WorldWideScience

Sample records for drug discovery tool

  1. Computational methods in drug discovery

    Directory of Open Access Journals (Sweden)

    Sumudu P. Leelananda

    2016-12-01

    Full Text Available The process for drug discovery and development is challenging, time consuming and expensive. Computer-aided drug discovery (CADD tools can act as a virtual shortcut, assisting in the expedition of this long process and potentially reducing the cost of research and development. Today CADD has become an effective and indispensable tool in therapeutic development. The human genome project has made available a substantial amount of sequence data that can be used in various drug discovery projects. Additionally, increasing knowledge of biological structures, as well as increasing computer power have made it possible to use computational methods effectively in various phases of the drug discovery and development pipeline. The importance of in silico tools is greater than ever before and has advanced pharmaceutical research. Here we present an overview of computational methods used in different facets of drug discovery and highlight some of the recent successes. In this review, both structure-based and ligand-based drug discovery methods are discussed. Advances in virtual high-throughput screening, protein structure prediction methods, protein–ligand docking, pharmacophore modeling and QSAR techniques are reviewed.

  2. In silico tools used for compound selection during target-based drug discovery and development.

    Science.gov (United States)

    Caldwell, Gary W

    2015-01-01

    The target-based drug discovery process, including target selection, screening, hit-to-lead (H2L) and lead optimization stage gates, is the most common approach used in drug development. The full integration of in vitro and/or in vivo data with in silico tools across the entire process would be beneficial to R&D productivity by developing effective selection criteria and drug-design optimization strategies. This review focuses on understanding the impact and extent in the past 5 years of in silico tools on the various stage gates of the target-based drug discovery approach. There are a large number of in silico tools available for establishing selection criteria and drug-design optimization strategies in the target-based approach. However, the inconsistent use of in vitro and/or in vivo data integrated with predictive in silico multiparameter models throughout the process is contributing to R&D productivity issues. In particular, the lack of reliable in silico tools at the H2L stage gate is contributing to the suboptimal selection of viable lead compounds. It is suggested that further development of in silico multiparameter models and organizing biologists, medicinal and computational chemists into one team with a single accountable objective to expand the utilization of in silico tools in all phases of drug discovery would improve R&D productivity.

  3. Computational methods in drug discovery

    OpenAIRE

    Sumudu P. Leelananda; Steffen Lindert

    2016-01-01

    The process for drug discovery and development is challenging, time consuming and expensive. Computer-aided drug discovery (CADD) tools can act as a virtual shortcut, assisting in the expedition of this long process and potentially reducing the cost of research and development. Today CADD has become an effective and indispensable tool in therapeutic development. The human genome project has made available a substantial amount of sequence data that can be used in various drug discovery project...

  4. Bigger Data, Collaborative Tools and the Future of Predictive Drug Discovery

    Science.gov (United States)

    Clark, Alex M.; Swamidass, S. Joshua; Litterman, Nadia; Williams, Antony J.

    2014-01-01

    Over the past decade we have seen a growth in the provision of chemistry data and cheminformatics tools as either free websites or software as a service (SaaS) commercial offerings. These have transformed how we find molecule-related data and use such tools in our research. There have also been efforts to improve collaboration between researchers either openly or through secure transactions using commercial tools. A major challenge in the future will be how such databases and software approaches handle larger amounts of data as it accumulates from high throughput screening and enables the user to draw insights, enable predictions and move projects forward. We now discuss how information from some drug discovery datasets can be made more accessible and how privacy of data should not overwhelm the desire to share it at an appropriate time with collaborators. We also discuss additional software tools that could be made available and provide our thoughts on the future of predictive drug discovery in this age of big data. We use some examples from our own research on neglected diseases, collaborations, mobile apps and algorithm development to illustrate these ideas. PMID:24943138

  5. Laboratory informatics tools integration strategies for drug discovery: integration of LIMS, ELN, CDS, and SDMS.

    Science.gov (United States)

    Machina, Hari K; Wild, David J

    2013-04-01

    There are technologies on the horizon that could dramatically change how informatics organizations design, develop, deliver, and support applications and data infrastructures to deliver maximum value to drug discovery organizations. Effective integration of data and laboratory informatics tools promises the ability of organizations to make better informed decisions about resource allocation during the drug discovery and development process and for more informed decisions to be made with respect to the market opportunity for compounds. We propose in this article a new integration model called ELN-centric laboratory informatics tools integration.

  6. Role of Open Source Tools and Resources in Virtual Screening for Drug Discovery.

    Science.gov (United States)

    Karthikeyan, Muthukumarasamy; Vyas, Renu

    2015-01-01

    Advancement in chemoinformatics research in parallel with availability of high performance computing platform has made handling of large scale multi-dimensional scientific data for high throughput drug discovery easier. In this study we have explored publicly available molecular databases with the help of open-source based integrated in-house molecular informatics tools for virtual screening. The virtual screening literature for past decade has been extensively investigated and thoroughly analyzed to reveal interesting patterns with respect to the drug, target, scaffold and disease space. The review also focuses on the integrated chemoinformatics tools that are capable of harvesting chemical data from textual literature information and transform them into truly computable chemical structures, identification of unique fragments and scaffolds from a class of compounds, automatic generation of focused virtual libraries, computation of molecular descriptors for structure-activity relationship studies, application of conventional filters used in lead discovery along with in-house developed exhaustive PTC (Pharmacophore, Toxicophores and Chemophores) filters and machine learning tools for the design of potential disease specific inhibitors. A case study on kinase inhibitors is provided as an example.

  7. Open Drug Discovery Toolkit (ODDT): a new open-source player in the drug discovery field.

    Science.gov (United States)

    Wójcikowski, Maciej; Zielenkiewicz, Piotr; Siedlecki, Pawel

    2015-01-01

    There has been huge progress in the open cheminformatics field in both methods and software development. Unfortunately, there has been little effort to unite those methods and software into one package. We here describe the Open Drug Discovery Toolkit (ODDT), which aims to fulfill the need for comprehensive and open source drug discovery software. The Open Drug Discovery Toolkit was developed as a free and open source tool for both computer aided drug discovery (CADD) developers and researchers. ODDT reimplements many state-of-the-art methods, such as machine learning scoring functions (RF-Score and NNScore) and wraps other external software to ease the process of developing CADD pipelines. ODDT is an out-of-the-box solution designed to be easily customizable and extensible. Therefore, users are strongly encouraged to extend it and develop new methods. We here present three use cases for ODDT in common tasks in computer-aided drug discovery. Open Drug Discovery Toolkit is released on a permissive 3-clause BSD license for both academic and industrial use. ODDT's source code, additional examples and documentation are available on GitHub (https://github.com/oddt/oddt).

  8. Applied metabolomics in drug discovery.

    Science.gov (United States)

    Cuperlovic-Culf, M; Culf, A S

    2016-08-01

    The metabolic profile is a direct signature of phenotype and biochemical activity following any perturbation. Metabolites are small molecules present in a biological system including natural products as well as drugs and their metabolism by-products depending on the biological system studied. Metabolomics can provide activity information about possible novel drugs and drug scaffolds, indicate interesting targets for drug development and suggest binding partners of compounds. Furthermore, metabolomics can be used for the discovery of novel natural products and in drug development. Metabolomics can enhance the discovery and testing of new drugs and provide insight into the on- and off-target effects of drugs. This review focuses primarily on the application of metabolomics in the discovery of active drugs from natural products and the analysis of chemical libraries and the computational analysis of metabolic networks. Metabolomics methodology, both experimental and analytical is fast developing. At the same time, databases of compounds are ever growing with the inclusion of more molecular and spectral information. An increasing number of systems are being represented by very detailed metabolic network models. Combining these experimental and computational tools with high throughput drug testing and drug discovery techniques can provide new promising compounds and leads.

  9. Introduction to fragment-based drug discovery.

    Science.gov (United States)

    Erlanson, Daniel A

    2012-01-01

    Fragment-based drug discovery (FBDD) has emerged in the past decade as a powerful tool for discovering drug leads. The approach first identifies starting points: very small molecules (fragments) that are about half the size of typical drugs. These fragments are then expanded or linked together to generate drug leads. Although the origins of the technique date back some 30 years, it was only in the mid-1990s that experimental techniques became sufficiently sensitive and rapid for the concept to be become practical. Since that time, the field has exploded: FBDD has played a role in discovery of at least 18 drugs that have entered the clinic, and practitioners of FBDD can be found throughout the world in both academia and industry. Literally dozens of reviews have been published on various aspects of FBDD or on the field as a whole, as have three books (Jahnke and Erlanson, Fragment-based approaches in drug discovery, 2006; Zartler and Shapiro, Fragment-based drug discovery: a practical approach, 2008; Kuo, Fragment based drug design: tools, practical approaches, and examples, 2011). However, this chapter will assume that the reader is approaching the field with little prior knowledge. It will introduce some of the key concepts, set the stage for the chapters to follow, and demonstrate how X-ray crystallography plays a central role in fragment identification and advancement.

  10. Scientific workflows as productivity tools for drug discovery.

    Science.gov (United States)

    Shon, John; Ohkawa, Hitomi; Hammer, Juergen

    2008-05-01

    Large pharmaceutical companies annually invest tens to hundreds of millions of US dollars in research informatics to support their early drug discovery processes. Traditionally, most of these investments are designed to increase the efficiency of drug discovery. The introduction of do-it-yourself scientific workflow platforms has enabled research informatics organizations to shift their efforts toward scientific innovation, ultimately resulting in a possible increase in return on their investments. Unlike the handling of most scientific data and application integration approaches, researchers apply scientific workflows to in silico experimentation and exploration, leading to scientific discoveries that lie beyond automation and integration. This review highlights some key requirements for scientific workflow environments in the pharmaceutical industry that are necessary for increasing research productivity. Examples of the application of scientific workflows in research and a summary of recent platform advances are also provided.

  11. Maximum Entropy in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Chih-Yuan Tseng

    2014-07-01

    Full Text Available Drug discovery applies multidisciplinary approaches either experimentally, computationally or both ways to identify lead compounds to treat various diseases. While conventional approaches have yielded many US Food and Drug Administration (FDA-approved drugs, researchers continue investigating and designing better approaches to increase the success rate in the discovery process. In this article, we provide an overview of the current strategies and point out where and how the method of maximum entropy has been introduced in this area. The maximum entropy principle has its root in thermodynamics, yet since Jaynes’ pioneering work in the 1950s, the maximum entropy principle has not only been used as a physics law, but also as a reasoning tool that allows us to process information in hand with the least bias. Its applicability in various disciplines has been abundantly demonstrated. We give several examples of applications of maximum entropy in different stages of drug discovery. Finally, we discuss a promising new direction in drug discovery that is likely to hinge on the ways of utilizing maximum entropy.

  12. Solution NMR Spectroscopy in Target-Based Drug Discovery.

    Science.gov (United States)

    Li, Yan; Kang, Congbao

    2017-08-23

    Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.

  13. The in silico drug discovery toolbox: applications in lead discovery and optimization.

    Science.gov (United States)

    Bruno, Agostino; Costantino, Gabriele; Sartori, Luca; Radi, Marco

    2017-11-06

    Discovery and development of a new drug is a long lasting and expensive journey that takes around 15 years from starting idea to approval and marketing of new medication. Despite the R&D expenditures have been constantly increasing in the last few years, number of new drugs introduced into market has been steadily declining. This is mainly due to preclinical and clinical safety issues, which still represent about 40% of drug discontinuation. From this point of view, it is clear that if we want to increase drug-discovery success rate and reduce costs associated with development of a new drug, a comprehensive evaluation/prediction of potential safety issues should be conducted as soon as possible during early drug discovery phase. In the present review, we will analyse the early steps of drug-discovery pipeline, describing the sequence of steps from disease selection to lead optimization and focusing on the most common in silico tools used to assess attrition risks and build a mitigation plan. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Orphan diseases: state of the drug discovery art.

    Science.gov (United States)

    Volmar, Claude-Henry; Wahlestedt, Claes; Brothers, Shaun P

    2017-06-01

    Since 1983 more than 300 drugs have been developed and approved for orphan diseases. However, considering the development of novel diagnosis tools, the number of rare diseases vastly outpaces therapeutic discovery. Academic centers and nonprofit institutes are now at the forefront of rare disease R&D, partnering with pharmaceutical companies when academic researchers discover novel drugs or targets for specific diseases, thus reducing the failure risk and cost for pharmaceutical companies. Considerable progress has occurred in the art of orphan drug discovery, and a symbiotic relationship now exists between pharmaceutical industry, academia, and philanthropists that provides a useful framework for orphan disease therapeutic discovery. Here, the current state-of-the-art of drug discovery for orphan diseases is reviewed. Current technological approaches and challenges for drug discovery are considered, some of which can present somewhat unique challenges and opportunities in orphan diseases, including the potential for personalized medicine, gene therapy, and phenotypic screening.

  15. Computational neuropharmacology: dynamical approaches in drug discovery.

    Science.gov (United States)

    Aradi, Ildiko; Erdi, Péter

    2006-05-01

    Computational approaches that adopt dynamical models are widely accepted in basic and clinical neuroscience research as indispensable tools with which to understand normal and pathological neuronal mechanisms. Although computer-aided techniques have been used in pharmaceutical research (e.g. in structure- and ligand-based drug design), the power of dynamical models has not yet been exploited in drug discovery. We suggest that dynamical system theory and computational neuroscience--integrated with well-established, conventional molecular and electrophysiological methods--offer a broad perspective in drug discovery and in the search for novel targets and strategies for the treatment of neurological and psychiatric diseases.

  16. MLViS: A Web Tool for Machine Learning-Based Virtual Screening in Early-Phase of Drug Discovery and Development.

    Science.gov (United States)

    Korkmaz, Selcuk; Zararsiz, Gokmen; Goksuluk, Dincer

    2015-01-01

    Virtual screening is an important step in early-phase of drug discovery process. Since there are thousands of compounds, this step should be both fast and effective in order to distinguish drug-like and nondrug-like molecules. Statistical machine learning methods are widely used in drug discovery studies for classification purpose. Here, we aim to develop a new tool, which can classify molecules as drug-like and nondrug-like based on various machine learning methods, including discriminant, tree-based, kernel-based, ensemble and other algorithms. To construct this tool, first, performances of twenty-three different machine learning algorithms are compared by ten different measures, then, ten best performing algorithms have been selected based on principal component and hierarchical cluster analysis results. Besides classification, this application has also ability to create heat map and dendrogram for visual inspection of the molecules through hierarchical cluster analysis. Moreover, users can connect the PubChem database to download molecular information and to create two-dimensional structures of compounds. This application is freely available through www.biosoft.hacettepe.edu.tr/MLViS/.

  17. Recent development in software and automation tools for high-throughput discovery bioanalysis.

    Science.gov (United States)

    Shou, Wilson Z; Zhang, Jun

    2012-05-01

    Bioanalysis with LC-MS/MS has been established as the method of choice for quantitative determination of drug candidates in biological matrices in drug discovery and development. The LC-MS/MS bioanalytical support for drug discovery, especially for early discovery, often requires high-throughput (HT) analysis of large numbers of samples (hundreds to thousands per day) generated from many structurally diverse compounds (tens to hundreds per day) with a very quick turnaround time, in order to provide important activity and liability data to move discovery projects forward. Another important consideration for discovery bioanalysis is its fit-for-purpose quality requirement depending on the particular experiments being conducted at this stage, and it is usually not as stringent as those required in bioanalysis supporting drug development. These aforementioned attributes of HT discovery bioanalysis made it an ideal candidate for using software and automation tools to eliminate manual steps, remove bottlenecks, improve efficiency and reduce turnaround time while maintaining adequate quality. In this article we will review various recent developments that facilitate automation of individual bioanalytical procedures, such as sample preparation, MS/MS method development, sample analysis and data review, as well as fully integrated software tools that manage the entire bioanalytical workflow in HT discovery bioanalysis. In addition, software tools supporting the emerging high-resolution accurate MS bioanalytical approach are also discussed.

  18. Biomarkers as drug development tools: discovery, validation, qualification and use.

    Science.gov (United States)

    Kraus, Virginia B

    2018-06-01

    The 21st Century Cures Act, approved in the USA in December 2016, has encouraged the establishment of the national Precision Medicine Initiative and the augmentation of efforts to address disease prevention, diagnosis and treatment on the basis of a molecular understanding of disease. The Act adopts into law the formal process, developed by the FDA, of qualification of drug development tools, including biomarkers and clinical outcome assessments, to increase the efficiency of clinical trials and encourage an era of molecular medicine. The FDA and European Medicines Agency (EMA) have developed similar processes for the qualification of biomarkers intended for use as companion diagnostics or for development and regulatory approval of a drug or therapeutic. Biomarkers that are used exclusively for the diagnosis, monitoring or stratification of patients in clinical trials are not subject to regulatory approval, although their qualification can facilitate the conduct of a trial. In this Review, the salient features of biomarker discovery, analytical validation, clinical qualification and utilization are described in order to provide an understanding of the process of biomarker development and, through this understanding, convey an appreciation of their potential advantages and limitations.

  19. Zebrafish models in neuropsychopharmacology and CNS drug discovery.

    Science.gov (United States)

    Khan, Kanza M; Collier, Adam D; Meshalkina, Darya A; Kysil, Elana V; Khatsko, Sergey L; Kolesnikova, Tatyana; Morzherin, Yury Yu; Warnick, Jason E; Kalueff, Allan V; Echevarria, David J

    2017-07-01

    Despite the high prevalence of neuropsychiatric disorders, their aetiology and molecular mechanisms remain poorly understood. The zebrafish (Danio rerio) is increasingly utilized as a powerful animal model in neuropharmacology research and in vivo drug screening. Collectively, this makes zebrafish a useful tool for drug discovery and the identification of disordered molecular pathways. Here, we discuss zebrafish models of selected human neuropsychiatric disorders and drug-induced phenotypes. As well as covering a broad range of brain disorders (from anxiety and psychoses to neurodegeneration), we also summarize recent developments in zebrafish genetics and small molecule screening, which markedly enhance the disease modelling and the discovery of novel drug targets. © 2017 The British Pharmacological Society.

  20. The use of web ontology languages and other semantic web tools in drug discovery.

    Science.gov (United States)

    Chen, Huajun; Xie, Guotong

    2010-05-01

    To optimize drug development processes, pharmaceutical companies require principled approaches to integrate disparate data on a unified infrastructure, such as the web. The semantic web, developed on the web technology, provides a common, open framework capable of harmonizing diversified resources to enable networked and collaborative drug discovery. We survey the state of art of utilizing web ontologies and other semantic web technologies to interlink both data and people to support integrated drug discovery across domains and multiple disciplines. Particularly, the survey covers three major application categories including: i) semantic integration and open data linking; ii) semantic web service and scientific collaboration and iii) semantic data mining and integrative network analysis. The reader will gain: i) basic knowledge of the semantic web technologies; ii) an overview of the web ontology landscape for drug discovery and iii) a basic understanding of the values and benefits of utilizing the web ontologies in drug discovery. i) The semantic web enables a network effect for linking open data for integrated drug discovery; ii) The semantic web service technology can support instant ad hoc collaboration to improve pipeline productivity and iii) The semantic web encourages publishing data in a semantic way such as resource description framework attributes and thus helps move away from a reliance on pure textual content analysis toward more efficient semantic data mining.

  1. Mass spectrometry-driven drug discovery for development of herbal medicine.

    Science.gov (United States)

    Zhang, Aihua; Sun, Hui; Wang, Xijun

    2018-05-01

    Herbal medicine (HM) has made a major contribution to the drug discovery process with regard to identifying products compounds. Currently, more attention has been focused on drug discovery from natural compounds of HM. Despite the rapid advancement of modern analytical techniques, drug discovery is still a difficult and lengthy process. Fortunately, mass spectrometry (MS) can provide us with useful structural information for drug discovery, has been recognized as a sensitive, rapid, and high-throughput technology for advancing drug discovery from HM in the post-genomic era. It is essential to develop an efficient, high-quality, high-throughput screening method integrated with an MS platform for early screening of candidate drug molecules from natural products. We have developed a new chinmedomics strategy reliant on MS that is capable of capturing the candidate molecules, facilitating their identification of novel chemical structures in the early phase; chinmedomics-guided natural product discovery based on MS may provide an effective tool that addresses challenges in early screening of effective constituents of herbs against disease. This critical review covers the use of MS with related techniques and methodologies for natural product discovery, biomarker identification, and determination of mechanisms of action. It also highlights high-throughput chinmedomics screening methods suitable for lead compound discovery illustrated by recent successes. © 2016 Wiley Periodicals, Inc.

  2. FAF-Drugs2: free ADME/tox filtering tool to assist drug discovery and chemical biology projects.

    Science.gov (United States)

    Lagorce, David; Sperandio, Olivier; Galons, Hervé; Miteva, Maria A; Villoutreix, Bruno O

    2008-09-24

    Drug discovery and chemical biology are exceedingly complex and demanding enterprises. In recent years there are been increasing awareness about the importance of predicting/optimizing the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of small chemical compounds along the search process rather than at the final stages. Fast methods for evaluating ADMET properties of small molecules often involve applying a set of simple empirical rules (educated guesses) and as such, compound collections' property profiling can be performed in silico. Clearly, these rules cannot assess the full complexity of the human body but can provide valuable information and assist decision-making. This paper presents FAF-Drugs2, a free adaptable tool for ADMET filtering of electronic compound collections. FAF-Drugs2 is a command line utility program (e.g., written in Python) based on the open source chemistry toolkit OpenBabel, which performs various physicochemical calculations, identifies key functional groups, some toxic and unstable molecules/functional groups. In addition to filtered collections, FAF-Drugs2 can provide, via Gnuplot, several distribution diagrams of major physicochemical properties of the screened compound libraries. We have developed FAF-Drugs2 to facilitate compound collection preparation, prior to (or after) experimental screening or virtual screening computations. Users can select to apply various filtering thresholds and add rules as needed for a given project. As it stands, FAF-Drugs2 implements numerous filtering rules (23 physicochemical rules and 204 substructure searching rules) that can be easily tuned.

  3. Application of PBPK modelling in drug discovery and development at Pfizer.

    Science.gov (United States)

    Jones, Hannah M; Dickins, Maurice; Youdim, Kuresh; Gosset, James R; Attkins, Neil J; Hay, Tanya L; Gurrell, Ian K; Logan, Y Raj; Bungay, Peter J; Jones, Barry C; Gardner, Iain B

    2012-01-01

    Early prediction of human pharmacokinetics (PK) and drug-drug interactions (DDI) in drug discovery and development allows for more informed decision making. Physiologically based pharmacokinetic (PBPK) modelling can be used to answer a number of questions throughout the process of drug discovery and development and is thus becoming a very popular tool. PBPK models provide the opportunity to integrate key input parameters from different sources to not only estimate PK parameters and plasma concentration-time profiles, but also to gain mechanistic insight into compound properties. Using examples from the literature and our own company, we have shown how PBPK techniques can be utilized through the stages of drug discovery and development to increase efficiency, reduce the need for animal studies, replace clinical trials and to increase PK understanding. Given the mechanistic nature of these models, the future use of PBPK modelling in drug discovery and development is promising, however, some limitations need to be addressed to realize its application and utility more broadly.

  4. Medicinal chemistry inspired fragment-based drug discovery.

    Science.gov (United States)

    Lanter, James; Zhang, Xuqing; Sui, Zhihua

    2011-01-01

    Lead generation can be a very challenging phase of the drug discovery process. The two principal methods for this stage of research are blind screening and rational design. Among the rational or semirational design approaches, fragment-based drug discovery (FBDD) has emerged as a useful tool for the generation of lead structures. It is particularly powerful as a complement to high-throughput screening approaches when the latter failed to yield viable hits for further development. Engagement of medicinal chemists early in the process can accelerate the progression of FBDD efforts by incorporating drug-friendly properties in the earliest stages of the design process. Medium-chain acyl-CoA synthetase 2b and ketohexokinase are chosen as examples to illustrate the importance of close collaboration of medicinal chemists, crystallography, and modeling. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. FAF-Drugs2: Free ADME/tox filtering tool to assist drug discovery and chemical biology projects

    Directory of Open Access Journals (Sweden)

    Miteva Maria A

    2008-09-01

    Full Text Available Abstract Background Drug discovery and chemical biology are exceedingly complex and demanding enterprises. In recent years there are been increasing awareness about the importance of predicting/optimizing the absorption, distribution, metabolism, excretion and toxicity (ADMET properties of small chemical compounds along the search process rather than at the final stages. Fast methods for evaluating ADMET properties of small molecules often involve applying a set of simple empirical rules (educated guesses and as such, compound collections' property profiling can be performed in silico. Clearly, these rules cannot assess the full complexity of the human body but can provide valuable information and assist decision-making. Results This paper presents FAF-Drugs2, a free adaptable tool for ADMET filtering of electronic compound collections. FAF-Drugs2 is a command line utility program (e.g., written in Python based on the open source chemistry toolkit OpenBabel, which performs various physicochemical calculations, identifies key functional groups, some toxic and unstable molecules/functional groups. In addition to filtered collections, FAF-Drugs2 can provide, via Gnuplot, several distribution diagrams of major physicochemical properties of the screened compound libraries. Conclusion We have developed FAF-Drugs2 to facilitate compound collection preparation, prior to (or after experimental screening or virtual screening computations. Users can select to apply various filtering thresholds and add rules as needed for a given project. As it stands, FAF-Drugs2 implements numerous filtering rules (23 physicochemical rules and 204 substructure searching rules that can be easily tuned.

  6. Cancer in silico drug discovery: a systems biology tool for identifying candidate drugs to target specific molecular tumor subtypes.

    Science.gov (United States)

    San Lucas, F Anthony; Fowler, Jerry; Chang, Kyle; Kopetz, Scott; Vilar, Eduardo; Scheet, Paul

    2014-12-01

    Large-scale cancer datasets such as The Cancer Genome Atlas (TCGA) allow researchers to profile tumors based on a wide range of clinical and molecular characteristics. Subsequently, TCGA-derived gene expression profiles can be analyzed with the Connectivity Map (CMap) to find candidate drugs to target tumors with specific clinical phenotypes or molecular characteristics. This represents a powerful computational approach for candidate drug identification, but due to the complexity of TCGA and technology differences between CMap and TCGA experiments, such analyses are challenging to conduct and reproduce. We present Cancer in silico Drug Discovery (CiDD; scheet.org/software), a computational drug discovery platform that addresses these challenges. CiDD integrates data from TCGA, CMap, and Cancer Cell Line Encyclopedia (CCLE) to perform computational drug discovery experiments, generating hypotheses for the following three general problems: (i) determining whether specific clinical phenotypes or molecular characteristics are associated with unique gene expression signatures; (ii) finding candidate drugs to repress these expression signatures; and (iii) identifying cell lines that resemble the tumors being studied for subsequent in vitro experiments. The primary input to CiDD is a clinical or molecular characteristic. The output is a biologically annotated list of candidate drugs and a list of cell lines for in vitro experimentation. We applied CiDD to identify candidate drugs to treat colorectal cancers harboring mutations in BRAF. CiDD identified EGFR and proteasome inhibitors, while proposing five cell lines for in vitro testing. CiDD facilitates phenotype-driven, systematic drug discovery based on clinical and molecular data from TCGA. ©2014 American Association for Cancer Research.

  7. Academic Drug Discovery Centres

    DEFF Research Database (Denmark)

    Kirkegaard, Henriette Schultz; Valentin, Finn

    2014-01-01

    Academic drug discovery centres (ADDCs) are seen as one of the solutions to fill the innovation gap in early drug discovery, which has proven challenging for previous organisational models. Prior studies of ADDCs have identified the need to analyse them from the angle of their economic...

  8. Antibody informatics for drug discovery

    DEFF Research Database (Denmark)

    Shirai, Hiroki; Prades, Catherine; Vita, Randi

    2014-01-01

    to the antibody science in every project in antibody drug discovery. Recent experimental technologies allow for the rapid generation of large-scale data on antibody sequences, affinity, potency, structures, and biological functions; this should accelerate drug discovery research. Therefore, a robust bioinformatic...... infrastructure for these large data sets has become necessary. In this article, we first identify and discuss the typical obstacles faced during the antibody drug discovery process. We then summarize the current status of three sub-fields of antibody informatics as follows: (i) recent progress in technologies...... for antibody rational design using computational approaches to affinity and stability improvement, as well as ab-initio and homology-based antibody modeling; (ii) resources for antibody sequences, structures, and immune epitopes and open drug discovery resources for development of antibody drugs; and (iii...

  9. Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery

    Directory of Open Access Journals (Sweden)

    Nicholas Ekow Thomford

    2018-05-01

    Full Text Available The therapeutic properties of plants have been recognised since time immemorial. Many pathological conditions have been treated using plant-derived medicines. These medicines are used as concoctions or concentrated plant extracts without isolation of active compounds. Modern medicine however, requires the isolation and purification of one or two active compounds. There are however a lot of global health challenges with diseases such as cancer, degenerative diseases, HIV/AIDS and diabetes, of which modern medicine is struggling to provide cures. Many times the isolation of “active compound” has made the compound ineffective. Drug discovery is a multidimensional problem requiring several parameters of both natural and synthetic compounds such as safety, pharmacokinetics and efficacy to be evaluated during drug candidate selection. The advent of latest technologies that enhance drug design hypotheses such as Artificial Intelligence, the use of ‘organ-on chip’ and microfluidics technologies, means that automation has become part of drug discovery. This has resulted in increased speed in drug discovery and evaluation of the safety, pharmacokinetics and efficacy of candidate compounds whilst allowing novel ways of drug design and synthesis based on natural compounds. Recent advances in analytical and computational techniques have opened new avenues to process complex natural products and to use their structures to derive new and innovative drugs. Indeed, we are in the era of computational molecular design, as applied to natural products. Predictive computational softwares have contributed to the discovery of molecular targets of natural products and their derivatives. In future the use of quantum computing, computational softwares and databases in modelling molecular interactions and predicting features and parameters needed for drug development, such as pharmacokinetic and pharmacodynamics, will result in few false positive leads in drug

  10. Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery.

    Science.gov (United States)

    Thomford, Nicholas Ekow; Senthebane, Dimakatso Alice; Rowe, Arielle; Munro, Daniella; Seele, Palesa; Maroyi, Alfred; Dzobo, Kevin

    2018-05-25

    The therapeutic properties of plants have been recognised since time immemorial. Many pathological conditions have been treated using plant-derived medicines. These medicines are used as concoctions or concentrated plant extracts without isolation of active compounds. Modern medicine however, requires the isolation and purification of one or two active compounds. There are however a lot of global health challenges with diseases such as cancer, degenerative diseases, HIV/AIDS and diabetes, of which modern medicine is struggling to provide cures. Many times the isolation of "active compound" has made the compound ineffective. Drug discovery is a multidimensional problem requiring several parameters of both natural and synthetic compounds such as safety, pharmacokinetics and efficacy to be evaluated during drug candidate selection. The advent of latest technologies that enhance drug design hypotheses such as Artificial Intelligence, the use of 'organ-on chip' and microfluidics technologies, means that automation has become part of drug discovery. This has resulted in increased speed in drug discovery and evaluation of the safety, pharmacokinetics and efficacy of candidate compounds whilst allowing novel ways of drug design and synthesis based on natural compounds. Recent advances in analytical and computational techniques have opened new avenues to process complex natural products and to use their structures to derive new and innovative drugs. Indeed, we are in the era of computational molecular design, as applied to natural products. Predictive computational softwares have contributed to the discovery of molecular targets of natural products and their derivatives. In future the use of quantum computing, computational softwares and databases in modelling molecular interactions and predicting features and parameters needed for drug development, such as pharmacokinetic and pharmacodynamics, will result in few false positive leads in drug development. This review

  11. Toxins and drug discovery.

    Science.gov (United States)

    Harvey, Alan L

    2014-12-15

    Components from venoms have stimulated many drug discovery projects, with some notable successes. These are briefly reviewed, from captopril to ziconotide. However, there have been many more disappointments on the road from toxin discovery to approval of a new medicine. Drug discovery and development is an inherently risky business, and the main causes of failure during development programmes are outlined in order to highlight steps that might be taken to increase the chances of success with toxin-based drug discovery. These include having a clear focus on unmet therapeutic needs, concentrating on targets that are well-validated in terms of their relevance to the disease in question, making use of phenotypic screening rather than molecular-based assays, and working with development partners with the resources required for the long and expensive development process. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  12. The Proteomics Big Challenge for Biomarkers and New Drug-Targets Discovery

    Science.gov (United States)

    Savino, Rocco; Paduano, Sergio; Preianò, Mariaimmacolata; Terracciano, Rosa

    2012-01-01

    In the modern process of drug discovery, clinical, functional and chemical proteomics can converge and integrate synergies. Functional proteomics explores and elucidates the components of pathways and their interactions which, when deregulated, lead to a disease condition. This knowledge allows the design of strategies to target multiple pathways with combinations of pathway-specific drugs, which might increase chances of success and reduce the occurrence of drug resistance. Chemical proteomics, by analyzing the drug interactome, strongly contributes to accelerate the process of new druggable targets discovery. In the research area of clinical proteomics, proteome and peptidome mass spectrometry-profiling of human bodily fluid (plasma, serum, urine and so on), as well as of tissue and of cells, represents a promising tool for novel biomarker and eventually new druggable targets discovery. In the present review we provide a survey of current strategies of functional, chemical and clinical proteomics. Major issues will be presented for proteomic technologies used for the discovery of biomarkers for early disease diagnosis and identification of new drug targets. PMID:23203042

  13. Bioinformatics in translational drug discovery.

    Science.gov (United States)

    Wooller, Sarah K; Benstead-Hume, Graeme; Chen, Xiangrong; Ali, Yusuf; Pearl, Frances M G

    2017-08-31

    Bioinformatics approaches are becoming ever more essential in translational drug discovery both in academia and within the pharmaceutical industry. Computational exploitation of the increasing volumes of data generated during all phases of drug discovery is enabling key challenges of the process to be addressed. Here, we highlight some of the areas in which bioinformatics resources and methods are being developed to support the drug discovery pipeline. These include the creation of large data warehouses, bioinformatics algorithms to analyse 'big data' that identify novel drug targets and/or biomarkers, programs to assess the tractability of targets, and prediction of repositioning opportunities that use licensed drugs to treat additional indications. © 2017 The Author(s).

  14. Perspectives on bioanalytical mass spectrometry and automation in drug discovery.

    Science.gov (United States)

    Janiszewski, John S; Liston, Theodore E; Cole, Mark J

    2008-11-01

    The use of high speed synthesis technologies has resulted in a steady increase in the number of new chemical entities active in the drug discovery research stream. Large organizations can have thousands of chemical entities in various stages of testing and evaluation across numerous projects on a weekly basis. Qualitative and quantitative measurements made using LC/MS are integrated throughout this process from early stage lead generation through candidate nomination. Nearly all analytical processes and procedures in modern research organizations are automated to some degree. This includes both hardware and software automation. In this review we discuss bioanalytical mass spectrometry and automation as components of the analytical chemistry infrastructure in pharma. Analytical chemists are presented as members of distinct groups with similar skillsets that build automated systems, manage test compounds, assays and reagents, and deliver data to project teams. The ADME-screening process in drug discovery is used as a model to highlight the relationships between analytical tasks in drug discovery. Emerging software and process automation tools are described that can potentially address gaps and link analytical chemistry related tasks. The role of analytical chemists and groups in modern 'industrialized' drug discovery is also discussed.

  15. Mouse Models for Drug Discovery. Can New Tools and Technology Improve Translational Power?

    Science.gov (United States)

    Zuberi, Aamir; Lutz, Cathleen

    2016-01-01

    Abstract The use of mouse models in biomedical research and preclinical drug evaluation is on the rise. The advent of new molecular genome-altering technologies such as CRISPR/Cas9 allows for genetic mutations to be introduced into the germ line of a mouse faster and less expensively than previous methods. In addition, the rapid progress in the development and use of somatic transgenesis using viral vectors, as well as manipulations of gene expression with siRNAs and antisense oligonucleotides, allow for even greater exploration into genomics and systems biology. These technological advances come at a time when cost reductions in genome sequencing have led to the identification of pathogenic mutations in patient populations, providing unprecedented opportunities in the use of mice to model human disease. The ease of genetic engineering in mice also offers a potential paradigm shift in resource sharing and the speed by which models are made available in the public domain. Predictively, the knowledge alone that a model can be quickly remade will provide relief to resources encumbered by licensing and Material Transfer Agreements. For decades, mouse strains have provided an exquisite experimental tool to study the pathophysiology of the disease and assess therapeutic options in a genetically defined system. However, a major limitation of the mouse has been the limited genetic diversity associated with common laboratory mice. This has been overcome with the recent development of the Collaborative Cross and Diversity Outbred mice. These strains provide new tools capable of replicating genetic diversity to that approaching the diversity found in human populations. The Collaborative Cross and Diversity Outbred strains thus provide a means to observe and characterize toxicity or efficacy of new therapeutic drugs for a given population. The combination of traditional and contemporary mouse genome editing tools, along with the addition of genetic diversity in new modeling

  16. Mouse Models for Drug Discovery. Can New Tools and Technology Improve Translational Power?

    Science.gov (United States)

    Zuberi, Aamir; Lutz, Cathleen

    2016-12-01

    The use of mouse models in biomedical research and preclinical drug evaluation is on the rise. The advent of new molecular genome-altering technologies such as CRISPR/Cas9 allows for genetic mutations to be introduced into the germ line of a mouse faster and less expensively than previous methods. In addition, the rapid progress in the development and use of somatic transgenesis using viral vectors, as well as manipulations of gene expression with siRNAs and antisense oligonucleotides, allow for even greater exploration into genomics and systems biology. These technological advances come at a time when cost reductions in genome sequencing have led to the identification of pathogenic mutations in patient populations, providing unprecedented opportunities in the use of mice to model human disease. The ease of genetic engineering in mice also offers a potential paradigm shift in resource sharing and the speed by which models are made available in the public domain. Predictively, the knowledge alone that a model can be quickly remade will provide relief to resources encumbered by licensing and Material Transfer Agreements. For decades, mouse strains have provided an exquisite experimental tool to study the pathophysiology of the disease and assess therapeutic options in a genetically defined system. However, a major limitation of the mouse has been the limited genetic diversity associated with common laboratory mice. This has been overcome with the recent development of the Collaborative Cross and Diversity Outbred mice. These strains provide new tools capable of replicating genetic diversity to that approaching the diversity found in human populations. The Collaborative Cross and Diversity Outbred strains thus provide a means to observe and characterize toxicity or efficacy of new therapeutic drugs for a given population. The combination of traditional and contemporary mouse genome editing tools, along with the addition of genetic diversity in new modeling systems

  17. Biomimicry as a basis for drug discovery.

    Science.gov (United States)

    Kolb, V M

    1998-01-01

    Selected works are discussed which clearly demonstrate that mimicking various aspects of the process by which natural products evolved is becoming a powerful tool in contemporary drug discovery. Natural products are an established and rich source of drugs. The term "natural product" is often used synonymously with "secondary metabolite." Knowledge of genetics and molecular evolution helps us understand how biosynthesis of many classes of secondary metabolites evolved. One proposed hypothesis is termed "inventive evolution." It invokes duplication of genes, and mutation of the gene copies, among other genetic events. The modified duplicate genes, per se or in conjunction with other genetic events, may give rise to new enzymes, which, in turn, may generate new products, some of which may be selected for. Steps of the inventive evolution can be mimicked in several ways for purpose of drug discovery. For example, libraries of chemical compounds of any imaginable structure may be produced by combinatorial synthesis. Out of these libraries new active compounds can be selected. In another example, genetic system can be manipulated to produce modified natural products ("unnatural natural products"), from which new drugs can be selected. In some instances, similar natural products turn up in species that are not direct descendants of each other. This is presumably due to a horizontal gene transfer. The mechanism of this inter-species gene transfer can be mimicked in therapeutic gene delivery. Mimicking specifics or principles of chemical evolution including experimental and test-tube evolution also provides leads for new drug discovery.

  18. Freely Accessible Chemical Database Resources of Compounds for in Silico Drug Discovery.

    Science.gov (United States)

    Yang, JingFang; Wang, Di; Jia, Chenyang; Wang, Mengyao; Hao, GeFei; Yang, GuangFu

    2018-05-07

    In silico drug discovery has been proved to be a solidly established key component in early drug discovery. However, this task is hampered by the limitation of quantity and quality of compound databases for screening. In order to overcome these obstacles, freely accessible database resources of compounds have bloomed in recent years. Nevertheless, how to choose appropriate tools to treat these freely accessible databases are crucial. To the best of our knowledge, this is the first systematic review on this issue. The existed advantages and drawbacks of chemical databases were analyzed and summarized based on the collected six categories of freely accessible chemical databases from literature in this review. Suggestions on how and in which conditions the usage of these databases could be reasonable were provided. Tools and procedures for building 3D structure chemical libraries were also introduced. In this review, we described the freely accessible chemical database resources for in silico drug discovery. In particular, the chemical information for building chemical database appears as attractive resources for drug design to alleviate experimental pressure. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Simulation with quantum mechanics/molecular mechanics for drug discovery.

    Science.gov (United States)

    Barbault, Florent; Maurel, François

    2015-10-01

    Biological macromolecules, such as proteins or nucleic acids, are (still) molecules and thus they follow the same chemical rules that any simple molecule follows, even if their size generally renders accurate studies unhelpful. However, in the context of drug discovery, a detailed analysis of ligand association is required for understanding or predicting their interactions and hybrid quantum mechanics/molecular mechanics (QM/MM) computations are relevant tools to help elucidate this process. In this review, the authors explore the use of QM/MM for drug discovery. After a brief description of the molecular mechanics (MM) technique, the authors describe the subtractive and additive techniques for QM/MM computations. The authors then present several application cases in topics involved in drug discovery. QM/MM have been widely employed during the last decades to study chemical processes such as enzyme-inhibitor interactions. However, despite the enthusiasm around this area, plain MM simulations may be more meaningful than QM/MM. To obtain reliable results, the authors suggest fixing several keystone parameters according to the underlying chemistry of each studied system.

  20. Drug Discovery Gets a Boost from Data Science.

    Science.gov (United States)

    Amaro, Rommie E

    2016-08-02

    In this issue of Structure, Schiebel et al. (2016) describe a workflow-driven approach to high-throughput X-ray crystallographic fragment screening and refinement. In doing so, they extend the applicability of X-ray crystallography as a primary fragment-screening tool and show how data science techniques can favorably impact drug discovery efforts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Deep Learning in Drug Discovery.

    Science.gov (United States)

    Gawehn, Erik; Hiss, Jan A; Schneider, Gisbert

    2016-01-01

    Artificial neural networks had their first heyday in molecular informatics and drug discovery approximately two decades ago. Currently, we are witnessing renewed interest in adapting advanced neural network architectures for pharmaceutical research by borrowing from the field of "deep learning". Compared with some of the other life sciences, their application in drug discovery is still limited. Here, we provide an overview of this emerging field of molecular informatics, present the basic concepts of prominent deep learning methods and offer motivation to explore these techniques for their usefulness in computer-assisted drug discovery and design. We specifically emphasize deep neural networks, restricted Boltzmann machine networks and convolutional networks. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Perspectives of biomolecular NMR in drug discovery: the blessing and curse of versatility

    International Nuclear Information System (INIS)

    Jahnke, Wolfgang

    2007-01-01

    The versatility of NMR and its broad applicability to several stages in the drug discovery process is well known and generally considered one of the major strengths of NMR (Pellecchia et al., Nature Rev Drug Discov 1:211-219, 2002; Stockman and Dalvit, Prog Nucl Magn Reson Spectrosc 41:187-231, 2002; Lepre et al., Comb Chem High throughput screen 5:583-590, 2002; Wyss et al., Curr Opin Drug Discov Devel 5:630-647, 2002; Jahnke and Widmer, Cell Mol Life Sci 61:580-599, 2004; Huth et al., Methods Enzymol 394:549-571, 2005b; Klages et al., Mol Biosyst 2:318-332, 2006; Takeuchi and Wagner, Curr Opin Struct Biol 16:109-117, 2006; Zartler and Shapiro, Curr Pharm Des 12:3963-3972, 2006). Indeed, NMR is the only biophysical technique which can detect and quantify molecular interactions, and at the same time provide detailed structural information with atomic level resolution. NMR should therefore be ideally suited and widely requested as a tool for drug discovery research, and numerous examples of drug discovery projects which have substantially benefited from NMR contributions or were even driven by NMR have been described in the literature. However, not all pharmaceutical companies have rigorously implemented NMR as integral tool of their research processes. Some companies invest with limited resources, and others do not use biomolecular NMR at all. This discrepancy in assessing the value of a technology is striking, and calls for clarification-under which circumstances can NMR provide added value to the drug discovery process? What kind of contributions can NMR make, and how is it implemented and integrated for maximum impact? This perspectives article suggests key areas of impact for NMR, and a model of integrating NMR with other technologies to realize synergies and maximize their value for drug discovery

  3. Optogenetic Approaches to Drug Discovery in Neuroscience and Beyond.

    Science.gov (United States)

    Zhang, Hongkang; Cohen, Adam E

    2017-07-01

    Recent advances in optogenetics have opened new routes to drug discovery, particularly in neuroscience. Physiological cellular assays probe functional phenotypes that connect genomic data to patient health. Optogenetic tools, in particular tools for all-optical electrophysiology, now provide a means to probe cellular disease models with unprecedented throughput and information content. These techniques promise to identify functional phenotypes associated with disease states and to identify compounds that improve cellular function regardless of whether the compound acts directly on a target or through a bypass mechanism. This review discusses opportunities and unresolved challenges in applying optogenetic techniques throughout the discovery pipeline - from target identification and validation, to target-based and phenotypic screens, to clinical trials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Arthritis Genetics Analysis Aids Drug Discovery

    Science.gov (United States)

    ... NIH Research Matters January 13, 2014 Arthritis Genetics Analysis Aids Drug Discovery An international research team identified 42 new ... Edition Distracted Driving Raises Crash Risk Arthritis Genetics Analysis Aids Drug Discovery Oxytocin Affects Facial Recognition Connect with Us ...

  5. From machine learning to deep learning: progress in machine intelligence for rational drug discovery.

    Science.gov (United States)

    Zhang, Lu; Tan, Jianjun; Han, Dan; Zhu, Hao

    2017-11-01

    Machine intelligence, which is normally presented as artificial intelligence, refers to the intelligence exhibited by computers. In the history of rational drug discovery, various machine intelligence approaches have been applied to guide traditional experiments, which are expensive and time-consuming. Over the past several decades, machine-learning tools, such as quantitative structure-activity relationship (QSAR) modeling, were developed that can identify potential biological active molecules from millions of candidate compounds quickly and cheaply. However, when drug discovery moved into the era of 'big' data, machine learning approaches evolved into deep learning approaches, which are a more powerful and efficient way to deal with the massive amounts of data generated from modern drug discovery approaches. Here, we summarize the history of machine learning and provide insight into recently developed deep learning approaches and their applications in rational drug discovery. We suggest that this evolution of machine intelligence now provides a guide for early-stage drug design and discovery in the current big data era. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The heat is on: thermodynamic analysis in fragment-based drug discovery

    NARCIS (Netherlands)

    Edink, E.S.; Jansen, C.J.W.; Leurs, R.; De Esch, I.J.

    2010-01-01

    Thermodynamic analysis provides access to the determinants of binding affinity, enthalpy and entropy. In fragment-based drug discovery (FBDD), thermodynamic analysis provides a powerful tool to discriminate fragments based on their potential for successful optimization. The thermodynamic data

  7. The development of high-content screening (HCS) technology and its importance to drug discovery.

    Science.gov (United States)

    Fraietta, Ivan; Gasparri, Fabio

    2016-01-01

    High-content screening (HCS) was introduced about twenty years ago as a promising analytical approach to facilitate some critical aspects of drug discovery. Its application has spread progressively within the pharmaceutical industry and academia to the point that it today represents a fundamental tool in supporting drug discovery and development. Here, the authors review some of significant progress in the HCS field in terms of biological models and assay readouts. They highlight the importance of high-content screening in drug discovery, as testified by its numerous applications in a variety of therapeutic areas: oncology, infective diseases, cardiovascular and neurodegenerative diseases. They also dissect the role of HCS technology in different phases of the drug discovery pipeline: target identification, primary compound screening, secondary assays, mechanism of action studies and in vitro toxicology. Recent advances in cellular assay technologies, such as the introduction of three-dimensional (3D) cultures, induced pluripotent stem cells (iPSCs) and genome editing technologies (e.g., CRISPR/Cas9), have tremendously expanded the potential of high-content assays to contribute to the drug discovery process. Increasingly predictive cellular models and readouts, together with the development of more sophisticated and affordable HCS readers, will further consolidate the role of HCS technology in drug discovery.

  8. Fragment approaches in structure-based drug discovery

    International Nuclear Information System (INIS)

    Hubbard, Roderick E.

    2008-01-01

    Fragment-based methods are successfully generating novel and selective drug-like inhibitors of protein targets, with a number of groups reporting compounds entering clinical trials. This paper summarizes the key features of the approach as one of the tools in structure-guided drug discovery. There has been considerable interest recently in what is known as 'fragment-based lead discovery'. The novel feature of the approach is to begin with small low-affinity compounds. The main advantage is that a larger potential chemical diversity can be sampled with fewer compounds, which is particularly important for new target classes. The approach relies on careful design of the fragment library, a method that can detect binding of the fragment to the protein target, determination of the structure of the fragment bound to the target, and the conventional use of structural information to guide compound optimization. In this article the methods are reviewed, and experiences in fragment-based discovery of lead series of compounds against kinases such as PDK1 and ATPases such as Hsp90 are discussed. The examples illustrate some of the key benefits and issues of the approach and also provide anecdotal examples of the patterns seen in selectivity and the binding mode of fragments across different protein targets

  9. Cloud computing approaches to accelerate drug discovery value chain.

    Science.gov (United States)

    Garg, Vibhav; Arora, Suchir; Gupta, Chitra

    2011-12-01

    Continued advancements in the area of technology have helped high throughput screening (HTS) evolve from a linear to parallel approach by performing system level screening. Advanced experimental methods used for HTS at various steps of drug discovery (i.e. target identification, target validation, lead identification and lead validation) can generate data of the order of terabytes. As a consequence, there is pressing need to store, manage, mine and analyze this data to identify informational tags. This need is again posing challenges to computer scientists to offer the matching hardware and software infrastructure, while managing the varying degree of desired computational power. Therefore, the potential of "On-Demand Hardware" and "Software as a Service (SAAS)" delivery mechanisms cannot be denied. This on-demand computing, largely referred to as Cloud Computing, is now transforming the drug discovery research. Also, integration of Cloud computing with parallel computing is certainly expanding its footprint in the life sciences community. The speed, efficiency and cost effectiveness have made cloud computing a 'good to have tool' for researchers, providing them significant flexibility, allowing them to focus on the 'what' of science and not the 'how'. Once reached to its maturity, Discovery-Cloud would fit best to manage drug discovery and clinical development data, generated using advanced HTS techniques, hence supporting the vision of personalized medicine.

  10. Computer-aided drug discovery [v1; ref status: indexed, http://f1000r.es/5ij

    Directory of Open Access Journals (Sweden)

    Jürgen Bajorath

    2015-08-01

    Full Text Available Computational approaches are an integral part of interdisciplinary drug discovery research. Understanding the science behind computational tools, their opportunities, and limitations is essential to make a true impact on drug discovery at different levels. If applied in a scientifically meaningful way, computational methods improve the ability to identify and evaluate potential drug molecules, but there remain weaknesses in the methods that preclude naïve applications. Herein, current trends in computer-aided drug discovery are reviewed, and selected computational areas are discussed. Approaches are highlighted that aid in the identification and optimization of new drug candidates. Emphasis is put on the presentation and discussion of computational concepts and methods, rather than case studies or application examples. As such, this contribution aims to provide an overview of the current methodological spectrum of computational drug discovery for a broad audience.

  11. Open source drug discovery--a new paradigm of collaborative research in tuberculosis drug development.

    Science.gov (United States)

    Bhardwaj, Anshu; Scaria, Vinod; Raghava, Gajendra Pal Singh; Lynn, Andrew Michael; Chandra, Nagasuma; Banerjee, Sulagna; Raghunandanan, Muthukurussi V; Pandey, Vikas; Taneja, Bhupesh; Yadav, Jyoti; Dash, Debasis; Bhattacharya, Jaijit; Misra, Amit; Kumar, Anil; Ramachandran, Srinivasan; Thomas, Zakir; Brahmachari, Samir K

    2011-09-01

    It is being realized that the traditional closed-door and market driven approaches for drug discovery may not be the best suited model for the diseases of the developing world such as tuberculosis and malaria, because most patients suffering from these diseases have poor paying capacity. To ensure that new drugs are created for patients suffering from these diseases, it is necessary to formulate an alternate paradigm of drug discovery process. The current model constrained by limitations for collaboration and for sharing of resources with confidentiality hampers the opportunities for bringing expertise from diverse fields. These limitations hinder the possibilities of lowering the cost of drug discovery. The Open Source Drug Discovery project initiated by Council of Scientific and Industrial Research, India has adopted an open source model to power wide participation across geographical borders. Open Source Drug Discovery emphasizes integrative science through collaboration, open-sharing, taking up multi-faceted approaches and accruing benefits from advances on different fronts of new drug discovery. Because the open source model is based on community participation, it has the potential to self-sustain continuous development by generating a storehouse of alternatives towards continued pursuit for new drug discovery. Since the inventions are community generated, the new chemical entities developed by Open Source Drug Discovery will be taken up for clinical trial in a non-exclusive manner by participation of multiple companies with majority funding from Open Source Drug Discovery. This will ensure availability of drugs through a lower cost community driven drug discovery process for diseases afflicting people with poor paying capacity. Hopefully what LINUX the World Wide Web have done for the information technology, Open Source Drug Discovery will do for drug discovery. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. An overview of aldehyde oxidase: an enzyme of emerging importance in novel drug discovery.

    Science.gov (United States)

    Rashidi, Mohammad-Reza; Soltani, Somaieh

    2017-03-01

    Given the rising trend in medicinal chemistry strategy to reduce cytochrome P450-dependent metabolism, aldehyde oxidase (AOX) has recently gained increased attention in drug discovery programs and the number of drug candidates that are metabolized by AOX is steadily growing. Areas covered: Despite the emerging importance of AOX in drug discovery, there are certain major recognized problems associated with AOX-mediated metabolism of drugs. Intra- and inter-species variations in AOX activity, the lack of reliable and predictive animal models using the common experimental animals, and failure in the predictions of in vivo metabolic activity of AOX using traditional in vitro methods are among these issues that are covered in this article. A comprehensive review of computational human AOX (hAOX) related studies are also provided. Expert opinion: Following the recent progress in the stem cell field, the authors recommend the application of organoids technology as an effective tool to solve the fundamental problems associated with the evaluation of AOX in drug discovery. The recent success in resolving the hAOX crystal structure can too be another valuable data source for the study of AOX-catalyzed metabolism of new drug candidates, using computer-aided drug discovery methods.

  13. Have artificial neural networks met expectations in drug discovery as implemented in QSAR framework?

    Science.gov (United States)

    Dobchev, Dimitar; Karelson, Mati

    2016-07-01

    Artificial neural networks (ANNs) are highly adaptive nonlinear optimization algorithms that have been applied in many diverse scientific endeavors, ranging from economics, engineering, physics, and chemistry to medical science. Notably, in the past two decades, ANNs have been used widely in the process of drug discovery. In this review, the authors discuss advantages and disadvantages of ANNs in drug discovery as incorporated into the quantitative structure-activity relationships (QSAR) framework. Furthermore, the authors examine the recent studies, which span over a broad area with various diseases in drug discovery. In addition, the authors attempt to answer the question about the expectations of the ANNs in drug discovery and discuss the trends in this field. The old pitfalls of overtraining and interpretability are still present with ANNs. However, despite these pitfalls, the authors believe that ANNs have likely met many of the expectations of researchers and are still considered as excellent tools for nonlinear data modeling in QSAR. It is likely that ANNs will continue to be used in drug development in the future.

  14. Virtual drug discovery: beyond computational chemistry?

    Science.gov (United States)

    Gilardoni, Francois; Arvanites, Anthony C

    2010-02-01

    This editorial looks at how a fully integrated structure that performs all aspects in the drug discovery process, under one company, is slowly disappearing. The steps in the drug discovery paradigm have been slowly increasing toward virtuality or outsourcing at various phases of product development in a company's candidate pipeline. Each step in the process, such as target identification and validation and medicinal chemistry, can be managed by scientific teams within a 'virtual' company. Pharmaceutical companies to biotechnology start-ups have been quick in adopting this new research and development business strategy in order to gain flexibility, access the best technologies and technical expertise, and decrease product developmental costs. In today's financial climate, the term virtual drug discovery has an organizational meaning. It represents the next evolutionary step in outsourcing drug development.

  15. ACFIS: a web server for fragment-based drug discovery

    Science.gov (United States)

    Hao, Ge-Fei; Jiang, Wen; Ye, Yuan-Nong; Wu, Feng-Xu; Zhu, Xiao-Lei; Guo, Feng-Biao; Yang, Guang-Fu

    2016-01-01

    In order to foster innovation and improve the effectiveness of drug discovery, there is a considerable interest in exploring unknown ‘chemical space’ to identify new bioactive compounds with novel and diverse scaffolds. Hence, fragment-based drug discovery (FBDD) was developed rapidly due to its advanced expansive search for ‘chemical space’, which can lead to a higher hit rate and ligand efficiency (LE). However, computational screening of fragments is always hampered by the promiscuous binding model. In this study, we developed a new web server Auto Core Fragment in silico Screening (ACFIS). It includes three computational modules, PARA_GEN, CORE_GEN and CAND_GEN. ACFIS can generate core fragment structure from the active molecule using fragment deconstruction analysis and perform in silico screening by growing fragments to the junction of core fragment structure. An integrated energy calculation rapidly identifies which fragments fit the binding site of a protein. We constructed a simple interface to enable users to view top-ranking molecules in 2D and the binding mode in 3D for further experimental exploration. This makes the ACFIS a highly valuable tool for drug discovery. The ACFIS web server is free and open to all users at http://chemyang.ccnu.edu.cn/ccb/server/ACFIS/. PMID:27150808

  16. Use of machine learning approaches for novel drug discovery.

    Science.gov (United States)

    Lima, Angélica Nakagawa; Philot, Eric Allison; Trossini, Gustavo Henrique Goulart; Scott, Luis Paulo Barbour; Maltarollo, Vinícius Gonçalves; Honorio, Kathia Maria

    2016-01-01

    The use of computational tools in the early stages of drug development has increased in recent decades. Machine learning (ML) approaches have been of special interest, since they can be applied in several steps of the drug discovery methodology, such as prediction of target structure, prediction of biological activity of new ligands through model construction, discovery or optimization of hits, and construction of models that predict the pharmacokinetic and toxicological (ADMET) profile of compounds. This article presents an overview on some applications of ML techniques in drug design. These techniques can be employed in ligand-based drug design (LBDD) and structure-based drug design (SBDD) studies, such as similarity searches, construction of classification and/or prediction models of biological activity, prediction of secondary structures and binding sites docking and virtual screening. Successful cases have been reported in the literature, demonstrating the efficiency of ML techniques combined with traditional approaches to study medicinal chemistry problems. Some ML techniques used in drug design are: support vector machine, random forest, decision trees and artificial neural networks. Currently, an important application of ML techniques is related to the calculation of scoring functions used in docking and virtual screening assays from a consensus, combining traditional and ML techniques in order to improve the prediction of binding sites and docking solutions.

  17. Contributions of computational chemistry and biophysical techniques to fragment-based drug discovery.

    Science.gov (United States)

    Gozalbes, Rafael; Carbajo, Rodrigo J; Pineda-Lucena, Antonio

    2010-01-01

    In the last decade, fragment-based drug discovery (FBDD) has evolved from a novel approach in the search of new hits to a valuable alternative to the high-throughput screening (HTS) campaigns of many pharmaceutical companies. The increasing relevance of FBDD in the drug discovery universe has been concomitant with an implementation of the biophysical techniques used for the detection of weak inhibitors, e.g. NMR, X-ray crystallography or surface plasmon resonance (SPR). At the same time, computational approaches have also been progressively incorporated into the FBDD process and nowadays several computational tools are available. These stretch from the filtering of huge chemical databases in order to build fragment-focused libraries comprising compounds with adequate physicochemical properties, to more evolved models based on different in silico methods such as docking, pharmacophore modelling, QSAR and virtual screening. In this paper we will review the parallel evolution and complementarities of biophysical techniques and computational methods, providing some representative examples of drug discovery success stories by using FBDD.

  18. Applying genetics in inflammatory disease drug discovery

    DEFF Research Database (Denmark)

    Folkersen, Lasse; Biswas, Shameek; Frederiksen, Klaus Stensgaard

    2015-01-01

    , with several notable exceptions, the journey from a small-effect genetic variant to a functional drug has proven arduous, and few examples of actual contributions to drug discovery exist. Here, we discuss novel approaches of overcoming this hurdle by using instead public genetics resources as a pragmatic guide...... alongside existing drug discovery methods. Our aim is to evaluate human genetic confidence as a rationale for drug target selection....

  19. OSIRIS, an entirely in-house developed drug discovery informatics system.

    Science.gov (United States)

    Sander, Thomas; Freyss, Joel; von Korff, Modest; Reich, Jacqueline Renée; Rufener, Christian

    2009-02-01

    We present OSIRIS, an entirely in-house developed drug discovery informatics system. Its components cover all information handling aspects from compound synthesis via biological testing to preclinical development. Its design principles are platform and vendor independence, a consistent look and feel, and complete coverage of the drug discovery process by custom tailored applications. These include electronic laboratory notebook applications for biology and chemistry, tools for high-throughput and secondary screening evaluation, chemistry-aware data visualization, physicochemical property prediction, 3D-pharmacophore comparisons, interactive modeling, computing grid based ligand-protein docking, and more. Most applications are developed in Java and are built on top of a Java library layer that provides reusable cheminformatics functionality and GUI components such as chemical editors, structure canonicalization, substructure search, combinatorial enumeration, enhanced stereo perception, force field minimization, and conformation generation.

  20. ACFIS: a web server for fragment-based drug discovery.

    Science.gov (United States)

    Hao, Ge-Fei; Jiang, Wen; Ye, Yuan-Nong; Wu, Feng-Xu; Zhu, Xiao-Lei; Guo, Feng-Biao; Yang, Guang-Fu

    2016-07-08

    In order to foster innovation and improve the effectiveness of drug discovery, there is a considerable interest in exploring unknown 'chemical space' to identify new bioactive compounds with novel and diverse scaffolds. Hence, fragment-based drug discovery (FBDD) was developed rapidly due to its advanced expansive search for 'chemical space', which can lead to a higher hit rate and ligand efficiency (LE). However, computational screening of fragments is always hampered by the promiscuous binding model. In this study, we developed a new web server Auto Core Fragment in silico Screening (ACFIS). It includes three computational modules, PARA_GEN, CORE_GEN and CAND_GEN. ACFIS can generate core fragment structure from the active molecule using fragment deconstruction analysis and perform in silico screening by growing fragments to the junction of core fragment structure. An integrated energy calculation rapidly identifies which fragments fit the binding site of a protein. We constructed a simple interface to enable users to view top-ranking molecules in 2D and the binding mode in 3D for further experimental exploration. This makes the ACFIS a highly valuable tool for drug discovery. The ACFIS web server is free and open to all users at http://chemyang.ccnu.edu.cn/ccb/server/ACFIS/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. RAS - Screens & Assays - Drug Discovery

    Science.gov (United States)

    The RAS Drug Discovery group aims to develop assays that will reveal aspects of RAS biology upon which cancer cells depend. Successful assay formats are made available for high-throughput screening programs to yield potentially effective drug compounds.

  2. Blood-brain barrier in vitro models as tools in drug discovery: assessment of the transport ranking of antihistaminic drugs.

    Science.gov (United States)

    Neuhaus, W; Mandikova, J; Pawlowitsch, R; Linz, B; Bennani-Baiti, B; Lauer, R; Lachmann, B; Noe, C R

    2012-05-01

    In the course of our validation program testing blood-brain barrier (BBB) in vitro models for their usability as tools in drug discovery it was evaluated whether an established Transwell model based on porcine cell line PBMEC/C1-2 was able to differentiate between the transport properties of first and second generation antihistaminic drugs. First generation antihistamines can permeate the BBB and act in the central nervous system (CNS), whereas entry to the CNS of second generation antihistamines is restricted by efflux pumps such as P-glycoprotein (P-gP) located in brain endothelial cells. P-gP functionality of PBMEC/C1-2 cells grown on Transwell filter inserts was proven by transport studies with P-gP substrate rhodamine 123 and P-gP blocker verapamil. Subsequent drug transport studies with the first generation antihistamines promethazine, diphenhydramine and pheniramine and the second generation antihistamines astemizole, ceterizine, fexofenadine and loratadine were accomplished in single substance as well as in group studies. Results were normalised to diazepam, an internal standard for the transcellular transport route. Moreover, effects after addition of P-gP inhibitor verapamil were investigated. First generation antihistamine pheniramine permeated as fastest followed by diphenhydramine, diazepam, promethazine and second generation antihistaminic drugs ceterizine, fexofenadine, astemizole and loratadine reflecting the BBB in vivo permeability ranking well. Verapamil increased the transport rates of all second generation antihistamines, which suggested involvement of P-gP during their permeation across the BBB model. The ranking after addition of verapamil was significantly changed, only fexofenadine and ceterizine penetrated slower than internal standard diazepam in the presence of verapamil. In summary, permeability data showed that the BBB model based on porcine cell line PBMEC/C1-2 was able to reflect the BBB in vivo situation for the transport of

  3. [Artificial Intelligence in Drug Discovery].

    Science.gov (United States)

    Fujiwara, Takeshi; Kamada, Mayumi; Okuno, Yasushi

    2018-04-01

    According to the increase of data generated from analytical instruments, application of artificial intelligence(AI)technology in medical field is indispensable. In particular, practical application of AI technology is strongly required in "genomic medicine" and "genomic drug discovery" that conduct medical practice and novel drug development based on individual genomic information. In our laboratory, we have been developing a database to integrate genome data and clinical information obtained by clinical genome analysis and a computational support system for clinical interpretation of variants using AI. In addition, with the aim of creating new therapeutic targets in genomic drug discovery, we have been also working on the development of a binding affinity prediction system for mutated proteins and drugs by molecular dynamics simulation using supercomputer "Kei". We also have tackled for problems in a drug virtual screening. Our developed AI technology has successfully generated virtual compound library, and deep learning method has enabled us to predict interaction between compound and target protein.

  4. Web-based drug repurposing tools: a survey.

    Science.gov (United States)

    Sam, Elizabeth; Athri, Prashanth

    2017-10-06

    Drug repurposing (a.k.a. drug repositioning) is the search for new indications or molecular targets distinct from a drug's putative activity, pharmacological effect or binding specificities. With the ever-increasing rates of termination of drugs in clinical trials, drug repositioning has risen as one of the effective solutions against the risk of drug failures. Repositioning finds a way to reverse the grim but real trend that Eroom's law portends for the pharmaceutical and biotech industry, and drug discovery in general. Further, the advent of high-throughput technologies to explore biological systems has enabled the generation of zeta bytes of data and a massive collection of databases that store them. Computational analytics and mining are frequently used as effective tools to explore this byzantine series of biological and biomedical data. However, advanced computational tools are often difficult to understand or use, thereby limiting their accessibility to scientists without a strong computational background. Hence it is of great importance to build user-friendly interfaces to extend the user-base beyond computational scientists, to include life scientists who may have deeper chemical and biological insights. This survey is focused on systematically presenting the available Web-based tools that aid in repositioning drugs. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Fragment-based drug discovery and molecular docking in drug design.

    Science.gov (United States)

    Wang, Tao; Wu, Mian-Bin; Chen, Zheng-Jie; Chen, Hua; Lin, Jian-Ping; Yang, Li-Rong

    2015-01-01

    Fragment-based drug discovery (FBDD) has caused a revolution in the process of drug discovery and design, with many FBDD leads being developed into clinical trials or approved in the past few years. Compared with traditional high-throughput screening, it displays obvious advantages such as efficiently covering chemical space, achieving higher hit rates, and so forth. In this review, we focus on the most recent developments of FBDD for improving drug discovery, illustrating the process and the importance of FBDD. In particular, the computational strategies applied in the process of FBDD and molecular-docking programs are highlighted elaborately. In most cases, docking is used for predicting the ligand-receptor interaction modes and hit identification by structurebased virtual screening. The successful cases of typical significance and the hits identified most recently are discussed.

  6. DrugQuest - a text mining workflow for drug association discovery.

    Science.gov (United States)

    Papanikolaou, Nikolas; Pavlopoulos, Georgios A; Theodosiou, Theodosios; Vizirianakis, Ioannis S; Iliopoulos, Ioannis

    2016-06-06

    Text mining and data integration methods are gaining ground in the field of health sciences due to the exponential growth of bio-medical literature and information stored in biological databases. While such methods mostly try to extract bioentity associations from PubMed, very few of them are dedicated in mining other types of repositories such as chemical databases. Herein, we apply a text mining approach on the DrugBank database in order to explore drug associations based on the DrugBank "Description", "Indication", "Pharmacodynamics" and "Mechanism of Action" text fields. We apply Name Entity Recognition (NER) techniques on these fields to identify chemicals, proteins, genes, pathways, diseases, and we utilize the TextQuest algorithm to find additional biologically significant words. Using a plethora of similarity and partitional clustering techniques, we group the DrugBank records based on their common terms and investigate possible scenarios why these records are clustered together. Different views such as clustered chemicals based on their textual information, tag clouds consisting of Significant Terms along with the terms that were used for clustering are delivered to the user through a user-friendly web interface. DrugQuest is a text mining tool for knowledge discovery: it is designed to cluster DrugBank records based on text attributes in order to find new associations between drugs. The service is freely available at http://bioinformatics.med.uoc.gr/drugquest .

  7. SWEETLEAD: an in silico database of approved drugs, regulated chemicals, and herbal isolates for computer-aided drug discovery.

    Directory of Open Access Journals (Sweden)

    Paul A Novick

    Full Text Available In the face of drastically rising drug discovery costs, strategies promising to reduce development timelines and expenditures are being pursued. Computer-aided virtual screening and repurposing approved drugs are two such strategies that have shown recent success. Herein, we report the creation of a highly-curated in silico database of chemical structures representing approved drugs, chemical isolates from traditional medicinal herbs, and regulated chemicals, termed the SWEETLEAD database. The motivation for SWEETLEAD stems from the observance of conflicting information in publicly available chemical databases and the lack of a highly curated database of chemical structures for the globally approved drugs. A consensus building scheme surveying information from several publicly accessible databases was employed to identify the correct structure for each chemical. Resulting structures are filtered for the active pharmaceutical ingredient, standardized, and differing formulations of the same drug were combined in the final database. The publically available release of SWEETLEAD (https://simtk.org/home/sweetlead provides an important tool to enable the successful completion of computer-aided repurposing and drug discovery campaigns.

  8. SPME as a promising tool in translational medicine and drug discovery: From bench to bedside.

    Science.gov (United States)

    Goryński, Krzysztof; Goryńska, Paulina; Górska, Agnieszka; Harężlak, Tomasz; Jaroch, Alina; Jaroch, Karol; Lendor, Sofia; Skobowiat, Cezary; Bojko, Barbara

    2016-10-25

    Solid phase microextraction (SPME) is a technology where a small amount of an extracting phase dispersed on a solid support is exposed to the sample for a well-defined period of time. The open-bed geometry and biocompatibility of the materials used for manufacturing of the devices makes it very convenient tool for direct extraction from complex biological matrices. The flexibility of the formats permits tailoring the method according the needs of the particular application. Number of studies concerning monitoring of drugs and their metabolites, analysis of metabolome of volatile as well as non-volatile compounds, determination of ligand-protein binding, permeability and compound toxicity was already reported. All these applications were performed in different matrices including biological fluids and tissues, cell cultures, and in living animals. The low invasiveness of in vivo SPME, ability of using very small sample volumes and analysis of cell cultures permits to address the rule of 3R, which is currently acknowledged ethical standard in R&D labs. In the current review systematic evaluation of the applicability of SPME to studies required to be conduct at different stages of drug discovery and development and translational medicine is presented. The advantages and challenges are discussed based on the examples directly showing given experimental design or on the studies, which could be translated to the models routinely used in drug development process. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Mathematical modeling for novel cancer drug discovery and development.

    Science.gov (United States)

    Zhang, Ping; Brusic, Vladimir

    2014-10-01

    Mathematical modeling enables: the in silico classification of cancers, the prediction of disease outcomes, optimization of therapy, identification of promising drug targets and prediction of resistance to anticancer drugs. In silico pre-screened drug targets can be validated by a small number of carefully selected experiments. This review discusses the basics of mathematical modeling in cancer drug discovery and development. The topics include in silico discovery of novel molecular drug targets, optimization of immunotherapies, personalized medicine and guiding preclinical and clinical trials. Breast cancer has been used to demonstrate the applications of mathematical modeling in cancer diagnostics, the identification of high-risk population, cancer screening strategies, prediction of tumor growth and guiding cancer treatment. Mathematical models are the key components of the toolkit used in the fight against cancer. The combinatorial complexity of new drugs discovery is enormous, making systematic drug discovery, by experimentation, alone difficult if not impossible. The biggest challenges include seamless integration of growing data, information and knowledge, and making them available for a multiplicity of analyses. Mathematical models are essential for bringing cancer drug discovery into the era of Omics, Big Data and personalized medicine.

  10. Pharmacokinetic properties and in silico ADME modeling in drug discovery.

    Science.gov (United States)

    Honório, Kathia M; Moda, Tiago L; Andricopulo, Adriano D

    2013-03-01

    The discovery and development of a new drug are time-consuming, difficult and expensive. This complex process has evolved from classical methods into an integration of modern technologies and innovative strategies addressed to the design of new chemical entities to treat a variety of diseases. The development of new drug candidates is often limited by initial compounds lacking reasonable chemical and biological properties for further lead optimization. Huge libraries of compounds are frequently selected for biological screening using a variety of techniques and standard models to assess potency, affinity and selectivity. In this context, it is very important to study the pharmacokinetic profile of the compounds under investigation. Recent advances have been made in the collection of data and the development of models to assess and predict pharmacokinetic properties (ADME--absorption, distribution, metabolism and excretion) of bioactive compounds in the early stages of drug discovery projects. This paper provides a brief perspective on the evolution of in silico ADME tools, addressing challenges, limitations, and opportunities in medicinal chemistry.

  11. Computational medicinal chemistry in fragment-based drug discovery: what, how and when.

    Science.gov (United States)

    Rabal, Obdulia; Urbano-Cuadrado, Manuel; Oyarzabal, Julen

    2011-01-01

    The use of fragment-based drug discovery (FBDD) has increased in the last decade due to the encouraging results obtained to date. In this scenario, computational approaches, together with experimental information, play an important role to guide and speed up the process. By default, FBDD is generally considered as a constructive approach. However, such additive behavior is not always present, therefore, simple fragment maturation will not always deliver the expected results. In this review, computational approaches utilized in FBDD are reported together with real case studies, where applicability domains are exemplified, in order to analyze them, and then, maximize their performance and reliability. Thus, a proper use of these computational tools can minimize misleading conclusions, keeping the credit on FBDD strategy, as well as achieve higher impact in the drug-discovery process. FBDD goes one step beyond a simple constructive approach. A broad set of computational tools: docking, R group quantitative structure-activity relationship, fragmentation tools, fragments management tools, patents analysis and fragment-hopping, for example, can be utilized in FBDD, providing a clear positive impact if they are utilized in the proper scenario - what, how and when. An initial assessment of additive/non-additive behavior is a critical point to define the most convenient approach for fragments elaboration.

  12. The impact of genetics on future drug discovery in schizophrenia.

    Science.gov (United States)

    Matsumoto, Mitsuyuki; Walton, Noah M; Yamada, Hiroshi; Kondo, Yuji; Marek, Gerard J; Tajinda, Katsunori

    2017-07-01

    Failures of investigational new drugs (INDs) for schizophrenia have left huge unmet medical needs for patients. Given the recent lackluster results, it is imperative that new drug discovery approaches (and resultant drug candidates) target pathophysiological alterations that are shared in specific, stratified patient populations that are selected based on pre-identified biological signatures. One path to implementing this paradigm is achievable by leveraging recent advances in genetic information and technologies. Genome-wide exome sequencing and meta-analysis of single nucleotide polymorphism (SNP)-based association studies have already revealed rare deleterious variants and SNPs in patient populations. Areas covered: Herein, the authors review the impact that genetics have on the future of schizophrenia drug discovery. The high polygenicity of schizophrenia strongly indicates that this disease is biologically heterogeneous so the identification of unique subgroups (by patient stratification) is becoming increasingly necessary for future investigational new drugs. Expert opinion: The authors propose a pathophysiology-based stratification of genetically-defined subgroups that share deficits in particular biological pathways. Existing tools, including lower-cost genomic sequencing and advanced gene-editing technology render this strategy ever more feasible. Genetically complex psychiatric disorders such as schizophrenia may also benefit from synergistic research with simpler monogenic disorders that share perturbations in similar biological pathways.

  13. Therapeutic Potential of Foldamers: From Chemical Biology Tools To Drug Candidates?

    Science.gov (United States)

    Gopalakrishnan, Ranganath; Frolov, Andrey I; Knerr, Laurent; Drury, William J; Valeur, Eric

    2016-11-10

    Over the past decade, foldamers have progressively emerged as useful architectures to mimic secondary structures of proteins. Peptidic foldamers, consisting of various amino acid based backbones, have been the most studied from a therapeutic perspective, while polyaromatic foldamers have barely evolved from their nascency and remain perplexing for medicinal chemists due to their poor drug-like nature. Despite these limitations, this compound class may still offer opportunities to study challenging targets or provide chemical biology tools. The potential of foldamer drug candidates reaching the clinic is still a stretch. Nevertheless, advances in the field have demonstrated their potential for the discovery of next generation therapeutics. In this perspective, the current knowledge of foldamers is reviewed in a drug discovery context. Recent advances in the early phases of drug discovery including hit finding, target validation, and optimization and molecular modeling are discussed. In addition, challenges and focus areas are debated and gaps highlighted.

  14. Systems Pharmacology in Small Molecular Drug Discovery

    Directory of Open Access Journals (Sweden)

    Wei Zhou

    2016-02-01

    Full Text Available Drug discovery is a risky, costly and time-consuming process depending on multidisciplinary methods to create safe and effective medicines. Although considerable progress has been made by high-throughput screening methods in drug design, the cost of developing contemporary approved drugs did not match that in the past decade. The major reason is the late-stage clinical failures in Phases II and III because of the complicated interactions between drug-specific, human body and environmental aspects affecting the safety and efficacy of a drug. There is a growing hope that systems-level consideration may provide a new perspective to overcome such current difficulties of drug discovery and development. The systems pharmacology method emerged as a holistic approach and has attracted more and more attention recently. The applications of systems pharmacology not only provide the pharmacodynamic evaluation and target identification of drug molecules, but also give a systems-level of understanding the interaction mechanism between drugs and complex disease. Therefore, the present review is an attempt to introduce how holistic systems pharmacology that integrated in silico ADME/T (i.e., absorption, distribution, metabolism, excretion and toxicity, target fishing and network pharmacology facilitates the discovery of small molecular drugs at the system level.

  15. Bioinformatics Tools for the Discovery of New Nonribosomal Peptides

    DEFF Research Database (Denmark)

    Leclère, Valérie; Weber, Tilmann; Jacques, Philippe

    2016-01-01

    -dimensional structure of the peptides can be compared with the structural patterns of all known NRPs. The presented workflow leads to an efficient and rapid screening of genomic data generated by high throughput technologies. The exploration of such sequenced genomes may lead to the discovery of new drugs (i......This chapter helps in the use of bioinformatics tools relevant to the discovery of new nonribosomal peptides (NRPs) produced by microorganisms. The strategy described can be applied to draft or fully assembled genome sequences. It relies on the identification of the synthetase genes...... and the deciphering of the domain architecture of the nonribosomal peptide synthetases (NRPSs). In the next step, candidate peptides synthesized by these NRPSs are predicted in silico, considering the specificity of incorporated monomers together with their isomery. To assess their novelty, the two...

  16. A Fully Automated High-Throughput Flow Cytometry Screening System Enabling Phenotypic Drug Discovery.

    Science.gov (United States)

    Joslin, John; Gilligan, James; Anderson, Paul; Garcia, Catherine; Sharif, Orzala; Hampton, Janice; Cohen, Steven; King, Miranda; Zhou, Bin; Jiang, Shumei; Trussell, Christopher; Dunn, Robert; Fathman, John W; Snead, Jennifer L; Boitano, Anthony E; Nguyen, Tommy; Conner, Michael; Cooke, Mike; Harris, Jennifer; Ainscow, Ed; Zhou, Yingyao; Shaw, Chris; Sipes, Dan; Mainquist, James; Lesley, Scott

    2018-05-01

    The goal of high-throughput screening is to enable screening of compound libraries in an automated manner to identify quality starting points for optimization. This often involves screening a large diversity of compounds in an assay that preserves a connection to the disease pathology. Phenotypic screening is a powerful tool for drug identification, in that assays can be run without prior understanding of the target and with primary cells that closely mimic the therapeutic setting. Advanced automation and high-content imaging have enabled many complex assays, but these are still relatively slow and low throughput. To address this limitation, we have developed an automated workflow that is dedicated to processing complex phenotypic assays for flow cytometry. The system can achieve a throughput of 50,000 wells per day, resulting in a fully automated platform that enables robust phenotypic drug discovery. Over the past 5 years, this screening system has been used for a variety of drug discovery programs, across many disease areas, with many molecules advancing quickly into preclinical development and into the clinic. This report will highlight a diversity of approaches that automated flow cytometry has enabled for phenotypic drug discovery.

  17. International Drug Discovery Science and Technology--BIT's Seventh Annual Congress.

    Science.gov (United States)

    Bodovitz, Steven

    2010-01-01

    BIT's Seventh Annual International Drug Discovery Science and Technology Congress, held in Shanghai, included topics covering new therapeutic and technological developments in the field of drug discovery. This conference report highlights selected presentations on open-access approaches to R&D, novel and multifactorial targets, and technologies that assist drug discovery. Investigational drugs discussed include the anticancer agents astuprotimut-r (GlaxoSmithKline plc) and AS-1411 (Antisoma plc).

  18. Four disruptive strategies for removing drug discovery bottlenecks.

    Science.gov (United States)

    Ekins, Sean; Waller, Chris L; Bradley, Mary P; Clark, Alex M; Williams, Antony J

    2013-03-01

    Drug discovery is shifting focus from industry to outside partners and, in the process, creating new bottlenecks. Technologies like high throughput screening (HTS) have moved to a larger number of academic and institutional laboratories in the USA, with little coordination or consideration of the outputs and creating a translational gap. Although there have been collaborative public-private partnerships in Europe to share pharmaceutical data, the USA has seemingly lagged behind and this may hold it back. Sharing precompetitive data and models may accelerate discovery across the board, while finding the best collaborators, mining social media and mobile approaches to open drug discovery should be evaluated in our efforts to remove drug discovery bottlenecks. We describe four strategies to rectify the current unsustainable situation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. "Drug" Discovery with the Help of Organic Chemistry.

    Science.gov (United States)

    Itoh, Yukihiro; Suzuki, Takayoshi

    2017-01-01

    The first step in "drug" discovery is to find compounds binding to a potential drug target. In modern medicinal chemistry, the screening of a chemical library, structure-based drug design, and ligand-based drug design, or a combination of these methods, are generally used for identifying the desired compounds. However, they do not necessarily lead to success and there is no infallible method for drug discovery. Therefore, it is important to explore medicinal chemistry based on not only the conventional methods but also new ideas. So far, we have found various compounds as drug candidates. In these studies, some strategies based on organic chemistry have allowed us to find drug candidates, through 1) construction of a focused library using organic reactions and 2) rational design of enzyme inhibitors based on chemical reactions catalyzed by the target enzyme. Medicinal chemistry based on organic chemical reactions could be expected to supplement the conventional methods. In this review, we present drug discovery with the help of organic chemistry showing examples of our explorative studies on histone deacetylase inhibitors and lysine-specific demethylase 1 inhibitors.

  20. Science of the science, drug discovery and artificial neural networks.

    Science.gov (United States)

    Patel, Jigneshkumar

    2013-03-01

    Drug discovery process many times encounters complex problems, which may be difficult to solve by human intelligence. Artificial Neural Networks (ANNs) are one of the Artificial Intelligence (AI) technologies used for solving such complex problems. ANNs are widely used for primary virtual screening of compounds, quantitative structure activity relationship studies, receptor modeling, formulation development, pharmacokinetics and in all other processes involving complex mathematical modeling. Despite having such advanced technologies and enough understanding of biological systems, drug discovery is still a lengthy, expensive, difficult and inefficient process with low rate of new successful therapeutic discovery. In this paper, author has discussed the drug discovery science and ANN from very basic angle, which may be helpful to understand the application of ANN for drug discovery to improve efficiency.

  1. Usability Test Results for a Discovery Tool in an Academic Library

    Directory of Open Access Journals (Sweden)

    Jody Condit Fagan

    2008-03-01

    Full Text Available Discovery tools are emerging in libraries. These tools offer library patrons the ability to concurrently search the library catalog and journal articles. While vendors rush to provide feature-rich interfaces and access to as much content as possible, librarians wonder about the usefulness of these tools to library patrons. In order to learn about both the utility and usability of EBSCO Discovery Service, James Madison University conducted a usability test with eight students and two faculty members. The test consisted of nine tasks focused on common patron requests or related to the utility of specific discovery tool features. Software recorded participants’ actions and time on task, human observers judged the success of each task, and a post-survey questionnaire gathered qualitative feedback and comments from the participants.  Overall, participants were successful at most tasks, but specific usability problems suggested some interface changes for both EBSCO Discovery Service and JMU’s customizations of the tool.  The study also raised several questions for libraries above and beyond any specific discovery tool interface, including the scope and purpose of a discovery tool versus other library systems, working with the large result sets made possible by discovery tools, and navigation between the tool and other library services and resources.  This article will be of interest to those who are investigating discovery tools, selecting products, integrating discovery tools into a library web presence, or performing evaluations of similar systems.

  2. Stem cells in drug discovery, tissue engineering, and regenerative medicine: emerging opportunities and challenges.

    Science.gov (United States)

    Nirmalanandhan, Victor Sanjit; Sittampalam, G Sitta

    2009-08-01

    Stem cells, irrespective of their origin, have emerged as valuable reagents or tools in human health in the past 2 decades. Initially, a research tool to study fundamental aspects of developmental biology is now the central focus of generating transgenic animals, drug discovery, and regenerative medicine to address degenerative diseases of multiple organ systems. This is because stem cells are pluripotent or multipotent cells that can recapitulate developmental paths to repair damaged tissues. However, it is becoming clear that stem cell therapy alone may not be adequate to reverse tissue and organ damage in degenerative diseases. Existing small-molecule drugs and biologicals may be needed as "molecular adjuvants" or enhancers of stem cells administered in therapy or adult stem cells in the diseased tissues. Hence, a combination of stem cell-based, high-throughput screening and 3D tissue engineering approaches is necessary to advance the next wave of tools in preclinical drug discovery. In this review, the authors have attempted to provide a basic account of various stem cells types, as well as their biology and signaling, in the context of research in regenerative medicine. An attempt is made to link stem cells as reagents, pharmacology, and tissue engineering as converging fields of research for the next decade.

  3. Computational Methods Used in Hit-to-Lead and Lead Optimization Stages of Structure-Based Drug Discovery.

    Science.gov (United States)

    Heifetz, Alexander; Southey, Michelle; Morao, Inaki; Townsend-Nicholson, Andrea; Bodkin, Mike J

    2018-01-01

    GPCR modeling approaches are widely used in the hit-to-lead (H2L) and lead optimization (LO) stages of drug discovery. The aims of these modeling approaches are to predict the 3D structures of the receptor-ligand complexes, to explore the key interactions between the receptor and the ligand and to utilize these insights in the design of new molecules with improved binding, selectivity or other pharmacological properties. In this book chapter, we present a brief survey of key computational approaches integrated with hierarchical GPCR modeling protocol (HGMP) used in hit-to-lead (H2L) and in lead optimization (LO) stages of structure-based drug discovery (SBDD). We outline the differences in modeling strategies used in H2L and LO of SBDD and illustrate how these tools have been applied in three drug discovery projects.

  4. Open Science Meets Stem Cells: A New Drug Discovery Approach for Neurodegenerative Disorders.

    Science.gov (United States)

    Han, Chanshuai; Chaineau, Mathilde; Chen, Carol X-Q; Beitel, Lenore K; Durcan, Thomas M

    2018-01-01

    Neurodegenerative diseases are a challenge for drug discovery, as the biological mechanisms are complex and poorly understood, with a paucity of models that faithfully recapitulate these disorders. Recent advances in stem cell technology have provided a paradigm shift, providing researchers with tools to generate human induced pluripotent stem cells (iPSCs) from patient cells. With the potential to generate any human cell type, we can now generate human neurons and develop "first-of-their-kind" disease-relevant assays for small molecule screening. Now that the tools are in place, it is imperative that we accelerate discoveries from the bench to the clinic. Using traditional closed-door research systems raises barriers to discovery, by restricting access to cells, data and other research findings. Thus, a new strategy is required, and the Montreal Neurological Institute (MNI) and its partners are piloting an "Open Science" model. One signature initiative will be that the MNI biorepository will curate and disseminate patient samples in a more accessible manner through open transfer agreements. This feeds into the MNI open drug discovery platform, focused on developing industry-standard assays with iPSC-derived neurons. All cell lines, reagents and assay findings developed in this open fashion will be made available to academia and industry. By removing the obstacles many universities and companies face in distributing patient samples and assay results, our goal is to accelerate translational medical research and the development of new therapies for devastating neurodegenerative disorders.

  5. Open Science Meets Stem Cells: A New Drug Discovery Approach for Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Chanshuai Han

    2018-02-01

    Full Text Available Neurodegenerative diseases are a challenge for drug discovery, as the biological mechanisms are complex and poorly understood, with a paucity of models that faithfully recapitulate these disorders. Recent advances in stem cell technology have provided a paradigm shift, providing researchers with tools to generate human induced pluripotent stem cells (iPSCs from patient cells. With the potential to generate any human cell type, we can now generate human neurons and develop “first-of-their-kind” disease-relevant assays for small molecule screening. Now that the tools are in place, it is imperative that we accelerate discoveries from the bench to the clinic. Using traditional closed-door research systems raises barriers to discovery, by restricting access to cells, data and other research findings. Thus, a new strategy is required, and the Montreal Neurological Institute (MNI and its partners are piloting an “Open Science” model. One signature initiative will be that the MNI biorepository will curate and disseminate patient samples in a more accessible manner through open transfer agreements. This feeds into the MNI open drug discovery platform, focused on developing industry-standard assays with iPSC-derived neurons. All cell lines, reagents and assay findings developed in this open fashion will be made available to academia and industry. By removing the obstacles many universities and companies face in distributing patient samples and assay results, our goal is to accelerate translational medical research and the development of new therapies for devastating neurodegenerative disorders.

  6. Fragment-based drug discovery and its application to challenging drug targets.

    Science.gov (United States)

    Price, Amanda J; Howard, Steven; Cons, Benjamin D

    2017-11-08

    Fragment-based drug discovery (FBDD) is a technique for identifying low molecular weight chemical starting points for drug discovery. Since its inception 20 years ago, FBDD has grown in popularity to the point where it is now an established technique in industry and academia. The approach involves the biophysical screening of proteins against collections of low molecular weight compounds (fragments). Although fragments bind to proteins with relatively low affinity, they form efficient, high quality binding interactions with the protein architecture as they have to overcome a significant entropy barrier to bind. Of the biophysical methods available for fragment screening, X-ray protein crystallography is one of the most sensitive and least prone to false positives. It also provides detailed structural information of the protein-fragment complex at the atomic level. Fragment-based screening using X-ray crystallography is therefore an efficient method for identifying binding hotspots on proteins, which can then be exploited by chemists and biologists for the discovery of new drugs. The use of FBDD is illustrated here with a recently published case study of a drug discovery programme targeting the challenging protein-protein interaction Kelch-like ECH-associated protein 1:nuclear factor erythroid 2-related factor 2. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  7. Advancing Drug Discovery through Enhanced Free Energy Calculations.

    Science.gov (United States)

    Abel, Robert; Wang, Lingle; Harder, Edward D; Berne, B J; Friesner, Richard A

    2017-07-18

    A principal goal of drug discovery project is to design molecules that can tightly and selectively bind to the target protein receptor. Accurate prediction of protein-ligand binding free energies is therefore of central importance in computational chemistry and computer aided drug design. Multiple recent improvements in computing power, classical force field accuracy, enhanced sampling methods, and simulation setup have enabled accurate and reliable calculations of protein-ligands binding free energies, and position free energy calculations to play a guiding role in small molecule drug discovery. In this Account, we outline the relevant methodological advances, including the REST2 (Replica Exchange with Solute Temperting) enhanced sampling, the incorporation of REST2 sampling with convential FEP (Free Energy Perturbation) through FEP/REST, the OPLS3 force field, and the advanced simulation setup that constitute our FEP+ approach, followed by the presentation of extensive comparisons with experiment, demonstrating sufficient accuracy in potency prediction (better than 1 kcal/mol) to substantially impact lead optimization campaigns. The limitations of the current FEP+ implementation and best practices in drug discovery applications are also discussed followed by the future methodology development plans to address those limitations. We then report results from a recent drug discovery project, in which several thousand FEP+ calculations were successfully deployed to simultaneously optimize potency, selectivity, and solubility, illustrating the power of the approach to solve challenging drug design problems. The capabilities of free energy calculations to accurately predict potency and selectivity have led to the advance of ongoing drug discovery projects, in challenging situations where alternative approaches would have great difficulties. The ability to effectively carry out projects evaluating tens of thousands, or hundreds of thousands, of proposed drug candidates

  8. Protein Complex Production from the Drug Discovery Standpoint.

    Science.gov (United States)

    Moarefi, Ismail

    2016-01-01

    Small molecule drug discovery critically depends on the availability of meaningful in vitro assays to guide medicinal chemistry programs that are aimed at optimizing drug potency and selectivity. As it becomes increasingly evident, most disease relevant drug targets do not act as a single protein. In the body, they are instead generally found in complex with protein cofactors that are highly relevant for their correct function and regulation. This review highlights selected examples of the increasing trend to use biologically relevant protein complexes for rational drug discovery to reduce costly late phase attritions due to lack of efficacy or toxicity.

  9. Using transcriptomics to guide lead optimization in drug discovery projects: Lessons learned from the QSTAR project.

    Science.gov (United States)

    Verbist, Bie; Klambauer, Günter; Vervoort, Liesbet; Talloen, Willem; Shkedy, Ziv; Thas, Olivier; Bender, Andreas; Göhlmann, Hinrich W H; Hochreiter, Sepp

    2015-05-01

    The pharmaceutical industry is faced with steadily declining R&D efficiency which results in fewer drugs reaching the market despite increased investment. A major cause for this low efficiency is the failure of drug candidates in late-stage development owing to safety issues or previously undiscovered side-effects. We analyzed to what extent gene expression data can help to de-risk drug development in early phases by detecting the biological effects of compounds across disease areas, targets and scaffolds. For eight drug discovery projects within a global pharmaceutical company, gene expression data were informative and able to support go/no-go decisions. Our studies show that gene expression profiling can detect adverse effects of compounds, and is a valuable tool in early-stage drug discovery decision making. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Cell and small animal models for phenotypic drug discovery

    Directory of Open Access Journals (Sweden)

    Szabo M

    2017-06-01

    Full Text Available Mihaly Szabo,1 Sara Svensson Akusjärvi,1 Ankur Saxena,1 Jianping Liu,2 Gayathri Chandrasekar,1 Satish S Kitambi1 1Department of Microbiology Tumor, and Cell Biology, 2Department of Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden Abstract: The phenotype-based drug discovery (PDD approach is re-emerging as an alternative platform for drug discovery. This review provides an overview of the various model systems and technical advances in imaging and image analyses that strengthen the PDD platform. In PDD screens, compounds of therapeutic value are identified based on the phenotypic perturbations produced irrespective of target(s or mechanism of action. In this article, examples of phenotypic changes that can be detected and quantified with relative ease in a cell-based setup are discussed. In addition, a higher order of PDD screening setup using small animal models is also explored. As PDD screens integrate physiology and multiple signaling mechanisms during the screening process, the identified hits have higher biomedical applicability. Taken together, this review highlights the advantages gained by adopting a PDD approach in drug discovery. Such a PDD platform can complement target-based systems that are currently in practice to accelerate drug discovery. Keywords: phenotype, screening, PDD, discovery, zebrafish, drug

  11. Drug target ontology to classify and integrate drug discovery data.

    Science.gov (United States)

    Lin, Yu; Mehta, Saurabh; Küçük-McGinty, Hande; Turner, John Paul; Vidovic, Dusica; Forlin, Michele; Koleti, Amar; Nguyen, Dac-Trung; Jensen, Lars Juhl; Guha, Rajarshi; Mathias, Stephen L; Ursu, Oleg; Stathias, Vasileios; Duan, Jianbin; Nabizadeh, Nooshin; Chung, Caty; Mader, Christopher; Visser, Ubbo; Yang, Jeremy J; Bologa, Cristian G; Oprea, Tudor I; Schürer, Stephan C

    2017-11-09

    One of the most successful approaches to develop new small molecule therapeutics has been to start from a validated druggable protein target. However, only a small subset of potentially druggable targets has attracted significant research and development resources. The Illuminating the Druggable Genome (IDG) project develops resources to catalyze the development of likely targetable, yet currently understudied prospective drug targets. A central component of the IDG program is a comprehensive knowledge resource of the druggable genome. As part of that effort, we have developed a framework to integrate, navigate, and analyze drug discovery data based on formalized and standardized classifications and annotations of druggable protein targets, the Drug Target Ontology (DTO). DTO was constructed by extensive curation and consolidation of various resources. DTO classifies the four major drug target protein families, GPCRs, kinases, ion channels and nuclear receptors, based on phylogenecity, function, target development level, disease association, tissue expression, chemical ligand and substrate characteristics, and target-family specific characteristics. The formal ontology was built using a new software tool to auto-generate most axioms from a database while supporting manual knowledge acquisition. A modular, hierarchical implementation facilitate ontology development and maintenance and makes use of various external ontologies, thus integrating the DTO into the ecosystem of biomedical ontologies. As a formal OWL-DL ontology, DTO contains asserted and inferred axioms. Modeling data from the Library of Integrated Network-based Cellular Signatures (LINCS) program illustrates the potential of DTO for contextual data integration and nuanced definition of important drug target characteristics. DTO has been implemented in the IDG user interface Portal, Pharos and the TIN-X explorer of protein target disease relationships. DTO was built based on the need for a formal semantic

  12. Advances in fragment-based drug discovery platforms.

    Science.gov (United States)

    Orita, Masaya; Warizaya, Masaichi; Amano, Yasushi; Ohno, Kazuki; Niimi, Tatsuya

    2009-11-01

    Fragment-based drug discovery (FBDD) has been established as a powerful alternative and complement to traditional high-throughput screening techniques for identifying drug leads. At present, this technique is widely used among academic groups as well as small biotech and large pharmaceutical companies. In recent years, > 10 new compounds developed with FBDD have entered clinical development, and more and more attention in the drug discovery field is being focused on this technique. Under the FBDD approach, a fragment library of relatively small compounds (molecular mass = 100 - 300 Da) is screened by various methods and the identified fragment hits which normally weakly bind to the target are used as starting points to generate more potent drug leads. Because FBDD is still a relatively new drug discovery technology, further developments and optimizations in screening platforms and fragment exploitation can be expected. This review summarizes recent advances in FBDD platforms and discusses the factors important for the successful application of this technique. Under the FBDD approach, both identifying the starting fragment hit to be developed and generating the drug lead from that starting fragment hit are important. Integration of various techniques, such as computational technology, X-ray crystallography, NMR, surface plasmon resonance, isothermal titration calorimetry, mass spectrometry and high-concentration screening, must be applied in a situation-appropriate manner.

  13. Pathways to new drug discovery in neuropsychiatry

    Directory of Open Access Journals (Sweden)

    Berk Michael

    2012-11-01

    Full Text Available Abstract There is currently a crisis in drug discovery for neuropsychiatric disorders, with a profound, yet unexpected drought in new drug development across the spectrum. In this commentary, the sources of this dilemma and potential avenues to redress the issue are explored. These include a critical review of diagnostic issues and of selection of participants for clinical trials, and the mechanisms for identifying new drugs and new drug targets. Historically, the vast majority of agents have been discovered serendipitously or have been modifications of existing agents. Serendipitous discoveries, based on astute clinical observation or data mining, remain a valid option, as is illustrated by the suggestion in the paper by Wahlqvist and colleagues that treatment with sulfonylurea and metformin reduces the risk of affective disorder. However, the identification of agents targeting disorder-related biomarkers is currently proving particularly fruitful. There is considerable hope for genetics as a purist, pathophysiologically valid pathway to drug discovery; however, it is unclear whether the science is ready to meet this promise. Fruitful paradigms will require a break from the orthodoxy, and creativity and risk may well be the fingerprints of success. See related article http://www.biomedcentral.com/1741-7015/10/150

  14. Recent advances in inkjet dispensing technologies: applications in drug discovery.

    Science.gov (United States)

    Zhu, Xiangcheng; Zheng, Qiang; Yang, Hu; Cai, Jin; Huang, Lei; Duan, Yanwen; Xu, Zhinan; Cen, Peilin

    2012-09-01

    Inkjet dispensing technology is a promising fabrication methodology widely applied in drug discovery. The automated programmable characteristics and high-throughput efficiency makes this approach potentially very useful in miniaturizing the design patterns for assays and drug screening. Various custom-made inkjet dispensing systems as well as specialized bio-ink and substrates have been developed and applied to fulfill the increasing demands of basic drug discovery studies. The incorporation of other modern technologies has further exploited the potential of inkjet dispensing technology in drug discovery and development. This paper reviews and discusses the recent developments and practical applications of inkjet dispensing technology in several areas of drug discovery and development including fundamental assays of cells and proteins, microarrays, biosensors, tissue engineering, basic biological and pharmaceutical studies. Progression in a number of areas of research including biomaterials, inkjet mechanical systems and modern analytical techniques as well as the exploration and accumulation of profound biological knowledge has enabled different inkjet dispensing technologies to be developed and adapted for high-throughput pattern fabrication and miniaturization. This in turn presents a great opportunity to propel inkjet dispensing technology into drug discovery.

  15. Integration of distributed computing into the drug discovery process.

    Science.gov (United States)

    von Korff, Modest; Rufener, Christian; Stritt, Manuel; Freyss, Joel; Bär, Roman; Sander, Thomas

    2011-02-01

    Grid computing offers an opportunity to gain massive computing power at low costs. We give a short introduction into the drug discovery process and exemplify the use of grid computing for image processing, docking and 3D pharmacophore descriptor calculations. The principle of a grid and its architecture are briefly explained. More emphasis is laid on the issues related to a company-wide grid installation and embedding the grid into the research process. The future of grid computing in drug discovery is discussed in the expert opinion section. Most needed, besides reliable algorithms to predict compound properties, is embedding the grid seamlessly into the discovery process. User friendly access to powerful algorithms without any restrictions, that is, by a limited number of licenses, has to be the goal of grid computing in drug discovery.

  16. Revisiting lab-on-a-chip technology for drug discovery.

    Science.gov (United States)

    Neuži, Pavel; Giselbrecht, Stefan; Länge, Kerstin; Huang, Tony Jun; Manz, Andreas

    2012-08-01

    The field of microfluidics or lab-on-a-chip technology aims to improve and extend the possibilities of bioassays, cell biology and biomedical research based on the idea of miniaturization. Microfluidic systems allow more accurate modelling of physiological situations for both fundamental research and drug development, and enable systematic high-volume testing for various aspects of drug discovery. Microfluidic systems are in development that not only model biological environments but also physically mimic biological tissues and organs; such 'organs on a chip' could have an important role in expediting early stages of drug discovery and help reduce reliance on animal testing. This Review highlights the latest lab-on-a-chip technologies for drug discovery and discusses the potential for future developments in this field.

  17. Use of combinatorial chemistry to speed drug discovery.

    Science.gov (United States)

    Rádl, S

    1998-10-01

    IBC's International Conference on Integrating Combinatorial Chemistry into the Discovery Pipeline was held September 14-15, 1998. The program started with a pre-conference workshop on High-Throughput Compound Characterization and Purification. The agenda of the main conference was divided into sessions of Synthesis, Automation and Unique Chemistries; Integrating Combinatorial Chemistry, Medicinal Chemistry and Screening; Combinatorial Chemistry Applications for Drug Discovery; and Information and Data Management. This meeting was an excellent opportunity to see how big pharma, biotech and service companies are addressing the current bottlenecks in combinatorial chemistry to speed drug discovery. (c) 1998 Prous Science. All rights reserved.

  18. Natural Products as Leads in Schistosome Drug Discovery

    Directory of Open Access Journals (Sweden)

    Bruno J. Neves

    2015-01-01

    Full Text Available Schistosomiasis is a neglected parasitic tropical disease that claims around 200,000 human lives every year. Praziquantel (PZQ, the only drug recommended by the World Health Organization for the treatment and control of human schistosomiasis, is now facing the threat of drug resistance, indicating the urgent need for new effective compounds to treat this disease. Therefore, globally, there is renewed interest in natural products (NPs as a starting point for drug discovery and development for schistosomiasis. Recent advances in genomics, proteomics, bioinformatics, and cheminformatics have brought about unprecedented opportunities for the rapid and more cost-effective discovery of new bioactive compounds against neglected tropical diseases. This review highlights the main contributions that NP drug discovery and development have made in the treatment of schistosomiasis and it discusses how integration with virtual screening (VS strategies may contribute to accelerating the development of new schistosomidal leads, especially through the identification of unexplored, biologically active chemical scaffolds and structural optimization of NPs with previously established activity.

  19. Drug-Target Kinetics in Drug Discovery.

    Science.gov (United States)

    Tonge, Peter J

    2018-01-17

    The development of therapies for the treatment of neurological cancer faces a number of major challenges including the synthesis of small molecule agents that can penetrate the blood-brain barrier (BBB). Given the likelihood that in many cases drug exposure will be lower in the CNS than in systemic circulation, it follows that strategies should be employed that can sustain target engagement at low drug concentration. Time dependent target occupancy is a function of both the drug and target concentration as well as the thermodynamic and kinetic parameters that describe the binding reaction coordinate, and sustained target occupancy can be achieved through structural modifications that increase target (re)binding and/or that decrease the rate of drug dissociation. The discovery and deployment of compounds with optimized kinetic effects requires information on the structure-kinetic relationships that modulate the kinetics of binding, and the molecular factors that control the translation of drug-target kinetics to time-dependent drug activity in the disease state. This Review first introduces the potential benefits of drug-target kinetics, such as the ability to delineate both thermodynamic and kinetic selectivity, and then describes factors, such as target vulnerability, that impact the utility of kinetic selectivity. The Review concludes with a description of a mechanistic PK/PD model that integrates drug-target kinetics into predictions of drug activity.

  20. Tools, techniques, organisation and culture of the CADD group at Sygnature Discovery.

    Science.gov (United States)

    St-Gallay, Steve A; Sambrook-Smith, Colin P

    2017-03-01

    Computer-aided drug design encompasses a wide variety of tools and techniques, and can be implemented with a range of organisational structures and focus in different organisations. Here we outline the computational chemistry skills within Sygnature Discovery, along with the software and hardware at our disposal, and briefly discuss the methods that are not employed and why. The goal of the group is to provide support for design and analysis in order to improve the quality of compounds synthesised and reduce the timelines of drug discovery projects, and we reveal how this is achieved at Sygnature. Impact on medicinal chemistry is vital to demonstrating the value of computational chemistry, and we discuss the approaches taken to influence the list of compounds for synthesis, and how we recognise success. Finally we touch on some of the areas being developed within the team in order to provide further value to the projects and clients.

  1. SemaTyP: a knowledge graph based literature mining method for drug discovery.

    Science.gov (United States)

    Sang, Shengtian; Yang, Zhihao; Wang, Lei; Liu, Xiaoxia; Lin, Hongfei; Wang, Jian

    2018-05-30

    Drug discovery is the process through which potential new medicines are identified. High-throughput screening and computer-aided drug discovery/design are the two main drug discovery methods for now, which have successfully discovered a series of drugs. However, development of new drugs is still an extremely time-consuming and expensive process. Biomedical literature contains important clues for the identification of potential treatments. It could support experts in biomedicine on their way towards new discoveries. Here, we propose a biomedical knowledge graph-based drug discovery method called SemaTyP, which discovers candidate drugs for diseases by mining published biomedical literature. We first construct a biomedical knowledge graph with the relations extracted from biomedical abstracts, then a logistic regression model is trained by learning the semantic types of paths of known drug therapies' existing in the biomedical knowledge graph, finally the learned model is used to discover drug therapies for new diseases. The experimental results show that our method could not only effectively discover new drug therapies for new diseases, but also could provide the potential mechanism of action of the candidate drugs. In this paper we propose a novel knowledge graph based literature mining method for drug discovery. It could be a supplementary method for current drug discovery methods.

  2. Novel opportunities for computational biology and sociology in drug discovery

    Science.gov (United States)

    Yao, Lixia

    2009-01-01

    Drug discovery today is impossible without sophisticated modeling and computation. In this review we touch on previous advances in computational biology and by tracing the steps involved in pharmaceutical development, we explore a range of novel, high value opportunities for computational innovation in modeling the biological process of disease and the social process of drug discovery. These opportunities include text mining for new drug leads, modeling molecular pathways and predicting the efficacy of drug cocktails, analyzing genetic overlap between diseases and predicting alternative drug use. Computation can also be used to model research teams and innovative regions and to estimate the value of academy-industry ties for scientific and human benefit. Attention to these opportunities could promise punctuated advance, and will complement the well-established computational work on which drug discovery currently relies. PMID:19674801

  3. Financing drug discovery for orphan diseases

    OpenAIRE

    Fagnan, David Erik; Gromatzky, Austin A.; Stein, Roger Mark; Fernandez, Jose-Maria; Lo, Andrew W.

    2014-01-01

    Recently proposed ‘megafund’ financing methods for funding translational medicine and drug development require billions of dollars in capital per megafund to de-risk the drug discovery process enough to issue long-term bonds. Here, we demonstrate that the same financing methods can be applied to orphan drug development but, because of the unique nature of orphan diseases and therapeutics (lower development costs, faster FDA approval times, lower failure rates and lower correlation of failures...

  4. AutoDrug: fully automated macromolecular crystallography workflows for fragment-based drug discovery

    International Nuclear Information System (INIS)

    Tsai, Yingssu; McPhillips, Scott E.; González, Ana; McPhillips, Timothy M.; Zinn, Daniel; Cohen, Aina E.; Feese, Michael D.; Bushnell, David; Tiefenbrunn, Theresa; Stout, C. David; Ludaescher, Bertram; Hedman, Britt; Hodgson, Keith O.; Soltis, S. Michael

    2013-01-01

    New software has been developed for automating the experimental and data-processing stages of fragment-based drug discovery at a macromolecular crystallography beamline. A new workflow-automation framework orchestrates beamline-control and data-analysis software while organizing results from multiple samples. AutoDrug is software based upon the scientific workflow paradigm that integrates the Stanford Synchrotron Radiation Lightsource macromolecular crystallography beamlines and third-party processing software to automate the crystallography steps of the fragment-based drug-discovery process. AutoDrug screens a cassette of fragment-soaked crystals, selects crystals for data collection based on screening results and user-specified criteria and determines optimal data-collection strategies. It then collects and processes diffraction data, performs molecular replacement using provided models and detects electron density that is likely to arise from bound fragments. All processes are fully automated, i.e. are performed without user interaction or supervision. Samples can be screened in groups corresponding to particular proteins, crystal forms and/or soaking conditions. A single AutoDrug run is only limited by the capacity of the sample-storage dewar at the beamline: currently 288 samples. AutoDrug was developed in conjunction with RestFlow, a new scientific workflow-automation framework. RestFlow simplifies the design of AutoDrug by managing the flow of data and the organization of results and by orchestrating the execution of computational pipeline steps. It also simplifies the execution and interaction of third-party programs and the beamline-control system. Modeling AutoDrug as a scientific workflow enables multiple variants that meet the requirements of different user groups to be developed and supported. A workflow tailored to mimic the crystallography stages comprising the drug-discovery pipeline of CoCrystal Discovery Inc. has been deployed and successfully

  5. Fragment-based drug discovery as alternative strategy to the drug development for neglected diseases.

    Science.gov (United States)

    Mello, Juliana da Fonseca Rezende E; Gomes, Renan Augusto; Vital-Fujii, Drielli Gomes; Ferreira, Glaucio Monteiro; Trossini, Gustavo Henrique Goulart

    2017-12-01

    Neglected diseases (NDs) affect large populations and almost whole continents, representing 12% of the global health burden. In contrast, the treatment available today is limited and sometimes ineffective. Under this scenery, the Fragment-Based Drug Discovery emerged as one of the most promising alternatives to the traditional methods of drug development. This method allows achieving new lead compounds with smaller size of fragment libraries. Even with the wide Fragment-Based Drug Discovery success resulting in new effective therapeutic agents against different diseases, until this moment few studies have been applied this approach for NDs area. In this article, we discuss the basic Fragment-Based Drug Discovery process, brief successful ideas of general applications and show a landscape of its use in NDs, encouraging the implementation of this strategy as an interesting way to optimize the development of new drugs to NDs. © 2017 John Wiley & Sons A/S.

  6. Integration of Antibody Array Technology into Drug Discovery and Development.

    Science.gov (United States)

    Huang, Wei; Whittaker, Kelly; Zhang, Huihua; Wu, Jian; Zhu, Si-Wei; Huang, Ruo-Pan

    Antibody arrays represent a high-throughput technique that enables the parallel detection of multiple proteins with minimal sample volume requirements. In recent years, antibody arrays have been widely used to identify new biomarkers for disease diagnosis or prognosis. Moreover, many academic research laboratories and commercial biotechnology companies are starting to apply antibody arrays in the field of drug discovery. In this review, some technical aspects of antibody array development and the various platforms currently available will be addressed; however, the main focus will be on the discussion of antibody array technologies and their applications in drug discovery. Aspects of the drug discovery process, including target identification, mechanisms of drug resistance, molecular mechanisms of drug action, drug side effects, and the application in clinical trials and in managing patient care, which have been investigated using antibody arrays in recent literature will be examined and the relevance of this technology in progressing this process will be discussed. Protein profiling with antibody array technology, in addition to other applications, has emerged as a successful, novel approach for drug discovery because of the well-known importance of proteins in cell events and disease development.

  7. Use of allosteric targets in the discovery of safer drugs.

    Science.gov (United States)

    Grover, Ashok Kumar

    2013-01-01

    The need for drugs with fewer side effects cannot be overemphasized. Today, most drugs modify the actions of enzymes, receptors, transporters and other molecules by directly binding to their active (orthosteric) sites. However, orthosteric site configuration is similar in several proteins performing related functions and this leads to a lower specificity of a drug for the desired protein. Consequently, such drugs may have adverse side effects. A new basis of drug discovery is emerging based on the binding of the drug molecules to sites away (allosteric) from the orthosteric sites. It is possible to find allosteric sites which are unique and hence more specific as targets for drug discovery. Of many available examples, two are highlighted here. The first is caloxins - a new class of highly specific inhibitors of plasma membrane Ca²⁺ pumps. The second concerns the modulation of receptors for the neurotransmitter acetylcholine, which binds to 12 types of receptors. Exploitation of allosteric sites has led to the discovery of drugs which can selectively modulate the activation of only 1 (M1 muscarinic) out of the 12 different types of acetylcholine receptors. These drugs are being tested for schizophrenia treatment. It is anticipated that the drug discovery exploiting allosteric sites will lead to more effective therapeutic agents with fewer side effects. Copyright © 2013 S. Karger AG, Basel.

  8. In silico pharmacology for a multidisciplinary drug discovery process.

    Science.gov (United States)

    Ortega, Santiago Schiaffino; Cara, Luisa Carlota López; Salvador, María Kimatrai

    2012-01-01

    The process of bringing new and innovative drugs, from conception and synthesis through to approval on the market can take the pharmaceutical industry 8-15 years and cost approximately $1.8 billion. Two key technologies are improving the hit-to-drug timeline: high-throughput screening (HTS) and rational drug design. In the latter case, starting from some known ligand-based or target-based information, a lead structure will be rationally designed to be tested in vitro or in vivo. Computational methods are part of many drug discovery programs, including the assessment of ADME (absorption-distribution-metabolism-excretion) and toxicity (ADMET) properties of compounds at the early stages of discovery/development with impressive results. The aim of this paper is to review, in a simple way, some of the most popular strategies used by modelers and some successful applications on computational chemistry to raise awareness of its importance and potential for an actual multidisciplinary drug discovery process.

  9. Preclinical experimental models of drug metabolism and disposition in drug discovery and development

    Directory of Open Access Journals (Sweden)

    Donglu Zhang

    2012-12-01

    Full Text Available Drug discovery and development involve the utilization of in vitro and in vivo experimental models. Different models, ranging from test tube experiments to cell cultures, animals, healthy human subjects, and even small numbers of patients that are involved in clinical trials, are used at different stages of drug discovery and development for determination of efficacy and safety. The proper selection and applications of correct models, as well as appropriate data interpretation, are critically important in decision making and successful advancement of drug candidates. In this review, we discuss strategies in the applications of both in vitro and in vivo experimental models of drug metabolism and disposition.

  10. Novel Technology for Protein-Protein Interaction-based Targeted Drug Discovery

    Directory of Open Access Journals (Sweden)

    Jung Me Hwang

    2011-12-01

    Full Text Available We have developed a simple but highly efficient in-cell protein-protein interaction (PPI discovery system based on the translocation properties of protein kinase C- and its C1a domain in live cells. This system allows the visual detection of trimeric and dimeric protein interactions including cytosolic, nuclear, and/or membrane proteins with their cognate ligands. In addition, this system can be used to identify pharmacological small compounds that inhibit specific PPIs. These properties make this PPI system an attractive tool for screening drug candidates and mapping the protein interactome.

  11. Targeting cysteine proteases in trypanosomatid disease drug discovery.

    Science.gov (United States)

    Ferreira, Leonardo G; Andricopulo, Adriano D

    2017-12-01

    Chagas disease and human African trypanosomiasis are endemic conditions in Latin America and Africa, respectively, for which no effective and safe therapy is available. Efforts in drug discovery have focused on several enzymes from these protozoans, among which cysteine proteases have been validated as molecular targets for pharmacological intervention. These enzymes are expressed during the entire life cycle of trypanosomatid parasites and are essential to many biological processes, including infectivity to the human host. As a result of advances in the knowledge of the structural aspects of cysteine proteases and their role in disease physiopathology, inhibition of these enzymes by small molecules has been demonstrated to be a worthwhile approach to trypanosomatid drug research. This review provides an update on drug discovery strategies targeting the cysteine peptidases cruzain from Trypanosoma cruzi and rhodesain and cathepsin B from Trypanosoma brucei. Given that current chemotherapy for Chagas disease and human African trypanosomiasis has several drawbacks, cysteine proteases will continue to be actively pursued as valuable molecular targets in trypanosomatid disease drug discovery efforts. Copyright © 2017. Published by Elsevier Inc.

  12. Using ChEMBL web services for building applications and data processing workflows relevant to drug discovery.

    Science.gov (United States)

    Nowotka, Michał M; Gaulton, Anna; Mendez, David; Bento, A Patricia; Hersey, Anne; Leach, Andrew

    2017-08-01

    ChEMBL is a manually curated database of bioactivity data on small drug-like molecules, used by drug discovery scientists. Among many access methods, a REST API provides programmatic access, allowing the remote retrieval of ChEMBL data and its integration into other applications. This approach allows scientists to move from a world where they go to the ChEMBL web site to search for relevant data, to one where ChEMBL data can be simply integrated into their everyday tools and work environment. Areas covered: This review highlights some of the audiences who may benefit from using the ChEMBL API, and the goals they can address, through the description of several use cases. The examples cover a team communication tool (Slack), a data analytics platform (KNIME), batch job management software (Luigi) and Rich Internet Applications. Expert opinion: The advent of web technologies, cloud computing and micro services oriented architectures have made REST APIs an essential ingredient of modern software development models. The widespread availability of tools consuming RESTful resources have made them useful for many groups of users. The ChEMBL API is a valuable resource of drug discovery bioactivity data for professional chemists, chemistry students, data scientists, scientific and web developers.

  13. From crystal to compound: structure-based antimalarial drug discovery.

    Science.gov (United States)

    Drinkwater, Nyssa; McGowan, Sheena

    2014-08-01

    Despite a century of control and eradication campaigns, malaria remains one of the world's most devastating diseases. Our once-powerful therapeutic weapons are losing the war against the Plasmodium parasite, whose ability to rapidly develop and spread drug resistance hamper past and present malaria-control efforts. Finding new and effective treatments for malaria is now a top global health priority, fuelling an increase in funding and promoting open-source collaborations between researchers and pharmaceutical consortia around the world. The result of this is rapid advances in drug discovery approaches and technologies, with three major methods for antimalarial drug development emerging: (i) chemistry-based, (ii) target-based, and (iii) cell-based. Common to all three of these approaches is the unique ability of structural biology to inform and accelerate drug development. Where possible, SBDD (structure-based drug discovery) is a foundation for antimalarial drug development programmes, and has been invaluable to the development of a number of current pre-clinical and clinical candidates. However, as we expand our understanding of the malarial life cycle and mechanisms of resistance development, SBDD as a field must continue to evolve in order to develop compounds that adhere to the ideal characteristics for novel antimalarial therapeutics and to avoid high attrition rates pre- and post-clinic. In the present review, we aim to examine the contribution that SBDD has made to current antimalarial drug development efforts, covering hit discovery to lead optimization and prevention of parasite resistance. Finally, the potential for structural biology, particularly high-throughput structural genomics programmes, to identify future targets for drug discovery are discussed.

  14. Hierarchical virtual screening approaches in small molecule drug discovery.

    Science.gov (United States)

    Kumar, Ashutosh; Zhang, Kam Y J

    2015-01-01

    Virtual screening has played a significant role in the discovery of small molecule inhibitors of therapeutic targets in last two decades. Various ligand and structure-based virtual screening approaches are employed to identify small molecule ligands for proteins of interest. These approaches are often combined in either hierarchical or parallel manner to take advantage of the strength and avoid the limitations associated with individual methods. Hierarchical combination of ligand and structure-based virtual screening approaches has received noteworthy success in numerous drug discovery campaigns. In hierarchical virtual screening, several filters using ligand and structure-based approaches are sequentially applied to reduce a large screening library to a number small enough for experimental testing. In this review, we focus on different hierarchical virtual screening strategies and their application in the discovery of small molecule modulators of important drug targets. Several virtual screening studies are discussed to demonstrate the successful application of hierarchical virtual screening in small molecule drug discovery. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Translational medicine and drug discovery

    National Research Council Canada - National Science Library

    Littman, Bruce H; Krishna, Rajesh

    2011-01-01

    ..., and examples of their application to real-life drug discovery and development. The latest thinking is presented by researchers from many of the world's leading pharmaceutical companies, including Pfizer, Merck, Eli Lilly, Abbott, and Novartis, as well as from academic institutions and public- private partnerships that support translational research...

  16. Molecular property diagnostic suite (MPDS): Development of disease-specific open source web portals for drug discovery.

    Science.gov (United States)

    Nagamani, S; Gaur, A S; Tanneeru, K; Muneeswaran, G; Madugula, S S; Consortium, Mpds; Druzhilovskiy, D; Poroikov, V V; Sastry, G N

    2017-11-01

    Molecular property diagnostic suite (MPDS) is a Galaxy-based open source drug discovery and development platform. MPDS web portals are designed for several diseases, such as tuberculosis, diabetes mellitus, and other metabolic disorders, specifically aimed to evaluate and estimate the drug-likeness of a given molecule. MPDS consists of three modules, namely data libraries, data processing, and data analysis tools which are configured and interconnected to assist drug discovery for specific diseases. The data library module encompasses vast information on chemical space, wherein the MPDS compound library comprises 110.31 million unique molecules generated from public domain databases. Every molecule is assigned with a unique ID and card, which provides complete information for the molecule. Some of the modules in the MPDS are specific to the diseases, while others are non-specific. Importantly, a suitably altered protocol can be effectively generated for another disease-specific MPDS web portal by modifying some of the modules. Thus, the MPDS suite of web portals shows great promise to emerge as disease-specific portals of great value, integrating chemoinformatics, bioinformatics, molecular modelling, and structure- and analogue-based drug discovery approaches.

  17. Drug discovery for Chagas disease should consider Trypanosoma cruzi strain diversity

    Directory of Open Access Journals (Sweden)

    Bianca Zingales

    2014-09-01

    Full Text Available This opinion piece presents an approach to standardisation of an important aspect of Chagas disease drug discovery and development: selecting Trypanosoma cruzi strains for in vitro screening. We discuss the rationale for strain selection representing T. cruzi diversity and provide recommendations on the preferred parasite stage for drug discovery, T. cruzi discrete typing units to include in the panel of strains and the number of strains/clones for primary screens and lead compounds. We also consider experimental approaches for in vitro drug assays. The Figure illustrates the current Chagas disease drug-discovery and development landscape.

  18. [Application of Imaging Mass Spectrometry for Drug Discovery].

    Science.gov (United States)

    Hayasaka, Takahiro

    2016-01-01

    Imaging mass spectrometry (IMS) can reveal the distribution of biomolecules on tissue sections. In this process, the biomolecules are directly ionized within tissue sections using matrix-assisted laser desorption/ionization, and then their distribution is visualized by pseudo-color based on the relative signal intensity. The biomolecules, such as fatty acids, phospholipids, glycolipids, peptides, proteins, and neurotransmitters, have been analyzed at a spatial resolution of 5 μm. A special instrument for IMS analysis was developed by Shimadzu. The IMS analysis does not require the labeling of biomolecules and is capable of analyzing all the ionized biomolecules. Interest in this method has expanded to many research fields, including biology, agriculture, medicine, and pharmacology. The technique is especially relevant to the drug discovery process. As practiced currently, drug discovery is expensive and time consuming, requiring the preparation of probes for each drug and its metabolites, followed by systematic probe tracking in animal models. The IMS technique is expected to overcome these drawbacks by revealing the distribution of drugs and their metabolites using only a single analysis. In this symposium, I introduced the methodology and applications of IMS and discussed the feasibility of its application to drug discovery in the near future.

  19. Net present value approaches for drug discovery.

    Science.gov (United States)

    Svennebring, Andreas M; Wikberg, Jarl Es

    2013-12-01

    Three dedicated approaches to the calculation of the risk-adjusted net present value (rNPV) in drug discovery projects under different assumptions are suggested. The probability of finding a candidate drug suitable for clinical development and the time to the initiation of the clinical development is assumed to be flexible in contrast to the previously used models. The rNPV of the post-discovery cash flows is calculated as the probability weighted average of the rNPV at each potential time of initiation of clinical development. Practical considerations how to set probability rates, in particular during the initiation and termination of a project is discussed.

  20. Bead-based screening in chemical biology and drug discovery

    DEFF Research Database (Denmark)

    Komnatnyy, Vitaly V.; Nielsen, Thomas Eiland; Qvortrup, Katrine

    2018-01-01

    libraries for early drug discovery. Among the various library forms, the one-bead-one-compound (OBOC) library, where each bead carries many copies of a single compound, holds the greatest potential for the rapid identification of novel hits against emerging drug targets. However, this potential has not yet...... been fully realized due to a number of technical obstacles. In this feature article, we review the progress that has been made towards bead-based library screening and applications to the discovery of bioactive compounds. We identify the key challenges of this approach and highlight key steps needed......High-throughput screening is an important component of the drug discovery process. The screening of libraries containing hundreds of thousands of compounds requires assays amanable to miniaturisation and automization. Combinatorial chemistry holds a unique promise to deliver structural diverse...

  1. Computer-Aided Drug Discovery in Plant Pathology.

    Science.gov (United States)

    Shanmugam, Gnanendra; Jeon, Junhyun

    2017-12-01

    Control of plant diseases is largely dependent on use of agrochemicals. However, there are widening gaps between our knowledge on plant diseases gained from genetic/mechanistic studies and rapid translation of the knowledge into target-oriented development of effective agrochemicals. Here we propose that the time is ripe for computer-aided drug discovery/design (CADD) in molecular plant pathology. CADD has played a pivotal role in development of medically important molecules over the last three decades. Now, explosive increase in information on genome sequences and three dimensional structures of biological molecules, in combination with advances in computational and informational technologies, opens up exciting possibilities for application of CADD in discovery and development of agrochemicals. In this review, we outline two categories of the drug discovery strategies: structure- and ligand-based CADD, and relevant computational approaches that are being employed in modern drug discovery. In order to help readers to dive into CADD, we explain concepts of homology modelling, molecular docking, virtual screening, and de novo ligand design in structure-based CADD, and pharmacophore modelling, ligand-based virtual screening, quantitative structure activity relationship modelling and de novo ligand design for ligand-based CADD. We also provide the important resources available to carry out CADD. Finally, we present a case study showing how CADD approach can be implemented in reality for identification of potent chemical compounds against the important plant pathogens, Pseudomonas syringae and Colletotrichum gloeosporioides .

  2. An In Vivo Platform for Rapid High-Throughput Antitubercular Drug Discovery

    Directory of Open Access Journals (Sweden)

    Kevin Takaki

    2012-07-01

    Full Text Available Treatment of tuberculosis, like other infectious diseases, is increasingly hindered by the emergence of drug resistance. Drug discovery efforts would be facilitated by facile screening tools that incorporate the complexities of human disease. Mycobacterium marinum-infected zebrafish larvae recapitulate key aspects of tuberculosis pathogenesis and drug treatment. Here, we develop a model for rapid in vivo drug screening using fluorescence-based methods for serial quantitative assessment of drug efficacy and toxicity. We provide proof-of-concept that both traditional bacterial-targeting antitubercular drugs and newly identified host-targeting drugs would be discovered through the use of this model. We demonstrate the model’s utility for the identification of synergistic combinations of antibacterial drugs and demonstrate synergy between bacterial- and host-targeting compounds. Thus, the platform can be used to identify new antibacterial agents and entirely new classes of drugs that thwart infection by targeting host pathways. The methods developed here should be widely applicable to small-molecule screens for other infectious and noninfectious diseases.

  3. Synthetic biology for pharmaceutical drug discovery

    Directory of Open Access Journals (Sweden)

    Trosset JY

    2015-12-01

    Full Text Available Jean-Yves Trosset,1 Pablo Carbonell2,3 1Bioinformation Research Laboratory, Sup’Biotech, Villejuif, France; 2Faculty of Life Sciences, SYNBIOCHEM Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK; 3Department of Experimental and Health Sciences (DCEXS, Research Programme on Biomedical Informatics (GRIB, Hospital del Mar Medical Research Institute (IMIM, Universitat Pompeu Fabra (UPF, Barcelona, Spain Abstract: Synthetic biology (SB is an emerging discipline, which is slowly reorienting the field of drug discovery. For thousands of years, living organisms such as plants were the major source of human medicines. The difficulty in resynthesizing natural products, however, often turned pharmaceutical industries away from this rich source for human medicine. More recently, progress on transformation through genetic manipulation of biosynthetic units in microorganisms has opened the possibility of in-depth exploration of the large chemical space of natural products derivatives. Success of SB in drug synthesis culminated with the bioproduction of artemisinin by microorganisms, a tour de force in protein and metabolic engineering. Today, synthetic cells are not only used as biofactories but also used as cell-based screening platforms for both target-based and phenotypic-based approaches. Engineered genetic circuits in synthetic cells are also used to decipher disease mechanisms or drug mechanism of actions and to study cell–cell communication within bacteria consortia. This review presents latest developments of SB in the field of drug discovery, including some challenging issues such as drug resistance and drug toxicity. Keywords: metabolic engineering, plant synthetic biology, natural products, synthetic quorum sensing, drug resistance

  4. Drugs from the Oceans: Marine Natural Products as Leads for Drug Discovery.

    Science.gov (United States)

    Altmann, Karl-Heinz

    2017-10-25

    The marine environment harbors a vast number of species that are the source of a wide array of structurally diverse bioactive secondary metabolites. At this point in time, roughly 27'000 marine natural products are known, of which eight are (were) at the origin of seven marketed drugs, mostly for the treatment of cancer. The majority of these drugs and also of drug candidates currently undergoing clinical evaluation (excluding antibody-drug conjugates) are unmodified natural products, but synthetic chemistry has played a central role in the discovery and/or development of all but one of the approved marine-derived drugs. More than 1000 new marine natural products have been isolated per year over the last decade, but the pool of new and unique structures is far from exhausted. To fully leverage the potential offered by the structural diversity of marine-produced secondary metabolites for drug discovery will require their broad assessment for different bioactivities and the productive interplay between new fermentation technologies, synthetic organic chemistry, and medicinal chemistry, in order to secure compound supply and enable lead optimization.

  5. Oncology drug discovery: planning a turnaround.

    Science.gov (United States)

    Toniatti, Carlo; Jones, Philip; Graham, Hilary; Pagliara, Bruno; Draetta, Giulio

    2014-04-01

    We have made remarkable progress in our understanding of the pathophysiology of cancer. This improved understanding has resulted in increasingly effective targeted therapies that are better tolerated than conventional cytotoxic agents and even curative in some patients. Unfortunately, the success rate of drug approval has been limited, and therapeutic improvements have been marginal, with too few exceptions. In this article, we review the current approach to oncology drug discovery and development, identify areas in need of improvement, and propose strategies to improve patient outcomes. We also suggest future directions that may improve the quality of preclinical and early clinical drug evaluation, which could lead to higher approval rates of anticancer drugs.

  6. Accessing external innovation in drug discovery and development.

    Science.gov (United States)

    Tufféry, Pierre

    2015-06-01

    A decline in the productivity of the pharmaceutical industry research and development (R&D) pipeline has highlighted the need to reconsider the classical strategies of drug discovery and development, which are based on internal resources, and to identify new means to improve the drug discovery process. Accepting that the combination of internal and external ideas can improve innovation, ways to access external innovation, that is, opening projects to external contributions, have recently been sought. In this review, the authors look at a number of external innovation opportunities. These include increased interactions with academia via academic centers of excellence/innovation centers, better communication on projects using crowdsourcing or social media and new models centered on external providers such as built-to-buy startups or virtual pharmaceutical companies. The buzz for accessing external innovation relies on the pharmaceutical industry's major challenge to improve R&D productivity, a conjuncture favorable to increase interactions with academia and new business models supporting access to external innovation. So far, access to external innovation has mostly been considered during early stages of drug development, and there is room for enhancement. First outcomes suggest that external innovation should become part of drug development in the long term. However, the balance between internal and external developments in drug discovery can vary largely depending on the company strategies.

  7. Traditional Chinese Medicine-Based Network Pharmacology Could Lead to New Multicompound Drug Discovery

    Directory of Open Access Journals (Sweden)

    Jian Li

    2012-01-01

    Full Text Available Current strategies for drug discovery have reached a bottleneck where the paradigm is generally “one gene, one drug, one disease.” However, using holistic and systemic views, network pharmacology may be the next paradigm in drug discovery. Based on network pharmacology, a combinational drug with two or more compounds could offer beneficial synergistic effects for complex diseases. Interestingly, traditional chinese medicine (TCM has been practicing holistic views for over 3,000 years, and its distinguished feature is using herbal formulas to treat diseases based on the unique pattern classification. Though TCM herbal formulas are acknowledged as a great source for drug discovery, no drug discovery strategies compatible with the multidimensional complexities of TCM herbal formulas have been developed. In this paper, we highlighted some novel paradigms in TCM-based network pharmacology and new drug discovery. A multiple compound drug can be discovered by merging herbal formula-based pharmacological networks with TCM pattern-based disease molecular networks. Herbal formulas would be a source for multiple compound drug candidates, and the TCM pattern in the disease would be an indication for a new drug.

  8. Organic synthesis provides opportunities to transform drug discovery

    Science.gov (United States)

    Blakemore, David C.; Castro, Luis; Churcher, Ian; Rees, David C.; Thomas, Andrew W.; Wilson, David M.; Wood, Anthony

    2018-03-01

    Despite decades of ground-breaking research in academia, organic synthesis is still a rate-limiting factor in drug-discovery projects. Here we present some current challenges in synthetic organic chemistry from the perspective of the pharmaceutical industry and highlight problematic steps that, if overcome, would find extensive application in the discovery of transformational medicines. Significant synthesis challenges arise from the fact that drug molecules typically contain amines and N-heterocycles, as well as unprotected polar groups. There is also a need for new reactions that enable non-traditional disconnections, more C-H bond activation and late-stage functionalization, as well as stereoselectively substituted aliphatic heterocyclic ring synthesis, C-X or C-C bond formation. We also emphasize that syntheses compatible with biomacromolecules will find increasing use, while new technologies such as machine-assisted approaches and artificial intelligence for synthesis planning have the potential to dramatically accelerate the drug-discovery process. We believe that increasing collaboration between academic and industrial chemists is crucial to address the challenges outlined here.

  9. A Multimodal Data Analysis Approach for Targeted Drug Discovery Involving Topological Data Analysis (TDA).

    Science.gov (United States)

    Alagappan, Muthuraman; Jiang, Dadi; Denko, Nicholas; Koong, Albert C

    In silico drug discovery refers to a combination of computational techniques that augment our ability to discover drug compounds from compound libraries. Many such techniques exist, including virtual high-throughput screening (vHTS), high-throughput screening (HTS), and mechanisms for data storage and querying. However, presently these tools are often used independent of one another. In this chapter, we describe a new multimodal in silico technique for the hit identification and lead generation phases of traditional drug discovery. Our technique leverages the benefits of three independent methods-virtual high-throughput screening, high-throughput screening, and structural fingerprint analysis-by using a fourth technique called topological data analysis (TDA). We describe how a compound library can be independently tested with vHTS, HTS, and fingerprint analysis, and how the results can be transformed into a topological data analysis network to identify compounds from a diverse group of structural families. This process of using TDA or similar clustering methods to identify drug leads is advantageous because it provides a mechanism for choosing structurally diverse compounds while maintaining the unique advantages of already established techniques such as vHTS and HTS.

  10. Application of lean manufacturing concepts to drug discovery: rapid analogue library synthesis.

    Science.gov (United States)

    Weller, Harold N; Nirschl, David S; Petrillo, Edward W; Poss, Michael A; Andres, Charles J; Cavallaro, Cullen L; Echols, Martin M; Grant-Young, Katherine A; Houston, John G; Miller, Arthur V; Swann, R Thomas

    2006-01-01

    The application of parallel synthesis to lead optimization programs in drug discovery has been an ongoing challenge since the first reports of library synthesis. A number of approaches to the application of parallel array synthesis to lead optimization have been attempted over the years, ranging from widespread deployment by (and support of) individual medicinal chemists to centralization as a service by an expert core team. This manuscript describes our experience with the latter approach, which was undertaken as part of a larger initiative to optimize drug discovery. In particular, we highlight how concepts taken from the manufacturing sector can be applied to drug discovery and parallel synthesis to improve the timeliness and thus the impact of arrays on drug discovery.

  11. The Critical Role of Organic Chemistry in Drug Discovery.

    Science.gov (United States)

    Rotella, David P

    2016-10-19

    Small molecules remain the backbone for modern drug discovery. They are conceived and synthesized by medicinal chemists, many of whom were originally trained as organic chemists. Support from government and industry to provide training and personnel for continued development of this critical skill set has been declining for many years. This Viewpoint highlights the value of organic chemistry and organic medicinal chemists in the complex journey of drug discovery as a reminder that basic science support must be restored.

  12. Applications of fiber-optics-based nanosensors to drug discovery.

    Science.gov (United States)

    Vo-Dinh, Tuan; Scaffidi, Jonathan; Gregas, Molly; Zhang, Yan; Seewaldt, Victoria

    2009-08-01

    Fiber-optic nanosensors are fabricated by heating and pulling optical fibers to yield sub-micron diameter tips and have been used for in vitro analysis of individual living mammalian cells. Immobilization of bioreceptors (e.g., antibodies, peptides, DNA) selective to targeting analyte molecules of interest provides molecular specificity. Excitation light can be launched into the fiber, and the resulting evanescent field at the tip of the nanofiber can be used to excite target molecules bound to the bioreceptor molecules. The fluorescence or surface-enhanced Raman scattering produced by the analyte molecules is detected using an ultra-sensitive photodetector. This article provides an overview of the development and application of fiber-optic nanosensors for drug discovery. The nanosensors provide minimally invasive tools to probe subcellular compartments inside single living cells for health effect studies (e.g., detection of benzopyrene adducts) and medical applications (e.g., monitoring of apoptosis in cells treated with anticancer drugs).

  13. Drug discovery for alopecia: gone today, hair tomorrow.

    Science.gov (United States)

    Santos, Zenildo; Avci, Pinar; Hamblin, Michael R

    2015-03-01

    Hair loss or alopecia affects the majority of the population at some time in their life, and increasingly, sufferers are demanding treatment. Three main types of alopecia (androgenic [AGA], areata [AA] and chemotherapy-induced [CIA]) are very different, and have their own laboratory models and separate drug-discovery efforts. In this article, the authors review the biology of hair, hair follicle (HF) cycling, stem cells and signaling pathways. AGA, due to dihydrotesterone, is treated by 5-α reductase inhibitors, androgen receptor blockers and ATP-sensitive potassium channel-openers. AA, which involves attack by CD8(+)NK group 2D-positive (NKG2D(+)) T cells, is treated with immunosuppressives, biologics and JAK inhibitors. Meanwhile, CIA is treated by apoptosis inhibitors, cytokines and topical immunotherapy. The desire to treat alopecia with an easy topical preparation is expected to grow with time, particularly with an increasing aging population. The discovery of epidermal stem cells in the HF has given new life to the search for a cure for baldness. Drug discovery efforts are being increasingly centered on these stem cells, boosting the hair cycle and reversing miniaturization of HF. Better understanding of the molecular mechanisms underlying the immune attack in AA will yield new drugs. New discoveries in HF neogenesis and low-level light therapy will undoubtedly have a role to play.

  14. An invertebrate model for CNS drug discovery

    DEFF Research Database (Denmark)

    Al-Qadi, Sonia; Schiøtt, Morten; Hansen, Steen Honoré

    2015-01-01

    BACKGROUND: ABC efflux transporters at the blood brain barrier (BBB), namely the P-glycoprotein (P-gp), restrain the development of central nervous system (CNS) drugs. Consequently, early screening of CNS drug candidates is pivotal to identify those affected by efflux activity. Therefore, simple,...... barriers. CONCLUSION: Findings suggest a conserved mechanism of brain efflux activity between insects and vertebrates, confirming that this model holds promise for inexpensive and high-throughput screening relative to in vivo models, for CNS drug discovery....

  15. [Fragment-based drug discovery: concept and aim].

    Science.gov (United States)

    Tanaka, Daisuke

    2010-03-01

    Fragment-Based Drug Discovery (FBDD) has been recognized as a newly emerging lead discovery methodology that involves biophysical fragment screening and chemistry-driven fragment-to-lead stages. Although fragments, defined as structurally simple and small compounds (typically FBDD primarily turns our attention to weakly but specifically binding fragments (hit fragments) as the starting point of medicinal chemistry. Hit fragments are then promoted to more potent lead compounds through linking or merging with another hit fragment and/or attaching functional groups. Another positive aspect of FBDD is ligand efficiency. Ligand efficiency is a useful guide in screening hit selection and hit-to-lead phases to achieve lead-likeness. Owing to these features, a number of successful applications of FBDD to "undruggable targets" (where HTS and other lead identification methods failed to identify useful lead compounds) have been reported. As a result, FBDD is now expected to complement more conventional methodologies. This review, as an introduction of the following articles, will summarize the fundamental concepts of FBDD and will discuss its advantages over other conventional drug discovery approaches.

  16. Exploiting pluripotent stem cell technology for drug discovery, screening, safety, and toxicology assessments.

    Science.gov (United States)

    McGivern, Jered V; Ebert, Allison D

    2014-04-01

    In order for the pharmaceutical industry to maintain a constant flow of novel drugs and therapeutics into the clinic, compounds must be thoroughly validated for safety and efficacy in multiple biological and biochemical systems. Pluripotent stem cells, because of their ability to develop into any cell type in the body and recapitulate human disease, may be an important cellular system to add to the drug development repertoire. This review will discuss some of the benefits of using pluripotent stem cells for drug discovery and safety studies as well as some of the recent applications of stem cells in drug screening studies. We will also address some of the hurdles that need to be overcome in order to make stem cell-based approaches an efficient and effective tool in the quest to produce clinically successful drug compounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. The discovery of drug-induced illness.

    Science.gov (United States)

    Jick, H

    1977-03-03

    The increased use of drugs (and the concurrent increased risks of drug-induced illness) require definition of relevant research areas and strategy. For established marketed drugs, research needs depend on the magnitudes of risk of an illness from a drug and the base-line risk. With the drug risk high and the base-line risk low, the problem surfaces in premarketing studies or through the epidemic that develops after marketing. If the drug adds slightly to a high base-line risk, the effect is undetectable. When both risks are low, adverse effects can be discovered by chance, but systematic case-referent studies can speed discovery. If both risks are high, clinical trials and nonexperimental studies may be used. With both risks intermediate, systematic evaluations, especially case-referent studies are needed. Newly marketed drugs should be routinely evaluated through compulsory registration and follow-up study of the earliest users.

  18. High throughput electrophysiology: new perspectives for ion channel drug discovery

    DEFF Research Database (Denmark)

    Willumsen, Niels J; Bech, Morten; Olesen, Søren-Peter

    2003-01-01

    . A cornerstone in current drug discovery is high throughput screening assays which allow examination of the activity of specific ion channels though only to a limited extent. Conventional patch clamp remains the sole technique with sufficiently high time resolution and sensitivity required for precise and direct....... The introduction of new powerful HTS electrophysiological techniques is predicted to cause a revolution in ion channel drug discovery....

  19. Plant natural products research in tuberculosis drug discovery and ...

    African Journals Online (AJOL)

    Plant natural products research in tuberculosis drug discovery and development: A situation report ... African Journal of Biotechnology ... tuberculosis (XDR-TB), call for the development of new anti-tuberculosis drugs to combat this disease.

  20. Emerging Computational Methods for the Rational Discovery of Allosteric Drugs.

    Science.gov (United States)

    Wagner, Jeffrey R; Lee, Christopher T; Durrant, Jacob D; Malmstrom, Robert D; Feher, Victoria A; Amaro, Rommie E

    2016-06-08

    Allosteric drug development holds promise for delivering medicines that are more selective and less toxic than those that target orthosteric sites. To date, the discovery of allosteric binding sites and lead compounds has been mostly serendipitous, achieved through high-throughput screening. Over the past decade, structural data has become more readily available for larger protein systems and more membrane protein classes (e.g., GPCRs and ion channels), which are common allosteric drug targets. In parallel, improved simulation methods now provide better atomistic understanding of the protein dynamics and cooperative motions that are critical to allosteric mechanisms. As a result of these advances, the field of predictive allosteric drug development is now on the cusp of a new era of rational structure-based computational methods. Here, we review algorithms that predict allosteric sites based on sequence data and molecular dynamics simulations, describe tools that assess the druggability of these pockets, and discuss how Markov state models and topology analyses provide insight into the relationship between protein dynamics and allosteric drug binding. In each section, we first provide an overview of the various method classes before describing relevant algorithms and software packages.

  1. Systems biology-embedded target validation: improving efficacy in drug discovery.

    Science.gov (United States)

    Vandamme, Drieke; Minke, Benedikt A; Fitzmaurice, William; Kholodenko, Boris N; Kolch, Walter

    2014-01-01

    The pharmaceutical industry is faced with a range of challenges with the ever-escalating costs of drug development and a drying out of drug pipelines. By harnessing advances in -omics technologies and moving away from the standard, reductionist model of drug discovery, there is significant potential to reduce costs and improve efficacy. Embedding systems biology approaches in drug discovery, which seek to investigate underlying molecular mechanisms of potential drug targets in a network context, will reduce attrition rates by earlier target validation and the introduction of novel targets into the currently stagnant market. Systems biology approaches also have the potential to assist in the design of multidrug treatments and repositioning of existing drugs, while stratifying patients to give a greater personalization of medical treatment. © 2013 Wiley Periodicals, Inc.

  2. Drug Discovery in an Academic Setting: Playing to the Strengths

    OpenAIRE

    Huryn, Donna M.

    2013-01-01

    Drug discovery and medicinal chemistry initiatives in academia provide an opportunity to create a unique environment that is distinct from the traditional industrial model. Two characteristics of a university setting that are not usually associated with pharma are the ability to pursue high-risk projects and a depth of expertise, infrastructure, and capabilities in focused areas. Encouraging, supporting, and fostering drug discovery efforts that take advantage of these an...

  3. Drug discovery and developments in developing countries ...

    African Journals Online (AJOL)

    the major burden being in developing countries. Many of ... The driving force for drug discovery and development by pharmaceutical firms ... world and particularly in the third world countries ..... GFHR (2000) Global Forum for Health Research:.

  4. Scientific Prediction and Prophetic Patenting in Drug Discovery.

    Science.gov (United States)

    Curry, Stephen H; Schneiderman, Anne M

    2015-01-01

    Pharmaceutical patenting involves writing claims based on both discoveries already made, and on prophesy of future developments in an ongoing project. This is necessitated by the very different timelines involved in the drug discovery and product development process on the one hand, and successful patenting on the other. If patents are sought too early there is a risk that patent examiners will disallow claims because of lack of enablement. If patenting is delayed, claims are at risk of being denied on the basis of existence of prior art, because the body of relevant known science will have developed significantly while the project was being pursued. This review examines the role of prophetic patenting in relation to the essential predictability of many aspects of drug discovery science, promoting the concepts of discipline-related and project-related prediction. This is especially directed towards patenting activities supporting commercialization of academia-based discoveries, where long project timelines occur, and where experience, and resources to pay for patenting, are limited. The need for improved collaborative understanding among project scientists, technology transfer professionals in, for example, universities, patent attorneys, and patent examiners is emphasized.

  5. Can biochemistry drive drug discovery beyond simple potency measurements?

    Science.gov (United States)

    Chène, Patrick

    2012-04-01

    Among the fields of expertise required to develop drugs successfully, biochemistry holds a key position in drug discovery at the interface between chemistry, structural biology and cell biology. However, taking the example of protein kinases, it appears that biochemical assays are mostly used in the pharmaceutical industry to measure compound potency and/or selectivity. This limited use of biochemistry is surprising, given that detailed biochemical analyses are commonly used in academia to unravel molecular recognition processes. In this article, I show that biochemistry can provide invaluable information on the dynamics and energetics of compound-target interactions that cannot be obtained on the basis of potency measurements and structural data. Therefore, an extensive use of biochemistry in drug discovery could facilitate the identification and/or development of new drugs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. 2013 Philip S. Portoghese Medicinal Chemistry Lectureship: Drug Discovery Targeting Allosteric Sites†

    Science.gov (United States)

    2015-01-01

    The identification of sites on receptors topographically distinct from the orthosteric sites, so-called allosteric sites, has heralded novel approaches and modes of pharmacology for target modulation. Over the past 20 years, our understanding of allosteric modulation has grown significantly, and numerous advantages, as well as caveats (e.g., flat structure–activity relationships, species differences, “molecular switches”), have been identified. For multiple receptors and proteins, numerous examples have been described where unprecedented levels of selectivity are achieved along with improved physiochemical properties. While not a panacea, these novel approaches represent exciting opportunities for tool compound development to probe the pharmacology and therapeutic potential of discrete molecular targets, as well as new medicines. In this Perspective, in commemoration of the 2013 Philip S. Portoghese Medicinal Chemistry Lectureship (LindsleyC. W.Adventures in allosteric drug discovery. Presented at the 246th National Meeting of the American Chemical Society, Indianapolis, IN, September 10, 2013; The 2013 Portoghese Lectureship), several vignettes of drug discovery campaigns targeting novel allosteric mechanisms will be recounted, along with lessons learned and guidelines that have emerged for successful lead optimization. PMID:25180768

  7. An Ontology for Description of Drug Discovery Investigations

    Directory of Open Access Journals (Sweden)

    Qi Da

    2010-12-01

    Full Text Available The paper presents an ontology for the description of Drug Discovery Investigation (DDI. This has been developed through the use of a Robot Scientist “Eve”, and in consultation with industry. DDI aims to define the principle entities and the relations in the research and development phase of the drug discovery pipeline. DDI is highly transferable and extendable due to its adherence to accepted standards, and compliance with existing ontology resources. This enables DDI to be integrated with such related ontologies as the Vaccine Ontology, the Advancing Clinico-Genomic Trials on Cancer Master Ontology, etc. DDI is available at http://purl.org/ddi/wikipedia or http://purl.org/ddi/home

  8. Discovery and development of new antibacterial drugs: learning from experience?

    Science.gov (United States)

    Jackson, Nicole; Czaplewski, Lloyd; Piddock, Laura J V

    2018-06-01

    Antibiotic (antibacterial) resistance is a serious global problem and the need for new treatments is urgent. The current antibiotic discovery model is not delivering new agents at a rate that is sufficient to combat present levels of antibiotic resistance. This has led to fears of the arrival of a 'post-antibiotic era'. Scientific difficulties, an unfavourable regulatory climate, multiple company mergers and the low financial returns associated with antibiotic drug development have led to the withdrawal of many pharmaceutical companies from the field. The regulatory climate has now begun to improve, but major scientific hurdles still impede the discovery and development of novel antibacterial agents. To facilitate discovery activities there must be increased understanding of the scientific problems experienced by pharmaceutical companies. This must be coupled with addressing the current antibiotic resistance crisis so that compounds and ultimately drugs are delivered to treat the most urgent clinical challenges. By understanding the causes of the failures and successes of the pharmaceutical industry's research history, duplication of discovery programmes will be reduced, increasing the productivity of the antibiotic drug discovery pipeline by academia and small companies. The most important scientific issues to address are getting molecules into the Gram-negative bacterial cell and avoiding their efflux. Hence screening programmes should focus their efforts on whole bacterial cells rather than cell-free systems. Despite falling out of favour with pharmaceutical companies, natural product research still holds promise for providing new molecules as a basis for discovery.

  9. Fragment-based drug discovery and protein–protein interactions

    Directory of Open Access Journals (Sweden)

    Turnbull AP

    2014-09-01

    Full Text Available Andrew P Turnbull,1 Susan M Boyd,2 Björn Walse31CRT Discovery Laboratories, Department of Biological Sciences, Birkbeck, University of London, London, UK; 2IOTA Pharmaceuticals Ltd, Cambridge, UK; 3SARomics Biostructures AB, Lund, SwedenAbstract: Protein–protein interactions (PPIs are involved in many biological processes, with an estimated 400,000 PPIs within the human proteome. There is significant interest in exploiting the relatively unexplored potential of these interactions in drug discovery, driven by the need to find new therapeutic targets. Compared with classical drug discovery against targets with well-defined binding sites, developing small-molecule inhibitors against PPIs where the contact surfaces are frequently more extensive and comparatively flat, with most of the binding energy localized in “hot spots”, has proven far more challenging. However, despite the difficulties associated with targeting PPIs, important progress has been made in recent years with fragment-based drug discovery playing a pivotal role in improving their tractability. Computational and empirical approaches can be used to identify hot-spot regions and assess the druggability and ligandability of new targets, whilst fragment screening campaigns can detect low-affinity fragments that either directly or indirectly perturb the PPI. Once fragment hits have been identified and confirmed using biochemical and biophysical approaches, three-dimensional structural data derived from nuclear magnetic resonance or X-ray crystallography can be used to drive medicinal chemistry efforts towards the development of more potent inhibitors. A small-scale comparison presented in this review of “standard” fragments with those targeting PPIs has revealed that the latter tend to be larger, be more lipophilic, and contain more polar (acid/base functionality, whereas three-dimensional descriptor data indicate that there is little difference in their three

  10. Test systems in drug discovery for hazard identification and risk assessment of human drug-induced liver injury.

    Science.gov (United States)

    Weaver, Richard J; Betts, Catherine; Blomme, Eric A G; Gerets, Helga H J; Gjervig Jensen, Klaus; Hewitt, Philip G; Juhila, Satu; Labbe, Gilles; Liguori, Michael J; Mesens, Natalie; Ogese, Monday O; Persson, Mikael; Snoeys, Jan; Stevens, James L; Walker, Tracy; Park, B Kevin

    2017-07-01

    The liver is an important target for drug-induced toxicities. Early detection of hepatotoxic drugs requires use of well-characterized test systems, yet current knowledge, gaps and limitations of tests employed remains an important issue for drug development. Areas Covered: The current state of the science, understanding and application of test systems in use for the detection of drug-induced cytotoxicity, mitochondrial toxicity, cholestasis and inflammation is summarized. The test systems highlighted herein cover mostly in vitro and some in vivo models and endpoint measurements used in the assessment of small molecule toxic liabilities. Opportunities for research efforts in areas necessitating the development of specific tests and improved mechanistic understanding are highlighted. Expert Opinion: Use of in vitro test systems for safety optimization will remain a core activity in drug discovery. Substantial inroads have been made with a number of assays established for human Drug-induced Liver Injury. There nevertheless remain significant gaps with a need for improved in vitro tools and novel tests to address specific mechanisms of human Drug-Induced Liver Injury. Progress in these areas will necessitate not only models fit for application, but also mechanistic understanding of how chemical insult on the liver occurs in order to identify translational and quantifiable readouts for decision-making.

  11. Structure and organization of drug-target networks: insights from genomic approaches for drug discovery.

    Science.gov (United States)

    Janga, Sarath Chandra; Tzakos, Andreas

    2009-12-01

    Recent years have seen an explosion in the amount of "omics" data and the integration of several disciplines, which has influenced all areas of life sciences including that of drug discovery. Several lines of evidence now suggest that the traditional notion of "one drug-one protein" for one disease does not hold any more and that treatment for most complex diseases can best be attempted using polypharmacological approaches. In this review, we formalize the definition of a drug-target network by decomposing it into drug, target and disease spaces and provide an overview of our understanding in recent years about its structure and organizational principles. We discuss advances made in developing promiscuous drugs following the paradigm of polypharmacology and reveal their advantages over traditional drugs for targeting diseases such as cancer. We suggest that drug-target networks can be decomposed to be studied at a variety of levels and argue that such network-based approaches have important implications in understanding disease phenotypes and in accelerating drug discovery. We also discuss the potential and scope network pharmacology promises in harnessing the vast amount of data from high-throughput approaches for therapeutic advantage.

  12. Citation Discovery Tools for Conducting Adaptive Meta-analyses to Update Systematic Reviews.

    Science.gov (United States)

    Bae, Jong-Myon; Kim, Eun Hee

    2016-03-01

    The systematic review (SR) is a research methodology that aims to synthesize related evidence. Updating previously conducted SRs is necessary when new evidence has been produced, but no consensus has yet emerged on the appropriate update methodology. The authors have developed a new SR update method called 'adaptive meta-analysis' (AMA) using the 'cited by', 'similar articles', and 'related articles' citation discovery tools in the PubMed and Scopus databases. This study evaluates the usefulness of these citation discovery tools for updating SRs. Lists were constructed by applying the citation discovery tools in the two databases to the articles analyzed by a published SR. The degree of overlap between the lists and distribution of excluded results were evaluated. The articles ultimately selected for the SR update meta-analysis were found in the lists obtained from the 'cited by' and 'similar' tools in PubMed. Most of the selected articles appeared in both the 'cited by' lists in Scopus and PubMed. The Scopus 'related' tool did not identify the appropriate articles. The AMA, which involves using both citation discovery tools in PubMed, and optionally, the 'related' tool in Scopus, was found to be useful for updating an SR.

  13. Comment on "drug discovery: turning the titanic".

    Science.gov (United States)

    Lesterhuis, W Joost; Bosco, Anthony; Lake, Richard A

    2014-03-26

    The pathobiology-based approach to research and development has been the dominant paradigm for successful drug discovery over the last decades. We propose that the molecular and cellular events that govern a resolving, rather than an evolving, disease may reveal new druggable pathways.

  14. Novel approaches to develop community-built biological network models for potential drug discovery.

    Science.gov (United States)

    Talikka, Marja; Bukharov, Natalia; Hayes, William S; Hofmann-Apitius, Martin; Alexopoulos, Leonidas; Peitsch, Manuel C; Hoeng, Julia

    2017-08-01

    Hundreds of thousands of data points are now routinely generated in clinical trials by molecular profiling and NGS technologies. A true translation of this data into knowledge is not possible without analysis and interpretation in a well-defined biology context. Currently, there are many public and commercial pathway tools and network models that can facilitate such analysis. At the same time, insights and knowledge that can be gained is highly dependent on the underlying biological content of these resources. Crowdsourcing can be employed to guarantee the accuracy and transparency of the biological content underlining the tools used to interpret rich molecular data. Areas covered: In this review, the authors describe crowdsourcing in drug discovery. The focal point is the efforts that have successfully used the crowdsourcing approach to verify and augment pathway tools and biological network models. Technologies that enable the building of biological networks with the community are also described. Expert opinion: A crowd of experts can be leveraged for the entire development process of biological network models, from ontologies to the evaluation of their mechanistic completeness. The ultimate goal is to facilitate biomarker discovery and personalized medicine by mechanistically explaining patients' differences with respect to disease prevention, diagnosis, and therapy outcome.

  15. The Roles of Water in the Protein Matrix: A Largely Untapped Resource for Drug Discovery.

    Science.gov (United States)

    Spyrakis, Francesca; Ahmed, Mostafa H; Bayden, Alexander S; Cozzini, Pietro; Mozzarelli, Andrea; Kellogg, Glen E

    2017-08-24

    The value of thoroughly understanding the thermodynamics specific to a drug discovery/design study is well known. Over the past decade, the crucial roles of water molecules in protein structure, function, and dynamics have also become increasingly appreciated. This Perspective explores water in the biological environment by adopting its point of view in such phenomena. The prevailing thermodynamic models of the past, where water was seen largely in terms of an entropic gain after its displacement by a ligand, are now known to be much too simplistic. We adopt a set of terminology that describes water molecules as being "hot" and "cold", which we have defined as being easy and difficult to displace, respectively. The basis of these designations, which involve both enthalpic and entropic water contributions, are explored in several classes of biomolecules and structural motifs. The hallmarks for characterizing water molecules are examined, and computational tools for evaluating water-centric thermodynamics are reviewed. This Perspective's summary features guidelines for exploiting water molecules in drug discovery.

  16. Molecular Networking As a Drug Discovery, Drug Metabolism, and Precision Medicine Strategy.

    Science.gov (United States)

    Quinn, Robert A; Nothias, Louis-Felix; Vining, Oliver; Meehan, Michael; Esquenazi, Eduardo; Dorrestein, Pieter C

    2017-02-01

    Molecular networking is a tandem mass spectrometry (MS/MS) data organizational approach that has been recently introduced in the drug discovery, metabolomics, and medical fields. The chemistry of molecules dictates how they will be fragmented by MS/MS in the gas phase and, therefore, two related molecules are likely to display similar fragment ion spectra. Molecular networking organizes the MS/MS data as a relational spectral network thereby mapping the chemistry that was detected in an MS/MS-based metabolomics experiment. Although the wider utility of molecular networking is just beginning to be recognized, in this review we highlight the principles behind molecular networking and its use for the discovery of therapeutic leads, monitoring drug metabolism, clinical diagnostics, and emerging applications in precision medicine. Copyright © 2016. Published by Elsevier Ltd.

  17. Fragment-based drug discovery using rational design.

    Science.gov (United States)

    Jhoti, H

    2007-01-01

    Fragment-based drug discovery (FBDD) is established as an alternative approach to high-throughput screening for generating novel small molecule drug candidates. In FBDD, relatively small libraries of low molecular weight compounds (or fragments) are screened using sensitive biophysical techniques to detect their binding to the target protein. A lower absolute affinity of binding is expected from fragments, compared to much higher molecular weight hits detected by high-throughput screening, due to their reduced size and complexity. Through the use of iterative cycles of medicinal chemistry, ideally guided by three-dimensional structural data, it is often then relatively straightforward to optimize these weak binding fragment hits into potent and selective lead compounds. As with most other lead discovery methods there are two key components of FBDD; the detection technology and the compound library. In this review I outline the two main approaches used for detecting the binding of low affinity fragments and also some of the key principles that are used to generate a fragment library. In addition, I describe an example of how FBDD has led to the generation of a drug candidate that is now being tested in clinical trials for the treatment of cancer.

  18. Current approaches for the discovery of drugs that deter substance and drug abuse.

    Science.gov (United States)

    Yasgar, Adam; Simeonov, Anton

    2014-11-01

    Much has been presented and debated on the topic of drug abuse and its multidimensional nature, including the role of society and its customs and laws, economical factors, and the magnitude and nature of the burden. Given the complex nature of the receptors and pathways implicated in regulation of the cognitive and behavioral processes associated with addiction, a large number of molecular targets have been interrogated during recent years to discover starting points for development of small-molecule interventions. This review describes recent developments in the field of early drug discovery for drug abuse interventions with an emphasis on the advances published during the 2012 - 2014 period. Technologically, the processes/platforms utilized in drug abuse drug discovery are nearly identical to those used in the other disease areas. A key complicating factor in drug abuse research is the enormous biological complexity surrounding the brain processes involved and the associated difficulty in finding 'good' targets and achieving exquisite selectivity of treatment agents. While tremendous progress has been made during recent years to use the power of high-throughput technologies to discover proof-of-principle molecules for many new targets, next-generation models will be especially important in this field. Examples include: seeking advantageous drug-drug combinations, the use of automated whole-animal behavioral screening systems, advancing our understanding of the role of epigenetics in drug addiction and the employment of organoid-level 3D test platforms (also referred to as tissue-chip or organs-on-chip).

  19. Cogena, a novel tool for co-expressed gene-set enrichment analysis, applied to drug repositioning and drug mode of action discovery.

    Science.gov (United States)

    Jia, Zhilong; Liu, Ying; Guan, Naiyang; Bo, Xiaochen; Luo, Zhigang; Barnes, Michael R

    2016-05-27

    Drug repositioning, finding new indications for existing drugs, has gained much recent attention as a potentially efficient and economical strategy for accelerating new therapies into the clinic. Although improvement in the sensitivity of computational drug repositioning methods has identified numerous credible repositioning opportunities, few have been progressed. Arguably the "black box" nature of drug action in a new indication is one of the main blocks to progression, highlighting the need for methods that inform on the broader target mechanism in the disease context. We demonstrate that the analysis of co-expressed genes may be a critical first step towards illumination of both disease pathology and mode of drug action. We achieve this using a novel framework, co-expressed gene-set enrichment analysis (cogena) for co-expression analysis of gene expression signatures and gene set enrichment analysis of co-expressed genes. The cogena framework enables simultaneous, pathway driven, disease and drug repositioning analysis. Cogena can be used to illuminate coordinated changes within disease transcriptomes and identify drugs acting mechanistically within this framework. We illustrate this using a psoriatic skin transcriptome, as an exemplar, and recover two widely used Psoriasis drugs (Methotrexate and Ciclosporin) with distinct modes of action. Cogena out-performs the results of Connectivity Map and NFFinder webservers in similar disease transcriptome analyses. Furthermore, we investigated the literature support for the other top-ranked compounds to treat psoriasis and showed how the outputs of cogena analysis can contribute new insight to support the progression of drugs into the clinic. We have made cogena freely available within Bioconductor or https://github.com/zhilongjia/cogena . In conclusion, by targeting co-expressed genes within disease transcriptomes, cogena offers novel biological insight, which can be effectively harnessed for drug discovery and

  20. SNPServer: a real-time SNP discovery tool.

    Science.gov (United States)

    Savage, David; Batley, Jacqueline; Erwin, Tim; Logan, Erica; Love, Christopher G; Lim, Geraldine A C; Mongin, Emmanuel; Barker, Gary; Spangenberg, German C; Edwards, David

    2005-07-01

    SNPServer is a real-time flexible tool for the discovery of SNPs (single nucleotide polymorphisms) within DNA sequence data. The program uses BLAST, to identify related sequences, and CAP3, to cluster and align these sequences. The alignments are parsed to the SNP discovery software autoSNP, a program that detects SNPs and insertion/deletion polymorphisms (indels). Alternatively, lists of related sequences or pre-assembled sequences may be entered for SNP discovery. SNPServer and autoSNP use redundancy to differentiate between candidate SNPs and sequence errors. For each candidate SNP, two measures of confidence are calculated, the redundancy of the polymorphism at a SNP locus and the co-segregation of the candidate SNP with other SNPs in the alignment. SNPServer is available at http://hornbill.cspp.latrobe.edu.au/snpdiscovery.html.

  1. Conference Abstracts: Translational Science and Drug Discovery ...

    African Journals Online (AJOL)

    ... and Drug Discovery: Impact on Health, Wellness, Environment and Economics" conference, July 27-29th, 2015, at the Hennessy Park Hotel, Ebène Cybercity, Mauritius. The conference was hosted by the Society for Free radical Research Africa and the International Association of Medical and Biomedical Researchers.

  2. Experiences in fragment-based drug discovery.

    Science.gov (United States)

    Murray, Christopher W; Verdonk, Marcel L; Rees, David C

    2012-05-01

    Fragment-based drug discovery (FBDD) has become established in both industry and academia as an alternative approach to high-throughput screening for the generation of chemical leads for drug targets. In FBDD, specialised detection methods are used to identify small chemical compounds (fragments) that bind to the drug target, and structural biology is usually employed to establish their binding mode and to facilitate their optimisation. In this article, we present three recent and successful case histories in FBDD. We then re-examine the key concepts and challenges of FBDD with particular emphasis on recent literature and our own experience from a substantial number of FBDD applications. Our opinion is that careful application of FBDD is living up to its promise of delivering high quality leads with good physical properties and that in future many drug molecules will be derived from fragment-based approaches. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. New perspectives on innovative drug discovery: an overview.

    Science.gov (United States)

    Pan, Si Yuan; Pan, Shan; Yu, Zhi-Ling; Ma, Dik-Lung; Chen, Si-Bao; Fong, Wang-Fun; Han, Yi-Fan; Ko, Kam-Ming

    2010-01-01

    Despite advances in technology, drug discovery is still a lengthy, expensive, difficult, and inefficient process, with a low rate of success. Today, advances in biomedical science have brought about great strides in therapeutic interventions for a wide spectrum of diseases. The advent of biochemical techniques and cutting-edge bio/chemical technologies has made available a plethora of practical approaches to drug screening and design. In 2010, the total sales of the global pharmaceutical market will reach 600 billion US dollars and expand to over 975 billion dollars by 2013. The aim of this review is to summarize available information on contemporary approaches and strategies in the discovery of novel therapeutic agents, especially from the complementary and alternative medicines, including natural products and traditional remedies such as Chinese herbal medicine.

  4. Stem cell technology for drug discovery and development.

    Science.gov (United States)

    Hook, Lilian A

    2012-04-01

    Stem cells have enormous potential to revolutionise the drug discovery process at all stages, from target identification through to toxicology studies. Their ability to generate physiologically relevant cells in limitless supply makes them an attractive alternative to currently used recombinant cell lines or primary cells. However, realisation of the full potential of stem cells is currently hampered by the difficulty in routinely directing stem cell differentiation to reproducibly and cost effectively generate pure populations of specific cell types. In this article we discuss how stem cells have already been used in the drug discovery process and how novel technologies, particularly in relation to stem cell differentiation, can be applied to attain widespread adoption of stem cell technology by the pharmaceutical industry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Drug discovery in an academic setting: playing to the strengths.

    Science.gov (United States)

    Huryn, Donna M

    2013-03-14

    Drug discovery and medicinal chemistry initiatives in academia provide an opportunity to create a unique environment that is distinct from the traditional industrial model. Two characteristics of a university setting that are not usually associated with pharma are the ability to pursue high-risk projects and a depth of expertise, infrastructure, and capabilities in focused areas. Encouraging, supporting, and fostering drug discovery efforts that take advantage of these and other distinguishing characteristics of an academic setting can lead to novel and innovative therapies that might not be discovered otherwise.

  6. Financing drug discovery for orphan diseases.

    Science.gov (United States)

    Fagnan, David E; Gromatzky, Austin A; Stein, Roger M; Fernandez, Jose-Maria; Lo, Andrew W

    2014-05-01

    Recently proposed 'megafund' financing methods for funding translational medicine and drug development require billions of dollars in capital per megafund to de-risk the drug discovery process enough to issue long-term bonds. Here, we demonstrate that the same financing methods can be applied to orphan drug development but, because of the unique nature of orphan diseases and therapeutics (lower development costs, faster FDA approval times, lower failure rates and lower correlation of failures among disease targets) the amount of capital needed to de-risk such portfolios is much lower in this field. Numerical simulations suggest that an orphan disease megafund of only US$575 million can yield double-digit expected rates of return with only 10-20 projects in the portfolio. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Traditional Medicine Collection Tracking System (TM-CTS): a database for ethnobotanically driven drug-discovery programs.

    Science.gov (United States)

    Harris, Eric S J; Erickson, Sean D; Tolopko, Andrew N; Cao, Shugeng; Craycroft, Jane A; Scholten, Robert; Fu, Yanling; Wang, Wenquan; Liu, Yong; Zhao, Zhongzhen; Clardy, Jon; Shamu, Caroline E; Eisenberg, David M

    2011-05-17

    Ethnobotanically driven drug-discovery programs include data related to many aspects of the preparation of botanical medicines, from initial plant collection to chemical extraction and fractionation. The Traditional Medicine Collection Tracking System (TM-CTS) was created to organize and store data of this type for an international collaborative project involving the systematic evaluation of commonly used Traditional Chinese Medicinal plants. The system was developed using domain-driven design techniques, and is implemented using Java, Hibernate, PostgreSQL, Business Intelligence and Reporting Tools (BIRT), and Apache Tomcat. The TM-CTS relational database schema contains over 70 data types, comprising over 500 data fields. The system incorporates a number of unique features that are useful in the context of ethnobotanical projects such as support for information about botanical collection, method of processing, quality tests for plants with existing pharmacopoeia standards, chemical extraction and fractionation, and historical uses of the plants. The database also accommodates data provided in multiple languages and integration with a database system built to support high throughput screening based drug discovery efforts. It is accessed via a web-based application that provides extensive, multi-format reporting capabilities. This new database system was designed to support a project evaluating the bioactivity of Chinese medicinal plants. The software used to create the database is open source, freely available, and could potentially be applied to other ethnobotanically driven natural product collection and drug-discovery programs. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Traditional Medicine Collection Tracking System (TM-CTS): A Database for Ethnobotanically-Driven Drug-Discovery Programs

    Science.gov (United States)

    Harris, Eric S. J.; Erickson, Sean D.; Tolopko, Andrew N.; Cao, Shugeng; Craycroft, Jane A.; Scholten, Robert; Fu, Yanling; Wang, Wenquan; Liu, Yong; Zhao, Zhongzhen; Clardy, Jon; Shamu, Caroline E.; Eisenberg, David M.

    2011-01-01

    Aim of the study. Ethnobotanically-driven drug-discovery programs include data related to many aspects of the preparation of botanical medicines, from initial plant collection to chemical extraction and fractionation. The Traditional Medicine-Collection Tracking System (TM-CTS) was created to organize and store data of this type for an international collaborative project involving the systematic evaluation of commonly used Traditional Chinese Medicinal plants. Materials and Methods. The system was developed using domain-driven design techniques, and is implemented using Java, Hibernate, PostgreSQL, Business Intelligence and Reporting Tools (BIRT), and Apache Tomcat. Results. The TM-CTS relational database schema contains over 70 data types, comprising over 500 data fields. The system incorporates a number of unique features that are useful in the context of ethnobotanical projects such as support for information about botanical collection, method of processing, quality tests for plants with existing pharmacopoeia standards, chemical extraction and fractionation, and historical uses of the plants. The database also accommodates data provided in multiple languages and integration with a database system built to support high throughput screening based drug discovery efforts. It is accessed via a web-based application that provides extensive, multi-format reporting capabilities. Conclusions. This new database system was designed to support a project evaluating the bioactivity of Chinese medicinal plants. The software used to create the database is open source, freely available, and could potentially be applied to other ethnobotanically-driven natural product collection and drug-discovery programs. PMID:21420479

  9. Chimeric mice with humanized liver: Application in drug metabolism and pharmacokinetics studies for drug discovery.

    Science.gov (United States)

    Naritomi, Yoichi; Sanoh, Seigo; Ohta, Shigeru

    2018-02-01

    Predicting human drug metabolism and pharmacokinetics (PK) is key to drug discovery. In particular, it is important to predict human PK, metabolite profiles and drug-drug interactions (DDIs). Various methods have been used for such predictions, including in vitro metabolic studies using human biological samples, such as hepatic microsomes and hepatocytes, and in vivo studies using experimental animals. However, prediction studies using these methods are often inconclusive due to discrepancies between in vitro and in vivo results, and interspecies differences in drug metabolism. Further, the prediction methods have changed from qualitative to quantitative to solve these issues. Chimeric mice with humanized liver have been developed, in which mouse liver cells are mostly replaced with human hepatocytes. Since human drug metabolizing enzymes are expressed in the liver of these mice, they are regarded as suitable models for mimicking the drug metabolism and PK observed in humans; therefore, these mice are useful for predicting human drug metabolism and PK. In this review, we discuss the current state, issues, and future directions of predicting human drug metabolism and PK using chimeric mice with humanized liver in drug discovery. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  10. Open Access Could Transform Drug Discovery: A Case Study of JQ1.

    Science.gov (United States)

    Arshad, Zeeshaan; Smith, James; Roberts, Mackenna; Lee, Wen Hwa; Davies, Ben; Bure, Kim; Hollander, Georg A; Dopson, Sue; Bountra, Chas; Brindley, David

    2016-01-01

    The cost to develop a new drug from target discovery to market is a staggering $1.8 billion, largely due to the very high attrition rate of drug candidates and the lengthy transition times during development. Open access is an emerging model of open innovation that places no restriction on the use of information and has the potential to accelerate the development of new drugs. To date, no quantitative assessment has yet taken place to determine the effects and viability of open access on the process of drug translation. This need is addressed within this study. The literature and intellectual property landscapes of the drug candidate JQ1, which was made available on an open access basis when discovered, and conventionally developed equivalents that were not are compared using the Web of Science and Thomson Innovation software, respectively. Results demonstrate that openly sharing the JQ1 molecule led to a greater uptake by a wider and more multi-disciplinary research community. A comparative analysis of the patent landscapes for each candidate also found that the broader scientific diaspora of the publically released JQ1 data enhanced innovation, evidenced by a greater number of downstream patents filed in relation to JQ1. The authors' findings counter the notion that open access drug discovery would leak commercial intellectual property. On the contrary, JQ1 serves as a test case to evidence that open access drug discovery can be an economic model that potentially improves efficiency and cost of drug discovery and its subsequent commercialization.

  11. Phenotypic Screening Approaches to Develop Aurora Kinase Inhibitors: Drug Discovery Perspectives.

    Science.gov (United States)

    Marugán, Carlos; Torres, Raquel; Lallena, María José

    2015-01-01

    Targeting mitotic regulators as a strategy to fight cancer implies the development of drugs against key proteins, such as Aurora-A and -B. Current drugs, which target mitosis through a general mechanism of action (stabilization/destabilization of microtubules), have several side effects (neutropenia, alopecia, and emesis). Pharmaceutical companies aim at avoiding these unwanted effects by generating improved and selective drugs that increase the quality of life of the patients. However, the development of these drugs is an ambitious task that involves testing thousands of compounds through biochemical and cell-based assays. In addition, molecules usually target complex biological processes, involving several proteins and different molecular pathways, further emphasizing the need for high-throughput screening techniques and multiplexing technologies in order to identify drugs with the desired phenotype. We will briefly describe two multiplexing technologies [high-content imaging (HCI) and flow cytometry] and two key processes for drug discovery research (assay development and validation) following our own published industry quality standards. We will further focus on HCI as a useful tool for phenotypic screening and will provide a concrete example of HCI assay to detect Aurora-A or -B selective inhibitors discriminating the off-target effects related to the inhibition of other cell cycle or non-cell cycle key regulators. Finally, we will describe other assays that can help to characterize the in vitro pharmacology of the inhibitors.

  12. A role for physicians in ethnopharmacology and drug discovery.

    Science.gov (United States)

    Raza, Mohsin

    2006-04-06

    Ethnopharmacology investigations classically involved traditional healers, botanists, anthropologists, chemists and pharmacologists. The role of some groups of researchers but not of physician has been highlighted and well defined in ethnopharmacological investigations. Historical data shows that discovery of several important modern drugs of herbal origin owe to the medical knowledge and clinical expertise of physicians. Current trends indicate negligible role of physicians in ethnopharmacological studies. Rising cost of modern drug development is attributed to the lack of classical ethnopharmacological approach. Physicians can play multiple roles in the ethnopharmacological studies to facilitate drug discovery as well as to rescue authentic traditional knowledge of use of medicinal plants. These include: (1) Ethnopharmacological field work which involves interviewing healers, interpreting traditional terminologies into their modern counterparts, examining patients consuming herbal remedies and identifying the disease for which an herbal remedy is used. (2) Interpretation of signs and symptoms mentioned in ancient texts and suggesting proper use of old traditional remedies in the light of modern medicine. (3) Clinical studies on herbs and their interaction with modern medicines. (4) Advising pharmacologists to carryout laboratory studies on herbs observed during field studies. (5) Work in collaboration with local healers to strengthen traditional system of medicine in a community. In conclusion, physician's involvement in ethnopharmacological studies will lead to more reliable information on traditional use of medicinal plants both from field and ancient texts, more focused and cheaper natural product based drug discovery, as well as bridge the gap between traditional and modern medicine.

  13. Preparative Scale Resolution of Enantiomers Enables Accelerated Drug Discovery and Development

    Directory of Open Access Journals (Sweden)

    Hanna Leek

    2017-01-01

    Full Text Available The provision of pure enantiomers is of increasing importance not only for the pharmaceutical industry but also for agro-chemistry and biotechnology. In drug discovery and development, the enantiomers of a chiral drug depict unique chemical and pharmacological behaviors in a chiral environment, such as the human body, in which the stereochemistry of the chiral drugs determines their pharmacokinetic, pharmacodynamic and toxicological properties. We present a number of challenging case studies of up-to-kilogram separations of racemic or enriched isomer mixtures using preparative liquid chromatography and super critical fluid chromatography to generate individual enantiomers that have enabled the development of new candidate drugs within AstraZeneca. The combination of chromatography and racemization as well as strategies on when to apply preparative chiral chromatography of enantiomers in a multi-step synthesis of a drug compound can further facilitate accelerated drug discovery and the early clinical evaluation of the drug candidates.

  14. Virtual screening methods as tools for drug lead discovery from large chemical libraries.

    Science.gov (United States)

    Ma, X H; Zhu, F; Liu, X; Shi, Z; Zhang, J X; Yang, S Y; Wei, Y Q; Chen, Y Z

    2012-01-01

    Virtual screening methods have been developed and explored as useful tools for searching drug lead compounds from chemical libraries, including large libraries that have become publically available. In this review, we discussed the new developments in exploring virtual screening methods for enhanced performance in searching large chemical libraries, their applications in screening libraries of ~ 1 million or more compounds in the last five years, the difficulties in their applications, and the strategies for further improving these methods.

  15. Computer-Aided Drug Design Applied to Marine Drug Discovery: Meridianins as Alzheimer's Disease Therapeutic Agents.

    Science.gov (United States)

    Llorach-Pares, Laura; Nonell-Canals, Alfons; Sanchez-Martinez, Melchor; Avila, Conxita

    2017-11-27

    Computer-aided drug discovery/design (CADD) techniques allow the identification of natural products that are capable of modulating protein functions in pathogenesis-related pathways, constituting one of the most promising lines followed in drug discovery. In this paper, we computationally evaluated and reported the inhibitory activity found in meridianins A-G, a group of marine indole alkaloids isolated from the marine tunicate Aplidium , against various protein kinases involved in Alzheimer's disease (AD), a neurodegenerative pathology characterized by the presence of neurofibrillary tangles (NFT). Balance splitting between tau kinase and phosphate activities caused tau hyperphosphorylation and, thereby, its aggregation and NTF formation. Inhibition of specific kinases involved in its phosphorylation pathway could be one of the key strategies to reverse tau hyperphosphorylation and would represent an approach to develop drugs to palliate AD symptoms. Meridianins bind to the adenosine triphosphate (ATP) binding site of certain protein kinases, acting as ATP competitive inhibitors. These compounds show very promising scaffolds to design new drugs against AD, which could act over tau protein kinases Glycogen synthetase kinase-3 Beta (GSK3β) and Casein kinase 1 delta (CK1δ, CK1D or KC1D), and dual specificity kinases as dual specificity tyrosine phosphorylation regulated kinase 1 (DYRK1A) and cdc2-like kinases (CLK1). This work is aimed to highlight the role of CADD techniques in marine drug discovery and to provide precise information regarding the binding mode and strength of meridianins against several protein kinases that could help in the future development of anti-AD drugs.

  16. Human embryonic stem cell technologies and drug discovery.

    Science.gov (United States)

    Jensen, Janne; Hyllner, Johan; Björquist, Petter

    2009-06-01

    Development of new drugs is costly and takes huge resources into consideration. The big pharmaceutical companies are currently facing increasing developmental costs and a lower success-rate of bringing new compounds to the market. Therefore, it is now of outmost importance that the drug-hunting companies minimize late attritions due to sub-optimal pharmacokinetic properties or unexpected toxicity when entering the clinical programs. To achieve this, a strong need to test new candidate drugs in assays of high human relevance in vitro as early as possible has been identified. The traditionally used cell systems are however remarkably limited in this sense, and new improved technologies are of greatest importance. The human embryonic stem cells (hESC) is one of the most powerful cell types known. They have not only the possibility to divide indefinitely; these cells can also differentiate into all mature cell types of the human body. This makes them potentially very valuable for pharmaceutical development, spanning from use as tools in early target studies, DMPK or safety assessment, as screening models to find new chemical entities modulating adult stem cell fate, or as the direct use in cell therapies. This review illustrates the use of hESC in the drug discovery process, today, as well as in a future perspective. This will specifically be exemplified with the most important cell type for pharmaceutical development-the hepatocyte. We discuss how hESC-derived hepatocyte-like cells could improve this process, and how these cells should be cultured if optimized functionality and usefulness should be achieved. J. Cell. Physiol. 219: 513-519, 2009. (c) 2009 Wiley-Liss, Inc.

  17. Ebola virus: A gap in drug design and discovery - experimental and computational perspective.

    Science.gov (United States)

    Balmith, Marissa; Faya, Mbuso; Soliman, Mahmoud E S

    2017-03-01

    The Ebola virus, formally known as the Ebola hemorrhagic fever, is an acute viral syndrome causing sporadic outbreaks that have ravaged West Africa. Due to its extreme virulence and highly transmissible nature, Ebola has been classified as a category A bioweapon organism. Only recently have vaccine or drug regimens for the Ebola virus been developed, including Zmapp and peptides. In addition, existing drugs which have been repurposed toward anti-Ebola virus activity have been re-examined and are seen to be promising candidates toward combating Ebola. Drug development involving computational tools has been widely employed toward target-based drug design. Screening large libraries have greatly stimulated research toward effective anti-Ebola virus drug regimens. Current emphasis has been placed on the investigation of host proteins and druggable viral targets. There is a huge gap in the literature regarding guidelines in the discovery of Ebola virus inhibitors, which may be due to the lack of information on the Ebola drug targets, binding sites, and mechanism of action of the virus. This review focuses on Ebola virus inhibitors, drugs which could be repurposed to combat the Ebola virus, computational methods which study drug-target interactions as well as providing further insight into the mode of action of the Ebola virus. © 2016 John Wiley & Sons A/S.

  18. Evaluating Music Discovery Tools on Spotify: The Role of User Preference Characteristics

    Directory of Open Access Journals (Sweden)

    Muh-Chyun Tang

    2017-06-01

    Full Text Available An experimental study was conducted to assess the effectiveness of the four music discovery tools available on Spotify, a popular music streaming service, namely: radio recommendation, regional charts, genres and moods, as well as following Facebook friends. Both subjective judgment of user experience and objective measures of search effectiveness were used as the performance criteria. Other than comparison of these four tools, we also compared how consistent are these performance measures. The results show that user experience criteria were not necessarily corresponded to search effectiveness. Furthermore, three user preference characteristics: preference diversity, preference insight, and openness to novelty were introduced as mediating variables, with an aim to investigating how these attributes might interact with these four music discovery tools on performance. The results suggest that users’ preference characteristics did have an impact on the performance of these music discovery tools.

  19. Providing data science support for systems pharmacology and its implications to drug discovery.

    Science.gov (United States)

    Hart, Thomas; Xie, Lei

    2016-01-01

    The conventional one-drug-one-target-one-disease drug discovery process has been less successful in tracking multi-genic, multi-faceted complex diseases. Systems pharmacology has emerged as a new discipline to tackle the current challenges in drug discovery. The goal of systems pharmacology is to transform huge, heterogeneous, and dynamic biological and clinical data into interpretable and actionable mechanistic models for decision making in drug discovery and patient treatment. Thus, big data technology and data science will play an essential role in systems pharmacology. This paper critically reviews the impact of three fundamental concepts of data science on systems pharmacology: similarity inference, overfitting avoidance, and disentangling causality from correlation. The authors then discuss recent advances and future directions in applying the three concepts of data science to drug discovery, with a focus on proteome-wide context-specific quantitative drug target deconvolution and personalized adverse drug reaction prediction. Data science will facilitate reducing the complexity of systems pharmacology modeling, detecting hidden correlations between complex data sets, and distinguishing causation from correlation. The power of data science can only be fully realized when integrated with mechanism-based multi-scale modeling that explicitly takes into account the hierarchical organization of biological systems from nucleic acid to proteins, to molecular interaction networks, to cells, to tissues, to patients, and to populations.

  20. Outsourcing drug discovery to India and China: from surviving to thriving.

    Science.gov (United States)

    Subramaniam, Swaminathan; Dugar, Sundeep

    2012-10-01

    Global pharmaceutical companies face an increasingly harsh environment for their primary business of selling medicines. They have to contend with a spiraling decline in the productivity of their R&D programs that is guaranteed to severely diminish their growth prospects. Outsourcing of drug discovery activities to low-cost locations is a growing response to this crisis. However, the upsides to outsourcing are capped by the failure of global pharmaceutical companies to take advantage of the full range of possibilities that this model provides. Companies that radically rethink and transform the way they conduct R&D, such as seeking the benefits of low-cost locations in India and China will be the ones that thrive in this environment. In this article we present our views on how the outsourcing model in drug discovery should go beyond increasing the efficiency of existing drug discovery processes to a fundamental rethink and re-engineering of these processes. Copyright © 2012. Published by Elsevier Ltd.

  1. Is the GAIN Act a turning point in new antibiotic discovery?

    Science.gov (United States)

    Brown, Eric D

    2013-03-01

    The United States GAIN (Generating Antibiotic Incentives Now) Act is a call to action for new antibiotic discovery and development that arises from a ground swell of concern over declining activity in this therapeutic area in the pharmaceutical sector. The GAIN Act aims to provide economic incentives for antibiotic drug discovery in the form of market exclusivity and accelerated drug approval processes. The legislation comes on the heels of nearly two decades of failure using the tools of modern drug discovery to find new antibiotic drugs. The lessons of failure are examined herein as are the prospects for a renewed effort in antibiotic drug discovery and development stimulated by new investments in both the public and private sector.

  2. Lessons from Hot Spot Analysis for Fragment-Based Drug Discovery.

    Science.gov (United States)

    Hall, David R; Kozakov, Dima; Whitty, Adrian; Vajda, Sandor

    2015-11-01

    Analysis of binding energy hot spots at protein surfaces can provide crucial insights into the prospects for successful application of fragment-based drug discovery (FBDD), and whether a fragment hit can be advanced into a high-affinity, drug-like ligand. The key factor is the strength of the top ranking hot spot, and how well a given fragment complements it. We show that published data are sufficient to provide a sophisticated and quantitative understanding of how hot spots derive from a protein 3D structure, and how their strength, number, and spatial arrangement govern the potential for a surface site to bind to fragment-sized and larger ligands. This improved understanding provides important guidance for the effective application of FBDD in drug discovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. G-protein-coupled receptors: new approaches to maximise the impact of GPCRS in drug discovery.

    Science.gov (United States)

    Davey, John

    2004-04-01

    IBC's Drug Discovery Technology Series is a group of conferences highlighting technological advances and applications in niche areas of the drug discovery pipeline. This 2-day meeting focused on G-protein-coupled receptors (GPCRs), probably the most important and certainly the most valuable class of targets for drug discovery. The meeting was chaired by J Beesley (Vice President, European Business Development for LifeSpan Biosciences, Seattle, USA) and included 17 presentations on various aspects of GPCR activity, drug screens and therapeutic analyses. Keynote Addresses covered two of the emerging areas in GPCR regulation; receptor dimerisation (G Milligan, Professor of Molecular Pharmacology and Biochemistry, University of Glasgow, UK) and proteins that interact with GPCRs (J Bockaert, Laboratory of Functional Genomics, CNRS Montpellier, France). A third Keynote Address from W Thomsen (Director of GPCR Drug Screening, Arena Pharmaceuticals, USA) discussed Arena's general approach to drug discovery and illustrated this with reference to the development of an agonist with potential efficacy in Type II diabetes.

  4. Fragment-based approaches to anti-HIV drug discovery: state of the art and future opportunities.

    Science.gov (United States)

    Huang, Boshi; Kang, Dongwei; Zhan, Peng; Liu, Xinyong

    2015-12-01

    The search for additional drugs to treat HIV infection is a continuing effort due to the emergence and spread of HIV strains resistant to nearly all current drugs. The recent literature reveals that fragment-based drug design/discovery (FBDD) has become an effective alternative to conventional high-throughput screening strategies for drug discovery. In this critical review, the authors describe the state of the art in FBDD strategies for the discovery of anti-HIV drug-like compounds. The article focuses on fragment screening techniques, direct fragment-based design and early hit-to-lead progress. Rapid progress in biophysical detection and in silico techniques has greatly aided the application of FBDD to discover candidate agents directed at a variety of anti-HIV targets. Growing evidence suggests that structural insights on key proteins in the HIV life cycle can be applied in the early phase of drug discovery campaigns, providing valuable information on the binding modes and efficiently prompting fragment hit-to-lead progression. The combination of structural insights with improved methodologies for FBDD, including the privileged fragment-based reconstruction approach, fragment hybridization based on crystallographic overlays, fragment growth exploiting dynamic combinatorial chemistry, and high-speed fragment assembly via diversity-oriented synthesis followed by in situ screening, offers the possibility of more efficient and rapid discovery of novel drugs for HIV-1 prevention or treatment. Though the use of FBDD in anti-HIV drug discovery is still in its infancy, it is anticipated that anti-HIV agents developed via fragment-based strategies will be introduced into the clinic in the future.

  5. A Performance/Cost Evaluation for a GPU-Based Drug Discovery Application on Volunteer Computing

    Science.gov (United States)

    Guerrero, Ginés D.; Imbernón, Baldomero; García, José M.

    2014-01-01

    Bioinformatics is an interdisciplinary research field that develops tools for the analysis of large biological databases, and, thus, the use of high performance computing (HPC) platforms is mandatory for the generation of useful biological knowledge. The latest generation of graphics processing units (GPUs) has democratized the use of HPC as they push desktop computers to cluster-level performance. Many applications within this field have been developed to leverage these powerful and low-cost architectures. However, these applications still need to scale to larger GPU-based systems to enable remarkable advances in the fields of healthcare, drug discovery, genome research, etc. The inclusion of GPUs in HPC systems exacerbates power and temperature issues, increasing the total cost of ownership (TCO). This paper explores the benefits of volunteer computing to scale bioinformatics applications as an alternative to own large GPU-based local infrastructures. We use as a benchmark a GPU-based drug discovery application called BINDSURF that their computational requirements go beyond a single desktop machine. Volunteer computing is presented as a cheap and valid HPC system for those bioinformatics applications that need to process huge amounts of data and where the response time is not a critical factor. PMID:25025055

  6. Common characteristics of open source software development and applicability for drug discovery: a systematic review.

    Science.gov (United States)

    Ardal, Christine; Alstadsæter, Annette; Røttingen, John-Arne

    2011-09-28

    Innovation through an open source model has proven to be successful for software development. This success has led many to speculate if open source can be applied to other industries with similar success. We attempt to provide an understanding of open source software development characteristics for researchers, business leaders and government officials who may be interested in utilizing open source innovation in other contexts and with an emphasis on drug discovery. A systematic review was performed by searching relevant, multidisciplinary databases to extract empirical research regarding the common characteristics and barriers of initiating and maintaining an open source software development project. Common characteristics to open source software development pertinent to open source drug discovery were extracted. The characteristics were then grouped into the areas of participant attraction, management of volunteers, control mechanisms, legal framework and physical constraints. Lastly, their applicability to drug discovery was examined. We believe that the open source model is viable for drug discovery, although it is unlikely that it will exactly follow the form used in software development. Hybrids will likely develop that suit the unique characteristics of drug discovery. We suggest potential motivations for organizations to join an open source drug discovery project. We also examine specific differences between software and medicines, specifically how the need for laboratories and physical goods will impact the model as well as the effect of patents.

  7. Phenotypic screening approaches to develop Aurora kinase inhibitors: Drug Discovery perspectives

    Directory of Open Access Journals (Sweden)

    Carlos eMarugán

    2016-01-01

    Full Text Available Targeting mitotic regulators as a strategy to fight cancer implies the development of drugs against key proteins such as Aurora A and B. Current drugs which target mitosis through a general mechanism of action (stabilization/destabilization of microtubules, have several side effects (neutropenia, alopecia, emesis. Pharmaceutical companies aim at avoiding these unwanted effects by generating improved and selective drugs that increase the quality of life of the patients. However, the development of these drugs is an ambitious task that involves testing thousands of compounds through biochemical and cell-based assays. In addition, molecules usually target complex biological processes, involving several proteins and different molecular pathways, further emphasizing the need for high-throughput screening techniques and multiplexing technologies in order to identify drugs with the desired phenotype.We will briefly describe two multiplexing technologies (high-content imaging, microarrays and flow cytometry and two key processes for drug discovery research (assay development and validation following our own published industry quality standards. We will further focus on high-content imaging as a useful tool for phenotypic screening and will provide a concrete example of high-content imaging assay to detect Aurora A or B selective inhibitors discriminating the off-target effects related to inhibition of other cell cycle or non-cell cycle key regulators. Finally, we will describe other assays that can help to characterize the in vitro pharmacology of the inhibitors.

  8. An integrated dataset for in silico drug discovery

    Directory of Open Access Journals (Sweden)

    Cockell Simon J

    2010-12-01

    Full Text Available Drug development is expensive and prone to failure. It is potentially much less risky and expensive to reuse a drug developed for one condition for treating a second disease, than it is to develop an entirely new compound. Systematic approaches to drug repositioning are needed to increase throughput and find candidates more reliably. Here we address this need with an integrated systems biology dataset, developed using the Ondex data integration platform, for the in silico discovery of new drug repositioning candidates. We demonstrate that the information in this dataset allows known repositioning examples to be discovered. We also propose a means of automating the search for new treatment indications of existing compounds.

  9. Semiconductor technology in protein kinase research and drug discovery: sensing a revolution.

    Science.gov (United States)

    Bhalla, Nikhil; Di Lorenzo, Mirella; Estrela, Pedro; Pula, Giordano

    2017-02-01

    Since the discovery of protein kinase activity in 1954, close to 600 kinases have been discovered that have crucial roles in cell physiology. In several pathological conditions, aberrant protein kinase activity leads to abnormal cell and tissue physiology. Therefore, protein kinase inhibitors are investigated as potential treatments for several diseases, including dementia, diabetes, cancer and autoimmune and cardiovascular disease. Modern semiconductor technology has recently been applied to accelerate the discovery of novel protein kinase inhibitors that could become the standard-of-care drugs of tomorrow. Here, we describe current techniques and novel applications of semiconductor technologies in protein kinase inhibitor drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Applications of Dynamic Clamp to Cardiac Arrhythmia Research: Role in Drug Target Discovery and Safety Pharmacology Testing

    Directory of Open Access Journals (Sweden)

    Francis A. Ortega

    2018-01-01

    Full Text Available Dynamic clamp, a hybrid-computational-experimental technique that has been used to elucidate ionic mechanisms underlying cardiac electrophysiology, is emerging as a promising tool in the discovery of potential anti-arrhythmic targets and in pharmacological safety testing. Through the injection of computationally simulated conductances into isolated cardiomyocytes in a real-time continuous loop, dynamic clamp has greatly expanded the capabilities of patch clamp outside traditional static voltage and current protocols. Recent applications include fine manipulation of injected artificial conductances to identify promising drug targets in the prevention of arrhythmia and the direct testing of model-based hypotheses. Furthermore, dynamic clamp has been used to enhance existing experimental models by addressing their intrinsic limitations, which increased predictive power in identifying pro-arrhythmic pharmacological compounds. Here, we review the recent advances of the dynamic clamp technique in cardiac electrophysiology with a focus on its future role in the development of safety testing and discovery of anti-arrhythmic drugs.

  11. Drug design and discovery: translational biomedical science varies among countries.

    Science.gov (United States)

    Weaver, Ian N; Weaver, Donald F

    2013-10-01

    Drug design and discovery is an innovation process that translates the outcomes of fundamental biomedical research into therapeutics that are ultimately made available to people with medical disorders in many countries throughout the world. To identify which nations succeed, exceed, or fail at the drug design/discovery endeavor--more specifically, which countries, within the context of their national size and wealth, are "pulling their weight" when it comes to developing medications targeting the myriad of diseases that afflict humankind--we compiled and analyzed a comprehensive survey of all new drugs (small molecular entities and biologics) approved annually throughout the world over the 20-year period from 1991 to 2010. Based upon this analysis, we have devised prediction algorithms to ascertain which countries are successful (or not) in contributing to the worldwide need for effective new therapeutics. © 2013 Wiley Periodicals, Inc.

  12. BPS Pharmacology 2014 - Drug Discovery Pathways symposium Report

    OpenAIRE

    Marsh, Andrew

    2015-01-01

    Report on BPS Pharmacology 2014, BPS Industry Committe and Learned Societies Drug Discovery Pathways Group symposium: "Realizing the potential of new approaches to target identification and validation" by Dr Andrew Marsh Associate Professor Department of Chemistry University of Warwick go.warwick.ac.uk/marshgroup Twitter @marshgroup

  13. Alkaloids as Cyclooxygenase Inhibitors in Anticancer Drug Discovery.

    Science.gov (United States)

    Hashmi, Muhammad Ali; Khan, Afsar; Farooq, Umar; Khan, Sehroon

    2018-01-01

    Cancer is the leading cause of death worldwide and anticancer drug discovery is a very hot area of research at present. There are various factors which control and affect cancer, out of which enzymes like cyclooxygenase-2 (COX-2) play a vital role in the growth of tumor cells. Inhibition of this enzyme is a very useful target for the prevention of various types of cancers. Alkaloids are a diverse group of naturally occurring compounds which have shown great COX-2 inhibitory activity both in vitro and in vivo. In this mini-review, we have discussed different alkaloids with COX-2 inhibitory activities and anticancer potential which may act as leads in modern anticancer drug discovery. Different classes of alkaloids including isoquinoline alkaloids, indole alkaloids, piperidine alkaloids, quinazoline alkaloids, and various miscellaneous alkaloids obtained from natural sources have been discussed in detail in this review. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Stem cells: a model for screening, discovery and development of drugs.

    Science.gov (United States)

    Kitambi, Satish Srinivas; Chandrasekar, Gayathri

    2011-01-01

    The identification of normal and cancerous stem cells and the recent advances made in isolation and culture of stem cells have rapidly gained attention in the field of drug discovery and regenerative medicine. The prospect of performing screens aimed at proliferation, directed differentiation, and toxicity and efficacy studies using stem cells offers a reliable platform for the drug discovery process. Advances made in the generation of induced pluripotent stem cells from normal or diseased tissue serves as a platform to perform drug screens aimed at developing cell-based therapies against conditions like Parkinson's disease and diabetes. This review discusses the application of stem cells and cancer stem cells in drug screening and their role in complementing, reducing, and replacing animal testing. In addition to this, target identification and major advances in the field of personalized medicine using induced pluripotent cells are also discussed.

  15. DenguePredict: An Integrated Drug Repositioning Approach towards Drug Discovery for Dengue.

    Science.gov (United States)

    Wang, QuanQiu; Xu, Rong

    2015-01-01

    Dengue is a viral disease of expanding global incidence without cures. Here we present a drug repositioning system (DenguePredict) leveraging upon a unique drug treatment database and vast amounts of disease- and drug-related data. We first constructed a large-scale genetic disease network with enriched dengue genetics data curated from biomedical literature. We applied a network-based ranking algorithm to find dengue-related diseases from the disease network. We then developed a novel algorithm to prioritize FDA-approved drugs from dengue-related diseases to treat dengue. When tested in a de-novo validation setting, DenguePredict found the only two drugs tested in clinical trials for treating dengue and ranked them highly: chloroquine ranked at top 0.96% and ivermectin at top 22.75%. We showed that drugs targeting immune systems and arachidonic acid metabolism-related apoptotic pathways might represent innovative drugs to treat dengue. In summary, DenguePredict, by combining comprehensive disease- and drug-related data and novel algorithms, may greatly facilitate drug discovery for dengue.

  16. The Discovery Dome: A Tool for Increasing Student Engagement

    Science.gov (United States)

    Brevik, Corinne

    2015-04-01

    The Discovery Dome is a portable full-dome theater that plays professionally-created science films. Developed by the Houston Museum of Natural Science and Rice University, this inflatable planetarium offers a state-of-the-art visual learning experience that can address many different fields of science for any grade level. It surrounds students with roaring dinosaurs, fascinating planets, and explosive storms - all immersive, engaging, and realistic. Dickinson State University has chosen to utilize its Discovery Dome to address Earth Science education at two levels. University courses across the science disciplines can use the Discovery Dome as part of their curriculum. The digital shows immerse the students in various topics ranging from astronomy to geology to weather and climate. The dome has proven to be a valuable tool for introducing new material to students as well as for reinforcing concepts previously covered in lectures or laboratory settings. The Discovery Dome also serves as an amazing science public-outreach tool. University students are trained to run the dome, and they travel with it to schools and libraries around the region. During the 2013-14 school year, our Discovery Dome visited over 30 locations. Many of the schools visited are in rural settings which offer students few opportunities to experience state-of-the-art science technology. The school kids are extremely excited when the Discovery Dome visits their community, and they will talk about the experience for many weeks. Traveling with the dome is also very valuable for the university students who get involved in the program. They become very familiar with the science content, and they gain experience working with teachers as well as the general public. They get to share their love of science, and they get to help inspire a new generation of scientists.

  17. Twenty years on: the impact of fragments on drug discovery.

    Science.gov (United States)

    Erlanson, Daniel A; Fesik, Stephen W; Hubbard, Roderick E; Jahnke, Wolfgang; Jhoti, Harren

    2016-09-01

    After 20 years of sometimes quiet growth, fragment-based drug discovery (FBDD) has become mainstream. More than 30 drug candidates derived from fragments have entered the clinic, with two approved and several more in advanced trials. FBDD has been widely applied in both academia and industry, as evidenced by the large number of papers from universities, non-profit research institutions, biotechnology companies and pharmaceutical companies. Moreover, FBDD draws on a diverse range of disciplines, from biochemistry and biophysics to computational and medicinal chemistry. As the promise of FBDD strategies becomes increasingly realized, now is an opportune time to draw lessons and point the way to the future. This Review briefly discusses how to design fragment libraries, how to select screening techniques and how to make the most of information gleaned from them. It also shows how concepts from FBDD have permeated and enhanced drug discovery efforts.

  18. Current status and future prospects for enabling chemistry technology in the drug discovery process.

    Science.gov (United States)

    Djuric, Stevan W; Hutchins, Charles W; Talaty, Nari N

    2016-01-01

    This review covers recent advances in the implementation of enabling chemistry technologies into the drug discovery process. Areas covered include parallel synthesis chemistry, high-throughput experimentation, automated synthesis and purification methods, flow chemistry methodology including photochemistry, electrochemistry, and the handling of "dangerous" reagents. Also featured are advances in the "computer-assisted drug design" area and the expanding application of novel mass spectrometry-based techniques to a wide range of drug discovery activities.

  19. Financing drug discovery via dynamic leverage.

    Science.gov (United States)

    Montazerhodjat, Vahid; Frishkopf, John J; Lo, Andrew W

    2016-03-01

    We extend the megafund concept for funding drug discovery to enable dynamic leverage in which the portfolio of candidate therapeutic assets is predominantly financed initially by equity, and debt is introduced gradually as assets mature and begin generating cash flows. Leverage is adjusted so as to maintain an approximately constant level of default risk throughout the life of the fund. Numerical simulations show that applying dynamic leverage to a small portfolio of orphan drug candidates can boost the return on equity almost twofold compared with securitization with a static capital structure. Dynamic leverage can also add significant value to comparable all-equity-financed portfolios, enhancing the return on equity without jeopardizing debt performance or increasing risk to equity investors. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Network-based discovery through mechanistic systems biology. Implications for applications--SMEs and drug discovery: where the action is.

    Science.gov (United States)

    Benson, Neil

    2015-08-01

    Phase II attrition remains the most important challenge for drug discovery. Tackling the problem requires improved understanding of the complexity of disease biology. Systems biology approaches to this problem can, in principle, deliver this. This article reviews the reports of the application of mechanistic systems models to drug discovery questions and discusses the added value. Although we are on the journey to the virtual human, the length, path and rate of learning from this remain an open question. Success will be dependent on the will to invest and make the most of the insight generated along the way. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Study of Tools for Network Discovery and Network Mapping

    Science.gov (United States)

    2003-11-01

    connected to the switch. iv. Accessibility of historical data and event data In general, network discovery tools keep a history of the collected...has the following software dependencies: - Java Virtual machine 76 - Perl modules - RRD Tool - TomCat - PostgreSQL STRENGTHS AND...systems - provide a simple view of the current network status - generate alarms on status change - generate history of status change VISUAL MAP

  2. Pharmacological screening technologies for venom peptide discovery.

    Science.gov (United States)

    Prashanth, Jutty Rajan; Hasaballah, Nojod; Vetter, Irina

    2017-12-01

    Venomous animals occupy one of the most successful evolutionary niches and occur on nearly every continent. They deliver venoms via biting and stinging apparatuses with the aim to rapidly incapacitate prey and deter predators. This has led to the evolution of venom components that act at a number of biological targets - including ion channels, G-protein coupled receptors, transporters and enzymes - with exquisite selectivity and potency, making venom-derived components attractive pharmacological tool compounds and drug leads. In recent years, plate-based pharmacological screening approaches have been introduced to accelerate venom-derived drug discovery. A range of assays are amenable to this purpose, including high-throughput electrophysiology, fluorescence-based functional and binding assays. However, despite these technological advances, the traditional activity-guided fractionation approach is time-consuming and resource-intensive. The combination of screening techniques suitable for miniaturization with sequence-based discovery approaches - supported by advanced proteomics, mass spectrometry, chromatography as well as synthesis and expression techniques - promises to further improve venom peptide discovery. Here, we discuss practical aspects of establishing a pipeline for venom peptide drug discovery with a particular emphasis on pharmacology and pharmacological screening approaches. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.' Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Structural Genomics and Drug Discovery for Infectious Diseases

    International Nuclear Information System (INIS)

    Anderson, W.F.

    2009-01-01

    The application of structural genomics methods and approaches to proteins from organisms causing infectious diseases is making available the three dimensional structures of many proteins that are potential drug targets and laying the groundwork for structure aided drug discovery efforts. There are a number of structural genomics projects with a focus on pathogens that have been initiated worldwide. The Center for Structural Genomics of Infectious Diseases (CSGID) was recently established to apply state-of-the-art high throughput structural biology technologies to the characterization of proteins from the National Institute for Allergy and Infectious Diseases (NIAID) category A-C pathogens and organisms causing emerging, or re-emerging infectious diseases. The target selection process emphasizes potential biomedical benefits. Selected proteins include known drug targets and their homologs, essential enzymes, virulence factors and vaccine candidates. The Center also provides a structure determination service for the infectious disease scientific community. The ultimate goal is to generate a library of structures that are available to the scientific community and can serve as a starting point for further research and structure aided drug discovery for infectious diseases. To achieve this goal, the CSGID will determine protein crystal structures of 400 proteins and protein-ligand complexes using proven, rapid, highly integrated, and cost-effective methods for such determination, primarily by X-ray crystallography. High throughput crystallographic structure determination is greatly aided by frequent, convenient access to high-performance beamlines at third-generation synchrotron X-ray sources.

  4. Web-based services for drug design and discovery.

    Science.gov (United States)

    Frey, Jeremy G; Bird, Colin L

    2011-09-01

    Reviews of the development of drug discovery through the 20(th) century recognised the importance of chemistry and increasingly bioinformatics, but had relatively little to say about the importance of computing and networked computing in particular. However, the design and discovery of new drugs is arguably the most significant single application of bioinformatics and cheminformatics to have benefitted from the increases in the range and power of the computational techniques since the emergence of the World Wide Web, commonly now referred to as simply 'the Web'. Web services have enabled researchers to access shared resources and to deploy standardized calculations in their search for new drugs. This article first considers the fundamental principles of Web services and workflows, and then explores the facilities and resources that have evolved to meet the specific needs of chem- and bio-informatics. This strategy leads to a more detailed examination of the basic components that characterise molecules and the essential predictive techniques, followed by a discussion of the emerging networked services that transcend the basic provisions, and the growing trend towards embracing modern techniques, in particular the Semantic Web. In the opinion of the authors, the issues that require community action are: increasing the amount of chemical data available for open access; validating the data as provided; and developing more efficient links between the worlds of cheminformatics and bioinformatics. The goal is to create ever better drug design services.

  5. Current status and future prospects for enabling chemistry technology in the drug discovery process

    Science.gov (United States)

    Djuric, Stevan W.; Hutchins, Charles W.; Talaty, Nari N.

    2016-01-01

    This review covers recent advances in the implementation of enabling chemistry technologies into the drug discovery process. Areas covered include parallel synthesis chemistry, high-throughput experimentation, automated synthesis and purification methods, flow chemistry methodology including photochemistry, electrochemistry, and the handling of “dangerous” reagents. Also featured are advances in the “computer-assisted drug design” area and the expanding application of novel mass spectrometry-based techniques to a wide range of drug discovery activities. PMID:27781094

  6. Phenotypic and genomic comparison of Mycobacterium aurum and surrogate model species to Mycobacterium tuberculosis: implications for drug discovery.

    Science.gov (United States)

    Namouchi, Amine; Cimino, Mena; Favre-Rochex, Sandrine; Charles, Patricia; Gicquel, Brigitte

    2017-07-13

    Tuberculosis (TB) is caused by Mycobacterium tuberculosis and represents one of the major challenges facing drug discovery initiatives worldwide. The considerable rise in bacterial drug resistance in recent years has led to the need of new drugs and drug regimens. Model systems are regularly used to speed-up the drug discovery process and circumvent biosafety issues associated with manipulating M. tuberculosis. These include the use of strains such as Mycobacterium smegmatis and Mycobacterium marinum that can be handled in biosafety level 2 facilities, making high-throughput screening feasible. However, each of these model species have their own limitations. We report and describe the first complete genome sequence of Mycobacterium aurum ATCC23366, an environmental mycobacterium that can also grow in the gut of humans and animals as part of the microbiota. This species shows a comparable resistance profile to that of M. tuberculosis for several anti-TB drugs. The aims of this study were to (i) determine the drug resistance profile of a recently proposed model species, Mycobacterium aurum, strain ATCC23366, for anti-TB drug discovery as well as Mycobacterium smegmatis and Mycobacterium marinum (ii) sequence and annotate the complete genome sequence of this species obtained using Pacific Bioscience technology (iii) perform comparative genomics analyses of the various surrogate strains with M. tuberculosis (iv) discuss how the choice of the surrogate model used for drug screening can affect the drug discovery process. We describe the complete genome sequence of M. aurum, a surrogate model for anti-tuberculosis drug discovery. Most of the genes already reported to be associated with drug resistance are shared between all the surrogate strains and M. tuberculosis. We consider that M. aurum might be used in high-throughput screening for tuberculosis drug discovery. We also highly recommend the use of different model species during the drug discovery screening process.

  7. A Performance/Cost Evaluation for a GPU-Based Drug Discovery Application on Volunteer Computing

    Directory of Open Access Journals (Sweden)

    Ginés D. Guerrero

    2014-01-01

    Full Text Available Bioinformatics is an interdisciplinary research field that develops tools for the analysis of large biological databases, and, thus, the use of high performance computing (HPC platforms is mandatory for the generation of useful biological knowledge. The latest generation of graphics processing units (GPUs has democratized the use of HPC as they push desktop computers to cluster-level performance. Many applications within this field have been developed to leverage these powerful and low-cost architectures. However, these applications still need to scale to larger GPU-based systems to enable remarkable advances in the fields of healthcare, drug discovery, genome research, etc. The inclusion of GPUs in HPC systems exacerbates power and temperature issues, increasing the total cost of ownership (TCO. This paper explores the benefits of volunteer computing to scale bioinformatics applications as an alternative to own large GPU-based local infrastructures. We use as a benchmark a GPU-based drug discovery application called BINDSURF that their computational requirements go beyond a single desktop machine. Volunteer computing is presented as a cheap and valid HPC system for those bioinformatics applications that need to process huge amounts of data and where the response time is not a critical factor.

  8. Lessons from hot spot analysis for fragment-based drug discovery

    Science.gov (United States)

    Hall, David R.; Vajda, Sandor

    2015-01-01

    Analysis of binding energy hot spots at protein surfaces can provide crucial insights into the prospects for successful application of fragment-based drug discovery (FBDD), and whether a fragment hit can be advanced into a high affinity, druglike ligand. The key factor is the strength of the top ranking hot spot, and how well a given fragment complements it. We show that published data are sufficient to provide a sophisticated and quantitative understanding of how hot spots derive from protein three-dimensional structure, and how their strength, number and spatial arrangement govern the potential for a surface site to bind to fragment-sized and larger ligands. This improved understanding provides important guidance for the effective application of FBDD in drug discovery. PMID:26538314

  9. Text mining-based in silico drug discovery in oral mucositis caused by high-dose cancer therapy.

    Science.gov (United States)

    Kirk, Jon; Shah, Nirav; Noll, Braxton; Stevens, Craig B; Lawler, Marshall; Mougeot, Farah B; Mougeot, Jean-Luc C

    2018-08-01

    Oral mucositis (OM) is a major dose-limiting side effect of chemotherapy and radiation used in cancer treatment. Due to the complex nature of OM, currently available drug-based treatments are of limited efficacy. Our objectives were (i) to determine genes and molecular pathways associated with OM and wound healing using computational tools and publicly available data and (ii) to identify drugs formulated for topical use targeting the relevant OM molecular pathways. OM and wound healing-associated genes were determined by text mining, and the intersection of the two gene sets was selected for gene ontology analysis using the GeneCodis program. Protein interaction network analysis was performed using STRING-db. Enriched gene sets belonging to the identified pathways were queried against the Drug-Gene Interaction database to find drug candidates for topical use in OM. Our analysis identified 447 genes common to both the "OM" and "wound healing" text mining concepts. Gene enrichment analysis yielded 20 genes representing six pathways and targetable by a total of 32 drugs which could possibly be formulated for topical application. A manual search on ClinicalTrials.gov confirmed no relevant pathway/drug candidate had been overlooked. Twenty-five of the 32 drugs can directly affect the PTGS2 (COX-2) pathway, the pathway that has been targeted in previous clinical trials with limited success. Drug discovery using in silico text mining and pathway analysis tools can facilitate the identification of existing drugs that have the potential of topical administration to improve OM treatment.

  10. Stem cells: a model for screening, discovery and development of drugs

    Directory of Open Access Journals (Sweden)

    Kitambi SS

    2011-09-01

    Full Text Available Satish Srinivas Kitambi1, Gayathri Chandrasekar21Department of Medical Biochemistry and Biophysics; 2Department of Biosciences, Karolinska Institutet, Stockholm, SwedenAbstract: The identification of normal and cancerous stem cells and the recent advances made in isolation and culture of stem cells have rapidly gained attention in the field of drug discovery and regenerative medicine. The prospect of performing screens aimed at proliferation, directed differentiation, and toxicity and efficacy studies using stem cells offers a reliable platform for the drug discovery process. Advances made in the generation of induced pluripotent stem cells from normal or diseased tissue serves as a platform to perform drug screens aimed at developing cell-based therapies against conditions like Parkinson's disease and diabetes. This review discusses the application of stem cells and cancer stem cells in drug screening and their role in complementing, reducing, and replacing animal testing. In addition to this, target identification and major advances in the field of personalized medicine using induced pluripotent cells are also discussed.Keywords: therapeutics, stem cells, cancer stem cells, screening models, drug development, high throughput screening

  11. Bringing your tools to CyVerse Discovery Environment using Docker.

    Science.gov (United States)

    Devisetty, Upendra Kumar; Kennedy, Kathleen; Sarando, Paul; Merchant, Nirav; Lyons, Eric

    2016-01-01

    Docker has become a very popular container-based virtualization platform for software distribution that has revolutionized the way in which scientific software and software dependencies (software stacks) can be packaged, distributed, and deployed. Docker makes the complex and time-consuming installation procedures needed for scientific software a one-time process. Because it enables platform-independent installation, versioning of software environments, and easy redeployment and reproducibility, Docker is an ideal candidate for the deployment of identical software stacks on different compute environments such as XSEDE and Amazon AWS. CyVerse's Discovery Environment also uses Docker for integrating its powerful, community-recommended software tools into CyVerse's production environment for public use. This paper will help users bring their tools into CyVerse Discovery Environment (DE) which will not only allows users to integrate their tools with relative ease compared to the earlier method of tool deployment in DE but will also help users to share their apps with collaborators and release them for public use.

  12. User Driven Development of Software Tools for Open Data Discovery and Exploration

    Science.gov (United States)

    Schlobinski, Sascha; Keppel, Frank; Dihe, Pascal; Boot, Gerben; Falkenroth, Esa

    2016-04-01

    The use of open data in research faces challenges not restricted to inherent properties such as data quality, resolution of open data sets. Often Open data is catalogued insufficiently or fragmented. Software tools that support the effective discovery including the assessment of the data's appropriateness for research have shortcomings such as the lack of essential functionalities like support for data provenance. We believe that one of the reasons is the neglect of real end users requirements in the development process of aforementioned software tools. In the context of the FP7 Switch-On project we have pro-actively engaged the relevant user user community to collaboratively develop a means to publish, find and bind open data relevant for hydrologic research. Implementing key concepts of data discovery and exploration we have used state of the art web technologies to provide an interactive software tool that is easy to use yet powerful enough to satisfy the data discovery and access requirements of the hydrological research community.

  13. Dynamic Docking: A Paradigm Shift in Computational Drug Discovery

    Directory of Open Access Journals (Sweden)

    Dario Gioia

    2017-11-01

    Full Text Available Molecular docking is the methodology of choice for studying in silico protein-ligand binding and for prioritizing compounds to discover new lead candidates. Traditional docking simulations suffer from major limitations, mostly related to the static or semi-flexible treatment of ligands and targets. They also neglect solvation and entropic effects, which strongly limits their predictive power. During the last decade, methods based on full atomistic molecular dynamics (MD have emerged as a valid alternative for simulating macromolecular complexes. In principle, compared to traditional docking, MD allows the full exploration of drug-target recognition and binding from both the mechanistic and energetic points of view (dynamic docking. Binding and unbinding kinetic constants can also be determined. While dynamic docking is still too computationally expensive to be routinely used in fast-paced drug discovery programs, the advent of faster computing architectures and advanced simulation methodologies are changing this scenario. It is feasible that dynamic docking will replace static docking approaches in the near future, leading to a major paradigm shift in in silico drug discovery. Against this background, we review the key achievements that have paved the way for this progress.

  14. Fungal Anticancer Metabolites: Synthesis Towards Drug Discovery.

    Science.gov (United States)

    Barbero, Margherita; Artuso, Emma; Prandi, Cristina

    2018-01-01

    Fungi are a well-known and valuable source of compounds of therapeutic relevance, in particular of novel anticancer compounds. Although seldom obtainable through isolation from the natural source, the total organic synthesis still remains one of the most efficient alternatives to resupply them. Furthermore, natural product total synthesis is a valuable tool not only for discovery of new complex biologically active compounds but also for the development of innovative methodologies in enantioselective organic synthesis. We undertook an in-depth literature searching by using chemical bibliographic databases (SciFinder, Reaxys) in order to have a comprehensive insight into the wide research field. The literature has been then screened, refining the obtained results by subject terms focused on both biological activity and innovative synthetic procedures. The literature on fungal metabolites has been recently reviewed and these publications have been used as a base from which we consider the synthetic feasibility of the most promising compounds, in terms of anticancer properties and drug development. In this paper, compounds are classified according to their chemical structure. This review summarizes the anticancer potential of fungal metabolites, highlighting the role of total synthesis outlining the feasibility of innovative synthetic procedures that facilitate the development of fungal metabolites into drugs that may become a real future perspective. To our knowledge, this review is the first effort to deal with the total synthesis of these active fungi metabolites and demonstrates that total chemical synthesis is a fruitful means of yielding fungal derivatives as aided by recent technological and innovative advancements. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. A kernel for open source drug discovery in tropical diseases.

    Science.gov (United States)

    Ortí, Leticia; Carbajo, Rodrigo J; Pieper, Ursula; Eswar, Narayanan; Maurer, Stephen M; Rai, Arti K; Taylor, Ginger; Todd, Matthew H; Pineda-Lucena, Antonio; Sali, Andrej; Marti-Renom, Marc A

    2009-01-01

    Conventional patent-based drug development incentives work badly for the developing world, where commercial markets are usually small to non-existent. For this reason, the past decade has seen extensive experimentation with alternative R&D institutions ranging from private-public partnerships to development prizes. Despite extensive discussion, however, one of the most promising avenues-open source drug discovery-has remained elusive. We argue that the stumbling block has been the absence of a critical mass of preexisting work that volunteers can improve through a series of granular contributions. Historically, open source software collaborations have almost never succeeded without such "kernels". HERE, WE USE A COMPUTATIONAL PIPELINE FOR: (i) comparative structure modeling of target proteins, (ii) predicting the localization of ligand binding sites on their surfaces, and (iii) assessing the similarity of the predicted ligands to known drugs. Our kernel currently contains 143 and 297 protein targets from ten pathogen genomes that are predicted to bind a known drug or a molecule similar to a known drug, respectively. The kernel provides a source of potential drug targets and drug candidates around which an online open source community can nucleate. Using NMR spectroscopy, we have experimentally tested our predictions for two of these targets, confirming one and invalidating the other. The TDI kernel, which is being offered under the Creative Commons attribution share-alike license for free and unrestricted use, can be accessed on the World Wide Web at http://www.tropicaldisease.org. We hope that the kernel will facilitate collaborative efforts towards the discovery of new drugs against parasites that cause tropical diseases.

  16. Medicinal chemistry in drug discovery in big pharma: past, present and future.

    Science.gov (United States)

    Campbell, Ian B; Macdonald, Simon J F; Procopiou, Panayiotis A

    2018-02-01

    The changes in synthetic and medicinal chemistry and related drug discovery science as practiced in big pharma over the past few decades are described. These have been predominantly driven by wider changes in society namely the computer, internet and globalisation. Thoughts about the future of medicinal chemistry are also discussed including sharing the risks and costs of drug discovery and the future of outsourcing. The continuing impact of access to substantial computing power and big data, the use of algorithms in data analysis and drug design are also presented. The next generation of medicinal chemists will communicate in ways that reflect social media and the results of constantly being connected to each other and data. Copyright © 2017. Published by Elsevier Ltd.

  17. FLIPR assays of intracellular calcium in GPCR drug discovery

    DEFF Research Database (Denmark)

    Hansen, Kasper Bø; Bräuner-Osborne, Hans

    2009-01-01

    Fluorescent dyes sensitive to changes in intracellular calcium have become increasingly popular in G protein-coupled receptor (GPCR) drug discovery for several reasons. First of all, the assays using the dyes are easy to perform and are of low cost compared to other assays. Second, most non...

  18. Applicability of bioanalysis of multiple analytes in drug discovery and development: review of select case studies including assay development considerations.

    Science.gov (United States)

    Srinivas, Nuggehally R

    2006-05-01

    The development of sound bioanalytical method(s) is of paramount importance during the process of drug discovery and development culminating in a marketing approval. Although the bioanalytical procedure(s) originally developed during the discovery stage may not necessarily be fit to support the drug development scenario, they may be suitably modified and validated, as deemed necessary. Several reviews have appeared over the years describing analytical approaches including various techniques, detection systems, automation tools that are available for an effective separation, enhanced selectivity and sensitivity for quantitation of many analytes. The intention of this review is to cover various key areas where analytical method development becomes necessary during different stages of drug discovery research and development process. The key areas covered in this article with relevant case studies include: (a) simultaneous assay for parent compound and metabolites that are purported to display pharmacological activity; (b) bioanalytical procedures for determination of multiple drugs in combating a disease; (c) analytical measurement of chirality aspects in the pharmacokinetics, metabolism and biotransformation investigations; (d) drug monitoring for therapeutic benefits and/or occupational hazard; (e) analysis of drugs from complex and/or less frequently used matrices; (f) analytical determination during in vitro experiments (metabolism and permeability related) and in situ intestinal perfusion experiments; (g) determination of a major metabolite as a surrogate for the parent molecule; (h) analytical approaches for universal determination of CYP450 probe substrates and metabolites; (i) analytical applicability to prodrug evaluations-simultaneous determination of prodrug, parent and metabolites; (j) quantitative determination of parent compound and/or phase II metabolite(s) via direct or indirect approaches; (k) applicability in analysis of multiple compounds in select

  19. Bioactive secondary metabolites from marine microbes for drug discovery.

    Science.gov (United States)

    Nikapitiya, Chamilani

    2012-01-01

    The isolation and extraction of novel bioactive secondary metabolites from marine microorganisms have a biomedical potential for future drug discovery as the oceans cover 70% of the planet's surface and life on earth originates from sea. Wide range of novel bioactive secondary metabolites exhibiting pharmacodynamic properties has been isolated from marine microorganisms and many to be discovered. The compounds isolated from marine organisms (macro and micro) are important in their natural form and also as templates for synthetic modifications for the treatments for variety of deadly to minor diseases. Many technical issues are yet to overcome before wide-scale bioprospecting of marine microorganisms becomes a reality. This chapter focuses on some novel secondary metabolites having antitumor, antivirus, enzyme inhibitor, and other bioactive properties identified and isolated from marine microorganisms including bacteria, actinomycetes, fungi, and cyanobacteria, which could serve as potentials for drug discovery after their clinical trials. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Competitive intelligence and patent analysis in drug discovery.

    Science.gov (United States)

    Grandjean, Nicolas; Charpiot, Brigitte; Pena, Carlos Andres; Peitsch, Manuel C

    2005-01-01

    Patents are a major source of information in drug discovery and, when properly processed and analyzed, can yield a wealth of information on competitors activities, R&D trends, emerging fields, collaborations, among others. This review discusses the current state-of-the-art in textual data analysis and exploration methods as applied to patent analysis.: © 2005 Elsevier Ltd . All rights reserved.

  1. A high content screening assay to predict human drug-induced liver injury during drug discovery.

    Science.gov (United States)

    Persson, Mikael; Løye, Anni F; Mow, Tomas; Hornberg, Jorrit J

    2013-01-01

    Adverse drug reactions are a major cause for failures of drug development programs, drug withdrawals and use restrictions. Early hazard identification and diligent risk avoidance strategies are therefore essential. For drug-induced liver injury (DILI), this is difficult using conventional safety testing. To reduce the risk for DILI, drug candidates with a high risk need to be identified and deselected. And, to produce drug candidates without that risk associated, risk factors need to be assessed early during drug discovery, such that lead series can be optimized on safety parameters. This requires methods that allow for medium-to-high throughput compound profiling and that generate quantitative results suitable to establish structure-activity-relationships during lead optimization programs. We present the validation of such a method, a novel high content screening assay based on six parameters (nuclei counts, nuclear area, plasma membrane integrity, lysosomal activity, mitochondrial membrane potential (MMP), and mitochondrial area) using ~100 drugs of which the clinical hepatotoxicity profile is known. We find that a 100-fold TI between the lowest toxic concentration and the therapeutic Cmax is optimal to classify compounds as hepatotoxic or non-hepatotoxic, based on the individual parameters. Most parameters have ~50% sensitivity and ~90% specificity. Drugs hitting ≥2 parameters at a concentration below 100-fold their Cmax are typically hepatotoxic, whereas non-hepatotoxic drugs typically hit based on nuclei count, MMP and human Cmax, we identified an area without a single false positive, while maintaining 45% sensitivity. Hierarchical clustering using the multi-parametric dataset roughly separates toxic from non-toxic compounds. We employ the assay in discovery projects to prioritize novel compound series during hit-to-lead, to steer away from a DILI risk during lead optimization, for risk assessment towards candidate selection and to provide guidance of safe

  2. Advances in immobilized artificial membrane (IAM) chromatography for novel drug discovery.

    Science.gov (United States)

    Tsopelas, Fotios; Vallianatou, Theodosia; Tsantili-Kakoulidou, Anna

    2016-01-01

    The development of immobilized artificial membrane (IAM) chromatography has unfolded new perspectives for the use of chromatographic techniques in drug discovery, combining simulation of the environment of cell membranes with rapid measurements. The present review describes the characteristics of phosphatidylcholine-based stationary phases and analyses the molecular factors governing IAM retention in comparison to n-octanol-water and liposomes partitioning systems as well as to reversed phase chromatography. Other biomimetic stationary phases are also briefly discussed. The potential of IAM chromatography to model permeability through the main physiological barriers and drug membrane interactions is outlined. Further applications to calculate complex pharmacokinetic properties, related to tissue binding, and to screen drug candidates for phospholipidosis, as well as to estimate cell accumulation/retention are surveyed. The ambivalent nature of IAM chromatography, as a border case between passive diffusion and binding, defines its multiple potential applications. However, despite its successful performance in many permeability and drug-membrane interactions studies, IAM chromatography is still used as a supportive and not a stand-alone technique. Further studies looking at IAM chromatography in different biological processes are still required if this technique is to have a more focused and consistent application in drug discovery.

  3. Machine Learning-based Virtual Screening and Its Applications to Alzheimer's Drug Discovery: A Review.

    Science.gov (United States)

    Carpenter, Kristy A; Huang, Xudong

    2018-06-07

    Virtual Screening (VS) has emerged as an important tool in the drug development process, as it conducts efficient in silico searches over millions of compounds, ultimately increasing yields of potential drug leads. As a subset of Artificial Intelligence (AI), Machine Learning (ML) is a powerful way of conducting VS for drug leads. ML for VS generally involves assembling a filtered training set of compounds, comprised of known actives and inactives. After training the model, it is validated and, if sufficiently accurate, used on previously unseen databases to screen for novel compounds with desired drug target binding activity. The study aims to review ML-based methods used for VS and applications to Alzheimer's disease (AD) drug discovery. To update the current knowledge on ML for VS, we review thorough backgrounds, explanations, and VS applications of the following ML techniques: Naïve Bayes (NB), k-Nearest Neighbors (kNN), Support Vector Machines (SVM), Random Forests (RF), and Artificial Neural Networks (ANN). All techniques have found success in VS, but the future of VS is likely to lean more heavily toward the use of neural networks - and more specifically, Convolutional Neural Networks (CNN), which are a subset of ANN that utilize convolution. We additionally conceptualize a work flow for conducting ML-based VS for potential therapeutics of for AD, a complex neurodegenerative disease with no known cure and prevention. This both serves as an example of how to apply the concepts introduced earlier in the review and as a potential workflow for future implementation. Different ML techniques are powerful tools for VS, and they have advantages and disadvantages albeit. ML-based VS can be applied to AD drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. [Chapter 2. Transitions in drug-discovery technology and drug-development in Japan (1980-2010)].

    Science.gov (United States)

    Sakakibara, Noriko; Yoshioka, Ryuzo; Matsumoto, Kazuo

    2014-01-01

    In 1970s, the material patent system was introduced in Japan. Since then, many Japanese pharmaceutical companies have endeavored to create original in-house products. From 1980s, many of the innovative products were small molecular drugs and were developed using powerful medicinal-chemical technologies. Among them were antibiotics and effective remedies for the digestive organs and circulatory organs. During this period, Japanese companies were able to launch some blockbuster drugs. At the same time, the pharmaceutical market, which had grown rapidly for two decades, was beginning to level off. From the late 1990s, drug development was slowing down due to the lack of expertise in biotechnology such as genetic engineering. In response to the circumstances, the research and development on biotechnology-based drugs such as antibody drugs have become more dynamic and popular at companies than small molecule drugs. In this paper, the writers reviewed in detail the transitions in drug discovery and development between 1980 and 2010.

  5. Open Access Target Validation Is a More Efficient Way to Accelerate Drug Discovery

    Science.gov (United States)

    Lee, Wen Hwa

    2015-01-01

    There is a scarcity of novel treatments to address many unmet medical needs. Industry and academia are finally coming to terms with the fact that the prevalent models and incentives for innovation in early stage drug discovery are failing to promote progress quickly enough. Here we will examine how an open model of precompetitive public–private research partnership is enabling efficient derisking and acceleration in the early stages of drug discovery, whilst also widening the range of communities participating in the process, such as patient and disease foundations. PMID:26042736

  6. Discovery Mondays: Surveyors' Tools

    CERN Multimedia

    2003-01-01

    Surveyors of all ages, have your rulers and compasses at the ready! This sixth edition of Discovery Monday is your chance to learn about the surveyor's tools - the state of the art in measuring instruments - and see for yourself how they work. With their usual daunting precision, the members of CERN's Surveying Group have prepared some demonstrations and exercises for you to try. Find out the techniques for ensuring accelerator alignment and learn about high-tech metrology systems such as deviation indicators, tracking lasers and total stations. The surveyors will show you how they precisely measure magnet positioning, with accuracy of a few thousandths of a millimetre. You can try your hand at precision measurement using different types of sensor and a modern-day version of the Romans' bubble level, accurate to within a thousandth of a millimetre. You will learn that photogrammetry techniques can transform even a simple digital camera into a remarkable measuring instrument. Finally, you will have a chance t...

  7. Institutional profile: the national Swedish academic drug discovery & development platform at SciLifeLab.

    Science.gov (United States)

    Arvidsson, Per I; Sandberg, Kristian; Sakariassen, Kjell S

    2017-06-01

    The Science for Life Laboratory Drug Discovery and Development Platform (SciLifeLab DDD) was established in Stockholm and Uppsala, Sweden, in 2014. It is one of ten platforms of the Swedish national SciLifeLab which support projects run by Swedish academic researchers with large-scale technologies for molecular biosciences with a focus on health and environment. SciLifeLab was created by the coordinated effort of four universities in Stockholm and Uppsala: Stockholm University, Karolinska Institutet, KTH Royal Institute of Technology and Uppsala University, and has recently expanded to other Swedish university locations. The primary goal of the SciLifeLab DDD is to support selected academic discovery and development research projects with tools and resources to discover novel lead therapeutics, either molecules or human antibodies. Intellectual property developed with the help of SciLifeLab DDD is wholly owned by the academic research group. The bulk of SciLifeLab DDD's research and service activities are funded from the Swedish state, with only consumables paid by the academic research group through individual grants.

  8. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations.

    Science.gov (United States)

    Cournia, Zoe; Allen, Bryce; Sherman, Woody

    2017-12-26

    Accurate in silico prediction of protein-ligand binding affinities has been a primary objective of structure-based drug design for decades due to the putative value it would bring to the drug discovery process. However, computational methods have historically failed to deliver value in real-world drug discovery applications due to a variety of scientific, technical, and practical challenges. Recently, a family of approaches commonly referred to as relative binding free energy (RBFE) calculations, which rely on physics-based molecular simulations and statistical mechanics, have shown promise in reliably generating accurate predictions in the context of drug discovery projects. This advance arises from accumulating developments in the underlying scientific methods (decades of research on force fields and sampling algorithms) coupled with vast increases in computational resources (graphics processing units and cloud infrastructures). Mounting evidence from retrospective validation studies, blind challenge predictions, and prospective applications suggests that RBFE simulations can now predict the affinity differences for congeneric ligands with sufficient accuracy and throughput to deliver considerable value in hit-to-lead and lead optimization efforts. Here, we present an overview of current RBFE implementations, highlighting recent advances and remaining challenges, along with examples that emphasize practical considerations for obtaining reliable RBFE results. We focus specifically on relative binding free energies because the calculations are less computationally intensive than absolute binding free energy (ABFE) calculations and map directly onto the hit-to-lead and lead optimization processes, where the prediction of relative binding energies between a reference molecule and new ideas (virtual molecules) can be used to prioritize molecules for synthesis. We describe the critical aspects of running RBFE calculations, from both theoretical and applied perspectives

  9. Protein-Templated Fragment Ligations-From Molecular Recognition to Drug Discovery.

    Science.gov (United States)

    Jaegle, Mike; Wong, Ee Lin; Tauber, Carolin; Nawrotzky, Eric; Arkona, Christoph; Rademann, Jörg

    2017-06-19

    Protein-templated fragment ligation is a novel concept to support drug discovery and can help to improve the efficacy of protein ligands. Protein-templated fragment ligations are chemical reactions between small molecules ("fragments") utilizing a protein's surface as a reaction vessel to catalyze the formation of a protein ligand with increased binding affinity. The approach exploits the molecular recognition of reactive small-molecule fragments by proteins both for ligand assembly and for the identification of bioactive fragment combinations. In this way, chemical synthesis and bioassay are integrated in one single step. This Review discusses the biophysical basis of reversible and irreversible fragment ligations and gives an overview of the available methods to detect protein-templated ligation products. The chemical scope and recent applications as well as future potential of the concept in drug discovery are reviewed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The current state of GPCR-based drug discovery to treat metabolic disease.

    Science.gov (United States)

    Sloop, Kyle W; Emmerson, Paul J; Statnick, Michael A; Willard, Francis S

    2018-02-02

    One approach of modern drug discovery is to identify agents that enhance or diminish signal transduction cascades in various cell types and tissues by modulating the activity of GPCRs. This strategy has resulted in the development of new medicines to treat many conditions, including cardiovascular disease, psychiatric disorders, HIV/AIDS, certain forms of cancer and Type 2 diabetes mellitus (T2DM). These successes justify further pursuit of GPCRs as disease targets and provide key learning that should help guide identifying future therapeutic agents. This report reviews the current landscape of GPCR drug discovery with emphasis on efforts aimed at developing new molecules for treating T2DM and obesity. We analyse historical efforts to generate GPCR-based drugs to treat metabolic disease in terms of causal factors leading to success and failure in this endeavour. © 2018 The British Pharmacological Society.

  11. Integrity, standards, and QC-related issues with big data in pre-clinical drug discovery.

    Science.gov (United States)

    Brothers, John F; Ung, Matthew; Escalante-Chong, Renan; Ross, Jermaine; Zhang, Jenny; Cha, Yoonjeong; Lysaght, Andrew; Funt, Jason; Kusko, Rebecca

    2018-06-01

    The tremendous expansion of data analytics and public and private big datasets presents an important opportunity for pre-clinical drug discovery and development. In the field of life sciences, the growth of genetic, genomic, transcriptomic and proteomic data is partly driven by a rapid decline in experimental costs as biotechnology improves throughput, scalability, and speed. Yet far too many researchers tend to underestimate the challenges and consequences involving data integrity and quality standards. Given the effect of data integrity on scientific interpretation, these issues have significant implications during preclinical drug development. We describe standardized approaches for maximizing the utility of publicly available or privately generated biological data and address some of the common pitfalls. We also discuss the increasing interest to integrate and interpret cross-platform data. Principles outlined here should serve as a useful broad guide for existing analytical practices and pipelines and as a tool for developing additional insights into therapeutics using big data. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Brown-Like Adipocyte Progenitors Derived from Human iPS Cells: A New Tool for Anti-obesity Drug Discovery and Cell-Based Therapy?

    Science.gov (United States)

    Yao, Xi; Salingova, Barbara; Dani, Christian

    2018-04-10

    Alternative strategies are urgently required to fight obesity and associated metabolic disorders including diabetes and cardiovascular diseases. Brown and brown-like adipocytes (BAs) store fat, but in contrast to white adipocytes, activated BAs are equipped to dissipate energy stored. Therefore, BAs represent promising cell targets to counteract obesity. However, the scarcity of BAs in adults is a major limitation for a BA-based therapy of obesity, and the notion to increase the BA mass by transplanting BA progenitors (BAPs) in obese patients recently emerged. The next challenge is to identify an abundant and reliable source of BAPs. In this chapter, we describe the capacity of human-induced pluripotent stem cells (hiPSCs) to generate BAPs able to differentiate at a high efficiency with no gene transfer. This cell model represents an unlimited source of human BAPs that in a near future may be a suitable tool for both therapeutic transplantation and for the discovery of novel efficient and safe anti-obesity drugs. The generation of a relevant cell model, such as hiPSC-BAs in 3D adipospheres enriched with macrophages and endothelial cells to better mimic the microenvironment within the adipose tissue, will be the next critical step.

  13. Harnessing the potential of natural products in drug discovery from a cheminformatics vantage point.

    Science.gov (United States)

    Rodrigues, Tiago

    2017-11-15

    Natural products (NPs) present a privileged source of inspiration for chemical probe and drug design. Despite the biological pre-validation of the underlying molecular architectures and their relevance in drug discovery, the poor accessibility to NPs, complexity of the synthetic routes and scarce knowledge of their macromolecular counterparts in phenotypic screens still hinder their broader exploration. Cheminformatics algorithms now provide a powerful means of circumventing the abovementioned challenges and unlocking the full potential of NPs in a drug discovery context. Herein, I discuss recent advances in the computer-assisted design of NP mimics and how artificial intelligence may accelerate future NP-inspired molecular medicine.

  14. Discovery and Development of Therapeutic Drugs against Lethal Human RNA Viruses: a Multidisciplinary Assault.

    Science.gov (United States)

    1991-07-16

    AD-A239 742 AD GRANT NO: DAMD17-89-Z-9021 TITLE: DISCOVERY AND DEVELOPMENT OF THERAPEUTIC DRUGS AGAINST LETHAL HUMAN RNA VIRUSES: A MULTIDISCIPLINARY...62787A871 AB WrJDA317987 11. TITLE (Include Securty Classification) DISCOVERY AND DEVELOPMENT OF THERAPEUTIC DRUGS AGAINST LETHAL HUMAN RNA VIRUSES: A...G. R. Pettit, III, D.-S. Huang, and G. R. Pettit, 23rd Int’l. Horticulture Congress, Italy, 8/27 - 9/1/90. "Bryostatins Define the Role of Protein

  15. Toxicophore exploration as a screening technology for drug design and discovery: techniques, scope and limitations.

    Science.gov (United States)

    Singh, Pankaj Kumar; Negi, Arvind; Gupta, Pawan Kumar; Chauhan, Monika; Kumar, Raj

    2016-08-01

    Toxicity is a common drawback of newly designed chemotherapeutic agents. With the exception of pharmacophore-induced toxicity (lack of selectivity at higher concentrations of a drug), the toxicity due to chemotherapeutic agents is based on the toxicophore moiety present in the drug. To date, methodologies implemented to determine toxicophores may be broadly classified into biological, bioanalytical and computational approaches. The biological approach involves analysis of bioactivated metabolites, whereas the computational approach involves a QSAR-based method, mapping techniques, an inverse docking technique and a few toxicophore identification/estimation tools. Being one of the major steps in drug discovery process, toxicophore identification has proven to be an essential screening step in drug design and development. The paper is first of its kind, attempting to cover and compare different methodologies employed in predicting and determining toxicophores with an emphasis on their scope and limitations. Such information may prove vital in the appropriate selection of methodology and can be used as screening technology by researchers to discover the toxicophoric potentials of their designed and synthesized moieties. Additionally, it can be utilized in the manipulation of molecules containing toxicophores in such a manner that their toxicities might be eliminated or removed.

  16. RNA Editing and Drug Discovery for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Wei-Hsuan Huang

    2013-01-01

    Full Text Available RNA editing is vital to provide the RNA and protein complexity to regulate the gene expression. Correct RNA editing maintains the cell function and organism development. Imbalance of the RNA editing machinery may lead to diseases and cancers. Recently, RNA editing has been recognized as a target for drug discovery although few studies targeting RNA editing for disease and cancer therapy were reported in the field of natural products. Therefore, RNA editing may be a potential target for therapeutic natural products. In this review, we provide a literature overview of the biological functions of RNA editing on gene expression, diseases, cancers, and drugs. The bioinformatics resources of RNA editing were also summarized.

  17. Metabolomics As a Tool for the Characterization of Drug-Resistant Epilepsy.

    Science.gov (United States)

    Murgia, Federica; Muroni, Antonella; Puligheddu, Monica; Polizzi, Lorenzo; Barberini, Luigi; Orofino, Gianni; Solla, Paolo; Poddighe, Simone; Del Carratore, Francesco; Griffin, Julian L; Atzori, Luigi; Marrosu, Francesco

    2017-01-01

    Drug resistance is a critical issue in the treatment of epilepsy, contributing to clinical emergencies and increasing both serious social and economic burdens on the health system. The wide variety of potential drug combinations followed by often failed consecutive attempts to match drugs to an individual patient may mean that this treatment stage may last for years with suboptimal benefit to the patient. Given these challenges, it is valuable to explore the availability of new methodologies able to shorten the period of determining a rationale pharmacologic treatment. Metabolomics could provide such a tool to investigate possible markers of drug resistance in subjects with epilepsy. Blood samples were collected from (1) controls (C) ( n  = 35), (2) patients with epilepsy "responder" (R) ( n  = 18), and (3) patients with epilepsy "non-responder" (NR) ( n  = 17) to the drug therapy. The samples were analyzed using nuclear magnetic resonance spectroscopy, followed by multivariate statistical analysis. A different metabolic profile based on metabolomics analysis of the serum was observed between C and patients with epilepsy and also between R and NR patients. It was possible to identify the discriminant metabolites for the three classes under investigation. Serum from patients with epilepsy were characterized by increased levels of 3-OH-butyrate, 2-OH-valerate, 2-OH-butyrate, acetoacetate, acetone, acetate, choline, alanine, glutamate, scyllo-inositol (C lactate, and citrate compared to C (C > R > NR). In conclusion, metabolomics may represent an important tool for discovery of differences between subjects affected by epilepsy responding or resistant to therapies and for the study of its pathophysiology, optimizing the therapeutic resources and the quality of life of patients.

  18. 3D in vitro technology for drug discovery.

    Science.gov (United States)

    Hosseinkhani, Hossein

    2012-02-01

    Three-dimensional (3D) in vitro systems that can mimic organ and tissue structure and function in vivo, will be of great benefit for a variety of biological applications from basic biology to toxicity testing and drug discovery. There have been several attempts to generate 3D tissue models but most of these models require costly equipment, and the most serious disadvantage in them is that they are too far from the mature human organs in vivo. Because of these problems, research and development in drug discovery, toxicity testing and biotech industries are highly expensive, and involve sacrifice of countless animals and it takes several years to bring a single drug/product to the market or to find the toxicity or otherwise of chemical entities. Our group has been actively working on several alternative models by merging biomaterials science, nanotechnology and biological principles to generate 3D in vitro living organs, to be called "Human Organs-on-Chip", to mimic natural organ/tissues, in order to reduce animal testing and clinical trials. We have fabricated a novel type of mechanically and biologically bio-mimicking collagen-based hydrogel that would provide for interconnected mini-wells in which 3D cell/organ culture of human samples in a manner similar to human organs with extracellular matrix (ECM) molecules would be possible. These products mimic the physical, chemical, and biological properties of natural organs and tissues at different scales. This paper will review the outcome of our several experiments so far in this direction and the future perspectives.

  19. The rise of fragment-based drug discovery.

    Science.gov (United States)

    Murray, Christopher W; Rees, David C

    2009-06-01

    The search for new drugs is plagued by high attrition rates at all stages in research and development. Chemists have an opportunity to tackle this problem because attrition can be traced back, in part, to the quality of the chemical leads. Fragment-based drug discovery (FBDD) is a new approach, increasingly used in the pharmaceutical industry, for reducing attrition and providing leads for previously intractable biological targets. FBDD identifies low-molecular-weight ligands (∼150 Da) that bind to biologically important macromolecules. The three-dimensional experimental binding mode of these fragments is determined using X-ray crystallography or NMR spectroscopy, and is used to facilitate their optimization into potent molecules with drug-like properties. Compared with high-throughput-screening, the fragment approach requires fewer compounds to be screened, and, despite the lower initial potency of the screening hits, offers more efficient and fruitful optimization campaigns. Here, we review the rise of FBDD, including its application to discovering clinical candidates against targets for which other chemistry approaches have struggled.

  20. Genetics of rheumatoid arthritis conributes to biology and drug discovery

    NARCIS (Netherlands)

    Okada, Yukinori; Wu, Di; Trynka, Gosia; Raj, Towfique; Terao, Chikashi; Ikari, Katsunori; Kochi, Yuta; Ohmura, Koichiro; Suzuki, A.; Yoshida, S.; Graham, R.R.; Manoharan, A.; Ortmann, W.; Bhangale, T.; Denny, J.C.; Carroll, R.J.; Eyler, A.E.; Greenberg, J.D.; Kremer, J.M.; Pappas, D.A.; Jiang, L.; Yin, L.; Ye, L.; Su, D.F.; Yang, J.; Xie, G.; Keystone, E.; Westra, H.J.; Esko, T.; Metspalu, A.; Zhou, X.; Gupta, N.; Mirel, D.; Stahl, Eli A.; Diogo, D.; Cui, J.; Liao, K.; Guo, M.H.; Myouzen, K.; Kawaguchi, T.; Coenen, M.J.; van Riel, P.L.; van de Laar, Mart A.F.J.; Guchelaar, H.J.; Huizinga, T.W.; Dieudé, P.; Mariette, X.; Louis Bridges Jr, S.; Zhernakova, A.; Toes, R.E.; Tak, P.P.; Miceli-Richard, C.; Bang, S.Y.; Lee, H.S.; Martin, J.; Gonzales-Gay, M.A.; Rodriguez-Rodriguez, L.; Rantapää-Dhlqvist, S.; Arlestig, L.; Choi, H.K.; Kamatani, Y.; Galan, P.; Lathrop, M.; Eyre, S.; Bowes, J.; Barton, A.; de Vries, N.; Moreland, L.W.; Criswell, L.A.; Karlson, E.W.; Taniguchi, A.; Yamada, R; Kubo, M.; Bae, S.C.; Worthington, J.; Padyukov, L.; Klareskog, L.; Gregersen, Peter K.; Raychaudhuri, S.; Stranger, B.E.; de Jager, P.L.; Franke, L.; Visscher, P.M.; Brown, M.A.; Yamanaka, H.; Mimori, T.; Takahashi, A.; Xu, H.; Behrens, T.W.; Siminovitch, K.A.; Momohara, S.; Matsuda, F.; Yamamoto, K.; Plenge, Robert M.

    2013-01-01

    A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological data sets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA)1. Here we performed

  1. Fluorescence lifetime assays: current advances and applications in drug discovery.

    Science.gov (United States)

    Pritz, Stephan; Doering, Klaus; Woelcke, Julian; Hassiepen, Ulrich

    2011-06-01

    Fluorescence lifetime assays complement the portfolio of established assay formats available in drug discovery, particularly with the recent advances in microplate readers and the commercial availability of novel fluorescent labels. Fluorescence lifetime assists in lowering complexity of compound screening assays, affording a modular, toolbox-like approach to assay development and yielding robust homogeneous assays. To date, materials and procedures have been reported for biochemical assays on proteases, as well as on protein kinases and phosphatases. This article gives an overview of two assay families, distinguished by the origin of the fluorescence signal modulation. The pharmaceutical industry demands techniques with a robust, integrated compound profiling process and short turnaround times. Fluorescence lifetime assays have already helped the drug discovery field, in this sense, by enhancing productivity during the hit-to-lead and lead optimization phases. Future work will focus on covering other biochemical molecular modifications by investigating the detailed photo-physical mechanisms underlying the fluorescence signal.

  2. Protein crystallography and drug discovery: recollections of knowledge exchange between academia and industry

    Directory of Open Access Journals (Sweden)

    Tom L. Blundell

    2017-07-01

    Full Text Available The development of structure-guided drug discovery is a story of knowledge exchange where new ideas originate from all parts of the research ecosystem. Dorothy Crowfoot Hodgkin obtained insulin from Boots Pure Drug Company in the 1930s and insulin crystallization was optimized in the company Novo in the 1950s, allowing the structure to be determined at Oxford University. The structure of renin was developed in academia, on this occasion in London, in response to a need to develop antihypertensives in pharma. The idea of a dimeric aspartic protease came from an international academic team and was discovered in HIV; it eventually led to new HIV antivirals being developed in industry. Structure-guided fragment-based discovery was developed in large pharma and biotechs, but has been exploited in academia for the development of new inhibitors targeting protein–protein interactions and also antimicrobials to combat mycobacterial infections such as tuberculosis. These observations provide a strong argument against the so-called `linear model', where ideas flow only in one direction from academic institutions to industry. Structure-guided drug discovery is a story of applications of protein crystallography and knowledge exhange between academia and industry that has led to new drug approvals for cancer and other common medical conditions by the Food and Drug Administration in the USA, as well as hope for the treatment of rare genetic diseases and infectious diseases that are a particular challenge in the developing world.

  3. Protein crystallography and drug discovery: recollections of knowledge exchange between academia and industry.

    Science.gov (United States)

    Blundell, Tom L

    2017-07-01

    The development of structure-guided drug discovery is a story of knowledge exchange where new ideas originate from all parts of the research ecosystem. Dorothy Crowfoot Hodgkin obtained insulin from Boots Pure Drug Company in the 1930s and insulin crystallization was optimized in the company Novo in the 1950s, allowing the structure to be determined at Oxford University. The structure of renin was developed in academia, on this occasion in London, in response to a need to develop antihypertensives in pharma. The idea of a dimeric aspartic protease came from an international academic team and was discovered in HIV; it eventually led to new HIV antivirals being developed in industry. Structure-guided fragment-based discovery was developed in large pharma and biotechs, but has been exploited in academia for the development of new inhibitors targeting protein-protein interactions and also antimicrobials to combat mycobacterial infections such as tuberculosis. These observations provide a strong argument against the so-called 'linear model', where ideas flow only in one direction from academic institutions to industry. Structure-guided drug discovery is a story of applications of protein crystallography and knowledge exhange between academia and industry that has led to new drug approvals for cancer and other common medical conditions by the Food and Drug Administration in the USA, as well as hope for the treatment of rare genetic diseases and infectious diseases that are a particular challenge in the developing world.

  4. Fragment based drug discovery: practical implementation based on ¹⁹F NMR spectroscopy.

    Science.gov (United States)

    Jordan, John B; Poppe, Leszek; Xia, Xiaoyang; Cheng, Alan C; Sun, Yax; Michelsen, Klaus; Eastwood, Heather; Schnier, Paul D; Nixey, Thomas; Zhong, Wenge

    2012-01-26

    Fragment based drug discovery (FBDD) is a widely used tool for discovering novel therapeutics. NMR is a powerful means for implementing FBDD, and several approaches have been proposed utilizing (1)H-(15)N heteronuclear single quantum coherence (HSQC) as well as one-dimensional (1)H and (19)F NMR to screen compound mixtures against a target of interest. While proton-based NMR methods of fragment screening (FBS) have been well documented and are widely used, the use of (19)F detection in FBS has been only recently introduced (Vulpetti et al. J. Am. Chem. Soc.2009, 131 (36), 12949-12959) with the aim of targeting "fluorophilic" sites in proteins. Here, we demonstrate a more general use of (19)F NMR-based fragment screening in several areas: as a key tool for rapid and sensitive detection of fragment hits, as a method for the rapid development of structure-activity relationship (SAR) on the hit-to-lead path using in-house libraries and/or commercially available compounds, and as a quick and efficient means of assessing target druggability.

  5. West Nile Virus Drug Discovery

    Directory of Open Access Journals (Sweden)

    Siew Pheng Lim

    2013-12-01

    Full Text Available The outbreak of West Nile virus (WNV in 1999 in the USA, and its continued spread throughout the Americas, parts of Europe, the Middle East and Africa, underscored the need for WNV antiviral development. Here, we review the current status of WNV drug discovery. A number of approaches have been used to search for inhibitors of WNV, including viral infection-based screening, enzyme-based screening, structure-based virtual screening, structure-based rationale design, and antibody-based therapy. These efforts have yielded inhibitors of viral or cellular factors that are critical for viral replication. For small molecule inhibitors, no promising preclinical candidate has been developed; most of the inhibitors could not even be advanced to the stage of hit-to-lead optimization due to their poor drug-like properties. However, several inhibitors developed for related members of the family Flaviviridae, such as dengue virus and hepatitis C virus, exhibited cross-inhibition of WNV, suggesting the possibility to re-purpose these antivirals for WNV treatment. Most promisingly, therapeutic antibodies have shown excellent efficacy in mouse model; one of such antibodies has been advanced into clinical trial. The knowledge accumulated during the past fifteen years has provided better rationale for the ongoing WNV and other flavivirus antiviral development.

  6. Candidiasis and the impact of flow cytometry on antifungal drug discovery.

    Science.gov (United States)

    Ku, Tsun Sheng N; Bernardo, Stella; Walraven, Carla J; Lee, Samuel A

    2017-11-01

    Invasive candidiasis continues to be associated with significant morbidity and mortality as well as substantial health care costs nationally and globally. One of the contributing factors is the development of resistance to antifungal agents that are already in clinical use. Moreover, there are known treatment limitations with all of the available antifungal agents. Since traditional techniques in novel drug discovery are time consuming, high-throughput screening using flow cytometry presents as a potential tool to identify new antifungal agents that would be useful in the management of these patients. Areas covered: In this review, the authors discuss the use of automated high-throughput screening assays based upon flow cytometry to identify potential antifungals from a library comprised of a large number of bioactive compounds. They also review studies that employed the use of this research methodology that has identified compounds with antifungal activity. Expert opinion: High-throughput screening using flow cytometry has substantially decreased the processing time necessary for screening thousands of compounds, and has helped enhance our understanding of fungal pathogenesis. Indeed, the authors see this technology as a powerful tool to help scientists identify new antifungal agents that can be added to the clinician's arsenal in their fight against invasive candidiasis.

  7. Trends in GPCR drug discovery: new agents, targets and indications.

    Science.gov (United States)

    Hauser, Alexander S; Attwood, Misty M; Rask-Andersen, Mathias; Schiöth, Helgi B; Gloriam, David E

    2017-12-01

    G protein-coupled receptors (GPCRs) are the most intensively studied drug targets, mostly due to their substantial involvement in human pathophysiology and their pharmacological tractability. Here, we report an up-to-date analysis of all GPCR drugs and agents in clinical trials, which reveals current trends across molecule types, drug targets and therapeutic indications, including showing that 475 drugs (~34% of all drugs approved by the US Food and Drug Administration (FDA)) act at 108 unique GPCRs. Approximately 321 agents are currently in clinical trials, of which ~20% target 66 potentially novel GPCR targets without an approved drug, and the number of biological drugs, allosteric modulators and biased agonists has increased. The major disease indications for GPCR modulators show a shift towards diabetes, obesity and Alzheimer disease, although several central nervous system disorders are also highly represented. The 224 (56%) non-olfactory GPCRs that have not yet been explored in clinical trials have broad untapped therapeutic potential, particularly in genetic and immune system disorders. Finally, we provide an interactive online resource to analyse and infer trends in GPCR drug discovery.

  8. ChEMBL web services: streamlining access to drug discovery data and utilities.

    Science.gov (United States)

    Davies, Mark; Nowotka, Michał; Papadatos, George; Dedman, Nathan; Gaulton, Anna; Atkinson, Francis; Bellis, Louisa; Overington, John P

    2015-07-01

    ChEMBL is now a well-established resource in the fields of drug discovery and medicinal chemistry research. The ChEMBL database curates and stores standardized bioactivity, molecule, target and drug data extracted from multiple sources, including the primary medicinal chemistry literature. Programmatic access to ChEMBL data has been improved by a recent update to the ChEMBL web services (version 2.0.x, https://www.ebi.ac.uk/chembl/api/data/docs), which exposes significantly more data from the underlying database and introduces new functionality. To complement the data-focused services, a utility service (version 1.0.x, https://www.ebi.ac.uk/chembl/api/utils/docs), which provides RESTful access to commonly used cheminformatics methods, has also been concurrently developed. The ChEMBL web services can be used together or independently to build applications and data processing workflows relevant to drug discovery and chemical biology. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Insights into Integrated Lead Generation and Target Identification in Malaria and Tuberculosis Drug Discovery.

    Science.gov (United States)

    Okombo, John; Chibale, Kelly

    2017-07-18

    New, safe and effective drugs are urgently needed to treat and control malaria and tuberculosis, which affect millions of people annually. However, financial return on investment in the poor settings where these diseases are mostly prevalent is very minimal to support market-driven drug discovery and development. Moreover, the imminent loss of therapeutic lifespan of existing therapies due to evolution and spread of drug resistance further compounds the urgency to identify novel effective drugs. However, the advent of new public-private partnerships focused on tropical diseases and the recent release of large data sets by pharmaceutical companies on antimalarial and antituberculosis compounds derived from phenotypic whole cell high throughput screening have spurred renewed interest and opened new frontiers in malaria and tuberculosis drug discovery. This Account recaps the existing challenges facing antimalarial and antituberculosis drug discovery, including limitations associated with experimental animal models as well as biological complexities intrinsic to the causative pathogens. We enlist various highlights from a body of work within our research group aimed at identifying and characterizing new chemical leads, and navigating these challenges to contribute toward the global drug discovery and development pipeline in malaria and tuberculosis. We describe a catalogue of in-house efforts toward deriving safe and efficacious preclinical drug development candidates via cell-based medicinal chemistry optimization of phenotypic whole-cell medium and high throughput screening hits sourced from various small molecule chemical libraries. We also provide an appraisal of target-based screening, as invoked in our laboratory for mechanistic evaluation of the hits generated, with particular focus on the enzymes within the de novo pyrimidine biosynthetic and hemoglobin degradation pathways, the latter constituting a heme detoxification process and an associated cysteine

  10. Hot-spot analysis for drug discovery targeting protein-protein interactions.

    Science.gov (United States)

    Rosell, Mireia; Fernández-Recio, Juan

    2018-04-01

    Protein-protein interactions are important for biological processes and pathological situations, and are attractive targets for drug discovery. However, rational drug design targeting protein-protein interactions is still highly challenging. Hot-spot residues are seen as the best option to target such interactions, but their identification requires detailed structural and energetic characterization, which is only available for a tiny fraction of protein interactions. Areas covered: In this review, the authors cover a variety of computational methods that have been reported for the energetic analysis of protein-protein interfaces in search of hot-spots, and the structural modeling of protein-protein complexes by docking. This can help to rationalize the discovery of small-molecule inhibitors of protein-protein interfaces of therapeutic interest. Computational analysis and docking can help to locate the interface, molecular dynamics can be used to find suitable cavities, and hot-spot predictions can focus the search for inhibitors of protein-protein interactions. Expert opinion: A major difficulty for applying rational drug design methods to protein-protein interactions is that in the majority of cases the complex structure is not available. Fortunately, computational docking can complement experimental data. An interesting aspect to explore in the future is the integration of these strategies for targeting PPIs with large-scale mutational analysis.

  11. Application of Combination High-Throughput Phenotypic Screening and Target Identification Methods for the Discovery of Natural Product-Based Combination Drugs.

    Science.gov (United States)

    Isgut, Monica; Rao, Mukkavilli; Yang, Chunhua; Subrahmanyam, Vangala; Rida, Padmashree C G; Aneja, Ritu

    2018-03-01

    Modern drug discovery efforts have had mediocre success rates with increasing developmental costs, and this has encouraged pharmaceutical scientists to seek innovative approaches. Recently with the rise of the fields of systems biology and metabolomics, network pharmacology (NP) has begun to emerge as a new paradigm in drug discovery, with a focus on multiple targets and drug combinations for treating disease. Studies on the benefits of drug combinations lay the groundwork for a renewed focus on natural products in drug discovery. Natural products consist of a multitude of constituents that can act on a variety of targets in the body to induce pharmacodynamic responses that may together culminate in an additive or synergistic therapeutic effect. Although natural products cannot be patented, they can be used as starting points in the discovery of potent combination therapeutics. The optimal mix of bioactive ingredients in natural products can be determined via phenotypic screening. The targets and molecular mechanisms of action of these active ingredients can then be determined using chemical proteomics, and by implementing a reverse pharmacokinetics approach. This review article provides evidence supporting the potential benefits of natural product-based combination drugs, and summarizes drug discovery methods that can be applied to this class of drugs. © 2017 Wiley Periodicals, Inc.

  12. Understanding mechanisms of toxicity: Insights from drug discovery research

    International Nuclear Information System (INIS)

    Houck, Keith A.; Kavlock, Robert J.

    2008-01-01

    Toxicology continues to rely heavily on use of animal testing for prediction of potential for toxicity in humans. Where mechanisms of toxicity have been elucidated, for example endocrine disruption by xenoestrogens binding to the estrogen receptor, in vitro assays have been developed as surrogate assays for toxicity prediction. This mechanistic information can be combined with other data such as exposure levels to inform a risk assessment for the chemical. However, there remains a paucity of such mechanistic assays due at least in part to lack of methods to determine specific mechanisms of toxicity for many toxicants. A means to address this deficiency lies in utilization of a vast repertoire of tools developed by the drug discovery industry for interrogating the bioactivity of chemicals. This review describes the application of high-throughput screening assays as experimental tools for profiling chemicals for potential for toxicity and understanding underlying mechanisms. The accessibility of broad panels of assays covering an array of protein families permits evaluation of chemicals for their ability to directly modulate many potential targets of toxicity. In addition, advances in cell-based screening have yielded tools capable of reporting the effects of chemicals on numerous critical cell signaling pathways and cell health parameters. Novel, more complex cellular systems are being used to model mammalian tissues and the consequences of compound treatment. Finally, high-throughput technology is being applied to model organism screens to understand mechanisms of toxicity. However, a number of formidable challenges to these methods remain to be overcome before they are widely applicable. Integration of successful approaches will contribute towards building a systems approach to toxicology that will provide mechanistic understanding of the effects of chemicals on biological systems and aid in rationale risk assessments

  13. Skin too thin? The developing utility of zebrafish skin (neuro)pharmacology for CNS drug discovery research.

    Science.gov (United States)

    Nguyen, Michael; Poudel, Manoj K; Stewart, Adam Michael; Kalueff, Allan V

    2013-09-01

    Skin coloration can be affected by many genetic, environmental and pharmacological factors. Zebrafish (Danio rerio) are a useful and versatile model organism in biomedical research due to their genetic tractability, physiological homology to mammals, low cost, reproducibility and high throughput. Zebrafish coloration is mediated by chromatophores - the skin color pigment cells largely controlled by endocrine and neural mechanisms. The characteristic darkening of zebrafish skin is caused by the dispersion (and paling - by aggregation) of melanosomes (pigment-containing organelles), which show high homology to mammalian structures. Various pharmacological agents potently affect zebrafish coloration - the phenotype that often accompanies behavioral effects of the drugs, and may be used for drug discovery. Although zebrafish behavior and skin responses are usually not directly related, they share common regulatory (neural, endocrine) mechanisms, and therefore may be assessed in parallel during psychotropic drug screening. For example, some psychoactive drugs can potently affect zebrafish skin coloration. Can we use this knowledge to refine phenotype-driven psychotropic drug discovery? Here, we present current models using zebrafish skin coloration assays, and discuss how these models may be applied to enhance in vivo CNS drug discovery. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines.

    Science.gov (United States)

    Ru, Jinlong; Li, Peng; Wang, Jinan; Zhou, Wei; Li, Bohui; Huang, Chao; Li, Pidong; Guo, Zihu; Tao, Weiyang; Yang, Yinfeng; Xu, Xue; Li, Yan; Wang, Yonghua; Yang, Ling

    2014-01-01

    Modern medicine often clashes with traditional medicine such as Chinese herbal medicine because of the little understanding of the underlying mechanisms of action of the herbs. In an effort to promote integration of both sides and to accelerate the drug discovery from herbal medicines, an efficient systems pharmacology platform that represents ideal information convergence of pharmacochemistry, ADME properties, drug-likeness, drug targets, associated diseases and interaction networks, are urgently needed. The traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) was built based on the framework of systems pharmacology for herbal medicines. It consists of all the 499 Chinese herbs registered in the Chinese pharmacopoeia with 29,384 ingredients, 3,311 targets and 837 associated diseases. Twelve important ADME-related properties like human oral bioavailability, half-life, drug-likeness, Caco-2 permeability, blood-brain barrier and Lipinski's rule of five are provided for drug screening and evaluation. TCMSP also provides drug targets and diseases of each active compound, which can automatically establish the compound-target and target-disease networks that let users view and analyze the drug action mechanisms. It is designed to fuel the development of herbal medicines and to promote integration of modern medicine and traditional medicine for drug discovery and development. The particular strengths of TCMSP are the composition of the large number of herbal entries, and the ability to identify drug-target networks and drug-disease networks, which will help revealing the mechanisms of action of Chinese herbs, uncovering the nature of TCM theory and developing new herb-oriented drugs. TCMSP is freely available at http://sm.nwsuaf.edu.cn/lsp/tcmsp.php.

  15. Structure and dynamics of molecular networks: A novel paradigm of drug discovery: A comprehensive review

    Science.gov (United States)

    Csermely, Peter; Korcsmáros, Tamás; Kiss, Huba J.M.; London, Gábor; Nussinov, Ruth

    2013-01-01

    Despite considerable progress in genome- and proteome-based high-throughput screening methods and in rational drug design, the increase in approved drugs in the past decade did not match the increase of drug development costs. Network description and analysis not only gives a systems-level understanding of drug action and disease complexity, but can also help to improve the efficiency of drug design. We give a comprehensive assessment of the analytical tools of network topology and dynamics. The state-of-the-art use of chemical similarity, protein structure, protein-protein interaction, signaling, genetic interaction and metabolic networks in the discovery of drug targets is summarized. We propose that network targeting follows two basic strategies. The “central hit strategy” selectively targets central node/edges of the flexible networks of infectious agents or cancer cells to kill them. The “network influence strategy” works against other diseases, where an efficient reconfiguration of rigid networks needs to be achieved. It is shown how network techniques can help in the identification of single-target, edgetic, multi-target and allo-network drug target candidates. We review the recent boom in network methods helping hit identification, lead selection optimizing drug efficacy, as well as minimizing side-effects and drug toxicity. Successful network-based drug development strategies are shown through the examples of infections, cancer, metabolic diseases, neurodegenerative diseases and aging. Summarizing >1200 references we suggest an optimized protocol of network-aided drug development, and provide a list of systems-level hallmarks of drug quality. Finally, we highlight network-related drug development trends helping to achieve these hallmarks by a cohesive, global approach. PMID:23384594

  16. Lost in translation? Role of metabolomics in solving translational problems in drug discovery and development

    NARCIS (Netherlands)

    Greef, J. van der; Adourian, A.; Muntendam, P.; McBurney, R.N.

    2006-01-01

    Too few drug discovery projects generate a marketed drug product, often because preclinical studies fail to predict the clinical experience with a drug candidate. Improving the success of preclinical-to-clinical translation is of paramount importance in optimizing the pharmaceutical value chain.

  17. Metabolomics As a Tool for the Characterization of Drug-Resistant Epilepsy

    Directory of Open Access Journals (Sweden)

    Federica Murgia

    2017-09-01

    Full Text Available PurposeDrug resistance is a critical issue in the treatment of epilepsy, contributing to clinical emergencies and increasing both serious social and economic burdens on the health system. The wide variety of potential drug combinations followed by often failed consecutive attempts to match drugs to an individual patient may mean that this treatment stage may last for years with suboptimal benefit to the patient. Given these challenges, it is valuable to explore the availability of new methodologies able to shorten the period of determining a rationale pharmacologic treatment. Metabolomics could provide such a tool to investigate possible markers of drug resistance in subjects with epilepsy.MethodsBlood samples were collected from (1 controls (C (n = 35, (2 patients with epilepsy “responder” (R (n = 18, and (3 patients with epilepsy “non-responder” (NR (n = 17 to the drug therapy. The samples were analyzed using nuclear magnetic resonance spectroscopy, followed by multivariate statistical analysis.Key findingsA different metabolic profile based on metabolomics analysis of the serum was observed between C and patients with epilepsy and also between R and NR patients. It was possible to identify the discriminant metabolites for the three classes under investigation. Serum from patients with epilepsy were characterized by increased levels of 3-OH-butyrate, 2-OH-valerate, 2-OH-butyrate, acetoacetate, acetone, acetate, choline, alanine, glutamate, scyllo-inositol (C < R < NR, and decreased concentration of glucose, lactate, and citrate compared to C (C > R > NR.SignificanceIn conclusion, metabolomics may represent an important tool for discovery of differences between subjects affected by epilepsy responding or resistant to therapies and for the study of its pathophysiology, optimizing the therapeutic resources and the quality of life of patients.

  18. Binding thermodynamics discriminates fragments from druglike compounds: a thermodynamic description of fragment-based drug discovery.

    Science.gov (United States)

    Williams, Glyn; Ferenczy, György G; Ulander, Johan; Keserű, György M

    2017-04-01

    Small is beautiful - reducing the size and complexity of chemical starting points for drug design allows better sampling of chemical space, reveals the most energetically important interactions within protein-binding sites and can lead to improvements in the physicochemical properties of the final drug. The impact of fragment-based drug discovery (FBDD) on recent drug discovery projects and our improved knowledge of the structural and thermodynamic details of ligand binding has prompted us to explore the relationships between ligand-binding thermodynamics and FBDD. Information on binding thermodynamics can give insights into the contributions to protein-ligand interactions and could therefore be used to prioritise compounds with a high degree of specificity in forming key interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. In vivo brain microdialysis: advances in neuropsychopharmacology and drug discovery.

    Science.gov (United States)

    Darvesh, Altaf S; Carroll, Richard T; Geldenhuys, Werner J; Gudelsky, Gary A; Klein, Jochen; Meshul, Charles K; Van der Schyf, Cornelis J

    2011-02-01

    INTRODUCTION: Microdialysis is an important in vivo sampling technique, useful in the assay of extracellular tissue fluid. The technique has both pre-clinical and clinical applications but is most widely used in neuroscience. The in vivo microdialysis technique allows measurement of neurotransmitters such as acetycholine (ACh), the biogenic amines including dopamine (DA), norepinephrine (NE) and serotonin (5-HT), amino acids such as glutamate (Glu) and gamma aminobutyric acid (GABA), as well as the metabolites of the aforementioned neurotransmitters, and neuropeptides in neuronal extracellular fluid in discrete brain regions of laboratory animals such as rodents and non-human primates. AREAS COVERED: In this review we present a brief overview of the principles and procedures related to in vivo microdialysis and detail the use of this technique in the pre-clinical measurement of drugs designed to be used in the treatment of chemical addiction, neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and as well as psychiatric disorders such as attention-deficit/hyperactivity disorder (ADHD) and schizophrenia. This review offers insight into the tremendous utility and versatility of this technique in pursuing neuropharmacological investigations as well its significant potential in rational drug discovery. EXPERT OPINION: In vivo microdialysis is an extremely versatile technique, routinely used in the neuropharmacological investigation of drugs used for the treatment of neurological disorders. This technique has been a boon in the elucidation of the neurochemical profile and mechanism of action of several classes of drugs especially their effects on neurotransmitter systems. The exploitation and development of this technique for drug discovery in the near future will enable investigational new drug candidates to be rapidly moved into the clinical trial stages and to market thus providing new successful therapies for neurological diseases

  20. Leveraging the contribution of thermodynamics in drug discovery with the help of fluorescence-based thermal shift assays.

    Science.gov (United States)

    Hau, Jean Christophe; Fontana, Patrizia; Zimmermann, Catherine; De Pover, Alain; Erdmann, Dirk; Chène, Patrick

    2011-06-01

    The development of new drugs with better pharmacological and safety properties mandates the optimization of several parameters. Today, potency is often used as the sole biochemical parameter to identify and select new molecules. Surprisingly, thermodynamics, which is at the core of any interaction, is rarely used in drug discovery, even though it has been suggested that the selection of scaffolds according to thermodynamic criteria may be a valuable strategy. This poor integration of thermodynamics in drug discovery might be due to difficulties in implementing calorimetry experiments despite recent technological progress in this area. In this report, the authors show that fluorescence-based thermal shift assays could be used as prescreening methods to identify compounds with different thermodynamic profiles. This approach allows a reduction in the number of compounds to be tested in calorimetry experiments, thus favoring greater integration of thermodynamics in drug discovery.

  1. Utility of Glioblastoma Patient-Derived Orthotopic Xenografts in Drug Discovery and Personalized Therapy

    Directory of Open Access Journals (Sweden)

    Michele Patrizii

    2018-02-01

    Full Text Available Despite substantial effort and resources dedicated to drug discovery and development, new anticancer agents often fail in clinical trials. Among many reasons, the lack of reliable predictive preclinical cancer models is a fundamental one. For decades, immortalized cancer cell cultures have been used to lay the groundwork for cancer biology and the quest for therapeutic responses. However, cell lines do not usually recapitulate cancer heterogeneity or reveal therapeutic resistance cues. With the rapidly evolving exploration of cancer “omics,” the scientific community is increasingly investigating whether the employment of short-term patient-derived tumor cell cultures (two- and three-dimensional and/or patient-derived xenograft models might provide a more representative delineation of the cancer core and its therapeutic response. Patient-derived cancer models allow the integration of genomic with drug sensitivity data on a personalized basis and currently represent the ultimate approach for preclinical drug development and biomarker discovery. The proper use of these patient-derived cancer models might soon influence clinical outcomes and allow the implementation of tailored personalized therapy. When assessing drug efficacy for the treatment of glioblastoma multiforme (GBM, currently, the most reliable models are generated through direct injection of patient-derived cells or more frequently the isolation of glioblastoma cells endowed with stem-like features and orthotopically injecting these cells into the cerebrum of immunodeficient mice. Herein, we present the key strengths, weaknesses, and potential applications of cell- and animal-based models of GBM, highlighting our experience with the glioblastoma stem-like patient cell-derived xenograft model and its utility in drug discovery.

  2. Screening the Medicines for Malaria Venture Pathogen Box across Multiple Pathogens Reclassifies Starting Points for Open-Source Drug Discovery.

    Science.gov (United States)

    Duffy, Sandra; Sykes, Melissa L; Jones, Amy J; Shelper, Todd B; Simpson, Moana; Lang, Rebecca; Poulsen, Sally-Ann; Sleebs, Brad E; Avery, Vicky M

    2017-09-01

    Open-access drug discovery provides a substantial resource for diseases primarily affecting the poor and disadvantaged. The open-access Pathogen Box collection is comprised of compounds with demonstrated biological activity against specific pathogenic organisms. The supply of this resource by the Medicines for Malaria Venture has the potential to provide new chemical starting points for a number of tropical and neglected diseases, through repurposing of these compounds for use in drug discovery campaigns for these additional pathogens. We tested the Pathogen Box against kinetoplastid parasites and malaria life cycle stages in vitro Consequently, chemical starting points for malaria, human African trypanosomiasis, Chagas disease, and leishmaniasis drug discovery efforts have been identified. Inclusive of this in vitro biological evaluation, outcomes from extensive literature reviews and database searches are provided. This information encompasses commercial availability, literature reference citations, other aliases and ChEMBL number with associated biological activity, where available. The release of this new data for the Pathogen Box collection into the public domain will aid the open-source model of drug discovery. Importantly, this will provide novel chemical starting points for drug discovery and target identification in tropical disease research. Copyright © 2017 Duffy et al.

  3. [Frontiers in Live Bone Imaging Researches. Novel drug discovery by means of intravital bone imaging technology].

    Science.gov (United States)

    Ishii, Masaru

    2015-06-01

    Recent advances in intravital bone imaging technology has enabled us to grasp the real cellular behaviors and functions in vivo , revolutionizing the field of drug discovery for novel therapeutics against intractable bone diseases. In this chapter, I introduce various updated information on pharmacological actions of several antibone resorptive agents, which could only be derived from advanced imaging techniques, and also discuss the future perspectives of this new trend in drug discovery.

  4. High Throughput Screening in Duchenne Muscular Dystrophy: From Drug Discovery to Functional Genomics

    Directory of Open Access Journals (Sweden)

    Thomas J.J. Gintjee

    2014-11-01

    Full Text Available Centers for the screening of biologically active compounds and genomic libraries are becoming common in the academic setting and have enabled researchers devoted to developing strategies for the treatment of diseases or interested in studying a biological phenomenon to have unprecedented access to libraries that, until few years ago, were accessible only by pharmaceutical companies. As a result, new drugs and genetic targets have now been identified for the treatment of Duchenne muscular dystrophy (DMD, the most prominent of the neuromuscular disorders affecting children. Although the work is still at an early stage, the results obtained to date are encouraging and demonstrate the importance that these centers may have in advancing therapeutic strategies for DMD as well as other diseases. This review will provide a summary of the status and progress made toward the development of a cure for this disorder and implementing high-throughput screening (HTS technologies as the main source of discovery. As more academic institutions are gaining access to HTS as a valuable discovery tool, the identification of new biologically active molecules is likely to grow larger. In addition, the presence in the academic setting of experts in different aspects of the disease will offer the opportunity to develop novel assays capable of identifying new targets to be pursued as potential therapeutic options. These assays will represent an excellent source to be used by pharmaceutical companies for the screening of larger libraries providing the opportunity to establish strong collaborations between the private and academic sectors and maximizing the chances of bringing into the clinic new drugs for the treatment of DMD.

  5. High throughput screening in duchenne muscular dystrophy: from drug discovery to functional genomics.

    Science.gov (United States)

    Gintjee, Thomas J J; Magh, Alvin S H; Bertoni, Carmen

    2014-11-14

    Centers for the screening of biologically active compounds and genomic libraries are becoming common in the academic setting and have enabled researchers devoted to developing strategies for the treatment of diseases or interested in studying a biological phenomenon to have unprecedented access to libraries that, until few years ago, were accessible only by pharmaceutical companies. As a result, new drugs and genetic targets have now been identified for the treatment of Duchenne muscular dystrophy (DMD), the most prominent of the neuromuscular disorders affecting children. Although the work is still at an early stage, the results obtained to date are encouraging and demonstrate the importance that these centers may have in advancing therapeutic strategies for DMD as well as other diseases. This review will provide a summary of the status and progress made toward the development of a cure for this disorder and implementing high-throughput screening (HTS) technologies as the main source of discovery. As more academic institutions are gaining access to HTS as a valuable discovery tool, the identification of new biologically active molecules is likely to grow larger. In addition, the presence in the academic setting of experts in different aspects of the disease will offer the opportunity to develop novel assays capable of identifying new targets to be pursued as potential therapeutic options. These assays will represent an excellent source to be used by pharmaceutical companies for the screening of larger libraries providing the opportunity to establish strong collaborations between the private and academic sectors and maximizing the chances of bringing into the clinic new drugs for the treatment of DMD.

  6. Thoughtflow: Standards and Tools for Provenance Capture and Workflow Definition to Support Model-Informed Drug Discovery and Development.

    Science.gov (United States)

    Wilkins, J J; Chan, Pls; Chard, J; Smith, G; Smith, M K; Beer, M; Dunn, A; Flandorfer, C; Franklin, C; Gomeni, R; Harnisch, L; Kaye, R; Moodie, S; Sardu, M L; Wang, E; Watson, E; Wolstencroft, K; Cheung, Sya

    2017-05-01

    Pharmacometric analyses are complex and multifactorial. It is essential to check, track, and document the vast amounts of data and metadata that are generated during these analyses (and the relationships between them) in order to comply with regulations, support quality control, auditing, and reporting. It is, however, challenging, tedious, error-prone, and time-consuming, and diverts pharmacometricians from the more useful business of doing science. Automating this process would save time, reduce transcriptional errors, support the retention and transfer of knowledge, encourage good practice, and help ensure that pharmacometric analyses appropriately impact decisions. The ability to document, communicate, and reconstruct a complete pharmacometric analysis using an open standard would have considerable benefits. In this article, the Innovative Medicines Initiative (IMI) Drug Disease Model Resources (DDMoRe) consortium proposes a set of standards to facilitate the capture, storage, and reporting of knowledge (including assumptions and decisions) in the context of model-informed drug discovery and development (MID3), as well as to support reproducibility: "Thoughtflow." A prototype software implementation is provided. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  7. Quantum mechanics implementation in drug-design workflows: does it really help?

    Science.gov (United States)

    Arodola, Olayide A; Soliman, Mahmoud Es

    2017-01-01

    The pharmaceutical industry is progressively operating in an era where development costs are constantly under pressure, higher percentages of drugs are demanded, and the drug-discovery process is a trial-and-error run. The profit that flows in with the discovery of new drugs has always been the motivation for the industry to keep up the pace and keep abreast with the endless demand for medicines. The process of finding a molecule that binds to the target protein using in silico tools has made computational chemistry a valuable tool in drug discovery in both academic research and pharmaceutical industry. However, the complexity of many protein-ligand interactions challenges the accuracy and efficiency of the commonly used empirical methods. The usefulness of quantum mechanics (QM) in drug-protein interaction cannot be overemphasized; however, this approach has little significance in some empirical methods. In this review, we discuss recent developments in, and application of, QM to medically relevant biomolecules. We critically discuss the different types of QM-based methods and their proposed application to incorporating them into drug-design and -discovery workflows while trying to answer a critical question: are QM-based methods of real help in drug-design and -discovery research and industry?

  8. A new approach to the rationale discovery of polymeric biomaterials

    Science.gov (United States)

    Kohn, Joachim; Welsh, William J.; Knight, Doyle

    2007-01-01

    This paper attempts to illustrate both the need for new approaches to biomaterials discovery as well as the significant promise inherent in the use of combinatorial and computational design strategies. The key observation of this Leading Opinion Paper is that the biomaterials community has been slow to embrace advanced biomaterials discovery tools such as combinatorial methods, high throughput experimentation, and computational modeling in spite of the significant promise shown by these discovery tools in materials science, medicinal chemistry and the pharmaceutical industry. It seems that the complexity of living cells and their interactions with biomaterials has been a conceptual as well as a practical barrier to the use of advanced discovery tools in biomaterials science. However, with the continued increase in computer power, the goal of predicting the biological response of cells in contact with biomaterials surfaces is within reach. Once combinatorial synthesis, high throughput experimentation, and computational modeling are integrated into the biomaterials discovery process, a significant acceleration is possible in the pace of development of improved medical implants, tissue regeneration scaffolds, and gene/drug delivery systems. PMID:17644176

  9. Recent advances in combinatorial biosynthesis for drug discovery

    Directory of Open Access Journals (Sweden)

    Sun H

    2015-02-01

    Full Text Available Huihua Sun,1,* Zihe Liu,1,* Huimin Zhao,1,2 Ee Lui Ang1 1Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore; 2Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA *These authors contributed equally to this work Abstract: Because of extraordinary structural diversity and broad biological activities, natural products have played a significant role in drug discovery. These therapeutically important secondary metabolites are assembled and modified by dedicated biosynthetic pathways in their host living organisms. Traditionally, chemists have attempted to synthesize natural product analogs that are important sources of new drugs. However, the extraordinary structural complexity of natural products sometimes makes it challenging for traditional chemical synthesis, which usually involves multiple steps, harsh conditions, toxic organic solvents, and byproduct wastes. In contrast, combinatorial biosynthesis exploits substrate promiscuity and employs engineered enzymes and pathways to produce novel “unnatural” natural products, substantially expanding the structural diversity of natural products with potential pharmaceutical value. Thus, combinatorial biosynthesis provides an environmentally friendly way to produce natural product analogs. Efficient expression of the combinatorial biosynthetic pathway in genetically tractable heterologous hosts can increase the titer of the compound, eventually resulting in less expensive drugs. In this review, we will discuss three major strategies for combinatorial biosynthesis: 1 precursor-directed biosynthesis; 2 enzyme-level modification, which includes swapping of the entire domains, modules and subunits, site-specific mutagenesis, and directed evolution; 3 pathway-level recombination. Recent examples of combinatorial biosynthesis employing these

  10. The future of drug discovery: enabling technologies for enhancing lead characterization and profiling therapeutic potential.

    Science.gov (United States)

    Janero, David R

    2014-08-01

    Technology often serves as a handmaiden and catalyst of invention. The discovery of safe, effective medications depends critically upon experimental approaches capable of providing high-impact information on the biological effects of drug candidates early in the discovery pipeline. This information can enable reliable lead identification, pharmacological compound differentiation and successful translation of research output into clinically useful therapeutics. The shallow preclinical profiling of candidate compounds promulgates a minimalistic understanding of their biological effects and undermines the level of value creation necessary for finding quality leads worth moving forward within the development pipeline with efficiency and prognostic reliability sufficient to help remediate the current pharma-industry productivity drought. Three specific technologies discussed herein, in addition to experimental areas intimately associated with contemporary drug discovery, appear to hold particular promise for strengthening the preclinical valuation of drug candidates by deepening lead characterization. These are: i) hydrogen-deuterium exchange mass spectrometry for characterizing structural and ligand-interaction dynamics of disease-relevant proteins; ii) activity-based chemoproteomics for profiling the functional diversity of mammalian proteomes; and iii) nuclease-mediated precision gene editing for developing more translatable cellular and in vivo models of human diseases. When applied in an informed manner congruent with the clinical understanding of disease processes, technologies such as these that span levels of biological organization can serve as valuable enablers of drug discovery and potentially contribute to reducing the current, unacceptably high rates of compound clinical failure.

  11. Early phase drug discovery: cheminformatics and computational techniques in identifying lead series.

    Science.gov (United States)

    Duffy, Bryan C; Zhu, Lei; Decornez, Hélène; Kitchen, Douglas B

    2012-09-15

    Early drug discovery processes rely on hit finding procedures followed by extensive experimental confirmation in order to select high priority hit series which then undergo further scrutiny in hit-to-lead studies. The experimental cost and the risk associated with poor selection of lead series can be greatly reduced by the use of many different computational and cheminformatic techniques to sort and prioritize compounds. We describe the steps in typical hit identification and hit-to-lead programs and then describe how cheminformatic analysis assists this process. In particular, scaffold analysis, clustering and property calculations assist in the design of high-throughput screening libraries, the early analysis of hits and then organizing compounds into series for their progression from hits to leads. Additionally, these computational tools can be used in virtual screening to design hit-finding libraries and as procedures to help with early SAR exploration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Key drivers of biomedical innovation in cancer drug discovery

    OpenAIRE

    Huber, Margit A; Kraut, Norbert

    2014-01-01

    Discovery and translational research has led to the identification of a series of ?cancer drivers??genes that, when mutated or otherwise misregulated, can drive malignancy. An increasing number of drugs that directly target such drivers have demonstrated activity in clinical trials and are shaping a new landscape for molecularly targeted cancer therapies. Such therapies rely on molecular and genetic diagnostic tests to detect the presence of a biomarker that predicts response. Here, we highli...

  13. Big Data in Drug Discovery.

    Science.gov (United States)

    Brown, Nathan; Cambruzzi, Jean; Cox, Peter J; Davies, Mark; Dunbar, James; Plumbley, Dean; Sellwood, Matthew A; Sim, Aaron; Williams-Jones, Bryn I; Zwierzyna, Magdalena; Sheppard, David W

    2018-01-01

    Interpretation of Big Data in the drug discovery community should enhance project timelines and reduce clinical attrition through improved early decision making. The issues we encounter start with the sheer volume of data and how we first ingest it before building an infrastructure to house it to make use of the data in an efficient and productive way. There are many problems associated with the data itself including general reproducibility, but often, it is the context surrounding an experiment that is critical to success. Help, in the form of artificial intelligence (AI), is required to understand and translate the context. On the back of natural language processing pipelines, AI is also used to prospectively generate new hypotheses by linking data together. We explain Big Data from the context of biology, chemistry and clinical trials, showcasing some of the impressive public domain sources and initiatives now available for interrogation. © 2018 Elsevier B.V. All rights reserved.

  14. Discovery of potent, reversible MetAP2 inhibitors via fragment based drug discovery and structure based drug design-Part 2.

    Science.gov (United States)

    McBride, Christopher; Cheruvallath, Zacharia; Komandla, Mallareddy; Tang, Mingnam; Farrell, Pamela; Lawson, J David; Vanderpool, Darin; Wu, Yiqin; Dougan, Douglas R; Plonowski, Artur; Holub, Corine; Larson, Chris

    2016-06-15

    Methionine aminopeptidase-2 (MetAP2) is an enzyme that cleaves an N-terminal methionine residue from a number of newly synthesized proteins. This step is required before they will fold or function correctly. Pre-clinical and clinical studies with a MetAP2 inhibitor suggest that they could be used as a novel treatment for obesity. Herein we describe the discovery of a series of pyrazolo[4,3-b]indoles as reversible MetAP2 inhibitors. A fragment-based drug discovery (FBDD) approach was used, beginning with the screening of fragment libraries to generate hits with high ligand-efficiency (LE). An indazole core was selected for further elaboration, guided by structural information. SAR from the indazole series led to the design of a pyrazolo[4,3-b]indole core and accelerated knowledge-based fragment growth resulted in potent and efficient MetAP2 inhibitors, which have shown robust and sustainable body weight loss in DIO mice when dosed orally. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Residual Complexity Does Impact Organic Chemistry and Drug Discovery: The Case of Rufomyazine and Rufomycin.

    Science.gov (United States)

    Choules, Mary P; Klein, Larry L; Lankin, David C; McAlpine, James B; Cho, Sang-Hyun; Cheng, Jinhua; Lee, Hanki; Suh, Joo-Won; Jaki, Birgit U; Franzblau, Scott G; Pauli, Guido F

    2018-05-24

    Residual complexity (RC) involves the impact of subtle but critical structural and biological features on drug lead validation, including unexplained effects related to unidentified impurities. RC commonly plagues drug discovery efforts due to the inherent imperfections of chromatographic separation methods. The new diketopiperazine, rufomyazine (6), and the previously known antibiotic, rufomycin (7), represent a prototypical case of RC that (almost) resulted in the misassignment of biological activity. The case exemplifies that impurities well below the natural abundance of 13 C (1.1%) can be highly relevant and calls for advanced analytical characterization of drug leads with extended molar dynamic ranges of >1:1,000 using qNMR and LC-MS. Isolated from an actinomycete strain, 6 was originally found to be active against Mycobacterium tuberculosis with a minimum inhibitory concentration (MIC) of 2 μg/mL and high selectivity. As a part of lead validation, the dipeptide was synthesized and surprisingly found to be inactive. The initially observed activity was eventually attributed to a very minor contamination (0.24% [m/m]) with a highly active cyclic peptide (MIC ∼ 0.02 μM), subsequently identified as an analogue of 7. This study illustrates the serious implications RC can exert on organic chemistry and drug discovery, and what efforts are vital to improve lead validation and efficiency, especially in NP-related drug discovery programs.

  16. From Protein Structure to Small-Molecules: Recent Advances and Applications to Fragment-Based Drug Discovery.

    Science.gov (United States)

    Ferreira, Leonardo G; Andricopulo, Adriano D

    2017-01-01

    Fragment-based drug discovery (FBDD) is a broadly used strategy in structure-guided ligand design, whereby low-molecular weight hits move from lead-like to drug-like compounds. Over the past 15 years, an increasingly important role of the integration of these strategies into industrial and academic research platforms has been successfully established, allowing outstanding contributions to drug discovery. One important factor for the current prominence of FBDD is the better coverage of the chemical space provided by fragment-like libraries. The development of the field relies on two features: (i) the growing number of structurally characterized drug targets and (ii) the enormous chemical diversity available for experimental and virtual screenings. Indeed, fragment-based campaigns have contributed to address major challenges in lead optimization, such as the appropriate physicochemical profile of clinical candidates. This perspective paper outlines the usefulness and applications of FBDD approaches in medicinal chemistry and drug design. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Scientometrics of drug discovery efforts: pain-related molecular targets

    Directory of Open Access Journals (Sweden)

    Kissin I

    2015-07-01

    Full Text Available Igor KissinDepartment of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USAAbstract: The aim of this study was to make a scientometric assessment of drug discovery efforts centered on pain-related molecular targets. The following scientometric indices were used: the popularity index, representing the share of articles (or patents on a specific topic among all articles (or patents on pain over the same 5-year period; the index of change, representing the change in the number of articles (or patents on a topic from one 5-year period to the next; the index of expectations, representing the ratio of the number of all types of articles on a topic in the top 20 journals relative to the number of articles in all (>5,000 biomedical journals covered by PubMed over a 5-year period; the total number of articles representing Phase I–III trials of investigational drugs over a 5-year period; and the trial balance index, a ratio of Phase I–II publications to Phase III publications. Articles (PubMed database and patents (US Patent and Trademark Office database on 17 topics related to pain mechanisms were assessed during six 5-year periods from 1984 to 2013. During the most recent 5-year period (2009–2013, seven of 17 topics have demonstrated high research activity (purinergic receptors, serotonin, transient receptor potential channels, cytokines, gamma aminobutyric acid, glutamate, and protein kinases. However, even with these seven topics, the index of expectations decreased or did not change compared with the 2004–2008 period. In addition, publications representing Phase I–III trials of investigational drugs (2009–2013 did not indicate great enthusiasm on the part of the pharmaceutical industry regarding drugs specifically designed for treatment of pain. A promising development related to the new tool of molecular targeting, ie, monoclonal antibodies, for pain treatment has not

  18. The principle of safety evaluation in medicinal drug - how can toxicology contribute to drug discovery and development as a multidisciplinary science?

    Science.gov (United States)

    Horii, Ikuo

    2016-01-01

    Pharmaceutical (drug) safety assessment covers a diverse science-field in the drug discovery and development including the post-approval and post-marketing phases in order to evaluate safety and risk management. The principle in toxicological science is to be placed on both of pure and applied sciences that are derived from past/present scientific knowledge and coming new science and technology. In general, adverse drug reactions are presented as "biological responses to foreign substances." This is the basic concept of thinking about the manifestation of adverse drug reactions. Whether or not toxic expressions are extensions of the pharmacological effect, adverse drug reactions as seen from molecular targets are captured in the category of "on-target" or "off-target", and are normally expressed as a biological defense reaction. Accordingly, reactions induced by pharmaceuticals can be broadly said to be defensive reactions. Recent molecular biological conception is in line with the new, remarkable scientific and technological developments in the medical and pharmaceutical areas, and the viewpoints in the field of toxicology have shown that they are approaching toward the same direction as well. This paper refers to the basic concept of pharmaceutical toxicology, the differences for safety assessment in each stage of drug discovery and development, regulatory submission, and the concept of scientific considerations for risk assessment and management from the viewpoint of "how can multidisciplinary toxicology contribute to innovative drug discovery and development?" And also realistic translational research from preclinical to clinical application is required to have a significant risk management in post market by utilizing whole scientific data derived from basic and applied scientific research works. In addition, the significance for employing the systems toxicology based on AOP (Adverse Outcome Pathway) analysis is introduced, and coming challenges on precision

  19. Inositol Polyphosphate Kinases, Fungal Virulence and Drug Discovery

    Directory of Open Access Journals (Sweden)

    Cecilia Li

    2016-09-01

    Full Text Available Opportunistic fungi are a major cause of morbidity and mortality world-wide, particularly in immunocompromised individuals. Developing new treatments to combat invasive fungal disease is challenging given that fungal and mammalian host cells are eukaryotic, with similar organization and physiology. Even therapies targeting unique fungal cell features have limitations and drug resistance is emerging. New approaches to the development of antifungal drugs are therefore needed urgently. Cryptococcus neoformans, the commonest cause of fungal meningitis worldwide, is an accepted model for studying fungal pathogenicity and driving drug discovery. We recently characterized a phospholipase C (Plc1-dependent pathway in C. neoformans comprising of sequentially-acting inositol polyphosphate kinases (IPK, which are involved in synthesizing inositol polyphosphates (IP. We also showed that the pathway is essential for fungal cellular function and pathogenicity. The IP products of the pathway are structurally diverse, each consisting of an inositol ring, with phosphate (P and pyrophosphate (PP groups covalently attached at different positions. This review focuses on (1 the characterization of the Plc1/IPK pathway in C. neoformans; (2 the identification of PP-IP5 (IP7 as the most crucial IP species for fungal fitness and virulence in a mouse model of fungal infection; and (3 why IPK enzymes represent suitable candidates for drug development.

  20. Open Innovation Drug Discovery (OIDD): a potential path to novel therapeutic chemical space.

    Science.gov (United States)

    Alvim-Gaston, Maria; Grese, Timothy; Mahoui, Abdelaziz; Palkowitz, Alan D; Pineiro-Nunez, Marta; Watson, Ian

    2014-01-01

    The continued development of computational and synthetic methods has enabled the enumeration or preparation of a nearly endless universe of chemical structures. Nevertheless, the ability of this chemical universe to deliver small molecules that can both modulate biological targets and have drug-like physicochemical properties continues to be a topic of interest to the pharmaceutical industry and academic researchers alike. The chemical space described by public, commercial, in-house and virtual compound collections has been interrogated by multiple approaches including biochemical, cellular and virtual screening, diversity analysis, and in-silico profiling. However, current drugs and known chemical probes derived from these efforts are contained within a remarkably small volume of the predicted chemical space. Access to more diverse classes of chemical scaffolds that maintain the properties relevant for drug discovery is certainly needed to meet the increasing demands for pharmaceutical innovation. The Lilly Open Innovation Drug Discovery platform (OIDD) was designed to tackle barriers to innovation through the identification of novel molecules active in relevant disease biology models. In this article we will discuss several computational approaches towards describing novel, biologically active, drug-like chemical space and illustrate how the OIDD program may facilitate access to previously untapped molecules that may aid in the search for innovative pharmaceuticals.

  1. Public and private sector contributions to the discovery and development of "impact" drugs.

    Science.gov (United States)

    Reichert, Janice M; Milne, Christopher-Paul

    2002-01-01

    Recently, well-publicized reports by Public Citizen and the Joint Economic Committee (JEC) of the US Congress questioned the role of the drug industry in the discovery and development of therapeutically important drugs. To gain a better understanding of the relative roles of the public and private sectors in pharmaceutic innovation, the Tufts Center for the Study of Drug Development evaluated the underlying National Institutes of Health (NIH) and academic research cited in the Public Citizen and JEC reports and performed its own assessment of the relationship between the private and public sectors in drug discovery and development of 21 "impact" drugs. We found that, ultimately, any attempt to measure the relative contribution of the public and private sectors to the research and development (R&D) of therapeutically important drugs by output alone, such as counting publications or even product approvals, is flawed. Several key factors (eg, degree of uncertainty, expected market value, potential social benefit) affect investment decisions and determine whether public or private sector funds, or both, are most appropriate. Because of the competitiveness and complexity of today's R&D environment, both sectors are increasingly challenged to show returns on their investment and the traditional boundaries separating the roles of the private and public research spheres have become increasingly blurred. What remains clear, however, is that the process still starts with good science and ends with good medicine.

  2. Nuclear imaging drug development tools

    International Nuclear Information System (INIS)

    Buchanan, L.; Jurek, P.; Redshaw, R.

    2007-01-01

    This article describes the development of nuclear imaging as an enabling technology in the pharmaceutical industry. Molecular imaging is maturing into an important tool with expanding applications from validating that a drug reaches the intended target through to market launch of a new drug. Molecular imaging includes anatomical imaging of organs or tissues, computerized tomography (CT), magnetic resonance imaging (MRI) and ultrasound.

  3. Pharmacogenetics in type 2 diabetes: precision medicine or discovery tool?

    Science.gov (United States)

    Florez, Jose C

    2017-05-01

    In recent years, technological and analytical advances have led to an explosion in the discovery of genetic loci associated with type 2 diabetes. However, their ability to improve prediction of disease outcomes beyond standard clinical risk factors has been limited. On the other hand, genetic effects on drug response may be stronger than those commonly seen for disease incidence. Pharmacogenetic findings may aid in identifying new drug targets, elucidate pathophysiology, unravel disease heterogeneity, help prioritise specific genes in regions of genetic association, and contribute to personalised or precision treatment. In diabetes, precedent for the successful application of pharmacogenetic concepts exists in its monogenic subtypes, such as MODY or neonatal diabetes. Whether similar insights will emerge for the much more common entity of type 2 diabetes remains to be seen. As genetic approaches advance, the progressive deployment of candidate gene, large-scale genotyping and genome-wide association studies has begun to produce suggestive results that may transform clinical practice. However, many barriers to the translation of diabetes pharmacogenetic discoveries to the clinic still remain. This perspective offers a contemporary overview of the field with a focus on sulfonylureas and metformin, identifies the major uses of pharmacogenetics, and highlights potential limitations and future directions.

  4. Recent Advances in Drug Discovery from South African Marine Invertebrates

    Directory of Open Access Journals (Sweden)

    Michael T. Davies-Coleman

    2015-10-01

    Full Text Available Recent developments in marine drug discovery from three South African marine invertebrates, the tube worm Cephalodiscus gilchristi, the ascidian Lissoclinum sp. and the sponge Topsentia pachastrelloides, are presented. Recent reports of the bioactivity and synthesis of the anti-cancer secondary metabolites cephalostatin and mandelalides (from C. gilchristi and Lissoclinum sp., respectively and various analogues are presented. The threat of drug-resistant pathogens, e.g., methicillin-resistant Staphylococcus aureus (MRSA, is assuming greater global significance, and medicinal chemistry strategies to exploit the potent MRSA PK inhibition, first revealed by two marine secondary metabolites, cis-3,4-dihydrohamacanthin B and bromodeoxytopsentin from T. pachastrelloides, are compared.

  5. Machine-learning techniques applied to antibacterial drug discovery.

    Science.gov (United States)

    Durrant, Jacob D; Amaro, Rommie E

    2015-01-01

    The emergence of drug-resistant bacteria threatens to revert humanity back to the preantibiotic era. Even now, multidrug-resistant bacterial infections annually result in millions of hospital days, billions in healthcare costs, and, most importantly, tens of thousands of lives lost. As many pharmaceutical companies have abandoned antibiotic development in search of more lucrative therapeutics, academic researchers are uniquely positioned to fill the pipeline. Traditional high-throughput screens and lead-optimization efforts are expensive and labor intensive. Computer-aided drug-discovery techniques, which are cheaper and faster, can accelerate the identification of novel antibiotics, leading to improved hit rates and faster transitions to preclinical and clinical testing. The current review describes two machine-learning techniques, neural networks and decision trees, that have been used to identify experimentally validated antibiotics. We conclude by describing the future directions of this exciting field. © 2015 John Wiley & Sons A/S.

  6. CRITICAL ASSESSMENT OF CONTRIBUTION FROM INDIAN PUBLICATIONS: THE ROLE OF IN SILICO DESIGNING METHODS LEADING TO DRUGS OR DRUG-LIKE COMPOUNDS USING TEXT BASED MINING AND ASSOCIATION

    Directory of Open Access Journals (Sweden)

    Pawan Kumar

    2017-09-01

    Full Text Available Over the several decades, India is constantly challenged by communicable and non-communicable diseases which are originated either by poor lifestyle or by environmental factors. The pools of diseases are constantly posing serious threats to mankind especially among the poverty-stricken families. Scientific communities across the globe are working continuously to design drug molecules to overcome the burden of these life threaten diseases. In last three decades, many computational algorithms and tools have been developed to identify potential drug targets and their inhibitors. It is believed that computational techniques have reduced the time and money required to develop an inhibitor into drug. However, applicability and deliverability of these in silico techniques in rational drug designing are not fully evaluated. In the present study, PubMed/Medline extracted data driven analysis has been performed to highlight the influence and progress of the theoretical methods in the field of drug discovery across India and compared with the world. Drug discovery related keyword dictionary has been built and utilized to select only drug discovery related PubMed abstract. A second keyword set (related to bioinformatics tools is used for normalized pointwise mutual information (PMI based association analysis. Observations show that drug discovery has been an interdisciplinary research and used many tools starting with QSAR, docking, pharmacophore, Molecular Simulations etc. The publications contributed from India (2% are similar as compared to the contribution in total world publications, suggesting large scope in future. Data coverage as represented since 1990-2015 in PubMed as indicated by number of publications associated with drug discovery is almost same in world and India (~75%. Emerging institutes/Universities are contributing since last 10 years as observed from Indian publication list. However, this method has many limitations as discussed.

  7. Patient-derived stem cells: pathways to drug discovery for brain diseases

    Directory of Open Access Journals (Sweden)

    Alan eMackay-Sim

    2013-03-01

    Full Text Available The concept of drug discovery through stem cell biology is based on technological developments whose genesis is now coincident. The first is automated cell microscopy with concurrent advances in image acquisition and analysis, known as high content screening (HCS. The second is patient-derived stem cells for modelling the cell biology of brain diseases. HCS has developed from the requirements of the pharmaceutical industry for high throughput assays to screen thousands of chemical compounds in the search for new drugs. HCS combines new fluorescent probes with automated microscopy and computational power to quantify the effects of compounds on cell functions. Stem cell biology has advanced greatly since the discovery of genetic reprogramming of somatic cells into induced pluripotent stem cells (iPSCs. There is now a rush of papers describing their generation from patients with various diseases of the nervous system. Although the majority of these have been genetic diseases, iPSCs have been generated from patients with complex diseases (schizophrenia and sporadic Parkinson’s disease. Some genetic diseases are also modelled in embryonic stem cells generated from blastocysts rejected during in vitro fertilisation. Neural stem cells have been isolated from post-mortem brain of Alzheimer’s patients and neural stem cells generated from biopsies of the olfactory organ of patients is another approach. These olfactory neurosphere-derived cells demonstrate robust disease-specific phenotypes in patients with schizophrenia and Parkinson’s disease. High content screening is already in use to find small molecules for the generation and differentiation of embryonic stem cells and induced pluripotent stem cells. The challenges for using stem cells for drug discovery are to develop robust stem cell culture methods that meet the rigorous requirements for repeatable, consistent quantities of defined cell types at the industrial scale necessary for high

  8. CUAHSI Data Services: Tools and Cyberinfrastructure for Water Data Discovery, Research and Collaboration

    Science.gov (United States)

    Seul, M.; Brazil, L.; Castronova, A. M.

    2017-12-01

    CUAHSI Data Services: Tools and Cyberinfrastructure for Water Data Discovery, Research and CollaborationEnabling research surrounding interdisciplinary topics often requires a combination of finding, managing, and analyzing large data sets and models from multiple sources. This challenge has led the National Science Foundation to make strategic investments in developing community data tools and cyberinfrastructure that focus on water data, as it is central need for many of these research topics. CUAHSI (The Consortium of Universities for the Advancement of Hydrologic Science, Inc.) is a non-profit organization funded by the National Science Foundation to aid students, researchers, and educators in using and managing data and models to support research and education in the water sciences. This presentation will focus on open-source CUAHSI-supported tools that enable enhanced data discovery online using advanced searching capabilities and computational analysis run in virtual environments pre-designed for educators and scientists so they can focus their efforts on data analysis rather than IT set-up.

  9. The case for open-source software in drug discovery.

    Science.gov (United States)

    DeLano, Warren L

    2005-02-01

    Widespread adoption of open-source software for network infrastructure, web servers, code development, and operating systems leads one to ask how far it can go. Will "open source" spread broadly, or will it be restricted to niches frequented by hopeful hobbyists and midnight hackers? Here we identify reasons for the success of open-source software and predict how consumers in drug discovery will benefit from new open-source products that address their needs with increased flexibility and in ways complementary to proprietary options.

  10. Multi-target drugs: the trend of drug research and development.

    Science.gov (United States)

    Lu, Jin-Jian; Pan, Wei; Hu, Yuan-Jia; Wang, Yi-Tao

    2012-01-01

    Summarizing the status of drugs in the market and examining the trend of drug research and development is important in drug discovery. In this study, we compared the drug targets and the market sales of the new molecular entities approved by the U.S. Food and Drug Administration from January 2000 to December 2009. Two networks, namely, the target-target and drug-drug networks, have been set up using the network analysis tools. The multi-target drugs have much more potential, as shown by the network visualization and the market trends. We discussed the possible reasons and proposed the rational strategies for drug research and development in the future.

  11. Augmented Reality-Based Simulators as Discovery Learning Tools: An Empirical Study

    Science.gov (United States)

    Ibáñez, María-Blanca; Di-Serio, Ángela; Villarán-Molina, Diego; Delgado-Kloos, Carlos

    2015-01-01

    This paper reports empirical evidence on having students use AR-SaBEr, a simulation tool based on augmented reality (AR), to discover the basic principles of electricity through a series of experiments. AR-SaBEr was enhanced with knowledge-based support and inquiry-based scaffolding mechanisms, which proved useful for discovery learning in…

  12. Current status and future prospects for enabling chemistry technology in the drug discovery process [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Stevan W. Djuric

    2016-09-01

    Full Text Available This review covers recent advances in the implementation of enabling chemistry technologies into the drug discovery process. Areas covered include parallel synthesis chemistry, high-throughput experimentation, automated synthesis and purification methods, flow chemistry methodology including photochemistry, electrochemistry, and the handling of “dangerous” reagents. Also featured are advances in the “computer-assisted drug design” area and the expanding application of novel mass spectrometry-based techniques to a wide range of drug discovery activities.

  13. Approach to Drug Latentiation as a Tool for Discovery of New Antichagasic

    Directory of Open Access Journals (Sweden)

    Eliana Ometto Pavan Serafim

    2011-06-01

    Full Text Available Chagas disease, discovered more than one century ago by Carlos Chagas, is still a serious Public Health problem. It is considered an extremely neglected disease, for it affects specially the population of developing countries. The patients with this disease have, in the great majority, low income and, for not representing market, they are excluded from the aims and efforts of research and development of pharmaceutical industries. About 8 to 11 million people may be infected with Trypanosoma cruzi, the etiological agent of the disease and about 100 million people are in risk in Latin America. The treatment of the disease is still a challenge, for only two nytroheterociclic drugs are commercialized in the world: nifurtimox and benznidazole, being this last one, the only available drug in the Brazilian market. However, these drugs are active only in the acute phase of the disease, and the treatment is not efficient in patients in the chronic phase. Consequently it is relevant to develop efficient anti-chagas compounds, particularly for the chronic phase of the disease. This paper discusses the importance of latency for the development of new pro-drugs. The literature describes several methodological techniques that have enabled significant advances in the planning and development of new anti-chagas agents, with emphasis on the search for pro-drugs that allow the enhancement of drug matrices.

  14. Cardiovascular drug discovery in the academic setting: building infrastructure, harnessing strengths, and seeking synergies.

    Science.gov (United States)

    Gardell, Stephen J; Roth, Gregory P; Kelly, Daniel P

    2010-10-01

    The flow of innovative, effective, and safe new drugs from pharmaceutical laboratories for the treatment and prevention of cardiovascular disease has slowed to a trickle. While the need for breakthrough cardiovascular disease drugs is still paramount, the incentive to develop these agents has been blunted by burgeoning clinical development costs coupled with a heightened risk of failure due to the unprecedented nature of the emerging drug targets and increasingly challenging regulatory environment. A fuller understanding of the drug targets and employing novel biomarker strategies in clinical trials should serve to mitigate the risk. In any event, these current challenges have evoked changing trends in the pharmaceutical industry, which have created an opportunity for non-profit biomedical research institutions to play a pivotal partnering role in early stage drug discovery. The obvious strengths of academic research institutions is the breadth of their scientific programs and the ability and motivation to "go deep" to identify and characterize new target pathways that unlock the specific mysteries of cardiovascular diseases--leading to a bounty of novel therapeutic targets and prescient biomarkers. However, success in the drug discovery arena within the academic environment is contingent upon assembling the requisite infrastructure, annexing the talent to interrogate and validate the drug targets, and building translational bridges with pharmaceutical organizations and patient-oriented researchers.

  15. [From the discovery of antibiotics to emerging highly drug-resistant bacteria].

    Science.gov (United States)

    Meunier, Olivier

    2015-01-01

    The discovery of antibiotics has enabled serious infections to be treated. However, bacteria resistant to several families of antibiotics and the emergence of new highly drug-resistant bacteria constitute a public health issue in France and across the world. Actions to prevent their transmission are being put in place. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Repurposing High-Throughput Image Assays Enables Biological Activity Prediction for Drug Discovery.

    Science.gov (United States)

    Simm, Jaak; Klambauer, Günter; Arany, Adam; Steijaert, Marvin; Wegner, Jörg Kurt; Gustin, Emmanuel; Chupakhin, Vladimir; Chong, Yolanda T; Vialard, Jorge; Buijnsters, Peter; Velter, Ingrid; Vapirev, Alexander; Singh, Shantanu; Carpenter, Anne E; Wuyts, Roel; Hochreiter, Sepp; Moreau, Yves; Ceulemans, Hugo

    2018-05-17

    In both academia and the pharmaceutical industry, large-scale assays for drug discovery are expensive and often impractical, particularly for the increasingly important physiologically relevant model systems that require primary cells, organoids, whole organisms, or expensive or rare reagents. We hypothesized that data from a single high-throughput imaging assay can be repurposed to predict the biological activity of compounds in other assays, even those targeting alternate pathways or biological processes. Indeed, quantitative information extracted from a three-channel microscopy-based screen for glucocorticoid receptor translocation was able to predict assay-specific biological activity in two ongoing drug discovery projects. In these projects, repurposing increased hit rates by 50- to 250-fold over that of the initial project assays while increasing the chemical structure diversity of the hits. Our results suggest that data from high-content screens are a rich source of information that can be used to predict and replace customized biological assays. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Public-Private Partnerships in Lead Discovery: Overview and Case Studies.

    Science.gov (United States)

    Gottwald, Matthias; Becker, Andreas; Bahr, Inke; Mueller-Fahrnow, Anke

    2016-09-01

    The pharmaceutical industry is faced with significant challenges in its efforts to discover new drugs that address unmet medical needs. Safety concerns and lack of efficacy are the two main technical reasons for attrition. Improved early research tools including predictive in silico, in vitro, and in vivo models, as well as a deeper understanding of the disease biology, therefore have the potential to improve success rates. The combination of internal activities with external collaborations in line with the interests and needs of all partners is a successful approach to foster innovation and to meet the challenges. Collaboration can take place in different ways, depending on the requirements of the participants. In this review, the value of public-private partnership approaches will be discussed, using examples from the Innovative Medicines Initiative (IMI). These examples describe consortia approaches to develop tools and processes for improving target identification and validation, as well as lead identification and optimization. The project "Kinetics for Drug Discovery" (K4DD), focusing on the adoption of drug-target binding kinetics analysis in the drug discovery decision-making process, is described in more detail. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Open source drug discovery in practice: a case study.

    Science.gov (United States)

    Årdal, Christine; Røttingen, John-Arne

    2012-01-01

    Open source drug discovery offers potential for developing new and inexpensive drugs to combat diseases that disproportionally affect the poor. The concept borrows two principle aspects from open source computing (i.e., collaboration and open access) and applies them to pharmaceutical innovation. By opening a project to external contributors, its research capacity may increase significantly. To date there are only a handful of open source R&D projects focusing on neglected diseases. We wanted to learn from these first movers, their successes and failures, in order to generate a better understanding of how a much-discussed theoretical concept works in practice and may be implemented. A descriptive case study was performed, evaluating two specific R&D projects focused on neglected diseases. CSIR Team India Consortium's Open Source Drug Discovery project (CSIR OSDD) and The Synaptic Leap's Schistosomiasis project (TSLS). Data were gathered from four sources: interviews of participating members (n = 14), a survey of potential members (n = 61), an analysis of the websites and a literature review. Both cases have made significant achievements; however, they have done so in very different ways. CSIR OSDD encourages international collaboration, but its process facilitates contributions from mostly Indian researchers and students. Its processes are formal with each task being reviewed by a mentor (almost always offline) before a result is made public. TSLS, on the other hand, has attracted contributors internationally, albeit significantly fewer than CSIR OSDD. Both have obtained funding used to pay for access to facilities, physical resources and, at times, labor costs. TSLS releases its results into the public domain, whereas CSIR OSDD asserts ownership over its results. Technically TSLS is an open source project, whereas CSIR OSDD is a crowdsourced project. However, both have enabled high quality research at low cost. The critical success factors appear to be clearly

  19. Weak affinity chromatography for evaluation of stereoisomers in early drug discovery.

    Science.gov (United States)

    Duong-Thi, Minh-Dao; Bergström, Maria; Fex, Tomas; Svensson, Susanne; Ohlson, Sten; Isaksson, Roland

    2013-07-01

    In early drug discovery (e.g., in fragment screening), recognition of stereoisomeric structures is valuable and guides medicinal chemists to focus only on useful configurations. In this work, we concurrently screened mixtures of stereoisomers and estimated their affinities to a protein target (thrombin) using weak affinity chromatography-mass spectrometry (WAC-MS). Affinity determinations by WAC showed that minor changes in stereoisomeric configuration could have a major impact on affinity. The ability of WAC-MS to provide instant information about stereoselectivity and binding affinities directly from analyte mixtures is a great advantage in fragment library screening and drug lead development.

  20. Automated tool for virtual screening and pharmacology-based pathway prediction and analysis

    Directory of Open Access Journals (Sweden)

    Sugandh Kumar

    2017-10-01

    Full Text Available The virtual screening is an effective tool for the lead identification in drug discovery. However, there are limited numbers of crystal structures available as compared to the number of biological sequences which makes (Structure Based Drug Discovery SBDD a difficult choice. The current tool is an attempt to automate the protein structure modelling and automatic virtual screening followed by pharmacology-based prediction and analysis. Starting from sequence(s, this tool automates protein structure modelling, binding site identification, automated docking, ligand preparation, post docking analysis and identification of hits in the biological pathways that can be modulated by a group of ligands. This automation helps in the characterization of ligands selectivity and action of ligands on a complex biological molecular network as well as on individual receptor. The judicial combination of the ligands binding different receptors can be used to inhibit selective biological pathways in a disease. This tool also allows the user to systemically investigate network-dependent effects of a drug or drug candidate.

  1. The evolution of the matrix metalloproteinase inhibitor drug discovery program at abbott laboratories.

    Science.gov (United States)

    Wada, Carol K

    2004-01-01

    Matrix metalloproteinases (MMPs) have been implicated in several pathologies. At Abbott Laboratories, the matrix metalloproteinases inhibitor drug discovery program has focused on the discovery of a potent, selective, orally bioavailable MMP inhibitor for the treatment of cancer. The program evolved from early succinate-based inhibitors to utilizing in-house technology such as SAR by NMR to develop a novel class of biaryl hydroxamate MMP inhibitors. The metabolic instability of the biaryl hydroxamates led to the discovery of a new class of N-formylhydroxylamine (retrohydroxamate) biaryl ethers, exemplified by ABT-770 (16). Toxicity issues with this pre-clinical candidate led to the discovery of another novel class of retrohydroxamate MMP inhibitors, the phenoxyphenyl sulfones such as ABT-518 (19j). ABT-518 is a potent, orally bioavailable, selective inhibitor of MMP-2 and 9 over MMP-1 that has been evaluated in Phase I clinical trials in cancer patients.

  2. Drug affordability-potential tool for comparing illicit drug markets.

    Science.gov (United States)

    Groshkova, Teodora; Cunningham, Andrew; Royuela, Luis; Singleton, Nicola; Saggers, Tony; Sedefov, Roumen

    2018-06-01

    The importance of illicit drug price data and making appropriate adjustments for purity has been repeatedly highlighted for understanding illicit drug markets. The European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) has been collecting retail price data for a number of drug types alongside drug-specific purity information for over 15 years. While these data are useful for a number of monitoring and analytical purposes, they are not without their limitations and there are circumstances where additional adjustment needs to be considered. This paper reviews some conceptual issues and measurement challenges relevant to the interpretation of price data. It also highlights the issues with between-country comparisons of drug prices and introduces the concept of affordability of drugs, going beyond purity-adjustment to account for varying national economies. Based on a 2015 European data set of price and purity data across the heroin and cocaine retail markets, the paper demonstrates a new model for drug market comparative analysis; calculation of drug affordability is achieved by applying to purity-adjusted prices 2015 Price Level Indices (PLI, Eurostat). Available data allowed retail heroin and cocaine market comparison for 27 European countries. The lowest and highest unadjusted prices per gram were observed for heroin: in Estonia, Belgium, Greece and Bulgaria (lowest) and Finland, Ireland, Sweden and Latvia (highest); for cocaine: the Netherlands, Belgium and the United Kingdom (lowest) and Turkey, Finland, Estonia and Romania (highest). The affordability per gram of heroin and cocaine when taking into account adjustment for both purity and economy demonstrates different patterns. It is argued that purity-adjusted price alone provides an incomplete comparison of retail price across countries. The proposed new method takes account of the differing economic conditions within European countries, thus providing a more sophisticated tool for cross

  3. Native Mass Spectrometry in Fragment-Based Drug Discovery

    Directory of Open Access Journals (Sweden)

    Liliana Pedro

    2016-07-01

    Full Text Available The advent of native mass spectrometry (MS in 1990 led to the development of new mass spectrometry instrumentation and methodologies for the analysis of noncovalent protein–ligand complexes. Native MS has matured to become a fast, simple, highly sensitive and automatable technique with well-established utility for fragment-based drug discovery (FBDD. Native MS has the capability to directly detect weak ligand binding to proteins, to determine stoichiometry, relative or absolute binding affinities and specificities. Native MS can be used to delineate ligand-binding sites, to elucidate mechanisms of cooperativity and to study the thermodynamics of binding. This review highlights key attributes of native MS for FBDD campaigns.

  4. Native Mass Spectrometry in Fragment-Based Drug Discovery.

    Science.gov (United States)

    Pedro, Liliana; Quinn, Ronald J

    2016-07-28

    The advent of native mass spectrometry (MS) in 1990 led to the development of new mass spectrometry instrumentation and methodologies for the analysis of noncovalent protein-ligand complexes. Native MS has matured to become a fast, simple, highly sensitive and automatable technique with well-established utility for fragment-based drug discovery (FBDD). Native MS has the capability to directly detect weak ligand binding to proteins, to determine stoichiometry, relative or absolute binding affinities and specificities. Native MS can be used to delineate ligand-binding sites, to elucidate mechanisms of cooperativity and to study the thermodynamics of binding. This review highlights key attributes of native MS for FBDD campaigns.

  5. A Linked Data Approach for the Discovery of Educational ICT Tools in the Web of Data

    Science.gov (United States)

    Ruiz-Calleja, Adolfo; Vega-Gorgojo, Guillermo; Asensio-Perez, Juan I.; Bote-Lorenzo, Miguel L.; Gomez-Sanchez, Eduardo; Alario-Hoyos, Carlos

    2012-01-01

    The use of Information and Communication Technologies (ICT) tools to support learning activities is nowadays generalized. Several educational registries provide information about ICT tools in order to help educators in their discovery and selection. These registries are typically isolated and require much effort to keep tool information up to…

  6. Fragment-Based Drug Discovery in the Bromodomain and Extra-Terminal Domain Family.

    Science.gov (United States)

    Radwan, Mostafa; Serya, Rabah

    2017-08-01

    Bromodomain and extra-terminal domain (BET) inhibition has emerged recently as a potential therapeutic target for the treatment of many human disorders such as atherosclerosis, inflammatory disorders, chronic obstructive pulmonary disease (COPD), some viral infections, and cancer. Since the discovery of the two potent inhibitors, I-BET762 and JQ1, different research groups have used different techniques to develop novel potent and selective inhibitors. In this review, we will be concerned with the trials that used fragment-based drug discovery (FBDD) approaches to discover or optimize BET inhibitors, also showing fragments that can be further optimized in future projects to reach novel potent BET inhibitors. © 2017 Deutsche Pharmazeutische Gesellschaft.

  7. Feature Issue Introduction: Bio-Optics in Clinical Applications, Nanotechnology, and Drug Discovery

    OpenAIRE

    Nordstrom, Robert J.; Almutairi, Adah; Hillman, Elizabeth M.C.

    2010-01-01

    The editors introduce the Biomedical Optics Express feature issue, “Bio-Optics in Clinical Applications, Nanotechnology, and Drug Discovery,” which combines three technical areas from the 2010 Optical Society of America (OSA), Biomedical Optics (BIOMED) Topical Meeting held on 11–14 April in Miami, FL and includes contributions from conference attendees.

  8. Identifying and quantifying heterogeneity in high content analysis: application of heterogeneity indices to drug discovery.

    Directory of Open Access Journals (Sweden)

    Albert H Gough

    Full Text Available One of the greatest challenges in biomedical research, drug discovery and diagnostics is understanding how seemingly identical cells can respond differently to perturbagens including drugs for disease treatment. Although heterogeneity has become an accepted characteristic of a population of cells, in drug discovery it is not routinely evaluated or reported. The standard practice for cell-based, high content assays has been to assume a normal distribution and to report a well-to-well average value with a standard deviation. To address this important issue we sought to define a method that could be readily implemented to identify, quantify and characterize heterogeneity in cellular and small organism assays to guide decisions during drug discovery and experimental cell/tissue profiling. Our study revealed that heterogeneity can be effectively identified and quantified with three indices that indicate diversity, non-normality and percent outliers. The indices were evaluated using the induction and inhibition of STAT3 activation in five cell lines where the systems response including sample preparation and instrument performance were well characterized and controlled. These heterogeneity indices provide a standardized method that can easily be integrated into small and large scale screening or profiling projects to guide interpretation of the biology, as well as the development of therapeutics and diagnostics. Understanding the heterogeneity in the response to perturbagens will become a critical factor in designing strategies for the development of therapeutics including targeted polypharmacology.

  9. Incorporation of rapid thermodynamic data in fragment-based drug discovery.

    Science.gov (United States)

    Kobe, Akihiro; Caaveiro, Jose M M; Tashiro, Shinya; Kajihara, Daisuke; Kikkawa, Masato; Mitani, Tomoya; Tsumoto, Kouhei

    2013-03-14

    Fragment-based drug discovery (FBDD) has enjoyed increasing popularity in recent years. We introduce SITE (single-injection thermal extinction), a novel thermodynamic methodology that selects high-quality hits early in FBDD. SITE is a fast calorimetric competitive assay suitable for automation that captures the essence of isothermal titration calorimetry but using significantly fewer resources. We describe the principles of SITE and identify a novel family of fragment inhibitors of the enzyme ketosteroid isomerase displaying high values of enthalpic efficiency.

  10. Computer aided drug design

    Science.gov (United States)

    Jain, A.

    2017-08-01

    Computer based method can help in discovery of leads and can potentially eliminate chemical synthesis and screening of many irrelevant compounds, and in this way, it save time as well as cost. Molecular modeling systems are powerful tools for building, visualizing, analyzing and storing models of complex molecular structure that can help to interpretate structure activity relationship. The use of various techniques of molecular mechanics and dynamics and software in Computer aided drug design along with statistics analysis is powerful tool for the medicinal chemistry to synthesis therapeutic and effective drugs with minimum side effect.

  11. Exploring Chemical Space for Drug Discovery Using the Chemical Universe Database

    Science.gov (United States)

    2012-01-01

    Herein we review our recent efforts in searching for bioactive ligands by enumeration and virtual screening of the unknown chemical space of small molecules. Enumeration from first principles shows that almost all small molecules (>99.9%) have never been synthesized and are still available to be prepared and tested. We discuss open access sources of molecules, the classification and representation of chemical space using molecular quantum numbers (MQN), its exhaustive enumeration in form of the chemical universe generated databases (GDB), and examples of using these databases for prospective drug discovery. MQN-searchable GDB, PubChem, and DrugBank are freely accessible at www.gdb.unibe.ch. PMID:23019491

  12. Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia

    International Nuclear Information System (INIS)

    Cowan-Jacob, Sandra W.; Fendrich, Gabriele; Floersheimer, Andreas; Furet, Pascal; Liebetanz, Janis; Rummel, Gabriele; Rheinberger, Paul; Centeleghe, Mario; Fabbro, Doriano; Manley, Paul W.

    2006-01-01

    A case study showing how the determination of multiple cocrystal structures of the protein tyrosine kinase c-Abl was used to support drug discovery, resulting in a compound effective in the treatment of chronic myelogenous leukaemia. Chronic myelogenous leukaemia (CML) results from the Bcr-Abl oncoprotein, which has a constitutively activated Abl tyrosine kinase domain. Although most chronic phase CML patients treated with imatinib as first-line therapy maintain excellent durable responses, patients who have progressed to advanced-stage CML frequently fail to respond or lose their response to therapy owing to the emergence of drug-resistant mutants of the protein. More than 40 such point mutations have been observed in imatinib-resistant patients. The crystal structures of wild-type and mutant Abl kinase in complex with imatinib and other small-molecule Abl inhibitors were determined, with the aim of understanding the molecular basis of resistance and to aid in the design and optimization of inhibitors active against the resistance mutants. These results are presented in a way which illustrates the approaches used to generate multiple structures, the type of information that can be gained and the way that this information is used to support drug discovery

  13. Molecular docking as a popular tool in drug design, an in silico travel

    Directory of Open Access Journals (Sweden)

    de Ruyck J

    2016-06-01

    Full Text Available Jerome de Ruyck, Guillaume Brysbaert, Ralf Blossey, Marc F Lensink University Lille, CNRS UMR8576 UGSF, Lille, FranceAbstract: New molecular modeling approaches, driven by rapidly improving computational platforms, have allowed many success stories for the use of computer-assisted drug design in the discovery of new mechanism- or structure-based drugs. In this overview, we highlight three aspects of the use of molecular docking. First, we discuss the combination of molecular and quantum mechanics to investigate an unusual enzymatic mechanism of a flavoprotein. Second, we present recent advances in anti-infectious agents' synthesis driven by structural insights. At the end, we focus on larger biological complexes made by protein–protein interactions and discuss their relevance in drug design. This review provides information on how these large systems, even in the presence of the solvent, can be investigated with the outlook of drug discovery.Keywords: structure-based drug design, protein–protein docking, quaternary structure prediction, residue interaction networks, RINs, water position

  14. An Innovative Cell Microincubator for Drug Discovery Based on 3D Silicon Structures

    Directory of Open Access Journals (Sweden)

    Francesca Aredia

    2016-01-01

    Full Text Available We recently employed three-dimensional (3D silicon microstructures (SMSs consisting in arrays of 3 μm-thick silicon walls separated by 50 μm-deep, 5 μm-wide gaps, as microincubators for monitoring the biomechanical properties of tumor cells. They were here applied to investigate the in vitro behavior of HT1080 human fibrosarcoma cells driven to apoptosis by the chemotherapeutic drug Bleomycin. Our results, obtained by fluorescence microscopy, demonstrated that HT1080 cells exhibited a great ability to colonize the narrow gaps. Remarkably, HT1080 cells grown on 3D-SMS, when treated with the DNA damaging agent Bleomycin under conditions leading to apoptosis, tended to shrink, reducing their volume and mimicking the normal behavior of apoptotic cells, and were prone to leave the gaps. Finally, we performed label-free detection of cells adherent to the vertical silicon wall, inside the gap of 3D-SMS, by exploiting optical low coherence reflectometry using infrared, low power radiation. This kind of approach may become a new tool for increasing automation in the drug discovery area. Our results open new perspectives in view of future applications of the 3D-SMS as the core element of a lab-on-a-chip suitable for screening the effect of new molecules potentially able to kill tumor cells.

  15. Establishing MALDI-TOF as Versatile Drug Discovery Readout to Dissect the PTP1B Enzymatic Reaction.

    Science.gov (United States)

    Winter, Martin; Bretschneider, Tom; Kleiner, Carola; Ries, Robert; Hehn, Jörg P; Redemann, Norbert; Luippold, Andreas H; Bischoff, Daniel; Büttner, Frank H

    2018-07-01

    Label-free, mass spectrometric (MS) detection is an emerging technology in the field of drug discovery. Unbiased deciphering of enzymatic reactions is a proficient advantage over conventional label-based readouts suffering from compound interference and intricate generation of tailored signal mediators. Significant evolvements of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS, as well as associated liquid handling instrumentation, triggered extensive efforts in the drug discovery community to integrate the comprehensive MS readout into the high-throughput screening (HTS) portfolio. Providing speed, sensitivity, and accuracy comparable to those of conventional, label-based readouts, combined with merits of MS-based technologies, such as label-free parallelized measurement of multiple physiological components, emphasizes the advantages of MALDI-TOF for HTS approaches. Here we describe the assay development for the identification of protein tyrosine phosphatase 1B (PTP1B) inhibitors. In the context of this precious drug target, MALDI-TOF was integrated into the HTS environment and cross-compared with the well-established AlphaScreen technology. We demonstrate robust and accurate IC 50 determination with high accordance to data generated by AlphaScreen. Additionally, a tailored MALDI-TOF assay was developed to monitor compound-dependent, irreversible modification of the active cysteine of PTP1B. Overall, the presented data proves the promising perspective for the integration of MALDI-TOF into drug discovery campaigns.

  16. A Bioinorganic Approach to Fragment-Based Drug Discovery Targeting Metalloenzymes.

    Science.gov (United States)

    Cohen, Seth M

    2017-08-15

    Metal-dependent enzymes (i.e., metalloenzymes) make up a large fraction of all enzymes and are critically important in a wide range of biological processes, including DNA modification, protein homeostasis, antibiotic resistance, and many others. Consequently, metalloenzymes represent a vast and largely untapped space for drug development. The discovery of effective therapeutics that target metalloenzymes lies squarely at the interface of bioinorganic and medicinal chemistry and requires expertise, methods, and strategies from both fields to mount an effective campaign. In this Account, our research program that brings together the principles and methods of bioinorganic and medicinal chemistry are described, in an effort to bridge the gap between these fields and address an important class of medicinal targets. Fragment-based drug discovery (FBDD) is an important drug discovery approach that is particularly well suited for metalloenzyme inhibitor development. FBDD uses relatively small but diverse chemical structures that allow for the assembly of privileged molecular collections that focus on a specific feature of the target enzyme. For metalloenzyme inhibition, the specific feature is rather obvious, namely, a metal-dependent active site. Surprisingly, prior to our work, the exploration of diverse molecular fragments for binding the metal active sites of metalloenzymes was largely unexplored. By assembling a modest library of metal-binding pharmacophores (MBPs), we have been able to find lead hits for many metalloenzymes and, from these hits, develop inhibitors that act via novel mechanisms of action. A specific case study on the use of this strategy to identify a first-in-class inhibitor of zinc-dependent Rpn11 (a component of the proteasome) is highlighted. The application of FBDD for the development of metalloenzyme inhibitors has raised several other compelling questions, such as how the metalloenzyme active site influences the coordination chemistry of bound

  17. Overcoming the challenges of drug discovery for neglected tropical diseases: the A·WOL experience.

    Science.gov (United States)

    Johnston, Kelly L; Ford, Louise; Taylor, Mark J

    2014-03-01

    Neglected tropical diseases (NTDs) are a group of 17 diseases that typically affect poor people in tropical countries. Each has been neglected for decades in terms of funding, research, and policy, but the recent grouping of them into one unit, which can be targeted using integrated control measures, together with increased advocacy has helped to place them on the global health agenda. The World Health Organization has set ambitious goals to control or eliminate 10 NTDs by 2020 and launched a roadmap in January 2012 to guide this global plan. The result of the launch meeting, which brought together representatives from the pharmaceutical industry, donors, and politicians, was the London Declaration: a series of commitments to provide more drugs, research, and funds to achieve the 2020 goals. Drug discovery and development for these diseases are extremely challenging, and this article highlights these challenges in the context of the London Declaration, before focusing on an example of a drug discovery and development program for the NTDs onchocerciasis and lymphatic filariasis (the anti-Wolbachia consortium, A·WOL).

  18. Pharmacogenetics in diverse ethnic populations--implications for drug discovery and development.

    Science.gov (United States)

    McCarthy, Linda C; Davies, Kirstie J; Campbell, David A

    2002-07-01

    It is widely acknowledged that the vast quantities of data now publicly available as a result of the human genome initiative have the potential to revolutionize the pharmaceutical industry. More tangibly to the drug development business, the dawn of the pharmacogenetics era has the potential to impact not only the discovery of new medicines but also the safety and efficacy of pharmaceutical agents. Coincident with these scientific advances is the emergence of new markets for pharmaceutical agents. Japan, which represents the world's second biggest market, is a good example. With the ICH E5 agreement in 1998 and a rapid change in the drug registration process in Japan, there are increasing opportunities to improve access to more medicines in all parts of the world. However, it is increasingly clear that significant genetic variation still exists between populations, with a host of data on interethnic variation in drug metabolizing enzyme and drug transporter activity. Evidence suggesting that this genetic variation may play an important role in defining some of the interethnic variation in drug response to currently marketed compounds is reviewed here, and future possibilities of using such information to better streamline the drug development process are discussed.

  19. Anticancer drug discovery and pharmaceutical chemistry: a history.

    Science.gov (United States)

    Braña, Miguel F; Sánchez-Migallón, Ana

    2006-10-01

    There are several procedures for the chemical discovery and design of new drugs from the point of view of the pharmaceutical or medicinal chemistry. They range from classical methods to the very new ones, such as molecular modeling or high throughput screening. In this review, we will consider some historical approaches based on the screening of natural products, the chances for luck, the systematic screening of new chemical entities and serendipity. Another group comprises rational design, as in the case of metabolic pathways, conformation versus configuration and, finally, a brief description on available new targets to be carried out. In each approach, the structure of some examples of clinical interest will be shown.

  20. Aptamers as Both Drugs and Drug-Carriers

    Directory of Open Access Journals (Sweden)

    Md. Ashrafuzzaman

    2014-01-01

    Full Text Available Aptamers are short nucleic acid oligos. They may serve as both drugs and drug-carriers. Their use as diagnostic tools is also evident. They can be generated using various experimental, theoretical, and computational techniques. The systematic evolution of ligands by exponential enrichment which uses iterative screening of nucleic acid libraries is a popular experimental technique. Theory inspired methodology entropy-based seed-and-grow strategy that designs aptamer templates to bind specifically to targets is another one. Aptamers are predicted to be highly useful in producing general drugs and theranostic drugs occasionally for certain diseases like cancer, Alzheimer’s disease, and so on. They bind to various targets like lipids, nucleic acids, proteins, small organic compounds, and even entire organisms. Aptamers may also serve as drug-carriers or nanoparticles helping drugs to get released in specific target regions. Due to better target specific physical binding properties aptamers cause less off-target toxicity effects. Therefore, search for aptamer based drugs, drug-carriers, and even diagnostic tools is expanding fast. The biophysical properties in relation to the target specific binding phenomena of aptamers, energetics behind the aptamer transport of drugs, and the consequent biological implications will be discussed. This review will open up avenues leading to novel drug discovery and drug delivery.

  1. Software Infrastructure for Computer-aided Drug Discovery and Development, a Practical Example with Guidelines.

    Science.gov (United States)

    Moretti, Loris; Sartori, Luca

    2016-09-01

    In the field of Computer-Aided Drug Discovery and Development (CADDD) the proper software infrastructure is essential for everyday investigations. The creation of such an environment should be carefully planned and implemented with certain features in order to be productive and efficient. Here we describe a solution to integrate standard computational services into a functional unit that empowers modelling applications for drug discovery. This system allows users with various level of expertise to run in silico experiments automatically and without the burden of file formatting for different software, managing the actual computation, keeping track of the activities and graphical rendering of the structural outcomes. To showcase the potential of this approach, performances of five different docking programs on an Hiv-1 protease test set are presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Stem cells: a model for screening, discovery and development of drugs

    OpenAIRE

    Kitambi, Satish Srinivas; Chandrasekar, Gayathri

    2011-01-01

    Satish Srinivas Kitambi1, Gayathri Chandrasekar21Department of Medical Biochemistry and Biophysics; 2Department of Biosciences, Karolinska Institutet, Stockholm, SwedenAbstract: The identification of normal and cancerous stem cells and the recent advances made in isolation and culture of stem cells have rapidly gained attention in the field of drug discovery and regenerative medicine. The prospect of performing screens aimed at proliferation, directed differentiation, and toxicity and efficac...

  3. Isothermal microcalorimetry, a new tool to monitor drug action against Trypanosoma brucei and Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Tanja Wenzler

    Full Text Available Isothermal microcalorimetry is an established tool to measure heat flow of physical, chemical or biological processes. The metabolism of viable cells produces heat, and if sufficient cells are present, their heat production can be assessed by this method. In this study, we investigated the heat flow of two medically important protozoans, Trypanosoma brucei rhodesiense and Plasmodium falciparum. Heat flow signals obtained for these pathogens allowed us to monitor parasite growth on a real-time basis as the signals correlated with the number of viable cells. To showcase the potential of microcalorimetry for measuring drug action on pathogenic organisms, we tested the method with three antitrypanosomal drugs, melarsoprol, suramin and pentamidine and three antiplasmodial drugs, chloroquine, artemether and dihydroartemisinin, each at two concentrations on the respective parasite. With the real time measurement, inhibition was observed immediately by a reduced heat flow compared to that in untreated control samples. The onset of drug action, the degree of inhibition and the time to death of the parasite culture could conveniently be monitored over several days. Microcalorimetry is a valuable element to be added to the toolbox for drug discovery for protozoal diseases such as human African trypanosomiasis and malaria. The method could probably be adapted to other protozoan parasites, especially those growing extracellularly.

  4. Designing an intuitive web application for drug discovery scientists.

    Science.gov (United States)

    Karamanis, Nikiforos; Pignatelli, Miguel; Carvalho-Silva, Denise; Rowland, Francis; Cham, Jennifer A; Dunham, Ian

    2018-01-11

    We discuss how we designed the Open Targets Platform (www.targetvalidation.org), an intuitive application for bench scientists working in early drug discovery. To meet the needs of our users, we applied lean user experience (UX) design methods: we started engaging with users very early and carried out research, design and evaluation activities within an iterative development process. We also emphasize the collaborative nature of applying lean UX design, which we believe is a foundation for success in this and many other scientific projects. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Drug Discovery of Host CLK1 Inhibitors for Influenza Treatment

    Directory of Open Access Journals (Sweden)

    Mian Zu

    2015-11-01

    Full Text Available The rapid evolution of influenza virus makes antiviral drugs less effective, which is considered to be a major bottleneck in antiviral therapy. The key proteins in the host cells, which are related with the replication cycle of influenza virus, are regarded as potential drug targets due to their distinct advantage of lack of evolution and drug resistance. Cdc2-like kinase 1 (CLK1 in the host cells is responsible for alternative splicing of the M2 gene of influenza virus during influenza infection and replication. In this study, we carried out baculovirus-mediated expression and purification of CLK1 and established a reliable screening assay for CLK1 inhibitors. After a virtual screening of CLK1 inhibitors was performed, the activities of the selected compounds were evaluated. Finally, several compounds with strong inhibitory activity against CLK1 were discovered and their in vitro anti-influenza virus activities were validated using a cytopathic effect (CPE reduction assay. The assay results showed that clypearin, corilagin, and pinosylvine were the most potential anti-influenza virus compounds as CLK1 inhibitors among the compounds tested. These findings will provide important information for new drug design and development in influenza treatment, and CLK1 may be a potent drug target for anti-influenza drug screening and discovery.

  6. Advantages of crystallographic fragment screening: functional and mechanistic insights from a powerful platform for efficient drug discovery.

    Science.gov (United States)

    Patel, Disha; Bauman, Joseph D; Arnold, Eddy

    2014-01-01

    X-ray crystallography has been an under-appreciated screening tool for fragment-based drug discovery due to the perception of low throughput and technical difficulty. Investigators in industry and academia have overcome these challenges by taking advantage of key factors that contribute to a successful crystallographic screening campaign. Efficient cocktail design and soaking methodologies have evolved to maximize throughput while minimizing false positives/negatives. In addition, technical improvements at synchrotron beamlines have dramatically increased data collection rates thus enabling screening on a timescale comparable to other techniques. The combination of available resources and efficient experimental design has resulted in many successful crystallographic screening campaigns. The three-dimensional crystal structure of the bound fragment complexed to its target, a direct result of the screening effort, enables structure-based drug design while revealing insights regarding protein dynamics and function not readily obtained through other experimental approaches. Furthermore, this "chemical interrogation" of the target protein crystals can lead to the identification of useful reagents for improving diffraction resolution or compound solubility. Copyright © 2014. Published by Elsevier Ltd.

  7. Advantages of Crystallographic Fragment Screening: Functional and Mechanistic Insights from a Powerful Platform for Efficient Drug Discovery

    Science.gov (United States)

    Patel, Disha; Bauman, Joseph D.; Arnold, Eddy

    2015-01-01

    X-ray crystallography has been an under-appreciated screening tool for fragment-based drug discovery due to the perception of low throughput and technical difficulty. Investigators in industry and academia have overcome these challenges by taking advantage of key factors that contribute to a successful crystallographic screening campaign. Efficient cocktail design and soaking methodologies have evolved to maximize throughput while minimizing false positives/negatives. In addition, technical improvements at synchrotron beamlines have dramatically increased data collection rates thus enabling screening on a timescale comparable to other techniques. The combination of available resources and efficient experimental design has resulted in many successful crystallographic screening campaigns. The three-dimensional crystal structure of the bound fragment complexed to its target, a direct result of the screening effort, enables structure-based drug design while revealing insights regarding protein dynamics and function not readily obtained through other experimental approaches. Furthermore, this “chemical interrogation” of the target protein crystals can lead to the identification of useful reagents for improving diffraction resolution or compound solubility. PMID:25117499

  8. Therapeutic approaches to genetic ion channelopathies and perspectives in drug discovery

    Directory of Open Access Journals (Sweden)

    Paola eImbrici

    2016-05-01

    Full Text Available In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, disabling, or life-threatening. In spite of this, ion channels are the primary target of only about 5% of the marketed drugs suggesting their potential in drug discovery. The current review summarizes the therapeutic management of the principal ion channelopathies of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and pancreas, resulting from mutations in calcium, sodium, potassium and chloride ion channels. For most channelopathies the therapy is mainly empirical and symptomatic, often limited by lack of efficacy and tolerability for a significant number of patients. Other channelopathies can exploit ion channel targeted drugs, such as marketed sodium channel blockers. Developing new and more specific therapeutic approaches is therefore required. To this aim, a major advancement in the pharmacotherapy of channelopathies has been the discovery that ion channel mutations lead to change in biophysics that can in turn specifically modify the sensitivity to drugs: this opens the way to a pharmacogenetics strategy, allowing the development of a personalized therapy with increased efficacy and reduced side effects. In addition, the identification of disease modifiers in ion channelopathies appears an alternative strategy to discover novel druggable targets.

  9. Open Source Drug Discovery in Practice: A Case Study

    Science.gov (United States)

    Årdal, Christine; Røttingen, John-Arne

    2012-01-01

    Background Open source drug discovery offers potential for developing new and inexpensive drugs to combat diseases that disproportionally affect the poor. The concept borrows two principle aspects from open source computing (i.e., collaboration and open access) and applies them to pharmaceutical innovation. By opening a project to external contributors, its research capacity may increase significantly. To date there are only a handful of open source R&D projects focusing on neglected diseases. We wanted to learn from these first movers, their successes and failures, in order to generate a better understanding of how a much-discussed theoretical concept works in practice and may be implemented. Methodology/Principal Findings A descriptive case study was performed, evaluating two specific R&D projects focused on neglected diseases. CSIR Team India Consortium's Open Source Drug Discovery project (CSIR OSDD) and The Synaptic Leap's Schistosomiasis project (TSLS). Data were gathered from four sources: interviews of participating members (n = 14), a survey of potential members (n = 61), an analysis of the websites and a literature review. Both cases have made significant achievements; however, they have done so in very different ways. CSIR OSDD encourages international collaboration, but its process facilitates contributions from mostly Indian researchers and students. Its processes are formal with each task being reviewed by a mentor (almost always offline) before a result is made public. TSLS, on the other hand, has attracted contributors internationally, albeit significantly fewer than CSIR OSDD. Both have obtained funding used to pay for access to facilities, physical resources and, at times, labor costs. TSLS releases its results into the public domain, whereas CSIR OSDD asserts ownership over its results. Conclusions/Significance Technically TSLS is an open source project, whereas CSIR OSDD is a crowdsourced project. However, both have enabled high quality

  10. 78 FR 68459 - Medical Device Development Tools; Draft Guidance for Industry, Tool Developers, and Food and Drug...

    Science.gov (United States)

    2013-11-14

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-D-1279] Medical Device Development Tools; Draft Guidance for Industry, Tool Developers, and Food and Drug Administration Staff; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food...

  11. Optimizing Oral Bioavailability in Drug Discovery: An Overview of Design and Testing Strategies and Formulation Options.

    Science.gov (United States)

    Aungst, Bruce J

    2017-04-01

    For discovery teams working toward new, orally administered therapeutic agents, one requirement is to attain adequate systemic exposure after oral dosing, which is best accomplished when oral bioavailability is optimized. This report summarizes the bioavailability challenges currently faced in drug discovery, and the design and testing methods and strategies currently utilized to address the challenges. Profiling of discovery compounds usually includes separate assessments of solubility, permeability, and susceptibility to first-pass metabolism, which are the 3 most likely contributors to incomplete oral bioavailability. An initial assessment of absorption potential may be made computationally, and high throughput in vitro assays are typically performed to prioritize compounds for in vivo studies. The initial pharmacokinetic study is a critical decision point in compound evaluation, and the importance of the effect the dosing vehicle or formulation can have on oral bioavailability, especially for poorly water soluble compounds, is emphasized. Dosing vehicles and bioavailability-enabling formulations that can be used for discovery and preclinical studies are described. Optimizing oral bioavailability within a chemical series or for a lead compound requires identification of the barrier limiting bioavailability, and methods used for this purpose are outlined. Finally, a few key guidelines are offered for consideration when facing the challenges of optimizing oral bioavailability in drug discovery. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Open-access public-private partnerships to enable drug discovery--new approaches.

    Science.gov (United States)

    Müller, Susanne; Weigelt, Johan

    2010-03-01

    The productivity of the pharmaceutical industry, as assessed by the number of NMEs produced per US dollar spent in R&D, has been in steady decline during the past 40 years. This decline in productivity not only poses a significant challenge to the pharmaceutical industry, but also to society because of the importance of developing drugs for the treatment of unmet medical needs. The major challenge in progressing a new drug to the market is the successful completion of clinical trials. However, the failure rate of drugs entering trials has not decreased, despite various technological and scientific breakthroughs in recent decades, and despite intense target validation efforts. This lack of success suggests limitations in the fundamental understanding of target biology and human pharmacology. One contributing factor may be the traditional secrecy of the pharmaceutical sector, a characteristic that does not promote scientific discovery in an optimal manner. Access to broader knowledge relating to target biology and human pharmacology is difficult to obtain because interactions between researchers in industry and academia are typically restricted to closed collaborations in which the knowledge gained is confidential.However, open-access collaborative partnerships are gaining momentum in industry, and are also favored by funding agencies. Such open-access collaborations may be a powerful alternative to closed collaborations; the sharing of early-stage research data is expected to enable scientific discovery by engaging a broader section of the scientific community in the exploration of new findings. Potentially, the sharing of data could contribute to an increased understanding of biological processes and a decrease in the attrition of clinical programs.

  13. Bringing your tools to CyVerse Discovery Environment using Docker [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Upendra Kumar Devisetty

    2016-06-01

    Full Text Available Docker has become a very popular container-based virtualization platform for software distribution that has revolutionized the way in which scientific software and software dependencies (software stacks can be packaged, distributed, and deployed. Docker makes the complex and time-consuming installation procedures needed for scientific software a one-time process. Because it enables platform-independent installation, versioning of software environments, and easy redeployment and reproducibility, Docker is an ideal candidate for the deployment of identical software stacks on different compute environments such as XSEDE and Amazon AWS. CyVerse’s Discovery Environment also uses Docker for integrating its powerful, community-recommended software tools into CyVerse’s production environment for public use. This paper will help users bring their tools into CyVerse Discovery Environment (DE which will not only allows users to integrate their tools with relative ease compared to the earlier method of tool deployment in DE but will also help users to share their apps with collaborators and release them for public use.

  14. The impact of assay technology as applied to safety assessment in reducing compound attrition in drug discovery.

    Science.gov (United States)

    Thomas, Craig E; Will, Yvonne

    2012-02-01

    Attrition in the drug industry due to safety findings remains high and requires a shift in the current safety testing paradigm. Many companies are now positioning safety assessment at each stage of the drug development process, including discovery, where an early perspective on potential safety issues is sought, often at chemical scaffold level, using a variety of emerging technologies. Given the lengthy development time frames of drugs in the pharmaceutical industry, the authors believe that the impact of new technologies on attrition is best measured as a function of the quality and timeliness of candidate compounds entering development. The authors provide an overview of in silico and in vitro models, as well as more complex approaches such as 'omics,' and where they are best positioned within the drug discovery process. It is important to take away that not all technologies should be applied to all projects. Technologies vary widely in their validation state, throughput and cost. A thoughtful combination of validated and emerging technologies is crucial in identifying the most promising candidates to move to proof-of-concept testing in humans. In spite of the challenges inherent in applying new technologies to drug discovery, the successes and recognition that we cannot continue to rely on safety assessment practices used for decades have led to rather dramatic strategy shifts and fostered partnerships across government agencies and industry. We are optimistic that these efforts will ultimately benefit patients by delivering effective and safe medications in a timely fashion.

  15. From Medicinal Chemistry to Human Health: Current Approaches to Drug Discovery for Cancer and Neglected Tropical Diseases

    Directory of Open Access Journals (Sweden)

    LEONARDO G. FERREIRA

    2018-02-01

    Full Text Available ABSTRACT Scientific and technological breakthroughs have compelled the current players in drug discovery to increasingly incorporate knowledge-based approaches. This evolving paradigm, which has its roots attached to the recent advances in medicinal chemistry, molecular and structural biology, has unprecedentedly demanded the development of up-to-date computational approaches, such as bio- and chemo-informatics. These tools have been pivotal to catalyzing the ever-increasing amount of data generated by the molecular sciences, and to converting the data into insightful guidelines for use in the research pipeline. As a result, ligand- and structure-based drug design have emerged as key pathways to address the pharmaceutical industry’s striking demands for innovation. These approaches depend on a keen integration of experimental and molecular modeling methods to surmount the main challenges faced by drug candidates - in vivo efficacy, pharmacodynamics, metabolism, pharmacokinetics and safety. To that end, the Laboratório de Química Medicinal e Computacional (LQMC of the Universidade de São Paulo has developed forefront research on highly prevalent and life-threatening neglected tropical diseases and cancer. By taking part in global initiatives for pharmaceutical innovation, the laboratory has contributed to the advance of these critical therapeutic areas through the use of cutting-edge strategies in medicinal chemistry.

  16. When fragments link : a bibliometric perspective on the development of fragment-based drug discovery

    NARCIS (Netherlands)

    Romasanta, A.K.S.; van der Sijde, P.C.; Hellsten, I.; Hubbard, Roderick E.; Keseru, Gyorgy M.; van Muijlwijk-Koezen, Jacqueline E.; de Esch, I.J.P.

    2018-01-01

    Fragment-based drug discovery (FBDD) is a highly interdisciplinary field, rich in ideas integrated from pharmaceutical sciences, chemistry, biology, and physics, among others. To enrich our understanding of the development of the field, we used bibliometric techniques to analyze 3642 publications in

  17. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond

    Science.gov (United States)

    Van Voorhis, Wesley C.; Adams, John H.; Adelfio, Roberto; Ahyong, Vida; Akabas, Myles H.; Alano, Pietro; Alday, Aintzane; Alemán Resto, Yesmalie; Alsibaee, Aishah; Alzualde, Ainhoa; Andrews, Katherine T.; Avery, Simon V.; Avery, Vicky M.; Ayong, Lawrence; Baker, Mark; Baker, Stephen; Ben Mamoun, Choukri; Bhatia, Sangeeta; Bickle, Quentin; Bounaadja, Lotfi; Bowling, Tana; Bosch, Jürgen; Boucher, Lauren E.; Boyom, Fabrice F.; Brea, Jose; Brennan, Marian; Burton, Audrey; Caffrey, Conor R.; Camarda, Grazia; Carrasquilla, Manuela; Carter, Dee; Belen Cassera, Maria; Chih-Chien Cheng, Ken; Chindaudomsate, Worathad; Chubb, Anthony; Colon, Beatrice L.; Colón-López, Daisy D.; Corbett, Yolanda; Crowther, Gregory J.; Cowan, Noemi; D’Alessandro, Sarah; Le Dang, Na; Delves, Michael; Du, Alan Y.; Duffy, Sandra; Abd El-Salam El-Sayed, Shimaa; Ferdig, Michael T.; Fernández Robledo, José A.; Fidock, David A.; Florent, Isabelle; Fokou, Patrick V. T.; Galstian, Ani; Gamo, Francisco Javier; Gold, Ben; Golub, Todd; Goldgof, Gregory M.; Guha, Rajarshi; Guiguemde, W. Armand; Gural, Nil; Guy, R. Kiplin; Hansen, Michael A. E.; Hanson, Kirsten K.; Hemphill, Andrew; Hooft van Huijsduijnen, Rob; Horii, Takaaki; Horrocks, Paul; Hughes, Tyler B.; Huston, Christopher; Igarashi, Ikuo; Ingram-Sieber, Katrin; Itoe, Maurice A.; Jadhav, Ajit; Naranuntarat Jensen, Amornrat; Jensen, Laran T.; Jiang, Rays H. Y.; Kaiser, Annette; Keiser, Jennifer; Ketas, Thomas; Kicka, Sebastien; Kim, Sunyoung; Kirk, Kiaran; Kumar, Vidya P.; Kyle, Dennis E.; Lafuente, Maria Jose; Landfear, Scott; Lee, Nathan; Lee, Sukjun; Lehane, Adele M.; Li, Fengwu; Little, David; Liu, Liqiong; Llinás, Manuel; Loza, Maria I.; Lubar, Aristea; Lucantoni, Leonardo; Lucet, Isabelle; Maes, Louis; Mancama, Dalu; Mansour, Nuha R.; March, Sandra; McGowan, Sheena; Medina Vera, Iset; Meister, Stephan; Mercer, Luke; Mestres, Jordi; Mfopa, Alvine N.; Misra, Raj N.; Moon, Seunghyun; Moore, John P.; Morais Rodrigues da Costa, Francielly; Müller, Joachim; Muriana, Arantza; Nakazawa Hewitt, Stephen; Nare, Bakela; Nathan, Carl; Narraidoo, Nathalie; Nawaratna, Sujeevi; Ojo, Kayode K.; Ortiz, Diana; Panic, Gordana; Papadatos, George; Parapini, Silvia; Patra, Kailash; Pham, Ngoc; Prats, Sarah; Plouffe, David M.; Poulsen, Sally-Ann; Pradhan, Anupam; Quevedo, Celia; Quinn, Ronald J.; Rice, Christopher A.; Abdo Rizk, Mohamed; Ruecker, Andrea; St. Onge, Robert; Salgado Ferreira, Rafaela; Samra, Jasmeet; Robinett, Natalie G.; Schlecht, Ulrich; Schmitt, Marjorie; Silva Villela, Filipe; Silvestrini, Francesco; Sinden, Robert; Smith, Dennis A.; Soldati, Thierry; Spitzmüller, Andreas; Stamm, Serge Maximilian; Sullivan, David J.; Sullivan, William; Suresh, Sundari; Suzuki, Brian M.; Suzuki, Yo; Swamidass, S. Joshua; Taramelli, Donatella; Tchokouaha, Lauve R. Y.; Theron, Anjo; Thomas, David; Tonissen, Kathryn F.; Townson, Simon; Tripathi, Abhai K.; Trofimov, Valentin; Udenze, Kenneth O.; Ullah, Imran; Vallieres, Cindy; Vigil, Edgar; Vinetz, Joseph M.; Voong Vinh, Phat; Vu, Hoan; Watanabe, Nao-aki; Weatherby, Kate; White, Pamela M.; Wilks, Andrew F.; Winzeler, Elizabeth A.; Wojcik, Edward; Wree, Melanie; Wu, Wesley; Yokoyama, Naoaki; Zollo, Paul H. A.; Abla, Nada; Blasco, Benjamin; Burrows, Jeremy; Laleu, Benoît; Leroy, Didier; Spangenberg, Thomas; Wells, Timothy; Willis, Paul A.

    2016-01-01

    A major cause of the paucity of new starting points for drug discovery is the lack of interaction between academia and industry. Much of the global resource in biology is present in universities, whereas the focus of medicinal chemistry is still largely within industry. Open source drug discovery, with sharing of information, is clearly a first step towards overcoming this gap. But the interface could especially be bridged through a scale-up of open sharing of physical compounds, which would accelerate the finding of new starting points for drug discovery. The Medicines for Malaria Venture Malaria Box is a collection of over 400 compounds representing families of structures identified in phenotypic screens of pharmaceutical and academic libraries against the Plasmodium falciparum malaria parasite. The set has now been distributed to almost 200 research groups globally in the last two years, with the only stipulation that information from the screens is deposited in the public domain. This paper reports for the first time on 236 screens that have been carried out against the Malaria Box and compares these results with 55 assays that were previously published, in a format that allows a meta-analysis of the combined dataset. The combined biochemical and cellular assays presented here suggest mechanisms of action for 135 (34%) of the compounds active in killing multiple life-cycle stages of the malaria parasite, including asexual blood, liver, gametocyte, gametes and insect ookinete stages. In addition, many compounds demonstrated activity against other pathogens, showing hits in assays with 16 protozoa, 7 helminths, 9 bacterial and mycobacterial species, the dengue fever mosquito vector, and the NCI60 human cancer cell line panel of 60 human tumor cell lines. Toxicological, pharmacokinetic and metabolic properties were collected on all the compounds, assisting in the selection of the most promising candidates for murine proof-of-concept experiments and medicinal

  18. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond.

    Directory of Open Access Journals (Sweden)

    Wesley C Van Voorhis

    2016-07-01

    Full Text Available A major cause of the paucity of new starting points for drug discovery is the lack of interaction between academia and industry. Much of the global resource in biology is present in universities, whereas the focus of medicinal chemistry is still largely within industry. Open source drug discovery, with sharing of information, is clearly a first step towards overcoming this gap. But the interface could especially be bridged through a scale-up of open sharing of physical compounds, which would accelerate the finding of new starting points for drug discovery. The Medicines for Malaria Venture Malaria Box is a collection of over 400 compounds representing families of structures identified in phenotypic screens of pharmaceutical and academic libraries against the Plasmodium falciparum malaria parasite. The set has now been distributed to almost 200 research groups globally in the last two years, with the only stipulation that information from the screens is deposited in the public domain. This paper reports for the first time on 236 screens that have been carried out against the Malaria Box and compares these results with 55 assays that were previously published, in a format that allows a meta-analysis of the combined dataset. The combined biochemical and cellular assays presented here suggest mechanisms of action for 135 (34% of the compounds active in killing multiple life-cycle stages of the malaria parasite, including asexual blood, liver, gametocyte, gametes and insect ookinete stages. In addition, many compounds demonstrated activity against other pathogens, showing hits in assays with 16 protozoa, 7 helminths, 9 bacterial and mycobacterial species, the dengue fever mosquito vector, and the NCI60 human cancer cell line panel of 60 human tumor cell lines. Toxicological, pharmacokinetic and metabolic properties were collected on all the compounds, assisting in the selection of the most promising candidates for murine proof-of-concept experiments

  19. Marine Microorganism-Invertebrate Assemblages: Perspectives to Solve the “Supply Problem” in the Initial Steps of Drug Discovery

    Science.gov (United States)

    Leal, Miguel Costa; Sheridan, Christopher; Osinga, Ronald; Dionísio, Gisela; Rocha, Rui Jorge Miranda; Silva, Bruna; Rosa, Rui; Calado, Ricardo

    2014-01-01

    The chemical diversity associated with marine natural products (MNP) is unanimously acknowledged as the “blue gold” in the urgent quest for new drugs. Consequently, a significant increase in the discovery of MNP published in the literature has been observed in the past decades, particularly from marine invertebrates. However, it remains unclear whether target metabolites originate from the marine invertebrates themselves or from their microbial symbionts. This issue underlines critical challenges associated with the lack of biomass required to supply the early stages of the drug discovery pipeline. The present review discusses potential solutions for such challenges, with particular emphasis on innovative approaches to culture invertebrate holobionts (microorganism-invertebrate assemblages) through in toto aquaculture, together with methods for the discovery and initial production of bioactive compounds from these microbial symbionts. PMID:24983638

  20. Marine Microorganism-Invertebrate Assemblages: Perspectives to Solve the “Supply Problem” in the Initial Steps of Drug Discovery

    Directory of Open Access Journals (Sweden)

    Miguel Costa Leal

    2014-06-01

    Full Text Available The chemical diversity associated with marine natural products (MNP is unanimously acknowledged as the “blue gold” in the urgent quest for new drugs. Consequently, a significant increase in the discovery of MNP published in the literature has been observed in the past decades, particularly from marine invertebrates. However, it remains unclear whether target metabolites originate from the marine invertebrates themselves or from their microbial symbionts. This issue underlines critical challenges associated with the lack of biomass required to supply the early stages of the drug discovery pipeline. The present review discusses potential solutions for such challenges, with particular emphasis on innovative approaches to culture invertebrate holobionts (microorganism-invertebrate assemblages through in toto aquaculture, together with methods for the discovery and initial production of bioactive compounds from these microbial symbionts.

  1. Cunninghamella Biotransformation--Similarities to Human Drug Metabolism and Its Relevance for the Drug Discovery Process.

    Science.gov (United States)

    Piska, Kamil; Żelaszczyk, Dorota; Jamrozik, Marek; Kubowicz-Kwaśny, Paulina; Pękala, Elżbieta

    2016-01-01

    Studies of drug metabolism are one of the most significant issues in the process of drug development, its introduction to the market and also in treatment. Even the most promising molecule may show undesirable metabolic properties that would disqualify it as a potential drug. Therefore, such studies are conducted in the early phases of drug discovery and development process. Cunninghamella is a filamentous fungus known for its catalytic properties, which mimics mammalian drug metabolism. It has been proven that C. elegans carries at least one gene coding for a CYP enzyme closely related to the CYP51 family. The transformation profile of xenobiotics in Cunninghamella spp. spans a number of reactions catalyzed by different mammalian CYP isoforms. This paper presents detailed data on similar biotransformation drug products in humans and Cunninghamella spp. and covers the most important aspects of preparative biosynthesis of metabolites, since this model allows to obtain metabolites in sufficient quantities to conduct the further detailed investigations, as quantification, structure analysis and pharmacological activity and toxicity testing. The metabolic activity of three mostly used Cunninghamella species in obtaining hydroxylated, dealkylated and oxidated metabolites of different drugs confirmed its convergence with human biotransformation. Though it cannot replace the standard methods, it can provide support in the field of biotransformation and identifying metabolic soft spots of new chemicals and in predicting possible metabolic pathways. Another aspect is the biosynthesis of metabolites. In this respect, techniques using Cunninghamella spp. seem to be competitive to the chemical methods currently used.

  2. PeptideNavigator: An interactive tool for exploring large and complex data sets generated during peptide-based drug design projects.

    Science.gov (United States)

    Diller, Kyle I; Bayden, Alexander S; Audie, Joseph; Diller, David J

    2018-01-01

    There is growing interest in peptide-based drug design and discovery. Due to their relatively large size, polymeric nature, and chemical complexity, the design of peptide-based drugs presents an interesting "big data" challenge. Here, we describe an interactive computational environment, PeptideNavigator, for naturally exploring the tremendous amount of information generated during a peptide drug design project. The purpose of PeptideNavigator is the presentation of large and complex experimental and computational data sets, particularly 3D data, so as to enable multidisciplinary scientists to make optimal decisions during a peptide drug discovery project. PeptideNavigator provides users with numerous viewing options, such as scatter plots, sequence views, and sequence frequency diagrams. These views allow for the collective visualization and exploration of many peptides and their properties, ultimately enabling the user to focus on a small number of peptides of interest. To drill down into the details of individual peptides, PeptideNavigator provides users with a Ramachandran plot viewer and a fully featured 3D visualization tool. Each view is linked, allowing the user to seamlessly navigate from collective views of large peptide data sets to the details of individual peptides with promising property profiles. Two case studies, based on MHC-1A activating peptides and MDM2 scaffold design, are presented to demonstrate the utility of PeptideNavigator in the context of disparate peptide-design projects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. High throughput electrophysiology: new perspectives for ion channel drug discovery

    DEFF Research Database (Denmark)

    Willumsen, Niels J; Bech, Morten; Olesen, Søren-Peter

    2003-01-01

    Proper function of ion channels is crucial for all living cells. Ion channel dysfunction may lead to a number of diseases, so-called channelopathies, and a number of common diseases, including epilepsy, arrhythmia, and type II diabetes, are primarily treated by drugs that modulate ion channels....... A cornerstone in current drug discovery is high throughput screening assays which allow examination of the activity of specific ion channels though only to a limited extent. Conventional patch clamp remains the sole technique with sufficiently high time resolution and sensitivity required for precise and direct...... characterization of ion channel properties. However, patch clamp is a slow, labor-intensive, and thus expensive, technique. New techniques combining the reliability and high information content of patch clamping with the virtues of high throughput philosophy are emerging and predicted to make a number of ion...

  4. 21 CFR 17.23 - Discovery.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Discovery. 17.23 Section 17.23 Food and Drugs FOOD... HEARINGS § 17.23 Discovery. (a) No later than 60 days prior to the hearing, unless otherwise ordered by the..., depositions, and any forms of discovery, other than those permitted under paragraphs (a) and (e) of this...

  5. Design of diversity and focused combinatorial libraries in drug discovery.

    Science.gov (United States)

    Young, S Stanley; Ge, Nanxiang

    2004-05-01

    Using well-characterized chemical reactions and readily available monomers, chemists are able to create sets of compounds, termed libraries, which are useful in drug discovery processes. The design of combinatorial chemical libraries can be complex and there has been much information recently published offering suggestions on how the design process can be carried out. This review focuses on literature with the goal of organizing current thinking. At this point in time, it is clear that benchmarking of current suggested methods is required as opposed to further new methods.

  6. Comparative psychology and the grand challenge of drug discovery in psychiatry and neurodegeneration.

    Science.gov (United States)

    Brunner, Dani; Balcı, Fuat; Ludvig, Elliot A

    2012-02-01

    Drug discovery for brain disorders is undergoing a period of upheaval. Faced with an empty drug pipeline and numerous failures of potential new drugs in clinical trials, many large pharmaceutical companies have been shrinking or even closing down their research divisions that focus on central nervous system (CNS) disorders. In this paper, we argue that many of the difficulties facing CNS drug discovery stem from a lack of robustness in pre-clinical (i.e., non-human animal) testing. There are two main sources for this lack of robustness. First, there is the lack of replicability of many results from the pre-clinical stage, which we argue is driven by a combination of publication bias and inappropriate selection of statistical and experimental designs. Second, there is the frequent failure to translate results in non-human animals to parallel results in humans in the clinic. This limitation can only be overcome by developing new behavioral tests for non-human animals that have predictive, construct, and etiological validity. Here, we present these translational difficulties as a "grand challenge" to researchers from comparative cognition, who are well positioned to provide new methods for testing behavior and cognition in non-human animals. These new experimental protocols will need to be both statistically robust and target behavioral and cognitive processes that allow for better connection with human CNS disorders. Our hope is that this downturn in industrial research may represent an opportunity to develop new protocols that will re-kindle the search for more effective and safer drugs for CNS disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Report on the 10th anniversary of international drug discovery science and technology conference, 8 - 10 november 2012, nanjing, china.

    Science.gov (United States)

    Everett, Jeremy R

    2013-03-01

    The 10th Anniversary of International Drug Discovery Science and Technology (IDDST) Conference was held in Nanjing, China from 8 to 10 November 2012. The conference ran in parallel with the 2nd Annual Symposium of Drug Delivery Systems. Over 400 delegates from both conferences came together for the Opening Ceremony and Keynote Addresses but otherwise pursued separate paths in the huge facilities of the Nanjing International Expo Centre. The IDDST was arranged into 19 separate Chapters covering drug discovery biology, target validation, chemistry, rational drug design, pharmacology and toxicology, drug screening technology, 'omics' technologies, analytical, automation and enabling technologies, informatics, stem cells and regenerative medicine, bioprocessing, generics, biosimilars and biologicals and seven disease areas: cancer, CNS, respiratory and inflammation, autoimmune, emerging infectious, bone and orphan diseases. There were also two sessions of a 'Bench to Bedside to Business' Program and a Chinese Scientist programme. In each period of the IDDST conference, up to seven sessions were running in parallel. This Meeting Highlight samples just a fraction of the content of this large meeting. The talks included have as a link, the use of new approaches to drug discovery. Many other excellent talks could have been highlighted and the author has necessarily had to be selective.

  8. In vitro membrane binding and protein binding (IAM MB/PB technology to estimate in vivo distribution: applications in early drug discovery

    Directory of Open Access Journals (Sweden)

    Klara Livia Valko

    2017-03-01

    Full Text Available The drug discovery process can be accelerated by chromatographic profiling of the analogs to model in vivo distribution and the major non-specific binding. A balanced potency and chromatographically determined membrane and protein binding (IAM MB/PB data enable selecting drug discovery compounds for further analysis that have the highest probability to show the desired in vivo distribution behavior for efficacy and reduced chance for toxicity. Although the basic principles of the technology have already appeared in numerous publications, the lack of standardized procedures limited its widespread applications especially in academia and small drug discovery biotech companies. In this paper, the standardized procedures are described that has been trademarked as Regis IAM MB/PB Technology®. Comparison between the Drug Efficiency Index (DEI=pIC50-logVdu+2 and generally used Ligand Lipophilicity Efficiency (LLE has been made, demonstrating the advantage of measured IAM and HSA binding over calculated log P. The power of the proposed chromatographic technology is demonstrated using the data of marketed drugs.

  9. Designing multi-targeted agents: An emerging anticancer drug discovery paradigm.

    Science.gov (United States)

    Fu, Rong-Geng; Sun, Yuan; Sheng, Wen-Bing; Liao, Duan-Fang

    2017-08-18

    The dominant paradigm in drug discovery is to design ligands with maximum selectivity to act on individual drug targets. With the target-based approach, many new chemical entities have been discovered, developed, and further approved as drugs. However, there are a large number of complex diseases such as cancer that cannot be effectively treated or cured only with one medicine to modulate the biological function of a single target. As simultaneous intervention of two (or multiple) cancer progression relevant targets has shown improved therapeutic efficacy, the innovation of multi-targeted drugs has become a promising and prevailing research topic and numerous multi-targeted anticancer agents are currently at various developmental stages. However, most multi-pharmacophore scaffolds are usually discovered by serendipity or screening, while rational design by combining existing pharmacophore scaffolds remains an enormous challenge. In this review, four types of multi-pharmacophore modes are discussed, and the examples from literature will be used to introduce attractive lead compounds with the capability of simultaneously interfering with different enzyme or signaling pathway of cancer progression, which will reveal the trends and insights to help the design of the next generation multi-targeted anticancer agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Small Molecule Drug Discovery at the Glucagon-Like Peptide-1 Receptor

    Directory of Open Access Journals (Sweden)

    Francis S. Willard

    2012-01-01

    Full Text Available The therapeutic success of peptide glucagon-like peptide-1 (GLP-1 receptor agonists for the treatment of type 2 diabetes mellitus has inspired discovery efforts aimed at developing orally available small molecule GLP-1 receptor agonists. Although the GLP-1 receptor is a member of the structurally complex class B1 family of GPCRs, in recent years, a diverse array of orthosteric and allosteric nonpeptide ligands has been reported. These compounds include antagonists, agonists, and positive allosteric modulators with intrinsic efficacy. In this paper, a comprehensive review of currently disclosed small molecule GLP-1 receptor ligands is presented. In addition, examples of “ligand bias” and “probe dependency” for the GLP-1 receptor are discussed; these emerging concepts may influence further optimization of known molecules or persuade designs of expanded screening strategies to identify novel chemical starting points for GLP-1 receptor drug discovery.

  11. Current Landscape of Antiviral Drug Discovery [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Wade Blair

    2016-02-01

    Full Text Available Continued discovery and development of new antiviral medications are paramount for global human health, particularly as new pathogens emerge and old ones evolve to evade current therapeutic agents. Great success has been achieved in developing effective therapies to suppress human immunodeficiency virus (HIV and hepatitis B virus (HBV; however, the therapies are not curative and therefore current efforts in HIV and HBV drug discovery are directed toward longer-acting therapies and/or developing new mechanisms of action that could potentially lead to cure, or eradication, of the virus. Recently, exciting early clinical data have been reported for novel antivirals targeting respiratory syncytial virus (RSV and influenza (flu. Preclinical data suggest that these new approaches may be effective in treating high-risk patients afflicted with serious RSV or flu infections. In this review, we highlight new directions in antiviral approaches for HIV, HBV, and acute respiratory virus infections.

  12. Open innovation for phenotypic drug discovery: The PD2 assay panel.

    Science.gov (United States)

    Lee, Jonathan A; Chu, Shaoyou; Willard, Francis S; Cox, Karen L; Sells Galvin, Rachelle J; Peery, Robert B; Oliver, Sarah E; Oler, Jennifer; Meredith, Tamika D; Heidler, Steven A; Gough, Wendy H; Husain, Saba; Palkowitz, Alan D; Moxham, Christopher M

    2011-07-01

    Phenotypic lead generation strategies seek to identify compounds that modulate complex, physiologically relevant systems, an approach that is complementary to traditional, target-directed strategies. Unlike gene-specific assays, phenotypic assays interrogate multiple molecular targets and signaling pathways in a target "agnostic" fashion, which may reveal novel functions for well-studied proteins and discover new pathways of therapeutic value. Significantly, existing compound libraries may not have sufficient chemical diversity to fully leverage a phenotypic strategy. To address this issue, Eli Lilly and Company launched the Phenotypic Drug Discovery Initiative (PD(2)), a model of open innovation whereby external research groups can submit compounds for testing in a panel of Lilly phenotypic assays. This communication describes the statistical validation, operations, and initial screening results from the first PD(2) assay panel. Analysis of PD(2) submissions indicates that chemical diversity from open source collaborations complements internal sources. Screening results for the first 4691 compounds submitted to PD(2) have confirmed hit rates from 1.6% to 10%, with the majority of active compounds exhibiting acceptable potency and selectivity. Phenotypic lead generation strategies, in conjunction with novel chemical diversity obtained via open-source initiatives such as PD(2), may provide a means to identify compounds that modulate biology by novel mechanisms and expand the innovation potential of drug discovery.

  13. The use of real-time cell analyzer technology in drug discovery: defining optimal cell culture conditions and assay reproducibility with different adherent cellular models.

    Science.gov (United States)

    Atienzar, Franck A; Tilmant, Karen; Gerets, Helga H; Toussaint, Gaelle; Speeckaert, Sebastien; Hanon, Etienne; Depelchin, Olympe; Dhalluin, Stephane

    2011-07-01

    The use of impedance-based label-free technology applied to drug discovery is nowadays receiving more and more attention. Indeed, such a simple and noninvasive assay that interferes minimally with cell morphology and function allows one to perform kinetic measurements and to obtain information on proliferation, migration, cytotoxicity, and receptor-mediated signaling. The objective of the study was to further assess the usefulness of a real-time cell analyzer (RTCA) platform based on impedance in the context of quality control and data reproducibility. The data indicate that this technology is useful to determine the best coating and cellular density conditions for different adherent cellular models including hepatocytes, cardiomyocytes, fibroblasts, and hybrid neuroblastoma/neuronal cells. Based on 31 independent experiments, the reproducibility of cell index data generated from HepG2 cells exposed to DMSO and to Triton X-100 was satisfactory, with a coefficient of variation close to 10%. Cell index data were also well reproduced when cardiomyocytes and fibroblasts were exposed to 21 compounds three times (correlation >0.91, p technology appears to be a powerful and reliable tool in drug discovery because of the reasonable throughput, rapid and efficient performance, technical optimization, and cell quality control.

  14. Simulated drug discovery process to conduct a synoptic assessment of pharmacy students.

    Science.gov (United States)

    Richardson, Alan; Curtis, Anthony D M; Moss, Gary P; Pearson, Russell J; White, Simon; Rutten, Frank J M; Perumal, Dhaya; Maddock, Katie

    2014-03-12

    OBJECTIVE. To implement and assess a task-based learning exercise that prompts pharmacy students to integrate their understanding of different disciplines. DESIGN. Master of pharmacy (MPharm degree) students were provided with simulated information from several preclinical science and from clinical trials and asked to synthesize this into a marketing authorization application for a new drug. Students made a link to pharmacy practice by creating an advice leaflet for pharmacists. ASSESSMENT. Students' ability to integrate information from different disciplines was evaluated by oral examination. In 2 successive academic years, 96% and 82% of students demonstrated an integrated understanding of their proposed new drug. Students indicated in a survey that their understanding of the links between different subjects improved. CONCLUSION. Simulated drug discovery provides a learning environment that emphasizes the connectivity of the preclinical sciences with each other and the practice of pharmacy.

  15. The mass-action law based algorithm for cost-effective approach for cancer drug discovery and development.

    Science.gov (United States)

    Chou, Ting-Chao

    2011-01-01

    The mass-action law based system analysis via mathematical induction and deduction lead to the generalized theory and algorithm that allows computerized simulation of dose-effect dynamics with small size experiments using a small number of data points in vitro, in animals, and in humans. The median-effect equation of the mass-action law deduced from over 300 mechanism specific-equations has been shown to be the unified theory that serves as the common-link for complicated biomedical systems. After using the median-effect principle as the common denominator, its applications are mechanism-independent, drug unit-independent, and dynamic order-independent; and can be used generally for single drug analysis or for multiple drug combinations in constant-ratio or non-constant ratios. Since the "median" is the common link and universal reference point in biological systems, these general enabling lead to computerized quantitative bio-informatics for econo-green bio-research in broad disciplines. Specific applications of the theory, especially relevant to drug discovery, drug combination, and clinical trials, have been cited or illustrated in terms of algorithms, experimental design and computerized simulation for data analysis. Lessons learned from cancer research during the past fifty years provide a valuable opportunity to reflect, and to improve the conventional divergent approach and to introduce a new convergent avenue, based on the mass-action law principle, for the efficient cancer drug discovery and the low-cost drug development.

  16. Brivaracetam: a rational drug discovery success story

    Science.gov (United States)

    Rogawski, M A

    2008-01-01

    Levetiracetam, the α-ethyl analogue of the nootropic piracetam, is a widely used antiepileptic drug (AED) that provides protection against partial seizures and is also effective in the treatment of primary generalized seizure syndromes including juvenile myoclonic epilepsy. Levetiracetam was discovered in 1992 through screening in audiogenic seizure susceptible mice and, 3 years later, was reported to exhibit saturable, stereospecific binding in brain to a ∼90 kDa protein, later identified as the ubiquitous synaptic vesicle glycoprotein SV2A. A large-scale screening effort to optimize binding affinity identified the 4-n-propyl analogue, brivaracetam, as having greater potency and a broadened spectrum of activity in animal seizure models. Recent phase II clinical trials demonstrating that brivaracetam is efficacious and well tolerated in the treatment of partial onset seizures have validated the strategy of the discovery programme. Brivaracetam is among the first clinically effective AEDs to be discovered by optimization of pharmacodynamic activity at a molecular target. PMID:18552880

  17. Bacteriophage-based tools: recent advances and novel applications [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Lisa O'Sullivan

    2016-11-01

    Full Text Available Bacteriophages (phages are viruses that infect bacterial hosts, and since their discovery over a century ago they have been primarily exploited to control bacterial populations and to serve as tools in molecular biology. In this commentary, we highlight recent diverse advances in the field of phage research, going beyond bacterial control using whole phage, to areas including biocontrol using phage-derived enzybiotics, diagnostics, drug discovery, novel drug delivery systems and bionanotechnology.

  18. Deep Learning for Drug Design: an Artificial Intelligence Paradigm for Drug Discovery in the Big Data Era.

    Science.gov (United States)

    Jing, Yankang; Bian, Yuemin; Hu, Ziheng; Wang, Lirong; Xie, Xiang-Qun Sean

    2018-03-30

    Over the last decade, deep learning (DL) methods have been extremely successful and widely used to develop artificial intelligence (AI) in almost every domain, especially after it achieved its proud record on computational Go. Compared to traditional machine learning (ML) algorithms, DL methods still have a long way to go to achieve recognition in small molecular drug discovery and development. And there is still lots of work to do for the popularization and application of DL for research purpose, e.g., for small molecule drug research and development. In this review, we mainly discussed several most powerful and mainstream architectures, including the convolutional neural network (CNN), recurrent neural network (RNN), and deep auto-encoder networks (DAENs), for supervised learning and nonsupervised learning; summarized most of the representative applications in small molecule drug design; and briefly introduced how DL methods were used in those applications. The discussion for the pros and cons of DL methods as well as the main challenges we need to tackle were also emphasized.

  19. Drug Repositioning Discovery for Early- and Late-Stage Non-Small-Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Chien-Hung Huang

    2014-01-01

    Full Text Available Drug repositioning is a popular approach in the pharmaceutical industry for identifying potential new uses for existing drugs and accelerating the development time. Non-small-cell lung cancer (NSCLC is one of the leading causes of death worldwide. To reduce the biological heterogeneity effects among different individuals, both normal and cancer tissues were taken from the same patient, hence allowing pairwise testing. By comparing early- and late-stage cancer patients, we can identify stage-specific NSCLC genes. Differentially expressed genes are clustered separately to form up- and downregulated communities that are used as queries to perform enrichment analysis. The results suggest that pathways for early- and late-stage cancers are different. Sets of up- and downregulated genes were submitted to the cMap web resource to identify potential drugs. To achieve high confidence drug prediction, multiple microarray experimental results were merged by performing meta-analysis. The results of a few drug findings are supported by MTT assay or clonogenic assay data. In conclusion, we have been able to assess the potential existing drugs to identify novel anticancer drugs, which may be helpful in drug repositioning discovery for NSCLC.

  20. Combining NMR and X-ray crystallography in fragment-based drug discovery: discovery of highly potent and selective BACE-1 inhibitors.

    Science.gov (United States)

    Wyss, Daniel F; Wang, Yu-Sen; Eaton, Hugh L; Strickland, Corey; Voigt, Johannes H; Zhu, Zhaoning; Stamford, Andrew W

    2012-01-01

    Fragment-based drug discovery (FBDD) has become increasingly popular over the last decade. We review here how we have used highly structure-driven fragment-based approaches to complement more traditional lead discovery to tackle high priority targets and those struggling for leads. Combining biomolecular nuclear magnetic resonance (NMR), X-ray crystallography, and molecular modeling with structure-assisted chemistry and innovative biology as an integrated approach for FBDD can solve very difficult problems, as illustrated in this chapter. Here, a successful FBDD campaign is described that has allowed the development of a clinical candidate for BACE-1, a challenging CNS drug target. Crucial to this achievement were the initial identification of a ligand-efficient isothiourea fragment through target-based NMR screening and the determination of its X-ray crystal structure in complex with BACE-1, which revealed an extensive H-bond network with the two active site aspartate residues. This detailed 3D structural information then enabled the design and validation of novel, chemically stable and accessible heterocyclic acylguanidines as aspartic acid protease inhibitor cores. Structure-assisted fragment hit-to-lead optimization yielded iminoheterocyclic BACE-1 inhibitors that possess desirable molecular properties as potential therapeutic agents to test the amyloid hypothesis of Alzheimer's disease in a clinical setting.

  1. Proceedings of the 2013 CINP summit: innovative partnerships to accelerate CNS drug discovery for improved patient care.

    Science.gov (United States)

    Phillips, Anthony George; Hongaard-Andersen, Peter; Moscicki, Richard A; Sahakian, Barbara; Quirion, Rémi; Krishnan, K Ranga Rama; Race, Tim

    2014-12-25

    Central nervous system (CNS) diseases and, in particular, mental health disorders, are becoming recognized as the health challenge of the 21(st) century. Currently, at least 10% of the global population is affected by a mental health disorder, a figure that is set to increase year on year. Meanwhile, the rate of development of new CNS drugs has not increased for many years, despite unprecedented levels of investment. In response to this state of affairs, the Collegium Internationale Neuro-Psychopharmacologicum (CINP) convened a summit to discuss ways to reverse this disturbing trend through new partnerships to accelerate CNS drug discovery. The objectives of the Summit were to explore the issues affecting the value chain (i.e. the chain of activities or stakeholders that a company engages in/with to deliver a product to market) in brain research, thereby gaining insights from key stakeholders and developing actions to address unmet needs; to identify achievable objectives to address the issues; to develop action plans to bring about measurable improvements across the value chain and accelerate CNS drug discovery; and finally, to communicate recommendations to governments, the research and development community, and other relevant stakeholders. Summit outputs include the following action plans, aligned to the pressure points within the brain research-drug development value chain: Code of conduct dealing with conflict of interest issues, Prevention, early diagnosis, and treatment, Linking science and regulation, Patient involvement in trial design, definition of endpoints, etc., Novel trial design, Reproduction and confirmation of data, Update of intellectual property (IP) laws to facilitate repurposing and combination therapy (low priority), Large-scale, global patient registries, Editorials on nomenclature, biomarkers, and diagnostic tools, and Public awareness, with brain disease advocates to attend G8 meetings and World Economic Forum (WEF) Annual meetings in

  2. Weighted similarity-based clustering of chemical structures and bioactivity data in early drug discovery.

    Science.gov (United States)

    Perualila-Tan, Nolen Joy; Shkedy, Ziv; Talloen, Willem; Göhlmann, Hinrich W H; Moerbeke, Marijke Van; Kasim, Adetayo

    2016-08-01

    The modern process of discovering candidate molecules in early drug discovery phase includes a wide range of approaches to extract vital information from the intersection of biology and chemistry. A typical strategy in compound selection involves compound clustering based on chemical similarity to obtain representative chemically diverse compounds (not incorporating potency information). In this paper, we propose an integrative clustering approach that makes use of both biological (compound efficacy) and chemical (structural features) data sources for the purpose of discovering a subset of compounds with aligned structural and biological properties. The datasets are integrated at the similarity level by assigning complementary weights to produce a weighted similarity matrix, serving as a generic input in any clustering algorithm. This new analysis work flow is semi-supervised method since, after the determination of clusters, a secondary analysis is performed wherein it finds differentially expressed genes associated to the derived integrated cluster(s) to further explain the compound-induced biological effects inside the cell. In this paper, datasets from two drug development oncology projects are used to illustrate the usefulness of the weighted similarity-based clustering approach to integrate multi-source high-dimensional information to aid drug discovery. Compounds that are structurally and biologically similar to the reference compounds are discovered using this proposed integrative approach.

  3. Helping Students Understand Gene Regulation with Online Tools: A Review of MEME and Melina II, Motif Discovery Tools for Active Learning in Biology

    Directory of Open Access Journals (Sweden)

    David Treves

    2012-08-01

    Full Text Available Review of: MEME and Melina II, which are two free and easy-to-use online motif discovery tools that can be employed to actively engage students in learning about gene regulatory elements.

  4. Discovery of inhibitors of bacterial histidine kinases

    NARCIS (Netherlands)

    Velikova, N.R.

    2014-01-01

    Discovery of Inhibitors of Bacterial Histidine Kinases Summary

    The thesis is on novel antibacterial drug discovery (http://youtu.be/NRMWOGgeysM). Using structure-based and fragment-based drug discovery approach, we have identified small-molecule histidine-kinase

  5. Drug discovery and development tomorrow -- changing the mindset.

    Science.gov (United States)

    Coleman, Robert A

    2009-09-01

    Today's drug discovery and development paradigm is not working, and something needs to be done about it. There is good reason to believe that a move away from reliance on animal surrogates for human subjects in the Pharma Industry's R&D programmes could provide an important step forward. However, no serious move will be made in that direction until there is some hard evidence that it will be rewarded with improved productivity outcomes. The Safer Medicines Trust are proposing that a study be undertaken, involving a range of drugs that have been approved for human use, but have subsequently proved to have limitations in terms of safety and/or efficacy. The aim is to determine the efficiency of a battery of human-based test methods to identify a compound's safety and efficacy profiles, and to compare this with that of the more traditional, largely animal-based methods that were employed in their original development. Should such an approach prove more reliable, the authorities will be faced with important decisions relating to the role of human biological test data in regulatory submissions, while the Pharma Industry will be faced with the key logistical issue of how to acquire the human biomaterials necessary to make possible the routine application of such test methods. 2009 FRAME.

  6. Current perspectives in fragment-based lead discovery (FBLD)

    Science.gov (United States)

    Lamoree, Bas; Hubbard, Roderick E.

    2017-01-01

    It is over 20 years since the first fragment-based discovery projects were disclosed. The methods are now mature for most ‘conventional’ targets in drug discovery such as enzymes (kinases and proteases) but there has also been growing success on more challenging targets, such as disruption of protein–protein interactions. The main application is to identify tractable chemical startpoints that non-covalently modulate the activity of a biological molecule. In this essay, we overview current practice in the methods and discuss how they have had an impact in lead discovery – generating a large number of fragment-derived compounds that are in clinical trials and two medicines treating patients. In addition, we discuss some of the more recent applications of the methods in chemical biology – providing chemical tools to investigate biological molecules, mechanisms and systems. PMID:29118093

  7. The Budding Yeast “Saccharomyces cerevisiae” as a Drug Discovery Tool to Identify Plant-Derived Natural Products with Anti-Proliferative Properties

    Directory of Open Access Journals (Sweden)

    Bouchra Qaddouri

    2011-01-01

    Full Text Available The budding yeast Saccharomyces cerevisiae is a valuable system to study cell-cycle regulation, which is defective in cancer cells. Due to the highly conserved nature of the cell-cycle machinery between yeast and humans, yeast studies are directly relevant to anticancer-drug discovery. The budding yeast is also an excellent model system for identifying and studying antifungal compounds because of the functional conservation of fungal genes. Moreover, yeast studies have also contributed greatly to our understanding of the biological targets and modes of action of bioactive compounds. Understanding the mechanism of action of clinically relevant compounds is essential for the design of improved second-generation molecules. Here we describe our methodology for screening a library of plant-derived natural products in yeast in order to identify and characterize new compounds with anti-proliferative properties.

  8. Have there been improvements in Alzheimer's disease drug discovery over the past 5 years?

    Science.gov (United States)

    Cacabelos, Ramón

    2018-06-01

    Alzheimer's disease (AD) is the most important neurodegenerative disorder with a global cost worldwide of over $700 billion. Pharmacological treatment accounts for 10-20% of direct costs; no new drugs have been approved during the past 15 years; and the available medications are not cost-effective. Areas covered: A massive scrutiny of AD-related PubMed publications (ps)(2013-2017) identified 42,053ps of which 8,380 (19.60%) were associated with AD treatments. The most prevalent pharmacological categories included neurotransmitter enhancers (11.38%), multi-target drugs (2.45%), anti-Amyloid agents (13.30%), anti-Tau agents (2.03%), natural products and derivatives (25.58%), novel drugs (8.13%), novel targets (5.66%), other (old) drugs (11.77%), anti-inflammatory drugs (1.20%), neuroprotective peptides (1.25%), stem cell therapy (1.85%), nanocarriers/nanotherapeutics (1.52%), and others (discovery programs, (vi) the updating of regulatory requirements, (vii) the introduction of pharmacogenomics in drug development and personalized treatments, and (viii) the implementation of preventive programs.

  9. Live Cell in Vitro and in Vivo Imaging Applications: Accelerating Drug Discovery

    Directory of Open Access Journals (Sweden)

    Neil O Carragher

    2011-04-01

    Full Text Available Dynamic regulation of specific molecular processes and cellular phenotypes in live cell systems reveal unique insights into cell fate and drug pharmacology that are not gained from traditional fixed endpoint assays. Recent advances in microscopic imaging platform technology combined with the development of novel optical biosensors and sophisticated image analysis solutions have increased the scope of live cell imaging applications in drug discovery. We highlight recent literature examples where live cell imaging has uncovered novel insight into biological mechanism or drug mode-of-action. We survey distinct types of optical biosensors and associated analytical methods for monitoring molecular dynamics, in vitro and in vivo. We describe the recent expansion of live cell imaging into automated target validation and drug screening activities through the development of dedicated brightfield and fluorescence kinetic imaging platforms. We provide specific examples of how temporal profiling of phenotypic response signatures using such kinetic imaging platforms can increase the value of in vitro high-content screening. Finally, we offer a prospective view of how further application and development of live cell imaging technology and reagents can accelerate preclinical lead optimization cycles and enhance the in vitro to in vivo translation of drug candidates.

  10. Assessment of Dengue virus helicase and methyltransferase as targets for fragment-based drug discovery.

    Science.gov (United States)

    Coutard, Bruno; Decroly, Etienne; Li, Changqing; Sharff, Andrew; Lescar, Julien; Bricogne, Gérard; Barral, Karine

    2014-06-01

    Seasonal and pandemic flaviviruses continue to be leading global health concerns. With the view to help drug discovery against Dengue virus (DENV), a fragment-based experimental approach was applied to identify small molecule ligands targeting two main components of the flavivirus replication complex: the NS3 helicase (Hel) and the NS5 mRNA methyltransferase (MTase) domains. A library of 500 drug-like fragments was first screened by thermal-shift assay (TSA) leading to the identification of 36 and 32 fragment hits binding Hel and MTase from DENV, respectively. In a second stage, we set up a fragment-based X-ray crystallographic screening (FBS-X) in order to provide both validated fragment hits and structural binding information. No fragment hit was confirmed for DENV Hel. In contrast, a total of seven fragments were identified as DENV MTase binders and structures of MTase-fragment hit complexes were solved at resolution at least 2.0Å or better. All fragment hits identified contain either a five- or six-membered aromatic ring or both, and three novel binding sites were located on the MTase. To further characterize the fragment hits identified by TSA and FBS-X, we performed enzymatic assays to assess their inhibition effect on the N7- and 2'-O-MTase enzymatic activities: five of these fragment hits inhibit at least one of the two activities with IC50 ranging from 180μM to 9mM. This work validates the FBS-X strategy for identifying new anti-flaviviral hits targeting MTase, while Hel might not be an amenable target for fragment-based drug discovery (FBDD). This approach proved to be a fast and efficient screening method for FBDD target validation and discovery of starting hits for the development of higher affinity molecules that bind to novel allosteric sites. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Renaissance in Antibiotic Discovery: Some Novel Approaches for Finding Drugs to Treat Bad Bugs.

    Science.gov (United States)

    Gadakh, Bharat; Van Aerschot, Arthur

    2015-01-01

    With the alarming resistance to currently used antibiotics, there is a serious worldwide threat to public health. Therefore, there is an urgent need to search for new antibiotics or new cellular targets which are essential for survival of the pathogens. However, during the past 50 years, only two new classes of antibiotics (oxazolidinone and lipopeptides) have reached the clinic. This suggests that the success rate in discovering new/novel antibiotics using conventional approaches is limited and that we must reconsider our antibiotic discovery approaches. While many new strategies are being pursued lately, this review primarily focuses only on a few of these novel/new approaches for antibiotic discovery. These include structure-based drug design (SBDD), the genomic approach, anti-virulence strategy, targeting nonmultiplying bacteria and the use of bacteriophages. In general, recent advancements in nuclear magnetic resonance, Xcrystallography, and genomic evolution have significant impact on antibacterial drug research. This review therefore aims to discuss recent strategies in searching new antibacterial agents making use of these technical novelties, their advantages, disadvantages and limitations.

  12. Seeking Ligand Bias: Assessing GPCR Coupling to Beta-Arrestins for Drug Discovery

    OpenAIRE

    Bohn, Laura M.; McDonald, Patricia H.

    2010-01-01

    G protein-coupled receptors (GPCR) are the major site of action for endogenous hormones and neurotransmitters. Early drug discovery efforts focused on determining whether ligands could engage G protein coupling and subsequently activate or inhibit cognate “second messengers.” Gone are those simple days as we now realize that receptors can also couple βarrestins. As we delve into the complexity of ligand-directed signaling and receptosome scaffolds, we are faced with what may seem like endless...

  13. The discovery and development of proteomic safety biomarkers for the detection of drug-induced liver toxicity

    International Nuclear Information System (INIS)

    Amacher, David E.

    2010-01-01

    Biomarkers are biometric measurements that provide critical quantitative information about the biological condition of the animal or individual being tested. In drug safety studies, established toxicity biomarkers are used along with other conventional study data to determine dose-limiting organ toxicity, and to define species sensitivity for new chemical entities intended for possible use as human medicines. A continuing goal of drug safety scientists in the pharmaceutical industry is to discover and develop better trans-species biomarkers that can be used to determine target organ toxicities for preclinical species in short-term studies at dose levels that are some multiple of the intended human dose and again later in full development for monitoring clinical trials at lower therapeutic doses. Of particular value are early, predictive, noninvasive biomarkers that have in vitro, in vivo, and clinical transferability. Such translational biomarkers bridge animal testing used in preclinical science and human studies that are part of subsequent clinical testing. Although suitable for in vivo preclinical regulatory studies, conventional hepatic safety biomarkers are basically confirmatory markers because they signal organ toxicity after some pathological damage has occurred, and are therefore not well-suited for short-term, predictive screening assays early in the discovery-to-development progression of new chemical entities (NCEs) available in limited quantities. Efforts between regulatory agencies and the pharmaceutical industry are underway for the coordinated discovery, qualification, verification and validation of early predictive toxicity biomarkers. Early predictive safety biomarkers are those that are detectable and quantifiable prior to the onset of irreversible tissue injury and which are associated with a mechanism of action relevant to a specific type of potential hepatic injury. Potential drug toxicity biomarkers are typically endogenous macromolecules in

  14. The application of molecular topology for ulcerative colitis drug discovery.

    Science.gov (United States)

    Bellera, Carolina L; Di Ianni, Mauricio E; Talevi, Alan

    2018-01-01

    Although the therapeutic arsenal against ulcerative colitis has greatly expanded (including the revolutionary advent of biologics), there remain patients who are refractory to current medications while the safety of the available therapeutics could also be improved. Molecular topology provides a theoretic framework for the discovery of new therapeutic agents in a very efficient manner, and its applications in the field of ulcerative colitis have slowly begun to flourish. Areas covered: After discussing the basics of molecular topology, the authors review QSAR models focusing on validated targets for the treatment of ulcerative colitis, entirely or partially based on topological descriptors. Expert opinion: The application of molecular topology to ulcerative colitis drug discovery is still very limited, and many of the existing reports seem to be strictly theoretic, with no experimental validation or practical applications. Interestingly, mechanism-independent models based on phenotypic responses have recently been reported. Such models are in agreement with the recent interest raised by network pharmacology as a potential solution for complex disorders. These and other similar studies applying molecular topology suggest that some therapeutic categories may present a 'topological pattern' that goes beyond a specific mechanism of action.

  15. Drug discovery and the impact of the safe harbor provision of the Hatch- Waxman Act.

    Science.gov (United States)

    Goodson, Susanne H

    2010-01-01

    Many facets of drug discovery involve the use of patented materials and methods, subjecting the researcher to potential liability from infringement of the underlying patents. Enacted in 1984, the Hatch-Waxman Act established a “safe harbor” for activities that would otherwise constitute infringement of a patented invention, if those activities were “solely for uses reasonably related to the development and submission of information under a Federal law which regulates the manufacture, use, or sale of drugs or veterinary biological products”. This article examines the major court decisions interpreting the scope of the safe harbor and their application to various activities in drug development.

  16. ASM Inaugural Lecture 2010: Single crystal X-ray structural determination: A powerful technique for natural products research and drug discovery

    International Nuclear Information System (INIS)

    Fun Hoong Kun; Chantrapromma, S.; Boonnak, N.; Lee, V.S.

    2010-01-01

    Drug discovery from natural products resources have been extensively studied worldwide because natural products with their great structural diversity have traditionally provided most of the drugs in use. They offer major opportunities for finding novel low molecular weight leading-structures that are active against a wide range of assay targets. The most important step in the discovery process is the identification of compounds with interesting biological activity. Single crystal X-ray structure determination is a powerful technique for natural products research and drug discovery. The detailed three-dimensional structures that emerge can be co-related to the activities to these structures. In this article the following is presented: (i) co-crystal and disorder structures; (ii) determination of absolute configuration and (iii) the ability to distinguish between whether a natural product compound is a natural product or a natural product artifact. All these three properties are unique to the technique of single crystal X-ray structure determination. Case (iii) was demonstrated with a compound containing a chromene ring, namely macluraxanthone (which was isolated from Cratoxylum formosum subsp. pruniflorum, a Thai medicinal plant). (author)

  17. State-of-the-art and dissemination of computational tools for drug-design purposes: a survey among Italian academics and industrial institutions.

    Science.gov (United States)

    Artese, Anna; Alcaro, Stefano; Moraca, Federica; Reina, Rocco; Ventura, Marzia; Costantino, Gabriele; Beccari, Andrea R; Ortuso, Francesco

    2013-05-01

    During the first edition of the Computationally Driven Drug Discovery meeting, held in November 2011 at Dompé Pharma (L'Aquila, Italy), a questionnaire regarding the diffusion and the use of computational tools for drug-design purposes in both academia and industry was distributed among all participants. This is a follow-up of a previously reported investigation carried out among a few companies in 2007. The new questionnaire implemented five sections dedicated to: research group identification and classification; 18 different computational techniques; software information; hardware data; and economical business considerations. In this article, together with a detailed history of the different computational methods, a statistical analysis of the survey results that enabled the identification of the prevalent computational techniques adopted in drug-design projects is reported and a profile of the computational medicinal chemist currently working in academia and pharmaceutical companies in Italy is highlighted.

  18. Cardiac Arrhythmia: In vivo screening in the zebrafish to overcome complexity in drug discovery.

    Science.gov (United States)

    Macrae, Calum A

    2010-07-01

    IMPORTANCE OF THE FIELD: Cardiac arrhythmias remain a major challenge for modern drug discovery. Clinical events are paroxysmal, often rare and may be asymptomatic until a highly morbid complication. Target selection is often based on limited information and though highly specific agents are identified in screening, the final efficacy is often compromised by unanticipated systemic responses, a narrow therapeutic index and substantial toxicities. AREAS COVERED IN THIS REVIEW: Our understanding of complexity of arrhythmogenesis has grown dramatically over the last two decades, and the range of potential disease mechanisms now includes pathways previously thought only tangentially involved in arrhythmia. This review surveys the literature on arrhythmia mechanisms from 1965 to the present day, outlines the complex biology underlying potentially each and every rhythm disturbance, and highlights the problems for rational target identification. The rationale for in vivo screening is described and the utility of the zebrafish for this approach and for complementary work in functional genomics is discussed. Current limitations of the model in this setting and the need for careful validation in new disease areas are also described. WHAT THE READER WILL GAIN: An overview of the complex mechanisms underlying most clinical arrhythmias, and insight into the limits of ion channel conductances as drug targets. An introduction to the zebrafish as a model organism, in particular for cardiovascular biology. Potential approaches to overcoming the hurdles to drug discovery in the face of complex biology including in vivo screening of zebrafish genetic disease models. TAKE HOME MESSAGE: In vivo screening in faithful disease models allows the effects of drugs on integrative physiology and disease biology to be captured during the screening process, in a manner agnostic to potential drug target or targets. This systematic strategy bypasses current gaps in our understanding of disease

  19. The Drug Discovery and Development Industry in India-Two Decades of Proprietary Small-Molecule R&D.

    Science.gov (United States)

    Differding, Edmond

    2017-06-07

    This review provides a comprehensive survey of proprietary drug discovery and development efforts performed by Indian companies between 1994 and mid-2016. It is based on the identification and detailed analysis of pharmaceutical, biotechnology, and contract research companies active in proprietary new chemical entity (NCE) research and development (R&D) in India. Information on preclinical and clinical development compounds was collected by company, therapeutic indication, mode of action, target class, and development status. The analysis focuses on the overall pipeline and its evolution over two decades, contributions by type of company, therapeutic focus, attrition rates, and contribution to Western pharmaceutical pipelines through licensing agreements. This comprehensive analysis is the first of its kind, and, in our view, represents a significant contribution to the understanding of the current state of the drug discovery and development industry in India. © 2017 The Author. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. Analyzing user-generated online content for drug discovery: development and use of MedCrawler.

    Science.gov (United States)

    Helfenstein, Andreas; Tammela, Päivi

    2017-04-15

    Ethnopharmacology, or the scientific validation of traditional medicine, is a respected starting point in drug discovery. Home remedies and traditional use of plants are still widespread, also in Western societies. Instead of perusing ancient pharmacopeias, we developed MedCrawler, which we used to analyze blog posts for mentions of home remedies and their applications. This method is free and accessible from the office computer. We developed MedCrawler, a data mining tool for analyzing user-generated blog posts aiming to find modern 'traditional' medicine or home remedies. It searches user-generated blog posts and analyzes them for correlations between medically relevant terms. We also present examples and show that this method is capable of delivering both scientifically validated uses as well as not so well documented applications, which might serve as a starting point for follow-up research. Source code is available on GitHub at {{ https://github.com/a-hel/medcrawler }}. paivi.tammela@helsinki.fi. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  1. pH-Dependent solubility and permeability criteria for provisional biopharmaceutics classification (BCS and BDDCS) in early drug discovery.

    Science.gov (United States)

    Varma, Manthena V; Gardner, Iain; Steyn, Stefanus J; Nkansah, Paul; Rotter, Charles J; Whitney-Pickett, Carrie; Zhang, Hui; Di, Li; Cram, Michael; Fenner, Katherine S; El-Kattan, Ayman F

    2012-05-07

    The Biopharmaceutics Classification System (BCS) is a scientific framework that provides a basis for predicting the oral absorption of drugs. These concepts have been extended in the Biopharmaceutics Drug Disposition Classification System (BDDCS) to explain the potential mechanism of drug clearance and understand the effects of uptake and efflux transporters on absorption, distribution, metabolism, and elimination. The objective of present work is to establish criteria for provisional biopharmaceutics classification using pH-dependent passive permeability and aqueous solubility data generated from high throughput screening methodologies in drug discovery settings. The apparent permeability across monolayers of clonal cell line of Madin-Darby canine kidney cells, selected for low endogenous efflux transporter expression, was measured for a set of 105 drugs, with known BCS and BDDCS class. The permeability at apical pH 6.5 for acidic drugs and at pH 7.4 for nonacidic drugs showed a good correlation with the fraction absorbed in human (Fa). Receiver operating characteristic (ROC) curve analysis was utilized to define the permeability class boundary. At permeability ≥ 5 × 10(-6) cm/s, the accuracy of predicting Fa of ≥ 0.90 was 87%. Also, this cutoff showed more than 80% sensitivity and specificity in predicting the literature permeability classes (BCS), and the metabolism classes (BDDCS). The equilibrium solubility of a subset of 49 drugs was measured in pH 1.2 medium, pH 6.5 phosphate buffer, and in FaSSIF medium (pH 6.5). Although dose was not considered, good concordance of the measured solubility with BCS and BDDCS solubility class was achieved, when solubility at pH 1.2 was used for acidic compounds and FaSSIF solubility was used for basic, neutral, and zwitterionic compounds. Using a cutoff of 200 μg/mL, the data set suggested a 93% sensitivity and 86% specificity in predicting both the BCS and BDDCS solubility classes. In conclusion, this study identified

  2. Data Mining and Knowledge Discovery tools for exploiting big Earth-Observation data

    Science.gov (United States)

    Espinoza Molina, D.; Datcu, M.

    2015-04-01

    The continuous increase in the size of the archives and in the variety and complexity of Earth-Observation (EO) sensors require new methodologies and tools that allow the end-user to access a large image repository, to extract and to infer knowledge about the patterns hidden in the images, to retrieve dynamically a collection of relevant images, and to support the creation of emerging applications (e.g.: change detection, global monitoring, disaster and risk management, image time series, etc.). In this context, we are concerned with providing a platform for data mining and knowledge discovery content from EO archives. The platform's goal is to implement a communication channel between Payload Ground Segments and the end-user who receives the content of the data coded in an understandable format associated with semantics that is ready for immediate exploitation. It will provide the user with automated tools to explore and understand the content of highly complex images archives. The challenge lies in the extraction of meaningful information and understanding observations of large extended areas, over long periods of time, with a broad variety of EO imaging sensors in synergy with other related measurements and data. The platform is composed of several components such as 1.) ingestion of EO images and related data providing basic features for image analysis, 2.) query engine based on metadata, semantics and image content, 3.) data mining and knowledge discovery tools for supporting the interpretation and understanding of image content, 4.) semantic definition of the image content via machine learning methods. All these components are integrated and supported by a relational database management system, ensuring the integrity and consistency of Terabytes of Earth Observation data.

  3. Allosteric modulation of endogenous metabolites as an avenue for drug discovery.

    Science.gov (United States)

    Wootten, Denise; Savage, Emilia E; Valant, Celine; May, Lauren T; Sloop, Kyle W; Ficorilli, James; Showalter, Aaron D; Willard, Francis S; Christopoulos, Arthur; Sexton, Patrick M

    2012-08-01

    G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors and a key drug target class. Recently, allosteric drugs that can co-bind with and modulate the activity of the endogenous ligand(s) for the receptor have become a major focus of the pharmaceutical and biotechnology industry for the development of novel GPCR therapeutic agents. This class of drugs has distinct properties compared with drugs targeting the endogenous (orthosteric) ligand-binding site that include the ability to sculpt cellular signaling and to respond differently in the presence of discrete orthosteric ligands, a behavior termed "probe dependence." Here, using cell signaling assays combined with ex vivo and in vivo studies of insulin secretion, we demonstrate that allosteric ligands can cause marked potentiation of previously "inert" metabolic products of neurotransmitters and peptide hormones, a novel consequence of the phenomenon of probe dependence. Indeed, at the muscarinic M(2) receptor and glucagon-like peptide 1 (GLP-1) receptor, allosteric potentiation of the metabolites, choline and GLP-1(9-36)NH(2), respectively, was ~100-fold and up to 200-fold greater than that seen with the physiological signaling molecules acetylcholine and GLP-1(7-36)NH(2). Modulation of GLP-1(9-36)NH(2) was also demonstrated in ex vivo and in vivo assays of insulin secretion. This work opens up new avenues for allosteric drug discovery by directly targeting modulation of metabolites, but it also identifies a behavior that could contribute to unexpected clinical outcomes if interaction of allosteric drugs with metabolites is not part of their preclinical assessment.

  4. How Phenotypic Screening Influenced Drug Discovery: Lessons from Five Years of Practice.

    Science.gov (United States)

    Haasen, Dorothea; Schopfer, Ulrich; Antczak, Christophe; Guy, Chantale; Fuchs, Florian; Selzer, Paul

    Since 2011, phenotypic screening has been a trend in the pharmaceutical industry as well as in academia. This renaissance was triggered by analyses that suggested that phenotypic screening is a superior strategy to discover first-in-class drugs. Despite these promises and considerable investments, pharmaceutical research organizations have encountered considerable challenges with the approach. Few success stories have emerged in the past 5 years and companies are questioning their investment in this area. In this contribution, we outline what we have learned about success factors and challenges of phenotypic screening. We then describe how our efforts in phenotypic screening have influenced our approach to drug discovery in general. We predict that concepts from phenotypic screening will be incorporated into target-based approaches and will thus remain influential beyond the current trend.

  5. Toward Omics-Based, Systems Biomedicine, and Path and Drug Discovery Methodologies for Depression-Inflammation Research.

    Science.gov (United States)

    Maes, Michael; Nowak, Gabriel; Caso, Javier R; Leza, Juan Carlos; Song, Cai; Kubera, Marta; Klein, Hans; Galecki, Piotr; Noto, Cristiano; Glaab, Enrico; Balling, Rudi; Berk, Michael

    2016-07-01

    Meta-analyses confirm that depression is accompanied by signs of inflammation including increased levels of acute phase proteins, e.g., C-reactive protein, and pro-inflammatory cytokines, e.g., interleukin-6. Supporting the translational significance of this, a meta-analysis showed that anti-inflammatory drugs may have antidepressant effects. Here, we argue that inflammation and depression research needs to get onto a new track. Firstly, the choice of inflammatory biomarkers in depression research was often too selective and did not consider the broader pathways. Secondly, although mild inflammatory responses are present in depression, other immune-related pathways cannot be disregarded as new drug targets, e.g., activation of cell-mediated immunity, oxidative and nitrosative stress (O&NS) pathways, autoimmune responses, bacterial translocation, and activation of the toll-like receptor and neuroprogressive pathways. Thirdly, anti-inflammatory treatments are sometimes used without full understanding of their effects on the broader pathways underpinning depression. Since many of the activated immune-inflammatory pathways in depression actually confer protection against an overzealous inflammatory response, targeting these pathways may result in unpredictable and unwanted results. Furthermore, this paper discusses the required improvements in research strategy, i.e., path and drug discovery processes, omics-based techniques, and systems biomedicine methodologies. Firstly, novel methods should be employed to examine the intracellular networks that control and modulate the immune, O&NS and neuroprogressive pathways using omics-based assays, including genomics, transcriptomics, proteomics, metabolomics, epigenomics, immunoproteomics and metagenomics. Secondly, systems biomedicine analyses are essential to unravel the complex interactions between these cellular networks, pathways, and the multifactorial trigger factors and to delineate new drug targets in the cellular

  6. Epigenetics and cancer: implications for drug discovery and safety assessment

    International Nuclear Information System (INIS)

    Moggs, Jonathan G.; Goodman, Jay I.; Trosko, James E.; Roberts, Ruth A.

    2004-01-01

    It is necessary to determine whether chemicals or drugs have the potential to pose a threat to human health. Research conducted over the last two decades has led to the paradigm that chemicals can cause cancer either by damaging DNA or by altering cellular growth, probably via receptor-mediated changes in gene expression. However, recent evidence suggests that gene expression can be altered markedly via several diverse epigenetic mechanisms that can lead to permanent or reversible changes in cellular behavior. Key molecular events underlying these mechanisms include the alteration of DNA methylation and chromatin, and changes in the function of cell surface molecules. Thus, for example, DNA methyltransferase enzymes together with chromatin-associated proteins such as histone modifying enzymes and remodelling factors can modify the genetic code and contribute to the establishment and maintenance of altered epigenetic states. This is relevant to many types of toxicity including but not limited to cancer. In this paper, we describe the potential for interplay between genetic alteration and epigenetic changes in cell growth regulation and discuss the implications for drug discovery and safety assessment

  7. Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development

    Directory of Open Access Journals (Sweden)

    Charu Sharma

    2015-01-01

    Full Text Available The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2 which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ9-tetrahydrocannabinol mediates its action through CB1/CB2 receptors. However, these synthetic based Cannabis derived compounds are known to exert adverse psychiatric effect and have also been exploited for drug abuse. This encourages us to find out an alternative and safe drug with the least psychiatric adverse effects. In recent years, many phytocannabinoids have been isolated from plants other than Cannabis. Several studies have shown that these phytocannabinoids show affinity, potency, selectivity, and efficacy towards cannabinoid receptors and inhibit endocannabinoid metabolizing enzymes, thus reducing hyperactivity of endocannabinoid systems. Also, these naturally derived molecules possess the least adverse effects opposed to the synthetically derived cannabinoids. Therefore, the plant based cannabinoid molecules proved to be promising and emerging therapeutic alternative. The present review provides an overview of therapeutic potential of ligands and plants modulating cannabinoid receptors that may be of interest to pharmaceutical industry in search of new and safer drug discovery and development for future therapeutics.

  8. Evaluation Tool for the Application of Discovery Teaching Method in the Greek Environmental School Projects

    Science.gov (United States)

    Kalathaki, Maria

    2015-01-01

    Greek school community emphasizes on the discovery direction of teaching methodology in the school Environmental Education (EE) in order to promote Education for the Sustainable Development (ESD). In ESD school projects the used methodology is experiential teamwork for inquiry based learning. The proposed tool checks whether and how a school…

  9. Emerging role of bioinformatics tools and software in evolution of clinical research

    Directory of Open Access Journals (Sweden)

    Supreet Kaur Gill

    2016-01-01

    Full Text Available Clinical research is making toiling efforts for promotion and wellbeing of the health status of the people. There is a rapid increase in number and severity of diseases like cancer, hepatitis, HIV etc, resulting in high morbidity and mortality. Clinical research involves drug discovery and development whereas clinical trials are performed to establish safety and efficacy of drugs. Drug discovery is a long process starting with the target identification, validation and lead optimization. This is followed by the preclinical trials, intensive clinical trials and eventually post marketing vigilance for drug safety. Softwares and the bioinformatics tools play a great role not only in the drug discovery but also in drug development. It involves the use of informatics in the development of new knowledge pertaining to health and disease, data management during clinical trials and to use clinical data for secondary research. In addition, new technology likes molecular docking, molecular dynamics simulation, proteomics and quantitative structure activity relationship in clinical research results in faster and easier drug discovery process. During the preclinical trials, the software is used for randomization to remove bias and to plan study design. In clinical trials software like electronic data capture, Remote data capture and electronic case report form (eCRF is used to store the data. eClinical, Oracle clinical are software used for clinical data management and for statistical analysis of the data. After the drug is marketed the safety of a drug could be monitored by drug safety software like Oracle Argus or ARISg. Therefore, softwares are used from the very early stages of drug designing, to drug development, clinical trials and during pharmacovigilance. This review describes different aspects related to application of computers and bioinformatics in drug designing, discovery and development, formulation designing and clinical research.

  10. Systems pharmacology-based drug discovery for marine resources: an example using sea cucumber (Holothurians).

    Science.gov (United States)

    Guo, Yingying; Ding, Yan; Xu, Feifei; Liu, Baoyue; Kou, Zinong; Xiao, Wei; Zhu, Jingbo

    2015-05-13

    Sea cucumber, a kind of marine animal, have long been utilized as tonic and traditional remedies in the Middle East and Asia because of its effectiveness against hypertension, asthma, rheumatism, cuts and burns, impotence, and constipation. In this study, an overall study performed on sea cucumber was used as an example to show drug discovery from marine resource by using systems pharmacology model. The value of marine natural resources has been extensively considered because these resources can be potentially used to treat and prevent human diseases. However, the discovery of drugs from oceans is difficult, because of complex environments in terms of composition and active mechanisms. Thus, a comprehensive systems approach which could discover active constituents and their targets from marine resource, understand the biological basis for their pharmacological properties is necessary. In this study, a feasible pharmacological model based on systems pharmacology was established to investigate marine medicine by incorporating active compound screening, target identification, and network and pathway analysis. As a result, 106 candidate components of sea cucumber and 26 potential targets were identified. Furthermore, the functions of sea cucumber in health improvement and disease treatment were elucidated in a holistic way based on the established compound-target and target-disease networks, and incorporated pathways. This study established a novel strategy that could be used to explore specific active mechanisms and discover new drugs from marine sources. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery.

    Science.gov (United States)

    Pérot, Stéphanie; Sperandio, Olivier; Miteva, Maria A; Camproux, Anne-Claude; Villoutreix, Bruno O

    2010-08-01

    Detection, comparison and analyses of binding pockets are pivotal to structure-based drug design endeavors, from hit identification, screening of exosites and de-orphanization of protein functions to the anticipation of specific and non-specific binding to off- and anti-targets. Here, we analyze protein-ligand complexes and discuss methods that assist binding site identification, prediction of druggability and binding site comparison. The full potential of pockets is yet to be harnessed, and we envision that better understanding of the pocket space will have far-reaching implications in the field of drug discovery, such as the design of pocket-specific compound libraries and scoring functions.

  12. A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards.

    Science.gov (United States)

    Mordwinkin, Nicholas M; Burridge, Paul W; Wu, Joseph C

    2013-02-01

    Drug attrition rates have increased in past years, resulting in growing costs for the pharmaceutical industry and consumers. The reasons for this include the lack of in vitro models that correlate with clinical results and poor preclinical toxicity screening assays. The in vitro production of human cardiac progenitor cells and cardiomyocytes from human pluripotent stem cells provides an amenable source of cells for applications in drug discovery, disease modeling, regenerative medicine, and cardiotoxicity screening. In addition, the ability to derive human-induced pluripotent stem cells from somatic tissues, combined with current high-throughput screening and pharmacogenomics, may help realize the use of these cells to fulfill the potential of personalized medicine. In this review, we discuss the use of pluripotent stem cell-derived cardiomyocytes for drug discovery and cardiotoxicity screening, as well as current hurdles that must be overcome for wider clinical applications of this promising approach.

  13. G‐LoSA: An efficient computational tool for local structure‐centric biological studies and drug design

    Science.gov (United States)

    2016-01-01

    Abstract Molecular recognition by protein mostly occurs in a local region on the protein surface. Thus, an efficient computational method for accurate characterization of protein local structural conservation is necessary to better understand biology and drug design. We present a novel local structure alignment tool, G‐LoSA. G‐LoSA aligns protein local structures in a sequence order independent way and provides a GA‐score, a chemical feature‐based and size‐independent structure similarity score. Our benchmark validation shows the robust performance of G‐LoSA to the local structures of diverse sizes and characteristics, demonstrating its universal applicability to local structure‐centric comparative biology studies. In particular, G‐LoSA is highly effective in detecting conserved local regions on the entire surface of a given protein. In addition, the applications of G‐LoSA to identifying template ligands and predicting ligand and protein binding sites illustrate its strong potential for computer‐aided drug design. We hope that G‐LoSA can be a useful computational method for exploring interesting biological problems through large‐scale comparison of protein local structures and facilitating drug discovery research and development. G‐LoSA is freely available to academic users at http://im.compbio.ku.edu/GLoSA/. PMID:26813336

  14. G-LoSA: An efficient computational tool for local structure-centric biological studies and drug design.

    Science.gov (United States)

    Lee, Hui Sun; Im, Wonpil

    2016-04-01

    Molecular recognition by protein mostly occurs in a local region on the protein surface. Thus, an efficient computational method for accurate characterization of protein local structural conservation is necessary to better understand biology and drug design. We present a novel local structure alignment tool, G-LoSA. G-LoSA aligns protein local structures in a sequence order independent way and provides a GA-score, a chemical feature-based and size-independent structure similarity score. Our benchmark validation shows the robust performance of G-LoSA to the local structures of diverse sizes and characteristics, demonstrating its universal applicability to local structure-centric comparative biology studies. In particular, G-LoSA is highly effective in detecting conserved local regions on the entire surface of a given protein. In addition, the applications of G-LoSA to identifying template ligands and predicting ligand and protein binding sites illustrate its strong potential for computer-aided drug design. We hope that G-LoSA can be a useful computational method for exploring interesting biological problems through large-scale comparison of protein local structures and facilitating drug discovery research and development. G-LoSA is freely available to academic users at http://im.compbio.ku.edu/GLoSA/. © 2016 The Protein Society.

  15. Biomarkers: in medicine, drug discovery, and environmental health

    National Research Council Canada - National Science Library

    Vaidya, Vishal S; Bonventre, Joseph V

    2010-01-01

    ... Identification Using Mass Spectrometry Sample Preparation Protein Quantitation Examples of Biomarker Discovery and Evaluation Challenges in Proteomic Biomarker Discovery The Road Forward: Targeted ...

  16. MEDICI: Mining Essentiality Data to Identify Critical Interactions for Cancer Drug Target Discovery and Development | Office of Cancer Genomics

    Science.gov (United States)

    Protein-protein interactions (PPIs) mediate the transmission and regulation of oncogenic signals that are essential to cellular proliferation and survival, and thus represent potential targets for anti-cancer therapeutic discovery. Despite their significance, there is no method to experimentally disrupt and interrogate the essentiality of individual endogenous PPIs. The ability to computationally predict or infer PPI essentiality would help prioritize PPIs for drug discovery and help advance understanding of cancer biology.

  17. Academic-Pharma drug discovery alliances: seeking ways to eliminate the valley of death.

    Science.gov (United States)

    Hammonds, Tim

    2015-01-01

    Industrial pharmaceutical companies (Pharma) share a common goal with academic scientists (Academia) in that they wish to create an environment in which patients are treated for diseases with ever more effective therapies. As disease biology has proven to be ever more complex and money and new drugs are becoming more elusive, Pharma and Academia are reaching toward each other with ever greater collaborative intent. There are a growing number of collaboration models that allow scientists to work together and profit from the creation of new drugs. Here I give a personal view of how we came to where we are, present an overview of a number of these models and look to the future in terms of running successful discovery alliances.

  18. An evolutionary perspective on drug discovery in the plant genus Euphorbia L. (Euphorbiaceae)

    DEFF Research Database (Denmark)

    Ernst, Madeleine

    herbivory and physical stresses or to attract pollinators. Consequently, specializedmetabolites, as well as plants used in traditional medicine, are not randomly distributed across phylogenetictrees. Evolutionary approaches to plant-based drug discovery suggest that this informationcan be used to guide...... healthcarethreats, urge for systematic and time-efficient approaches in finding new drug candidates. Manydrugs are derived from plant specialized metabolites, chemical compounds, which are synthesizedby the plants in response to evolutionary adaptation to environmental and ecological factors, for example,to combat...... evolution and diversification. Also, Euphorbia species producean often chemically highly diverse latex exhibiting an exceptional number of biological activities withpharmaceutical interest. In this PhD project, the genus Euphorbia was chosen as a model group forstudying evolutionary approaches to plant...

  19. History as a tool in identifying "new" old drugs.

    Science.gov (United States)

    Riddle, John M

    2002-01-01

    the records of its use provide observations made by intelligent persons over generations of employment Many historical "drugs" have crossed the line from drug to food. A number of them are now common items on our tables: coffee, tea, sugar, lemon, chocolate, pepper, to name a few The example of coffee affords useful insight. It was first employed as a drug (like tobacco), its botany and chemistry are well known, it has been in widespread use for centuries with diverse ethnic populations in a variety of preparations and amounts consumed. Still we are unsure about coffee's effect on health, the latest assertion being that the caffeine it contains may delay the onset of Alzheimer's. In contrast, the mercury drugs were in widespread use for a long period of time by many populations and that fact indicates that the toxic tolerance in humans is probably higher than as currently proscribed. The past contains important data for the scientific investigator. Like any field of research, historical investigation requires specialized knowledge, but much of that knowledge is readily accessible and employable. Rediscovery through examination of historical contemporaneous use data can be efficient and relatively easy compared to the travails of original research in pursuit of a discovery only to learn later that our ancestors had already made that discovery through trial and error in human usage. If we had started a search from the clues provided by history, presumably our discoveries would have been earlier, and we would have benefitted. As it is. we learn history but not science or else we learn science, not history. Both taken together the learning can be enhanced.

  20. Structure-based drug discovery for combating influenza virus by targeting the PA-PB1 interaction.

    Science.gov (United States)

    Watanabe, Ken; Ishikawa, Takeshi; Otaki, Hiroki; Mizuta, Satoshi; Hamada, Tsuyoshi; Nakagaki, Takehiro; Ishibashi, Daisuke; Urata, Shuzo; Yasuda, Jiro; Tanaka, Yoshimasa; Nishida, Noriyuki

    2017-08-25

    Influenza virus infections are serious public health concerns throughout the world. The development of compounds with novel mechanisms of action is urgently required due to the emergence of viruses with resistance to the currently-approved anti-influenza viral drugs. We performed in silico screening using a structure-based drug discovery algorithm called Nagasaki University Docking Engine (NUDE), which is optimised for a GPU-based supercomputer (DEstination for Gpu Intensive MAchine; DEGIMA), by targeting influenza viral PA protein. The compounds selected by NUDE were tested for anti-influenza virus activity using a cell-based assay. The most potent compound, designated as PA-49, is a medium-sized quinolinone derivative bearing a tetrazole moiety, and it inhibited the replication of influenza virus A/WSN/33 at a half maximal inhibitory concentration of 0.47 μM. PA-49 has the ability to bind PA and its anti-influenza activity was promising against various influenza strains, including a clinical isolate of A(H1N1)pdm09 and type B viruses. The docking simulation suggested that PA-49 interrupts the PA-PB1 interface where important amino acids are mostly conserved in the virus strains tested, suggesting the strain independent utility. Because our NUDE/DEGIMA system is rapid and efficient, it may help effective drug discovery against the influenza virus and other emerging viruses.

  1. Rediscovering Don Swanson: The Past, Present and Future of Literature-based Discovery

    Directory of Open Access Journals (Sweden)

    Neil R. Smalheiser

    2017-12-01

    Full Text Available Purpose: The late Don R. Swanson was well appreciated during his lifetime as Dean of the Graduate Library School at University of Chicago, as winner of the American Society for Information Science Award of Merit for 2000, and as author of many seminal articles. In this informal essay, I will give my personal perspective on Don’s contributions to science, and outline some current and future directions in literature-based discovery that are rooted in concepts that he developed. Design/methodology/approach: Personal recollections and literature review. Findings: The Swanson A-B-C model of literature-based discovery has been successfully used by laboratory investigators analyzing their findings and hypotheses. It continues to be a fertile area of research in a wide range of application areas including text mining, drug repurposing, studies of scientific innovation, knowledge discovery in databases, and bioinformatics. Recently, additional modes of discovery that do not follow the A-B-C model have also been proposed and explored (e.g. so-called storytelling, gaps, analogies, link prediction, negative consensus, outliers, and revival of neglected or discarded research questions. Research limitations: This paper reflects the opinions of the author and is not a comprehensive nor technically based review of literature-based discovery. Practical implications: The general scientific public is still not aware of the availability of tools for literature-based discovery. Our Arrowsmith project site maintains a suite of discovery tools that are free and open to the public (http://arrowsmith.psych.uic.edu, as does BITOLA which is maintained by Dmitar Hristovski (http:// http://ibmi.mf.uni-lj.si/bitola, and Epiphanet which is maintained by Trevor Cohen (http://epiphanet.uth.tmc.edu/. Bringing user-friendly tools to the public should be a high priority, since even more than advancing basic research in informatics, it is vital that we ensure that scientists

  2. Pharmaceutical structure montages as catalysts for design and discovery.

    Science.gov (United States)

    Njarðarson, Jon T

    2012-05-01

    Majority of pharmaceuticals are small molecule organic compounds. Their structures are most effectively described and communicated using the graphical language of organic chemistry. A few years ago we decided to harness this powerful language to create new educational tools that could serve well for data mining and as catalysts for discovery. The results were the Top 200 drug posters, which we have posted online for everyone to enjoy and update yearly. This article details the origin and motivation for our design and highlights the value of this graphical format by presenting and analyzing a new pharmaceutical structure montage (poster) focused on US FDA approved drugs in 2011.

  3. Drug Repurposing Is a New Opportunity for Developing Drugs against Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Hyeong-Min Lee

    2016-01-01

    Full Text Available Better the drugs you know than the drugs you do not know. Drug repurposing is a promising, fast, and cost effective method that can overcome traditional de novo drug discovery and development challenges of targeting neuropsychiatric and other disorders. Drug discovery and development targeting neuropsychiatric disorders are complicated because of the limitations in understanding pathophysiological phenomena. In addition, traditional de novo drug discovery and development are risky, expensive, and time-consuming processes. One alternative approach, drug repurposing, has emerged taking advantage of off-target effects of the existing drugs. In order to identify new opportunities for the existing drugs, it is essential for us to understand the mechanisms of action of drugs, both biologically and pharmacologically. By doing this, drug repurposing would be a more effective method to develop drugs against neuropsychiatric and other disorders. Here, we review the difficulties in drug discovery and development in neuropsychiatric disorders and the extent and perspectives of drug repurposing.

  4. Drug promotion practices: A review.

    Science.gov (United States)

    Jacob, Nilan T

    2018-01-18

    Over the years, the pharmaceutical industry has been at the forefront of research and innovation in drug discovery and development. The process of drug discovery extending from preclinical studies to multicentric clinical trials and postmarketing phase is a costly affair running into billions of dollars. On the flip side, not all investigational molecules clear the trial phases and get approved, which puts pressure on the manufacturers to maximize the profit from approved drugs. It is in this key area that the practice of drug promotion plays its role. The World Health Organization defines drug promotion as "all informational and persuasive activities by manufacturers and distributors, the effect of which is to influence the prescription, supply, purchase or use of medicinal drugs". With its humble intent of creating awareness among healthcare professionals and updating their knowledge on recent advances in treatment options, drug promotion has been an important tool, but gradually it has evolved to embrace aggressive marketing strategies and sometimes unethical business and scientific practices where the need for profit-making eclipses commitment to patient care and scientific exploration. In this review, we discuss the evolution of drug promotion practices, the various types, its merits and demerits, the influence of drug promotion on physician prescribing behaviour, the role of regulatory bodies, unethical promotional practices and finally summarize with future directions. © 2018 The British Pharmacological Society.

  5. Assessing the structural conservation of protein pockets to study functional and allosteric sites: implications for drug discovery

    Directory of Open Access Journals (Sweden)

    Daura Xavier

    2010-03-01

    Full Text Available Abstract Background With the classical, active-site oriented drug-development approach reaching its limits, protein ligand-binding sites in general and allosteric sites in particular are increasingly attracting the interest of medicinal chemists in the search for new types of targets and strategies to drug development. Given that allostery represents one of the most common and powerful means to regulate protein function, the traditional drug discovery approach of targeting active sites can be extended by targeting allosteric or regulatory protein pockets that may allow the discovery of not only novel drug-like inhibitors, but activators as well. The wealth of available protein structural data can be exploited to further increase our understanding of allosterism, which in turn may have therapeutic applications. A first step in this direction is to identify and characterize putative effector sites that may be present in already available structural data. Results We performed a large-scale study of protein cavities as potential allosteric and functional sites, by integrating publicly available information on protein sequences, structures and active sites for more than a thousand protein families. By identifying common pockets across different structures of the same protein family we developed a method to measure the pocket's structural conservation. The method was first parameterized using known active sites. We characterized the predicted pockets in terms of sequence and structural conservation, backbone flexibility and electrostatic potential. Although these different measures do not tend to correlate, their combination is useful in selecting functional and regulatory sites, as a detailed analysis of a handful of protein families shows. We finally estimated the numbers of potential allosteric or regulatory pockets that may be present in the data set, finding that pockets with putative functional and effector characteristics are widespread across

  6. Exploring open innovation with a patient focus in drug discovery: an evolving paradigm of patient engagement.

    Science.gov (United States)

    Allarakhia, Minna

    2015-06-01

    It is suggested in this article that patient engagement should occur further upstream during the drug discovery stage. 'Lead patients', namely those patients who are proactive with respect to their health, possess knowledge of their disease and resulting symptoms. They are also well informed about the conventional as well as non-conventional treatments for disease management; and so can provide a nuanced perspective to drug design. Understanding how patients view the management of their diseases and how they view the use of conventional versus non-conventional interventions is of imperative importance to researchers. Indeed, this can provide insight into how conventional treatments might be designed from the outset to encourage compliance and positive health outcomes. Consequently, a continuum of lead patient engagement is employed that focuses on drug discovery processes ranging from participative, informative to collaborative engagement. This article looks at a variety of open innovation models that are currently employed across this engagement spectrum. It is no longer sufficient for industry stakeholders to consider conventional therapies as the only mechanisms being sought after by patients. Without patient engagement, the industry risks being re-prioritized in terms of its role in the patient journey towards not only recovery of health, but also sustained health and wellness before disease onset.

  7. Receptor localization of steroid hormones and drugs: discoveries through the use of thaw-mount and dry-mount autoradiography

    Directory of Open Access Journals (Sweden)

    Stumpf W.E.

    1998-01-01

    Full Text Available The history of receptor autoradiography, its development and applications, testify to the utility of this histochemical technique for localizing radiolabeled hormones and drugs at cellular and subcellular sites of action in intact tissues. Localization of diffusible compounds has been a challenge that was met through the introduction of the "thaw-mount" and "dry-mount" autoradiographic techniques thirty years ago. With this cellular receptor autoradiography, used alone or combined with other histochemical techniques, sites of specific binding and deposition in vivo and in vitro have been characterized. Numerous discoveries, some reviewed in this article, provided information that led to new concepts and opened new areas of research. As an example, in recent years more than fifty target tissues for vitamin D have been specified, challenging the conventional view about the main biological role of vitamin D. The functions of most of these vitamin D target tissues are unrelated to the regulation of systemic calcium homeostasis, but pertain to the (seasonal regulation of endo- and exocrine secretion, cell proliferation, reproduction, neural, immune and cardiovascular responses, and adaptation to stress. Receptor autoradiography with cellular resolution has become an indispensable tool in drug research and development, since information can be obtained that is difficult or impossible to gain otherwise

  8. Advances in Predictive Toxicology for Discovery Safety through High Content Screening.

    Science.gov (United States)

    Persson, Mikael; Hornberg, Jorrit J

    2016-12-19

    High content screening enables parallel acquisition of multiple molecular and cellular readouts. In particular the predictive toxicology field has progressed from the advances in high content screening, as more refined end points that report on cellular health can be studied in combination, at the single cell level, and in relatively high throughput. Here, we discuss how high content screening has become an essential tool for Discovery Safety, the discipline that integrates safety and toxicology in the drug discovery process to identify and mitigate safety concerns with the aim to design drug candidates with a superior safety profile. In addition to customized mechanistic assays to evaluate target safety, routine screening assays can be applied to identify risk factors for frequently occurring organ toxicities. We discuss the current state of high content screening assays for hepatotoxicity, cardiotoxicity, neurotoxicity, nephrotoxicity, and genotoxicity, including recent developments and current advances.

  9. Footprints: A Visual Search Tool that Supports Discovery and Coverage Tracking.

    Science.gov (United States)

    Isaacs, Ellen; Domico, Kelly; Ahern, Shane; Bart, Eugene; Singhal, Mudita

    2014-12-01

    Searching a large document collection to learn about a broad subject involves the iterative process of figuring out what to ask, filtering the results, identifying useful documents, and deciding when one has covered enough material to stop searching. We are calling this activity "discoverage," discovery of relevant material and tracking coverage of that material. We built a visual analytic tool called Footprints that uses multiple coordinated visualizations to help users navigate through the discoverage process. To support discovery, Footprints displays topics extracted from documents that provide an overview of the search space and are used to construct searches visuospatially. Footprints allows users to triage their search results by assigning a status to each document (To Read, Read, Useful), and those status markings are shown on interactive histograms depicting the user's coverage through the documents across dates, sources, and topics. Coverage histograms help users notice biases in their search and fill any gaps in their analytic process. To create Footprints, we used a highly iterative, user-centered approach in which we conducted many evaluations during both the design and implementation stages and continually modified the design in response to feedback.

  10. Drug discovery for male subfertility using high-throughput screening: a new approach to an unsolved problem.

    Science.gov (United States)

    Martins da Silva, Sarah J; Brown, Sean G; Sutton, Keith; King, Louise V; Ruso, Halil; Gray, David W; Wyatt, Paul G; Kelly, Mark C; Barratt, Christopher L R; Hope, Anthony G

    2017-05-01

    Can pharma drug discovery approaches be utilized to transform investigation into novel therapeutics for male infertility? High-throughput screening (HTS) is a viable approach to much-needed drug discovery for male factor infertility. There is both huge demand and a genuine clinical need for new treatment options for infertile men. However, the time, effort and resources required for drug discovery are currently exorbitant, due to the unique challenges of the cellular, physical and functional properties of human spermatozoa and a lack of appropriate assay platform. Spermatozoa were obtained from healthy volunteer research donors and subfertile patients undergoing IVF/ICSI at a hospital-assisted reproductive techniques clinic between January 2012 and November 2016. A HTS assay was developed and validated using intracellular calcium ([Ca2+]i) as a surrogate for motility in human spermatozoa. Calcium fluorescence was detected using a Flexstation microplate reader (384-well platform) and compared with responses evoked by progesterone, a compound known to modify a number of biologically relevant behaviours in human spermatozoa. Hit compounds identified following single point drug screen (10 μM) of an ion channel-focussed library assembled by the University of Dundee Drug Discovery Unit were rescreened to ensure potency using standard 10 point half-logarithm concentration curves, and tested for purity and integrity using liquid chromatography and mass spectrometry. Hit compounds were grouped by structure activity relationships and five representative compounds then further investigated for direct effects on spermatozoa, using computer-assisted sperm assessment, sperm penetration assay and whole-cell patch clamping. Of the 3242 ion channel library ligands screened, 384 compounds (11.8%) elicited a statistically significant increase in calcium fluorescence, with greater than 3× median absolute deviation above the baseline. Seventy-four compounds eliciting ≥50% increase

  11. Projecting ADME Behavior and Drug-Drug Interactions in Early Discovery and Development: Application of the Extended Clearance Classification System.

    Science.gov (United States)

    El-Kattan, Ayman F; Varma, Manthena V; Steyn, Stefan J; Scott, Dennis O; Maurer, Tristan S; Bergman, Arthur

    2016-12-01

    To assess the utility of Extended Clearance Classification System (ECCS) in understanding absorption, distribution, metabolism, and elimination (ADME) attributes and enabling victim drug-drug interaction (DDI) predictions. A database of 368 drugs with relevant ADME parameters, main metabolizing enzymes, uptake transporters, efflux transporters, and highest change in exposure (%AUC) in presence of inhibitors was developed using published literature. Drugs were characterized according to ECCS using ionization, molecular weight and estimated permeability. Analyses suggested that ECCS class 1A drugs are well absorbed and systemic clearance is determined by metabolism mediated by CYP2C, esterases, and UGTs. For class 1B drugs, oral absorption is high and the predominant clearance mechanism is hepatic uptake mediated by OATP transporters. High permeability neutral/basic drugs (class 2) showed high oral absorption, with metabolism mediated generally by CYP3A, CYP2D6 and UGTs as the predominant clearance mechanism. Class 3A/4 drugs showed moderate absorption with dominant renal clearance involving OAT/OCT2 transporters. Class 3B drugs showed low to moderate absorption with hepatic uptake (OATPs) and/or renal clearance as primary clearance mechanisms. The highest DDI risk is typically seen with class 2/1B/3B compounds manifested by inhibition of either CYP metabolism or active hepatic uptake. Class 2 showed a wider range in AUC change likely due to a variety of enzymes involved. DDI risk for class 3A/4 is small and associated with inhibition of renal transporters. ECCS provides a framework to project ADME profiles and further enables prediction of victim DDI liabilities in drug discovery and development.

  12. The AEROPATH project targeting Pseudomonas aeruginosa: crystallographic studies for assessment of potential targets in early-stage drug discovery

    International Nuclear Information System (INIS)

    Moynie, Lucille; Schnell, Robert; McMahon, Stephen A.; Sandalova, Tatyana; Boulkerou, Wassila Abdelli; Schmidberger, Jason W.; Alphey, Magnus; Cukier, Cyprian; Duthie, Fraser; Kopec, Jolanta; Liu, Huanting; Jacewicz, Agata; Hunter, William N.; Naismith, James H.; Schneider, Gunter

    2012-01-01

    A focused strategy has been directed towards the structural characterization of selected proteins from the bacterial pathogen P. aeruginosa. The objective is to exploit the resulting structural data, in combination with ligand-binding studies, and to assess the potential of these proteins for early-stage antimicrobial drug discovery. Bacterial infections are increasingly difficult to treat owing to the spread of antibiotic resistance. A major concern is Gram-negative bacteria, for which the discovery of new antimicrobial drugs has been particularly scarce. In an effort to accelerate early steps in drug discovery, the EU-funded AEROPATH project aims to identify novel targets in the opportunistic pathogen Pseudomonas aeruginosa by applying a multidisciplinary approach encompassing target validation, structural characterization, assay development and hit identification from small-molecule libraries. Here, the strategies used for target selection are described and progress in protein production and structure analysis is reported. Of the 102 selected targets, 84 could be produced in soluble form and the de novo structures of 39 proteins have been determined. The crystal structures of eight of these targets, ranging from hypothetical unknown proteins to metabolic enzymes from different functional classes (PA1645, PA1648, PA2169, PA3770, PA4098, PA4485, PA4992 and PA5259), are reported here. The structural information is expected to provide a firm basis for the improvement of hit compounds identified from fragment-based and high-throughput screening campaigns

  13. Drug target ontology to classify and integrate drug discovery data

    DEFF Research Database (Denmark)

    Lin, Yu; Mehta, Saurabh; Küçük-McGinty, Hande

    2017-01-01

    using a new software tool to auto-generate most axioms from a database while supporting manual knowledge acquisition. A modular, hierarchical implementation facilitate ontology development and maintenance and makes use of various external ontologies, thus integrating the DTO into the ecosystem...... of biomedical ontologies. As a formal OWL-DL ontology, DTO contains asserted and inferred axioms. Modeling data from the Library of Integrated Network-based Cellular Signatures (LINCS) program illustrates the potential of DTO for contextual data integration and nuanced definition of important drug target...... characteristics. DTO has been implemented in the IDG user interface Portal, Pharos and the TIN-X explorer of protein target disease relationships. CONCLUSIONS: DTO was built based on the need for a formal semantic model for druggable targets including various related information such as protein, gene, protein...

  14. A practical drug discovery project at the undergraduate level.

    Science.gov (United States)

    Fray, M Jonathan; Macdonald, Simon J F; Baldwin, Ian R; Barton, Nick; Brown, Jack; Campbell, Ian B; Churcher, Ian; Coe, Diane M; Cooper, Anthony W J; Craven, Andrew P; Fisher, Gail; Inglis, Graham G A; Kelly, Henry A; Liddle, John; Maxwell, Aoife C; Patel, Vipulkumar K; Swanson, Stephen; Wellaway, Natalie

    2013-12-01

    In this article, we describe a practical drug discovery project for third-year undergraduates. No previous knowledge of medicinal chemistry is assumed. Initial lecture workshops cover the basic principles; then students, in teams, seek to improve the profile of a weakly potent, insoluble phosphatidylinositide 3-kinase delta (PI3Kδ) inhibitor (1) through compound array design, molecular modelling, screening data analysis and the synthesis of target compounds in the laboratory. The project benefits from significant industrial support, including lectures, student mentoring and consumables. The aim is to make the learning experience as close as possible to real-life industrial situations. In total, 48 target compounds were prepared, the best of which (5b, 5j, 6b and 6ap) improved the potency and aqueous solubility of the lead compound (1) by 100-1000 fold and ≥tenfold, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The Current Landscape of 3D In Vitro Tumor Models: What Cancer Hallmarks Are Accessible for Drug Discovery?

    Science.gov (United States)

    Rodenhizer, Darren; Dean, Teresa; D'Arcangelo, Elisa; McGuigan, Alison P

    2018-04-01

    Cancer prognosis remains a lottery dependent on cancer type, disease stage at diagnosis, and personal genetics. While investment in research is at an all-time high, new drugs are more likely to fail in clinical trials today than in the 1970s. In this review, a summary of current survival statistics in North America is provided, followed by an overview of the modern drug discovery process, classes of models used throughout different stages, and challenges associated with drug development efficiency are highlighted. Then, an overview of the cancer hallmarks that drive clinical progression is provided, and the range of available clinical therapies within the context of these hallmarks is categorized. Specifically, it is found that historically, the development of therapies is limited to a subset of possible targets. This provides evidence for the opportunities offered by novel disease-relevant in vitro models that enable identification of novel targets that facilitate interactions between the tumor cells and their surrounding microenvironment. Next, an overview of the models currently reported in literature is provided, and the cancer biology they have been used to explore is highlighted. Finally, four priority areas are suggested for the field to accelerate adoption of in vitro tumour models for cancer drug discovery. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. LEGO-inspired drug design: Discovery of novel fungal Plasma membrane H+-ATPase (Pma1) inhibitors from small molecule libraries: An introduction of HFSA-SBS_DOS-RD strategy in drug discovery

    DEFF Research Database (Denmark)

    Tung, Truong Thanh; Dao, Trong Tuan; Palmgren, Michael B.

    to extracellular, this enzyme generates a transmembrane electrochem. gradient, as a consequence, fungi can uptake nutrients by secondary transport systems. Until now, only low resoln. of protein structure has been reported, and notably there a no report of co-crystal structure of Pma1 with inhibitors. Therefore......-oriented synthesis (SBS_DOS) and rational design (RD), so called HFSA-SBS_DOS-RD strategy in drug discovery and development process. Using HFSA-SBS_DOS-RD, our group successfully designed, synthesized, and performed SAR studies of novel compds. potent Pma1 inhibitors. An expeditious, high yield and scalable...... microwave-assisted synthesis was developed and applied for synthesis of library compds. To our delight, ours compd. libraries were able to inhibit Pma1 activity and growth inhibitory activity of C. albican and S. cerevisiae revealed the most promising example for future development of antifungal drugs...

  17. Targeting Antibacterial Agents by Using Drug-Carrying Filamentous Bacteriophages

    OpenAIRE

    Yacoby, Iftach; Shamis, Marina; Bar, Hagit; Shabat, Doron; Benhar, Itai

    2006-01-01

    Bacteriophages have been used for more than a century for (unconventional) therapy of bacterial infections, for half a century as tools in genetic research, for 2 decades as tools for discovery of specific target-binding proteins, and for nearly a decade as tools for vaccination or as gene delivery vehicles. Here we present a novel application of filamentous bacteriophages (phages) as targeted drug carriers for the eradication of (pathogenic) bacteria. The phages are genetically modified to d...

  18. Drug efficiency: a new concept to guide lead optimization programs towards the selection of better clinical candidates.

    Science.gov (United States)

    Braggio, Simone; Montanari, Dino; Rossi, Tino; Ratti, Emiliangelo

    2010-07-01

    As a result of their wide acceptance and conceptual simplicity, drug-like concepts are having a major influence on the drug discovery process, particularly in the selection of the 'optimal' absorption, distribution, metabolism, excretion and toxicity and physicochemical parameters space. While they have an undisputable value when assessing the potential of lead series or in evaluating inherent risk of a portfolio of drug candidates, they result much less useful in weighing up compounds for the selection of the best potential clinical candidate. We introduce the concept of drug efficiency as a new tool both to guide the drug discovery program teams during the lead optimization phase and to better assess the developability potential of a drug candidate.

  19. Lowering industry firewalls: pre-competitive informatics initiatives in drug discovery.

    Science.gov (United States)

    Barnes, Michael R; Harland, Lee; Foord, Steven M; Hall, Matthew D; Dix, Ian; Thomas, Scott; Williams-Jones, Bryn I; Brouwer, Cory R

    2009-09-01

    Pharmaceutical research and development is facing substantial challenges that have prompted the industry to shift funding from early- to late-stage projects. Among the effects is a major change in the attitude of many companies to their internal bioinformatics resources: the focus has moved from the vigorous pursuit of intellectual property towards exploration of pre-competitive cross-industry collaborations and engagement with the public domain. High-quality, open and accessible data are the foundation of pre-competitive research, and strong public-private partnerships have considerable potential to enhance public data resources, which would benefit everyone engaged in drug discovery. In this article, we discuss the background to these changes and propose new areas of collaboration in computational biology and chemistry between the public domain and the pharmaceutical industry.

  20. The pivotal role of multimodality reporter sensors in drug discovery: from cell based assays to real time molecular imaging.

    Science.gov (United States)

    Ray, Pritha

    2011-04-01

    Development and marketing of new drugs require stringent validation that are expensive and time consuming. Non-invasive multimodality molecular imaging using reporter genes holds great potential to expedite these processes at reduced cost. New generations of smarter molecular imaging strategies such as Split reporter, Bioluminescence resonance energy transfer, Multimodality fusion reporter technologies will further assist to streamline and shorten the drug discovery and developmental process. This review illustrates the importance and potential of molecular imaging using multimodality reporter genes in drug development at preclinical phases.

  1. Drug-Target Interactions: Prediction Methods and Applications.

    Science.gov (United States)

    Anusuya, Shanmugam; Kesherwani, Manish; Priya, K Vishnu; Vimala, Antonydhason; Shanmugam, Gnanendra; Velmurugan, Devadasan; Gromiha, M Michael

    2018-01-01

    Identifying the interactions between drugs and target proteins is a key step in drug discovery. This not only aids to understand the disease mechanism, but also helps to identify unexpected therapeutic activity or adverse side effects of drugs. Hence, drug-target interaction prediction becomes an essential tool in the field of drug repurposing. The availability of heterogeneous biological data on known drug-target interactions enabled many researchers to develop various computational methods to decipher unknown drug-target interactions. This review provides an overview on these computational methods for predicting drug-target interactions along with available webservers and databases for drug-target interactions. Further, the applicability of drug-target interactions in various diseases for identifying lead compounds has been outlined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Connectivity maps for biosimilar drug discovery in venoms: the case of Gila monster venom and the anti-diabetes drug Byetta®.

    Science.gov (United States)

    Aramadhaka, Lavakumar Reddy; Prorock, Alyson; Dragulev, Bojan; Bao, Yongde; Fox, Jay W

    2013-07-01

    Like most natural product libraries animal venoms have long been recognized as potentially rich source of biologically active molecules with the potential to be mined for the discovery of drugs, drug leads and/or biosimilars. In this work we demonstrate as a proof of concept a novel approach to explore venoms for potential biosimilarity to other drugs based on their ability to alter the transcriptomes of test cell lines followed by informatic searches and Connectivity Mapping to match the action of the venom on the cell gene expression to that of other drugs in the Connectivity Map (C-Map) database. As our test animal venom we chose Heloderma suspectum venom (Gila monster) since exendin-4, a glucagon-like peptide 1 receptor agonist, isolated from the venom is currently on the market to treat type 2 diabetes. The action of Byetta(®) (exentide, synthetic exendin-4), was also used in transcriptome studies. Analysis of transcriptomes from cells treated with the venom or the drug showed similarities as well as differences. The former case was primarily attributed to the fact that Gila monster venom likely contains a variety of biologically active molecules that could alter the MCF7 cell transcriptome compared to that of the single perturbant Byetta(®). Using Ingenuity Pathway Analysis software, insulin-like growth factor 1 signaling was identified in the category of "Top Canonical Pathways" for both the venom and Byetta(®). In the category of "Top Molecules" up-regulated, both venom and Byetta(®) shared IL-8, cyclic AMP-dependent transcription factor 3 (ATF-3), neuron-derived orphan receptor 1 (NR4A3), dexamethasone-induced Ras-related protein 1 (RASD1) and early growth response protein 1, (EGR-1) all with potential relevance in diabetes. Using Connectivity Mapping, Gila monster venom showed positive correlation with 1732 instances and negative correlation with 793 instances in the Connectivity database whereas Byetta(®) showed positive correlation with 1692

  3. Anthraquinones As Pharmacological Tools and Drugs.

    Science.gov (United States)

    Malik, Enas M; Müller, Christa E

    2016-07-01

    Anthraquinones (9,10-dioxoanthracenes) constitute an important class of natural and synthetic compounds with a wide range of applications. Besides their utilization as colorants, anthraquinone derivatives have been used since centuries for medical applications, for example, as laxatives and antimicrobial and antiinflammatory agents. Current therapeutic indications include constipation, arthritis, multiple sclerosis, and cancer. Moreover, biologically active anthraquinones derived from Reactive Blue 2 have been utilized as valuable tool compounds for biochemical and pharmacological studies. They may serve as lead structures for the development of future drugs. However, the presence of the quinone moiety in the structure of anthraquinones raises safety concerns, and anthraquinone laxatives have therefore been under critical reassessment. This review article provides an overview of the chemistry, biology, and toxicology of anthraquinones focusing on their application as drugs. © 2016 Wiley Periodicals, Inc.

  4. QSAR studies in the discovery of novel type-II diabetic therapies.

    Science.gov (United States)

    Abuhammad, Areej; Taha, Mutasem O

    2016-01-01

    Type-II diabetes mellitus (T2DM) is a complex chronic disease that represents a major therapeutic challenge. Despite extensive efforts in T2DM drug development, therapies remain unsatisfactory. Currently, there are many novel and important antidiabetic drug targets under investigation by many research groups worldwide. One of the main challenges to develop effective orally active hypoglycemic agents is off-target effects. Computational tools have impacted drug discovery at many levels. One of the earliest methods is quantitative structure-activity relationship (QSAR) studies. QSAR strategies help medicinal chemists understand the relationship between hypoglycemic activity and molecular properties. Hence, QSAR may hold promise in guiding the synthesis of specifically designed novel ligands that demonstrate high potency and target selectivity. This review aims to provide an overview of the QSAR strategies used to model antidiabetic agents. In particular, this review focuses on drug targets that raised recent scientific interest and/or led to successful antidiabetic agents in the market. Special emphasis has been made on studies that led to the identification of novel antidiabetic scaffolds. Computer-aided molecular design and discovery techniques like QSAR have a great potential in designing leads against complex diseases such as T2DM. Combined with other in silico techniques, QSAR can provide more useful and rational insights to facilitate the discovery of novel compounds. However, since T2DM is a complex disease that includes several faulty biological targets, multi-target QSAR studies are recommended in the future to achieve efficient antidiabetic therapies.

  5. Therapeutic Potential of Plants as Anti-Microbials for Drug Discovery

    Directory of Open Access Journals (Sweden)

    Ramar Perumal Samy

    2010-01-01

    Full Text Available The uses of traditional medicinal plants for primary health care have steadily increased worldwide in recent years. Scientists are in search of new phytochemicals that could be developed as useful anti-microbials for treatment of infectious diseases. Currently, out of 80% of pharmaceuticals derived from plants, very few are now being used as anti-microbials. Plants are rich in a wide variety of secondary metabolites that have found anti-microbial properties. This review highlights the current status of traditional medicine, its contribution to modern medicine, recent trends in the evaluation of anti-microbials with a special emphasis upon some tribal medicine, in vitro and in vivo experimental design for screening, and therapeutic efficacy in safety and human clinical trails for commercial outlet. Many of these commercially available compounds are crude preparations administered without performing human clinical trials. Recent methods are useful to standardize the extraction for scientific investigation of new phytochemicals and anti-microbials of traditionally used plants. It is concluded that once the local ethnomedical preparations of traditional sources are scientifically evaluated before dispensing they should replace existing drugs commonly used for the therapeutic treatment of infection. This method should be put into practice for future investigations in the field of ethnopharmacology, phytochemistry, ethnobotany and other biological fields for drug discovery.

  6. The Use of Physiology-Based Pharmacokinetic and Pharmacodynamic Modeling in the Discovery of the Dual Orexin Receptor Antagonist ACT-541468.

    Science.gov (United States)

    Treiber, Alexander; de Kanter, Ruben; Roch, Catherine; Gatfield, John; Boss, Christoph; von Raumer, Markus; Schindelholz, Benno; Muehlan, Clemens; van Gerven, Joop; Jenck, Francois

    2017-09-01

    The identification of new sleep drugs poses particular challenges in drug discovery owing to disease-specific requirements such as rapid onset of action, sleep maintenance throughout major parts of the night, and absence of residual next-day effects. Robust tools to estimate drug levels in human brain are therefore key for a successful discovery program. Animal models constitute an appropriate choice for drugs without species differences in receptor pharmacology or pharmacokinetics. Translation to man becomes more challenging when interspecies differences are prominent. This report describes the discovery of the dual orexin receptor 1 and 2 (OX 1 and OX 2 ) antagonist ACT-541468 out of a class of structurally related compounds, by use of physiology-based pharmacokinetic and pharmacodynamic (PBPK-PD) modeling applied early in drug discovery. Although all drug candidates exhibited similar target receptor potencies and efficacy in a rat sleep model, they exhibited large interspecies differences in key factors determining their pharmacokinetic profile. Human PK models were built on the basis of in vitro metabolism and physicochemical data and were then used to predict the time course of OX 2 receptor occupancy in brain. An active ACT-541468 dose of 25 mg was estimated on the basis of OX 2 receptor occupancy thresholds of about 65% derived from clinical data for two other orexin antagonists, almorexant and suvorexant. Modeling predictions for ACT-541468 in man were largely confirmed in a single-ascending dose trial in healthy subjects. PBPK-PD modeling applied early in drug discovery, therefore, has great potential to assist in the identification of drug molecules when specific pharmacokinetic and pharmacodynamic requirements need to be met. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Dual-acting of Hybrid Compounds - A New Dawn in the Discovery of Multi-target Drugs: Lead Generation Approaches.

    Science.gov (United States)

    Abdolmaleki, Azizeh; Ghasemi, Jahan B

    2017-01-01

    Finding high quality beginning compounds is a critical job at the start of the lead generation stage for multi-target drug discovery (MTDD). Designing hybrid compounds as selective multitarget chemical entity is a challenge, opportunity, and new idea to better act against specific multiple targets. One hybrid molecule is formed by two (or more) pharmacophore group's participation. So, these new compounds often exhibit two or more activities going about as multi-target drugs (mtdrugs) and may have superior safety or efficacy. Application of integrating a range of information and sophisticated new in silico, bioinformatics, structural biology, pharmacogenomics methods may be useful to discover/design, and synthesis of the new hybrid molecules. In this regard, many rational and screening approaches have followed by medicinal chemists for the lead generation in MTDD. Here, we review some popular lead generation approaches that have been used for designing multiple ligands (DMLs). This paper focuses on dual- acting chemical entities that incorporate a part of two drugs or bioactive compounds to compose hybrid molecules. Also, it presents some of key concepts and limitations/strengths of lead generation methods by comparing combination framework method with screening approaches. Besides, a number of examples to represent applications of hybrid molecules in the drug discovery are included. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Partial filling affinity capillary electrophoresis as a useful tool for fragment-based drug discovery: A proof of concept on thrombin.

    Science.gov (United States)

    Farcaş, E; Bouckaert, C; Servais, A-C; Hanson, J; Pochet, L; Fillet, M

    2017-09-01

    With the emergence of more challenging targets, a relatively new approach, fragment-based drug discovery (FBDD), proved its efficacy and gained increasing importance in the pharmaceutical industry. FBDD identifies low molecular-weight (MW) ligands (fragments) that bind to biologically important macromolecules, then a structure-guided fragment growing or merging approach is performed, contributing to the quality of the lead. However, to select the appropriate fragment to be evolved, sensitive analytical screening methods must be used to measure the affinity in the μM or even mM range. In this particular context, we developed a robust and selective partial filling affinity CE (ACE) method for the direct binding screening of a small fragment library in order to identify new thrombin inhibitors. To demonstrate the accuracy of our assay, the complex dissociation constants of three known thrombin inhibitors, namely benzamidine, p-aminobenzamidine and nafamostat were determined and found to be in good concordance with the previously reported values. Finally, the screening of a small library was performed and demonstrated the high discriminatory power of our method towards weak binders compared to classical spectrophotometric activity assay, proving the interest of our method in the context of FBDD. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. BEST: Next-Generation Biomedical Entity Search Tool for Knowledge Discovery from Biomedical Literature.

    Directory of Open Access Journals (Sweden)

    Sunwon Lee

    Full Text Available As the volume of publications rapidly increases, searching for relevant information from the literature becomes more challenging. To complement standard search engines such as PubMed, it is desirable to have an advanced search tool that directly returns relevant biomedical entities such as targets, drugs, and mutations rather than a long list of articles. Some existing tools submit a query to PubMed and process retrieved abstracts to extract information at query time, resulting in a slow response time and limited coverage of only a fraction of the PubMed corpus. Other tools preprocess the PubMed corpus to speed up the response time; however, they are not constantly updated, and thus produce outdated results. Further, most existing tools cannot process sophisticated queries such as searches for mutations that co-occur with query terms in the literature. To address these problems, we introduce BEST, a biomedical entity search tool. BEST returns, as a result, a list of 10 different types of biomedical entities including genes, diseases, drugs, targets, transcription factors, miRNAs, and mutations that are relevant to a user's query. To the best of our knowledge, BEST is the only system that processes free text queries and returns up-to-date results in real time including mutation information in the results. BEST is freely accessible at http://best.korea.ac.kr.

  10. Marine Microorganism-Invertebrate Assemblages: Perspectives to Solve the “Supply Problem” in the Initial Steps of Drug Discovery

    NARCIS (Netherlands)

    Leal, M.C.; Sheridan, C.; Osinga, R.; Dionisio, G.; Rocha, R.J.M.; Silva, B.; Rosa, R.; Calado, R.

    2014-01-01

    The chemical diversity associated with marine natural products (MNP) is unanimously acknowledged as the “blue gold” in the urgent quest for new drugs. Consequently, a significant increase in the discovery of MNP published in the literature has been observed in the past decades, particularly from

  11. Therapeutics discovery: From bench to first in-human trials.

    Science.gov (United States)

    Al-Hujaily, Ensaf M; Khatlani, Tanvir; Alehaideb, Zeyad; Ali, Rizwan; Almuzaini, Bader; Alrfaei, Bahauddeen M; Iqbal, Jahangir; Islam, Imadul; Malik, Shuja; Marwani, Bader A; Massadeh, Salam; Nehdi, Atef; Alsomaie, Barrak; Debasi, Bader; Bushnak, Ibraheem; Noibi, Saeed; Hussain, Syed; Wajid, Wahid Abdul; Armand, Jean-Pierre; Gul, Sheraz; Oyarzabal, Julen; Rais, Rana; Bountra, Chas; Alaskar, Ahmed; Knawy, Bander Al; Boudjelal, Mohamed

    2018-03-01

    The 'Therapeutics discovery: From bench to first in-human trials' conference, held at the King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGHA), Kingdom of Saudi Arabia (KSA) from October 10-12, 2017, provided a unique opportunity for experts worldwide to discuss advances in drug discovery and development, focusing on phase I clinical trials. It was the first event of its kind to be hosted at the new research center, which was constructed to boost drug discovery and development in the KSA in collaboration with institutions, such as the Academic Drug Discovery Consortium in the United States of America (USA), Structural Genomics Consortium of the University of Oxford in the United Kingdom (UK), and Institute of Materia Medica of the Chinese Academy of Medical Sciences in China. The program was divided into two parts. A pre-symposium day took place on October 10, during which courses were conducted on clinical trials, preclinical drug discovery, molecular biology and nanofiber research. The attendees had the opportunity for one-to-one meetings with international experts to exchange information and foster collaborations. In the second part of the conference, which took place on October 11 and 12, the clinical trials pipeline, design and recruitment of volunteers, and economic impact of clinical trials were discussed. The Saudi Food and Drug Administration presented the regulations governing clinical trials in the KSA. The process of preclinical drug discovery from small molecules, cellular and immunologic therapies, and approaches to identifying new targets were also presented. The recommendation of the conference was that researchers in the KSA must invest more fund, talents and infrastructure to lead the region in phase I clinical trials and preclinical drug discovery. Diseases affecting the local population, such as Middle East Respiratory Syndrome and resistant bacterial infections, represent the optimal

  12. Hit and lead criteria in drug discovery for infectious diseases of the developing world.

    Science.gov (United States)

    Katsuno, Kei; Burrows, Jeremy N; Duncan, Ken; Hooft van Huijsduijnen, Rob; Kaneko, Takushi; Kita, Kiyoshi; Mowbray, Charles E; Schmatz, Dennis; Warner, Peter; Slingsby, B T

    2015-11-01

    Reducing the burden of infectious diseases that affect people in the developing world requires sustained collaborative drug discovery efforts. The quality of the chemical starting points for such projects is a key factor in improving the likelihood of clinical success, and so it is important to set clear go/no-go criteria for the progression of hit and lead compounds. With this in mind, the Japanese Global Health Innovative Technology (GHIT) Fund convened with experts from the Medicines for Malaria Venture, the Drugs for Neglected Diseases initiative and the TB Alliance, together with representatives from the Bill &Melinda Gates Foundation, to set disease-specific criteria for hits and leads for malaria, tuberculosis, visceral leishmaniasis and Chagas disease. Here, we present the agreed criteria and discuss the underlying rationale.

  13. A Review of Human Pluripotent Stem Cell-Derived Cardiomyocytes for High-Throughput Drug Discovery, Cardiotoxicity Screening and Publication Standards

    OpenAIRE

    Mordwinkin, Nicholas M.; Burridge, Paul W.; Wu, Joseph C.

    2012-01-01

    Drug attrition rates have increased in past years, resulting in growing costs for the pharmaceutical industry and consumers. The reasons for this include the lack of in vitro models that correlate with clinical results, and poor preclinical toxicity screening assays. The in vitro production of human cardiac progenitor cells and cardiomyocytes from human pluripotent stem cells provides an amenable source of cells for applications in drug discovery, disease modeling, regenerative medicine, and ...

  14. Theory and Applications of Covalent Docking in Drug Discovery: Merits and Pitfalls

    Directory of Open Access Journals (Sweden)

    Hezekiel Mathambo Kumalo

    2015-01-01

    Full Text Available he present art of drug discovery and design of new drugs is based on suicidal irreversible inhibitors. Covalent inhibition is the strategy that is used to achieve irreversible inhibition. Irreversible inhibitors interact with their targets in a time-dependent fashion, and the reaction proceeds to completion rather than to equilibrium. Covalent inhibitors possessed some significant advantages over non-covalent inhibitors such as covalent warheads can target rare, non-conserved residue of a particular target protein and thus led to development of highly selective inhibitors, covalent inhibitors can be effective in targeting proteins with shallow binding cleavage which will led to development of novel inhibitors with increased potency than non-covalent inhibitors. Several computational approaches have been developed to simulate covalent interactions; however, this is still a challenging area to explore. Covalent molecular docking has been recently implemented in the computer-aided drug design workflows to describe covalent interactions between inhibitors and biological targets. In this review we highlight: (i covalent interactions in biomolecular systems; (ii the mathematical framework of covalent molecular docking; (iii implementation of covalent docking protocol in drug design workflows; (iv applications covalent docking: case studies and (v shortcomings and future perspectives of covalent docking. To the best of our knowledge; this review is the first account that highlights different aspects of covalent docking with its merits and pitfalls. We believe that the method and applications highlighted in this study will help future efforts towards the design of irreversible inhibitors.

  15. Bringing your tools to CyVerse Discovery Environment using Docker [version 2; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Upendra Kumar Devisetty

    2016-11-01

    Full Text Available Docker has become a very popular container-based virtualization platform for software distribution that has revolutionized the way in which scientific software and software dependencies (software stacks can be packaged, distributed, and deployed. Docker makes the complex and time-consuming installation procedures needed for scientific software a one-time process. Because it enables platform-independent installation, versioning of software environments, and easy redeployment and reproducibility, Docker is an ideal candidate for the deployment of identical software stacks on different compute environments such as XSEDE and Amazon AWS. Cyverse's Discovery Environment also uses Docker for integrating its powerful, community-recommended software tools into CyVerse's production environment for public use. This paper will help users bring their tools into CyVerse DE which will not only allows users to integrate their tools with relative ease compared to the earlier method of tool deployment in DE but also help users to share their apps with collaborators and also release them for public use.

  16. Bringing your tools to CyVerse Discovery Environment using Docker [version 3; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Upendra Kumar Devisetty

    2016-12-01

    Full Text Available Docker has become a very popular container-based virtualization platform for software distribution that has revolutionized the way in which scientific software and software dependencies (software stacks can be packaged, distributed, and deployed. Docker makes the complex and time-consuming installation procedures needed for scientific software a one-time process. Because it enables platform-independent installation, versioning of software environments, and easy redeployment and reproducibility, Docker is an ideal candidate for the deployment of identical software stacks on different compute environments such as XSEDE and Amazon AWS. Cyverse's Discovery Environment also uses Docker for integrating its powerful, community-recommended software tools into CyVerse's production environment for public use. This paper will help users bring their tools into CyVerse DE which will not only allows users to integrate their tools with relative ease compared to the earlier method of tool deployment in DE but also help users to share their apps with collaborators and also release them for public use.

  17. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    LENUS (Irish Health Repository)

    Toomey, David

    2009-01-01

    BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins\\/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and\\/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY\\/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i) homologous to previously crystallized proteins or (ii) targets of known drugs, but are (iii) not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS\\/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under \\'change-of-application\\' patents.

  18. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    Directory of Open Access Journals (Sweden)

    David Toomey

    Full Text Available BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i homologous to previously crystallized proteins or (ii targets of known drugs, but are (iii not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under 'change-of-application' patents.

  19. Drug Enforcement Administration

    Science.gov (United States)

    ... de informacin confidencial --> DEA NEWS The Drug Enforcement Administration and Discovery Education name grand winner of Operation ... JUN 15 (Washington) The United States Drug Enforcement Administration, DEA Educational Foundation and Discovery Education awarded Porter ...

  20. Japan-China Joint Medical Workshop on Drug Discoveries and Therapeutics 2008: The need of Asian pharmaceutical researchers' cooperation.

    Science.gov (United States)

    Nakata, M; Tang, W

    2008-10-01

    The Japan-China Joint Medical Workshop on Drug Discoveries and Therapeutics 2008 (JCMWDDT 2008) was held from September 29 to October 1, 2008 at The University of Tokyo, Tokyo, Japan. JCMWDDT is an international workshop that is mainly organized by Asian editorial members of Drug Discoveries & Therapeutics (http://www.ddtjournal.com/home) for the purpose of promoting research exchanges in the field of drug discovery and therapeutic. This year's JCMWDDT is the second workshop and focused particularly on novel development and technological innovation of anti-influenza agents. The workshop began with an announcement by the Japanese Co-chairperson, Dr. Sekimizu (Department of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan; Editorin- Chief of Drug Discoveries & Therapeutics, DDT) followed by a speech by the Chinese Co-chairperson, Dr. Wenfang Xu (School of Pharmaceutical Sciences, Shandong University, Shandong, China; Editor in China Office of DDT), with additional speeches by Dr. Norio Matsuki (The University of Tokyo, Japan; Editor of DDT) and Dr. Guanhua Du (Chinese Academy of Medical Science, China; Editor of DDT). Fifty-nine titles were presented in 6 specialized sessions (Research Advances in Drug Discoveries and Therapeutics, Drug Synthesis/Clinical Therapeutics, Medicinal Chemistry/Natural Products, Anti-influenza Drugs, Anti-infection/antiviral Drugs, Biochemistry/Molecular Biology /Pharmacology) and a poster session (Drug Discov Ther 2008; 2, Suppl; available at http://www.ddtjournal.com/Announce/index.htm). An annual outbreak of avian influenza in Asian countries including China and Japan has sparked fears that the virus will mutate and then cause an epidemic in humans. Therefore, Asian researchers need to work together to control this infection. This year's JCMWDDT helped provide an opportunity to reiterate the crucial role of medicinal chemistry in conquering influenza and created an environment for cooperative

  1. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    International Nuclear Information System (INIS)

    Morton, M.J.; Armstrong, D.; Abi Gerges, N.; Bridgland-Taylor, M.; Pollard, C.E.; Bowes, J.; Valentin, J.-P.

    2014-01-01

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility

  2. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    Energy Technology Data Exchange (ETDEWEB)

    Morton, M.J., E-mail: michael.morton@astrazeneca.com [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Armstrong, D.; Abi Gerges, N. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Bridgland-Taylor, M. [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Pollard, C.E.; Bowes, J.; Valentin, J.-P. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom)

    2014-09-01

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility.

  3. Next generation human skin constructs as advanced tools for drug development.

    Science.gov (United States)

    Abaci, H E; Guo, Zongyou; Doucet, Yanne; Jacków, Joanna; Christiano, Angela

    2017-11-01

    Many diseases, as well as side effects of drugs, manifest themselves through skin symptoms. Skin is a complex tissue that hosts various specialized cell types and performs many roles including physical barrier, immune and sensory functions. Therefore, modeling skin in vitro presents technical challenges for tissue engineering. Since the first attempts at engineering human epidermis in 1970s, there has been a growing interest in generating full-thickness skin constructs mimicking physiological functions by incorporating various skin components, such as vasculature and melanocytes for pigmentation. Development of biomimetic in vitro human skin models with these physiological functions provides a new tool for drug discovery, disease modeling, regenerative medicine and basic research for skin biology. This goal, however, has long been delayed by the limited availability of different cell types, the challenges in establishing co-culture conditions, and the ability to recapitulate the 3D anatomy of the skin. Recent breakthroughs in induced pluripotent stem cell (iPSC) technology and microfabrication techniques such as 3D-printing have allowed for building more reliable and complex in vitro skin models for pharmaceutical screening. In this review, we focus on the current developments and prevailing challenges in generating skin constructs with vasculature, skin appendages such as hair follicles, pigmentation, immune response, innervation, and hypodermis. Furthermore, we discuss the promising advances that iPSC technology offers in order to generate in vitro models of genetic skin diseases, such as epidermolysis bullosa and psoriasis. We also discuss how future integration of the next generation human skin constructs onto microfluidic platforms along with other tissues could revolutionize the early stages of drug development by creating reliable evaluation of patient-specific effects of pharmaceutical agents. Impact statement Skin is a complex tissue that hosts various

  4. A rapid alternative to X-ray crystallography for chiral determination: case studies of vibrational circular dichroism (VCD) to advance drug discovery projects.

    Science.gov (United States)

    Wesolowski, Steven S; Pivonka, Don E

    2013-07-15

    The absolute stereochemistry of chiral drugs is usually established via X-ray crystallography. However, vibrational circular dichroism (VCD) spectroscopy coupled with quantum mechanics simulations offers a rapid alternative to crystallography and is readily applied to both crystalline and non-crystalline samples. VCD is an effective complement to X-ray analysis of drug candidates, and it can be used as a high-throughput means of assessing absolute stereochemistry at all phases of the discovery process (hundreds of assignments per year). The practical implementation (or fee-for-service outsourcing) of VCD and selected case studies are illustrated with an emphasis on providing utility and impact to pharmaceutical discovery programs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Neuroproteases in peptide neurotransmission and neurodegenerative diseases: applications to drug discovery research.

    Science.gov (United States)

    Hook, Vivian Y H

    2006-01-01

    The nervous system represents a key area for development of novel therapeutic agents for the treatment of neurological and neurodegenerative diseases. Recent research has demonstrated the critical importance of neuroproteases for the production of specific peptide neurotransmitters and for the production of toxic peptides in major neurodegenerative diseases that include Alzheimer, Huntington, and Parkinson diseases. This review illustrates the successful criteria that have allowed identification of proteases responsible for converting protein precursors into active peptide neurotransmitters, consisting of dual cysteine protease and subtilisin-like protease pathways in neuroendocrine cells. These peptide neurotransmitters are critical regulators of neurologic conditions, including analgesia and cognition, and numerous behaviors. Importantly, protease pathways also represent prominent mechanisms in neurodegenerative diseases, especially Alzheimer, Huntington, and Parkinson diseases. Recent studies have identified secretory vesicle cathepsin B as a novel beta-secretase for production of the neurotoxic beta-amyloid (Abeta) peptide of Alzheimer disease. Moreover, inhibition of cathepsin B reduces Abeta peptide levels in brain. These neuroproteases potentially represent new drug targets that should be explored in future pharmaceutical research endeavors for drug discovery.

  6. Conformational transition paths harbor structures useful for aiding drug discovery and understanding enzymatic mechanisms in protein kinases.

    Science.gov (United States)

    Wong, Chung F

    2016-01-01

    This short article examines the usefulness of fast simulations of conformational transition paths in elucidating enzymatic mechanisms and guiding drug discovery for protein kinases. It applies the transition path method in the MOIL software package to simulate the paths of conformational transitions between six pairs of structures from the Protein Data Bank. The structures along the transition paths were found to resemble experimental structures that mimic transient structures believed to form during enzymatic catalysis or conformational transitions, or structures that have drug candidates bound. These findings suggest that such simulations could provide quick initial insights into the enzymatic mechanisms or pathways of conformational transitions of proteins kinases, or could provide structures useful for aiding structure-based drug design. © 2015 The Protein Society.

  7. MobilomeFINDER: web-based tools for in silico and experimental discovery of bacterial genomic islands

    OpenAIRE

    Ou, Hong-Yu; He, Xinyi; Harrison, Ewan M.; Kulasekara, Bridget R.; Thani, Ali Bin; Kadioglu, Aras; Lory, Stephen; Hinton, Jay C. D.; Barer, Michael R.; Deng, Zixin; Rajakumar, Kumar

    2007-01-01

    MobilomeFINDER (http://mml.sjtu.edu.cn/MobilomeFINDER) is an interactive online tool that facilitates bacterial genomic island or ‘mobile genome’ (mobilome) discovery; it integrates the ArrayOme and tRNAcc software packages. ArrayOme utilizes a microarray-derived comparative genomic hybridization input data set to generate ‘inferred contigs’ produced by merging adjacent genes classified as ‘present’. Collectively these ‘fragments’ represent a hypothetical ‘microarray-visualized genome (MVG)’....

  8. Target based drug design - a reality in virtual sphere.

    Science.gov (United States)

    Verma, Saroj; Prabhakar, Yenamandra S

    2015-01-01

    The target based drug design approaches are a series of computational procedures, including visualization tools, to support the decision systems of drug design/discovery process. In the essence of biological targets shaping the potential lead/drug molecules, this review presents a comprehensive position of different components of target based drug design which include target identification, protein modeling, molecular dynamics simulations, binding/catalytic sites identification, docking, virtual screening, fragment based strategies, substructure treatment of targets in tackling drug resistance, in silico ADMET, structural vaccinology, etc along with the key issues involved therein and some well investigated case studies. The concepts and working of these procedures are critically discussed to arouse interest and to advance the drug research.

  9. Host-Brucella interactions and the Brucella genome as tools for subunit antigen discovery and immunization against brucellosis

    Science.gov (United States)

    Gomez, Gabriel; Adams, Leslie G.; Rice-Ficht, Allison; Ficht, Thomas A.

    2013-01-01

    Vaccination is the most important approach to counteract infectious diseases. Thus, the development of new and improved vaccines for existing, emerging, and re-emerging diseases is an area of great interest to the scientific community and general public. Traditional approaches to subunit antigen discovery and vaccine development lack consideration for the critical aspects of public safety and activation of relevant protective host immunity. The availability of genomic sequences for pathogenic Brucella spp. and their hosts have led to development of systems-wide analytical tools that have provided a better understanding of host and pathogen physiology while also beginning to unravel the intricacies at the host-pathogen interface. Advances in pathogen biology, host immunology, and host-agent interactions have the potential to serve as a platform for the design and implementation of better-targeted antigen discovery approaches. With emphasis on Brucella spp., we probe the biological aspects of host and pathogen that merit consideration in the targeted design of subunit antigen discovery and vaccine development. PMID:23720712

  10. Collaboration for rare disease drug discovery research [v1; ref status: indexed, http://f1000r.es/4l6

    Directory of Open Access Journals (Sweden)

    Nadia K. Litterman

    2014-10-01

    Full Text Available Rare disease research has reached a tipping point, with the confluence of scientific and technologic developments that if appropriately harnessed, could lead to key breakthroughs and treatments for this set of devastating disorders. Industry-wide trends have revealed that the traditional drug discovery research and development (R&D model is no longer viable, and drug companies are evolving their approach. Rather than only pursue blockbuster therapeutics for heterogeneous, common diseases, drug companies have increasingly begun to shift their focus to rare diseases. In academia, advances in genetics analyses and disease mechanisms have allowed scientific understanding to mature, but the lack of funding and translational capability severely limits the rare disease research that leads to clinical trials. Simultaneously, there is a movement towards increased research collaboration, more data sharing, and heightened engagement and active involvement by patients, advocates, and foundations. The growth in networks and social networking tools presents an opportunity to help reach other patients but also find researchers and build collaborations. The growth of collaborative software that can enable researchers to share their data could also enable rare disease patients and foundations to manage their portfolio of funded projects for developing new therapeutics and suggest drug repurposing opportunities. Still there are many thousands of diseases without treatments and with only fragmented research efforts. We will describe some recent progress in several rare diseases used as examples and propose how collaborations could be facilitated. We propose that the development of a center of excellence that integrates and shares informatics resources for rare diseases sponsored by all of the stakeholders would help foster these initiatives.

  11. Pharmacologically directed strategies in academic anticancer drug discovery based on the European NCI compounds initiative.

    Science.gov (United States)

    Hendriks, Hans R; Govaerts, Anne-Sophie; Fichtner, Iduna; Burtles, Sally; Westwell, Andrew D; Peters, Godefridus J

    2017-07-11

    The European NCI compounds programme, a joint initiative of the EORTC Research Branch, Cancer Research Campaign and the US National Cancer Institute, was initiated in 1993. The objective was to help the NCI in reducing the backlog of in vivo testing of potential anticancer compounds, synthesised in Europe that emerged from the NCI in vitro 60-cell screen. Over a period of more than twenty years the EORTC-Cancer Research Campaign panel reviewed ∼2000 compounds of which 95 were selected for further evaluation. Selected compounds were stepwise developed with clear go/no go decision points using a pharmacologically directed programme. This approach eliminated quickly compounds with unsuitable pharmacological properties. A few compounds went into Phase I clinical evaluation. The lessons learned and many of the principles outlined in the paper can easily be applied to current and future drug discovery and development programmes. Changes in the review panel, restrictions regarding numbers and types of compounds tested in the NCI in vitro screen and the appearance of targeted agents led to the discontinuation of the European NCI programme in 2017 and its transformation into an academic platform of excellence for anticancer drug discovery and development within the EORTC-PAMM group. This group remains open for advice and collaboration with interested parties in the field of cancer pharmacology.

  12. "Seeing is believing": perspectives of applying imaging technology in discovery toxicology.

    Science.gov (United States)

    Xu, Jinghai James; Dunn, Margaret Condon; Smith, Arthur Russell

    2009-11-01

    Efficiency and accuracy in addressing drug safety issues proactively are critical in minimizing late-stage drug attritions. Discovery toxicology has become a specialty subdivision of toxicology seeking to effectively provide early predictions and safety assessment in the drug discovery process. Among the many technologies utilized to select safer compounds for further development, in vitro imaging technology is one of the best characterized and validated to provide translatable biomarkers towards clinically-relevant outcomes of drug safety. By carefully applying imaging technologies in genetic, hepatic, and cardiac toxicology, and integrating them with the rest of the drug discovery processes, it was possible to demonstrate significant impact of imaging technology on drug research and development and substantial returns on investment.

  13. Malaria in South America: a drug discovery perspective.

    Science.gov (United States)

    Cruz, Luiza R; Spangenberg, Thomas; Lacerda, Marcus V G; Wells, Timothy N C

    2013-05-24

    The challenge of controlling and eventually eradicating malaria means that new tools are urgently needed. South America's role in this fight spans both ends of the research and development spectrum: both as a continent capable of discovering and developing new medicines, and also as a continent with significant numbers of malaria patients. This article reviews the contribution of groups in the South American continent to the research and development of new medicines over the last decade. Therefore, the current situation of research targeting malaria control and eradication is discussed, including endemicity, geographical distribution, treatment, drug-resistance and diagnosis. This sets the scene for a review of efforts within South America to discover and optimize compounds with anti-malarial activity.

  14. Microbial P450 Enzymes in Bioremediation and Drug Discovery: Emerging Potentials and Challenges.

    Science.gov (United States)

    Bhattacharya, Sukanta S; Yadav, Jagjit S

    2018-01-01

    Cytochrome P450 enzymes are a structurally conserved but functionally diverse group of heme-containing mixed function oxidases found across both prokaryotic and eukaryotic forms of the microbial world. Microbial P450s are known to perform diverse functions ranging from the synthesis of cell wall components to xenobiotic/drug metabolism to biodegradation of environmental chemicals. Conventionally, many microbial systems have been reported to mimic mammalian P450-like activation of drugs and were proposed as the in-vitro models of mammalian drug metabolism. Recent reports suggest that native or engineered forms of specific microbial P450s from these and other microbial systems could be employed for desired specific biotransformation reactions toward natural and synthetic (drug) compounds underscoring their emerging potential in drug improvement and discovery. On the other hand, microorganisms particularly fungi and actinomycetes have been shown to possess catabolic P450s with unusual potential to degrade toxic environmental chemicals including persistent organic pollutants (POPs). Wood-rotting basidiomycete fungi in particular have revealed the presence of exceptionally large P450 repertoire (P450ome) in their genomes, majority of which are however orphan (with no known function). Our pre- and post-genomic studies have led to functional characterization of several fungal P450s inducible in response to exposure to several environmental toxicants and demonstration of their potential in bioremediation of these chemicals. This review is an attempt to summarize the postgenomic unveiling of this versatile enzyme superfamily in microbial systems and investigation of their potential to synthesize new drugs and degrade persistent pollutants, among other biotechnological applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. When Quality Beats Quantity: Decision Theory, Drug Discovery, and the Reproducibility Crisis.

    Directory of Open Access Journals (Sweden)

    Jack W Scannell

    Full Text Available A striking contrast runs through the last 60 years of biopharmaceutical discovery, research, and development. Huge scientific and technological gains should have increased the quality of academic science and raised industrial R&D efficiency. However, academia faces a "reproducibility crisis"; inflation-adjusted industrial R&D costs per novel drug increased nearly 100 fold between 1950 and 2010; and drugs are more likely to fail in clinical development today than in the 1970s. The contrast is explicable only if powerful headwinds reversed the gains and/or if many "gains" have proved illusory. However, discussions of reproducibility and R&D productivity rarely address this point explicitly. The main objectives of the primary research in this paper are: (a to provide quantitatively and historically plausible explanations of the contrast; and (b identify factors to which R&D efficiency is sensitive. We present a quantitative decision-theoretic model of the R&D process. The model represents therapeutic candidates (e.g., putative drug targets, molecules in a screening library, etc. within a "measurement space", with candidates' positions determined by their performance on a variety of assays (e.g., binding affinity, toxicity, in vivo efficacy, etc. whose results correlate to a greater or lesser degree. We apply decision rules to segment the space, and assess the probability of correct R&D decisions. We find that when searching for rare positives (e.g., candidates that will successfully complete clinical development, changes in the predictive validity of screening and disease models that many people working in drug discovery would regard as small and/or unknowable (i.e., an 0.1 absolute change in correlation coefficient between model output and clinical outcomes in man can offset large (e.g., 10 fold, even 100 fold changes in models' brute-force efficiency. We also show how validity and reproducibility correlate across a population of simulated

  16. Targeting Antibacterial Agents by Using Drug-Carrying Filamentous Bacteriophages

    Science.gov (United States)

    Yacoby, Iftach; Shamis, Marina; Bar, Hagit; Shabat, Doron; Benhar, Itai

    2006-01-01

    Bacteriophages have been used for more than a century for (unconventional) therapy of bacterial infections, for half a century as tools in genetic research, for 2 decades as tools for discovery of specific target-binding proteins, and for nearly a decade as tools for vaccination or as gene delivery vehicles. Here we present a novel application of filamentous bacteriophages (phages) as targeted drug carriers for the eradication of (pathogenic) bacteria. The phages are genetically modified to display a targeting moiety on their surface and are used to deliver a large payload of a cytotoxic drug to the target bacteria. The drug is linked to the phages by means of chemical conjugation through a labile linker subject to controlled release. In the conjugated state, the drug is in fact a prodrug devoid of cytotoxic activity and is activated following its dissociation from the phage at the target site in a temporally and spatially controlled manner. Our model target was Staphylococcus aureus, and the model drug was the antibiotic chloramphenicol. We demonstrated the potential of using filamentous phages as universal drug carriers for targetable cells involved in disease. Our approach replaces the selectivity of the drug itself with target selectivity borne by the targeting moiety, which may allow the reintroduction of nonspecific drugs that have thus far been excluded from antibacterial use (because of toxicity or low selectivity). Reintroduction of such drugs into the arsenal of useful tools may help to combat emerging bacterial antibiotic resistance. PMID:16723570

  17. An integrative data analysis platform for gene set analysis and knowledge discovery in a data warehouse framework.

    Science.gov (United States)

    Chen, Yi-An; Tripathi, Lokesh P; Mizuguchi, Kenji

    2016-01-01

    Data analysis is one of the most critical and challenging steps in drug discovery and disease biology. A user-friendly resource to visualize and analyse high-throughput data provides a powerful medium for both experimental and computational biologists to understand vastly different biological data types and obtain a concise, simplified and meaningful output for better knowledge discovery. We have previously developed TargetMine, an integrated data warehouse optimized for target prioritization. Here we describe how upgraded and newly modelled data types in TargetMine can now survey the wider biological and chemical data space, relevant to drug discovery and development. To enhance the scope of TargetMine from target prioritization to broad-based knowledge discovery, we have also developed a new auxiliary toolkit to assist with data analysis and visualization in TargetMine. This toolkit features interactive data analysis tools to query and analyse the biological data compiled within the TargetMine data warehouse. The enhanced system enables users to discover new hypotheses interactively by performing complicated searches with no programming and obtaining the results in an easy to comprehend output format. Database URL: http://targetmine.mizuguchilab.org. © The Author(s) 2016. Published by Oxford University Press.

  18. Choosing Discovery: A Literature Review on the Selection and Evaluation of Discovery Layers

    Science.gov (United States)

    Moore, Kate B.; Greene, Courtney

    2012-01-01

    Within the next few years, traditional online public access catalogs will be replaced by more robust and interconnected discovery layers that can serve as primary public interfaces to simultaneously search many separate collections of resources. Librarians have envisioned this type of discovery tool since the 1980s, and research shows that…

  19. Advances in phage display technology for drug discovery.

    Science.gov (United States)

    Omidfar, Kobra; Daneshpour, Maryam

    2015-06-01

    Over the past decade, several library-based methods have been developed to discover ligands with strong binding affinities for their targets. These methods mimic the natural evolution for screening and identifying ligand-target interactions with specific functional properties. Phage display technology is a well-established method that has been applied to many technological challenges including novel drug discovery. This review describes the recent advances in the use of phage display technology for discovering novel bioactive compounds. Furthermore, it discusses the application of this technology to produce proteins and peptides as well as minimize the use of antibodies, such as antigen-binding fragment, single-chain fragment variable or single-domain antibody fragments like VHHs. Advances in screening, manufacturing and humanization technologies demonstrate that phage display derived products can play a significant role in the diagnosis and treatment of disease. The effects of this technology are inevitable in the development pipeline for bringing therapeutics into the market, and this number is expected to rise significantly in the future as new advances continue to take place in display methods. Furthermore, a widespread application of this methodology is predicted in different medical technological areas, including biosensing, monitoring, molecular imaging, gene therapy, vaccine development and nanotechnology.

  20. Generation of Polar Semi-Saturated Bicyclic Pyrazoles for Fragment-Based Drug Discovery Campaigns.

    Science.gov (United States)

    Luise, Nicola; Wyatt, Paul

    2018-05-07

    Synthesising polar semi-saturated bicyclic heterocycles can lead to better starting points for fragment-based drug discovery (FBDD) programs. This communication highlights the application of diverse chemistry to construct bicyclic systems from a common intermediate, where pyrazole, a privileged heteroaromatic able to bind effectively to biological targets, is fused to diverse saturated counterparts. The generated fragments can be further developed either after confirmation of their binding pose or early in the process, as their synthetic intermediates. Essential quality control (QC) for selection of small molecules to add to a fragment library is discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Trypanosomatids topoisomerase re-visited. New structural findings and role in drug discovery

    Directory of Open Access Journals (Sweden)

    Rafael Balaña-Fouce

    2014-12-01

    , their involvement both in the physiology and virulence of these parasites, as well as their use as promising targets for drug discovery.

  2. Towards an in vitro model of Plasmodium hypnozoites suitable for drug discovery.

    Science.gov (United States)

    Dembele, Laurent; Gego, Audrey; Zeeman, Anne-Marie; Franetich, Jean-François; Silvie, Olivier; Rametti, Armelle; Le Grand, Roger; Dereuddre-Bosquet, Nathalie; Sauerwein, Robert; van Gemert, Geert-Jan; Vaillant, Jean-Christophe; Thomas, Alan W; Snounou, Georges; Kocken, Clemens H M; Mazier, Dominique

    2011-03-31

    Amongst the Plasmodium species in humans, only P. vivax and P. ovale produce latent hepatic stages called hypnozoites, which are responsible for malaria episodes long after a mosquito bite. Relapses contribute to increased morbidity, and complicate malaria elimination programs. A single drug effective against hypnozoites, primaquine, is available, but its deployment is curtailed by its haemolytic potential in glucose-6-phosphate dehydrogenase deficient persons. Novel compounds are thus urgently needed to replace primaquine. Discovery of compounds active against hypnozoites is restricted to the in vivo P. cynomolgi-rhesus monkey model. Slow growing hepatic parasites reminiscent of hypnozoites had been noted in cultured P. vivax-infected hepatoma cells, but similar forms are also observed in vitro by other species including P. falciparum that do not produce hypnozoites. P. falciparum or P. cynomolgi sporozoites were used to infect human or Macaca fascicularis primary hepatocytes, respectively. The susceptibility of the slow and normally growing hepatic forms obtained in vitro to three antimalarial drugs, one active against hepatic forms including hypnozoites and two only against the growing forms, was measured. The non-dividing slow growing P. cynomolgi hepatic forms, observed in vitro in primary hepatocytes from the natural host Macaca fascicularis, can be distinguished from similar forms seen in P. falciparum-infected human primary hepatocytes by the differential action of selected anti-malarial drugs. Whereas atovaquone and pyrimethamine are active on all the dividing hepatic forms observed, the P. cynomolgi slow growing forms are highly resistant to treatment by these drugs, but remain susceptible to primaquine. Resistance of the non-dividing P. cynomolgi forms to atovaquone and pyrimethamine, which do not prevent relapses, strongly suggests that these slow growing forms are hypnozoites. This represents a first step towards the development of a practical medium

  3. Towards an in vitro model of Plasmodium hypnozoites suitable for drug discovery.

    Directory of Open Access Journals (Sweden)

    Laurent Dembele

    2011-03-01

    Full Text Available Amongst the Plasmodium species in humans, only P. vivax and P. ovale produce latent hepatic stages called hypnozoites, which are responsible for malaria episodes long after a mosquito bite. Relapses contribute to increased morbidity, and complicate malaria elimination programs. A single drug effective against hypnozoites, primaquine, is available, but its deployment is curtailed by its haemolytic potential in glucose-6-phosphate dehydrogenase deficient persons. Novel compounds are thus urgently needed to replace primaquine. Discovery of compounds active against hypnozoites is restricted to the in vivo P. cynomolgi-rhesus monkey model. Slow growing hepatic parasites reminiscent of hypnozoites had been noted in cultured P. vivax-infected hepatoma cells, but similar forms are also observed in vitro by other species including P. falciparum that do not produce hypnozoites.P. falciparum or P. cynomolgi sporozoites were used to infect human or Macaca fascicularis primary hepatocytes, respectively. The susceptibility of the slow and normally growing hepatic forms obtained in vitro to three antimalarial drugs, one active against hepatic forms including hypnozoites and two only against the growing forms, was measured.The non-dividing slow growing P. cynomolgi hepatic forms, observed in vitro in primary hepatocytes from the natural host Macaca fascicularis, can be distinguished from similar forms seen in P. falciparum-infected human primary hepatocytes by the differential action of selected anti-malarial drugs. Whereas atovaquone and pyrimethamine are active on all the dividing hepatic forms observed, the P. cynomolgi slow growing forms are highly resistant to treatment by these drugs, but remain susceptible to primaquine.Resistance of the non-dividing P. cynomolgi forms to atovaquone and pyrimethamine, which do not prevent relapses, strongly suggests that these slow growing forms are hypnozoites. This represents a first step towards the development of a

  4. Structural Biology Guides Antibiotic Discovery

    Science.gov (United States)

    Polyak, Steven

    2014-01-01

    Modern drug discovery programs require the contribution of researchers in a number of specialist areas. One of these areas is structural biology. Using X-ray crystallography, the molecular basis of how a drug binds to its biological target and exerts its mode of action can be defined. For example, a drug that binds into the active site of an…

  5. Exploring Natural Products from the Biodiversity of Pakistan for Computational Drug Discovery Studies: Collection, Optimization, Design and Development of A Chemical Database (ChemDP).

    Science.gov (United States)

    Mirza, Shaher Bano; Bokhari, Habib; Fatmi, Muhammad Qaiser

    2015-01-01

    Pakistan possesses a rich and vast source of natural products (NPs). Some of these secondary metabolites have been identified as potent therapeutic agents. However, the medicinal usage of most of these compounds has not yet been fully explored. The discoveries for new scaffolds of NPs as inhibitors of certain enzymes or receptors using advanced computational drug discovery approaches are also limited due to the unavailability of accurate 3D structures of NPs. An organized database incorporating all relevant information, therefore, can facilitate to explore the medicinal importance of the metabolites from Pakistani Biodiversity. The Chemical Database of Pakistan (ChemDP; release 01) is a fully-referenced, evolving, web-based, virtual database which has been designed and developed to introduce natural products (NPs) and their derivatives from the biodiversity of Pakistan to Global scientific communities. The prime aim is to provide quality structures of compounds with relevant information for computer-aided drug discovery studies. For this purpose, over 1000 NPs have been identified from more than 400 published articles, for which 2D and 3D molecular structures have been generated with a special focus on their stereochemistry, where applicable. The PM7 semiempirical quantum chemistry method has been used to energy optimize the 3D structure of NPs. The 2D and 3D structures can be downloaded as .sdf, .mol, .sybyl, .mol2, and .pdb files - readable formats by many chemoinformatics/bioinformatics software packages. Each entry in ChemDP contains over 100 data fields representing various molecular, biological, physico-chemical and pharmacological properties, which have been properly documented in the database for end users. These pieces of information have been either manually extracted from the literatures or computationally calculated using various computational tools. Cross referencing to a major data repository i.e. ChemSpider has been made available for overlapping

  6. Venomics-Accelerated Cone Snail Venom Peptide Discovery

    Science.gov (United States)

    Himaya, S. W. A.

    2018-01-01

    Cone snail venoms are considered a treasure trove of bioactive peptides. Despite over 800 species of cone snails being known, each producing over 1000 venom peptides, only about 150 unique venom peptides are structurally and functionally characterized. To overcome the limitations of the traditional low-throughput bio-discovery approaches, multi-omics systems approaches have been introduced to accelerate venom peptide discovery and characterisation. This “venomic” approach is starting to unravel the full complexity of cone snail venoms and to provide new insights into their biology and evolution. The main challenge for venomics is the effective integration of transcriptomics, proteomics, and pharmacological data and the efficient analysis of big datasets. Novel database search tools and visualisation techniques are now being introduced that facilitate data exploration, with ongoing advances in related omics fields being expected to further enhance venomics studies. Despite these challenges and future opportunities, cone snail venomics has already exponentially expanded the number of novel venom peptide sequences identified from the species investigated, although most novel conotoxins remain to be pharmacologically characterised. Therefore, efficient high-throughput peptide production systems and/or banks of miniaturized discovery assays are required to overcome this bottleneck and thus enhance cone snail venom bioprospecting and accelerate the identification of novel drug leads. PMID:29522462

  7. Venomics-Accelerated Cone Snail Venom Peptide Discovery

    Directory of Open Access Journals (Sweden)

    S. W. A. Himaya

    2018-03-01

    Full Text Available Cone snail venoms are considered a treasure trove of bioactive peptides. Despite over 800 species of cone snails being known, each producing over 1000 venom peptides, only about 150 unique venom peptides are structurally and functionally characterized. To overcome the limitations of the traditional low-throughput bio-discovery approaches, multi-omics systems approaches have been introduced to accelerate venom peptide discovery and characterisation. This “venomic” approach is starting to unravel the full complexity of cone snail venoms and to provide new insights into their biology and evolution. The main challenge for venomics is the effective integration of transcriptomics, proteomics, and pharmacological data and the efficient analysis of big datasets. Novel database search tools and visualisation techniques are now being introduced that facilitate data exploration, with ongoing advances in related omics fields being expected to further enhance venomics studies. Despite these challenges and future opportunities, cone snail venomics has already exponentially expanded the number of novel venom peptide sequences identified from the species investigated, although most novel conotoxins remain to be pharmacologically characterised. Therefore, efficient high-throughput peptide production systems and/or banks of miniaturized discovery assays are required to overcome this bottleneck and thus enhance cone snail venom bioprospecting and accelerate the identification of novel drug leads.

  8. Open discovery: An integrated live Linux platform of Bioinformatics tools.

    Science.gov (United States)

    Vetrivel, Umashankar; Pilla, Kalabharath

    2008-01-01

    Historically, live linux distributions for Bioinformatics have paved way for portability of Bioinformatics workbench in a platform independent manner. Moreover, most of the existing live Linux distributions limit their usage to sequence analysis and basic molecular visualization programs and are devoid of data persistence. Hence, open discovery - a live linux distribution has been developed with the capability to perform complex tasks like molecular modeling, docking and molecular dynamics in a swift manner. Furthermore, it is also equipped with complete sequence analysis environment and is capable of running windows executable programs in Linux environment. Open discovery portrays the advanced customizable configuration of fedora, with data persistency accessible via USB drive or DVD. The Open Discovery is distributed free under Academic Free License (AFL) and can be downloaded from http://www.OpenDiscovery.org.in.

  9. Systematic drug repositioning through mining adverse event data in ClinicalTrials.gov

    Directory of Open Access Journals (Sweden)

    Eric Wen Su

    2017-03-01

    Full Text Available Drug repositioning (i.e., drug repurposing is the process of discovering new uses for marketed drugs. Historically, such discoveries were serendipitous. However, the rapid growth in electronic clinical data and text mining tools makes it feasible to systematically identify drugs with the potential to be repurposed. Described here is a novel method of drug repositioning by mining ClinicalTrials.gov. The text mining tools I2E (Linguamatics and PolyAnalyst (Megaputer were utilized. An I2E query extracts “Serious Adverse Events” (SAE data from randomized trials in ClinicalTrials.gov. Through a statistical algorithm, a PolyAnalyst workflow ranks the drugs where the treatment arm has fewer predefined SAEs than the control arm, indicating that potentially the drug is reducing the level of SAE. Hypotheses could then be generated for the new use of these drugs based on the predefined SAE that is indicative of disease (for example, cancer.

  10. PBPK Modeling - A Predictive, Eco-Friendly, Bio-Waiver Tool for Drug Research.

    Science.gov (United States)

    De, Baishakhi; Bhandari, Koushik; Mukherjee, Ranjan; Katakam, Prakash; Adiki, Shanta K; Gundamaraju, Rohit; Mitra, Analava

    2017-01-01

    The world has witnessed growing complexities in disease scenario influenced by the drastic changes in host-pathogen- environment triadic relation. Pharmaceutical R&Ds are in constant search of novel therapeutic entities to hasten transition of drug molecules from lab bench to patient bedside. Extensive animal studies and human pharmacokinetics are still the "gold standard" in investigational new drug research and bio-equivalency studies. Apart from cost, time and ethical issues on animal experimentation, burning questions arise relating to ecological disturbances, environmental hazards and biodiversity issues. Grave concerns arises when the adverse outcomes of continued studies on one particular disease on environment gives rise to several other pathogenic agents finally complicating the total scenario. Thus Pharma R&Ds face a challenge to develop bio-waiver protocols. Lead optimization, drug candidate selection with favorable pharmacokinetics and pharmacodynamics, toxicity assessment are vital steps in drug development. Simulation tools like Gastro Plus™, PK Sim®, SimCyp find applications for the purpose. Advanced technologies like organ-on-a chip or human-on-a chip where a 3D representation of human organs and systems can mimic the related processes and activities, thereby linking them to major features of human biology can be successfully incorporated in the drug development tool box. PBPK provides the State of Art to serve as an optional of animal experimentation. PBPK models can successfully bypass bio-equivalency studies, predict bioavailability, drug interactions and on hyphenation with in vitro-in vivo correlation can be extrapolated to humans thus serving as bio-waiver. PBPK can serve as an eco-friendly bio-waiver predictive tool in drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Innovating Chinese Herbal Medicine: From Traditional Health Practice to Scientific Drug Discovery

    Directory of Open Access Journals (Sweden)

    Shuo Gu

    2017-06-01

    Full Text Available As one of the major contemporary alternative medicines, traditional Chinese medicine (TCM continues its influence in Chinese communities and has begun to attract the academic attention in the world of western medicine. This paper aims to examine Chinese herbal medicine (CHM, the essential branch of TCM, from both narrative and scientific perspectives. CHM is a traditional health practice originated from Chinese philosophy and religion, holding the belief of holism and balance in the body. With the development of orthodox medicine and science during the last centuries, CHM also seized the opportunity to change from traditional health practice to scientific drug discovery illustrated in the famous story of the herb-derived drug artemisinin. However, hindered by its culture and founding principles, CHM faces the questions of the research paradigm posed by the convention of science. To address these questions, we discussed two essential questions concerning the relationship of CHM and science, and then upheld the paradigm of methodological reductionism in scientific research. Finally, the contemporary narrative of CHM in the 21st century was discussed in the hope to preserve this medical tradition in tandem with scientific research.

  12. Innovating Chinese Herbal Medicine: From Traditional Health Practice to Scientific Drug Discovery.

    Science.gov (United States)

    Gu, Shuo; Pei, Jianfeng

    2017-01-01

    As one of the major contemporary alternative medicines, traditional Chinese medicine (TCM) continues its influence in Chinese communities and has begun to attract the academic attention in the world of western medicine. This paper aims to examine Chinese herbal medicine (CHM), the essential branch of TCM, from both narrative and scientific perspectives. CHM is a traditional health practice originated from Chinese philosophy and religion, holding the belief of holism and balance in the body. With the development of orthodox medicine and science during the last centuries, CHM also seized the opportunity to change from traditional health practice to scientific drug discovery illustrated in the famous story of the herb-derived drug artemisinin. However, hindered by its culture and founding principles, CHM faces the questions of the research paradigm posed by the convention of science. To address these questions, we discussed two essential questions concerning the relationship of CHM and science, and then upheld the paradigm of methodological reductionism in scientific research. Finally, the contemporary narrative of CHM in the 21st century was discussed in the hope to preserve this medical tradition in tandem with scientific research.

  13. Lab-on-a-chip platform for high throughput drug discovery with DNA-encoded chemical libraries

    Science.gov (United States)

    Grünzner, S.; Reddavide, F. V.; Steinfelder, C.; Cui, M.; Busek, M.; Klotzbach, U.; Zhang, Y.; Sonntag, F.

    2017-02-01

    The fast development of DNA-encoded chemical libraries (DECL) in the past 10 years has received great attention from pharmaceutical industries. It applies the selection approach for small molecular drug discovery. Because of the limited choices of DNA-compatible chemical reactions, most DNA-encoded chemical libraries have a narrow structural diversity and low synthetic yield. There is also a poor correlation between the ranking of compounds resulted from analyzing the sequencing data and the affinity measured through biochemical assays. By combining DECL with dynamical chemical library, the resulting DNA-encoded dynamic library (EDCCL) explores the thermodynamic equilibrium of reversible reactions as well as the advantages of DNA encoded compounds for manipulation/detection, thus leads to enhanced signal-to-noise ratio of the selection process and higher library quality. However, the library dynamics are caused by the weak interactions between the DNA strands, which also result in relatively low affinity of the bidentate interaction, as compared to a stable DNA duplex. To take advantage of both stably assembled dual-pharmacophore libraries and EDCCLs, we extended the concept of EDCCLs to heat-induced EDCCLs (hi-EDCCLs), in which the heat-induced recombination process of stable DNA duplexes and affinity capture are carried out separately. To replace the extremely laborious and repetitive manual process, a fully automated device will facilitate the use of DECL in drug discovery. Herein we describe a novel lab-on-a-chip platform for high throughput drug discovery with hi-EDCCL. A microfluidic system with integrated actuation was designed which is able to provide a continuous sample circulation by reducing the volume to a minimum. It consists of a cooled and a heated chamber for constant circulation. The system is capable to generate stable temperatures above 75 °C in the heated chamber to melt the double strands of the DNA and less than 15 °C in the cooled chamber

  14. DR2DI: a powerful computational tool for predicting novel drug-disease associations

    Science.gov (United States)

    Lu, Lu; Yu, Hua

    2018-05-01

    Finding the new related candidate diseases for known drugs provides an effective method for fast-speed and low-risk drug development. However, experimental identification of drug-disease associations is expensive and time-consuming. This motivates the need for developing in silico computational methods that can infer true drug-disease pairs with high confidence. In this study, we presented a novel and powerful computational tool, DR2DI, for accurately uncovering the potential associations between drugs and diseases using high-dimensional and heterogeneous omics data as information sources. Based on a unified and extended similarity kernel framework, DR2DI inferred the unknown relationships between drugs and diseases using Regularized Kernel Classifier. Importantly, DR2DI employed a semi-supervised and global learning algorithm which can be applied to uncover the diseases (drugs) associated with known and novel drugs (diseases). In silico global validation experiments showed that DR2DI significantly outperforms recent two approaches for predicting drug-disease associations. Detailed case studies further demonstrated that the therapeutic indications and side effects of drugs predicted by DR2DI could be validated by existing database records and literature, suggesting that DR2DI can be served as a useful bioinformatic tool for identifying the potential drug-disease associations and guiding drug repositioning. Our software and comparison codes are freely available at https://github.com/huayu1111/DR2DI.

  15. DR2DI: a powerful computational tool for predicting novel drug-disease associations

    Science.gov (United States)

    Lu, Lu; Yu, Hua

    2018-04-01

    Finding the new related candidate diseases for known drugs provides an effective method for fast-speed and low-risk drug development. However, experimental identification of drug-disease associations is expensive and time-consuming. This motivates the need for developing in silico computational methods that can infer true drug-disease pairs with high confidence. In this study, we presented a novel and powerful computational tool, DR2DI, for accurately uncovering the potential associations between drugs and diseases using high-dimensional and heterogeneous omics data as information sources. Based on a unified and extended similarity kernel framework, DR2DI inferred the unknown relationships between drugs and diseases using Regularized Kernel Classifier. Importantly, DR2DI employed a semi-supervised and global learning algorithm which can be applied to uncover the diseases (drugs) associated with known and novel drugs (diseases). In silico global validation experiments showed that DR2DI significantly outperforms recent two approaches for predicting drug-disease associations. Detailed case studies further demonstrated that the therapeutic indications and side effects of drugs predicted by DR2DI could be validated by existing database records and literature, suggesting that DR2DI can be served as a useful bioinformatic tool for identifying the potential drug-disease associations and guiding drug repositioning. Our software and comparison codes are freely available at https://github.com/huayu1111/DR2DI.

  16. 75 FR 65495 - Draft Guidance for Industry on Qualification Process for Drug Development Tools; Availability

    Science.gov (United States)

    2010-10-25

    ...] Draft Guidance for Industry on Qualification Process for Drug Development Tools; Availability AGENCY... Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Bldg. 51, rm... Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Bldg. 21, rm...

  17. A polychromatic turbidity microplate assay to distinguish discovery stage drug molecules with beneficial precipitation properties.

    Science.gov (United States)

    Morrison, John; Nophsker, Michelle; Elzinga, Paul; Donoso, Maria; Park, Hyunsoo; Haskell, Roy

    2017-10-05

    A material sparing microplate screening assay was developed to evaluate and compare the precipitation of discovery stage drug molecules as a function of time, concentration and media composition. Polychromatic turbidity time course profiles were collected for cinnarizine, probucol, dipyridamole as well as BMS-932481, and compared with turbidity profiles of monodisperse particle size standards. Precipitation for select sample conditions were further characterized at several time points by size, morphology, amount and form via laser diffraction, microscopy, size based particle counting and X-ray diffraction respectively. Wavelength dependent turbidity was found indicative of nanoprecipitate, while wavelength independent turbidity was consistent with larger microprecipitate formation. A transition from wavelength dependent to wavelength independent turbidity occurred for nanoparticle to microparticle growth, and a decrease in wavelength independent turbidity correlated with continued growth in size of microparticles. Other sudden changes in turbidity signal over time such as rapid fluctuation, a decrease in slope or a sharp inversion were correlated with very large or aggregated macro-precipitates exceeding 100μm in diameter, a change in the rate of precipitate formation or an amorphous to crystalline form conversion respectively. The assay provides an effective method to efficiently monitor and screen the precipitation fates of drug molecules, even during the early stages of discovery with limited amounts of available material. This capability highlights molecules with beneficial precipitation properties that are able to generate and maintain solubility enabling amorphous or nanoparticle precipitates. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Predictors of timing of pregnancy discovery.

    Science.gov (United States)

    McCarthy, Molly; Upadhyay, Ushma; Biggs, M Antonia; Anthony, Renaisa; Holl, Jennifer; Roberts, Sarah Cm

    2018-04-01

    Earlier pregnancy discovery is important in the context of prenatal and abortion care. We evaluated characteristics associated with later pregnancy discovery among women seeking abortion care. Data come from a survey of women seeking abortion care at four family planning facilities in Utah. The participants completed a survey during the state-mandated abortion information visit they are required to complete prior to having an abortion. The outcome in this study was pregnancy discovery before versus after 6 weeks since respondents' last menstrual period (LMP). We used logistic regression to estimate the relationship between sociodemographic and health-related independent variables of interest and pregnancy discovery before versus after 6 weeks. Among the 458 women in the sample, 28% discovered their pregnancy later than 6 weeks since LMP. Most (n=366, 80%) knew the exact date of their LMP and a significant minority estimated it (n=92, 20%). Those who estimated the date of their LMP had higher odds of later pregnancy discovery than those who knew the exact date (adjusted odds ratio (aOR)=1.81[1.07-3.07]). Those who used illicit drugs weekly, daily, or almost daily had higher odds of later pregnancy discovery (aOR=6.33[2.44, 16.40]). Women who did not track their menstrual periods and those who frequently used drugs had higher odds of discovering their pregnancies later. Women who estimated the date of their LMP and who frequently used drugs may benefit from strategies to help them recognize their pregnancies earlier and link them to care when they discover their pregnancies later. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Three-dimensional compound comparison methods and their application in drug discovery.

    Science.gov (United States)

    Shin, Woong-Hee; Zhu, Xiaolei; Bures, Mark Gregory; Kihara, Daisuke

    2015-07-16

    Virtual screening has been widely used in the drug discovery process. Ligand-based virtual screening (LBVS) methods compare a library of compounds with a known active ligand. Two notable advantages of LBVS methods are that they do not require structural information of a target receptor and that they are faster than structure-based methods. LBVS methods can be classified based on the complexity of ligand structure information utilized: one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D). Unlike 1D and 2D methods, 3D methods can have enhanced performance since they treat the conformational flexibility of compounds. In this paper, a number of 3D methods will be reviewed. In addition, four representative 3D methods were benchmarked to understand their performance in virtual screening. Specifically, we tested overall performance in key aspects including the ability to find dissimilar active compounds, and computational speed.

  20. Pharmacogenomics of the human ABC transporter ABCG2: from functional evaluation to drug molecular design

    Science.gov (United States)

    Ishikawa, Toshihisa; Tamura, Ai; Saito, Hikaru; Wakabayashi, Kanako; Nakagawa, Hiroshi

    2005-10-01

    In the post-genome-sequencing era, emerging genomic technologies are shifting the paradigm for drug discovery and development. Nevertheless, drug discovery and development still remain high-risk and high-stakes ventures with long and costly timelines. Indeed, the attrition of drug candidates in preclinical and development stages is a major problem in drug design. For at least 30% of the candidates, this attrition is due to poor pharmacokinetics and toxicity. Thus, pharmaceutical companies have begun to seriously re-evaluate their current strategies of drug discovery and development. In that light, we propose that a transport mechanism-based design might help to create new, pharmacokinetically advantageous drugs, and as such should be considered an important component of drug design strategy. Performing enzyme- and/or cell-based drug transporter, interaction tests may greatly facilitate drug development and allow the prediction of drug-drug interactions. We recently developed methods for high-speed functional screening and quantitative structure-activity relationship analysi