated as the result of routine maintenance performed on the plutonium processing operations. Over the years that the drums have been accumulating, the regulatory definitions of materials approved for disposal have changed. Consequently, many of the drums now contain items that are not approved for disposal at DOE Waste Isolation Pilot Plant (WIPP). The HANDSS-55 technology is being developed to allow remote sorting of the items in these drums and then repackaging of the compliant items for disposal at WIPP

  18. Advanced conceptual design report solid waste retrieval facility, phase I, project W-113

    International Nuclear Information System (INIS)

    Smith, K.E.

    1994-01-01

    Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design

  19. Los Alamos National Laboratory TRU waste sampling projects

    International Nuclear Information System (INIS)

    Yeamans, D.; Rogers, P.; Mroz, E.

    1997-01-01

    The Los Alamos National Laboratory (LANL) has begun characterizing transuranic (TRU) waste in order to comply with New Mexico regulations, and to prepare the waste for shipment and disposal at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. Sampling consists of removing some head space gas from each drum, removing a core from a few drums of each homogeneous waste stream, and visually characterizing a few drums from each heterogeneous waste stream. The gases are analyzed by GC/MS, and the cores are analyzed for VOC's and SVOC's by GC/MS and for metals by AA or AE spectroscopy. The sampling and examination projects are conducted in accordance with the ''DOE TRU Waste Quality Assurance Program Plan'' (QAPP) and the ''LANL TRU Waste Quality Assurance Project Plan,'' (QAPjP), guaranteeing that the data meet the needs of both the Carlsbad Area Office (CAO) of DOE and the ''WIPP Waste Acceptance Criteria, Rev. 5,'' (WAC)

  20. Savannah River Site Operating Experience with Transuranic (TRU) Waste Retrieval

    International Nuclear Information System (INIS)

    Stone, K.A.; Milner, T.N.

    2006-01-01

    Drums of TRU Waste have been stored at the Savannah River Site (SRS) on concrete pads from the 1970's through the 1980's. These drums were subsequently covered with tarpaulins and then mounded over with dirt. Between 1996 and 2000 SRS ran a successful retrieval campaign and removed some 8,800 drums, which were then available for venting and characterization for WIPP disposal. Additionally, a number of TRU Waste drums, which were higher in activity, were stored in concrete culverts, as required by the Safety Analysis for the Facility. Retrieval of drums from these culverts has been ongoing since 2002. This paper will describe the operating experience and lessons learned from the SRS retrieval activities. (authors)

  1. Standard test method for nondestructive assay of nuclear material in scrap and waste by passive-Active neutron counting using 252Cf shuffler

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the nondestructive assay of scrap and waste items for U, Pu, or both, using a 252Cf shuffler. Shuffler measurements have been applied to a variety of matrix materials in containers of up to several 100 L. Corrections are made for the effects of matrix material. Applications of this test method include measurements for safeguards, accountability, TRU, and U waste segregation, disposal, and process control purposes (1, 2, 3). 1.1.1 This test method uses passive neutron coincidence counting (4) to measure the 240Pu-effective mass. It has been used to assay items with total Pu contents between 0.03 g and 1000 g. It could be used to measure other spontaneously fissioning isotopes such as Cm and Cf. It specifically describes the approach used with shift register electronics; however, it can be adapted to other electronics. 1.1.2 This test method uses neutron irradiation with a moveable Cf source and counting of the delayed neutrons from the induced fissions to measure the 235U equiva...

  2. Production and assay of cellulolytic enzyme activity of Enterobacter cloacae WPL 214 isolated from bovine rumen fluid waste of Surabaya abbatoir, Indonesia

    Directory of Open Access Journals (Sweden)

    W. P. Lokapirnasari

    2015-03-01

    Full Text Available Aim: This study aims to produce and assay cellulolytic enzyme activity (endo-(1,4-β-D-glucanase, exo-(1,4-β-Dglucanase, and β-glucosidase, at optimum temperature and optimum pH of Enterobacter cloacae WPL 214 isolated from bovine rumen fluid waste of Surabaya Abbatoir, Indonesia. Materials and Methods: To produce enzyme from a single colony of E. cloacae WPL 214, 98 × 1010 CFU/ml of isolates was put into 20 ml of liquid medium and incubated in a shaker incubator for 16 h at 35°C in accordance with growth time and optimum temperature of E. cloacae WPL 214. Further on, culture was centrifuged at 6000 rpm at 4°C for 15 min. Pellet was discarded while supernatant containing cellulose enzyme activity was withdrawn to assay endo-(1,4-β-D-glucanase, exo-(1,4-β-D-glucanase, and β-glucosidase. Results: Cellulase enzyme of E. cloacae WPL 214 isolates had endoglucanase activity of 0.09 U/ml, exoglucanase of 0.13 U/ml, and cellobiase of 0.10 U/ml at optimum temperature 35°C and optimum pH 5. Conclusion: E. cloacae WPL 214 isolated from bovine rumen fluid waste produced cellulose enzyme with activity as cellulolytic enzyme of endo-(1,4-β-D-glucanase, exo-(1,4-β-D-glucanase and β-glucosidase.

  3. Monte-Carlo Application for Nondestructive Nuclear Waste Analysis

    Science.gov (United States)

    Carasco, C.; Engels, R.; Frank, M.; Furletov, S.; Furletova, J.; Genreith, C.; Havenith, A.; Kemmerling, G.; Kettler, J.; Krings, T.; Ma, J.-L.; Mauerhofer, E.; Neike, D.; Payan, E.; Perot, B.; Rossbach, M.; Schitthelm, O.; Schumann, M.; Vasquez, R.

    2014-06-01

    Radioactive waste has to undergo a process of quality checking in order to check its conformance with national regulations prior to its transport, intermediate storage and final disposal. Within the quality checking of radioactive waste packages non-destructive assays are required to characterize their radio-toxic and chemo-toxic contents. The Institute of Energy and Climate Research - Nuclear Waste Management and Reactor Safety of the Forschungszentrum Jülich develops in the framework of cooperation nondestructive analytical techniques for the routine characterization of radioactive waste packages at industrial-scale. During the phase of research and development Monte Carlo techniques are used to simulate the transport of particle, especially photons, electrons and neutrons, through matter and to obtain the response of detection systems. The radiological characterization of low and intermediate level radioactive waste drums is performed by segmented γ-scanning (SGS). To precisely and accurately reconstruct the isotope specific activity content in waste drums by SGS measurement, an innovative method called SGSreco was developed. The Geant4 code was used to simulate the response of the collimated detection system for waste drums with different activity and matrix configurations. These simulations allow a far more detailed optimization, validation and benchmark of SGSreco, since the construction of test drums covering a broad range of activity and matrix properties is time consuming and cost intensive. The MEDINA (Multi Element Detection based on Instrumental Neutron Activation) test facility was developed to identify and quantify non-radioactive elements and substances in radioactive waste drums. MEDINA is based on prompt and delayed gamma neutron activation analysis (P&DGNAA) using a 14 MeV neutron generator. MCNP simulations were carried out to study the response of the MEDINA facility in terms of gamma spectra, time dependence of the neutron energy spectrum

  4. Method of solidifying radioactive waste by plastics

    International Nuclear Information System (INIS)

    Yasumura, Keijiro; Tomita, Toshihide.

    1976-01-01

    Purpose: To prevent leakage of radioactivity by providing corrosion-resistant layer on the inner surface of a waste container for radioactive waste. Constitution: The inner periphery and bottom of a drum can is lined with an non-flammable cloth of such material as asbestos. This drum is filled with a radioactive waste in the form of powder or pellets. Then, a mixture of a liquid plastic monomer and a polymerization starting agent is poured at a normal temperature, and the surface is covered with a non-flammable cloth. The plastic monomer and radioactive waste are permitted to impregnate the non-flammable cloth and are solidified there. Thus, even if the drum can is corroded at the sea bottom after disposal it in the ocean, it is possible to prevent the waste from permeating into the outer sea water because of the presence of the plastic layer on the inside. Styrene is used as the monomer. (Aizawa, K.)

  5. Method of processing radioactive solid wastes

    International Nuclear Information System (INIS)

    Ootaka, Hisashi; Aizu, Tadashi.

    1980-01-01

    Purpose: To improve the volume-reducing effect for the radioactive solids wastes by freezing and then pulverizing them. Method: Miscellaneous radioactive solid wastes produced from a nuclear power plant and packed in vinyl resin bags are filled in a drum can and nitrogen gas at low temperature (lower than 0 0 C) from a cylinder previously prepared by filling liquid nitrogen (at 15kg/cm 2 , -196 0 C) to freeze the radioactive solid wastes. Thereafter, a hydraulic press is inserted into the drum can to compress and pulverize the thus freezed miscellaneous radioactive solid wastes into powder. The powder thus formed does not expand even after removing the hydraulic press from the drum can, whereby the volume reduction of the radioactive solid wastes can be carried out effectively. (Horiuchi, T.)

  6. Improved practices for packaging transuranic waste at Los Alamos National Laboratory (LA-UR-09-03293) - 16280

    International Nuclear Information System (INIS)

    Goyal, Kapil K.; Carson, Peter H.

    2009-01-01

    Transuranic (TRU) waste leaving the Plutonium Facility at Los Alamos National Laboratory (LANL) is packaged using LANL's waste acceptance criteria for onsite storage. Before shipment to the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico, each payload container is subject to rigorous characterization to ensure compliance with WIPP waste acceptance criteria and Department of Transportation regulations. Techniques used for waste characterization include nondestructive examination by WIPP-certified real-time radiography (RTR) and nondestructive assay (NDA) of containers, as well as headspace gas sampling to ensure that hydrogen and other flammable gases remain at safe levels during transport. These techniques are performed under a rigorous quality assurance program to confirm that results are accurate and reproducible. If containers are deemed problematic, corrective action is implemented before they are shipped to WIPP. A defensive approach was used for many years to minimize the number of problematic drums. However, based on review of data associated with headspace gas sampling, NDA and RTR results, and enhanced coordination with the entities responsible for waste certification, many changes have been implemented to facilitate packaging of TRU waste drums with higher isotopic loading at the Plutonium Facility at an unprecedented rate while ensuring compliance with waste acceptance criteria. This paper summarizes the details of technical changes and related administrative coordination activities, such as information sharing among the certification entities, generators, waste packagers, and shippers. It discusses the results of all such cumulative changes that have been implemented at the Plutonium Facility and gives readers a preview of what LANL has accomplished to expeditiously certify and dispose of newly generated TRU waste. (authors)

  7. Optimum method to determine gamma activity in 200 liter drums. In-toto measurement or extracting a sample

    International Nuclear Information System (INIS)

    Bronson, Frazier

    2008-01-01

    In the process of decommissioning contaminated facilities, and in the conduct of normal operations involving radioactive material, it is frequently required to measure radioactivity in large containers such as 200 liter drums. For solid material, it is quite unusual for the radioactivity to be homogeneously distributed throughout the container. One way to derive the concentration of radioactivity within the container is to extract a sample for subsequent measurement in the laboratory. Another way is to use gamma spectroscopy and assay the entire container, or in-toto measurement. This paper examines the process of determining the best way to estimate the activity within the container, and gives quantitative estimates of measurement uncertainty for various conditions of radioactivity contained within 200 liter drums. When the contents of the container are not homogeneous, the sampling uncertainty is likely to be larger than the in-toto measurement uncertainty. (author)

  8. Management of slightly tritiated wastes and associated tests at the Study Center of Bruyeres le Chatel

    International Nuclear Information System (INIS)

    Paillard, P.; Clerc, H.

    1991-01-01

    Daily degassing rate of drums containing wastes with a low tritium content is a required parameter for removal towards a storage site. Methodology and techniques of increasing sensitivity used for this rate measurement are presented. For 200-liter drums, the degassing range is comprised between 0.1 MBq and 1.85 GBq per day. Equipment has been operating for several years allowing the dispatching of 443 drums and also the testing of on-site storage before disposal

  9. Verification calculation of drum and pulley overhead travelling crane on gamma irradiators

    International Nuclear Information System (INIS)

    Syamsurrijal Ramdja; Ari Satmoko; Sutomo Budihardjo

    2010-01-01

    Having verified the calculation of dam drum pulleys found on cranes to facilitate the gamma irradiator. Drum is a device for rolling steel ropes while the pulley is a circular pieces called disks, which are made from metal or non-metal to transmit motion and force. Having verified calculation of forces acting style on drums, drum diameter and length and style of press that occurred on drums. Likewise, the pulley, pulley diameter verified calculations, measures of disc and shaft power pulleys. From the verification results will be obtained whether the data drums and pulley device is safe or not safe to use. (author)

  10. Assessment of gas flammability in transuranic waste container

    International Nuclear Information System (INIS)

    Connolly, M.J.; Loehr, C.A.; Djordjevic, S.M.; Spangler, L.R.

    1995-01-01

    The Safety Analysis Report for the TRUPACT-II Shipping Package [Transuranic Package Transporter-II (TRUPACT-II) SARP] set limits for gas generation rates, wattage limits, and flammable volatile organic compound (VOC) concentrations in transuranic (TRU) waste containers that would be shipped to the Waste Isolation Pilot Plant (WIPP). Based on existing headspace gas data for drums stored at the Idaho National Engineering Laboratory (INEL) and the Rocky Flats Environmental Technology Site (RFETS), over 30 percent of the contact-handled TRU waste drums contain flammable VOC concentrations greater than the limit. Additional requirements may be imposed for emplacement of waste in the WIPP facility. The conditional no-migration determination (NMD) for the test phase of the facility required that flame tests be performed if significant levels of flammable VOCs were present in TRU waste containers. This paper describes an approach for investigating the potential flammability of TRU waste drums, which would increase the allowable concentrations of flammable VOCS. A flammability assessment methodology is presented that will allow more drums to be shipped to WIPP without treatment or repackaging and reduce the need for flame testing on drums. The approach includes experimental work to determine mixture lower explosive limits (MLEL) for the types of gas mixtures observed in TRU waste, a model for predicting the MLEL for mixtures of VOCS, hydrogen, and methane, and revised screening limits for total flammable VOCs concentrations and concentrations of hydrogen and methane using existing drum headspace gas data and the model predictions

  11. The Saami shaman's drum and the star horizons

    Directory of Open Access Journals (Sweden)

    Bo Sommarström

    1991-01-01

    Full Text Available The aim of this contribution is to examine the possible influences of stellar constellations on the positioning of the drum figures on the drums used by the Saami people during the 17th and 18th centuries. Certain of the drum figures seem to have a similar position to corresponding figures on traditional star maps, both with respect to single star constellations and to some members of the Zodiac circle. The most general correspondences between star maps and the painted designs on drums depend on the existence of a cross for determining the four cardinal points in both cases. The star constellations compared here with the drum-figures are in fact peripheral Saami skies. It is hard to believe that they can have played any vital role in their capacity as star symbols within the frame of the Saamis' own astral cosmology. It is more probable that the earthly meanings of most of the figures were more important to the drummer.

  12. Fatigue life estimation on coke drum due to cycle optimization

    Science.gov (United States)

    Siahaan, Andrey Stephan; Ambarita, Himsar; Kawai, Hideki; Daimaruya, Masashi

    2018-04-01

    In the last decade, due to the increasing demand of petroleum product, the necessity for converting the heavy oil are increasing. Thus, demand for installing coke drum in whole world will be increase. The coke drum undergoes the cyclic high temperature and suddenly cooling but in fact is not designed to withstand that kind of cycle, thus the operational life of coke drum is much shorter in comparison to other equipment in oil refinery. Various factors determine in order to improve reliability and minimize the down time, and it is found that the cycle optimization due to cycle, temperature, and pressure have an important role. From this research it is found that the fatigue life of the short cycle is decrease by a half compare to the normal cycle. It also found that in the preheating stage, the stress peak is far exceed the yield strength of coke drum material and fall into plastic deformation. This is happened because of the temperature leap in the preheating stage that cause thermal shock in the upper part of the skirt of the coke drum.

  13. Cementation unit for radioactive wastes

    International Nuclear Information System (INIS)

    Dellamano, Jose Claudio; Vicente, Roberto; Lima, Jose Rodrigues de

    2001-01-01

    This communication describes the waste cementation process and facility developed at Instituto de Pesquisas Energeticas e Nucleares - IPEN. The process is based on 200 litres batch operation, in drum mixing, with continuous cement feeding. The equipment is a single recoverable helicoidal mixer and a turning table that allows the drum to rotate during the mixing operation, simulating a planetary mixer. The facility was designed to treat contact handled liquids and wet solid wastes, but can be adapted for shielded equipment and remote operation. (author)

  14. 1994 Solid waste forecast container volume summary

    International Nuclear Information System (INIS)

    Templeton, K.J.; Clary, J.L.

    1994-09-01

    This report describes a 30-year forecast of the solid waste volumes by container type. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste. These volumes and their associated container types will be generated or received at the US Department of Energy Hanford Site for storage, treatment, and disposal at Westinghouse Hanford Company's Solid Waste Operations Complex (SWOC) during a 30-year period from FY 1994 through FY 2023. The forecast data for the 30-year period indicates that approximately 307,150 m 3 of LLMW and TRU/TRUM waste will be managed by the SWOC. The main container type for this waste is 55-gallon drums, which will be used to ship 36% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of 55-gallon drums is Past Practice Remediation. This waste will be generated by the Environmental Restoration Program during remediation of Hanford's past practice sites. Although Past Practice Remediation is the primary generator of 55-gallon drums, most waste generators are planning to ship some percentage of their waste in 55-gallon drums. Long-length equipment containers (LECs) are forecasted to contain 32% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of LECs is the Long-Length Equipment waste generator, which is responsible for retrieving contaminated long-length equipment from the tank farms. Boxes are forecasted to contain 21% of the waste. These containers are primarily forecasted for use by the Environmental Restoration Operations--D ampersand D of Surplus Facilities waste generator. This waste generator is responsible for the solid waste generated during decontamination and decommissioning (D ampersand D) of the facilities currently on the Surplus Facilities Program Plan. The remaining LLMW and TRU/TRUM waste volume is planned to be shipped in casks and other miscellaneous containers

  15. Hazardous Waste Code Determination for First/Second-Stage Sludge Waste Stream (IDCs 001, 002, 800)

    International Nuclear Information System (INIS)

    Arbon, R.E.

    2001-01-01

    This document, Hazardous Waste Code Determination for the First/Second-Stage Sludge Waste Stream, summarizes the efforts performed at the Idaho National Engineering and Environmental Laboratory (INEEL) to make a hazardous waste code determination on Item Description Codes (IDCs) 001, 002, and 800 drums. This characterization effort included a thorough review of acceptable knowledge (AK), physical characterization, waste form sampling, chemical analyses, and headspace gas data. This effort included an assessment of pre-Waste Analysis Plan (WAP) solidified sampling and analysis data (referred to as preliminary data). Seventy-five First/Second-Stage Sludge Drums, provided in Table 1-1, have been subjected to core sampling and analysis using the requirements defined in the Quality Assurance Program Plan (QAPP). Based on WAP defined statistical reduction, of preliminary data, a sample size of five was calculated. That is, five additional drums should be core sampled and analyzed. A total of seven drums were sampled, analyzed, and validated in compliance with the WAP criteria. The pre-WAP data (taken under the QAPP) correlated very well with the WAP compliant drum data. As a result, no additional sampling is required. Based upon the information summarized in this document, an accurate hazardous waste determination has been made for the First/Second-Stage Sludge Waste Stream

  16. Model air-supported drum-type homopolar generator

    International Nuclear Information System (INIS)

    Kustom, R.L.; Fuja, R.E.; Wehrle, R.B.; Smith, R.P.; Kovarik, T.J.

    1977-01-01

    A single cylinder, drum-type homopolar generator has been designed and built for the purpose of developing a simple air support system for thin cylinder rotors operated at high surface velocities and significant radial drum growth. The model has an aluminum cylinder which is 0.32 cm thick, 25 cm in diameter, and 12.7 cm long. It is designed to operate at a peak current of 2500 A and to store a total of 40 kJ with a surface velocity of 305 m/sec

  17. Renewable Energy Opportunities at Fort Drum, New York

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Scott A.; Orrell, Alice C.; Solana, Amy E.; Williamson, Jennifer L.; Hand, James R.; Russo, Bryan J.; Weimar, Mark R.; Rowley, Steven; Nesse, Ronald J.

    2010-10-20

    This document provides an overview of renewable resource potential at Fort Drum, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Drum took place on May 4 and 5, 2010.

  18. Repackaging of High Fissile TRU Waste at the Transuranic Waste Processing Center - 13240

    Energy Technology Data Exchange (ETDEWEB)

    Oakley, Brian; Heacker, Fred [WAI, TRU Waste Processing Center, 100 WIPP Road Lenoir City, TN 37771 (United States); McMillan, Bill [DOE, Oak Ridge Operations, Bldg. 2714, Oak Ridge, TN 37830 (United States)

    2013-07-01

    to be 1-3 mSv/hr (100-300 mrem/hr) with an unshielded dose rate on the waste itself of over 10 mSv/hr (1 rem/hr). Additional equipment to be installed at the TWPC will include a new perma-con enclosure and a shielded/inert glovebox in the process building to repackage and stabilize the waste. All of the waste will be repackaged into Standard Pipe Overpacks. Most of the waste (21 of the 26 drums) is expected to be repackaged at the food-pack can level (i.e. the food-pack cans will not be opened). Five of the incoming waste containers are expected to be repackaged at the primary waste level. Three of the containers exceed the 200 gram Pu-239 Fissile Gram Equivalent (FGE) limit for the Standard Pipe Overpack. These three containers will be repackaged down to the primary waste level and divided into eight Standard Pipe Overpacks for shipment to WIPP. Two containers must be stabilized to eliminate any reactive plutonium hydrides that may be present. These containers will be opened in the inert, shielded glovebox, and the remaining corroded plutonium metal converted to a stable oxide form by using a 600 deg. C tube furnace with controlled oxygen feed in a helium carrier gas. The stabilized waste will then be packaged into two Standard Pipe Overpacks. Design and build out activities for the additional repackaging capabilities at the TWPC are scheduled to begin in Fiscal Year 2013 with repackaging, stabilization, and certification activities scheduled to begin in Fiscal Year 2014. Following repackaging and stabilization activities, the Standard Pipe Overpacks will be certified for disposal at WIPP utilizing Non-Destructive Examination (NDE) to verify the absence of prohibited items and Non-Destructive Assay (NDA) to verify the isotopic content under the TWPC WIPP certification program implemented by the Central Characterization Project (CCP). (authors)

  19. RATIONALE FOR CENTERING CAPACITY OF REDISIGNED BELT CONVEYOR DRUMS

    Directory of Open Access Journals (Sweden)

    V. V. Suglobov

    2016-02-01

    Full Text Available Purpose. In the study is necessary: 1 to justify aligning drums of a new design of belt conveyors; 2 to develop a method for calculating and determining the rational design parameters of drums depending on the technical parameters of the conveyor belt (the length of the conveyor, belt width, the performance of the conveyor, the diameter of the drive and tension drums, etc.; 3 to carry out pilot studies of efficiency conveyor belt in a production environment in order to determine the magnitude of dynamic loads and a comparative evaluation of the effectiveness of the centering ability of conventional and new designs of drums. Methodology. To substantiate the effectiveness of the centering ability of the drums of a new design by the authors developed a mathematical model of interaction of the tape with the drum. Mathematical simulation of tape reels with new design comes to drawing up a differential equation of the belt based on the dynamic component and restoring force. This model allowed us to estimate the movement of the tape in the transverse direction based on the calculated additional dynamic loads and forces on the investigated centering a conveyor belt with given specifications. For the first time the technique of calculating and determining the rational parameters of the drums, which allows determining the design parameters of the centering portions, depending on the mechanical properties and geometric parameters of the tape. Findings. With the help of mathematical modeling the scientifically substantiated effect of centering the ability of the new design of the drum, which ensures stable tape running along the longitudinal axis of the conveyor. The authors made the following conclusions: 1 the mathematical model of interaction with the new belt design of the drum, which allowed to describe the belt in the transverse direction in view of additional dynamic loads and renewable power was developed; 2 the method of calculation and

  20. Diamond drilling for nuclear waste QC

    International Nuclear Information System (INIS)

    Jennings, Martin.

    1990-01-01

    Specialised diamond core drilling equipment could soon have a role to play in the safe disposal of intermediate level radioactive waste (ILW). Equipment to core and extract samples for quality checking from cement-filled steel waste drums by techniques compatible with eventual remote-handling operations in a 'hot-cell' is being developed. All coring tests carried out to date have been on simulant waste: 200 litre drums containing mixtures of Ordinary Portland Cement, Ground Granulated Blast Furnace Slag and Pulverised Fuel Ash. No radioactive materials have yet been used for the coring trials. The coring equipment and the diamond coring bits are described. (author)

  1. Application of drum compost and vermicompost to improve soil health, growth, and yield parameters for tomato and cabbage plants.

    Science.gov (United States)

    Goswami, Linee; Nath, Anil; Sutradhar, Sweety; Bhattacharya, Satya Sundar; Kalamdhad, Ajay; Vellingiri, Kowsalya; Kim, Ki-Hyun

    2017-09-15

    Utilization of different types of solid wastes through composting is important for environmental sustainability and restoring soil quality. Although drum composting is an efficient technology, the possibility of heavy metal contamination restricts its large-scale use. In this research, a field experiment was conducted to evaluate the impact of water hyacinth drum compost (DC) and traditional vermicompost (VC) on soil quality and crop growth in an agro-ecosystem cultivated intensively with tomato and cabbage as test crops. A substantial improvement in soil health was observed with respect to nutrient availability, physical stability, and microbial diversity due to the application of drum compost and traditional vermicompost. Moreover, soil organic carbon was enriched through increased humic and fulvic acid carbon. Interestingly, heavy metal contamination was less significant in vermicompost-treated soils than in those receiving the other treatments. The use of VC and DC in combination with recommended chemical fertilization effectively stimulated crop growth, yield, product quality, and storage longevity for both tomato and cabbage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The Extraordinary Nature of Barney's Drumming : A Complementary Study of Ordinary Noise Making in Chimpanzees

    NARCIS (Netherlands)

    Dufour, Valérie; Pasquaretta, Cristian; Gayet, Pierre; Sterck, Elisabeth H M

    In a previous study (Dufour et al., 2015) we reported the unusual characteristics of the drumming performance of a chimpanzee named Barney. His sound production, several sequences of repeated drumming on an up-turned plastic barrel, shared features typical for human musical drumming: it was

  3. 49 CFR 178.506 - Standards for metal drums other than steel or aluminum.

    Science.gov (United States)

    2010-10-01

    ... aluminum. 178.506 Section 178.506 Transportation Other Regulations Relating to Transportation PIPELINE AND... drums other than steel or aluminum. (a) The following are the identification codes for metal drums other than steel or aluminum: (1) 1N1 for a non-removable head metal drum; and (2) 1N2 for a removable head...

  4. Combustion and fuel loading characteristics of Hanford Site transuranic solid waste

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.

    1994-01-01

    The Waste Receiving and Processing (WRAP) Facility is being designed for construction in the north end of the Central Waste Complex. The WRAP Facility will receive, store, and process radioactive solid waste of both transuranic (TRU) and mixed waste (mixed radioactive-chemical waste) categories. Most of the waste is in 208-L (55-gal) steel drums. Other containers such as wood and steel boxes, and various sized drums will also be processed in the facility. The largest volume of waste and the type addressed in this report is TRU in 208-L (55-gal) drums that is scheduled to be processed in the Waste Receiving and Processing Facility Module 1 (WRAP 1). Half of the TRU waste processed by WRAP 1 is expected to be retrieved stored waste and the other half newly generated waste. Both the stored and new waste will be processed to certify it for permanent storage in the Waste Isolation Pilot Plant (WIPP) or disposal. The stored waste will go through a process of retrieval, examination, analysis, segregation, repackaging, relabeling, and documentation before certification and WIPP shipment. Newly generated waste should be much easier to process and certify. However, a substantial number of drums of both retrievable and newly generated waste will require temporary storage and handling in WRAP. Most of the TRU waste is combustible or has combustible components. Therefore, the presence of a substantial volume of drummed combustible waste raises concern about fire safety in WRAP and similar waste drum storage facilities. This report analyzes the fire related characteristics of the expected WRAP TRU waste stream

  5. DRUMS: a human disease related unique gene mutation search engine.

    Science.gov (United States)

    Li, Zuofeng; Liu, Xingnan; Wen, Jingran; Xu, Ye; Zhao, Xin; Li, Xuan; Liu, Lei; Zhang, Xiaoyan

    2011-10-01

    With the completion of the human genome project and the development of new methods for gene variant detection, the integration of mutation data and its phenotypic consequences has become more important than ever. Among all available resources, locus-specific databases (LSDBs) curate one or more specific genes' mutation data along with high-quality phenotypes. Although some genotype-phenotype data from LSDB have been integrated into central databases little effort has been made to integrate all these data by a search engine approach. In this work, we have developed disease related unique gene mutation search engine (DRUMS), a search engine for human disease related unique gene mutation as a convenient tool for biologists or physicians to retrieve gene variant and related phenotype information. Gene variant and phenotype information were stored in a gene-centred relational database. Moreover, the relationships between mutations and diseases were indexed by the uniform resource identifier from LSDB, or another central database. By querying DRUMS, users can access the most popular mutation databases under one interface. DRUMS could be treated as a domain specific search engine. By using web crawling, indexing, and searching technologies, it provides a competitively efficient interface for searching and retrieving mutation data and their relationships to diseases. The present system is freely accessible at http://www.scbit.org/glif/new/drums/index.html. © 2011 Wiley-Liss, Inc.

  6. Convective heat transfer analysis in aggregates rotary drum reactor

    International Nuclear Information System (INIS)

    Le Guen, Laurédan; Huchet, Florian; Dumoulin, Jean; Baudru, Yvan; Tamagny, Philippe

    2013-01-01

    Heat transport characterisation inside rotary drum dryer has a considerable importance linked to many industrial applications. The present paper deals with the heat transfer analysis from experimental apparatus installed in a large-scale rotary drum reactor applied to the asphalt materials production. The equipment including in-situ thermal probes and external visualization by mean of infrared thermography gives rise to the longitudinal evaluation of inner and external temperatures. The assessment of the heat transfer coefficients by an inverse methodology is resolved in order to accomplish a fin analysis of the convective mechanism inside baffled (or flights) rotary drum. The results are discussed and compared with major results of the literature. -- Highlights: ► A thermal and flow experimentation is performed on a large-scale rotary drum. ► Four working points is chosen in the frame of asphalt materials production. ► Evaluation of the convective transfer mechanisms is calculated by inverse method. ► The drying stage is performed in the combustion area. ► Wall/aggregates heat exchanges have a major contribution in the heating stage

  7. Middle School Drum Ensemble: An Unlikely Experience in Classroom Democracy

    Science.gov (United States)

    Barbre, James

    2013-01-01

    Though music has a long and successful history within education, it is often one of the first sacrificial lambs when school budgets tighten. Over the course of an academic year, a documentary film sought to tell the story of an American middle school drum ensemble. The context of this group provided an ideal way to examine the nature of student…

  8. Experimental study of liquid carryover in a separator drum

    International Nuclear Information System (INIS)

    Prabhudharwadkar, Deoras M.; More, Rahul Z.; Iyer, Kannan N.

    2010-01-01

    The phenomenon of carryover, i.e. entrainment of liquid along with separated steam is observed in all the steam separators. Due to the risks, such as turbine blade erosion and radioactivity leakage, associated with it, it is desired to have an estimate of the carryover value. This is all the more important when the separation is only under the influence of gravity as proposed in some of the new generation natural circulation reactors. Experiments were carried out in an air-water facility at atmospheric conditions to characterize the entrainment in drums with ratio of the drum diameter to riser diameter varying from 1 to 6. Various parameters influencing the liquid entrainment were identified. The vapour superficial velocity and the drum diameter to riser diameter ratio were found to be the most influencing parameters. A dimensionless prediction correlation was evolved for the liquid entrainment and it was found to agree with previous works in the literature for drum to riser diameter ratio equal to 1.

  9. EARLY TESTS OF DRUM TYPE PACKAGINGS - THE LEWALLEN REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.

    2010-07-29

    The need for robust packagings for radioactive materials (RAM) was recognized from the earliest days of the nuclear industry. The U.S. Department of Energy (DOE) Rocky Flats Plant developed a packaging for shipment of Pu in the early 1960's, which became the U.S. Department of Transportation (DOT) 6M specification package. The design concepts were employed in other early packagings. Extensive tests of these at Savannah River Laboratory (now Savannah River National Laboratory) were performed in 1969 and 1970. The results of these tests were reported in 'Drum and Board-Type Insulation Overpacks of Shipping Packages for Radioactive Materials', by E. E. Lewallen. The Lewallen Report was foundational to design of subsequent drum type RAM packaging. This paper summarizes this important early study of drum type packagings. The Lewallen Report demonstrated the ability packagings employing drum and insulation board overpacks and engineered containment vessels to meet the Type B package requirements. Because of the results of the Lewallen Report, package designers showed high concern for thermal protection of 'Celotex'. Subsequent packages addressed this by following strategies like those recommended by Lewallen and by internal metal shields and supplemental, encapsulated insulation disks, as in 9975. The guidance provide by the Lewallen Report was employed in design of a large number of drum size packagings over the following three decades. With the increased public concern over transportation of radioactive materials and recognition of the need for larger margins of safety, more sophisticated and complex packages have been developed and have replaced the simple packagings developed under the Lewallen Report paradigm.

  10. Waste treatment plant

    International Nuclear Information System (INIS)

    Adesanmi, C.A

    2009-01-01

    Waste Treatment Plant (WTP) is designed to provide appropriate systems for processing, immobilization and storage of low and medium radioactive waste arising from the operation of the research facilities of the Nuclear Technology Centre (NTC). It will serve as central collection station processing active waste generated through application of radionuclide in science, medicine and industry in the country. WTP building and structures will house the main waste processing systems and supporting facilities. All facilities will be interconnected. The interim storage building for processed waste drums will be located separately nearby. The separate interim storage building is located near the waste treatment building. Considering the low radiation level of the waste, storage building is large with no solid partitioning walls and with no services or extra facilities other than lighting and smoke alarm sensors. The building will be designed such that drums(200-1)are stacked 3 units high using handling by fork lift truck. To prevent radiation exposure to on-site personnel, the interim storage building will be erected apart from waste treatment plant or other buildings. The interim storage building will also be ready for buffer storage of unconditioned waste waiting for processing or decay and for storage material from the WTP

  11. Wastes

    International Nuclear Information System (INIS)

    Bovard, Pierre

    The origin of the wastes (power stations, reprocessing, fission products) is determined and the control ensuring the innocuity with respect to man, public acceptance, availability, economics and cost are examined [fr

  12. Effects of tempo, swing density, and listener's drumming experience, on swing detection thresholds for drum rhythms.

    Science.gov (United States)

    Frane, Andrew V; Shams, Ladan

    2017-06-01

    Swing, a popular technique in music performance, has been said to enhance the "groove" of the rhythm. Swing works by delaying the onsets of even-numbered subdivisions of each beat (e.g., 16th-note swing delays the onsets of the second and fourth 16th-note subdivisions of each quarter-note beat). The "swing magnitude" (loosely speaking, the amount of delay) is often quite small. And there has been little investigation, using musical stimuli, into what swing magnitudes listeners can detect. To that end, this study presented continually-looped electronic drum rhythms, with 16th-note swing in the hi-hat on every other bar, to drummers and non-drummers. Swing magnitude was adjusted using a staircase procedure, to determine the magnitude where the difference between swinging and not-swinging bars was just-noticeable. Different tempi (60 to 140 quarter-notes per minute) and swing densities (how often notes occurred at even-numbered subdivisions) were used. Results showed that all subjects could detect smaller swing magnitudes when swing density was higher, thus confirming a previous speculation that the perceptual salience of swing increases with swing density. The just-noticeable magnitudes of swing for drummers differed from those of non-drummers, in terms of both overall magnitude and sensitivity to tempo, thus prompting questions for further exploration.

  13. The immobilisation of shredded waste in a cement matrix

    International Nuclear Information System (INIS)

    James, J.M.; Smith, D.L.

    1985-10-01

    Progress on the preparations for the encapsulation of plutonium contaminated shredded waste is summarised. Waste drums have been modified and filled with active shredded waste. Commissioning of the grout infilling test rig was started at the end of this period. Inactive process trials have continued in support of the design of the active encapsulation plant. (author)

  14. Using the Salmonella assay to delineate the dispersion routes of mutagenic compounds from coal wastes in contaminated soil.

    Science.gov (United States)

    da Silva Júnior, Flavio Manoel Rodrigues; Vargas, Vera Maria Ferrão

    2009-03-17

    The mutagenicity of acidic and organic extracts of surface soil under the influence of a coal-fired power plant was evaluated by Salmonella/microsome assay using strains TA97a, TA98 and TA100 in the absence and presence of exogenous metabolic systems (S9 mix). Additionally, strains YG1041 and YG1042 (sensitive to nitroderivatives) were used for the organic extracts. In general, the responses were higher in the organic extracts in the presence of S9 mix. The comparison between strains TA98 and TA100 and their derived strains YG1041 and YG1042, respectively, allowed the detection of the presence of nitro-aromatic compounds in some sampling areas, which was confirmed by chemical analysis. The interpretation of the set of mutagenesis data suggests that there are two important mutagenic compound dispersion routes in the area of study: frameshift mutagens were dispersed predominantly by runoff and leaching, while base-pair substitution mutagens were dispersed mainly by the atmosphere. This mutagenic damage might be attributed to the effects of several substances detected in the area, such as aliphatic hydrocarbons and the metals aluminum, cadmium, lead and iron.

  15. Fatigue behaviour of coke drum materials under thermal-mechanical cyclic loading

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2014-01-01

    Full Text Available Coke drums are vertical pressure vessels used in the delayed coking process in petroleum refineries. Significant temperature variation during the delayed coking process causes damage in coke drums in the form of bulging and cracking. There were some studies on the fatigue life estimation for the coke drums, but most of them were based on strain-fatigue life curves at constant temperatures, which do not consider simultaneous cyclic temperature and mechanical loading conditions. In this study, a fatigue testing system is successfully developed to allow performing thermal-mechanical fatigue (TMF test similar to the coke drum loading condition. Two commonly used base and one clad materials of coke drums are then experimentally investigated. In addition, a comparative study between isothermal and TMF lives of these materials is conducted. The experimental findings lead to better understanding of the damage mechanisms occurring in coke drums and more accurate prediction of fatigue life of coke drum materials.

  16. Study of Validity Criteria for Radionuclide-Analysis of Low- and Intermediate-Level Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Uk; Baek, Hyun Suk; Jeong, Sung Yeop [Sungwoo E and T Co., Hanam (Korea, Republic of); Shin, Seung Kyu [Korea Radioactive waste Management Corporation, Gyeongju (Korea, Republic of)

    2013-05-15

    Literature survey on the deviation of the measuring equipment and statistical analysis on the measured data of domestic LILW were performed in order to set evaluation criteria quantitatively when comparing the result of each test and inspections. This study provided opportunity to increase credibility and re-assure validity of Waste Acceptance Criteria (WAC). Through the statistical analysis for deviation of measurement by comparing repository inspection with generator self-test, the quantitative acceptance criteria were set depending on specific activity of Co-60 and Cs-137. The acceptance criteria is a relative bias of KRMC result to generator result and set from low 50 % to high 150 % for Co-60, from low 30 % to 250 % for Cs-137. In this study, because the statistical analysis results of the waste drum assay are not enough representing whole range specified at WAC, an additional research that include characteristic analysis of LILW generated other birthplace should be done.

  17. TRU waste characterization chamber gloveboxes

    International Nuclear Information System (INIS)

    Duncan, D. S.

    1998-01-01

    Argonne National Laboratory-West (ANL-W) is participating in the Department of Energy's (DOE) National Transuranic Waste Program in support of the Waste Isolation Pilot Plant (WIPP). The Laboratory's support currently consists of intrusive characterization of a selected population of drums containing transuranic waste. This characterization is performed in a complex of alpha containment gloveboxes termed the Waste Characterization Gloveboxes. Made up of the Waste Characterization Chamber, Sample Preparation Glovebox, and the Equipment Repair Glovebox, they were designed as a small production characterization facility for support of the Idaho National Engineering and Environmental Laboratory (INEEL). This paper presents salient features of these gloveboxes

  18. A analysis of cementation technology for liquid radioactive-waste in PWR NPPs

    International Nuclear Information System (INIS)

    Chen Liang; Chen Li; Li Junhua

    2009-01-01

    Cementation is one of the most popular solidification technology for the low-and-intermediate level liquid radioactive waste. It has been applied in all of domestic PWR NPPs. The process characteristics and operation of the cementations in the different NPPs are introduced,and the advantage and disadvantage of the cementation are analyzed in this paper. A drum and a cask are compared as a package of the solidified waste, the drum can decrease over 50% final volume of the waste, furthermore the cost for manufacture and transportation for this drum is more cheaper than the cask, but an additional shielding may be necessary for the waste with higher level radioactivity that is packed in drum. More waste can be contained if an appropriate in-drum mixer is used while secondary waste will be unavoidable if the out-drum mixing is adopted. A carriage can make it easier to decontaminate on the surface of equipment and on the floor, furthermore the carriage is more economical than a roller conveyor in manufacture and maintenance. The cementation recipe for the waste should be optimized and additive material should be as less as possible to increase the containing rate of the waste. (authors)

  19. Waste Inspection Tomography for Non-Destructive Evaluation (WITNDA)

    International Nuclear Information System (INIS)

    Ramar, R.; Priyada, P.; Shivaramu; Venkatraman, B.

    2012-01-01

    A gamma ray Computed Tomography (CT) system developed indigenously for doing feasibility studies on tomographic waste assay and for validating the transmission and emission tomography algorithms. Automation of the data collection has been achieved by integrating four axes Galil based drum rotating driver and HPGe gamma spectroscopy software using windows based Visual Basic (VB) program. Attenuation tomograms using Filter Back Projection (FBP) and Algebraic Reconstruction Technique (ART) and emission tomograms using Maximum Likelihood Expectation Maximization (MLEM) techniques developed and validated. The transmission tomograms of a MS test object of 165 mm OD cylindrical container with MS rods and filled with sand and emission tomograms of a 4.7 mCi 137 Cs source embedded in the test object and its activity quantified. (author)

  20. DNA damage induced in mouse tissues by organic wood preserving waste extracts as assayed by {sup 32}P-postlabeling

    Energy Technology Data Exchange (ETDEWEB)

    Randerath, E. [Division of Toxicology, Department of Pharmacology, Baylor College of Medicine, Houston, TX (United States); Zhou, G.D. [Division of Toxicology, Department of Pharmacology, Baylor College of Medicine, Houston, TX (United States); Donnelly, K.C. [Department of Veterinary Anatomy and Public Health, Texas A and M University, College Station, TX (United States); Safe, S.H. [Department of Veterinary Physiology/Pharmacology, Texas A and M University, College Station, TX (United States); Randerath, K. [Division of Toxicology, Department of Pharmacology, Baylor College of Medicine, Houston, TX (United States)

    1996-09-01

    In the present study, a mouse bioassay was used in combination with {sup 32}P-postlabeling to determine DNA adduct formation induced by hexane/acetone extracts of two samples from a WPW site. Female ICR mice were treated dermally with extract corresponding to 3 mg residue or vehicle control once per day for 2 days and killed 24 h later. Skin, lung, liver, kidney, and heart DNA preparations were assayed by nuclease P1-enhanced postlabeling. Adduct profiles were tissue-specific and displayed a multitude of non-polar DNA adducts with levels amounting to one adduct in 1.6 x 10{sup 6} DNA nucleotides in skin (both extracts) and one adduct in 3.2 x 10{sup 7} or 1.2 x 10{sup 7} DNA nucleotides in liver (extract 1 or extract 2). Based on their chromatographic properties, these adducts appeared largely derived from polycyclic aromatic hydrocarbons (PAHs) present in the extracts. One of the major adducts was identified as the {sup 32}P-labeled derivative of the reaction product of 7{beta}, 8{alpha}-dihydroxy-9{alpha}, 10{alpha}-epoxy-7, 8, 9, 10-tetrahydrobenzo[a]pyrene (BPDE I) with N{sup 2} of deoxyguanosine. Total non-polar DNA adduct levels were highest in skin and lung, amounting to 17.4 and 24.0% of the skin values for extracts 1 and 2, respectively, in lung while the corresponding levels in liver were 5.0 and 12.6%. These results were in accord with the carcinogenic potencies of PAHs in these organs. Extract 2 induced higher adduct levels in internal organs, although its PAH concentrations were lower than those of extract 1, i.e. lung, liver, kidney, and heart had 1.4, 2.5, 1.9, and 1.7 times higher total adduct levels and 1.6, 3.3, 1.6, and 1.9 times higher benzo[a]pyrene adduct levels. With the exception of total adducts in lung, the differences between the two extracts were all significant, suggestive of compound interactions. (orig.) (orig.). With 5 figs., 6 tabs.

  1. DNA damage induced in mouse tissues by organic wood preserving waste extracts as assayed by 32P-postlabeling

    International Nuclear Information System (INIS)

    Randerath, E.; Zhou, G.D.; Donnelly, K.C.; Safe, S.H.; Randerath, K.

    1996-01-01

    In the present study, a mouse bioassay was used in combination with 32 P-postlabeling to determine DNA adduct formation induced by hexane/acetone extracts of two samples from a WPW site. Female ICR mice were treated dermally with extract corresponding to 3 mg residue or vehicle control once per day for 2 days and killed 24 h later. Skin, lung, liver, kidney, and heart DNA preparations were assayed by nuclease P1-enhanced postlabeling. Adduct profiles were tissue-specific and displayed a multitude of non-polar DNA adducts with levels amounting to one adduct in 1.6 x 10 6 DNA nucleotides in skin (both extracts) and one adduct in 3.2 x 10 7 or 1.2 x 10 7 DNA nucleotides in liver (extract 1 or extract 2). Based on their chromatographic properties, these adducts appeared largely derived from polycyclic aromatic hydrocarbons (PAHs) present in the extracts. One of the major adducts was identified as the 32 P-labeled derivative of the reaction product of 7β, 8α-dihydroxy-9α, 10α-epoxy-7, 8, 9, 10-tetrahydrobenzo[a]pyrene (BPDE I) with N 2 of deoxyguanosine. Total non-polar DNA adduct levels were highest in skin and lung, amounting to 17.4 and 24.0% of the skin values for extracts 1 and 2, respectively, in lung while the corresponding levels in liver were 5.0 and 12.6%. These results were in accord with the carcinogenic potencies of PAHs in these organs. Extract 2 induced higher adduct levels in internal organs, although its PAH concentrations were lower than those of extract 1, i.e. lung, liver, kidney, and heart had 1.4, 2.5, 1.9, and 1.7 times higher total adduct levels and 1.6, 3.3, 1.6, and 1.9 times higher benzo[a]pyrene adduct levels. With the exception of total adducts in lung, the differences between the two extracts were all significant, suggestive of compound interactions. (orig.) (orig.). With 5 figs., 6 tabs

  2. System design description for Waste Information and Control System

    International Nuclear Information System (INIS)

    Harris, R.R.

    1994-01-01

    The Westinghouse Hanford Company (WHC) Hazardous Material Control Group (HMC) of the 222-S Laboratory has requested the development of a system to help resolve many of the difficulties associated with tracking and data collection of containers and drums of waste. This system has been identified as the Waste Information and Control System (WICS). WICS shall partially automate the procedure for acquisition, tracking and reporting of the container, drum, and waste data that is currently manually processed. The WICS project shall use handheld computer units (HCU) to collect laboratory data, a local database with an user friendly interface to import the laboratory data from the HCUs, and barcode technology with associated software and operational procedures. After the container, drum, and waste data has been collected and verified, WICS shall be manipulated to provide informal reports containing data required to properly document waste disposal. 8 refs, 82 figs, 69 tabs

  3. Design of temperature detection device for drum of belt conveyor

    Science.gov (United States)

    Zhang, Li; He, Rongjun

    2018-03-01

    For difficult wiring and big measuring error existed in the traditional temperature detection method for drum of belt conveyor, a temperature detection device for drum of belt conveyor based on Radio Frequency(RF) communication is designed. In the device, detection terminal can collect temperature data through tire pressure sensor chip SP370 which integrates temperature detection and RF emission. The receiving terminal which is composed of RF receiver chip and microcontroller receives the temperature data and sends it to Controller Area Network(CAN) bus. The test results show that the device meets requirements of field application with measuring error ±3.73 ° and single button battery can provide continuous current for the detection terminal over 1.5 years.

  4. AUTOMATIC CONTROL SYSTEM OF THE DRUM BOILER SUPERHEATED STEAM TEMPERATURE.

    Directory of Open Access Journals (Sweden)

    Juravliov A.A.

    2006-04-01

    Full Text Available The control system of the temperature of the superheated steam of the drum boiler is examined. Main features of the system are the PI-controller in the external control loop and introduction of the functional component of the error signal of the external control loop with the negative feedback of the error signal between the prescribed value of steam flowrate and the signal of the steam flowrate in the exit of the boiler in the internal control loop.

  5. Material Selection for a Manual Winch Rope Drum

    OpenAIRE

    Moses F. Oduori; Enoch K. Musyoka; Thomas O. Mbuya

    2016-01-01

    The selection of materials is an essential task in mechanical design processes. This paper sets out to demonstrate the application of analytical decision making during mechanical design and, particularly, in selecting a suitable material for a given application. Equations for the mechanical design of a manual winch rope drum are used to derive quantitative material performance indicators, which are then used in a multiple attribute decision making (MADM) model to rank the candidate materials....

  6. Assessment of DOD Wounded Warrior Matters -- Fort Drum

    Science.gov (United States)

    2011-09-30

    their relation to military duties. The six factors that are evaluated are: physical capacity or stamina , upper extremities, lower extremities...Health Net Federal Services contractor. The Fort Drum MEDDAC Referral Management Office created a “Reports Cell ” which was responsible for obtaining...Care Division had created a CLR/Reports Cell group that focused specifically on obtaining CLRs, inputting them into patients’ AHLTA records and

  7. Kinematics and Path Following Control of an Articulated Drum Roller

    Science.gov (United States)

    BIAN, Yongming; YANG, Meng; FANG, Xiaojun; WANG, Xiahui

    2017-07-01

    Automatic navigation of an articulated drum roller, which is an articulated steering type vehicle widely used in the construction industry, is highly expected for operation cost reduction and improvement of work efficiency. In order to achieve the path following control, considering that its steering system is articulated steering and two frames are articulated by an active revolute joint, a kinematic model and an error dynamic state-space equation of an articulated drum roller are proposed. Besides, a state-feedback control law based on Lyapunov stability theory is also designed, which can be proved to achieve the purpose of control by the analysis of stability. What's more, to evaluate the performance of the proposed method, simulation under the MATLAB/Simulink and experiments using positioning algorithm and errors correction at the uneven construction site are performed, with initial displacement error (-1.5 m), heading error (-0.11 rad) and steering angle (-0.19 rad). Finally, simulation and experimental results show that the errors and steering angle can decrease gradually, and converge to zero with time. Meanwhile, the control input is not saturated. An articulated drum roller can lock into a desired path with the proposed method in uneven fields.

  8. Transverse mixing of ellipsoidal particles in a rotating drum

    Directory of Open Access Journals (Sweden)

    He Siyuan

    2017-01-01

    Full Text Available Rotating drums are widely used in industry for mixing, milling, coating and drying processes. In the past decades, mixing of granular materials in rotating drums has been extensively investigated, but most of the studies are based on spherical particles. Particle shape has an influence on the flow behaviour and thus mixing behaviour, though the shape effect has as-yet received limited study. In this work, discrete element method (DEM is employed to study the transverse mixing of ellipsoidal particles in a rotating drum. The effects of aspect ratio and rotating speed on mixing quality and mixing rate are investigated. The results show that mixing index increases exponentially with time for both spheres and ellipsoids. Particles with various aspect ratios are able to reach well-mixed states after sufficient revolutions in the rolling or cascading regime. Ellipsoids show higher mixing rate when rotational speed is set between 25 and 40 rpm. The relationship between mixing rate and aspect ratio of ellipsoids is established, demonstrating that, particles with aspect ratios of 0.5 and 2.0 achieve the highest mixing rates. Increasing rotating speed from 15 rpm to 40 rpm does not necessarily increase the mixing speed of spheres, while monotonous increase is observed for ellipsoids.

  9. Results from simulated contact-handled transuranic waste experiments at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Molecke, M.A.; Sorensen, N.R.; Krumhansl, J.L.

    1993-01-01

    We conducted in situ experiments with nonradioactive, contact-handled transuranic (CH TRU) waste drums at the Waste Isolation Pilot Plant (WIPP) facility for about four years. We performed these tests in two rooms in rock salt, at WIPP, with drums surrounded by crushed salt or 70 wt % salt/30 wt % bentonite clay backfills, or partially submerged in a NaCl brine pool. Air and brine temperatures were maintained at ∼40C. These full-scale (210-L drum) experiments provided in situ data on: backfill material moisture-sorption and physical properties in the presence of brine; waste container corrosion adequacy; and, migration of chemical tracers (nonradioactive actinide and fission product simulants) in the near-field vicinity, all as a function of time. Individual drums, backfill, and brine samples were removed periodically for laboratory evaluations. Waste container testing in the presence of brine and brine-moistened backfill materials served as a severe overtest of long-term conditions that could be anticipated in an actual salt waste repository. We also obtained relevant operational-test emplacement and retrieval experience. All test results are intended to support both the acceptance of actual TRU wastes at the WIPP and performance assessmen