WorldWideScience

Sample records for drosophila larval eye

  1. Functional genomics identifies regulators of the phototransduction machinery in the Drosophila larval eye and adult ocelli.

    Science.gov (United States)

    Mishra, Abhishek Kumar; Bargmann, Bastiaan O R; Tsachaki, Maria; Fritsch, Cornelia; Sprecher, Simon G

    2016-02-15

    Sensory perception of light is mediated by specialized Photoreceptor neurons (PRs) in the eye. During development all PRs are genetically determined to express a specific Rhodopsin (Rh) gene and genes mediating a functional phototransduction pathway. While the genetic and molecular mechanisms of PR development is well described in the adult compound eye, it remains unclear how the expression of Rhodopsins and the phototransduction cascade is regulated in other visual organs in Drosophila, such as the larval eye and adult ocelli. Using transcriptome analysis of larval PR-subtypes and ocellar PRs we identify and study new regulators required during PR differentiation or necessary for the expression of specific signaling molecules of the functional phototransduction pathway. We found that the transcription factor Krüppel (Kr) is enriched in the larval eye and controls PR differentiation by promoting Rh5 and Rh6 expression. We also identified Camta, Lola, Dve and Hazy as key genes acting during ocellar PR differentiation. Further we show that these transcriptional regulators control gene expression of the phototransduction cascade in both larval eye and adult ocelli. Our results show that PR cell type-specific transcriptome profiling is a powerful tool to identify key transcriptional regulators involved during several aspects of PR development and differentiation. Our findings greatly contribute to the understanding of how combinatorial action of key transcriptional regulators control PR development and the regulation of a functional phototransduction pathway in both larval eye and adult ocelli. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. 'Peer pressure' in larval Drosophila?

    Science.gov (United States)

    Niewalda, Thomas; Jeske, Ines; Michels, Birgit; Gerber, Bertram

    2014-06-06

    Understanding social behaviour requires a study case that is simple enough to be tractable, yet complex enough to remain interesting. Do larval Drosophila meet these requirements? In a broad sense, this question can refer to effects of the mere presence of other larvae on the behaviour of a target individual. Here we focused in a more strict sense on 'peer pressure', that is on the question of whether the behaviour of a target individual larva is affected by what a surrounding group of larvae is doing. We found that innate olfactory preference of a target individual was neither affected (i) by the level of innate olfactory preference in the surrounding group nor (ii) by the expression of learned olfactory preference in the group. Likewise, learned olfactory preference of a target individual was neither affected (iii) by the level of innate olfactory preference of the surrounding group nor (iv) by the learned olfactory preference the group was expressing. We conclude that larval Drosophila thus do not take note of specifically what surrounding larvae are doing. This implies that in a strict sense, and to the extent tested, there is no social interaction between larvae. These results validate widely used en mass approaches to the behaviour of larval Drosophila. © 2014. Published by The Company of Biologists Ltd.

  3. Age- and Wavelength-Dependency of Drosophila Larval Phototaxis and Behavioral Responses to Natural Lighting Conditions

    Directory of Open Access Journals (Sweden)

    Simon G. Sprecher

    2017-04-01

    Full Text Available Animals use various environmental cues as key determinant for their behavioral decisions. Visual systems are hereby responsible to translate light-dependent stimuli into neuronal encoded information. Even though the larval eyes of the fruit fly Drosophila melanogaster are comparably simple, they comprise two types of photoreceptor neurons (PRs, defined by different Rhodopsin genes expressed. Recent findings support that for light avoidance Rhodopsin5 (Rh5 expressing photoreceptors are crucial, while Rhodopsin6 (Rh6 expressing photoreceptors are dispensable under laboratory conditions. However, it remains debated how animals change light preference during larval live. We show that larval negative phototaxis is age-independent as it persists in larvae from foraging to wandering developmental stages. Moreover, if spectrally different Rhodopsins are employed for the detection of different wavelength of light remains unexplored. We found that negative phototaxis can be elicit by light with wavelengths ranging from ultraviolet (UV to green. This behavior is uniquely mediated by Rh5 expressing photoreceptors, and therefore suggest that this photoreceptor-type is able to perceive UV up to green light. In contrast to laboratory our field experiments revealed that Drosophila larvae uses both types of photoreceptors under natural lighting conditions. All our results, demonstrate that Drosophila larval eyes mediate avoidance of light stimuli with a wide, ecological relevant range of quantity (intensities and quality (wavelengths. Thus, the two photoreceptor-types appear more likely to play a role in different aspects of phototaxis under natural lighting conditions, rather than color discrimination.

  4. Plasticity in the Drosophila larval visual System

    Directory of Open Access Journals (Sweden)

    Abud J Farca-Luna

    2013-07-01

    Full Text Available The remarkable ability of the nervous system to modify its structure and function is mostly experience and activity modulated. The molecular basis of neuronal plasticity has been studied in higher behavioral processes, such as learning and memory formation. However, neuronal plasticity is not restricted to higher brain functions, but may provide a basic feature of adaptation of all neural circuits. The fruit fly Drosophila melanogaster provides a powerful genetic model to gain insight into the molecular basis of nervous system development and function. The nervous system of the larvae is again a magnitude simpler than its adult counter part, allowing the genetic assessment of a number of individual genetically identifiable neurons. We review here recent progress on the genetic basis of neuronal plasticity in developing and functioning neural circuits focusing on the simple visual system of the Drosophila larva.

  5. Olfactory memories are intensity specific in larval Drosophila.

    Science.gov (United States)

    Mishra, Dushyant; Chen, Yi-Chun; Yarali, Ayse; Oguz, Tuba; Gerber, Bertram

    2013-05-01

    Learning can rely on stimulus quality, stimulus intensity, or a combination of these. Regarding olfaction, the coding of odour quality is often proposed to be combinatorial along the olfactory pathway, and working hypotheses are available concerning short-term associative memory trace formation of odour quality. However, it is less clear how odour intensity is coded, and whether olfactory memory traces include information about the intensity of the learnt odour. Using odour-sugar associative conditioning in larval Drosophila, we first describe the dose-effect curves of learnability across odour intensities for four different odours (n-amyl acetate, 3-octanol, 1-octen-3-ol and benzaldehyde). We then chose odour intensities such that larvae were trained at an intermediate odour intensity, but were tested for retention with either that trained intermediate odour intensity, or with respectively higher or lower intensities. We observed a specificity of retention for the trained intensity for all four odours used. This adds to the appreciation of the richness in 'content' of olfactory short-term memory traces, even in a system as simple as larval Drosophila, and to define the demands on computational models of associative olfactory memory trace formation. We suggest two kinds of circuit architecture that have the potential to accommodate intensity learning, and discuss how they may be implemented in the insect brain.

  6. Preference for and learning of amino acids in larval Drosophila

    Directory of Open Access Journals (Sweden)

    Nana Kudow

    2017-03-01

    Full Text Available Relative to other nutrients, less is known about how animals sense amino acids and how behaviour is organized accordingly. This is a significant gap in our knowledge because amino acids are required for protein synthesis − and hence for life as we know it. Choosing Drosophila larvae as a case study, we provide the first systematic analysis of both the preference behaviour for, and the learning of, all 20 canonical amino acids in Drosophila. We report that preference for individual amino acids differs according to the kind of amino acid, both in first-instar and in third-instar larvae. Our data suggest that this preference profile changes across larval instars, and that starvation during the third instar also alters this profile. Only aspartic acid turns out to be robustly attractive across all our experiments. The essentiality of amino acids does not appear to be a determinant of preference. Interestingly, although amino acids thus differ in their innate attractiveness, we find that all amino acids are equally rewarding. Similar discrepancies between innate attractiveness and reinforcing effect have previously been reported for other tastants, including sugars, bitter substances and salt. The present analyses will facilitate the ongoing search for the receptors, sensory neurons, and internal, homeostatic amino acid sensors in Drosophila.

  7. The role of dopamine in Drosophila larval classical olfactory conditioning.

    Directory of Open Access Journals (Sweden)

    Mareike Selcho

    Full Text Available Learning and memory is not an attribute of higher animals. Even Drosophila larvae are able to form and recall an association of a given odor with an aversive or appetitive gustatory reinforcer. As the Drosophila larva has turned into a particularly simple model for studying odor processing, a detailed neuronal and functional map of the olfactory pathway is available up to the third order neurons in the mushroom bodies. At this point, a convergence of olfactory processing and gustatory reinforcement is suggested to underlie associative memory formation. The dopaminergic system was shown to be involved in mammalian and insect olfactory conditioning. To analyze the anatomy and function of the larval dopaminergic system, we first characterize dopaminergic neurons immunohistochemically up to the single cell level and subsequent test for the effects of distortions in the dopamine system upon aversive (odor-salt as well as appetitive (odor-sugar associative learning. Single cell analysis suggests that dopaminergic neurons do not directly connect gustatory input in the larval suboesophageal ganglion to olfactory information in the mushroom bodies. However, a number of dopaminergic neurons innervate different regions of the brain, including protocerebra, mushroom bodies and suboesophageal ganglion. We found that dopamine receptors are highly enriched in the mushroom bodies and that aversive and appetitive olfactory learning is strongly impaired in dopamine receptor mutants. Genetically interfering with dopaminergic signaling supports this finding, although our data do not exclude on naïve odor and sugar preferences of the larvae. Our data suggest that dopaminergic neurons provide input to different brain regions including protocerebra, suboesophageal ganglion and mushroom bodies by more than one route. We therefore propose that different types of dopaminergic neurons might be involved in different types of signaling necessary for aversive and appetitive

  8. Genetic and evolutionary analysis of the Drosophila larval neuromuscular junction

    Science.gov (United States)

    Campbell, Megan

    Although evolution of brains and behaviors is of fundamental biological importance, we lack comprehensive understanding of the general principles governing these processes or the specific mechanisms and molecules through which the evolutionary changes are effected. Because synapses are the basic structural and functional units of nervous systems, one way to address these problems is to dissect the genetic and molecular pathways responsible for morphological evolution of a defined synapse. I have undertaken such an analysis by examining morphology of the larval neuromuscular junction (NMJ) in wild caught D. melanogaster as well as in over 20 other species of Drosophila. Whereas variation in NMJ morphology within a species is limited, I discovered a surprisingly extensive variation among different species. Compared with evolution of other morphological traits, NMJ morphology appears to be evolving very rapidly. Moreover, my data indicate that natural selection rather than genetic drift is primarily responsible for evolution of NMJ morphology. To dissect underlying molecular mechanisms that may govern NMJ growth and evolutionary divergence, I focused on a naturally occurring variant in D. melanogaster that causes NMJ overgrowth. I discovered that the variant mapped to Mob2, a gene encoding a kinase adapter protein originally described in yeast as a member of the Mitotic Exit Network (MEN). I have subsequently examined mutations in the Drosophila orthologs of all the core components of the yeast MEN and found that all of them function as part of a common pathway that acts presynaptically to negatively regulate NMJ growth. As in the regulation of yeast cytokinesis, these components of the MEN appear to act ultimately by regulating actin dynamics during the process of bouton growth and division. These studies have thus led to the discovery of an entirely new role for the MEN---regulation of synaptic growth---that is separate from its function in cell division. This work

  9. Defects and Disorder in the Drosophila Eye

    Science.gov (United States)

    Kim, Sangwoo; Carthew, Richard; Hilgenfeldt, Sascha

    Cell division and differentiation tightly control the regular pattern in the normal eye of the Drosophila fruit fly while certain genetic mutations introduce disorder in the form of topological defects. Analyzing data from pupal retinas, we develop a model based on Voronoi construction that explains the defect statistics as a consequence of area variation of individual facets (ommatidia). The analysis reveals a previously unknown systematic long-range area variation that spans the entire eye, with distinct effects on topological disorder compared to local fluctuations. The internal structure of the ommatidia and the stiffness of their interior cells also plays a crucial role in the defect generation. Accurate predictions of the correlation between the area variation and the defect density in both normal and mutant animals are obtained without free parameters. This approach can potentially be applied to cellular systems in many other contexts to identify size-topology correlations near the onset of symmetry breaking. This work has been supported by the NIH (GM098077) and the NSF (Grant No. 1504301).

  10. Evolution of increased adult longevity in Drosophila melanogaster populations selected for adaptation to larval crowding.

    Science.gov (United States)

    Shenoi, V N; Ali, S Z; Prasad, N G

    2016-02-01

    In holometabolous animals such as Drosophila melanogaster, larval crowding can affect a wide range of larval and adult traits. Adults emerging from high larval density cultures have smaller body size and increased mean life span compared to flies emerging from low larval density cultures. Therefore, adaptation to larval crowding could potentially affect adult longevity as a correlated response. We addressed this issue by studying a set of large, outbred populations of D. melanogaster, experimentally evolved for adaptation to larval crowding for 83 generations. We assayed longevity of adult flies from both selected (MCUs) and control populations (MBs) after growing them at different larval densities. We found that MCUs have evolved increased mean longevity compared to MBs at all larval densities. The interaction between selection regime and larval density was not significant, indicating that the density dependence of mean longevity had not evolved in the MCU populations. The increase in longevity in MCUs can be partially attributed to their lower rates of ageing. It is also noteworthy that reaction norm of dry body weight, a trait probably under direct selection in our populations, has indeed evolved in MCU populations. To the best of our knowledge, this is the first report of the evolution of adult longevity as a correlated response of adaptation to larval crowding. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  11. Role of serotonergic neurons in the Drosophila larval response to light

    Directory of Open Access Journals (Sweden)

    Campos Ana

    2009-06-01

    Full Text Available Abstract Background Drosophila larval locomotion consists of forward peristalsis interrupted by episodes of pausing, turning and exploratory behavior (head swinging. This behavior can be regulated by visual input as seen by light-induced increase in pausing, head swinging and direction change as well as reduction of linear speed that characterizes the larval photophobic response. During 3rd instar stage, Drosophila larvae gradually cease to be repelled by light and are photoneutral by the time they wander in search for a place to undergo metamorphosis. Thus, Drosophila larval photobehavior can be used to study control of locomotion. Results We used targeted neuronal silencing to assess the role of candidate neurons in the regulation of larval photobehavior. Inactivation of DOPA decarboxylase (Ddc neurons increases the response to light throughout larval development, including during the later stages of the 3rd instar characterized by photoneutral response. Increased response to light is characterized by increase in light-induced direction change and associated pause, and reduction of linear movement. Amongst Ddc neurons, suppression of the activity of corazonergic and serotonergic but not dopaminergic neurons increases the photophobic response observed during 3rd instar stage. Silencing of serotonergic neurons does not disrupt larval locomotion or the response to mechanical stimuli. Reduced serotonin (5-hydroxytryptamine, 5-HT signaling within serotonergic neurons recapitulates the results obtained with targeted neuronal silencing. Ablation of serotonergic cells in the ventral nerve cord (VNC does not affect the larval response to light. Similarly, disruption of serotonergic projections that contact the photoreceptor termini in the brain hemispheres does not impact the larval response to light. Finally, pan-neural over-expression of 5-HT1ADro receptors, but not of any other 5-HT receptor subtype, causes a significant decrease in the response to

  12. Enhanced susceptibility of a transposable-element-bearing strain of Drosophila melanogaster to somatic eye-color mutations by ethyl nitrosourea, methyl nitrosourea, and X-rays

    International Nuclear Information System (INIS)

    Ryo, H.; Kondo, S.; Rasmuson, B.

    1983-01-01

    A strain of Drosophila with the genes z and w + plus a transposable element (TE) is about 3 times more sensitive than a strain without TE toward somatic eye-color mutations after larval exposure to ethyl nitrosourea, methyl nitrosourea and X-rays. The assay system with TE is simple, reliable, and sensitive for detecting somatic mutations induced in vivo by mutagens. (orig.)

  13. Muscle organizers in Drosophila: the role of persistent larval fibers in adult flight muscle development

    Science.gov (United States)

    Farrell, E. R.; Fernandes, J.; Keshishian, H.

    1996-01-01

    In many organisms muscle formation depends on specialized cells that prefigure the pattern of the musculature and serve as templates for myoblast organization and fusion. These include muscle pioneers in insects and muscle organizing cells in leech. In Drosophila, muscle founder cells have been proposed to play a similar role in organizing larval muscle development during embryogenesis. During metamorphosis in Drosophila, following histolysis of most of the larval musculature, there is a second round of myogenesis that gives rise to the adult muscles. It is not known whether muscle founder cells organize the development of these muscles. However, in the thorax specific larval muscle fibers do not histolyze at the onset of metamorphosis, but instead serve as templates for the formation of a subset of adult muscles, the dorsal longitudinal flight muscles (DLMs). Because these persistent larval muscle fibers appear to be functioning in many respects like muscle founder cells, we investigated whether they were necessary for DLM development by using a microbeam laser to ablate them singly and in combination. We found that, in the absence of the larval muscle fibers, DLMs nonetheless develop. Our results show that the persistent larval muscle fibers are not required to initiate myoblast fusion, to determine DLM identity, to locate the DLMs in the thorax, or to specify the total DLM fiber volume. However, they are required to regulate the number of DLM fibers generated. Thus, while the persistent larval muscle fibers are not obligatory for DLM fiber formation and differentiation, they are necessary to ensure the development of the correct number of fibers.

  14. Genetic Localization of Foraging (For): A Major Gene for Larval Behavior in Drosophila Melanogaster

    OpenAIRE

    de-Belle, J. S.; Hilliker, A. J.; Sokolowski, M. B.

    1989-01-01

    Localizing genes for quantitative traits by conventional recombination mapping is a formidable challenge because environmental variation, minor genes, and genetic markers have modifying effects on continuously varying phenotypes. We describe ``lethal tagging,'' a method used in conjunction with deficiency mapping for localizing major genes associated with quantitative traits. Rover/sitter is a naturally occurring larval foraging polymorphism in Drosophila melanogaster which has a polygenic pa...

  15. A role for adenosine deaminase in Drosophila larval development

    Czech Academy of Sciences Publication Activity Database

    Doležal, T.; Doleželová, Eva; Žurovec, Michal; Bryant, P. J.

    2005-01-01

    Roč. 3, č. 7 (2005), s. 1213-1224 ISSN 1544-9173 R&D Projects: GA ČR(CZ) GA204/04/1205; GA AV ČR(CZ) IAA5007107 Grant - others:United States National Science Foundation(US) 440860-21565 Institutional research plan: CEZ:AV0Z50070508 Keywords : Drosophila Subject RIV: ED - Physiology Impact factor: 14.672, year: 2005

  16. The Role of PPK26 in Drosophila Larval Mechanical Nociception

    Directory of Open Access Journals (Sweden)

    Yanmeng Guo

    2014-11-01

    Full Text Available In Drosophila larvae, the class IV dendritic arborization (da neurons are polymodal nociceptors. Here, we show that ppk26 (CG8546 plays an important role in mechanical nociception in class IV da neurons. Our immunohistochemical and functional results demonstrate that ppk26 is specifically expressed in class IV da neurons. Larvae with mutant ppk26 showed severe behavioral defects in a mechanical nociception behavioral test but responded to noxious heat stimuli comparably to wild-type larvae. In addition, functional studies suggest that ppk26 and ppk (also called ppk1 function in the same pathway, whereas piezo functions in a parallel pathway. Consistent with these functional results, we found that PPK and PPK26 are interdependent on each other for their cell surface localization. Our work indicates that PPK26 and PPK might form heteromeric DEG/ENaC channels that are essential for mechanotransduction in class IV da neurons.

  17. A model of the evolution of larval feeding rate in Drosophila driven by conflicting energy demands.

    Science.gov (United States)

    Mueller, Laurence D; Barter, Thomas T

    2015-02-01

    Energy allocation is believed to drive trade-offs in life history evolution. We develop a physiological and genetic model of energy allocation that drives evolution of feeding rate in a well-studied model system. In a variety of stressful environments Drosophila larvae adapt by altering their rate of feeding. Drosophila larvae adapted to high levels of ammonia, urea, and the presence of parasitoids evolve lower feeding rates. Larvae adapted to crowded conditions evolve higher feeding rates. Feeding rates should affect gross food intake, metabolic rates, and efficiency of food utilization. We develop a model of larval net energy intake as a function of feeding rates. We show that when there are toxic compounds in the larval food that require energy for detoxification, larvae can maximize their energy intake by slowing their feeding rates. While the reduction in feeding rates may increase development time and decrease competitive ability, we show that genotypes with lower feeding rates can be favored by natural selection if they have a sufficiently elevated viability in the toxic environment. This work shows how a simple phenotype, larval feeding rates, may be of central importance in adaptation to a wide variety of stressful environments via its role in energy allocation.

  18. The speed-curvature power law in Drosophila larval locomotion.

    Science.gov (United States)

    Zago, Myrka; Lacquaniti, Francesco; Gomez-Marin, Alex

    2016-10-01

    We report the discovery that the locomotor trajectories of Drosophila larvae follow the power-law relationship between speed and curvature previously found in the movements of human and non-human primates. Using high-resolution behavioural tracking in controlled but naturalistic sensory environments, we tested the law in maggots tracing different trajectory types, from reaching-like movements to scribbles. For most but not all flies, we found that the law holds robustly, with an exponent close to three-quarters rather than to the usual two-thirds found in almost all human situations, suggesting dynamic effects adding on purely kinematic constraints. There are different hypotheses for the origin of the law in primates, one invoking cortical computations, another viscoelastic muscle properties coupled with central pattern generators. Our findings are consistent with the latter view and demonstrate that the law is possible in animals with nervous systems orders of magnitude simpler than in primates. Scaling laws might exist because natural selection favours processes that remain behaviourally efficient across a wide range of neural and body architectures in distantly related species. © 2016 The Authors.

  19. larvalign: Aligning Gene Expression Patterns from the Larval Brain of Drosophila melanogaster.

    Science.gov (United States)

    Muenzing, Sascha E A; Strauch, Martin; Truman, James W; Bühler, Katja; Thum, Andreas S; Merhof, Dorit

    2018-01-01

    The larval brain of the fruit fly Drosophila melanogaster is a small, tractable model system for neuroscience. Genes for fluorescent marker proteins can be expressed in defined, spatially restricted neuron populations. Here, we introduce the methods for 1) generating a standard template of the larval central nervous system (CNS), 2) spatial mapping of expression patterns from different larvae into a reference space defined by the standard template. We provide a manually annotated gold standard that serves for evaluation of the registration framework involved in template generation and mapping. A method for registration quality assessment enables the automatic detection of registration errors, and a semi-automatic registration method allows one to correct registrations, which is a prerequisite for a high-quality, curated database of expression patterns. All computational methods are available within the larvalign software package: https://github.com/larvalign/larvalign/releases/tag/v1.0.

  20. Adaptation to new nutritional environments: larval performance, foraging decisions, and adult oviposition choices in Drosophila suzukii.

    Science.gov (United States)

    Silva-Soares, Nuno F; Nogueira-Alves, A; Beldade, P; Mirth, Christen Kerry

    2017-06-07

    Understanding how species adapt to new niches is a central issue in evolutionary ecology. Nutrition is vital for the survival of all organisms and impacts species fitness and distribution. While most Drosophila species exploit rotting plant parts, some species have diversified to use ripe fruit, allowing earlier colonization. The decomposition of plant material is facilitated by yeast colonization and proliferation. These yeasts serve as the main protein source for Drosophila larvae. This dynamic rotting process entails changes in the nutritional composition of the food and other properties, and animals feeding on material at different stages of decay are expected to have behavioural and nutritional adaptations. We compared larval performance, feeding behaviour and adult oviposition site choice between the ripe fruit colonizer and invasive pest Drosophila suzukii, and a closely-related rotting fruit colonizer, Drosophila biarmipes. Through the manipulation of protein:carbohydrate ratios in artificial diets, we found that D. suzukii larvae perform better at lower protein concentrations and consume less protein rich diets relative to D. biarmipes. For adult oviposition, these species differed in preference for substrate hardness, but not for the substrate nutritional composition. Our findings highlight that rather than being an exclusive specialist on ripe fruit, D. suzukii's adaptation to use ripening fruit allow it to colonize a wider range of food substrates than D. biarmipes, which is limited to soft foods with higher protein concentrations. Our results underscore the importance of nutritional performance and feeding behaviours in the colonization of new food niches.

  1. Pharmacological identification of cholinergic receptor subtypes on Drosophila melanogaster larval heart.

    Science.gov (United States)

    Malloy, Cole A; Ritter, Kyle; Robinson, Jonathan; English, Connor; Cooper, Robin L

    2016-01-01

    The Drosophila melanogaster heart is a popular model in which to study cardiac physiology and development. Progress has been made in understanding the role of endogenous compounds in regulating cardiac function in this model. It is well characterized that common neurotransmitters act on many peripheral and non-neuronal tissues as they flow through the hemolymph of insects. Many of these neuromodulators, including acetylcholine (ACh), have been shown to act directly on the D. melanogaster larval heart. ACh is a primary neurotransmitter in the central nervous system (CNS) of vertebrates and at the neuromuscular junctions on skeletal and cardiac tissue. In insects, ACh is the primary excitatory neurotransmitter of sensory neurons and is also prominent in the CNS. A full understanding regarding the regulation of the Drosophila cardiac physiology by the cholinergic system remains poorly understood. Here we use semi-intact D. melanogaster larvae to study the pharmacological profile of cholinergic receptor subtypes, nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs), in modulating heart rate (HR). Cholinergic receptor agonists, nicotine and muscarine both increase HR, while nAChR agonist clothianidin exhibits no significant effect when exposed to an open preparation at concentrations as low as 100 nM. In addition, both nAChR and mAChR antagonists increase HR as well but also display capabilities of blocking agonist actions. These results provide evidence that both of these receptor subtypes display functional significance in regulating the larval heart's pacemaker activity.

  2. Morphological analysis of Drosophila larval peripheral sensory neuron dendrites and axons using genetic mosaics.

    Science.gov (United States)

    Karim, M Rezaul; Moore, Adrian W

    2011-11-07

    Nervous system development requires the correct specification of neuron position and identity, followed by accurate neuron class-specific dendritic development and axonal wiring. Recently the dendritic arborization (DA) sensory neurons of the Drosophila larval peripheral nervous system (PNS) have become powerful genetic models in which to elucidate both general and class-specific mechanisms of neuron differentiation. There are four main DA neuron classes (I-IV)(1). They are named in order of increasing dendrite arbor complexity, and have class-specific differences in the genetic control of their differentiation(2-10). The DA sensory system is a practical model to investigate the molecular mechanisms behind the control of dendritic morphology(11-13) because: 1) it can take advantage of the powerful genetic tools available in the fruit fly, 2) the DA neuron dendrite arbor spreads out in only 2 dimensions beneath an optically clear larval cuticle making it easy to visualize with high resolution in vivo, 3) the class-specific diversity in dendritic morphology facilitates a comparative analysis to find key elements controlling the formation of simple vs. highly branched dendritic trees, and 4) dendritic arbor stereotypical shapes of different DA neurons facilitate morphometric statistical analyses. DA neuron activity modifies the output of a larval locomotion central pattern generator(14-16). The different DA neuron classes have distinct sensory modalities, and their activation elicits different behavioral responses(14,16-20). Furthermore different classes send axonal projections stereotypically into the Drosophila larval central nervous system in the ventral nerve cord (VNC)(21). These projections terminate with topographic representations of both DA neuron sensory modality and the position in the body wall of the dendritic field(7,22,23). Hence examination of DA axonal projections can be used to elucidate mechanisms underlying topographic mapping(7,22,23), as well as

  3. Analysis of synaptic growth and function in Drosophila with an extended larval stage.

    Science.gov (United States)

    Miller, Daniel L; Ballard, Shannon L; Ganetzky, Barry

    2012-10-03

    The Drosophila larval neuromuscular junction (NMJ) is a powerful system for the genetic and molecular analysis of neuronal excitability, synaptic transmission, and synaptic development. However, its use for studying age-dependent processes, such as maintenance of neuronal viability and synaptic stability, are temporally limited by the onset of pupariation and metamorphosis. Here we characterize larval NMJ growth, growth regulation, structure, and function in a developmental variant with an extended third instar (ETI). RNAi-knockdown of the prothoracicotropic hormone receptor, torso, in the ring gland of developing larvae leaves the timing of first and second instar molts largely unchanged, but triples duration of the third instar from 3 to 9.5 d (McBrayer et al., 2007; Rewitz et al., 2009). During this ETI period, NMJs undergo additional growth (adding >50 boutons/NMJ), and this growth remains under the control of the canonical regulators Highwire and the TGFβ/BMP pathway. NMJ growth during the ETI period occurs via addition of new branches, satellite boutons, and interstitial boutons, and continues even after muscle growth levels off. Throughout the ETI, organization of synapses and active zones remains normal, and synaptic transmission is unchanged. These results establish the ETI larval system as a viable model for studying motor neuron diseases and for investigating time-dependent effects of perturbations that impair mechanisms of neuroprotection, synaptic maintenance, and response to neural injury.

  4. Bar represses dPax2 and decapentaplegic to regulate cell fate and morphogenetic cell death in Drosophila eye.

    Directory of Open Access Journals (Sweden)

    Jongkyun Kang

    Full Text Available The coordinated regulation of cell fate and cell survival is crucial for normal pattern formation in developing organisms. In Drosophila compound eye development, crystalline arrays of hexagonal ommatidia are established by precise assembly of diverse cell types, including the photoreceptor cells, cone cells and interommatidial (IOM pigment cells. The molecular basis for controlling the number of cone and IOM pigment cells during ommatidial pattern formation is not well understood. Here we present evidence that BarH1 and BarH2 homeobox genes are essential for eye patterning by inhibiting excess cone cell differentiation and promoting programmed death of IOM cells. Specifically, we show that loss of Bar from the undifferentiated retinal precursor cells leads to ectopic expression of Prospero and dPax2, two transcription factors essential for cone cell specification, resulting in excess cone cell differentiation. We also show that loss of Bar causes ectopic expression of the TGFβ homolog Decapentaplegic (Dpp posterior to the morphogenetic furrow in the larval eye imaginal disc. The ectopic Dpp expression is not responsible for the formation of excess cone cells in Bar loss-of-function mutant eyes. Instead, it causes reduction in IOM cell death in the pupal stage by antagonizing the function of pro-apoptotic gene reaper. Taken together, this study suggests a novel regulatory mechanism in the control of developmental cell death in which the repression of Dpp by Bar in larval eye disc is essential for IOM cell death in pupal retina.

  5. Glass promotes the differentiation of neuronal and non-neuronal cell types in the Drosophila eye

    Science.gov (United States)

    Morrison, Carolyn A.; Chen, Hao; Cook, Tiffany; Brown, Stuart

    2018-01-01

    Transcriptional regulators can specify different cell types from a pool of equivalent progenitors by activating distinct developmental programs. The Glass transcription factor is expressed in all progenitors in the developing Drosophila eye, and is maintained in both neuronal and non-neuronal cell types. Glass is required for neuronal progenitors to differentiate as photoreceptors, but its role in non-neuronal cone and pigment cells is unknown. To determine whether Glass activity is limited to neuronal lineages, we compared the effects of misexpressing it in neuroblasts of the larval brain and in epithelial cells of the wing disc. Glass activated overlapping but distinct sets of genes in these neuronal and non-neuronal contexts, including markers of photoreceptors, cone cells and pigment cells. Coexpression of other transcription factors such as Pax2, Eyes absent, Lozenge and Escargot enabled Glass to induce additional genes characteristic of the non-neuronal cell types. Cell type-specific glass mutations generated in cone or pigment cells using somatic CRISPR revealed autonomous developmental defects, and expressing Glass specifically in these cells partially rescued glass mutant phenotypes. These results indicate that Glass is a determinant of organ identity that acts in both neuronal and non-neuronal cells to promote their differentiation into functional components of the eye. PMID:29324767

  6. Expression profiling of prospero in the Drosophila larval chemosensory organ: Between growth and outgrowth

    Directory of Open Access Journals (Sweden)

    Raharijaona Mahatsangy

    2010-01-01

    Full Text Available Abstract Background The antenno-maxilary complex (AMC forms the chemosensory system of the Drosophila larva and is involved in gustatory and olfactory perception. We have previously shown that a mutant allele of the homeodomain transcription factor Prospero (prosVoila1, V1, presents several developmental defects including abnormal growth and altered taste responses. In addition, many neural tracts connecting the AMC to the central nervous system (CNS were affected. Our earlier reports on larval AMC did not argue in favour of a role of pros in cell fate decision, but strongly suggested that pros could be involved in the control of other aspect of neuronal development. In order to identify these functions, we used microarray analysis of larval AMC and CNS tissue isolated from the wild type, and three other previously characterised prospero alleles, including the V1 mutant, considered as a null allele for the AMC. Results A total of 17 samples were first analysed with hierarchical clustering. To determine those genes affected by loss of pros function, we calculated a discriminating score reflecting the differential expression between V1 mutant and other pros alleles. We identified a total of 64 genes in the AMC. Additional manual annotation using all the computed information on the attributed role of these genes in the Drosophila larvae nervous system, enabled us to identify one functional category of potential Prospero target genes known to be involved in neurite outgrowth, synaptic transmission and more specifically in neuronal connectivity remodelling. The second category of genes found to be differentially expressed between the null mutant AMC and the other alleles concerned the development of the sensory organs and more particularly the larval olfactory system. Surprisingly, a third category emerged from our analyses and suggests an association of pros with the genes that regulate autophagy, growth and insulin pathways. Interestingly, EGFR and

  7. Developmental regulation of nucleolus size during Drosophila eye differentiation.

    Directory of Open Access Journals (Sweden)

    Nicholas E Baker

    Full Text Available When cell cycle withdrawal accompanies terminal differentiation, biosynthesis and cellular growth are likely to change also. In this study, nucleolus size was monitored during cell fate specification in the Drosophila eye imaginal disc using fibrillarin antibody labeling. Nucleolus size is an indicator of ribosome biogenesis and can correlate with cellular growth rate. Nucleolar size was reduced significantly during cell fate specification and differentiation, predominantly as eye disc cells entered a cell cycle arrest that preceded cell fate specification. This reduction in nucleolus size required Dpp and Hh signaling. A transient enlargement of the nucleolus accompanied cell division in the Second Mitotic Wave. Nucleoli continued to diminish in postmitotic cells following fate specification. These results suggest that cellular growth is regulated early in the transition from proliferating progenitor cells to terminal cell fate specification, contemporary with regulation of the cell cycle, and requiring the same extracellular signals.

  8. Developmental regulation of nucleolus size during Drosophila eye differentiation.

    Science.gov (United States)

    Baker, Nicholas E

    2013-01-01

    When cell cycle withdrawal accompanies terminal differentiation, biosynthesis and cellular growth are likely to change also. In this study, nucleolus size was monitored during cell fate specification in the Drosophila eye imaginal disc using fibrillarin antibody labeling. Nucleolus size is an indicator of ribosome biogenesis and can correlate with cellular growth rate. Nucleolar size was reduced significantly during cell fate specification and differentiation, predominantly as eye disc cells entered a cell cycle arrest that preceded cell fate specification. This reduction in nucleolus size required Dpp and Hh signaling. A transient enlargement of the nucleolus accompanied cell division in the Second Mitotic Wave. Nucleoli continued to diminish in postmitotic cells following fate specification. These results suggest that cellular growth is regulated early in the transition from proliferating progenitor cells to terminal cell fate specification, contemporary with regulation of the cell cycle, and requiring the same extracellular signals.

  9. Glial processes at the Drosophila larval neuromuscular junction match synaptic growth.

    Directory of Open Access Journals (Sweden)

    Deidre L Brink

    Full Text Available Glia are integral participants in synaptic physiology, remodeling and maturation from blowflies to humans, yet how glial structure is coordinated with synaptic growth is unknown. To investigate the dynamics of glial development at the Drosophila larval neuromuscular junction (NMJ, we developed a live imaging system to establish the relationship between glia, neuronal boutons, and the muscle subsynaptic reticulum. Using this system we observed processes from two classes of peripheral glia present at the NMJ. Processes from the subperineurial glia formed a blood-nerve barrier around the axon proximal to the first bouton. Processes from the perineurial glial extended beyond the end of the blood-nerve barrier into the NMJ where they contacted synapses and extended across non-synaptic muscle. Growth of the glial processes was coordinated with NMJ growth and synaptic activity. Increasing synaptic size through elevated temperature or the highwire mutation increased the extent of glial processes at the NMJ and conversely blocking synaptic activity and size decreased the presence and size of glial processes. We found that elevated temperature was required during embryogenesis in order to increase glial expansion at the nmj. Therefore, in our live imaging system, glial processes at the NMJ are likely indirectly regulated by synaptic changes to ensure the coordinated growth of all components of the tripartite larval NMJ.

  10. Larval exposure to azadirachtin affects fitness and oviposition site preference of Drosophila melanogaster.

    Science.gov (United States)

    Bezzar-Bendjazia, Radia; Kilani-Morakchi, Samira; Aribi, Nadia

    2016-10-01

    Azadirachtin, a biorational insecticide, is one of the prominent biopesticide commercialized today and represent an alternative to conventional insecticides. The current study examined the lethal and sublethal effects of azadirachtin on Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae) as biological model. Various doses ranging from 0.1 to 2μg were applied topically on early third instar larvae and the cumulative mortality of immature stage was determined. In second series of experiments, azadirachtin was applied at its LD 25 (0.28μg) and LD 50 (0.67μg) and evaluated on fitness (development duration, fecundity, adult survival) and oviposition site preference with and without choice. Results showed that azadirachtin increased significantly at the two tested doses the duration of larval and pupal development. Moreover, azadirachtin treatment reduced significantly adult's survival of both sex as compared to control. In addition, azadirachtin affected fecundity of flies by a significant reduction of the number of eggs laid. Finally results showed that females present clear preference for oviposition in control medium. Pre-imaginal exposure (L3) to azadirachtin increased aversion to this substance suggesting a memorability of the learned avoidance. The results provide some evidence that larval exposure to azadirachtin altered adult oviposition preference as well as major fitness traits of D. melanogaster. Theses finding may reinforce behavioural avoidance of azadirachtin and contribute as repellent strategies in integrated pest management programmes. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. p53 is required for brain growth but is dispensable for resistance to nutrient restriction during Drosophila larval development.

    Science.gov (United States)

    Contreras, Esteban G; Sierralta, Jimena; Glavic, Alvaro

    2018-01-01

    Animal growth is influenced by the genetic background and the environmental circumstances. How genes promote growth and coordinate adaptation to nutrient availability is still an open question. p53 is a transcription factor that commands the cellular response to different types of stresses. In adult Drosophila melanogaster, p53 regulates the metabolic adaptation to nutrient restriction that supports fly viability. Furthermore, the larval brain is protected from nutrient restriction in a phenomenon called 'brain sparing'. Therefore, we hypothesised that p53 may regulate brain growth and show a protective role over brain development under nutrient restriction. Here, we studied the function of p53 during brain growth in normal conditions and in animals subjected to developmental nutrient restriction. We showed that p53 loss of function reduced animal growth and larval brain size. Endogenous p53 was expressed in larval neural stem cells, but its levels and activity were not affected by nutritional stress. Interestingly, p53 knockdown only in neural stem cells was sufficient to decrease larval brain growth. Finally, we showed that in p53 mutant larvae under nutrient restriction, the energy storage levels were not altered, and these larvae generated adults with brains of similar size than wild-type animals. Using genetic approaches, we demonstrate that p53 is required for proper growth of the larval brain. This developmental role of p53 does not have an impact on animal resistance to nutritional stress since brain growth in p53 mutants under nutrient restriction is similar to control animals.

  12. A single GABAergic neuron mediates feedback of odor-evoked signals in the mushroom body of larval Drosophila

    Directory of Open Access Journals (Sweden)

    Liria Monica Masuda-Nakagawa

    2014-04-01

    Full Text Available Inhibition has a central role in defining the selectivity of the responses of higher order neurons to sensory stimuli. However, the circuit mechanisms of regulation of these responses by inhibitory neurons are still unclear. In Drosophila, the mushroom bodies (MBs are necessary for olfactory memory, and by implication for the selectivity of learned responses to specific odors. To understand the circuitry of inhibition in the calyx (the input dendritic region of the MBs, and its relationship with MB excitatory activity, we used the simple anatomy of the Drosophila larval olfactory system to identify any inhibitory inputs that could contribute to the selectivity of MB odor responses. We found that a single neuron accounts for all detectable GABA innervation in the calyx of the MBs, and that this neuron has presynaptic terminals in the calyx and postsynaptic branches in the MB lobes (output axonal area. We call this neuron the larval anterior paired lateral (APL neuron, because of its similarity to the previously described adult APL neuron. Reconstitution of GFP partners (GRASP suggests that the larval APL makes extensive contacts with the MB intrinsic neurons, Kenyon Cells (KCs, but few contacts with incoming projection neurons. Using calcium imaging of neuronal activity in live larvae, we show that the larval APL responds to odors, in a mannner that requires output from KCs. Our data suggest that the larval APL is the sole GABAergic neuron that innervates the MB input region and carries inhibitory feedback from the MB output region, consistent with a role in modulating the olfactory selectivity of MB neurons.

  13. Is the Schwabe Organ a Retained Larval Eye? Anatomical and Behavioural Studies of a Novel Sense Organ in Adult Leptochiton asellus (Mollusca, Polyplacophora Indicate Links to Larval Photoreceptors.

    Directory of Open Access Journals (Sweden)

    Lauren H Sumner-Rooney

    Full Text Available The discovery of a sensory organ, the Schwabe organ, was recently reported as a unifying feature of chitons in the order Lepidopleurida. It is a patch of pigmented tissue located on the roof of the pallial cavity, beneath the velum on either side of the mouth. The epithelium is densely innervated and contains two types of potential sensory cells. As the function of the Schwabe organ remains unknown, we have taken a cross-disciplinary approach, using anatomical, histological and behavioural techniques to understand it. In general, the pigmentation that characterises this sensory structure gradually fades after death; however, one particular concentrated pigment dot persists. This dot is positionally homologous to the larval eye in chiton trochophores, found in the same neuroanatomical location, and furthermore the metamorphic migration of the larval eye is ventral in species known to possess Schwabe organs. Here we report the presence of a discrete subsurface epithelial structure in the region of the Schwabe organ in Leptochiton asellus that histologically resembles the chiton larval eye. Behavioural experiments demonstrate that Leptochiton asellus with intact Schwabe organs actively avoid an upwelling light source, while Leptochiton asellus with surgically ablated Schwabe organs and a control species lacking the organ (members of the other extant order, Chitonida do not (Kruskal-Wallis, H = 24.82, df = 3, p < 0.0001. We propose that the Schwabe organ represents the adult expression of the chiton larval eye, being retained and elaborated in adult lepidopleurans.

  14. Remodeling of peripheral nerve ensheathment during the larval-to-adult transition in Drosophila.

    Science.gov (United States)

    Subramanian, Aswati; Siefert, Matthew; Banerjee, Soumya; Vishal, Kumar; Bergmann, Kayla A; Curts, Clay C M; Dorr, Meredith; Molina, Camillo; Fernandes, Joyce

    2017-10-01

    Over the course of a 4-day period of metamorphosis, the Drosophila larval nervous system is remodeled to prepare for adult-specific behaviors. One example is the reorganization of peripheral nerves in the abdomen, where five pairs of abdominal nerves (A4-A8) fuse to form the terminal nerve trunk. This reorganization is associated with selective remodeling of four layers that ensheath each peripheral nerve. The neural lamella (NL), is the first to dismantle; its breakdown is initiated by 6 hours after puparium formation, and is completely removed by the end of the first day. This layer begins to re-appear on the third day of metamorphosis. Perineurial glial (PG) cells situated just underneath the NL, undergo significant proliferation on the first day of metamorphosis, and at that stage contribute to 95% of the glial cell population. Cells of the two inner layers, Sub-Perineurial Glia (SPG) and Wrapping Glia (WG) increase in number on the second half of metamorphosis. Induction of cell death in perineurial glia via the cell death gene reaper and the Diptheria toxin (DT-1) gene, results in abnormal bundling of the peripheral nerves, suggesting that perineurial glial cells play a role in the process. A significant number of animals fail to eclose in both reaper and DT-1 targeted animals, suggesting that disruption of PG also impacts eclosion behavior. The studies will help to establish the groundwork for further work on cellular and molecular processes that underlie the co-ordinated remodeling of glia and the peripheral nerves they ensheath. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1144-1160, 2017. © 2017 Wiley Periodicals, Inc.

  15. Comparison of dopamine kinetics in the larval Drosophila ventral nerve cord and protocerebrum with improved optogenetic stimulation.

    Science.gov (United States)

    Privman, Eve; Venton, B Jill

    2015-11-01

    Dopamine release and uptake have been studied in the Drosophila larval ventral nerve cord (VNC) using optogenetics to stimulate endogenous release. However, other areas of the central nervous system remain uncharacterized. Here, we compare dopamine release in the VNC and protocerebrum of larval Drosophila. Stimulations were performed with CsChrimson, a new, improved, red light-activated channelrhodopsin. In both regions, dopamine release was observed after only a single, 4 ms duration light pulse. Michaelis-Menten modeling was used to understand release and uptake parameters for dopamine. The amount of dopamine released ([DA]p ) on the first stimulation pulse is higher than the average [DA]p released from subsequent pulses. The initial and average amount of dopamine released per stimulation pulse is smaller in the protocerebrum than in the VNC. The average Vmax of 0.08 μM/s in the protocerebrum was significantly higher than the Vmax of 0.05 μM/s in the VNC. The average Km of 0.11 μM in the protocerebrum was not significantly different from the Km of 0.10 μM in the VNC. When the competitive dopamine transporter (DAT) inhibitor nisoxetine was applied, the Km increased significantly in both regions while Vmax stayed the same. This work demonstrates regional differences in dopamine release and uptake kinetics, indicating important variation in the amount of dopamine available for neurotransmission and neuromodulation. We use a new optogenetic tool, red light activated CsChrimson, to stimulate the release of dopamine in the ventral nerve cord and medial protocerebrum of the larval Drosophila central nervous system. We monitored extracellular dopamine by fast scan cyclic voltammetry and used Michaelis-Menten modeling to probe the regulation of extracellular dopamine, discovering important similarities and differences in these two regions. © 2015 International Society for Neurochemistry.

  16. Larval Population Density Alters Adult Sleep in Wild-Type Drosophila melanogaster but Not in Amnesiac Mutant Flies

    Directory of Open Access Journals (Sweden)

    Michael W. Chi

    2014-08-01

    Full Text Available Sleep has many important biological functions, but how sleep is regulated remains poorly understood. In humans, social isolation and other stressors early in life can disrupt adult sleep. In fruit flies housed at different population densities during early adulthood, social enrichment was shown to increase subsequent sleep, but it is unknown if population density during early development can also influence adult sleep. To answer this question, we maintained Drosophila larvae at a range of population densities throughout larval development, kept them isolated during early adulthood, and then tested their sleep patterns. Our findings reveal that flies that had been isolated as larvae had more fragmented sleep than those that had been raised at higher population densities. This effect was more prominent in females than in males. Larval population density did not affect sleep in female flies that were mutant for amnesiac, which has been shown to be required for normal memory consolidation, adult sleep regulation, and brain development. In contrast, larval population density effects on sleep persisted in female flies lacking the olfactory receptor or83b, suggesting that olfactory signals are not required for the effects of larval population density on adult sleep. These findings show that population density during early development can alter sleep behavior in adulthood, suggesting that genetic and/or structural changes are induced by this developmental manipulation that persist through metamorphosis.

  17. CREB Binding Protein Functions During Successive Stages of Eye Development in Drosophila

    OpenAIRE

    Kumar, Justin P.; Jamal, Tazeen; Doetsch, Alex; Turner, F. Rudolf; Duffy, Joseph B.

    2004-01-01

    During the development of the compound eye of Drosophila several signaling pathways exert both positive and inhibitory influences upon an array of nuclear transcription factors to produce a near-perfect lattice of unit eyes or ommatidia. Individual cells within the eye are exposed to many extracellular signals, express multiple surface receptors, and make use of a large complement of cell-subtype-specific DNA-binding transcription factors. Despite this enormous complexity, each cell will make...

  18. Quantitative Assessment of Eye Phenotypes for Functional Genetic Studies Using Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Janani Iyer

    2016-05-01

    Full Text Available About two-thirds of the vital genes in the Drosophila genome are involved in eye development, making the fly eye an excellent genetic system to study cellular function and development, neurodevelopment/degeneration, and complex diseases such as cancer and diabetes. We developed a novel computational method, implemented as Flynotyper software (http://flynotyper.sourceforge.net, to quantitatively assess the morphological defects in the Drosophila eye resulting from genetic alterations affecting basic cellular and developmental processes. Flynotyper utilizes a series of image processing operations to automatically detect the fly eye and the individual ommatidium, and calculates a phenotypic score as a measure of the disorderliness of ommatidial arrangement in the fly eye. As a proof of principle, we tested our method by analyzing the defects due to eye-specific knockdown of Drosophila orthologs of 12 neurodevelopmental genes to accurately document differential sensitivities of these genes to dosage alteration. We also evaluated eye images from six independent studies assessing the effect of overexpression of repeats, candidates from peptide library screens, and modifiers of neurotoxicity and developmental processes on eye morphology, and show strong concordance with the original assessment. We further demonstrate the utility of this method by analyzing 16 modifiers of sine oculis obtained from two genome-wide deficiency screens of Drosophila and accurately quantifying the effect of its enhancers and suppressors during eye development. Our method will complement existing assays for eye phenotypes, and increase the accuracy of studies that use fly eyes for functional evaluation of genes and genetic interactions.

  19. A Programmable Optical Stimulator for the Drosophila Eye.

    Science.gov (United States)

    Chen, Xinping; Leon-Salas, Walter D; Zigon, Taylor; Ready, Donald F; Weake, Vikki M

    2017-10-01

    A programmable optical stimulator for Drosophila eyes is presented. The target application of the stimulator is to induce retinal degeneration in fly photoreceptor cells by exposing them to light in a controlled manner. The goal of this work is to obtain a reproducible system for studying age-related changes in susceptibility to environmental ocular stress. The stimulator uses light emitting diodes and an embedded computer to control illuminance, color (blue or red) and duration in two independent chambers. Further, the stimulator is equipped with per-chamber light and temperature sensors and a fan to monitor light intensity and to control temperature. An ON/OFF temperature control implemented on the embedded computer keeps the temperature from reaching levels that will induce the heat shock stress response in the flies. A custom enclosure was fabricated to house the electronic components of the stimulator. The enclosure provides a light-impermeable environment that allows air flow and lets users easily load and unload fly vials. Characterization results show that the fabricated stimulator can produce light at illuminances ranging from 0 to 16000 lux and power density levels from 0 to 7.2 mW/cm 2 for blue light. For red light the maximum illuminance is 8000 lux which corresponds to a power density of 3.54 mW/cm 2 . The fans and the ON/OFF temperature control are able to keep the temperature inside the chambers below 28.17°C. Experiments with white-eye male flies were performed to assess the ability of the fabricated simulator to induce blue light-dependent retinal degeneration. Retinal degeneration is observed in flies exposed to 8 hours of blue light at 7949 lux. Flies in a control experiment with no light exposure show no retinal degeneration. Flies exposed to red light for the similar duration and light intensity (8 hours and 7994 lux) do not show retinal degeneration either. Hence, the fabricated stimulator can be used to create environmental ocular stress

  20. A programmable optical stimulator for the Drosophila eye

    Directory of Open Access Journals (Sweden)

    Xinping Chen

    2017-10-01

    Full Text Available A programmable optical stimulator for Drosophila eyes is presented. The target application of the stimulator is to induce retinal degeneration in fly photoreceptor cells by exposing them to light in a controlled manner. The goal of this work is to obtain a reproducible system for studying age-related changes in susceptibility to environmental ocular stress. The stimulator uses light emitting diodes and an embedded computer to control illuminance, color (blue or red and duration in two independent chambers. Further, the stimulator is equipped with per-chamber light and temperature sensors and a fan to monitor light intensity and to control temperature. An ON/OFF temperature control implemented on the embedded computer keeps the temperature from reaching levels that will induce the heat shock stress response in the flies. A custom enclosure was fabricated to house the electronic components of the stimulator. The enclosure provides a light-impermeable environment that allows air flow and lets users easily load and unload fly vials. Characterization results show that the fabricated stimulator can produce light at illuminances ranging from 0 to 16000 lux and power density levels from 0 to 7.2 mW/cm2 for blue light. For red light the maximum illuminance is 8000 lux which corresponds to a power density of 3.54 mW/cm2. The fans and the ON/OFF temperature control are able to keep the temperature inside the chambers below 28.17 °C. Experiments with white-eye male flies were performed to assess the ability of the fabricated simulator to induce blue light-dependent retinal degeneration. Retinal degeneration is observed in flies exposed to 8 h of blue light at 7949 lux. Flies in a control experiment with no light exposure show no retinal degeneration. Flies exposed to red light for the similar duration and light intensity (8 h and 7994 lux do not show retinal degeneration either. Hence, the fabricated stimulator can be used to create environmental

  1. RNAi-Mediated Reverse Genetic Screen Identified Drosophila Chaperones Regulating Eye and Neuromuscular Junction Morphology

    Directory of Open Access Journals (Sweden)

    Sandeep Raut

    2017-07-01

    Full Text Available Accumulation of toxic proteins in neurons has been linked with the onset of neurodegenerative diseases, which in many cases are characterized by altered neuronal function and synapse loss. Molecular chaperones help protein folding and the resolubilization of unfolded proteins, thereby reducing the protein aggregation stress. While most of the chaperones are expressed in neurons, their functional relevance remains largely unknown. Here, using bioinformatics analysis, we identified 95 Drosophila chaperones and classified them into seven different classes. Ubiquitous actin5C-Gal4-mediated RNAi knockdown revealed that ∼50% of the chaperones are essential in Drosophila. Knocking down these genes in eyes revealed that ∼30% of the essential chaperones are crucial for eye development. Using neuron-specific knockdown, immunocytochemistry, and robust behavioral assays, we identified a new set of chaperones that play critical roles in the regulation of Drosophila NMJ structural organization. Together, our data present the first classification and comprehensive analysis of Drosophila chaperones. Our screen identified a new set of chaperones that regulate eye and NMJ morphogenesis. The outcome of the screen reported here provides a useful resource for further elucidating the role of individual chaperones in Drosophila eye morphogenesis and synaptic development.

  2. rigor mortis encodes a novel nuclear receptor interacting protein required for ecdysone signaling during Drosophila larval development.

    Science.gov (United States)

    Gates, Julie; Lam, Geanette; Ortiz, José A; Losson, Régine; Thummel, Carl S

    2004-01-01

    Pulses of the steroid hormone ecdysone trigger the major developmental transitions in Drosophila, including molting and puparium formation. The ecdysone signal is transduced by the EcR/USP nuclear receptor heterodimer that binds to specific response elements in the genome and directly regulates target gene transcription. We describe a novel nuclear receptor interacting protein encoded by rigor mortis (rig) that is required for ecdysone responses during larval development. rig mutants display defects in molting, delayed larval development, larval lethality, duplicated mouth parts, and defects in puparium formation--phenotypes that resemble those seen in EcR, usp, E75A and betaFTZ-F1 mutants. Although the expression of these nuclear receptor genes is essentially normal in rig mutant larvae, the ecdysone-triggered switch in E74 isoform expression is defective. rig encodes a protein with multiple WD-40 repeats and an LXXLL motif, sequences that act as specific protein-protein interaction domains. Consistent with the presence of these elements and the lethal phenotypes of rig mutants, Rig protein interacts with several Drosophila nuclear receptors in GST pull-down experiments, including EcR, USP, DHR3, SVP and betaFTZ-F1. The ligand binding domain of betaFTZ-F1 is sufficient for this interaction, which can occur in an AF-2-independent manner. Antibody stains reveal that Rig protein is present in the brain and imaginal discs of second and third instar larvae, where it is restricted to the cytoplasm. In larval salivary gland and midgut cells, however, Rig shuttles between the cytoplasm and nucleus in a spatially and temporally regulated manner, at times that correlate with the major lethal phase of rig mutants and major switches in ecdysone-regulated gene expression. Taken together, these data indicate that rig exerts essential functions during larval development through gene-specific effects on ecdysone-regulated transcription, most likely as a cofactor for one or more

  3. Azadirachtin induced larval avoidance and antifeeding by disruption of food intake and digestive enzymes in Drosophila melanogaster (Diptera: Drosophilidae).

    Science.gov (United States)

    Bezzar-Bendjazia, Radia; Kilani-Morakchi, Samira; Maroua, Ferdenache; Aribi, Nadia

    2017-11-01

    Botanical insecticides are a promising alternative to reduce the harmful effects of synthetic chemicals. Among the botanical biopesticides, azadirachtin obtained from the Indian neem tree Azadirachta indica A. Juss. (Meliaceae) is probably the biorational insecticide with greatest agriculture use nowadays due to its broad insecticide activity. The current study, evaluated the lethal and sublethal effects of azadirachtin on larval avoidance, food intake and digestive enzymes of Drosophila melanogaster larvae as biological model. Azadirachtin was applied topically at two doses LD 25 (0.28μg) and LD 50 (0.67μg) on early third instars larvae. Results evaluated 24h after treatment showed that larvae exhibited significant repellence to azadirachtin and prefer keeping in untreated arenas rather than moving to treated one. In addition, azadirachtin avoidance was more marked in larvae previously treated with this compound as compared with naïf larvae (controls). Moreover, azadirachtin treatment decreased significantly the amount of larval food intake. Finally, azadirachtin reduced significantly the activity of larval α-amylase, chitinase and protease and increased the activity of lipase. This finding showed that azadirachtin induced behavioral and physiological disruption affecting the ability of the insect to digest food. This rapid installation of avoidance and long term antifeedancy might reinforce the action of azadirachtin and provide a new behavioral strategy for integrated pest management programs. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Failure to Burrow and Tunnel Reveals Roles for jim lovell in the Growth and Endoreplication of the Drosophila Larval Tracheae.

    Directory of Open Access Journals (Sweden)

    Fanli Zhou

    Full Text Available The Drosophila protein Jim Lovell (Lov is a putative transcription factor of the BTB/POZ (Bric- a-Brac/Tramtrack/Broad/ Pox virus and Zinc finger domain class that is expressed in many elements of the developing larval nervous system. It has roles in innate behaviors such as larval locomotion and adult courtship. In performing tissue-specific knockdown with the Gal4-UAS system we identified a new behavioral phenotype for lov: larvae failed to burrow into their food during their growth phase and then failed to tunnel into an agarose substratum during their wandering phase. We determined that these phenotypes originate in a previously unrecognized role for lov in the tracheae. By using tracheal-specific Gal4 lines, Lov immunolocalization and a lov enhancer trap line, we established that lov is normally expressed in the tracheae from late in embryogenesis through larval life. Using an assay that monitors food burrowing, substrate tunneling and death we showed that lov tracheal knockdown results in tracheal fluid-filling, producing hypoxia that activates the aberrant behaviors and inhibits development. We investigated the role of lov in the tracheae that initiates this sequence of events. We discovered that when lov levels are reduced, the tracheal cells are smaller, more numerous and show lower levels of endopolyploidization. Together our findings indicate that Lov is necessary for tracheal endoreplicative growth and that its loss in this tissue causes loss of tracheal integrity resulting in chronic hypoxia and abnormal burrowing and tunneling behavior.

  5. Protein and carbohydrate composition of larval food affects tolerance tothermal stress and desiccation in adult Drosophila melanogaster

    DEFF Research Database (Denmark)

    Andersen, Laila H; Kristensen, Torsten N; Loeschcke, Volker

    2010-01-01

    stress compared to males. Egg production was highest in females that had developed on the protein-enriched medium. However, there was a sex-specific effect of nutrition on egg-to-adult viability, with higher viability for males developing on the sucrose-enriched medium, while female survival was highest......Larval nutrition may affect a range of different life history traits as well as responses to environmental stress in adult insects. Here we test whether raising larvae of fruit flies, Drosophila melanogaster, on two different nutritional regimes affects resistance to cold, heat and desiccation....... In contrast, flies developed on the carbohydrate-enriched growth medium recovered faster from chill coma stress compared to flies developed on a protein-enriched medium. We also found gender differences in stress tolerance, with female flies being more tolerant to chill coma, heat knockdown and desiccation...

  6. Ras promotes cell survival by antagonizing both JNK and Hid signals in the Drosophila eye.

    Science.gov (United States)

    Wu, Yue; Zhuang, Yuan; Han, Min; Xu, Tian; Deng, Kejing

    2009-10-20

    Programmed cell death, or apoptosis, is a fundamental physiological process during normal development or in pathological conditions. The activation of apoptosis can be elicited by numerous signalling pathways. Ras is known to mediate anti-apoptotic signals by inhibiting Hid activity in the Drosophila eye. Here we report the isolation of a new loss-of-function ras allele, rasKP, which causes excessive apoptosis in the Drosophila eye. This new function is likely to be mediated through the JNK pathway since the inhibition of JNK signalling can significantly suppress rasKP-induced apoptosis, whereas the removal of hid only weakly suppresses the phenotype. Furthermore, the reduction of JNK signalling together with the expression of the baculovirus caspase inhibitor p35, which blocks Hid activity, strongly suppresses the rasKP cell death. In addition, we find a strong correlation between rasKP-induced apoptosis in the eye disc and the activation of JNK signalling. In the Drosophila eye, Ras may protect cells from apoptosis by inhibiting both JNK and Hid activities. Surprisingly, reducing Ras activity in the wing, however, does not cause apoptosis but rather affects cell and organ size. Thus, in addition to its requirement for cell viability, Ras appears to mediate different biological roles depending on the developmental context and on the level of its expression.

  7. The Impact of Odor--Reward Memory on Chemotaxis in Larval "Drosophila"

    Science.gov (United States)

    Schleyer, Michael; Reid, Samuel F.; Pamir, Evren; Saumweber, Timo; Paisios, Emmanouil; Davies, Alexander; Gerber, Bertram; Louis, Matthieu

    2015-01-01

    How do animals adaptively integrate innate with learned behavioral tendencies? We tackle this question using chemotaxis as a paradigm. Chemotaxis in the "Drosophila" larva largely results from a sequence of runs and oriented turns. Thus, the larvae minimally need to determine (i) how fast to run, (ii) when to initiate a turn, and (iii)…

  8. A Behavior-Based Circuit Model of How Outcome Expectations Organize Learned Behavior in Larval "Drosophila"

    Science.gov (United States)

    Schleyer, Michael; Saumweber, Timo; Nahrendorf, Wiebke; Fischer, Benjamin; von Alpen, Desiree; Pauls, Dennis; Thum, Andreas; Gerber, Bertram

    2011-01-01

    Drosophila larvae combine a numerically simple brain, a correspondingly moderate behavioral complexity, and the availability of a rich toolbox for transgenic manipulation. This makes them attractive as a study case when trying to achieve a circuit-level understanding of behavior organization. From a series of behavioral experiments, we suggest a…

  9. Pupation behavior and larval and pupal biocontrol of Drosophila suzukii in the field

    Science.gov (United States)

    Drosophila suzukii is a worldwide pest of fruit crops. Biological control may play an important role in D. suzukii IPM, and suppressing populations in unmanaged areas. While predation has been observed in the field, nothing is known about the potential for natural enemies to reduce D. suzukii popula...

  10. Transcriptional Signatures in Response to Wheat Germ Agglutinin and Starvation in Drosophila melanogaster Larval Midgut

    Science.gov (United States)

    One function of plant lectins such as wheat germ agglutinin (WGA) is to serve as defenses against herbivorous insects. The midgut is one critical site affected by dietary lectins. We observed marked cellular, structural, and gene expression changes in the midguts of Drosophila melanogaster third-i...

  11. Neuroendocrine control of Drosophila larval light preference

    DEFF Research Database (Denmark)

    Yamanaka, Naoki; Romero, Nuria M.; Martin, Francisco A.

    2013-01-01

    melanogaster larvae. PTTH, through its receptor Torso, acts on two light sensors???the Bolwig???s organ and the peripheral class IV dendritic arborization neurons???to regulate light avoidance. We found that PTTH concomitantly promotes steroidogenesis and light avoidance at the end of larval stage, driving...

  12. Role of elongator subunit Elp3 in Drosophila melanogaster larval development and immunity

    DEFF Research Database (Denmark)

    Walker, Jane; Kwon, So Yeon; Badenhorst, Paul

    2011-01-01

    , larval growth is dramatically impaired, with progression to the third instar delayed for ~24 hr, and pupariation occurring only at day 14 after egg laying. Melanotic nodules appear after 4 days. Microarray analysis shows that stress response genes are induced and ecdysone-induced transcription factors...

  13. Patterning Muscles Using Organizers: Larval Muscle Templates and Adult Myoblasts Actively Interact to Pattern the Dorsal Longitudinal Flight Muscles of Drosophila

    Science.gov (United States)

    Roy, Sudipto; VijayRaghavan, K.

    1998-01-01

    Pattern formation in muscle development is often mediated by special cells called muscle organizers. During metamorphosis in Drosophila, a set of larval muscles function as organizers and provide scaffolding for the development of the dorsal longitudinal flight muscles. These organizers undergo defined morphological changes and dramatically split into templates as adult fibers differentiate during pupation. We have investigated the cellular mechanisms involved in the use of larval fibers as templates. Using molecular markers that label myoblasts and the larval muscles themselves, we show that splitting of the larval muscles is concomitant with invasion by imaginal myoblasts and the onset of differentiation. We show that the Erect wing protein, an early marker of muscle differentiation, is not only expressed in myoblasts just before and after fusion, but also in remnant larval nuclei during muscle differentiation. We also show that interaction between imaginal myoblasts and larval muscles is necessary for transformation of the larval fibers. In the absence of imaginal myoblasts, the earliest steps in metamorphosis, such as the escape of larval muscles from histolysis and changes in their innervation, are normal. However, subsequent events, such as the splitting of these muscles, fail to progress. Finally, we show that in a mutant combination, null for Erect wing function in the mesoderm, the splitting of the larval muscles is aborted. These studies provide a genetic and molecular handle for the understanding of mechanisms underlying the use of muscle organizers in muscle patterning. Since the use of such organizers is a common theme in myogenesis in several organisms, it is likely that many of the processes that we describe are conserved. PMID:9606206

  14. Excessive Myosin Activity in Mbs Mutants Causes Photoreceptor Movement Out of the Drosophila Eye Disc Epithelium

    OpenAIRE

    Lee, Arnold; Treisman, Jessica E.

    2004-01-01

    Neuronal cells must extend a motile growth cone while maintaining the cell body in its original position. In migrating cells, myosin contraction provides the driving force that pulls the rear of the cell toward the leading edge. We have characterized the function of myosin light chain phosphatase, which down-regulates myosin activity, in Drosophila photoreceptor neurons. Mutations in the gene encoding the myosin binding subunit of this enzyme cause photoreceptors to drop out of the eye disc e...

  15. Combinatorial action of Grainyhead, Extradenticle and Notch in regulating Hox mediated apoptosis in Drosophila larval CNS.

    Science.gov (United States)

    Khandelwal, Risha; Sipani, Rashmi; Govinda Rajan, Sriivatsan; Kumar, Raviranjan; Joshi, Rohit

    2017-10-01

    Hox mediated neuroblast apoptosis is a prevalent way to pattern larval central nervous system (CNS) by different Hox genes, but the mechanism of this apoptosis is not understood. Our studies with Abdominal-A (Abd-A) mediated larval neuroblast (pNB) apoptosis suggests that AbdA, its cofactor Extradenticle (Exd), a helix-loop-helix transcription factor Grainyhead (Grh), and Notch signaling transcriptionally contribute to expression of RHG family of apoptotic genes. We find that Grh, AbdA, and Exd function together at multiple motifs on the apoptotic enhancer. In vivo mutagenesis of these motifs suggest that they are important for the maintenance of the activity of the enhancer rather than its initiation. We also find that Exd function is independent of its known partner homothorax in this apoptosis. We extend some of our findings to Deformed expressing region of sub-esophageal ganglia where pNBs undergo a similar Hox dependent apoptosis. We propose a mechanism where common players like Exd-Grh-Notch work with different Hox genes through region specific enhancers to pattern respective segments of larval central nervous system.

  16. Drosophila eye color mutants as therapeutic tools for Huntington disease.

    Science.gov (United States)

    Green, Edward W; Campesan, Susanna; Breda, Carlo; Sathyasaikumar, Korrapati V; Muchowski, Paul J; Schwarcz, Robert; Kyriacou, Charalambos P; Giorgini, Flaviano

    2012-01-01

    Huntington disease (HD) is a fatal inherited neurodegenerative disorder caused by a polyglutamine expansion in the huntingtin protein (htt). A pathological hallmark of the disease is the loss of a specific population of striatal neurons, and considerable attention has been paid to the role of the kynurenine pathway (KP) of tryptophan (TRP) degradation in this process. The KP contains three neuroactive metabolites: 3-hydroxykynurenine (3-HK), quinolinic acid (QUIN), and kynurenic acid (KYNA). 3-HK and QUIN are neurotoxic, and are increased in the brains of early stage HD patients, as well as in yeast and mouse models of HD. Conversely, KYNA is neuroprotective and has been shown to be decreased in HD patient brains. We recently used a Drosophila model of HD to measure the neuroprotective effect of genetic and pharmacological inhibition of kynurenine monoxygenase (KMO)-the enzyme catalyzing the formation of 3-HK at a pivotal branch point in the KP. We found that KMO inhibition in Drosophila robustly attenuated neurodegeneration, and that this neuroprotection was correlated with reduced levels of 3-HK relative to KYNA. Importantly, we showed that KP metabolites are causative in this process, as 3-HK and KYNA feeding experiments modulated neurodegeneration. We also found that genetic inhibition of the upstream KP enzyme tryptophan-2,3-dioxygenase (TDO) was neuroprotective in flies. Here, we extend these results by reporting that genetic impairment of KMO or TDO is protective against the eclosion defect in HD model fruit flies. Our results provide further support for the possibility of therapeutic KP interventions in HD.

  17. Serotonin receptors expressed in Drosophila mushroom bodies differentially modulate larval locomotion.

    Directory of Open Access Journals (Sweden)

    Bryon Silva

    Full Text Available Drosophila melanogaster has been successfully used as a simple model to study the cellular and molecular mechanisms underlying behaviors, including the generation of motor programs. Thus, it has been shown that, as in vertebrates, CNS biogenic amines (BA including serotonin (5HT participate in motor control in Drosophila. Several evidence show that BA systems innervate an important association area in the insect brain previously associated to the planning and/or execution of motor programs, the Mushroom Bodies (MB. The main objective of this work is to evaluate the contribution of 5HT and its receptors expressed in MB to motor behavior in fly larva. Locomotion was evaluated using an automated tracking system, in Drosophila larvae (3(rd-instar exposed to drugs that affect the serotonergic neuronal transmission: alpha-methyl-L-dopa, MDMA and fluoxetine. In addition, animals expressing mutations in the 5HT biosynthetic enzymes or in any of the previously identified receptors for this amine (5HT1AR, 5HT1BR, 5HT2R and 5HT7R were evaluated in their locomotion. Finally, RNAi directed to the Drosophila 5HT receptor transcripts were expressed in MB and the effect of this manipulation on motor behavior was assessed. Data obtained in the mutants and in animals exposed to the serotonergic drugs, suggest that 5HT systems are important regulators of motor programs in fly larvae. Studies carried out in animals pan-neuronally expressing the RNAi for each of the serotonergic receptors, support this idea and further suggest that CNS 5HT pathways play a role in motor control. Moreover, animals expressing an RNAi for 5HT1BR, 5HT2R and 5HT7R in MB show increased motor behavior, while no effect is observed when the RNAi for 5HT1AR is expressed in this region. Thus, our data suggest that CNS 5HT systems are involved in motor control, and that 5HT receptors expressed in MB differentially modulate motor programs in fly larvae.

  18. Piezo Is Essential for Amiloride-Sensitive Stretch-Activated Mechanotransduction in Larval Drosophila Dorsal Bipolar Dendritic Sensory Neurons.

    Science.gov (United States)

    Suslak, Thomas J; Watson, Sonia; Thompson, Karen J; Shenton, Fiona C; Bewick, Guy S; Armstrong, J Douglas; Jarman, Andrew P

    2015-01-01

    Stretch-activated afferent neurons, such as those of mammalian muscle spindles, are essential for proprioception and motor co-ordination, but the underlying mechanisms of mechanotransduction are poorly understood. The dorsal bipolar dendritic (dbd) sensory neurons are putative stretch receptors in the Drosophila larval body wall. We have developed an in vivo protocol to obtain receptor potential recordings from intact dbd neurons in response to stretch. Receptor potential changes in dbd neurons in response to stretch showed a complex, dynamic profile with similar characteristics to those previously observed for mammalian muscle spindles. These profiles were reproduced by a general in silico model of stretch-activated neurons. This in silico model predicts an essential role for a mechanosensory cation channel (MSC) in all aspects of receptor potential generation. Using pharmacological and genetic techniques, we identified the mechanosensory channel, DmPiezo, in this functional role in dbd neurons, with TRPA1 playing a subsidiary role. We also show that rat muscle spindles exhibit a ruthenium red-sensitive current, but found no expression evidence to suggest that this corresponds to Piezo activity. In summary, we show that the dbd neuron is a stretch receptor and demonstrate that this neuron is a tractable model for investigating mechanisms of mechanotransduction.

  19. Embryo-larval exposure to atrazine reduces viability and alters oxidative stress parameters in Drosophila melanogaster.

    Science.gov (United States)

    Figueira, Fernanda Hernandes; Aguiar, Lais Mattos de; Rosa, Carlos Eduardo da

    2017-01-01

    The herbicide atrazine has been used worldwide with subsequent residual contamination of water and food, which may cause adverse effects on non-target organisms. Animal exposure to this herbicide may affect development, reproduction and energy metabolism. Here, the effects of atrazine regarding survival and redox metabolism were assessed in the fruit fly D. melanogaster exposed during embryonic and larval development. The embryos (newly fertilized eggs) were exposed to different atrazine concentrations (10μM and 100μM) in the diet until the adult fly emerged. Pupation and emergence rates, developmental time and sex ratio were determined as well as oxidative stress parameters and gene expression of the antioxidant defence system were evaluated in newly emerged male and female flies. Atrazine exposure reduced pupation and emergence rates in fruit flies without alterations to developmental time and sex ratio. Different redox imbalance patterns were observed between males and females exposed to atrazine. Atrazine caused an increase in oxidative damage, reactive oxygen species generation and antioxidant capacity and decreased thiol-containing molecules. Further, atrazine exposure altered the mRNA expression of antioxidant genes (keap1, sod, sod2, cat, irc, gss, gclm, gclc, trxt, trxr-1 and trxr-2). Reductions in fruit fly larval and pupal viability observed here are likely consequences of the oxidative stress induced by atrazine exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila.

    Science.gov (United States)

    Saumweber, Timo; Rohwedder, Astrid; Schleyer, Michael; Eichler, Katharina; Chen, Yi-Chun; Aso, Yoshinori; Cardona, Albert; Eschbach, Claire; Kobler, Oliver; Voigt, Anne; Durairaja, Archana; Mancini, Nino; Zlatic, Marta; Truman, James W; Thum, Andreas S; Gerber, Bertram

    2018-03-16

    The brain adaptively integrates present sensory input, past experience, and options for future action. The insect mushroom body exemplifies how a central brain structure brings about such integration. Here we use a combination of systematic single-cell labeling, connectomics, transgenic silencing, and activation experiments to study the mushroom body at single-cell resolution, focusing on the behavioral architecture of its input and output neurons (MBINs and MBONs), and of the mushroom body intrinsic APL neuron. Our results reveal the identity and morphology of almost all of these 44 neurons in stage 3 Drosophila larvae. Upon an initial screen, functional analyses focusing on the mushroom body medial lobe uncover sparse and specific functions of its dopaminergic MBINs, its MBONs, and of the GABAergic APL neuron across three behavioral tasks, namely odor preference, taste preference, and associative learning between odor and taste. Our results thus provide a cellular-resolution study case of how brains organize behavior.

  1. Conditionally Pathogenic Gut Microbes Promote Larval Growth by Increasing Redox-Dependent Fat Storage in High-Sugar Diet-Fed Drosophila.

    Science.gov (United States)

    Whon, Tae Woong; Shin, Na-Ri; Jung, Mi-Ja; Hyun, Dong-Wook; Kim, Hyun Sik; Kim, Pil Soo; Bae, Jin-Woo

    2017-12-01

    Changes in the composition of the gut microbiota contribute to the development of obesity and subsequent complications that are associated with metabolic syndrome. However, the role of increased numbers of certain bacterial species during the progress of obesity and factor(s) controlling the community structure of gut microbiota remain unclear. Here, we demonstrate the inter-relationship between Drosophila melanogaster and their resident gut microbiota under chronic high-sugar diet (HSD) conditions. Chronic feeding of an HSD to Drosophila resulted in a predominance of resident uracil-secreting bacteria in the gut. Axenic insects mono-associated with uracil-secreting bacteria or supplemented with uracil under HSD conditions promoted larval development. Redox signaling induced by bacterial uracil promoted larval growth by regulating sugar and lipid metabolism via activation of p38a mitogen-activated protein kinase. The present study identified a new redox-dependent mechanism by which uracil-secreting bacteria (previously regarded as opportunistic pathobionts) protect the host from metabolic perturbation under chronic HSD conditions. These results illustrate how Drosophila and gut microbes form a symbiotic relationship under stress conditions, and changes in the gut microbiota play an important role in alleviating deleterious diet-derived effects such as hyperglycemia. Antioxid. Redox Signal. 27, 1361-1380.

  2. A Model of the Spatio-temporal Dynamics of Drosophila Eye Disc Development.

    Science.gov (United States)

    Fried, Patrick; Sánchez-Aragón, Máximo; Aguilar-Hidalgo, Daniel; Lehtinen, Birgitta; Casares, Fernando; Iber, Dagmar

    2016-09-01

    Patterning and growth are linked during early development and have to be tightly controlled to result in a functional tissue or organ. During the development of the Drosophila eye, this linkage is particularly clear: the growth of the eye primordium mainly results from proliferating cells ahead of the morphogenetic furrow (MF), a moving signaling wave that sweeps across the tissue from the posterior to the anterior side, that induces proliferating cells anterior to it to differentiate and become cell cycle quiescent in its wake. Therefore, final eye disc size depends on the proliferation rate of undifferentiated cells and on the speed with which the MF sweeps across the eye disc. We developed a spatio-temporal model of the growing eye disc based on the regulatory interactions controlled by the signals Decapentaplegic (Dpp), Hedgehog (Hh) and the transcription factor Homothorax (Hth) and explored how the signaling patterns affect the movement of the MF and impact on eye disc growth. We used published and new quantitative data to parameterize the model. In particular, two crucial parameter values, the degradation rate of Hth and the diffusion coefficient of Hh, were measured. The model is able to reproduce the linear movement of the MF and the termination of growth of the primordium. We further show that the model can explain several mutant phenotypes, but fails to reproduce the previously observed scaling of the Dpp gradient in the anterior compartment.

  3. A Model of the Spatio-temporal Dynamics of Drosophila Eye Disc Development.

    Directory of Open Access Journals (Sweden)

    Patrick Fried

    2016-09-01

    Full Text Available Patterning and growth are linked during early development and have to be tightly controlled to result in a functional tissue or organ. During the development of the Drosophila eye, this linkage is particularly clear: the growth of the eye primordium mainly results from proliferating cells ahead of the morphogenetic furrow (MF, a moving signaling wave that sweeps across the tissue from the posterior to the anterior side, that induces proliferating cells anterior to it to differentiate and become cell cycle quiescent in its wake. Therefore, final eye disc size depends on the proliferation rate of undifferentiated cells and on the speed with which the MF sweeps across the eye disc. We developed a spatio-temporal model of the growing eye disc based on the regulatory interactions controlled by the signals Decapentaplegic (Dpp, Hedgehog (Hh and the transcription factor Homothorax (Hth and explored how the signaling patterns affect the movement of the MF and impact on eye disc growth. We used published and new quantitative data to parameterize the model. In particular, two crucial parameter values, the degradation rate of Hth and the diffusion coefficient of Hh, were measured. The model is able to reproduce the linear movement of the MF and the termination of growth of the primordium. We further show that the model can explain several mutant phenotypes, but fails to reproduce the previously observed scaling of the Dpp gradient in the anterior compartment.

  4. Identification of Inhibitory Premotor Interneurons Activated at a Late Phase in a Motor Cycle during Drosophila Larval Locomotion.

    Directory of Open Access Journals (Sweden)

    Yuki Itakura

    Full Text Available Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs. Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons, that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs. We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs' wave-like activity lagged

  5. Modeling bistable cell-fate choices in the Drosophila eye: qualitative and quantitative perspectives

    Science.gov (United States)

    Graham, Thomas G. W.; Tabei, S. M. Ali; Dinner, Aaron R.; Rebay, Ilaria

    2010-01-01

    A major goal of developmental biology is to understand the molecular mechanisms whereby genetic signaling networks establish and maintain distinct cell types within multicellular organisms. Here, we review cell-fate decisions in the developing eye of Drosophila melanogaster and the experimental results that have revealed the topology of the underlying signaling circuitries. We then propose that switch-like network motifs based on positive feedback play a central role in cell-fate choice, and discuss how mathematical modeling can be used to understand and predict the bistable or multistable behavior of such networks. PMID:20570936

  6. Pox neuro control of cell lineages that give rise to larval poly-innervated external sensory organs in Drosophila.

    Science.gov (United States)

    Jiang, Yanrui; Boll, Werner; Noll, Markus

    2015-01-15

    The Pox neuro (Poxn) gene of Drosophila plays a crucial role in the development of poly-innervated external sensory (p-es) organs. However, how Poxn exerts this role has remained elusive. In this study, we have analyzed the cell lineages of all larval p-es organs, namely of the kölbchen, papilla 6, and hair 3. Surprisingly, these lineages are distinct from any previously reported cell lineages of sensory organs. Unlike the well-established lineage of mono-innervated external sensory (m-es) organs and a previously proposed model of the p-es lineage, we demonstrate that all wild-type p-es lineages exhibit the following features: the secondary precursor, pIIa, gives rise to all three support cells-socket, shaft, and sheath, whereas the other secondary precursor, pIIb, is neuronal and gives rise to all neurons. We further show that in one of the p-es lineages, that of papilla 6, one cell undergoes apoptosis. By contrast in Poxn null mutants, all p-es lineages have a reduced number of cells and their pattern of cell divisions is changed to that of an m-es organ, with the exception of a lineage in a minority of mutant kölbchen that retains a second bipolar neuron. Indeed, the role of Poxn in p-es lineages is consistent with the specification of the developmental potential of secondary precursors and the regulation of cell division but not apoptosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. The impact of odor-reward memory on chemotaxis in larval Drosophila.

    Science.gov (United States)

    Schleyer, Michael; Reid, Samuel F; Pamir, Evren; Saumweber, Timo; Paisios, Emmanouil; Davies, Alexander; Gerber, Bertram; Louis, Matthieu

    2015-05-01

    How do animals adaptively integrate innate with learned behavioral tendencies? We tackle this question using chemotaxis as a paradigm. Chemotaxis in the Drosophila larva largely results from a sequence of runs and oriented turns. Thus, the larvae minimally need to determine (i) how fast to run, (ii) when to initiate a turn, and (iii) where to direct a turn. We first report how odor-source intensities modulate these decisions to bring about higher levels of chemotactic performance for higher odor-source intensities during innate chemotaxis. We then examine whether the same modulations are responsible for alterations of chemotactic performance by learned odor "valence" (understood throughout as level of attractiveness). We find that run speed (i) is neither modulated by the innate nor by the learned valence of an odor. Turn rate (ii), however, is modulated by both: the higher the innate or learned valence of the odor, the less often larvae turn whenever heading toward the odor source, and the more often they turn when heading away. Likewise, turning direction (iii) is modulated concordantly by innate and learned valence: turning is biased more strongly toward the odor source when either innate or learned valence is high. Using numerical simulations, we show that a modulation of both turn rate and of turning direction is sufficient to account for the empirically found differences in preference scores across experimental conditions. Our results suggest that innate and learned valence organize adaptive olfactory search behavior by their summed effects on turn rate and turning direction, but not on run speed. This work should aid studies into the neural mechanisms by which memory impacts specific aspects of behavior. © 2015 Schleyer et al.; Published by Cold Spring Harbor Laboratory Press.

  8. The impact of odor–reward memory on chemotaxis in larval Drosophila

    Science.gov (United States)

    Schleyer, Michael; Reid, Samuel F.; Pamir, Evren; Saumweber, Timo; Paisios, Emmanouil; Davies, Alexander

    2015-01-01

    How do animals adaptively integrate innate with learned behavioral tendencies? We tackle this question using chemotaxis as a paradigm. Chemotaxis in the Drosophila larva largely results from a sequence of runs and oriented turns. Thus, the larvae minimally need to determine (i) how fast to run, (ii) when to initiate a turn, and (iii) where to direct a turn. We first report how odor-source intensities modulate these decisions to bring about higher levels of chemotactic performance for higher odor-source intensities during innate chemotaxis. We then examine whether the same modulations are responsible for alterations of chemotactic performance by learned odor “valence” (understood throughout as level of attractiveness). We find that run speed (i) is neither modulated by the innate nor by the learned valence of an odor. Turn rate (ii), however, is modulated by both: the higher the innate or learned valence of the odor, the less often larvae turn whenever heading toward the odor source, and the more often they turn when heading away. Likewise, turning direction (iii) is modulated concordantly by innate and learned valence: turning is biased more strongly toward the odor source when either innate or learned valence is high. Using numerical simulations, we show that a modulation of both turn rate and of turning direction is sufficient to account for the empirically found differences in preference scores across experimental conditions. Our results suggest that innate and learned valence organize adaptive olfactory search behavior by their summed effects on turn rate and turning direction, but not on run speed. This work should aid studies into the neural mechanisms by which memory impacts specific aspects of behavior. PMID:25887280

  9. The Drosophila BTB domain protein Jim Lovell has roles in multiple larval and adult behaviors.

    Directory of Open Access Journals (Sweden)

    Sonia M Bjorum

    Full Text Available Innate behaviors have their origins in the specification of neural fates during development. Within Drosophila, BTB (Bric-a-brac,Tramtrack, Broad domain proteins such as Fruitless are known to play key roles in the neural differentiation underlying such responses. We previously identified a gene, which we have termed jim lovell (lov, encoding a BTB protein with a role in gravity responses. To understand more fully the behavioral roles of this gene we have investigated its function through several approaches. Transcript and protein expression patterns have been examined and behavioral phenotypes of new lov mutations have been characterized. Lov is a nuclear protein, suggesting a role as a transcriptional regulator, as for other BTB proteins. In late embryogenesis, Lov is expressed in many CNS and PNS neurons. An examination of the PNS expression indicates that lov functions in the late specification of several classes of sensory neurons. In particular, only two of the five abdominal lateral chordotonal neurons express Lov, predicting functional variation within this highly similar group. Surprisingly, Lov is also expressed very early in embryogenesis in ways that suggests roles in morphogenetic movements, amnioserosa function and head neurogenesis. The phenotypes of two new lov mutations that delete adjacent non-coding DNA regions are strikingly different suggesting removal of different regulatory elements. In lov(47 , Lov expression is lost in many embryonic neurons including the two lateral chordotonal neurons. lov(47 mutant larvae show feeding and locomotor defects including spontaneous backward movement. Adult lov(47 males perform aberrant courtship behavior distinguished by courtship displays that are not directed at the female. lov(47 adults also show more defective negative gravitaxis than the previously isolated lov(91Y mutant. In contrast, lov(66 produces largely normal behavior but severe female sterility associated with ectopic lov

  10. A role for the deep orange and carnation eye color genes in lysosomal delivery in Drosophila.

    Science.gov (United States)

    Sevrioukov, E A; He, J P; Moghrabi, N; Sunio, A; Krämer, H

    1999-10-01

    Deep orange and carnation are two of the classic eye color genes in Drosophila. Here, we demonstrate that Deep orange is part of a protein complex that localizes to endosomal compartments. A second component of this complex is Carnation, a homolog of Sec1p-like regulators of membrane fusion. Because complete loss of deep orange function is lethal, the role of this complex in intracellular trafficking was analyzed in deep orange mutant clones. Retinal cells devoid of deep orange function completely lacked pigmentation and exhibited exaggerated multivesicular structures. Furthermore, a defect in endocytic trafficking was visualized in developing photoreceptor cells. These results provide direct evidence that eye color mutations of the granule group also disrupt vesicular trafficking to lysosomes.

  11. Multitasking in an eye: the unusual organization of the Thermonectus marmoratus principal larval eyes allows for far and near vision and might aid in depth perception.

    Science.gov (United States)

    Stowasser, Annette; Buschbeck, Elke K

    2014-07-15

    Very few visual systems diverge fundamentally from the basic plans of well-studied animal eyes. However, investigating those that do can provide novel insights into visual system function. A particularly unusual system exists in the principal larval eyes of a visually guided aquatic predator, the sunburst diving beetle, Thermonectus marmoratus (Coleoptera: Dystiscidae). These eyes are characterized by complex layered distal and proximal retinas. We previously reported that their principal eye E2 has a bifocal lens, and previous behavioral experiments suggested that these larvae have a unilateral range-finding mechanism that may involve their bizarre eye organization. In the present study, we expanded our optical measurements and found that: (1) E1 also has a bifocal lens, (2) E1 is best suited for far vision while E2 is best suited for near vision and (3) throughout their typical hunting range, the positions of focused images shift across specific retinal layers. This anatomical and optical organization in principle could support unilateral range finding. Taken together, our findings outline an unusual visual mechanism that is likely to be essential for the extraordinary hunting ability of these larvae. © 2014. Published by The Company of Biologists Ltd.

  12. Characterization of a morphogenetic furrow specific Gal4 driver in the developing Drosophila eye.

    Directory of Open Access Journals (Sweden)

    Ankita Sarkar

    Full Text Available The ability to express a gene of interest in a spatio-temporal manner using Gal4-UAS system has allowed the use of Drosophila model to study various biological phenomenon. During Drosophila eye development, a synchronous wave of differentiation called Morphogenetic furrow (MF initiates at the posterior margin resulting in differentiation of retinal neurons. This synchronous differentiation is also observed in the differentiating retina of vertebrates. Since MF is highly dynamic, it can serve as an excellent model to study patterning and differentiation. However, there are not any Gal4 drivers available to observe the gain- of- function or loss- of- function of a gene specifically along the dynamic MF. The decapentaplegic (dpp gene encodes a secreted protein of the transforming growth factor-beta (TGF-beta superfamily that expresses at the posterior margin and then moves with the MF. However, unlike the MF associated pattern of dpp gene expression, the targeted dpp-Gal4 driver expression is restricted to the posterior margin of the developing eye disc. We screened GMR lines harboring regulatory regions of dpp fused with Gal4 coding region to identify MF specific enhancer of dpp using a GFP reporter gene. We employed immuno-histochemical approaches to detect gene expression. The rationale was that GFP reporter expression will correspond to the dpp expression domain in the developing eye. We identified two new dpp-Gal4 lines, viz., GMR17E04-Gal4 and GMR18D08-Gal4 that carry sequences from first intron region of dpp gene. GMR17E04-Gal4 drives expression along the MF during development and later in the entire pupal retina whereas GMR18D08-Gal4 drives expression of GFP transgene in the entire developing eye disc, which later drives expression only in the ventral half of the pupal retina. Thus, GMR18D08-Gal4 will serve as a new reagent for targeting gene expression in the ventral half of the pupal retina. We compared misexpression phenotypes of Wg, a

  13. Opsin expression in Limulus eyes: a UV opsin is expressed in each eye type and co-expressed with a visible light-sensitive opsin in ventral larval eyes.

    Science.gov (United States)

    Battelle, Barbara-Anne; Kempler, Karen E; Harrison, Alexandra; Dugger, Donald R; Payne, Richard

    2014-09-01

    The eyes of the horseshoe crab, Limulus polyphemus, are a model for studies of visual function and the visual systems of euarthropods. Much is known about the structure and function of L. polyphemus photoreceptors, much less about their photopigments. Three visible-light-sensitive L. polyphemus opsins were characterized previously (LpOps1, 2 and 5). Here we characterize a UV opsin (LpUVOps1) that is expressed in all three types of L. polyphemus eyes. It is expressed in most photoreceptors in median ocelli, the only L. polyphemus eyes in which UV sensitivity was previously detected, and in the dendrite of eccentric cells in lateral compound eyes. Therefore, eccentric cells, previously thought to be non-photosensitive second-order neurons, may actually be UV-sensitive photoreceptors. LpUVOps1 is also expressed in small photoreceptors in L. polyphemus ventral larval eyes, and intracellular recordings from these photoreceptors confirm that LpUVOps1 is an active, UV-sensitive photopigment. These photoreceptors also express LpOps5, which we demonstrate is an active, long-wavelength-sensitive photopigment. Thus small photoreceptors in ventral larval eyes, and probably those of the other larval eyes, have dual sensitivity to UV and visible light. Interestingly, the spectral tuning of small ventral photoreceptors may change day to night, because the level of LpOps5 in their rhabdoms is lower during the day than during the night, whereas LpUVOps1 levels show no diurnal change. These and previous findings show that opsin co-expression and the differential regulation of co-expressed opsins in rhabdoms is a common feature of L. polyphemus photoreceptors. © 2014. Published by The Company of Biologists Ltd.

  14. dHb9 expressing larval motor neurons persist through metamorphosis to innervate adult-specific muscle targets and function in Drosophila eclosion.

    Science.gov (United States)

    Banerjee, Soumya; Toral, Marcus; Siefert, Matthew; Conway, David; Dorr, Meredith; Fernandes, Joyce

    2016-12-01

    The Drosophila larval nervous system is radically restructured during metamorphosis to produce adult specific neural circuits and behaviors. Genesis of new neurons, death of larval neurons and remodeling of those neurons that persistent collectively act to shape the adult nervous system. Here, we examine the fate of a subset of larval motor neurons during this restructuring process. We used a dHb9 reporter, in combination with the FLP/FRT system to individually identify abdominal motor neurons in the larval to adult transition using a combination of relative cell body location, axonal position, and muscle targets. We found that segment specific cell death of some dHb9 expressing motor neurons occurs throughout the metamorphosis period and continues into the post-eclosion period. Many dHb9 > GFP expressing neurons however persist in the two anterior hemisegments, A1 and A2, which have segment specific muscles required for eclosion while a smaller proportion also persist in A2-A5. Consistent with a functional requirement for these neurons, ablating them during the pupal period produces defects in adult eclosion. In adults, subsequent to the execution of eclosion behaviors, the NMJs of some of these neurons were found to be dismantled and their muscle targets degenerate. Our studies demonstrate a critical continuity of some larval motor neurons into adults and reveal that multiple aspects of motor neuron remodeling and plasticity that are essential for adult motor behaviors. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1387-1416, 2016. © 2016 Wiley Periodicals, Inc.

  15. New Dystrophin/Dystroglycan interactors control neuron behavior in Drosophila eye

    Directory of Open Access Journals (Sweden)

    Rishko Valentyna M

    2011-09-01

    Full Text Available Abstract Background The Dystrophin Glycoprotein Complex (DGC is a large multi-component complex that is well known for its function in muscle tissue. When the main components of the DGC, Dystrophin (Dys and Dystroglycan (Dg are affected cognitive impairment and mental retardation in addition to muscle degeneration can occur. Previously we performed an array of genetic screens using a Drosophila model for muscular dystrophy in order to find novel DGC interactors aiming to elucidate the signaling role(s in which the complex is involved. Since the function of the DGC in the brain and nervous system has not been fully defined, we have here continued to analyze the DGC modifiers' function in the developing Drosophila brain and eye. Results Given that disruption of Dys and Dg leads to improper photoreceptor axon projections into the lamina and eye neuron elongation defects during development, we have determined the function of previously screened components and their genetic interaction with the DGC in this tissue. Our study first found that mutations in chif, CG34400, Nrk, Lis1, capt and Cam cause improper axon path-finding and loss of SP2353, Grh, Nrk, capt, CG34400, vimar, Lis1 and Cam cause shortened rhabdomere lengths. We determined that Nrk, mbl, capt and Cam genetically interact with Dys and/or Dg in these processes. It is notable that most of the neuronal DGC interacting components encountered are involved in regulation of actin dynamics. Conclusions Our data indicate possible DGC involvement in the process of cytoskeletal remodeling in neurons. The identification of new components that interact with the DGC not only helps to dissect the mechanism of axon guidance and eye neuron differentiation but also provides a great opportunity for understanding the signaling mechanisms by which the cell surface receptor Dg communicates via Dys with the actin cytoskeleton.

  16. Control of G1 in the developing Drosophila eye: rca1 regulates Cyclin A.

    Science.gov (United States)

    Dong, X; Zavitz, K H; Thomas, B J; Lin, M; Campbell, S; Zipursky, S L

    1997-01-01

    In the developing eye of Drosophila melanogaster, cells become synchronized in the G1 phase of the cell cycle just prior to the onset of cellular differentiation and morphogenesis. In roughex (rux) mutants, cells enter S phase precociously because of ectopic activation of a Cyclin A/Cdk complex in early G1. This leads to defects in cell fate and pattern formation, and results in abnormalities in the morphology of the adult eye. A screen for dominant suppressors of the rux eye phenotype led to the identification of mutations in cyclin A, string (cdc25), and new cell cycle genes. One of these genes, regulator of cyclin A (rca1), encodes a novel protein required for both mitotic and meiotic cell cycle progression. rca1 mutants arrest in G2 of embryonic cell cycle 16 with a phenotype very similar to cyclin A loss of function mutants. Expression of rca1 transgenes in G1 or in postmitotic neurons promotes Cyclin A protein accumulation and drives cells into S phase in a Cyclin A-dependent fashion.

  17. Genomewide Clonal Analysis of Lethal Mutations in the Drosophila melanogaster Eye: Comparison of the X Chromosome and Autosomes

    Science.gov (United States)

    Call, Gerald B.; Olson, John M.; Chen, Jiong; Villarasa, Nikki; Ngo, Kathy T.; Yabroff, Allison M.; Cokus, Shawn; Pellegrini, Matteo; Bibikova, Elena; Bui, Chris; Cespedes, Albert; Chan, Cheryl; Chan, Stacy; Cheema, Amrita K.; Chhabra, Akanksha; Chitsazzadeh, Vida; Do, Minh-Tu; Fang, Q. Angela; Folick, Andrew; Goodstein, Gelsey L.; Huang, Cheng R.; Hung, Tony; Kim, Eunha; Kim, William; Kim, Yulee; Kohan, Emil; Kuoy, Edward; Kwak, Robert; Lee, Eric; Lee, JiEun; Lin, Henry; Liu, H-C. Angela; Moroz, Tatiana; Prasad, Tharani; Prashad, Sacha L.; Patananan, Alexander N.; Rangel, Alma; Rosselli, Desiree; Sidhu, Sohrab; Sitz, Daniel; Taber, Chelsea E.; Tan, Jingwen; Topp, Kasey; Tran, PhuongThao; Tran, Quynh-Minh; Unkovic, Mary; Wells, Maggie; Wickland, Jessica; Yackle, Kevin; Yavari, Amir; Zaretsky, Jesse M.; Allen, Christopher M.; Alli, Latifat; An, Ju; Anwar, Abbas; Arevalo, Sonia; Ayoub, Danny; Badal, Shawn S.; Baghdanian, Armonde; Baghdanian, Arthur H.; Baumann, Sara A.; Becerra, Vivian N.; Chan, Hei J.; Chang, Aileen E.; Cheng, Xibin A.; Chin, Mabel; Chong, Fleurette; Crisostomo, Carlyn; Datta, Sanjit; Delosreyes, Angela; Diep, Francie; Ekanayake, Preethika; Engeln, Mark; Evers, Elizabeth; Farshidi, Farzin; Fischer, Katrina; Formanes, Arlene J.; Gong, Jun; Gupta, Riju; Haas, Blake E.; Hahm, Vicky; Hsieh, Michael; Hui, James Z.; Iao, Mei L.; Jin, Sophia D.; Kim, Angela Y.; Kim, Lydia S-H.; King, Megan; Knudsen-Robbins, Chloe; Kohanchi, David; Kovshilovskaya, Bogdana; Ku, Amy; Kung, Raymond W.; Landig, Mark E. L.; Latterman, Stephanie S.; Lauw, Stephanie S.; Lee, Daniel S.; Lee, Joann S.; Lei, Kai C.; Leung, Lesley L.; Lerner, Renata; Lin, Jian-ya; Lin, Kathleen; Lim, Bryon C.; Lui, Crystal P. Y.; Liu, Tiffany Q.; Luong, Vincent; Makshanoff, Jacob; Mei, An-Chi; Meza, Miguel; Mikhaeil, Yara A.; Moarefi, Majid; Nguyen, Long H.; Pai, Shekhar S.; Pandya, Manish; Patel, Aadit R.; Picard, Paul D.; Safaee, Michael M.; Salame, Carol; Sanchez, Christian; Sanchez, Nina; Seifert, Christina C.; Shah, Abhishek; Shilgevorkyan, Oganes H.; Singh, Inderroop; Soma, Vanessa; Song, Junia J.; Srivastava, Neetika; Sta.Ana, Jennifer L.; Sun, Christie; Tan, Diane; Teruya, Alison S.; Tikia, Robyn; Tran, Trinh; Travis, Emily G.; Trinh, Jennifer D.; Vo, Diane; Walsh, Thomas; Wong, Regan S.; Wu, Katherine; Wu, Ya-Whey; Yang, Nkau X. V.; Yeranosian, Michael; Yu, James S.; Zhou, Jennifer J.; Zhu, Ran X.; Abrams, Anna; Abramson, Amanda; Amado, Latiffe; Anderson, Jenny; Bashour, Keenan; Beyer, Elsa; Bookatz, Allen; Brewer, Sarah; Buu, Natalie; Calvillo, Stephanie; Cao, Joseph; Chan, Amy; Chan, Jenny; Chang, Aileen; Chang, Daniel; Chang, Yuli; Chen, YiBing; Choi, Joo; Chou, Jeyling; Dang, Peter; Datta, Sumit; Davarifar, Ardy; Deravanesian, Artemis; Desai, Poonam; Fabrikant, Jordan; Farnad, Shahbaz; Fu, Katherine; Garcia, Eddie; Garrone, Nick; Gasparyan, Srpouhi; Gayda, Phyllis; Go, Sherrylene; Goffstein, Chad; Gonzalez, Courtney; Guirguis, Mariam; Hassid, Ryan; Hermogeno, Brenda; Hong, Julie; Hong, Aria; Hovestreydt, Lindsay; Hu, Charles; Huff, Devon; Jamshidian, Farid; Jen, James; Kahen, Katrin; Kao, Linda; Kelley, Melissa; Kho, Thomas; Kim, Yein; Kim, Sarah; Kirkpatrick, Brian; Langenbacher, Adam; Laxamana, Santino; Lee, Janet; Lee, Chris; Lee, So-Youn; Lee, ToHang S.; Lee, Toni; Lewis, Gemma; Lezcano, Sheila; Lin, Peter; Luu, Thanh; Luu, Julie; Marrs, Will; Marsh, Erin; Marshall, Jamie; Min, Sarah; Minasian, Tanya; Minye, Helena; Misra, Amit; Morimoto, Miles; Moshfegh, Yasaman; Murray, Jessica; Nguyen, Kha; Nguyen, Cynthia; Nodado, Ernesto; O'Donahue, Amanda; Onugha, Ndidi; Orjiakor, Nneka; Padhiar, Bhavin; Paul, Eric; Pavel-Dinu, Mara; Pavlenko, Alex; Paz, Edwin; Phaklides, Sarah; Pham, Lephong; Poulose, Preethi; Powell, Russell; Pusic, Aya; Ramola, Divi; Regalia, Kirsten; Ribbens, Meghann; Rifai, Bassel; Saakyan, Manyak; Saarikoski, Pamela; Segura, Miriam; Shadpour, Farnaz; Shemmassian, Aram; Singh, Ramnik; Singh, Vivek; Skinner, Emily; Solomin, Daniel; Soneji, Kosha; Spivey, Kristin; Stageberg, Erika; Stavchanskiy, Marina; Tekchandani, Leena; Thai, Leo; Thiyanaratnam, Jayantha; Tong, Maurine; Toor, Aneet; Tovar, Steve; Trangsrud, Kelly; Tsang, Wah-Yung; Uemura, Marc; Vollmer, Emily; Weiss, Emily; Wood, Damien; Wu, Joy; Wu, Sophia; Wu, Winston; Xu, Qing; Yamauchi, Yuki; Yarosh, Will; Yee, Laura; Yen, George; Banerjee, Utpal

    2007-01-01

    Using a large consortium of undergraduate students in an organized program at the University of California, Los Angeles (UCLA), we have undertaken a functional genomic screen in the Drosophila eye. In addition to the educational value of discovery-based learning, this article presents the first comprehensive genomewide analysis of essential genes involved in eye development. The data reveal the surprising result that the X chromosome has almost twice the frequency of essential genes involved in eye development as that found on the autosomes. PMID:17720911

  18. Genomewide clonal analysis of lethal mutations in the Drosophila melanogaster eye: comparison of the X chromosome and autosomes.

    Science.gov (United States)

    Call, Gerald B; Olson, John M; Chen, Jiong; Villarasa, Nikki; Ngo, Kathy T; Yabroff, Allison M; Cokus, Shawn; Pellegrini, Matteo; Bibikova, Elena; Bui, Chris; Cespedes, Albert; Chan, Cheryl; Chan, Stacy; Cheema, Amrita K; Chhabra, Akanksha; Chitsazzadeh, Vida; Do, Minh-Tu; Fang, Q Angela; Folick, Andrew; Goodstein, Gelsey L; Huang, Cheng R; Hung, Tony; Kim, Eunha; Kim, William; Kim, Yulee; Kohan, Emil; Kuoy, Edward; Kwak, Robert; Lee, Eric; Lee, JiEun; Lin, Henry; Liu, H-C Angela; Moroz, Tatiana; Prasad, Tharani; Prashad, Sacha L; Patananan, Alexander N; Rangel, Alma; Rosselli, Desiree; Sidhu, Sohrab; Sitz, Daniel; Taber, Chelsea E; Tan, Jingwen; Topp, Kasey; Tran, PhuongThao; Tran, Quynh-Minh; Unkovic, Mary; Wells, Maggie; Wickland, Jessica; Yackle, Kevin; Yavari, Amir; Zaretsky, Jesse M; Allen, Christopher M; Alli, Latifat; An, Ju; Anwar, Abbas; Arevalo, Sonia; Ayoub, Danny; Badal, Shawn S; Baghdanian, Armonde; Baghdanian, Arthur H; Baumann, Sara A; Becerra, Vivian N; Chan, Hei J; Chang, Aileen E; Cheng, Xibin A; Chin, Mabel; Chong, Fleurette; Crisostomo, Carlyn; Datta, Sanjit; Delosreyes, Angela; Diep, Francie; Ekanayake, Preethika; Engeln, Mark; Evers, Elizabeth; Farshidi, Farzin; Fischer, Katrina; Formanes, Arlene J; Gong, Jun; Gupta, Riju; Haas, Blake E; Hahm, Vicky; Hsieh, Michael; Hui, James Z; Iao, Mei L; Jin, Sophia D; Kim, Angela Y; Kim, Lydia S-H; King, Megan; Knudsen-Robbins, Chloe; Kohanchi, David; Kovshilovskaya, Bogdana; Ku, Amy; Kung, Raymond W; Landig, Mark E L; Latterman, Stephanie S; Lauw, Stephanie S; Lee, Daniel S; Lee, Joann S; Lei, Kai C; Leung, Lesley L; Lerner, Renata; Lin, Jian-ya; Lin, Kathleen; Lim, Bryon C; Lui, Crystal P Y; Liu, Tiffany Q; Luong, Vincent; Makshanoff, Jacob; Mei, An-Chi; Meza, Miguel; Mikhaeil, Yara A; Moarefi, Majid; Nguyen, Long H; Pai, Shekhar S; Pandya, Manish; Patel, Aadit R; Picard, Paul D; Safaee, Michael M; Salame, Carol; Sanchez, Christian; Sanchez, Nina; Seifert, Christina C; Shah, Abhishek; Shilgevorkyan, Oganes H; Singh, Inderroop; Soma, Vanessa; Song, Junia J; Srivastava, Neetika; StaAna, Jennifer L; Sun, Christie; Tan, Diane; Teruya, Alison S; Tikia, Robyn; Tran, Trinh; Travis, Emily G; Trinh, Jennifer D; Vo, Diane; Walsh, Thomas; Wong, Regan S; Wu, Katherine; Wu, Ya-Whey; Yang, Nkau X V; Yeranosian, Michael; Yu, James S; Zhou, Jennifer J; Zhu, Ran X; Abrams, Anna; Abramson, Amanda; Amado, Latiffe; Anderson, Jenny; Bashour, Keenan; Beyer, Elsa; Bookatz, Allen; Brewer, Sarah; Buu, Natalie; Calvillo, Stephanie; Cao, Joseph; Chan, Amy; Chan, Jenny; Chang, Aileen; Chang, Daniel; Chang, Yuli; Chen, YiBing; Choi, Joo; Chou, Jeyling; Dang, Peter; Datta, Sumit; Davarifar, Ardy; Deravanesian, Artemis; Desai, Poonam; Fabrikant, Jordan; Farnad, Shahbaz; Fu, Katherine; Garcia, Eddie; Garrone, Nick; Gasparyan, Srpouhi; Gayda, Phyllis; Go, Sherrylene; Goffstein, Chad; Gonzalez, Courtney; Guirguis, Mariam; Hassid, Ryan; Hermogeno, Brenda; Hong, Julie; Hong, Aria; Hovestreydt, Lindsay; Hu, Charles; Huff, Devon; Jamshidian, Farid; Jen, James; Kahen, Katrin; Kao, Linda; Kelley, Melissa; Kho, Thomas; Kim, Yein; Kim, Sarah; Kirkpatrick, Brian; Langenbacher, Adam; Laxamana, Santino; Lee, Janet; Lee, Chris; Lee, So-Youn; Lee, ToHang S; Lee, Toni; Lewis, Gemma; Lezcano, Sheila; Lin, Peter; Luu, Thanh; Luu, Julie; Marrs, Will; Marsh, Erin; Marshall, Jamie; Min, Sarah; Minasian, Tanya; Minye, Helena; Misra, Amit; Morimoto, Miles; Moshfegh, Yasaman; Murray, Jessica; Nguyen, Kha; Nguyen, Cynthia; Nodado, Ernesto; O'Donahue, Amanda; Onugha, Ndidi; Orjiakor, Nneka; Padhiar, Bhavin; Paul, Eric; Pavel-Dinu, Mara; Pavlenko, Alex; Paz, Edwin; Phaklides, Sarah; Pham, Lephong; Poulose, Preethi; Powell, Russell; Pusic, Aya; Ramola, Divi; Regalia, Kirsten; Ribbens, Meghann; Rifai, Bassel; Saakyan, Manyak; Saarikoski, Pamela; Segura, Miriam; Shadpour, Farnaz; Shemmassian, Aram; Singh, Ramnik; Singh, Vivek; Skinner, Emily; Solomin, Daniel; Soneji, Kosha; Spivey, Kristin; Stageberg, Erika; Stavchanskiy, Marina; Tekchandani, Leena; Thai, Leo; Thiyanaratnam, Jayantha; Tong, Maurine; Toor, Aneet; Tovar, Steve; Trangsrud, Kelly; Tsang, Wah-Yung; Uemura, Marc; Vollmer, Emily; Weiss, Emily; Wood, Damien; Wu, Joy; Wu, Sophia; Wu, Winston; Xu, Qing; Yamauchi, Yuki; Yarosh, Will; Yee, Laura; Yen, George; Banerjee, Utpal

    2007-10-01

    Using a large consortium of undergraduate students in an organized program at the University of California, Los Angeles (UCLA), we have undertaken a functional genomic screen in the Drosophila eye. In addition to the educational value of discovery-based learning, this article presents the first comprehensive genomewide analysis of essential genes involved in eye development. The data reveal the surprising result that the X chromosome has almost twice the frequency of essential genes involved in eye development as that found on the autosomes.

  19. Genome-wide DNA binding pattern of the homeodomain transcription factor Sine oculis (So in the developing eye of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Barbara Jusiak

    2014-12-01

    Full Text Available The eye of the fruit fly Drosophila melanogaster provides a highly tractable genetic model system for the study of animal development, and many genes that regulate Drosophila eye formation have homologs implicated in human development and disease. Among these is the homeobox gene sine oculis (so, which encodes a homeodomain transcription factor (TF that is both necessary for eye development and sufficient to reprogram a subset of cells outside the normal eye field toward an eye fate. We have performed a genome-wide analysis of So binding to DNA prepared from developing Drosophila eye tissue in order to identify candidate direct targets of So-mediated transcriptional regulation, as described in our recent article [20]. The data are available from NCBI Gene Expression Omnibus (GEO with the accession number GSE52943. Here we describe the methods, data analysis, and quality control of our So ChIP-seq dataset.

  20. Integrins Regulate Apical Constriction via Microtubule Stabilization in the Drosophila Eye Disc Epithelium

    Directory of Open Access Journals (Sweden)

    Vilaiwan M. Fernandes

    2014-12-01

    Full Text Available During morphogenesis, extracellular signals trigger actomyosin contractility in subpopulations of cells to coordinate changes in cell shape. To illuminate the link between signaling-mediated tissue patterning and cytoskeletal remodeling, we study the progression of the morphogenetic furrow (MF, the wave of apical constriction that traverses the Drosophila eye imaginal disc preceding photoreceptor neurogenesis. Apical constriction depends on actomyosin contractility downstream of the Hedgehog (Hh and bone morphogenetic protein (BMP pathways. We identify a role for integrin adhesion receptors in MF progression. We show that Hh and BMP regulate integrin expression, the loss of which disrupts apical constriction and slows furrow progression; conversely, elevated integrins accelerate furrow progression. We present evidence that integrins regulate MF progression by promoting microtubule stabilization, since reducing microtubule stability rescues integrin-mediated furrow acceleration. Thus, integrins act as a genetic link between tissue-level signaling events and morphological change at the cellular level, leading to morphogenesis and neurogenesis in the eye.

  1. TIF-IA-dependent regulation of ribosome synthesis in drosophila muscle is required to maintain systemic insulin signaling and larval growth.

    Directory of Open Access Journals (Sweden)

    Abhishek Ghosh

    2014-10-01

    Full Text Available The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis-a limiting step in ribosome biogenesis-via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs from the brain and increased expression of Imp-L2-a secreted factor that binds and inhibits dILP activity-from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis.

  2. Phospho-regulated Drosophila adducin is a determinant of synaptic plasticity in a complex with Dlg and PIP2 at the larval neuromuscular junction

    Directory of Open Access Journals (Sweden)

    Simon Ji Hau Wang

    2014-11-01

    Full Text Available Adducin is a ubiquitously expressed actin- and spectrin-binding protein involved in cytoskeleton organization, and is regulated through phosphorylation of the myristoylated alanine-rich C-terminal kinase (MARCKS-homology domain by protein kinase C (PKC. We have previously shown that the Drosophila adducin, Hu-li tai shao (Hts, plays a role in larval neuromuscular junction (NMJ growth. Here, we find that the predominant isoforms of Hts at the NMJ contain the MARCKS-homology domain, which is important for interactions with Discs large (Dlg and phosphatidylinositol 4,5-bisphosphate (PIP2. Through the use of Proximity Ligation Assay (PLA, we show that the adducin-like Hts isoforms are in complexes with Dlg and PIP2 at the NMJ. We provide evidence that Hts promotes the phosphorylation and delocalization of Dlg at the NMJ through regulation of the transcript distribution of the PAR-1 and CaMKII kinases in the muscle. We also show that Hts interactions with Dlg and PIP2 are impeded through phosphorylation of the MARCKS-homology domain. These results are further evidence that Hts is a signaling-responsive regulator of synaptic plasticity in Drosophila.

  3. Dystroglycan and mitochondrial ribosomal protein L34 regulate differentiation in the Drosophila eye.

    Directory of Open Access Journals (Sweden)

    Yougen Zhan

    2010-05-01

    Full Text Available Mutations that diminish the function of the extracellular matrix receptor Dystroglycan (DG result in muscular dystrophies, with associated neuronal migration defects in the brain and mental retardation e.g. Muscle Eye Brain Disease. To gain insight into the function of DG in the nervous system we initiated a study to examine its contribution to development of the eye of Drosophila melanogaster. Immuno-histochemistry showed that DG is concentrated on the apical surface of photoreceptors (R cells during specification of cell-fate in the third instar larva and is maintained at this location through early pupal stages. In point mutations that are null for DG we see abortive R cell elongation during differentiation that first appears in the pupa and results in stunted R cells in the adult. Overexpression of DG in R cells results in a small but significant increase in their size. R cell differentiation defects appear at the same stage in a deficiency line Df(2RDg(248 that affects Dg and the neighboring mitochondrial ribosomal gene, mRpL34. In the adult, these flies have severely disrupted R cells as well as defects in the lens and ommatidia. Expression of an mRpL34 transgene rescues much of this phenotype. We conclude that DG does not affect neuronal commitment but functions R cell autonomously to regulate neuronal elongation during differentiation in the pupa. We discuss these findings in view of recent work implicating DG as a regulator of cell metabolism and its genetic interaction with mRpL34, a member of a class of mitochondrial genes essential for normal metabolic function.

  4. The mir-279/996 cluster represses receptor tyrosine kinase signaling to determine cell fates in the Drosophila eye.

    Science.gov (United States)

    Duan, Hong; de Navas, Luis F; Hu, Fuqu; Sun, Kailiang; Mavromatakis, Yannis E; Viets, Kayla; Zhou, Cyrus; Kavaler, Joshua; Johnston, Robert J; Tomlinson, Andrew; Lai, Eric C

    2018-04-09

    Photoreceptors in the crystalline Drosophila eye are recruited by receptor tyrosine kinase (RTK)/Ras signaling mediated by Epidermal growth factor receptor (EGFR) and the Sevenless (Sev) receptor. Analyses of an allelic deletion series of the mir-279/996 locus, along with a panel of modified genomic rescue transgenes, show that Drosophila eye patterning depends on both miRNAs. Transcriptional reporter and activity sensor transgenes reveal expression and function of miR-279/996 in non-neural cells of the developing eye. Moreover, mir-279/996 mutants exhibit substantial numbers of ectopic photoreceptors, particularly of R7, and cone cell loss. These miRNAs restrict RTK signaling in the eye, since mir-279/996 nulls are dominantly suppressed by positive components of the EGFR pathway and enhanced by heterozygosity for an EGFR repressor. miR-279/996 limit photoreceptor recruitment by targeting multiple positive RTK/Ras signaling components that promote photoreceptor/R7 specification. Strikingly, deletion of mir-279/996 sufficiently derepresses RTK/Ras signaling so as to rescue a population of R7 cells in R7-specific RTK null mutants boss and sev , which otherwise completely lack this cell fate. Altogether, we reveal a rare setting of developmental cell specification that involves substantial miRNA control. © 2018. Published by The Company of Biologists Ltd.

  5. winged eye Induces Transdetermination of Drosophila Imaginal Disc by Acting in Concert with a Histone Methyltransferase, Su(var)3-9

    OpenAIRE

    Keita Masuko; Naoyuki Fuse; Kanae Komaba; Tomonori Katsuyama; Rumi Nakajima; Hirofumi Furuhashi; Shoichiro Kurata

    2018-01-01

    Summary: Drosophila imaginal disc cells exhibit a remarkable ability to convert cell fates in response to various perturbations, a phenomenon called transdetermination (TD). We previously identified winged eye (wge) as a factor that induces eye-to-wing TD upon overexpression in eye imaginal discs, but the molecular mechanisms underlying TD have remained largely unclear. Here, we found that wge induces various histone modifications and enhances the methylation of Lys9 on histone H3 (H3K9), a f...

  6. MAPK3 at the Autism-Linked Human 16p11.2 Locus Influences Precise Synaptic Target Selection at Drosophila Larval Neuromuscular Junctions.

    Science.gov (United States)

    Park, Sang Mee; Park, Hae Ryoun; Lee, Ji Hye

    2017-02-01

    Proper synaptic function in neural circuits requires precise pairings between correct pre- and post-synaptic partners. Errors in this process may underlie development of neuropsychiatric disorders, such as autism spectrum disorder (ASD). Development of ASD can be influenced by genetic factors, including copy number variations (CNVs). In this study, we focused on a CNV occurring at the 16p11.2 locus in the human genome and investigated potential defects in synaptic connectivity caused by reduced activities of genes located in this region at Drosophila larval neuromuscular junctions, a well-established model synapse with stereotypic synaptic structures. A mutation of rolled , a Drosophila homolog of human mitogen-activated protein kinase 3 ( MAPK3 ) at the 16p11.2 locus, caused ectopic innervation of axonal branches and their abnormal defasciculation. The specificity of these phenotypes was confirmed by expression of wild-type rolled in the mutant background. Albeit to a lesser extent, we also observed ectopic innervation patterns in mutants defective in Cdk2, Gα q , and Gp93, all of which were expected to interact with Rolled MAPK3. A further genetic analysis in double heterozygous combinations revealed a synergistic interaction between rolled and Gp93 . In addition, results from RT-qPCR analyses indicated consistently reduced rolled mRNA levels in Cdk2 , Gα q , and Gp93 mutants. Taken together, these data suggest a central role of MAPK3 in regulating the precise targeting of presynaptic axons to proper postsynaptic targets, a critical step that may be altered significantly in ASD.

  7. Polycomb group (PcG) proteins and Pax6 cooperate to inhibit in vivo reprogramming of the developing Drosophila eye.

    Science.gov (United States)

    Zhu, Jinjin; Ordway, Alison J; Weber, Lena; Buddika, Kasun; Kumar, Justin P

    2018-04-04

    How different cells and tissues commit to and determine their fates has been a central question in developmental biology since the seminal embryological experiments conducted by Wilhelm Roux and Hans Driesch in sea urchins and frogs. Here, we demonstrate that Polycomb group (PcG) proteins maintain Drosophila eye specification by suppressing the activation of alternative fate choices. The loss of PcG in the developing eye results in a cellular reprogramming event in which the eye is redirected to a wing fate. This fate transformation occurs with either the individual loss of Polycomb proteins or the simultaneous reduction of the Pleiohomeotic repressive complex and Pax6. Interestingly, the requirement for retinal selector genes is limited to Pax6, as the removal of more downstream members does not lead to the eye-wing transformation. We also show that distinct PcG complexes are required during different developmental windows throughout eye formation. These findings build on earlier observations that the eye can be reprogrammed to initiate head epidermis, antennal and leg development. © 2018. Published by The Company of Biologists Ltd.

  8. Evaluation of the recombination in somatic cells induced by radiation in different stages of Drosophila larval development

    International Nuclear Information System (INIS)

    Cruces, M.P.; Morales R, P.

    1997-01-01

    The mitotic recombination can happen spontaneously and its frequency is very low, however the recombination rate of a cell can be increased by the exposure to agents which cause damage to DNA. This type of agents are knew commonly as recombinogens. The ionizing radiation and a numerous chemical agents can be mentioned (Vogel, 1992). The objective of this work is to determine if the mutation/recombination rate induced by gamma rays varies with the development stage. In order to realize this investigation it was used the mutation and somatic recombination test of Drosophila wing (Graf and col. 1984). The mwh/ mwh and flr 3 /TM3, Ser stocks were used. (Author)

  9. It takes two to tango, a dance between the cells of origin and cancer stem cells in the Drosophila larval brain.

    Science.gov (United States)

    Janssens, Derek H; Lee, Cheng-Yu

    2014-04-01

    During malignant transformation the cells of origin give rise to cancer stem cells which possess the capacity to undergo limitless rounds of self-renewing division, regenerating themselves while producing more tumor cells. Within normal tissues, a limitless self-renewal capacity is unique to the stem cells, which divide asymmetrically to produce more restricted progenitors. Accumulating evidence suggests that misregulation of the self-renewal machinery in stem cell progeny can lead to tumorigenesis, but how it influences the properties of the resulting tumors remains unclear. Studies of the type II neural stem cell (neuroblast) lineages in the Drosophila larval brain have identified a regulatory cascade that promotes commitment to a progenitor cell identity by restricting their response to the self-renewal machinery. Brain tumor (Brat) and Numb initiate this cascade by asymmetrically extinguishing the activity of the self-renewal factors. Subsequently, Earmuff (Erm) and the SWI/SNF complex stably restrict the competence of the progenitor cell to respond to reactivation of self-renewal mechanisms. Together, this cascade programs the progenitor cell to undergo limited rounds of division, generating exclusive differentiated progeny. Here we review how defects in this cascade lead to tumor initiation and how inhibiting the self-renewal mechanisms may be an effective strategy to block CSC expansion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Retinal Expression of the Drosophila eyes absent Gene Is Controlled by Several Cooperatively Acting Cis-regulatory Elements

    Science.gov (United States)

    Neuman, Sarah D.; Bashirullah, Arash; Kumar, Justin P.

    2016-01-01

    The eyes absent (eya) gene of the fruit fly, Drosophila melanogaster, is a member of an evolutionarily conserved gene regulatory network that controls eye formation in all seeing animals. The loss of eya leads to the complete elimination of the compound eye while forced expression of eya in non-retinal tissues is sufficient to induce ectopic eye formation. Within the developing retina eya is expressed in a dynamic pattern and is involved in tissue specification/determination, cell proliferation, apoptosis, and cell fate choice. In this report we explore the mechanisms by which eya expression is spatially and temporally governed in the developing eye. We demonstrate that multiple cis-regulatory elements function cooperatively to control eya transcription and that spacing between a pair of enhancer elements is important for maintaining correct gene expression. Lastly, we show that the loss of eya expression in sine oculis (so) mutants is the result of massive cell death and a progressive homeotic transformation of retinal progenitor cells into head epidermis. PMID:27930646

  11. The EGF receptor and notch signaling pathways control the initiation of the morphogenetic furrow during Drosophila eye development.

    Science.gov (United States)

    Kumar, J P; Moses, K

    2001-07-01

    The onset of pattern formation in the developing Drosophila retina begins with the initiation of the morphogenetic furrow, the leading edge of a wave of retinal development that transforms a uniform epithelium, the eye imaginal disc into a near crystalline array of ommatidial elements. The initiation of this wave of morphogenesis is under the control of the secreted morphogens Hedgehog (Hh), Decapentaplegic (Dpp) and Wingless (Wg). We show that the Epidermal Growth Factor Receptor and Notch signaling cascades are crucial components that are also required to initiate retinal development. We also show that the initiation of the morphogenetic furrow is the sum of two genetically separable processes: (1) the 'birth' of pattern formation at the posterior margin of the eye imaginal disc; and (2) the subsequent 'reincarnation' of retinal development across the epithelium.

  12. Different modes of APC/C activation control growth and neuron-glia interaction in the developing Drosophila eye.

    Science.gov (United States)

    Neuert, Helen; Yuva-Aydemir, Yeliz; Silies, Marion; Klämbt, Christian

    2017-12-15

    The development of the nervous system requires tight control of cell division, fate specification and migration. The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that affects different steps of cell cycle progression, as well as having postmitotic functions in nervous system development. It can therefore link different developmental stages in one tissue. The two adaptor proteins, Fizzy/Cdc20 and Fizzy-related/Cdh1, confer APC/C substrate specificity. Here, we show that two distinct modes of APC/C function act during Drosophila eye development. Fizzy/Cdc20 controls the early growth of the eye disc anlage and the concomitant entry of glial cells onto the disc. In contrast, fzr/cdh1 acts during neuronal patterning and photoreceptor axon growth, and subsequently affects neuron-glia interaction. To further address the postmitotic role of Fzr/Cdh1 in controlling neuron-glia interaction, we identified a series of novel APC/C candidate substrates. Four of our candidate genes are required for fzr/cdh1 -dependent neuron-glia interaction, including the dynein light chain Dlc90F Taken together, our data show how different modes of APC/C activation can couple early growth and neuron-glia interaction during eye disc development. © 2017. Published by The Company of Biologists Ltd.

  13. winged eye Induces Transdetermination of Drosophila Imaginal Disc by Acting in Concert with a Histone Methyltransferase, Su(var3-9

    Directory of Open Access Journals (Sweden)

    Keita Masuko

    2018-01-01

    Full Text Available Summary: Drosophila imaginal disc cells exhibit a remarkable ability to convert cell fates in response to various perturbations, a phenomenon called transdetermination (TD. We previously identified winged eye (wge as a factor that induces eye-to-wing TD upon overexpression in eye imaginal discs, but the molecular mechanisms underlying TD have remained largely unclear. Here, we found that wge induces various histone modifications and enhances the methylation of Lys9 on histone H3 (H3K9, a feature of heterochromatin. A histone methyltransferase, Su(var3-9, is required for wge-mediated H3K9 methylation and eye-to-wing TD. Su(var3-9 is also required for classical wound-induced TD but not for normal development, suggesting its involvement in several types of imaginal disc TDs. Transcriptome analysis revealed that wge represses eye identity genes independently of Su(var3-9 and activates TD-related genes by acting together with Su(var3-9. These findings provide new insights into diverse types of chromatin regulation at progressive steps of cell-fate conversions. : Drosophila imaginal discs switch disc identity by a process known as transdetermination. Masuko et al. demonstrate that expression of the winged eye gene induces transdetermination through histone modifications such as H3K9-methylation. winged eye regulates expression of transdetermination-related genes via a histone methyltransferase, Su(var3-9. Keywords: Drosophila, imaginal disc, transdetermination, heterochromatin, cell fate, winged eye, reprogramming, Su(var3-9

  14. Reduced larval feeding rate is a strong evolutionary correlate of ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 85; Issue 3. Reduced larval feeding rate is a strong evolutionary correlate of rapid development in Drosophila melanogaster. M. Rajamani N. Raghavendra ... Keywords. life-history evolution; development time; larval feeding rate; competition; tradeoffs; Drosophila melanogaster.

  15. The influence of dietary concentrations of arachidonic acid and eicosapentaenoic acid at various stages of larval ontogeny on eye migration, pigmentation and prostaglandin content of common sole larvae ( Solea solea L.)

    DEFF Research Database (Denmark)

    Lund, Ivar; Steenfeldt, Svend Jørgen; Banta, G.

    2008-01-01

    Dietary manipulations of arachidonic acid, ARA and eicosapentaenoic acid, EPA may have an influence on pigmentation in common sole larvae (Solea solea L., Linnaeus 1758) which may be related to a "pigmentation window". This is a specific period in the larval ontogeny where nutritional factors...... metamorphosis. Initiation of metamorphosis (i.e. start of eye migration) was related to the size of larvae and not related to ARA or EPA content. Dietary EPA or DHA did not retard the advance of eye migration. More than 90 % of highly malpigmented juveniles, (i.e. "albinos") had a permanent aberrant eye...

  16. Apical accumulation of the Sevenless receptor tyrosine kinase during Drosophila eye development is promoted by the small GTPase Rap1.

    Science.gov (United States)

    Baril, Caroline; Lefrançois, Martin; Sahmi, Malha; Knævelsrud, Helene; Therrien, Marc

    2014-08-01

    The Ras/MAPK-signaling pathway plays pivotal roles during development of metazoans by controlling cell proliferation and cell differentiation elicited, in several instances, by receptor tyrosine kinases (RTKs). While the internal mechanism of RTK-driven Ras/MAPK signaling is well understood, far less is known regarding its interplay with other co-required signaling events involved in developmental decisions. In a genetic screen designed to identify new regulators of RTK/Ras/MAPK signaling during Drosophila eye development, we identified the small GTPase Rap1, PDZ-GEF, and Canoe as components contributing to Ras/MAPK-mediated R7 cell differentiation. Rap1 signaling has recently been found to participate in assembling cadherin-based adherens junctions in various fly epithelial tissues. Here, we show that Rap1 activity is required for the integrity of the apical domains of developing photoreceptor cells and that reduced Rap1 signaling hampers the apical accumulation of the Sevenless RTK in presumptive R7 cells. It thus appears that, in addition to its role in cell-cell adhesion, Rap1 signaling controls the partitioning of the epithelial cell membrane, which in turn influences signaling events that rely on apico-basal cell polarity. Copyright © 2014 by the Genetics Society of America.

  17. Poly(ADP-ribose) Glycohydrolase and Poly(ADP-ribose)-interacting Protein Hrp38 Regulate Pattern Formation during Drosophila Eye Development

    Science.gov (United States)

    Ji, Yingbiao; Jarnik, Michael; Tulin, Alexei V.

    2013-01-01

    Drosophila Hrp38, a homolog of human hnRNP A1, has been shown to regulate splicing, but its function can be modified by poly(ADP-ribosyl)ation. Notwithstanding such findings, our understanding of the roles of poly(ADP-ribosyl)ated Hrp38 on development is limited. Here, we have demonstrated that Hrp38 is essential for fly eye development based on a rough-eye phenotype with disorganized ommatidia observed in adult escapers of the hrp38 mutant. We also observed that Poly(ADP-ribose) Glycohydrolase (Parg) loss-of-function, which caused increased Hrp38 poly(ADP-ribosyl)ation, also resulted in the rough-eye phenotype with disrupted ommatidial lattice and reduced number of photoreceptor cells. In addition, ectopic expression of DE-cadherin, which is required for retinal morphogenesis, fully rescued the rough-eye phenotype of the hrp38 mutant. Similarly, Parg mutant eye clones had decreased expression level of DE-cadherin with orientation defects, which is reminiscent of DE-cadherin mutant eye phenotype. Therefore, our results suggest that Hrp38 poly(ADP-ribosyl)ation controls eye pattern formation via regulation of DE-cadherin expression, a finding which has implications for understanding the pathogenic mechanisms of Hrp38-related Fragile X syndrome and PARP1-related retinal degeneration diseases. PMID:23711619

  18. Proteasome, but not autophagy, disruption results in severe eye and wing dysmorphia: a subunit- and regulator-dependent process in Drosophila.

    Science.gov (United States)

    Velentzas, Panagiotis D; Velentzas, Athanassios D; Pantazi, Asimina D; Mpakou, Vassiliki E; Zervas, Christos G; Papassideri, Issidora S; Stravopodis, Dimitrios J

    2013-01-01

    Proteasome-dependent and autophagy-mediated degradation of eukaryotic cellular proteins represent the two major proteostatic mechanisms that are critically implicated in a number of signaling pathways and cellular processes. Deregulation of functions engaged in protein elimination frequently leads to development of morbid states and diseases. In this context, and through the utilization of GAL4/UAS genetic tool, we herein examined the in vivo contribution of proteasome and autophagy systems in Drosophila eye and wing morphogenesis. By exploiting the ability of GAL4-ninaE. GMR and P{GawB}Bx(MS1096) genetic drivers to be strongly and preferentially expressed in the eye and wing discs, respectively, we proved that proteasomal integrity and ubiquitination proficiency essentially control fly's eye and wing development. Indeed, subunit- and regulator-specific patterns of severe organ dysmorphia were obtained after the RNAi-induced downregulation of critical proteasome components (Rpn1, Rpn2, α5, β5 and β6) or distinct protein-ubiquitin conjugators (UbcD6, but not UbcD1 and UbcD4). Proteasome deficient eyes presented with either rough phenotypes or strongly dysmorphic shapes, while transgenic mutant wings were severely folded and carried blistered structures together with loss of vein differentiation. Moreover, transgenic fly eyes overexpressing the UBP2-yeast deubiquitinase enzyme were characterized by an eyeless-like phenotype. Therefore, the proteasome/ubiquitin proteolytic activities are undoubtedly required for the normal course of eye and wing development. In contrast, the RNAi-mediated downregulation of critical Atg (1, 4, 7, 9 and 18) autophagic proteins revealed their non-essential, or redundant, functional roles in Drosophila eye and wing formation under physiological growth conditions, since their reduced expression levels could only marginally disturb wing's, but not eye's, morphogenetic organization and architecture. However, Atg9 proved indispensable for

  19. Proteasome, but not autophagy, disruption results in severe eye and wing dysmorphia: a subunit- and regulator-dependent process in Drosophila.

    Directory of Open Access Journals (Sweden)

    Panagiotis D Velentzas

    Full Text Available Proteasome-dependent and autophagy-mediated degradation of eukaryotic cellular proteins represent the two major proteostatic mechanisms that are critically implicated in a number of signaling pathways and cellular processes. Deregulation of functions engaged in protein elimination frequently leads to development of morbid states and diseases. In this context, and through the utilization of GAL4/UAS genetic tool, we herein examined the in vivo contribution of proteasome and autophagy systems in Drosophila eye and wing morphogenesis. By exploiting the ability of GAL4-ninaE. GMR and P{GawB}Bx(MS1096 genetic drivers to be strongly and preferentially expressed in the eye and wing discs, respectively, we proved that proteasomal integrity and ubiquitination proficiency essentially control fly's eye and wing development. Indeed, subunit- and regulator-specific patterns of severe organ dysmorphia were obtained after the RNAi-induced downregulation of critical proteasome components (Rpn1, Rpn2, α5, β5 and β6 or distinct protein-ubiquitin conjugators (UbcD6, but not UbcD1 and UbcD4. Proteasome deficient eyes presented with either rough phenotypes or strongly dysmorphic shapes, while transgenic mutant wings were severely folded and carried blistered structures together with loss of vein differentiation. Moreover, transgenic fly eyes overexpressing the UBP2-yeast deubiquitinase enzyme were characterized by an eyeless-like phenotype. Therefore, the proteasome/ubiquitin proteolytic activities are undoubtedly required for the normal course of eye and wing development. In contrast, the RNAi-mediated downregulation of critical Atg (1, 4, 7, 9 and 18 autophagic proteins revealed their non-essential, or redundant, functional roles in Drosophila eye and wing formation under physiological growth conditions, since their reduced expression levels could only marginally disturb wing's, but not eye's, morphogenetic organization and architecture. However, Atg9 proved

  20. The genetics of green thorax, a new larval colour mutant, non-linked with ruby - eye locus in the malaria mosquito, Anopheles stephensi.

    Science.gov (United States)

    Sanil, D; Shetty, N J

    2009-06-01

    Anopheles stephensi, an important vector of malaria continues to be distributed widely in the Indian subcontinent. The natural vigour of the species combined with its new tolerance, indeed resistance to insecticides has made it obligatory that we look for control methods involving genetic manipulation. Hence, there is an immediate need for greater understanding of the genetics of this vector species. One of the requirements for such genetic studies is the establishment of naturally occurring mutants, establishment of the genetic basis for the same and use of such mutants in the genetic transformation studies and other genetic control programme(s). This paper describes the isolation and genetic studies of a larval colour mutant, green thorax (gt), and linkage studies involving another autosomal recessive mutant ruby- eye (ru) in An. stephensi. After the initial discovery, the mutant green thorax was crossed inter se and pure homozygous stock of the mutant was established. The stock of the mutant ruby- eye, which has been maintained as a pure stock in the laboratory. Crosses were made between the wild type and mutant, green thorax to determine the mode of inheritance of green thorax. For linkage studies, crosses were made between the mutant green thorax and another autosomal recessive mutant ruby-eye. The percentage cross-over was calculated for the genes linkage relationship for gt and gt ru. Results of crosses between mutant and wild type showed that the inheritance of green thorax (gt) in An. stephensi is monofactorial in nature. The gt allele is recessive to wild type and is autosomal. The linkage studies showed no linkage between ru and gt. The mutant gt represents an excellent marker for An. stephensi as it is expressed in late III instar stage of larvae and is prominent in IV instar and pupal stages with complete penetrance and high viability. The said mutant could be easily identified without the aid of a microscope. This mutant can be used extensively to

  1. winged eye Induces Transdetermination of Drosophila Imaginal Disc by Acting in Concert with a Histone Methyltransferase, Su(var)3-9.

    Science.gov (United States)

    Masuko, Keita; Fuse, Naoyuki; Komaba, Kanae; Katsuyama, Tomonori; Nakajima, Rumi; Furuhashi, Hirofumi; Kurata, Shoichiro

    2018-01-02

    Drosophila imaginal disc cells exhibit a remarkable ability to convert cell fates in response to various perturbations, a phenomenon called transdetermination (TD). We previously identified winged eye (wge) as a factor that induces eye-to-wing TD upon overexpression in eye imaginal discs, but the molecular mechanisms underlying TD have remained largely unclear. Here, we found that wge induces various histone modifications and enhances the methylation of Lys9 on histone H3 (H3K9), a feature of heterochromatin. A histone methyltransferase, Su(var)3-9, is required for wge-mediated H3K9 methylation and eye-to-wing TD. Su(var)3-9 is also required for classical wound-induced TD but not for normal development, suggesting its involvement in several types of imaginal disc TDs. Transcriptome analysis revealed that wge represses eye identity genes independently of Su(var)3-9 and activates TD-related genes by acting together with Su(var)3-9. These findings provide new insights into diverse types of chromatin regulation at progressive steps of cell-fate conversions. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Identification of Atg2 and ArfGAP1 as Candidate Genetic Modifiers of the Eye Pigmentation Phenotype of Adaptor Protein-3 (AP-3) Mutants in Drosophila melanogaster.

    Science.gov (United States)

    Rodriguez-Fernandez, Imilce A; Dell'Angelica, Esteban C

    2015-01-01

    The Adaptor Protein (AP)-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs) such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster. Specifically, we have tested collections of large multi-gene deletions--which together covered most of the autosomal chromosomes-to identify chromosomal regions that, when deleted in single copy, enhanced or ameliorated the eye pigmentation phenotype of two independent AP-3 subunit mutants. Fine-mapping led us to define two non-overlapping, relatively small critical regions within fly chromosome 3. The first critical region included the Atg2 gene, which encodes a conserved protein involved in autophagy. Loss of one functional copy of Atg2 ameliorated the pigmentation defects of mutants in AP-3 subunits as well as in two other genes previously implicated in LRO biogenesis, namely Blos1 and lightoid, and even increased the eye pigment content of wild-type flies. The second critical region included the ArfGAP1 gene, which encodes a conserved GTPase-activating protein with specificity towards GTPases of the Arf family. Loss of a single functional copy of the ArfGAP1 gene ameliorated the pigmentation phenotype of AP-3 mutants but did not to modify the eye pigmentation of wild-type flies or mutants in Blos1 or lightoid. Strikingly, loss of the second functional copy of the gene did not modify the phenotype of AP-3 mutants any further but elicited early lethality in males and abnormal eye morphology when combined with mutations in Blos1 and lightoid, respectively. These results provide genetic evidence for new functional links connecting the machinery for biogenesis of LROs with molecules implicated in

  3. Comparative studies of the induction of somatic eye-color mutations in an unstable strain of Drosophila melanogaster by MMS and X-rays at different developmental stages

    International Nuclear Information System (INIS)

    Rasmuson, Aa.

    1985-01-01

    The UZ system in Drosophila melanogaster can be used as a screening system for mutagens. This survey is an attempt to correlate the size of the mutated area of the eyes with the age of the larvae at mutagen treatment. X-rays and MMS were used to give an indication of the mechanism of the instability, according to the different kinds of DNA damage induced. The results show that the mean size of red spots decreased with increasing age of larvae at treatment, while the mutation frequencies were increased because of the multiplication of the cells in the eye anlage susceptible to the mutagens. Red spots induced with MMS are smaller in size than X-ray-induced red spots, indicating a delay in the establishment of mutations from chemically-induced lesions compared to irradiation damage. White spots on the other hand were equally large in size, irrespective of inducing agent and about twice the size of the chemically-induced red spots, implying a faster and more direct action for fixation of deletions than for the production of MMS induced shifts in eye color from zeste to red. (Auth.)

  4. Weakener of white (Wow), a gene that modifies the expression of the white eye color locus and that suppresses position effect variegation in Drosophila melanogaster.

    Science.gov (United States)

    Birchler, J A; Bhadra, U; Rabinow, L; Linsk, R; Nguyen-Huynh, A T

    1994-08-01

    A locus is described in Drosophila melanogaster that modifies the expression of the white eye color gene. This trans-acting modifier reduces the expression of the white gene in the eye, but elevates the expression in other adult tissues. Because of the eye phenotype in which the expression of white is lessened but not eliminated, the newly described locus is called the Weakener of white (Wow). Northern analysis reveals that Wow can exert an inverse or direct modifying effect depending upon the developmental stage. Two related genes, brown and scarlet, that are coordinately expressed with white, are also affected by Wow. In addition, Wow modulates the steady state RNA level of the retrotransposon, copia. When tested with a white promoter-Alcohol dehydrogenase reporter. Wow confers the modifying effect to the reporter, suggesting a requirement of the white regulatory sequences for mediating the response. In addition to being a dosage sensitive regulator of white, brown, scarlet and copia, Wow acts as a suppressor of position effect variegation. There are many dosage sensitive suppressors of position effect variegation and many dosage-sensitive modifiers of gene expression. The Wow mutations provide evidence for an overlap between the two types of modifiers.

  5. Evaluation of the recombination in somatic cells induced by radiation in different stages of Drosophila larval development; Evaluacion de la recombinacion en celulas somaticas inducida por radiacion en diferentes etapas del desarrollo larvario de Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Cruces, M P; Morales R, P [Instituto nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The mitotic recombination can happen spontaneously and its frequency is very low, however the recombination rate of a cell can be increased by the exposure to agents which cause damage to DNA. This type of agents are knew commonly as recombinogens. The ionizing radiation and a numerous chemical agents can be mentioned (Vogel, 1992). The objective of this work is to determine if the mutation/recombination rate induced by gamma rays varies with the development stage. In order to realize this investigation it was used the mutation and somatic recombination test of Drosophila wing (Graf and col. 1984). The mwh/ mwh and flr{sup 3}/TM3, Ser stocks were used. (Author)

  6. An overexpression screen in Drosophila for genes that restrict growth or cell-cycle progression in the developing eye.

    OpenAIRE

    Tseng, Ai-Sun Kelly; Hariharan, Iswar K

    2002-01-01

    We screened for genes that, when overexpressed in the proliferating cells of the eye imaginal disc, result in a reduction in the size of the adult eye. After crossing the collection of 2296 EP lines to the ey-GAL4 driver, we identified 46 lines, corresponding to insertions in 32 different loci, that elicited a small eye phenotype. These lines were classified further by testing for an effect in postmitotic cells using the sev-GAL4 driver, by testing for an effect in the wing using en-GAL4, and...

  7. Identification of Atg2 and ArfGAP1 as Candidate Genetic Modifiers of the Eye Pigmentation Phenotype of Adaptor Protein-3 (AP-3 Mutants in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Imilce A Rodriguez-Fernandez

    Full Text Available The Adaptor Protein (AP-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster. Specifically, we have tested collections of large multi-gene deletions--which together covered most of the autosomal chromosomes-to identify chromosomal regions that, when deleted in single copy, enhanced or ameliorated the eye pigmentation phenotype of two independent AP-3 subunit mutants. Fine-mapping led us to define two non-overlapping, relatively small critical regions within fly chromosome 3. The first critical region included the Atg2 gene, which encodes a conserved protein involved in autophagy. Loss of one functional copy of Atg2 ameliorated the pigmentation defects of mutants in AP-3 subunits as well as in two other genes previously implicated in LRO biogenesis, namely Blos1 and lightoid, and even increased the eye pigment content of wild-type flies. The second critical region included the ArfGAP1 gene, which encodes a conserved GTPase-activating protein with specificity towards GTPases of the Arf family. Loss of a single functional copy of the ArfGAP1 gene ameliorated the pigmentation phenotype of AP-3 mutants but did not to modify the eye pigmentation of wild-type flies or mutants in Blos1 or lightoid. Strikingly, loss of the second functional copy of the gene did not modify the phenotype of AP-3 mutants any further but elicited early lethality in males and abnormal eye morphology when combined with mutations in Blos1 and lightoid, respectively. These results provide genetic evidence for new functional links connecting the machinery for biogenesis of LROs with

  8. Expressionof Drosophila FOXO regulates growth and can phenocopy starvation

    Directory of Open Access Journals (Sweden)

    Lockyer Joseph M

    2003-07-01

    Full Text Available Abstract Background Components of theinsulin signaling pathway are important regulators of growth. TheFOXO (forkhead box, sub-group "O" transcriptionfactors regulate cellular processes under conditions of low levelsof insulin signaling. Studies in mammalian cell culture show thatactivation of FOXO transcription factors causes cell death or cellcycle arrest. The Caenorhabiditis elegans homologue ofFOXO, Daf-16, is required for the formation of dauer larvae in responseto nutritional stress. In addition, FOXO factors have been implicatedin stress resistance and longevity. Results We have identifiedthe Drosophila melanogaster homologue of FOXO (dFOXO,which is conserved in amino acid sequence compared with the mammalianFOXO homologues and Daf-16. Expression of dFOXO during early larvaldevelopment causes inhibition of larval growth and alterations infeeding behavior. Inhibition of larval growth is reversible upondiscontinuation of dFOXO expression. Expression of dFOXO duringthe third larval instar or at low levels during development leadsto the generation of adults that are reduced in size. Analysis ofthe wings and eyes of these small flies indicates that the reductionin size is due to decreases in cell size and cell number. Overexpressionof dFOXO in the developing eye leads to a characteristic phenotypewith reductions in cell size and cell number. This phenotype canbe rescued by co-expression of upstream insulin signaling components,dPI3K and dAkt, however, this rescue is not seen when FOXO is mutatedto a constitutively active form. Conclusions dFOXO is conservedin both sequence and regulatory mechanisms when compared with otherFOXO homologues. The establishment of Drosophila as a model forthe study of FOXO transcription factors should prove beneficialto determining the biological role of these signaling molecules.The alterations in larval development seen upon overexpression ofdFOXO closely mimic the phenotypic effects of starvation, suggestinga

  9. Toward an Understanding of Divergent Compound Eye Development in Drones and Workers of the Honeybee (Apis mellifera L.): A Correlative Analysis of Morphology and Gene Expression.

    Science.gov (United States)

    Marco Antonio, David S; Hartfelder, Klaus

    2017-01-01

    Eye development in insects is best understood in Drosophila melanogaster, but little is known for other holometabolous insects. Combining a morphological with a gene expression analysis, we investigated eye development in the honeybee, putting emphasis on the sex-specific differences in eye size. Optic lobe development starts from an optic lobe anlage in the larval brain, which sequentially gives rise to the lobula, medulla, and lamina. The lamina differentiates in the last larval instar, when it receives optic nerve projections from the developing retina. The expression analysis focused on seven genes important for Drosophila eye development: eyes absent, sine oculis, embryonic lethal abnormal vision, minibrain, small optic lobes, epidermal growth factor receptor, and roughest. All except small optic lobes were more highly expressed in third-instar drone larvae, but then, in the fourth and fifth instar, their expression was sex-specifically modulated, showing shifts in temporal dynamics. The clearest differences were seen for small optic lobes, which is highly expressed in the developing eye of workers, and minibrain and roughest, which showed a strong expression peak coinciding with retina differentiation. A microarray analysis for optic lobe/retina complexes revealed the differential expression of several metabolism-related genes, as well as of two micro-RNAs. While we could not see major morphological differences in the developing eye structures before the pupal stage, the expression differences observed for the seven candidate genes and in the transcriptional microarray profiles indicate that molecular signatures underlying sex-specific optic lobe and retina development become established throughout the larval stages. © 2016 Wiley Periodicals, Inc.

  10. The Drosophila T-box transcription factor Midline functions within the Notch–Delta signaling pathway to specify sensory organ precursor cell fates and regulates cell survival within the eye imaginal disc

    Science.gov (United States)

    Das, Sudeshna; Chen, Q. Brent; Saucier, Joseph D.; Drescher, Brandon; Zong, Yan; Morgan, Sarah; Forstall, John; Meriwether, Andrew; Toranzo, Randy; Leal, Sandra M.

    2014-01-01

    We report that the T-box transcription factor Midline (Mid), an evolutionary conserved homolog of the vertebrate Tbx20 protein, functions within the Notch–Delta signaling pathway essential for specifying the fates of sensory organ precursor cells. This complements an established history of research showing that Mid regulates the cell-fate specification of diverse cell types within the developing heart, epidermis and central nervous system. Tbx20 has been detected in diverse neuronal and epithelial cells of embryonic eye tissues in both mice and humans. However, the mechanisms by which either Mid or Tbx20 function to regulate cell-fate specification or other critical aspects of eye development including cell survival have not yet been elucidated. We have also gathered preliminary evidence suggesting that Mid may play an indirect, but vital role in selecting SOP cells within the third-instar larval eye disc by regulating the expression of the proneural gene atonal. During subsequent pupal stages, Mid specifies SOP cell fates as a member of the Notch–Delta signaling hierarchy and is essential for maintaining cell viability within by inhibiting apoptotic pathways. We present several new hypotheses that seek to understand the role of Mid in regulating developmental processes downstream of the Notch receptor that are critical for specifying unique cell fates, patterning the adult eye and maintaining cellular homeostasis during eye disc morphogenesis. PMID:23962751

  11. The Drosophila T-box transcription factor Midline functions within the Notch-Delta signaling pathway to specify sensory organ precursor cell fates and regulates cell survival within the eye imaginal disc.

    Science.gov (United States)

    Das, Sudeshna; Chen, Q Brent; Saucier, Joseph D; Drescher, Brandon; Zong, Yan; Morgan, Sarah; Forstall, John; Meriwether, Andrew; Toranzo, Randy; Leal, Sandra M

    2013-01-01

    We report that the T-box transcription factor Midline (Mid), an evolutionary conserved homolog of the vertebrate Tbx20 protein, functions within the Notch-Delta signaling pathway essential for specifying the fates of sensory organ precursor (SOP) cells. These findings complement an established history of research showing that Mid regulates the cell-fate specification of diverse cell types within the developing heart, epidermis and central nervous system. Tbx20 has been detected in unique neuronal and epithelial cells of embryonic eye tissues in both mice and humans. However, the mechanisms by which either Mid or Tbx20 function to regulate cell-fate specification or other critical aspects of eye development including cell survival have not yet been elucidated. We have also gathered preliminary evidence suggesting that Mid may play an indirect, but vital role in selecting SOP cells within the third-instar larval eye disc by regulating the expression of the proneural gene atonal. During subsequent pupal stages, Mid specifies SOP cell fates as a member of the Notch-Delta signaling hierarchy and is essential for maintaining cell viability by inhibiting apoptotic pathways. We present several new hypotheses that seek to understand the role of Mid in regulating developmental processes downstream of the Notch receptor that are critical for specifying unique cell fates, patterning the adult eye and maintaining cellular homeostasis during eye disc morphogenesis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Identification of four Drosophila allatostatins as the cognate ligands for the Drosophila orphan receptor DAR-2

    DEFF Research Database (Denmark)

    Lenz, C; Williamson, M; Hansen, G N

    2001-01-01

    The allatostatins are generally inhibitory insect neuropeptides. The Drosophila orphan receptor DAR-2 is a G-protein-coupled receptor, having 47% amino acid residue identity with another Drosophila receptor, DAR-1 (which is also called dros. GPCR, or DGR) that was previously shown...... to be the receptor for an intrinsic Drosophila A-type (cockroach-type) allatostatin. Here, we have permanently expressed DAR-2 in CHO cells and found that it is the cognate receptor for four Drosophila A-type allatostatins, the drostatins-A1 to -A4. Of all the drostatins, drostatin-A4 (Thr...... weakly in the brain. The Drosophila larval gut also contains about 20-30 endocrine cells, expressing the gene for the drostatins-A1 to -A4. We suggest, therefore, that DAR-2 mediates an allatostatin (drostatin)-induced inhibition of gut motility. This is the first report on the permanent and functional...

  13. Oral intake of zirconia nanoparticle alters neuronal development and behaviour of Drosophila melanogaster

    Science.gov (United States)

    Mishra, Monalisa; Sabat, Debabrat; Ekka, Basanti; Sahu, Swetapadma; P, Unnikannan; Dash, Priyabrat

    2017-08-01

    Zirconia nanoparticles (ZrO2 NPs) have been extensively used in teeth and bone implants and thus get a chance to interact with the physiological system. The current study investigated the oral administration of various concentrations of ZrO2 NPs synthesized by the hydrothermal method (0.25 to 5.0 mg L-1) on Drosophila physiology and behaviour. The size of the currently studied nanoparticle varies from 10 to 12 nm. ZrO2 NPs accumulated within the gut in a concentration-dependent manner and generate reactive oxygen species (ROS) only at 2.5 and 5.0 mg L-1 concentrations. ROS was detected by nitroblue tetrazolium (NBT) assay and 2',7'-dichlorofluorescein http://www.ncbi.nlm.nih.gov/pubmed/20370560 (H2DCF) staining. The ROS toxicity alters the larval gut structure as revealed by DAPI staining. The NP stress of larvae affects the Drosophila development by distressing pupa count and varying the phenotypic changes in sensory organs (eye, thorax bristle, wings). Besides phenotypic changes, flawed climbing behaviour against gravity was seen in ZrO2 NP-treated flies. All together, for the first time, we have reported that a ROS-mediated ZrO2 NP toxicity alters neuronal development and functioning using Drosophila as a model organism. [Figure not available: see fulltext.

  14. Erythritol and Lufenuron detrimentally alter age structure of Wild Spotted Wing Drosophila (SWD) Drosophila suzukii (Diptera: Drosophilidae) populations in blueberry and blackberry

    Science.gov (United States)

    We report on the efficacy of 0.5 M (61,000 ppm) Erythritol (E) in Truvia Baking Blend®, 10 ppm Lufenuron (L), and their combination (LE) to reduce egg and larval densities of wild populations of spotted wing Drosophila, Drosophila suzukii (Matsumura) (SWD) infesting fields of rabbiteye blueberries (...

  15. CELLULAR LOCALIZATION AND EXPRESSION OF pygo DURING DROSOPHILA DEVELOPMENT

    Institute of Scientific and Technical Information of China (English)

    LINXin-da; LINXin-hua; CHENGJia-an

    2003-01-01

    Wg/Wnt signaling is a key signaling pathway in Drosophila. Many genes involved in Wingless(wg) signal transduction pathway downstream of Wg, or it'' s vertebrate Wg homologue Wnt, have been identified.Transduction of the Wg signal downstream of Wg is mediated by nuclear TCF/LEF-1, through association with Ar-madillo (Arm)/β-catenin. Pygopus (pygo) is a new identified component in this pathway . Cellular localization experiment showed that pygo was expressed specifically in the nucleus. The expression profile of pygo in embryos was examined using in situ hybridization. Although pygo expressed ubiquitously in the embryos, it expressed at relatively high level in pre-blastoderm embryos which indicate a high degree of maternally provided message, fol-lowed by a low level of ubiquitous zygotic expression. This continues into larval tissues (including wing disc, eye disc and leg disc), where pygo appears to be expressed at low level. Comparison of pygo expression levels, in the wing disc, eye disc and leg disc, showed pygo expression level in the wing disc pouch and leg disc were rela-tive higher.

  16. Myoblast fusion in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Haralalka, Shruti [Stowers Institute for Medical Research, Kansas City, MO 64110 (United States); Abmayr, Susan M., E-mail: sma@stowers.org [Stowers Institute for Medical Research, Kansas City, MO 64110 (United States); Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, MO 66160 (United States)

    2010-11-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  17. Myoblast fusion in Drosophila

    International Nuclear Information System (INIS)

    Haralalka, Shruti; Abmayr, Susan M.

    2010-01-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  18. SUMOylation in Drosophila Development

    Directory of Open Access Journals (Sweden)

    Albert J. Courey

    2012-07-01

    Full Text Available Small ubiquitin-related modifier (SUMO, an ~90 amino acid ubiquitin-like protein, is highly conserved throughout the eukaryotic domain. Like ubiquitin, SUMO is covalently attached to lysine side chains in a large number of target proteins. In contrast to ubiquitin, SUMO does not have a direct role in targeting proteins for proteasomal degradation. However, like ubiquitin, SUMO does modulate protein function in a variety of other ways. This includes effects on protein conformation, subcellular localization, and protein–protein interactions. Significant insight into the in vivo role of SUMOylation has been provided by studies in Drosophila that combine genetic manipulation, proteomic, and biochemical analysis. Such studies have revealed that the SUMO conjugation pathway regulates a wide variety of critical cellular and developmental processes, including chromatin/chromosome function, eggshell patterning, embryonic pattern formation, metamorphosis, larval and pupal development, neurogenesis, development of the innate immune system, and apoptosis. This review discusses our current understanding of the diverse roles for SUMO in Drosophila development.

  19. Detecting novel low-abundant transcripts in Drosophila

    DEFF Research Database (Denmark)

    Lee, Sanggyu; Bao, Jingyue; Zhou, Guolin

    2005-01-01

    Increasing evidence suggests that low-abundant transcripts may play fundamental roles in biological processes. In an attempt to estimate the prevalence of low-abundant transcripts in eukaryotic genomes, we performed a transcriptome analysis in Drosophila using the SAGE technique. We collected 244......,313 SAGE tags from transcripts expressed in Drosophila embryonic, larval, pupae, adult, and testicular tissue. From these SAGE tags, we identified 40,823 unique SAGE tags. Our analysis showed that 55% of the 40,823 unique SAGE tags are novel without matches in currently known Drosophila transcripts...... in the Drosophila genome. Our study reveals the presence of a significant number of novel low-abundant transcripts in Drosophila, and highlights the need to isolate these novel low-abundant transcripts for further biological studies. Udgivelsesdato: 2005-Jun...

  20. A Survey of 6,300 Genomic Fragments for cis-Regulatory Activity in the Imaginal Discs of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Aurélie Jory

    2012-10-01

    Full Text Available Over 6,000 fragments from the genome of Drosophila melanogaster were analyzed for their ability to drive expression of GAL4 reporter genes in the third-instar larval imaginal discs. About 1,200 reporter genes drove expression in the eye, antenna, leg, wing, haltere, or genital imaginal discs. The patterns ranged from large regions to individual cells. About 75% of the active fragments drove expression in multiple discs; 20% were expressed in ventral, but not dorsal, discs (legs, genital, and antenna, whereas ∼23% were expressed in dorsal but not ventral discs (wing, haltere, and eye. Several patterns, for example, within the leg chordotonal organ, appeared a surprisingly large number of times. Unbiased searches for DNA sequence motifs suggest candidate transcription factors that may regulate enhancers with shared activities. Together, these expression patterns provide a valuable resource to the community and offer a broad overview of how transcriptional regulatory information is distributed in the Drosophila genome.

  1. The wings of Bombyx mori develop from larval discs exhibiting an ...

    Indian Academy of Sciences (India)

    Unknown

    presumptive wing blade domains unlike in Drosophila, where it is confined to the hinge and the wing pouch. ... events are different and the wing discs behave like presumptive wing buds .... emerge with the fore- and the hind-wings (figure 1e, j) on ... phosis (compare c with d, and h with i) during the larval to pupal transition.

  2. A toxicity assessment of hydroxyapatite nanoparticles on development and behaviour of Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Pappus, S. Aurosman [IISER Kolkata, Department of Biological Sciences (India); Ekka, Basanti [National Institute of Technology, Department of Chemistry (India); Sahu, Swetapadma; Sabat, Debabrat [National Institute of Technology, Department of Life Science (India); Dash, Priyabrat [National Institute of Technology, Department of Chemistry (India); Mishra, Monalisa, E-mail: mishramo@nitrkl.ac.in [National Institute of Technology, Department of Life Science (India)

    2017-04-15

    The effects of oral intake of hydroxyapatite nanoparticles (HApNPs) were investigated on growth, development and behaviour of Drosophila. The Drosophila responses to various concentrations of HApNPs were compared. At lower concentrations, i.e. 5 mg L{sup −1} more amount of oxidative stress was produced than that of highest concentration, i.e. 80 mg L{sup −1}. The increased amounts of oxidative stress reflect a higher amount of ROS production and increased cell damage within the larval gut. HApNPs was further shown to interfere with the calcium and phosphorus absorption pathway. Besides all these damage, HApNPs causes developmental delay in the late third instar larvae. The most significant anomaly was observed in pupae count, fly hatching after the feeding of HApNPs. Flies hatched from treated vials have decreased body weight with defective walking behaviour. Hatched flies have a phenotypic defect in the wing, eye and thorax of the bristles. Along with these changes, the adult fly becomes more prone towards stress. The findings hint that HApNPs persuade noxious effects and alter the development, structure, function and behaviour of the fly in a concentration-dependent manner.

  3. A toxicity assessment of hydroxyapatite nanoparticles on development and behaviour of Drosophila melanogaster

    Science.gov (United States)

    Pappus, S. Aurosman; Ekka, Basanti; Sahu, Swetapadma; Sabat, Debabrat; Dash, Priyabrat; Mishra, Monalisa

    2017-04-01

    The effects of oral intake of hydroxyapatite nanoparticles (HApNPs) were investigated on growth, development and behaviour of Drosophila. The Drosophila responses to various concentrations of HApNPs were compared. At lower concentrations, i.e. 5 mg L-1 more amount of oxidative stress was produced than that of highest concentration, i.e. 80 mg L-1. The increased amounts of oxidative stress reflect a higher amount of ROS production and increased cell damage within the larval gut. HApNPs was further shown to interfere with the calcium and phosphorus absorption pathway. Besides all these damage, HApNPs causes developmental delay in the late third instar larvae. The most significant anomaly was observed in pupae count, fly hatching after the feeding of HApNPs. Flies hatched from treated vials have decreased body weight with defective walking behaviour. Hatched flies have a phenotypic defect in the wing, eye and thorax of the bristles. Along with these changes, the adult fly becomes more prone towards stress. The findings hint that HApNPs persuade noxious effects and alter the development, structure, function and behaviour of the fly in a concentration-dependent manner.

  4. A toxicity assessment of hydroxyapatite nanoparticles on development and behaviour of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Pappus, S. Aurosman; Ekka, Basanti; Sahu, Swetapadma; Sabat, Debabrat; Dash, Priyabrat; Mishra, Monalisa

    2017-01-01

    The effects of oral intake of hydroxyapatite nanoparticles (HApNPs) were investigated on growth, development and behaviour of Drosophila. The Drosophila responses to various concentrations of HApNPs were compared. At lower concentrations, i.e. 5 mg L −1 more amount of oxidative stress was produced than that of highest concentration, i.e. 80 mg L −1 . The increased amounts of oxidative stress reflect a higher amount of ROS production and increased cell damage within the larval gut. HApNPs was further shown to interfere with the calcium and phosphorus absorption pathway. Besides all these damage, HApNPs causes developmental delay in the late third instar larvae. The most significant anomaly was observed in pupae count, fly hatching after the feeding of HApNPs. Flies hatched from treated vials have decreased body weight with defective walking behaviour. Hatched flies have a phenotypic defect in the wing, eye and thorax of the bristles. Along with these changes, the adult fly becomes more prone towards stress. The findings hint that HApNPs persuade noxious effects and alter the development, structure, function and behaviour of the fly in a concentration-dependent manner.

  5. Dynamic genome wide expression profiling of Drosophila head development reveals a novel role of Hunchback in retinal glia cell development and blood-brain barrier integrity.

    Directory of Open Access Journals (Sweden)

    Montserrat Torres-Oliva

    2018-01-01

    Full Text Available Drosophila melanogaster head development represents a valuable process to study the developmental control of various organs, such as the antennae, the dorsal ocelli and the compound eyes from a common precursor, the eye-antennal imaginal disc. While the gene regulatory network underlying compound eye development has been extensively studied, the key transcription factors regulating the formation of other head structures from the same imaginal disc are largely unknown. We obtained the developmental transcriptome of the eye-antennal discs covering late patterning processes at the late 2nd larval instar stage to the onset and progression of differentiation at the end of larval development. We revealed the expression profiles of all genes expressed during eye-antennal disc development and we determined temporally co-expressed genes by hierarchical clustering. Since co-expressed genes may be regulated by common transcriptional regulators, we combined our transcriptome dataset with publicly available ChIP-seq data to identify central transcription factors that co-regulate genes during head development. Besides the identification of already known and well-described transcription factors, we show that the transcription factor Hunchback (Hb regulates a significant number of genes that are expressed during late differentiation stages. We confirm that hb is expressed in two polyploid subperineurial glia cells (carpet cells and a thorough functional analysis shows that loss of Hb function results in a loss of carpet cells in the eye-antennal disc. Additionally, we provide for the first time functional data indicating that carpet cells are an integral part of the blood-brain barrier. Eventually, we combined our expression data with a de novo Hb motif search to reveal stage specific putative target genes of which we find a significant number indeed expressed in carpet cells.

  6. Dynamic genome wide expression profiling of Drosophila head development reveals a novel role of Hunchback in retinal glia cell development and blood-brain barrier integrity

    Science.gov (United States)

    Torres-Oliva, Montserrat; Schneider, Julia; Wiegleb, Gordon

    2018-01-01

    Drosophila melanogaster head development represents a valuable process to study the developmental control of various organs, such as the antennae, the dorsal ocelli and the compound eyes from a common precursor, the eye-antennal imaginal disc. While the gene regulatory network underlying compound eye development has been extensively studied, the key transcription factors regulating the formation of other head structures from the same imaginal disc are largely unknown. We obtained the developmental transcriptome of the eye-antennal discs covering late patterning processes at the late 2nd larval instar stage to the onset and progression of differentiation at the end of larval development. We revealed the expression profiles of all genes expressed during eye-antennal disc development and we determined temporally co-expressed genes by hierarchical clustering. Since co-expressed genes may be regulated by common transcriptional regulators, we combined our transcriptome dataset with publicly available ChIP-seq data to identify central transcription factors that co-regulate genes during head development. Besides the identification of already known and well-described transcription factors, we show that the transcription factor Hunchback (Hb) regulates a significant number of genes that are expressed during late differentiation stages. We confirm that hb is expressed in two polyploid subperineurial glia cells (carpet cells) and a thorough functional analysis shows that loss of Hb function results in a loss of carpet cells in the eye-antennal disc. Additionally, we provide for the first time functional data indicating that carpet cells are an integral part of the blood-brain barrier. Eventually, we combined our expression data with a de novo Hb motif search to reveal stage specific putative target genes of which we find a significant number indeed expressed in carpet cells. PMID:29360820

  7. Transcriptome Analysis of the Planarian Eye Identifies ovo as a Specific Regulator of Eye Regeneration

    Directory of Open Access Journals (Sweden)

    Sylvain W. Lapan

    2012-08-01

    Full Text Available Among the millions of invertebrate species with visual systems, the genetic basis of eye development and function is well understood only in Drosophila melanogaster. We describe an eye transcriptome for the planarian Schmidtea mediterranea. Planarian photoreceptors expressed orthologs of genes required for phototransduction and microvillus structure in Drosophila and vertebrates, and optic pigment cells expressed solute transporters and melanin synthesis enzymes similar to those active in the vertebrate retinal pigment epithelium. Orthologs of several planarian eye genes, such as bestrophin-1 and Usher syndrome genes, cause eye defects in mammals when perturbed and were not previously described to have roles in invertebrate eyes. Five previously undescribed planarian eye transcription factors were required for normal eye formation during head regeneration. In particular, a conserved, transcription-factor-encoding ovo gene was expressed from the earliest stages of eye regeneration and was required for regeneration of all cell types of the eye.

  8. Transcriptome analysis of the planarian eye identifies ovo as a specific regulator of eye regeneration.

    Science.gov (United States)

    Lapan, Sylvain W; Reddien, Peter W

    2012-08-30

    Among the millions of invertebrate species with visual systems, the genetic basis of eye development and function is well understood only in Drosophila melanogaster. We describe an eye transcriptome for the planarian Schmidtea mediterranea. Planarian photoreceptors expressed orthologs of genes required for phototransduction and microvillus structure in Drosophila and vertebrates, and optic pigment cells expressed solute transporters and melanin synthesis enzymes similar to those active in the vertebrate retinal pigment epithelium. Orthologs of several planarian eye genes, such as bestrophin-1 and Usher syndrome genes, cause eye defects in mammals when perturbed and were not previously described to have roles in invertebrate eyes. Five previously undescribed planarian eye transcription factors were required for normal eye formation during head regeneration. In particular, a conserved, transcription-factor-encoding ovo gene was expressed from the earliest stages of eye regeneration and was required for regeneration of all cell types of the eye. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Dry Eye

    Science.gov (United States)

    ... Eye » Facts About Dry Eye Listen Facts About Dry Eye Fact Sheet Blurb The National Eye Institute (NEI) ... and their families search for general information about dry eye. An eye care professional who has examined the ...

  10. Temporal and spatial expression of Drosophila DLGS97 during neural development.

    Science.gov (United States)

    Albornoz, Valeria; Mendoza-Topaz, Carolina; Oliva, Carlos; Tello, Judith; Olguín, Patricio; Sierralta, Jimena

    2008-07-01

    The products of the Drosophila discs-large (dlg) gene are members of the MAGUK family of proteins, a group of proteins involved in localization, transport and recycling of receptors and channels in cell junctions, including the synapse. In vertebrates, four genes with multiple splice variants homologous to dlg are described. dlg originates two main proteins, DLGA, similar to the vertebrate neuronal protein PSD95, and DLGS97, similar to the vertebrate neuronal and epithelial protein SAP97. DLGA is expressed in epithelia, neural tissue and muscle. DLGS97 is expressed in neural tissue and muscle but not in epithelia. The distinctive difference between them is the presence in DLGS97 of an L27 domain. The differential expression between these variants makes the study of DLGS97 of key relevance to understand the in vivo role of synaptic MAGUKs in neurons. Here we present the temporal and spatial expression pattern of DLGS97 during embryonic and larval nervous system development, during eye development and in adult brain. Our results show that DLGS97 is expressed zygotically, in neurons in the embryo, larvae and adult, and is absent at all stages in glial cells. During eye development DLGS97 starts to be expressed in photoreceptor cells at early stages of differentiation and localizes basal to the basolateral junctions. In the brain, DLGS97 is expressed in the mushroom bodies and optic lobes at larval and adult stages; and in the antennal lobe in the adult stage. In addition we show that both, dlgS97 and dlgA transcripts, express during development multiple splice variants with differences in the use of exons in two sites.

  11. Drosophila MOF regulates DIAP1 and induces apoptosis in a JNK dependent pathway.

    Science.gov (United States)

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Ramaiah, M Janaki; Koteswara Rao, G; Bag, Indira; Bhadra, Utpal; Pal-Bhadra, Manika

    2016-03-01

    Histone modulations have been implicated in various cellular and developmental processes where in Drosophila Mof is involved in acetylation of H4K16. Reduction in the size of larval imaginal discs is observed in the null mutants of mof with increased apoptosis. Deficiency involving Hid, Reaper and Grim [H99] alleviated mof (RNAi) induced apoptosis in the eye discs. mof (RNAi) induced apoptosis leads to activation of caspases which is suppressed by over expression of caspase inhibitors like P35 and Diap1 clearly depicting the role of caspases in programmed cell death. Also apoptosis induced by knockdown of mof is rescued by JNK mutants of bsk and tak1 indicating the role of JNK in mof (RNAi) induced apoptosis. The adult eye ablation phenotype produced by ectopic expression of Hid, Rpr and Grim, was restored by over expression of Mof. Accumulation of Mof at the Diap1 promoter 800 bp upstream of the transcription start site in wild type larvae is significantly higher (up to twofolds) compared to mof (1) mutants. This enrichment coincides with modification of histone H4K16Ac indicating an induction of direct transcriptional up regulation of Diap1 by Mof. Based on these results we propose that apoptosis triggered by mof (RNAi) proceeds through a caspase-dependent and JNK mediated pathway.

  12. La conducta de larvas de Drosophila (Diptera; Drosophilidae: su etología, desarrollo, genética y evolución The behavior of Drosophila larvae: their ethology, development, genetics and evolution

    Directory of Open Access Journals (Sweden)

    RAÚL GODOY-HERRERA

    2001-03-01

    Full Text Available Este trabajo, en honor al Profesor Doctor Danko Brncic Juricic (Q.E.P.D., es una revisión de nuestras contribuciones sobre la etología, desarrollo, genética y evolución de patrones de conducta de larvas de Drosophila. Se discute el desarrollo de conductas larvales de forrajeo y sus bases hereditarias. También se discuten estrategias de investigación dirigidas a entender las relaciones entre genotipo y conducta durante el desarrollo de los organismos. Se relacionan patrones de desarrollo de conductas larvales con la filogenia de las especies del grupo mesophragmatica de Drosophila. Finalmente, se distingue entre evolución de elementos de conducta simple y evolución de conductas complejasThis is a review about our contributions in ethology, development, genetics, and evolution of larval behavioral patterns of Drosophila in honor of the late Professor Doctor Danko Brncic Juricic. The developmental behavioral genetics of larval foraging and pupation of Drosophila are discussed. It is also emphasized the importance of research strategies lead to understand properly the relationships between genotype and behavior during development of the organisms. Finally, a comparison between phylogenetic relationships of six Drosophila species of the mesophragmatica group and their developmental patterns of larval behaviors is provided

  13. Analysis of a new morphogenetic mutation in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Mglinets, V.A.

    1987-01-01

    Somatic mosaicism for mutations monster and yellow was induced by gamma-irradiation of Drosophila melanogaster y/y; Dp(1; 2)sc 19 M(2)z/mn d embryos and larvae. Frequencies of mosaicism increased with the age of treated larvae, especially in the end of the 2nd larval instar. Autonomous expression of mn was observed throughout the whole range of larval age studied, though neither for all y/y spots nor for all parts of the spots. Dissimilarities in dynamics of mosaic spots and duplication induction suggest that the latter are not due to mn expression in somatic clones

  14. Evidence for transgenerational metabolic programming in Drosophila

    Directory of Open Access Journals (Sweden)

    Jessica L. Buescher

    2013-09-01

    Worldwide epidemiologic studies have repeatedly demonstrated an association between prenatal nutritional environment, birth weight and susceptibility to adult diseases including obesity, cardiovascular disease and type 2 diabetes. Despite advances in mammalian model systems, the molecular mechanisms underlying this phenomenon are unclear, but might involve programming mechanisms such as epigenetics. Here we describe a new system for evaluating metabolic programming mechanisms using a simple, genetically tractable Drosophila model. We examined the effect of maternal caloric excess on offspring and found that a high-sugar maternal diet alters body composition of larval offspring for at least two generations, augments an obese-like phenotype under suboptimal (high-calorie feeding conditions in adult offspring, and modifies expression of metabolic genes. Our data indicate that nutritional programming mechanisms could be highly conserved and support the use of Drosophila as a model for evaluating the underlying genetic and epigenetic contributions to this phenomenon.

  15. Evolution of increased larval competitive ability in Drosophila ...

    Indian Academy of Sciences (India)

    the most successful bridge between population genetics and. ∗For correspondence. ... ment of simple models of density-independent (r-selection) ..... suspension of yeast. Twenty .... In this design, the random factor (block) plus any random.

  16. Sucrose Improves Insecticide Activity Against Drosophila suzukii (Diptera: Drosophilidae).

    Science.gov (United States)

    Cowles, Richard S; Rodriguez-Saona, Cesar; Holdcraft, Robert; Loeb, Gregory M; Elsensohn, Johanna E; Hesler, Steven P

    2015-04-01

    The addition of sucrose to insecticides targeting spotted wing drosophila, Drosophila suzukii (Matsumura), enhanced lethality in laboratory, semifield, and field tests. In the laboratory, 0.1% sucrose added to a spray solution enhanced spotted wing drosophila feeding. Flies died 120 min earlier when exposed to spinosad residues at label rates enhanced with sucrose. Added sucrose reduced the LC50 for dried acetamiprid residues from 82 to 41 ppm in the spray solution. Laboratory bioassays of spotted wing drosophila mortality followed exposure to grape and blueberry foliage and/or fruit sprayed and aged in the field. On grape foliage, the addition of 2.4 g/liter of sugar with insecticide sprays resulted in an 11 and 6% increase of spotted wing drosophila mortality at 1 and 2 d exposures to residues, respectively, averaged over seven insecticides with three concentrations. In a separate experiment, spinetoram and cyantraniliprole reduced by 95-100% the larval infestation of blueberries, relative to the untreated control, 7 d after application at labeled rates when applied with 1.2 g/liter sucrose in a spray mixture, irrespective of rainfall; without sucrose infestation was reduced by 46-91%. Adding sugar to the organically acceptable spinosyn, Entrust, reduced larval infestation of strawberries by >50% relative to without sugar for five of the six sample dates during a season-long field trial. In a small-plot field test with blueberries, weekly applications in alternating sprays of sucrose plus reduced-risk insecticides, spinetoram or acetamiprid, reduced larval infestation relative to the untreated control by 76%; alternating bifenthrin and phosmet (without sucrose) reduced infestation by 65%. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. The bacterial communities of Drosophila suzukii collected from undamaged cherries

    Directory of Open Access Journals (Sweden)

    James Angus Chandler

    2014-07-01

    Full Text Available Drosophila suzukii is an introduced pest insect that feeds on undamaged, attached fruit. This diet is distinct from the fallen, discomposing fruits utilized by most other species of Drosophila. Since the bacterial microbiota of Drosophila, and of many other animals, is affected by diet, we hypothesized that the bacteria associated with D. suzukii are distinct from that of other Drosophila. Using 16S rDNA PCR and Illumina sequencing, we characterized the bacterial communities of larval and adult D. suzukii collected from undamaged, attached cherries in California, USA. We find that the bacterial communities associated with these samples of D. suzukii contain a high frequency of Tatumella. Gluconobacter and Acetobacter, two taxa with known associations with Drosophila, were also found, although at lower frequency than Tatumella in four of the five samples examined. Sampling D. suzukii from different locations and/or while feeding on different fruits is needed to determine the generality of the results determined by these samples. Nevertheless this is, to our knowledge, the first study characterizing the bacterial communities of this ecologically unique and economically important species of Drosophila.

  18. Eye Allergies

    Science.gov (United States)

    ... Español Eye Health / Eye Health A-Z Eye Allergies Sections What Are Eye Allergies? Eye Allergy Symptoms ... allergy diagnosis Eye allergy treatment What Are Eye Allergies? Leer en Español: ¿Qué son las alergias de ...

  19. EGFR Signaling in the Brain Is Necessary for Olfactory Learning in "Drosophila" Larvae

    Science.gov (United States)

    Rahn, Tasja; Leippe, Matthias; Roeder, Thomas; Fedders, Henning

    2013-01-01

    Signaling via the epidermal growth factor receptor (EGFR) pathway has emerged as one of the key mechanisms in the development of the central nervous system in "Drosophila melanogaster." By contrast, little is known about the functions of EGFR signaling in the differentiated larval brain. Here, promoter-reporter lines of EGFR and its most prominent…

  20. The role of reduced oxygen in the developmental physiology of growth and metamorphosis initiation in Drosophila

    Science.gov (United States)

    Rearing oxygen level is known to affect final body size in a variety of insects, but the physiological mechanisms by which oxygen affects size are incompletely understood. In Manduca and Drosophila, the larval size at which metamorphosis is initiated largely determines adult size, and metamorphosis ...

  1. Activities of natural methyl farnesoids on pupariation and metamorphosis of Drosophila melanogaster

    Science.gov (United States)

    Methyl farnesoate (MF) and juvenile hormone (JH III), which respectively bind to the receptors USP and MET, and bisepoxy JH III (bisJHIII) were assessed for several activities during Drosophila larval development, and during prepupal development to eclosed adults. Dietary MF and JH III were similar...

  2. The Drosophila Perlecan gene trol regulates multiple signaling pathways in different developmental contexts

    Directory of Open Access Journals (Sweden)

    Perry Trinity L

    2007-11-01

    Full Text Available Abstract Background Heparan sulfate proteoglycans modulate signaling by a variety of growth factors. The mammalian proteoglycan Perlecan binds and regulates signaling by Sonic Hedgehog, Fibroblast Growth Factors (FGFs, Vascular Endothelial Growth Factor (VEGF and Platelet Derived Growth Factor (PDGF, among others, in contexts ranging from angiogenesis and cardiovascular development to cancer progression. The Drosophila Perlecan homolog trol has been shown to regulate the activity of Hedgehog and Branchless (an FGF homolog to control the onset of stem cell proliferation in the developing brain during first instar. Here we extend analysis of trol mutant phenotypes to show that trol is required for a variety of developmental events and modulates signaling by multiple growth factors in different situations. Results Different mutations in trol allow developmental progression to varying extents, suggesting that trol is involved in multiple cell-fate and patterning decisions. Analysis of the initiation of neuroblast proliferation at second instar demonstrated that trol regulates this event by modulating signaling by Hedgehog and Branchless, as it does during first instar. Trol protein is distributed over the surface of the larval brain, near the regulated neuroblasts that reside on the cortical surface. Mutations in trol also decrease the number of circulating plasmatocytes. This is likely to be due to decreased expression of pointed, the response gene for VEGF/PDGF signaling that is required for plasmatocyte proliferation. Trol is found on plasmatocytes, where it could regulate VEGF/PDGF signaling. Finally, we show that in second instar brains but not third instar brain lobes and eye discs, mutations in trol affect signaling by Decapentaplegic (a Transforming Growth Factor family member, Wingless (a Wnt growth factor and Hedgehog. Conclusion These studies extend the known functions of the Drosophila Perlecan homolog trol in both developmental and

  3. Connecting eye to eye

    DEFF Research Database (Denmark)

    Dau, Susanne; Rask, Anders Bindslev

    2017-01-01

    Computer Supported Collaborative Learning (CSCL) is used a frame for supporting online and blended learning in educations. The online communication and collaboration are afforded by the social collaboration. However, the social collaboration is based on the establishment of direct eye contact...... (Khalid, Deska & Hugenberg, 2016), but direct eye contact is challenged by the position of the digital devices and thus CSCL. Lack of eye contact is the chief contributor to the negative effects of online disinhibition (Lapidot-Lefler & Barak, 2012) and the problem is the location of the web camera...... at the computer. Eye contact is challenged by the displacement between the senders´ and receivers´ focus on the screen picture and the camera's location at the top or bottom of screens on all digital devices. The aim of this paper is accordingly to investigate the influence of the displacement in eye contact...

  4. miR-7 Buffers Differentiation in the Developing Drosophila Visual System

    Directory of Open Access Journals (Sweden)

    Elizabeth E. Caygill

    2017-08-01

    Full Text Available The 40,000 neurons of the medulla, the largest visual processing center of the Drosophila brain, derive from a sheet of neuroepithelial cells. During larval development, a wave of differentiation sweeps across the neuroepithelium, converting neuroepithelial cells into neuroblasts that sequentially express transcription factors specifying different neuronal cell fates. The switch from neuroepithelial cells to neuroblasts is controlled by a complex gene regulatory network and is marked by the expression of the proneural gene l’sc. We discovered that microRNA miR-7 is expressed at the transition between neuroepithelial cells and neuroblasts. We showed that miR-7 promotes neuroepithelial cell-to-neuroblast transition by targeting downstream Notch effectors to limit Notch signaling. miR-7 acts as a buffer to ensure that a precise and stereotypical pattern of transition is maintained, even under conditions of environmental stress, echoing the role that miR-7 plays in the eye imaginal disc. This common mechanism reflects the importance of robust visual system development.

  5. miR-7 Buffers Differentiation in the Developing Drosophila Visual System.

    Science.gov (United States)

    Caygill, Elizabeth E; Brand, Andrea H

    2017-08-08

    The 40,000 neurons of the medulla, the largest visual processing center of the Drosophila brain, derive from a sheet of neuroepithelial cells. During larval development, a wave of differentiation sweeps across the neuroepithelium, converting neuroepithelial cells into neuroblasts that sequentially express transcription factors specifying different neuronal cell fates. The switch from neuroepithelial cells to neuroblasts is controlled by a complex gene regulatory network and is marked by the expression of the proneural gene l'sc. We discovered that microRNA miR-7 is expressed at the transition between neuroepithelial cells and neuroblasts. We showed that miR-7 promotes neuroepithelial cell-to-neuroblast transition by targeting downstream Notch effectors to limit Notch signaling. miR-7 acts as a buffer to ensure that a precise and stereotypical pattern of transition is maintained, even under conditions of environmental stress, echoing the role that miR-7 plays in the eye imaginal disc. This common mechanism reflects the importance of robust visual system development. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Clash of kingdoms or why Drosophila larvae positively respond to fungal competitors

    Directory of Open Access Journals (Sweden)

    Rohlfs Marko

    2005-01-01

    Full Text Available Abstract Background Competition with filamentous fungi has been demonstrated to be an important cause of mortality for the vast group of insects that depend on ephemeral resources (e.g. fruit, dung, carrion. Recent data suggest that the well-known aggregation of Drosophila larvae across decaying fruit yields a competitive advantage over mould, by which the larvae achieve a higher survival probability in larger groups compared with smaller ones. Feeding and locomotor behaviour of larger larval groups is assumed to cause disruption of fungal hyphae, leading to suppression of fungal growth, which in turn improves the chances of larval survival to the adult stage. Given the relationship between larval density, mould suppression and larval survival, the present study has tested whether fungal-infected food patches elicit communal foraging behaviour on mould-infected sites by which larvae might hamper mould growth more efficiently. Results Based on laboratory experiments in which Drosophila larvae were offered the choice between fungal-infected and uninfected food patches, larvae significantly aggregated on patches containing young fungal colonies. Grouping behaviour was also visible when larvae were offered only fungal-infected or only uninfected patches; however, larval aggregation was less strong under these conditions than in a heterogeneous environment (infected and uninfected patches. Conclusion Because filamentous fungi can be deadly competitors for insect larvae on ephemeral resources, social attraction of Drosophila larvae to fungal-infected sites leading to suppression of mould growth may reflect an adaptive behavioural response that increases insect larval fitness and can thus be discussed as an anti-competitor behaviour. These observations support the hypothesis that adverse environmental conditions operate in favour of social behaviour. In a search for the underlying mechanisms of communal behaviour in Drosophila, this study highlights

  7. Tet protein function during Drosophila development.

    Directory of Open Access Journals (Sweden)

    Fei Wang

    Full Text Available The TET (Ten-eleven translocation 1, 2 and 3 proteins have been shown to function as DNA hydroxymethylases in vertebrates and their requirements have been documented extensively. Recently, the Tet proteins have been shown to also hydroxylate 5-methylcytosine in RNA. 5-hydroxymethylcytosine (5hmrC is enriched in messenger RNA but the function of this modification has yet to be elucidated. Because Cytosine methylation in DNA is barely detectable in Drosophila, it serves as an ideal model to study the biological function of 5hmrC. Here, we characterized the temporal and spatial expression and requirement of Tet throughout Drosophila development. We show that Tet is essential for viability as Tet complete loss-of-function animals die at the late pupal stage. Tet is highly expressed in neuronal tissues and at more moderate levels in somatic muscle precursors in embryos and larvae. Depletion of Tet in muscle precursors at early embryonic stages leads to defects in larval locomotion and late pupal lethality. Although Tet knock-down in neuronal tissue does not cause lethality, it is essential for neuronal function during development through its affects upon locomotion in larvae and the circadian rhythm of adult flies. Further, we report the function of Tet in ovarian morphogenesis. Together, our findings provide basic insights into the biological function of Tet in Drosophila, and may illuminate observed neuronal and muscle phenotypes observed in vertebrates.

  8. Caffeine taste signaling in Drosophila larvae

    Directory of Open Access Journals (Sweden)

    Anthi A Apostolopoulou

    2016-08-01

    Full Text Available The Drosophila larva has a simple peripheral nervous system with a comparably small number of sensory neurons located externally at the head or internally along the pharynx to assess its chemical environment. It is assumed that larval taste coding occurs mainly via external organs (the dorsal, terminal and ventral organ. However, the contribution of the internal pharyngeal sensory organs has not been explored. Here we find that larvae require a single pharyngeal gustatory receptor neuron pair called D1, which is located in the dorsal pharyngeal sensilla, in order to avoid caffeine and to associate an odor with caffeine punishment. In contrast, caffeine-driven reduction in feeding in non-choice situations does not require D1. Hence, this work provides data on taste coding via different receptor neurons, depending on the behavioral context. Furthermore, we show that the larval pharyngeal system is involved in bitter tasting. Using ectopic expressions, we show that the caffeine receptor in neuron D1 requires the function of at least four receptor genes: the putative coreceptors Gr33a, Gr66a, the putative caffeine-specific receptor Gr93a, and yet unknown additional molecular component(s. This suggests that larval taste perception is more complex than previously assumed already at the sensory level. Taste information from different sensory organs located outside at the head or inside along the pharynx of the larva is assembled to trigger taste guided behaviours.

  9. Nematocytes: Discovery and characterization of a novel anculeate hemocyte in Drosophila falleni and Drosophila phalerata.

    Directory of Open Access Journals (Sweden)

    Julianna Bozler

    Full Text Available Immune challenges, such as parasitism, can be so pervasive and deleterious that they constitute an existential threat to a species' survival. In response to these ecological pressures, organisms have developed a wide array of novel behavioral, cellular, and molecular adaptations. Research into these immune defenses in model systems has resulted in a revolutionary understanding of evolution and functional biology. As the field has expanded beyond the limited number of model organisms our appreciation of evolutionary innovation and unique biology has widened as well. With this in mind, we have surveyed the hemolymph of several non-model species of Drosophila. Here we identify and describe a novel hemocyte, type-II nematocytes, found in larval stages of numerous Drosophila species. Examined in detail in Drosophila falleni and Drosophila phalerata, we find that these remarkable cells are distinct from previously described hemocytes due to their anucleate state (lacking a nucleus and unusual morphology. Type-II nematocytes are long, narrow cells with spindle-like projections extending from a cell body with high densities of mitochondria and microtubules, and exhibit the ability to synthesize proteins. These properties are unexpected for enucleated cells, and together with our additional characterization, we demonstrate that these type-II nematocytes represent a biological novelty. Surprisingly, despite the absence of a nucleus, we observe through live cell imaging that these cells remain motile with a highly dynamic cellular shape. Furthermore, these cells demonstrate the ability to form multicellular structures, which we suggest may be a component of the innate immune response to macro-parasites. In addition, live cell imaging points to a large nucleated hemocyte, type-I nematocyte, as the progenitor cell, leading to enucleation through a budding or asymmetrical division process rather than nuclear ejection: This study is the first to report such a

  10. Food selection in larval fruit flies: dynamics and effects on larval development

    Science.gov (United States)

    Schwarz, Sebastian; Durisko, Zachary; Dukas, Reuven

    2014-01-01

    Selecting food items and attaining a nutritionally balanced diet is an important challenge for all animals including humans. We aimed to establish fruit fly larvae ( Drosophila melanogaster) as a simple yet powerful model system for examining the mechanisms of specific hunger and diet selection. In two lab experiments with artificial diets, we found that larvae deprived of either sucrose or protein later selectively fed on a diet providing the missing nutrient. When allowed to freely move between two adjacent food patches, larvae surprisingly preferred to settle on one patch containing yeast and ignored the patch providing sucrose. Moreover, when allowed to move freely between three patches, which provided either yeast only, sucrose only or a balanced mixture of yeast and sucrose, the majority of larvae settled on the yeast-plus-sucrose patch and about one third chose to feed on the yeast only food. While protein (yeast) is essential for development, we also quantified larval success on diets with or without sucrose and show that larvae develop faster on diets containing sucrose. Our data suggest that fruit fly larvae can quickly assess major nutrients in food and seek a diet providing a missing nutrient. The larvae, however, probably prefer to quickly dig into a single food substrate for enhanced protection over achieving an optimal diet.

  11. Microwave effects in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Dardalhon, M.; Averbeck, D.; Berteaud, A.J.

    1979-01-01

    Experiments were set up to investigate the effects of open space microwave irradiation of the millimeter (73 GHz) and the centimeter (17 GHz) range in Drosophila melanogaster. We used the wild type strain Paris and the strain delta carrying melanitic tumors in the 3rd larval stage, in the pupae and the adults. The power densities were up to 100mW.cm -2 for 73 GHz and about 60 mW.cm -2 for microwaves at 17 GHz. After 2h exposure to microwaves of 17 GHz or 73 GHz the hatching of the irradiated eggs and their development were normal. In a few cases there was a tendency towards a diminution of the survival of eggs treated at different stages, of larvae treated in the stages 1, 2 and 3 and of treated pupae. However, this was not always statistically significant. The microwave treatment did not induce teratological changes in the adults. A statistical analysis brought about slight diminutions in the incidence and multiplicity of tumors in adult flies. When wild type females were exposed to microwaves of 17 GHz for 16 or 21 h and crossed with untreated males we observed a marked increase in fertility as compared to untreated samples. The viability and tumor incidence in the offspring was not affected. Similar results were obtained when microwaves treated males were crossed with untreated females

  12. ARTIFICIAL SELECTION FOR DEVELOPMENTAL TIME IN DROSOPHILA-MELANOGASTER IN RELATION TO THE EVOLUTION OF AGING - DIRECT AND CORRELATED RESPONSES

    NARCIS (Netherlands)

    ZWAAN, B; BIJLSMA, R; HOEKSTRA, RF

    A wild-type strain of Drosophila melanogaster was successfully selected for both fast and slow larval development. The realized heritabilities (h(2)) ranged from 0.20 to 0.30 for the fast lines and 0.35 to 0.60 for the slow lines. The selection applied is relevant in relation to the evolution of

  13. Comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia

    DEFF Research Database (Denmark)

    Sgro, Carla M.; Overgaard, Johannes; Kristensen, Torsten Nygård

    2010-01-01

    We examined latitudinal variation in adult and larval heat tolerance in Drosophila melanogaster from eastern Australia. Adults were assessed using static and ramping assays. Basal and hardened static heat knockdown time showed significant linear clines; heat tolerance increased towards the tropics...

  14. Transformation of Eye to Antenna by Misexpression of a Single Gene

    OpenAIRE

    Duong, Hao A.; Wang, Cheng Wei; Sun, Y. Henry; Courey, Albert J.

    2007-01-01

    In Drosophila, the eye and antenna originate from a single epithelium termed the eye-antennal imaginal disc. Illumination of the mechanisms that subdivide this epithelium into eye and antenna would enhance our understanding of the mechanisms that restrict stem cell fate. We show here that Dip3, a transcription factor required for eye development, alters fate determination when misexpressed in the early eye-antennal disc, and have taken advantage of this observation to gain new insight into th...

  15. Larval helminths in intermediate hosts

    DEFF Research Database (Denmark)

    Fredensborg, Brian Lund; Poulin, R

    2005-01-01

    Density-dependent effects on parasite fitness have been documented from adult helminths in their definitive hosts. There have, however, been no studies on the cost of sharing an intermediate host with other parasites in terms of reduced adult parasite fecundity. Even if larval parasites suffer a ...

  16. Larval outbreaks in West Greenland

    DEFF Research Database (Denmark)

    Lund, Magnus; Raundrup, Katrine; Westergaard-Nielsen, Andreas

    2017-01-01

    effects of a larval outbreak in 2011 on vegetation productivity and CO2 exchange. We estimate a decreased carbon (C) sink strength in the order of 118–143 g C m−2, corresponding to 1210–1470 tonnes C at the Kobbefjord catchment scale. The decreased C sink was, however, counteracted the following years...

  17. Kauri seeds and larval somersaults

    DEFF Research Database (Denmark)

    Dupont, Steen Thorleif

    2012-01-01

    The trunk morphology of the larvae of the kauri pine (Agathis) seed infesting moth Agathiphaga is described using conventional, polarization, and scanning electron microscopy. The pine seed chamber formed by the larva is also described and commented on. The simple larval chaetotaxy includes more ...

  18. Expression of Calmodulin and Myosin Light Chain Kinase during Larval Settlement of the Barnacle Balanus amphitrite

    KAUST Repository

    Chen, Zhang-Fan; Wang, Hao; Matsumura, Kiyotaka; Qian, Pei-Yuan

    2012-01-01

    Barnacles are one of the most common organisms in intertidal areas. Their life cycle includes seven free-swimming larval stages and sessile juvenile and adult stages. The transition from the swimming to the sessile stages, referred to as larval settlement, is crucial for their survivor success and subsequent population distribution. In this study, we focused on the involvement of calmodulin (CaM) and its binding proteins in the larval settlement of the barnacle, Balanus (= Amphibalanus) amphitrite. The full length of CaM gene was cloned from stage II nauplii of B. amphitrite (referred to as Ba-CaM), encoding 149 amino acid residues that share a high similarity with published CaMs in other organisms. Quantitative real-time PCR showed that Ba-CaM was highly expressed in cyprids, the stage at which swimming larvae are competent to attach and undergo metamorphosis. In situ hybridization revealed that the expressed Ba-CaM gene was localized in compound eyes, posterior ganglion and cement glands, all of which may have essential functions during larval settlement. Larval settlement assays showed that both the CaM inhibitor compound 48/80 and the CaM-dependent myosin light chain kinase (MLCK) inhibitor ML-7 effectively blocked barnacle larval settlement, whereas Ca 2+/CaM-dependent kinase II (CaMKII) inhibitors did not show any clear effects. The subsequent real-time PCR assay showed a higher expression level of Ba-MLCK gene in larval stages than in adults, suggesting an important role of Ba-MLCK gene in larval development and competency. Overall, the results suggest that CaM and CaM-dependent MLCK function during larval settlement of B. amphitrite. © 2012 Chen et al.

  19. Expression of Calmodulin and Myosin Light Chain Kinase during Larval Settlement of the Barnacle Balanus amphitrite

    KAUST Repository

    Chen, Zhang-Fan

    2012-02-13

    Barnacles are one of the most common organisms in intertidal areas. Their life cycle includes seven free-swimming larval stages and sessile juvenile and adult stages. The transition from the swimming to the sessile stages, referred to as larval settlement, is crucial for their survivor success and subsequent population distribution. In this study, we focused on the involvement of calmodulin (CaM) and its binding proteins in the larval settlement of the barnacle, Balanus (= Amphibalanus) amphitrite. The full length of CaM gene was cloned from stage II nauplii of B. amphitrite (referred to as Ba-CaM), encoding 149 amino acid residues that share a high similarity with published CaMs in other organisms. Quantitative real-time PCR showed that Ba-CaM was highly expressed in cyprids, the stage at which swimming larvae are competent to attach and undergo metamorphosis. In situ hybridization revealed that the expressed Ba-CaM gene was localized in compound eyes, posterior ganglion and cement glands, all of which may have essential functions during larval settlement. Larval settlement assays showed that both the CaM inhibitor compound 48/80 and the CaM-dependent myosin light chain kinase (MLCK) inhibitor ML-7 effectively blocked barnacle larval settlement, whereas Ca 2+/CaM-dependent kinase II (CaMKII) inhibitors did not show any clear effects. The subsequent real-time PCR assay showed a higher expression level of Ba-MLCK gene in larval stages than in adults, suggesting an important role of Ba-MLCK gene in larval development and competency. Overall, the results suggest that CaM and CaM-dependent MLCK function during larval settlement of B. amphitrite. © 2012 Chen et al.

  20. Eye Protection

    OpenAIRE

    Pashby, Tom

    1986-01-01

    Eye injuries frequently occur in the home, at work and at play. Many result in legally blind eyes, and most are preventable. Awareness of potential hazards is essential to preventing eye injuries, particularly in children. In addition, protective devices must be used appropriately. We have developed eye protectors that have proved effective in reducing both the overall incidence and the severity of sports eye injuries.

  1. Metabolomic Studies in Drosophila.

    Science.gov (United States)

    Cox, James E; Thummel, Carl S; Tennessen, Jason M

    2017-07-01

    Metabolomic analysis provides a powerful new tool for studies of Drosophila physiology. This approach allows investigators to detect thousands of chemical compounds in a single sample, representing the combined contributions of gene expression, enzyme activity, and environmental context. Metabolomics has been used for a wide range of studies in Drosophila , often providing new insights into gene function and metabolic state that could not be obtained using any other approach. In this review, we survey the uses of metabolomic analysis since its entry into the field. We also cover the major methods used for metabolomic studies in Drosophila and highlight new directions for future research. Copyright © 2017 by the Genetics Society of America.

  2. Rapid mounting of adult Drosophila structures in Hoyer's medium.

    Science.gov (United States)

    Stern, David L; Sucena, Elio

    2012-01-01

    The Drosophila cuticle carries a rich array of morphological details. Thus, cuticle examination has had a central role in the history of genetics. This protocol describes a procedure for mounting adult cuticles in Hoyer's medium, a useful mountant for both larval and adult cuticles. The medium digests soft tissues rapidly, leaving the cuticle cleared for observation. In addition, samples can be transferred directly from water to Hoyer's medium. However, specimens mounted in Hoyer's medium degrade over time. For example, the fine denticles on the larval dorsum are best observed soon after mounting; they begin to fade after 1 week, and can disappear completely after several months. More robust features, such as the ventral denticle belts, will persist for a longer period of time. Because adults cannot profitably be mounted whole in Hoyer's medium, some dissection is necessary.

  3. The ecology of the Drosophila-yeast mutualism in wineries

    Science.gov (United States)

    2018-01-01

    The fruit fly, Drosophila melanogaster, is preferentially found on fermenting fruits. The yeasts that dominate the microbial communities of these substrates are the primary food source for developing D. melanogaster larvae, and adult flies manifest a strong olfactory system-mediated attraction for the volatile compounds produced by these yeasts during fermentation. Although most work on this interaction has focused on the standard laboratory yeast Saccharomyces cerevisiae, a wide variety of other yeasts naturally ferment fallen fruit. Here we address the open question of whether D. melanogaster preferentially associates with distinct yeasts in different, closely-related environments. We characterized the spatial and temporal dynamics of Drosophila-associated fungi in Northern California wineries that use organic grapes and natural fermentation using high-throughput, short-amplicon sequencing. We found that there is nonrandom structure in the fungal communities that are vectored by flies both between and within vineyards. Within wineries, the fungal communities associated with flies in cellars, fermentation tanks, and pomace piles are distinguished by varying abundances of a small number of yeast species. To investigate the origins of this structure, we assayed Drosophila attraction to, oviposition on, larval development in, and longevity when consuming the yeasts that distinguish vineyard microhabitats from each other. We found that wild fly lines did not respond differentially to the yeast species that distinguish winery habitats in habitat specific manner. Instead, this subset of yeast shares traits that make them attractive to and ensure their close association with Drosophila. PMID:29768432

  4. First feeding of larval herring

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Munk, Peter; Støttrup, Josianne

    1985-01-01

    The transition period from endogenous to exogenous feeding by larval herring was investigated in the laboratory for four herring stocks in order to evaluate the chances of survival at the time of fiest feeding. Observations on larval activity, feeding and growth were related to amount of yolk......, visual experience with potential prey organisms prior to first feeding and prey density. Herring larvae did not initiate exogenous feeding until around the time of yolk resorption. The timing of first feeding was not influenced by prior exposure to potential prey organisms during the yolk sac stage....... In the light of these observations, the ecological significance of the yolk sac stage is discussed. Initiation of exogenous feeding was delayed by 1-4 days at a low (7.5 nauplii .cntdot. l-1) compared to a high (120 nauplii .cntdot. l-1) prey density, but even at prey densities corresponding to the lower end...

  5. Wavelength Discrimination in Drosophila Suggests a Role of Rhodopsin 1 in Color Vision

    OpenAIRE

    Garbers, Christian; Wachtler, Thomas

    2016-01-01

    Among the five photoreceptor opsins in the eye of Drosophila, Rhodopsin 1 (Rh1) is expressed in the six outer photoreceptors. In a previous study that combined behavioral genetics with computational modeling, we demonstrated that flies can use the signals from Rh1 for color vision. Here, we provide an in-depth computational analysis of wildtype Drosophila wavelength discrimination specifically considering the consequences of different choices of computations in the preprocessing of the behavi...

  6. Eye Cancer

    Science.gov (United States)

    Cancer of the eye is uncommon. It can affect the outer parts of the eye, such as the eyelid, which are made up ... and nerves. If the cancer starts inside the eyeball it's called intraocular cancer. The most common intraocular ...

  7. Black Eye

    Science.gov (United States)

    ... Your Eyes Sep 20, 2017 Eye Injuries from Laundry Packets On the Rise Jun 30, 2017 ... Medical Disclaimer Privacy Policy Terms of Service For Advertisers For Media Ophthalmology Job Center © American ...

  8. Eye Anatomy

    Science.gov (United States)

    ... News About Us Donate In This Section Eye Anatomy en Español email Send this article to a ... You at Risk For Glaucoma? Childhood Glaucoma Eye Anatomy Five Common Glaucoma Tests Glaucoma Facts and Stats ...

  9. Eye Emergencies

    Science.gov (United States)

    ... The Marfan Foundation Marfan & Related Disorders What is Marfan Syndrome? What are Related Disorders? What are the Signs? ... Emergencies Eye Emergencies Lung Emergencies Surgeries Eye Emergencies Marfan syndrome significantly increases your risk of retinal detachment, a ...

  10. Your Eyes

    Science.gov (United States)

    ... away? If you guessed the eye, you're right! Your eyes are at work from the moment you wake up to the ... the eye is seeing. A Muscle Makes It Work The lens is suspended in ... of the lens. That's right — the lens actually changes shape right inside your ...

  11. Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae.

    Science.gov (United States)

    Widmann, Annekathrin; Artinger, Marc; Biesinger, Lukas; Boepple, Kathrin; Peters, Christina; Schlechter, Jana; Selcho, Mareike; Thum, Andreas S

    2016-10-01

    Memory formation is a highly complex and dynamic process. It consists of different phases, which depend on various neuronal and molecular mechanisms. In adult Drosophila it was shown that memory formation after aversive Pavlovian conditioning includes-besides other forms-a labile short-term component that consolidates within hours to a longer-lasting memory. Accordingly, memory formation requires the timely controlled action of different neuronal circuits, neurotransmitters, neuromodulators and molecules that were initially identified by classical forward genetic approaches. Compared to adult Drosophila, memory formation was only sporadically analyzed at its larval stage. Here we deconstruct the larval mnemonic organization after aversive olfactory conditioning. We show that after odor-high salt conditioning larvae form two parallel memory phases; a short lasting component that depends on cyclic adenosine 3'5'-monophosphate (cAMP) signaling and synapsin gene function. In addition, we show for the first time for Drosophila larvae an anesthesia resistant component, which relies on radish and bruchpilot gene function, protein kinase C activity, requires presynaptic output of mushroom body Kenyon cells and dopamine function. Given the numerical simplicity of the larval nervous system this work offers a unique prospect for studying memory formation of defined specifications, at full-brain scope with single-cell, and single-synapse resolution.

  12. Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae

    Science.gov (United States)

    Widmann, Annekathrin; Artinger, Marc; Biesinger, Lukas; Boepple, Kathrin; Schlechter, Jana; Selcho, Mareike; Thum, Andreas S.

    2016-01-01

    Memory formation is a highly complex and dynamic process. It consists of different phases, which depend on various neuronal and molecular mechanisms. In adult Drosophila it was shown that memory formation after aversive Pavlovian conditioning includes—besides other forms—a labile short-term component that consolidates within hours to a longer-lasting memory. Accordingly, memory formation requires the timely controlled action of different neuronal circuits, neurotransmitters, neuromodulators and molecules that were initially identified by classical forward genetic approaches. Compared to adult Drosophila, memory formation was only sporadically analyzed at its larval stage. Here we deconstruct the larval mnemonic organization after aversive olfactory conditioning. We show that after odor-high salt conditioning larvae form two parallel memory phases; a short lasting component that depends on cyclic adenosine 3’5’-monophosphate (cAMP) signaling and synapsin gene function. In addition, we show for the first time for Drosophila larvae an anesthesia resistant component, which relies on radish and bruchpilot gene function, protein kinase C activity, requires presynaptic output of mushroom body Kenyon cells and dopamine function. Given the numerical simplicity of the larval nervous system this work offers a unique prospect for studying memory formation of defined specifications, at full-brain scope with single-cell, and single-synapse resolution. PMID:27768692

  13. Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae.

    Directory of Open Access Journals (Sweden)

    Annekathrin Widmann

    2016-10-01

    Full Text Available Memory formation is a highly complex and dynamic process. It consists of different phases, which depend on various neuronal and molecular mechanisms. In adult Drosophila it was shown that memory formation after aversive Pavlovian conditioning includes-besides other forms-a labile short-term component that consolidates within hours to a longer-lasting memory. Accordingly, memory formation requires the timely controlled action of different neuronal circuits, neurotransmitters, neuromodulators and molecules that were initially identified by classical forward genetic approaches. Compared to adult Drosophila, memory formation was only sporadically analyzed at its larval stage. Here we deconstruct the larval mnemonic organization after aversive olfactory conditioning. We show that after odor-high salt conditioning larvae form two parallel memory phases; a short lasting component that depends on cyclic adenosine 3'5'-monophosphate (cAMP signaling and synapsin gene function. In addition, we show for the first time for Drosophila larvae an anesthesia resistant component, which relies on radish and bruchpilot gene function, protein kinase C activity, requires presynaptic output of mushroom body Kenyon cells and dopamine function. Given the numerical simplicity of the larval nervous system this work offers a unique prospect for studying memory formation of defined specifications, at full-brain scope with single-cell, and single-synapse resolution.

  14. Comparative evaluation of the genomes of three common Drosophila-associated bacteria

    Directory of Open Access Journals (Sweden)

    Kristina Petkau

    2016-09-01

    Full Text Available Drosophila melanogaster is an excellent model to explore the molecular exchanges that occur between an animal intestine and associated microbes. Previous studies in Drosophila uncovered a sophisticated web of host responses to intestinal bacteria. The outcomes of these responses define critical events in the host, such as the establishment of immune responses, access to nutrients, and the rate of larval development. Despite our steady march towards illuminating the host machinery that responds to bacterial presence in the gut, there are significant gaps in our understanding of the microbial products that influence bacterial association with a fly host. We sequenced and characterized the genomes of three common Drosophila-associated microbes: Lactobacillus plantarum, Lactobacillus brevis and Acetobacter pasteurianus. For each species, we compared the genomes of Drosophila-associated strains to the genomes of strains isolated from alternative sources. We found that environmental Lactobacillus strains readily associated with adult Drosophila and were similar to fly isolates in terms of genome organization. In contrast, we identified a strain of A. pasteurianus that apparently fails to associate with adult Drosophila due to an inability to grow on fly nutrient food. Comparisons between association competent and incompetent A. pasteurianus strains identified a short list of candidate genes that may contribute to survival on fly medium. Many of the gene products unique to fly-associated strains have established roles in the stabilization of host-microbe interactions. These data add to a growing body of literature that examines the microbial perspective of host-microbe relationships.

  15. Drosophila Vps13 Is Required for Protein Homeostasis in the Brain.

    Directory of Open Access Journals (Sweden)

    Jan J Vonk

    Full Text Available Chorea-Acanthocytosis is a rare, neurodegenerative disorder characterized by progressive loss of locomotor and cognitive function. It is caused by loss of function mutations in the Vacuolar Protein Sorting 13A (VPS13A gene, which is conserved from yeast to human. The consequences of VPS13A dysfunction in the nervous system are still largely unspecified. In order to study the consequences of VPS13A protein dysfunction in the ageing central nervous system we characterized a Drosophila melanogaster Vps13 mutant line. The Drosophila Vps13 gene encoded a protein of similar size as human VPS13A. Our data suggest that Vps13 is a peripheral membrane protein located to endosomal membranes and enriched in the fly head. Vps13 mutant flies showed a shortened life span and age associated neurodegeneration. Vps13 mutant flies were sensitive to proteotoxic stress and accumulated ubiquitylated proteins. Levels of Ref(2P, the Drosophila orthologue of p62, were increased and protein aggregates accumulated in the central nervous system. Overexpression of the human Vps13A protein in the mutant flies partly rescued apparent phenotypes. This suggests a functional conservation of human VPS13A and Drosophila Vps13. Our results demonstrate that Vps13 is essential to maintain protein homeostasis in the larval and adult Drosophila brain. Drosophila Vps13 mutants are suitable to investigate the function of Vps13 in the brain, to identify genetic enhancers and suppressors and to screen for potential therapeutic targets for Chorea-Acanthocytosis.

  16. Drosophila Wnt and STAT Define Apoptosis-Resistant Epithelial Cells for Tissue Regeneration after Irradiation.

    Directory of Open Access Journals (Sweden)

    Shilpi Verghese

    2016-09-01

    Full Text Available Drosophila melanogaster larvae irradiated with doses of ionizing radiation (IR that kill about half of the cells in larval imaginal discs still develop into viable adults. How surviving cells compensate for IR-induced cell death to produce organs of normal size and appearance remains an active area of investigation. We have identified a subpopulation of cells within the continuous epithelium of Drosophila larval wing discs that shows intrinsic resistance to IR- and drug-induced apoptosis. These cells reside in domains of high Wingless (Wg, Drosophila Wnt-1 and STAT92E (sole Drosophila signal transducer and activator of transcription [STAT] homolog activity and would normally form the hinge in the adult fly. Resistance to IR-induced apoptosis requires STAT and Wg and is mediated by transcriptional repression of the pro-apoptotic gene reaper. Lineage tracing experiments show that, following irradiation, apoptosis-resistant cells lose their identity and translocate to areas of the wing disc that suffered abundant cell death. Our findings provide a new paradigm for regeneration in which it is unnecessary to invoke special damage-resistant cell types such as stem cells. Instead, differences in gene expression within a population of genetically identical epithelial cells can create a subpopulation with greater resistance, which, following damage, survive, alter their fate, and help regenerate the tissue.

  17. Hearing regulates Drosophila aggression.

    Science.gov (United States)

    Versteven, Marijke; Vanden Broeck, Lies; Geurten, Bart; Zwarts, Liesbeth; Decraecker, Lisse; Beelen, Melissa; Göpfert, Martin C; Heinrich, Ralf; Callaerts, Patrick

    2017-02-21

    Aggression is a universal social behavior important for the acquisition of food, mates, territory, and social status. Aggression in Drosophila is context-dependent and can thus be expected to involve inputs from multiple sensory modalities. Here, we use mechanical disruption and genetic approaches in Drosophila melanogaster to identify hearing as an important sensory modality in the context of intermale aggressive behavior. We demonstrate that neuronal silencing and targeted knockdown of hearing genes in the fly's auditory organ elicit abnormal aggression. Further, we show that exposure to courtship or aggression song has opposite effects on aggression. Our data define the importance of hearing in the control of Drosophila intermale aggression and open perspectives to decipher how hearing and other sensory modalities are integrated at the neural circuit level.

  18. Models of prey capture in larval fish

    NARCIS (Netherlands)

    Drost, M.R.

    1986-01-01

    The food uptake of larval carp and pike is described from high speed movies with synchronous lateral and ventral views.

    During prey intake by larval fishes the velocities of the created suction flow are high relative to their own size: 0.3 m/s for carp larvae of 6

  19. Plant microRNAs in larval food regulate honeybee caste development.

    Science.gov (United States)

    Zhu, Kegan; Liu, Minghui; Fu, Zheng; Zhou, Zhen; Kong, Yan; Liang, Hongwei; Lin, Zheguang; Luo, Jun; Zheng, Huoqing; Wan, Ping; Zhang, Junfeng; Zen, Ke; Chen, Jiong; Hu, Fuliang; Zhang, Chen-Yu; Ren, Jie; Chen, Xi

    2017-08-01

    The major environmental determinants of honeybee caste development come from larval nutrients: royal jelly stimulates the differentiation of larvae into queens, whereas beebread leads to worker bee fate. However, these determinants are not fully characterized. Here we report that plant RNAs, particularly miRNAs, which are more enriched in beebread than in royal jelly, delay development and decrease body and ovary size in honeybees, thereby preventing larval differentiation into queens and inducing development into worker bees. Mechanistic studies reveal that amTOR, a stimulatory gene in caste differentiation, is the direct target of miR162a. Interestingly, the same effect also exists in non-social Drosophila. When such plant RNAs and miRNAs are fed to Drosophila larvae, they cause extended developmental times and reductions in body weight and length, ovary size and fecundity. This study identifies an uncharacterized function of plant miRNAs that fine-tunes honeybee caste development, offering hints for understanding cross-kingdom interaction and co-evolution.

  20. Evidence for the Involvement of p38 MAPK Activation in Barnacle Larval Settlement

    KAUST Repository

    He, Li-Sheng

    2012-10-24

    The barnacle Balanus ( = Amphibalanus) amphitrite is a major marine fouling animal. Understanding the molecular mechanism of larval settlement in this species is critical for anti-fouling research. In this study, we cloned one isoform of p38 MAPK (Bar-p38 MAPK) from this species, which shares the significant characteristic of containing a TGY motif with other species such as yeast, Drosophila and humans. The activation of p38 MAPK was detected by an antibody that recognizes the conserved dual phosphorylation sites of TGY. The results showed that phospho-p38 MAPK (pp38 MAPK) was more highly expressed at the cyprid stage, particularly in aged cyprids, in comparison to other stages, including the nauplius and juvenile stages. Immunostaining showed that Bar-p38 MAPK and pp38 MAPK were mainly located at the cyprid antennules, and especially the third and fourth segments, which are responsible for substratum exploration during settlement. The expression and localization patterns of Bar-p38 MAPK suggest its involvement in larval settlement. This postulation was also supported by the larval settlement bioassay with the p38 MAPK inhibitor SB203580. Behavioral analysis by live imaging revealed that the larvae were still capable of exploring the surface of the substratum after SB203580 treatment. This shows that the effect of p38 MAPK on larval settlement might be by regulating the secretion of permanent proteinaceous substances. Furthermore, the level of pp38 MAPK dramatically decreased after full settlement, suggesting that Bar-p38 MAPK maybe plays a role in larval settlement rather than metamorphosis. Finally, we found that Bar-p38 MAPK was highly activated when larvae confronted extracts of adult barnacle containing settlement cues, whereas larvae pre-treated with SB203580 failed to respond to the crude adult extracts.

  1. Evidence for the Involvement of p38 MAPK Activation in Barnacle Larval Settlement

    KAUST Repository

    He, Li-Sheng; Xu, Ying; Matsumura, Kiyotaka; Zhang, Yu; Zhang, Gen; Qi, Shu-Hua; Qian, Pei-Yuan

    2012-01-01

    The barnacle Balanus ( = Amphibalanus) amphitrite is a major marine fouling animal. Understanding the molecular mechanism of larval settlement in this species is critical for anti-fouling research. In this study, we cloned one isoform of p38 MAPK (Bar-p38 MAPK) from this species, which shares the significant characteristic of containing a TGY motif with other species such as yeast, Drosophila and humans. The activation of p38 MAPK was detected by an antibody that recognizes the conserved dual phosphorylation sites of TGY. The results showed that phospho-p38 MAPK (pp38 MAPK) was more highly expressed at the cyprid stage, particularly in aged cyprids, in comparison to other stages, including the nauplius and juvenile stages. Immunostaining showed that Bar-p38 MAPK and pp38 MAPK were mainly located at the cyprid antennules, and especially the third and fourth segments, which are responsible for substratum exploration during settlement. The expression and localization patterns of Bar-p38 MAPK suggest its involvement in larval settlement. This postulation was also supported by the larval settlement bioassay with the p38 MAPK inhibitor SB203580. Behavioral analysis by live imaging revealed that the larvae were still capable of exploring the surface of the substratum after SB203580 treatment. This shows that the effect of p38 MAPK on larval settlement might be by regulating the secretion of permanent proteinaceous substances. Furthermore, the level of pp38 MAPK dramatically decreased after full settlement, suggesting that Bar-p38 MAPK maybe plays a role in larval settlement rather than metamorphosis. Finally, we found that Bar-p38 MAPK was highly activated when larvae confronted extracts of adult barnacle containing settlement cues, whereas larvae pre-treated with SB203580 failed to respond to the crude adult extracts.

  2. [Canine peritoneal larval cestodosis caused by Mesocestoides spp. larval stages].

    Science.gov (United States)

    Häußler, T C; Peppler, C; Schmitz, S; Bauer, C; Hirzmann, J; Kramer, M

    2016-01-01

    In a female dog with unspecific clinical symptoms, sonography detected a hyperechoic mass in the middle abdomen and blood analysis a middle grade systemic inflammatory reaction. Laparotomy revealed a peritoneal larval cestodosis (PLC). The diagnosis of an infection with tetrathyridia of Mesocestoides spp. was confirmed by parasitological examination and molecularbiological analysis. Reduction of the intra-abdominal parasitic load as well as a high dose administration of fenbendazole over 3 months led to a successful treatment which could be documented sonographically and by decreased concentrations of C-reactive protein (CRP). Seven months after discontinuation of fenbendazole administration, PLC recurred, pre-empted by an elevation of serum CRP values. According to the literature a life-long fenbendazole treatment was initiated. In cases of unclear chronic granulomatous inflammations in the abdominal cavity in dogs, PLC should be considered. CRP concentration and sonographic examinations are suitable to control for treatment success and a possibly occurring relapse.

  3. Human Intellectual Disability Genes Form Conserved Functional Modules in Drosophila

    Science.gov (United States)

    Oortveld, Merel A. W.; Keerthikumar, Shivakumar; Oti, Martin; Nijhof, Bonnie; Fernandes, Ana Clara; Kochinke, Korinna; Castells-Nobau, Anna; van Engelen, Eva; Ellenkamp, Thijs; Eshuis, Lilian; Galy, Anne; van Bokhoven, Hans; Habermann, Bianca; Brunner, Han G.; Zweier, Christiane; Verstreken, Patrik; Huynen, Martijn A.; Schenck, Annette

    2013-01-01

    Intellectual Disability (ID) disorders, defined by an IQ below 70, are genetically and phenotypically highly heterogeneous. Identification of common molecular pathways underlying these disorders is crucial for understanding the molecular basis of cognition and for the development of therapeutic intervention strategies. To systematically establish their functional connectivity, we used transgenic RNAi to target 270 ID gene orthologs in the Drosophila eye. Assessment of neuronal function in behavioral and electrophysiological assays and multiparametric morphological analysis identified phenotypes associated with knockdown of 180 ID gene orthologs. Most of these genotype-phenotype associations were novel. For example, we uncovered 16 genes that are required for basal neurotransmission and have not previously been implicated in this process in any system or organism. ID gene orthologs with morphological eye phenotypes, in contrast to genes without phenotypes, are relatively highly expressed in the human nervous system and are enriched for neuronal functions, suggesting that eye phenotyping can distinguish different classes of ID genes. Indeed, grouping genes by Drosophila phenotype uncovered 26 connected functional modules. Novel links between ID genes successfully predicted that MYCN, PIGV and UPF3B regulate synapse development. Drosophila phenotype groups show, in addition to ID, significant phenotypic similarity also in humans, indicating that functional modules are conserved. The combined data indicate that ID disorders, despite their extreme genetic diversity, are caused by disruption of a limited number of highly connected functional modules. PMID:24204314

  4. Characterization of the activity of β-galactosidase from Escherichia coli and Drosophila melanogaster in fixed and non-fixed Drosophila tissues

    Directory of Open Access Journals (Sweden)

    Mizuki Tomizawa

    2016-12-01

    Full Text Available β-Galactosidase encoded by the Escherichia coli lacZ gene, is widely used as a reporter molecule in molecular biology in a wide variety of animals. β-Galactosidase retains its enzymatic activity in cells or tissues even after fixation and can degrade X-Gal, a frequently used colormetric substrate, producing a blue color. Therefore, it can be used for the activity staining of fixed tissues. However, the enzymatic activity of the β-galactosidase that is ectopically expressed in the non-fixed tissues of animals has not been extensively studied. Here, we report the characterization of β-galactosidase activity in Drosophila tissues with and without fixation in various experimental conditions comparing the activity of two evolutionarily orthologous β-galactosidases derived from the E. coli lacZ and Drosophila melanogaster DmelGal genes. We performed quantitative analysis of the activity staining of larval imaginal discs and an in vitro assay using larval lysates. Our data showed that both E. coli and Drosophila β-galactosidase can be used for cell-type-specific activity staining, but they have their own preferences in regard to conditions. E. coli β-galactosidase showed a preference for neutral pH but not for acidic pH compared with Drosophila β-galactosidase. Our data suggested that both E. coli and Drosophila β-galactosidase show enzymatic activity in the physiological conditions of living animals when they are ectopically expressed in a desired specific spatial and temporal pattern. This may enable their future application to studies of chemical biology using model animals.

  5. Diabetes eye exams

    Science.gov (United States)

    Diabetic retinopathy - eye exams; Diabetes - eye exams; Glaucoma - diabetic eye exam; Macular edema - diabetic eye exam ... if the doctor who takes care of your diabetes checks your eyes, you need an eye exam ...

  6. Searching for the prototypic eye genetic network: Sine oculis is essential for eye regeneration in planarians

    Science.gov (United States)

    Pineda, D.; Gonzalez, J.; Callaerts, P.; Ikeo, K.; Gehring, W. J.; Salo, E.

    2000-01-01

    We have identified a sine oculis gene in the planarian Girardia tigrina (Platyhelminthes; Turbellaria; Tricladida). The planarian sine oculis gene (Gtso) encodes a protein with a sine oculis (Six) domain and a homeodomain that shares significant sequence similarity with so proteins assigned to the Six-2 gene family. Gtso is expressed as a single transcript in both regenerating and fully developed eyes. Whole-mount in situ hybridization studies show exclusive expression in photoreceptor cells. Loss of function of Gtso by RNA interference during planarian regeneration inhibits eye regeneration completely. Gtso is also essential for maintenance of the differentiated state of photoreceptor cells. These results, combined with the previously demonstrated expression of Pax-6 in planarian eyes, suggest that the same basic gene regulatory circuit required for eye development in Drosophila and mouse is used in the prototypic eye spots of platyhelminthes and, therefore, is truly conserved during evolution. PMID:10781056

  7. BMAA neurotoxicity in Drosophila.

    Science.gov (United States)

    Zhou, Xianchong; Escala, Wilfredo; Papapetropoulos, Spyridon; Bradley, Walter G; Zhai, R Grace

    2009-01-01

    We report the establishment of an in vivo model using the fruit fly Drosophila melanogaster to investigate the toxic effects of L-BMAA. We found that dietary intake of BMAA reduced the lifespan as well as the neurological functions of flies. Furthermore, we have developed an HPLC method to reliably detect both free and protein-bound BMAA in fly tissue extracts.

  8. Cancer in Drosophila

    DEFF Research Database (Denmark)

    Herranz, Héctor; Eichenlaub, Teresa; Cohen, Stephen M

    2016-01-01

    Cancer genomics has greatly increased our understanding of the complexity of the genetic and epigenetic changes found in human tumors. Understanding the functional relationships among these elements calls for the use of flexible genetic models. We discuss the use of Drosophila models to study...

  9. Drosophila Protein Kinase CK2: Genetics, Regulatory Complexity and Emerging Roles during Development

    Directory of Open Access Journals (Sweden)

    Mohna Bandyopadhyay

    2016-12-01

    Full Text Available CK2 is a Ser/Thr protein kinase that is highly conserved amongst all eukaryotes. It is a well-known oncogenic kinase that regulates vital cell autonomous functions and animal development. Genetic studies in the fruit fly Drosophila are providing unique insights into the roles of CK2 in cell signaling, embryogenesis, organogenesis, neurogenesis, and the circadian clock, and are revealing hitherto unknown complexities in CK2 functions and regulation. Here, we review Drosophila CK2 with respect to its structure, subunit diversity, potential mechanisms of regulation, developmental abnormalities linked to mutations in the gene encoding CK2 subunits, and emerging roles in multiple aspects of eye development. We examine the Drosophila CK2 “interaction map” and the eye-specific “transcriptome” databases, which raise the prospect that this protein kinase has many additional targets in the developing eye. We discuss the possibility that CK2 functions during early retinal neurogenesis in Drosophila and mammals bear greater similarity than has been recognized, and that this conservation may extend to other developmental programs. Together, these studies underscore the immense power of the Drosophila model organism to provide new insights and avenues to further investigate developmentally relevant targets of this protein kinase.

  10. Sex-specific asymmetry in eye development in interspecific hybrids ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 94; Issue 3. Sex-specific asymmetry in eye development in interspecific hybrids in the Drosophila bipectinata species complex. Bashisth N. Singh Parul Banerjee. Research Note Volume 94 Issue 3 September 2015 pp 493-495 ...

  11. Two hemocyte lineages exist in silkworm larval hematopoietic organ.

    Directory of Open Access Journals (Sweden)

    Yuichi Nakahara

    Full Text Available BACKGROUND: Insects have multiple hemocyte morphotypes with different functions as do vertebrates, however, their hematopoietic lineages are largely unexplored with the exception of Drosophila melanogaster. METHODOLOGY/PRINCIPAL FINDINGS: To study the hematopoietic lineage of the silkworm, Bombyx mori, we investigated in vivo and in vitro differentiation of hemocyte precursors in the hematopoietic organ (HPO into the four mature hemocyte subsets, namely, plasmatocytes, granulocytes, oenocytoids, and spherulocytes. Five days after implantation of enzymatically-dispersed HPO cells from a GFP-expressing transgenic line into the hemocoel of normal larvae, differentiation into plasmatocytes, granulocytes and oenocytoids, but not spherulocytes, was observed. When the HPO cells were cultured in vitro, plasmatocytes appeared rapidly, and oenocytoids possessing prophenol oxidase activity appeared several days later. HPO cells were also able to differentiate into a small number of granulocytes, but not into spherulocytes. When functionally mature plasmatocytes were cultured in vitro, oenocytoids were observed 10 days later. These results suggest that the hemocyte precursors in HPO first differentiate into plasmatocytes, which further change into oenocytoids. CONCLUSIONS/SIGNIFICANCE: From these results, we propose that B. mori hemocytes can be divided into two major lineages, a granulocyte lineage and a plasmatocyte-oenocytoid lineage. The origins of the spherulocytes could not be determined in this study. We construct a model for the hematopoietic lineages at the larval stage of B. mori.

  12. Two hemocyte lineages exist in silkworm larval hematopoietic organ.

    Science.gov (United States)

    Nakahara, Yuichi; Kanamori, Yasushi; Kiuchi, Makoto; Kamimura, Manabu

    2010-07-28

    Insects have multiple hemocyte morphotypes with different functions as do vertebrates, however, their hematopoietic lineages are largely unexplored with the exception of Drosophila melanogaster. To study the hematopoietic lineage of the silkworm, Bombyx mori, we investigated in vivo and in vitro differentiation of hemocyte precursors in the hematopoietic organ (HPO) into the four mature hemocyte subsets, namely, plasmatocytes, granulocytes, oenocytoids, and spherulocytes. Five days after implantation of enzymatically-dispersed HPO cells from a GFP-expressing transgenic line into the hemocoel of normal larvae, differentiation into plasmatocytes, granulocytes and oenocytoids, but not spherulocytes, was observed. When the HPO cells were cultured in vitro, plasmatocytes appeared rapidly, and oenocytoids possessing prophenol oxidase activity appeared several days later. HPO cells were also able to differentiate into a small number of granulocytes, but not into spherulocytes. When functionally mature plasmatocytes were cultured in vitro, oenocytoids were observed 10 days later. These results suggest that the hemocyte precursors in HPO first differentiate into plasmatocytes, which further change into oenocytoids. From these results, we propose that B. mori hemocytes can be divided into two major lineages, a granulocyte lineage and a plasmatocyte-oenocytoid lineage. The origins of the spherulocytes could not be determined in this study. We construct a model for the hematopoietic lineages at the larval stage of B. mori.

  13. Modeling Human Cancers in Drosophila.

    Science.gov (United States)

    Sonoshita, M; Cagan, R L

    2017-01-01

    Cancer is a complex disease that affects multiple organs. Whole-body animal models provide important insights into oncology that can lead to clinical impact. Here, we review novel concepts that Drosophila studies have established for cancer biology, drug discovery, and patient therapy. Genetic studies using Drosophila have explored the roles of oncogenes and tumor-suppressor genes that when dysregulated promote cancer formation, making Drosophila a useful model to study multiple aspects of transformation. Not limited to mechanism analyses, Drosophila has recently been showing its value in facilitating drug development. Flies offer rapid, efficient platforms by which novel classes of drugs can be identified as candidate anticancer leads. Further, we discuss the use of Drosophila as a platform to develop therapies for individual patients by modeling the tumor's genetic complexity. Drosophila provides both a classical and a novel tool to identify new therapeutics, complementing other more traditional cancer tools. © 2017 Elsevier Inc. All rights reserved.

  14. The sex of specific neurons controls female body growth in Drosophila.

    Science.gov (United States)

    Sawala, Annick; Gould, Alex P

    2017-10-01

    Sexual dimorphisms in body size are widespread throughout the animal kingdom but their underlying mechanisms are not well characterized. Most models for how sex chromosome genes specify size dimorphism have emphasized the importance of gonadal hormones and cell-autonomous influences in mammals versus strictly cell-autonomous mechanisms in Drosophila melanogaster. Here, we use tissue-specific genetics to investigate how sexual size dimorphism (SSD) is established in Drosophila. We find that the larger body size characteristic of Drosophila females is established very early in larval development via an increase in the growth rate per unit of body mass. We demonstrate that the female sex determination gene, Sex-lethal (Sxl), functions in central nervous system (CNS) neurons as part of a relay that specifies the early sex-specific growth trajectories of larval but not imaginal tissues. Neuronal Sxl acts additively in 2 neuronal subpopulations, one of which corresponds to 7 median neurosecretory cells: the insulin-producing cells (IPCs). Surprisingly, however, male-female differences in the production of insulin-like peptides (Ilps) from the IPCs do not appear to be involved in establishing SSD in early larvae, although they may play a later role. These findings support a relay model in which Sxl in neurons and Sxl in local tissues act together to specify the female-specific growth of the larval body. They also reveal that, even though the sex determination pathways in Drosophila and mammals are different, they both modulate body growth via a combination of tissue-autonomous and nonautonomous inputs.

  15. Two Algorithms for High-throughput and Multi-parametric Quantification of Drosophila Neuromuscular Junction Morphology.

    Science.gov (United States)

    Castells-Nobau, Anna; Nijhof, Bonnie; Eidhof, Ilse; Wolf, Louis; Scheffer-de Gooyert, Jolanda M; Monedero, Ignacio; Torroja, Laura; van der Laak, Jeroen A W M; Schenck, Annette

    2017-05-03

    Synaptic morphology is tightly related to synaptic efficacy, and in many cases morphological synapse defects ultimately lead to synaptic malfunction. The Drosophila larval neuromuscular junction (NMJ), a well-established model for glutamatergic synapses, has been extensively studied for decades. Identification of mutations causing NMJ morphological defects revealed a repertoire of genes that regulate synapse development and function. Many of these were identified in large-scale studies that focused on qualitative approaches to detect morphological abnormalities of the Drosophila NMJ. A drawback of qualitative analyses is that many subtle players contributing to NMJ morphology likely remain unnoticed. Whereas quantitative analyses are required to detect the subtler morphological differences, such analyses are not yet commonly performed because they are laborious. This protocol describes in detail two image analysis algorithms "Drosophila NMJ Morphometrics" and "Drosophila NMJ Bouton Morphometrics", available as Fiji-compatible macros, for quantitative, accurate and objective morphometric analysis of the Drosophila NMJ. This methodology is developed to analyze NMJ terminals immunolabeled with the commonly used markers Dlg-1 and Brp. Additionally, its wider application to other markers such as Hrp, Csp and Syt is presented in this protocol. The macros are able to assess nine morphological NMJ features: NMJ area, NMJ perimeter, number of boutons, NMJ length, NMJ longest branch length, number of islands, number of branches, number of branching points and number of active zones in the NMJ terminal.

  16. A novel mode of induction of the humoral innate immune response in Drosophila larvae

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kenmoku

    2017-03-01

    Full Text Available Drosophila adults have been utilized as a genetically tractable model organism to decipher the molecular mechanisms of humoral innate immune responses. In an effort to promote the utility of Drosophila larvae as an additional model system, in this study, we describe a novel aspect of an induction mechanism for innate immunity in these larvae. By using a fine tungsten needle created for manipulating semi-conductor devices, larvae were subjected to septic injury. However, although Toll pathway mutants were susceptible to infection with Gram-positive bacteria as had been shown for Drosophila adults, microbe clearance was not affected in the mutants. In addition, Drosophila larvae were found to be sensitive to mechanical stimuli with respect to the activation of a sterile humoral response. In particular, pinching with forceps to a degree that might cause minor damage to larval tissues could induce the expression of the antifungal peptide gene Drosomycin; notably, this induction was partially independent of the Toll and immune deficiency pathways. We therefore propose that Drosophila larvae might serve as a useful model to analyze the infectious and non-infectious inflammation that underlies various inflammatory diseases such as ischemia, atherosclerosis and cancer.

  17. deep-orange and carnation define distinct stages in late endosomal biogenesis in Drosophila melanogaster

    OpenAIRE

    Sriram, V.; Krishnan, K.S.; Mayor, Satyajit

    2003-01-01

    Endosomal degradation is severely impaired in primary hemocytes from larvae of eye color mutants of Drosophila. Using high resolution imaging and immunofluorescence microscopy in these cells, products of eye color genes, deep-orange (dor) and carnation (car), are localized to large multivesicular Rab7-positive late endosomes containing Golgi-derived enzymes. These structures mature into small sized Dor-negative, Car-positive structures, which subsequently fuse to form tubular lysosomes. Defec...

  18. Soundscapes and Larval Settlement: Larval Bivalve Responses to Habitat-Associated Underwater Sounds.

    Science.gov (United States)

    Eggleston, David B; Lillis, Ashlee; Bohnenstiehl, DelWayne R

    2016-01-01

    We quantified the effects of habitat-associated sounds on the settlement response of two species of bivalves with contrasting habitat preferences: (1) Crassostrea virginicia (oyster), which prefers to settle on other oysters, and (2) Mercenaria mercenaria (clam), which settles on unstructured habitats. Oyster larval settlement in the laboratory was significantly higher when exposed to oyster reef sound compared with either off-reef or no-sound treatments. Clam larval settlement did not vary according to sound treatments. Similar to laboratory results, field experiments showed that oyster larval settlement in "larval housings" suspended above oyster reefs was significantly higher compared with off-reef sites.

  19. Circadian Activators Are Expressed Days before They Initiate Clock Function in Late Pacemaker Neurons from Drosophila.

    Science.gov (United States)

    Liu, Tianxin; Mahesh, Guruswamy; Houl, Jerry H; Hardin, Paul E

    2015-06-03

    Circadian pacemaker neurons in the Drosophila brain control daily rhythms in locomotor activity. These pacemaker neurons can be subdivided into early or late groups depending on whether rhythms in period (per) and timeless (tim) expression are initiated at the first instar (L1) larval stage or during metamorphosis, respectively. Because CLOCK-CYCLE (CLK-CYC) heterodimers initiate circadian oscillator function by activating per and tim transcription, a Clk-GFP transgene was used to mark when late pacemaker neurons begin to develop. We were surprised to see that CLK-GFP was already expressed in four of five clusters of late pacemaker neurons during the third instar (L3) larval stage. CLK-GFP is only detected in postmitotic neurons from L3 larvae, suggesting that these four late pacemaker neuron clusters are formed before the L3 larval stage. A GFP-cyc transgene was used to show that CYC, like CLK, is also expressed exclusively in pacemaker neurons from L3 larval brains, demonstrating that CLK-CYC is not sufficient to activate per and tim in late pacemaker neurons at the L3 larval stage. These results suggest that most late pacemaker neurons develop days before novel factors activate circadian oscillator function during metamorphosis. Copyright © 2015 the authors 0270-6474/15/358662-10$15.00/0.

  20. Polymorphism at the ref(2)P locus in Drosophila melanogaster: preliminary experiments concerning the selection mechanisms involved in its maintenance.

    Science.gov (United States)

    Fleuriet, A

    1981-02-01

    It has been shown previously that a polymorphism for two alleles of the ref(2)P locus is a regular feature of French natural populations of Drosophila melanogaster and that this is maintained in laboratory populations raised in cages. In this paper, an experimental population and egg-collection experiments are reported. Differential survival of the three genotypes would be the main factor leading to the equilibrium frequencies, working only in drastic conditions of larval competition.

  1. Fungal diversity associated with Hawaiian Drosophila host plants.

    Directory of Open Access Journals (Sweden)

    Brian S Ort

    Full Text Available Hawaiian Drosophila depend primarily, sometimes exclusively, on specific host plants for oviposition and larval development, and most specialize further on a particular decomposing part of that plant. Differences in fungal community between host plants and substrate types may establish the basis for host specificity in Hawaiian Drosophila. Fungi mediate decomposition, releasing plant micronutrients and volatiles that can indicate high quality substrates and serve as cues to stimulate oviposition. This study addresses major gaps in our knowledge by providing the first culture-free, DNA-based survey of fungal diversity associated with four ecologically important tree genera in the Hawaiian Islands. Three genera, Cheirodendron, Clermontia, and Pisonia, are important host plants for Drosophila. The fourth, Acacia, is not an important drosophilid host but is a dominant forest tree. We sampled fresh and rotting leaves from all four taxa, plus rotting stems from Clermontia and Pisonia. Based on sequences from the D1/D2 domain of the 26S rDNA gene, we identified by BLAST search representatives from 113 genera in 13 fungal classes. A total of 160 operational taxonomic units, defined on the basis of ≥97% genetic similarity, were identified in these samples, but sampling curves show this is an underestimate of the total fungal diversity present on these substrates. Shannon diversity indices ranged from 2.0 to 3.5 among the Hawaiian samples, a slight reduction compared to continental surveys. We detected very little sharing of fungal taxa among the substrates, and tests of community composition confirmed that the structure of the fungal community differed significantly among the substrates and host plants. Based on these results, we hypothesize that fungal community structure plays a central role in the establishment of host preference in the Hawaiian Drosophila radiation.

  2. Golgi analysis of tangential neurons in the lobula plate of Drosophila ...

    Indian Academy of Sciences (India)

    Unknown

    possibly due to the shape of the compound eye of Drosophila which is reduced in the fronto-dorsal region as ...... properties of the vertical cells in the third optic ganglion of ... Egelhaaf M 1985 On the neuronal basis of figure-ground dis-.

  3. Eye Injuries

    Science.gov (United States)

    ... that you could lose your vision. Most eye injuries are preventable. If you play sports or work in certain jobs, you may need protection. The most common type of injury happens when something irritates the ...

  4. Eyes - bulging

    Science.gov (United States)

    ... different ages. In: Lambert SR, Lyons CJ, eds. Taylor and Hoyt's Pediatric Ophthalmology and Strabismus . 5th ed. Philadelphia, PA: Elsevier; 2017:chap 96. Orge FH, Grigorian F. Examination and common problems of the neonatal eye. ...

  5. The serotonergic central nervous system of the Drosophila larva: anatomy and behavioral function.

    Directory of Open Access Journals (Sweden)

    Annina Huser

    Full Text Available The Drosophila larva has turned into a particularly simple model system for studying the neuronal basis of innate behaviors and higher brain functions. Neuronal networks involved in olfaction, gustation, vision and learning and memory have been described during the last decade, often up to the single-cell level. Thus, most of these sensory networks are substantially defined, from the sensory level up to third-order neurons. This is especially true for the olfactory system of the larva. Given the wealth of genetic tools in Drosophila it is now possible to address the question how modulatory systems interfere with sensory systems and affect learning and memory. Here we focus on the serotonergic system that was shown to be involved in mammalian and insect sensory perception as well as learning and memory. Larval studies suggested that the serotonergic system is involved in the modulation of olfaction, feeding, vision and heart rate regulation. In a dual anatomical and behavioral approach we describe the basic anatomy of the larval serotonergic system, down to the single-cell level. In parallel, by expressing apoptosis-inducing genes during embryonic and larval development, we ablate most of the serotonergic neurons within the larval central nervous system. When testing these animals for naïve odor, sugar, salt and light perception, no profound phenotype was detectable; even appetitive and aversive learning was normal. Our results provide the first comprehensive description of the neuronal network of the larval serotonergic system. Moreover, they suggest that serotonin per se is not necessary for any of the behaviors tested. However, our data do not exclude that this system may modulate or fine-tune a wide set of behaviors, similar to its reported function in other insect species or in mammals. Based on our observations and the availability of a wide variety of genetic tools, this issue can now be addressed.

  6. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Stories Español Eye Health / Eye Health A-Z Dry Eye Sections What Is Dry Eye? Dry Eye Symptoms ... of Dry Eye Dry Eye Treatment What Is Dry Eye? Leer en Español: ¿Qué es el ojo seco? ...

  7. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Español Eye Health / Eye Health A-Z Dry Eye Sections What Is Dry Eye? Dry Eye Symptoms ... Dry Eye Dry Eye Treatment What Is Dry Eye? Leer en Español: ¿Qué es el ojo seco? ...

  8. Tolerance in Drosophila

    OpenAIRE

    Atkinson, Nigel S.

    2009-01-01

    The set of genes that underlie ethanol tolerance (inducible resistance) are likely to overlap with the set of genes responsible for ethanol addiction. Whereas addiction is difficult to recognize in simple model systems, behavioral tolerance is readily identifiable and can be induced in large populations of animals. Thus, tolerance lends itself to analysis in model systems with powerful genetics. Drosophila melanogaster has been used by a variety of laboratories for the identification of genes...

  9. Radiation tolerance in the fruit fly, Drosophila Melanogaster - effects of laboratory culturing and stages in life cycle

    International Nuclear Information System (INIS)

    Vas, Iril Prima; Naik, Pramila; Kumar, Vineeth; Naik, Prathima; Patil, Rajashekar K.

    2013-01-01

    Radiation induced damages are due to direct effect of radiation energy or through free radical generation. Recent studies suggest Drosophila to be a good animal model to study radiation tolerance. The present study on female Drosophila melanogaster was conducted to observe 1. Variations in larval and adult radiation tolerance 2. Variations in laboratory culture and field populations of Drosophila. Third instar larvae were exposed to gamma radiation of 6, 10, 20, 30, 40 and 50 Gy in gamma chamber GC 5000 (BRT, India). Larvae of flies collected from the field were reared for two generations in the lab before irradiation. The laboratory cultured files were from stocks that were maintained for more than 1000 generations. The larvae of field populations had higher survival rate at 51% as compared to 43% in case of cultured flies and thus more resistant. The III instar larval stage (lab culture) had a LD50 of 26 Gy as compared to LD 50 of 928 Gy in case of adult flies have ∼ 160 times higher tolerance compared to humans. Prolonged rearing comparable to 'domestication' might have induced reduction in tolerance. Larval stages have a lower tolerance than adults possibly due to higher metabolic rate. Adults are post-mitotic in nature with very low rate of cell division. This may contribute to higher tolerance. This however is in contradiction to studies of midge (Chironomous) where larvae also have higher tolerance. (author)

  10. Behavioral Teratogenesis in Drosophila melanogaster.

    Science.gov (United States)

    Mishra, Monalisa; Barik, Bedanta Kumar

    2018-01-01

    Developmental biology is a fascinating branch of science which helps us to understand the mechanism of development, thus the findings are used in various therapeutic approach. Drosophila melanogaster served as a model to find the key molecules that initiate and regulate the mechanism of development. Various genes, transcription factors, and signaling pathways helping in development are identified in Drosophila. Many toxic compounds, which can affect the development, are also recognized using Drosophila model. These compounds, which can affect the development, are named as a teratogen. Many teratogens identified using Drosophila may also act as a teratogen for a human being since 75% of conservation exist between the disease genes present in Drosophila and human. There are certain teratogens, which do not cause developmental defect if exposed during pregnancy, however; behavioral defect appears in later part of development. Such compounds are named as a behavioral teratogen. Thus, it is worthy to identify the potential behavioral teratogen using Drosophila model. Drosophila behavior is well studied in various developmental stages. This chapter describes various methods which can be employed to test behavioral teratogenesis in Drosophila.

  11. Drosophila Ninjurin A induces nonapoptotic cell death.

    Directory of Open Access Journals (Sweden)

    Sarah Broderick

    Full Text Available Ninjurins are conserved transmembrane proteins that are upregulated across species in response to injury and stress. Their biological functions are not understood, in part because there have been few in vivo studies of their function. We analyzed the expression and function of one of three Drosophila Ninjurins, NijA. We found that NijA protein is redistributed to the cell surface in larval immune tissues after septic injury and is upregulated by the Toll pathway. We generated a null mutant of NijA, which displayed no detectable phenotype. In ectopic expression studies, NijA induced cell death, as evidenced by cell loss and acridine orange staining. These dying cells did not display hallmarks of apoptotic cells including TUNEL staining and inhibition by p35, indicating that NijA induced nonapoptotic cell death. In cell culture, NijA also induced cell death, which appeared to be cell autonomous. These in vivo studies identify a new role for the Ninjurin family in inducing nonapoptotic cell death.

  12. Host plant adaptation in Drosophila mettleri populations.

    Directory of Open Access Journals (Sweden)

    Sergio Castrezana

    Full Text Available The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total. We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp. in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts.

  13. Cerebral Innate Immunity in Drosophila Melanogaster

    Directory of Open Access Journals (Sweden)

    Brian P. Leung

    2015-03-01

    Full Text Available Modeling innate immunity in Drosophila melanogaster has a rich history that includes ground-breaking discoveries in pathogen detection and signaling. These studies revealed the evolutionary conservation of innate immune pathways and mechanisms of pathogen detection, resulting in an explosion of findings in the innate immunity field. In D. melanogaster, studies have focused primarily on responses driven by the larval fat body and hemocytes, analogs to vertebrate liver and macrophages, respectively. Aside from pathogen detection, many recent mammalian studies associate innate immune pathways with development and disease pathogenesis. Importantly, these studies stress that the innate immune response is integral to maintain central nervous system (CNS health. Microglia, which are the vertebrate CNS mononuclear phagocytes, drive vertebrate cerebral innate immunity. The invertebrate CNS contains microglial-like cells-ensheathing glia and reticular glia-that could be used to answer basic questions regarding the evolutionarily conserved innate immune processes in CNS development and health. A deeper understanding of the relationship between D. melanogaster phagocytic microglial-like cells and vertebrate microglia will be key to answering basic and translational questions related to cerebral innate immunity.

  14. Functional characterization of the Drosophila MRP (mitochondrial RNA processing) RNA gene.

    Science.gov (United States)

    Schneider, Mary D; Bains, Anupinder K; Rajendra, T K; Dominski, Zbigniew; Matera, A Gregory; Simmonds, Andrew J

    2010-11-01

    MRP RNA is a noncoding RNA component of RNase mitochondrial RNA processing (MRP), a multi-protein eukaryotic endoribonuclease reported to function in multiple cellular processes, including ribosomal RNA processing, mitochondrial DNA replication, and cell cycle regulation. A recent study predicted a potential Drosophila ortholog of MRP RNA (CR33682) by computer-based genome analysis. We have confirmed the expression of this gene and characterized the phenotype associated with this locus. Flies with mutations that specifically affect MRP RNA show defects in growth and development that begin in the early larval period and end in larval death during the second instar stage. We present several lines of evidence demonstrating a role for Drosophila MRP RNA in rRNA processing. The nuclear fraction of Drosophila MRP RNA localizes to the nucleolus. Further, a mutant strain shows defects in rRNA processing that include a defect in 5.8S rRNA processing, typical of MRP RNA mutants in other species, as well as defects in early stages of rRNA processing.

  15. Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development

    Directory of Open Access Journals (Sweden)

    Bello Bruno C

    2008-02-01

    Full Text Available Abstract Background In the mammalian brain, neural stem cells divide asymmetrically and often amplify the number of progeny they generate via symmetrically dividing intermediate progenitors. Here we investigate whether specific neural stem cell-like neuroblasts in the brain of Drosophila might also amplify neuronal proliferation by generating symmetrically dividing intermediate progenitors. Results Cell lineage-tracing and genetic marker analysis show that remarkably large neuroblast lineages exist in the dorsomedial larval brain of Drosophila. These lineages are generated by brain neuroblasts that divide asymmetrically to self renew but, unlike other brain neuroblasts, do not segregate the differentiating cell fate determinant Prospero to their smaller daughter cells. These daughter cells continue to express neuroblast-specific molecular markers and divide repeatedly to produce neural progeny, demonstrating that they are proliferating intermediate progenitors. The proliferative divisions of these intermediate progenitors have novel cellular and molecular features; they are morphologically symmetrical, but molecularly asymmetrical in that key differentiating cell fate determinants are segregated into only one of the two daughter cells. Conclusion Our findings provide cellular and molecular evidence for a new mode of neurogenesis in the larval brain of Drosophila that involves the amplification of neuroblast proliferation through intermediate progenitors. This type of neurogenesis bears remarkable similarities to neurogenesis in the mammalian brain, where neural stem cells as primary progenitors amplify the number of progeny they generate through generation of secondary progenitors. This suggests that key aspects of neural stem cell biology might be conserved in brain development of insects and mammals.

  16. Expression of multiple transgenes from a single construct using viral 2A peptides in Drosophila.

    Directory of Open Access Journals (Sweden)

    Richard W Daniels

    Full Text Available Expression of multiple reporter or effector transgenes in the same cell from a single construct is increasingly necessary in various experimental paradigms. The discovery of short, virus-derived peptide sequences that mediate a ribosome-skipping event enables generation of multiple separate peptide products from one mRNA. Here we describe methods and vectors to facilitate easy production of polycistronic-like sequences utilizing these 2A peptides tailored for expression in Drosophila both in vitro and in vivo. We tested the separation efficiency of different viral 2A peptides in cultured Drosophila cells and in vivo and found that the 2A peptides from porcine teschovirus-1 (P2A and Thosea asigna virus (T2A worked best. To demonstrate the utility of this approach, we used the P2A peptide to co-express the red fluorescent protein tdTomato and the genetically-encoded calcium indicator GCaMP5G in larval motorneurons. This technique enabled ratiometric calcium imaging with motion correction allowing us to record synaptic activity at the neuromuscular junction in an intact larval preparation through the cuticle. The tools presented here should greatly facilitate the generation of 2A peptide-mediated expression of multiple transgenes in Drosophila.

  17. Prey capture behaviour evoked by simple visual stimuli in larval zebrafish

    Directory of Open Access Journals (Sweden)

    Isaac Henry Bianco

    2011-12-01

    Full Text Available Understanding how the nervous system recognises salient stimuli in the environ- ment and selects and executes the appropriate behavioural responses is a fundamen- tal question in systems neuroscience. To facilitate the neuroethological study of visually-guided behaviour in larval zebrafish, we developed virtual reality assays in which precisely controlled visual cues can be presented to larvae whilst their behaviour is automatically monitored using machine-vision algorithms. Freely swimming larvae responded to moving stimuli in a size-dependent manner: they directed multiple low amplitude orienting turns (∼ 20◦ towards small moving spots (1◦ but reacted to larger spots (10◦ with high-amplitude aversive turns (∼ 60◦. The tracking of small spots led us to examine how larvae respond to prey during hunting routines. By analysing movie sequences of larvae hunting parame- cia, we discovered that all prey capture routines commence with eye convergence and larvae maintain their eyes in a highly converged position for the duration of the prey-tracking and capture swim phases. We adapted our virtual reality assay to deliver artificial visual cues to partially restrained larvae and found that small moving spots evoked convergent eye movements and J-turns of the tail, which are defining features of natural hunting. We propose that eye convergence represents the engagement of a predatory mode of behaviour in larval fish and serves to increase the region of binocular visual space to enable stereoscopic targeting of prey.

  18. The Drosophila melanogaster host model

    Science.gov (United States)

    Igboin, Christina O.; Griffen, Ann L.; Leys, Eugene J.

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed. PMID:22368770

  19. The Drosophila melanogaster host model

    Directory of Open Access Journals (Sweden)

    Christina O. Igboin

    2012-02-01

    Full Text Available The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.

  20. The Drosophila melanogaster host model.

    Science.gov (United States)

    Igboin, Christina O; Griffen, Ann L; Leys, Eugene J

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen-host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial-host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis-host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.

  1. Properties of the Visible Light Phototaxis and UV Avoidance Behaviors in the Larval Zebrafish.

    Science.gov (United States)

    Guggiana-Nilo, Drago A; Engert, Florian

    2016-01-01

    For many organisms, color is an essential source of information from visual scenes. The larval zebrafish has the potential to be a model for the study of this topic, given its tetrachromatic retina and high dependence on vision. In this study we took a step toward understanding how the larval zebrafish might use color sensing. To this end, we used a projector-based paradigm to force a choice of a color stimulus at every turn of the larva. The stimuli used spanned most of the larval spectral range, including activation of its Ultraviolet (UV) cone, which has not been described behaviorally before. We found that zebrafish larvae swim toward visible wavelengths (>400 nm) when choosing between them and darkness, as has been reported with white light. However, when presented with UV light and darkness zebrafish show an intensity dependent avoidance behavior. This UV avoidance does not interact cooperatively with phototaxis toward longer wavelengths, but can compete against it in an intensity dependent manner. Finally, we show that the avoidance behavior depends on the presence of eyes with functional UV cones. These findings open future avenues for studying the neural circuits that underlie color sensing in the larval zebrafish.

  2. Larval vision contributes to gregarious settlement in barnacles: adult red fluorescence as a possible visual signal

    KAUST Repository

    Matsumura, K.

    2014-02-26

    Gregarious settlement, an essential behavior for many barnacle species that can only reproduce by mating with a nearby barnacle, has long been thought to rely on larval ability to recognize chemical signals from conspecifics during settlement. However, the cyprid, the settlement stage larva in barnacles, has one pair of compound eyes that appear only at the late nauplius VI and cyprid stages, but the function(s) of these eyes remains unknown. Here we show that cyprids of the intertidal barnacle Balanus (=Amphibalanus) amphitrite can locate adult barnacles even in the absence of chemical cues, and prefer to settle around them probably via larval sense of vision. We also show that the cyprids can discriminate color and preferred to settle on red surfaces. Moreover, we found that shells of adult B. amphitrite emit red auto-fluorescence and the adult extracts with the fluorescence as a visual signal attracted cyprid larvae to settle around it. We propose that the perception of specific visual signals can be involved in behavior of zooplankton including marine invertebrate larvae, and that barnacle auto-fluorescence may be a specific signal involved in gregarious larval settlement.

  3. Anopheline larval habitats seasonality and species distribution: a prerequisite for effective targeted larval habitats control programmes.

    Directory of Open Access Journals (Sweden)

    Eliningaya J Kweka

    Full Text Available Larval control is of paramount importance in the reduction of malaria vector abundance and subsequent disease transmission reduction. Understanding larval habitat succession and its ecology in different land use managements and cropping systems can give an insight for effective larval source management practices. This study investigated larval habitat succession and ecological parameters which influence larval abundance in malaria epidemic prone areas of western Kenya.A total of 51 aquatic habitats positive for anopheline larvae were surveyed and visited once a week for a period of 85 weeks in succession. Habitats were selected and identified. Mosquito larval species, physico-chemical parameters, habitat size, grass cover, crop cycle and distance to nearest house were recorded. Polymerase chain reaction revealed that An. gambiae s.l was the most dominant vector species comprised of An.gambiae s.s (77.60% and An.arabiensis (18.34%, the remaining 4.06% had no amplification by polymerase chain reaction. Physico-chemical parameters and habitat size significantly influenced abundance of An. gambiae s.s (P = 0.024 and An. arabiensis (P = 0.002 larvae. Further, larval species abundance was influenced by crop cycle (P≤0.001, grass cover (P≤0.001, while distance to nearest houses significantly influenced the abundance of mosquito species larvae (r = 0.920;P≤0.001. The number of predator species influenced mosquito larval abundance in different habitat types. Crop weeding significantly influenced with the abundance of An.gambiae s.l (P≤0.001 when preceded with fertilizer application. Significantly higher anopheline larval abundance was recorded in habitats in pasture compared to farmland (P = 0.002. When habitat stability and habitat types were considered, hoof print were the most productive followed by disused goldmines.These findings suggest that implementation of effective larval control programme should be targeted with larval

  4. Adaptation to Variance of Stimuli in Drosophila Larva Navigation

    Science.gov (United States)

    Wolk, Jason; Gepner, Ruben; Gershow, Marc

    In order to respond to stimuli that vary over orders of magnitude while also being capable of sensing very small changes, neural systems must be capable of rapidly adapting to the variance of stimuli. We study this adaptation in Drosophila larvae responding to varying visual signals and optogenetically induced fictitious odors using an infrared illuminated arena and custom computer vision software. Larval navigational decisions (when to turn) are modeled as the output a linear-nonlinear Poisson process. The development of the nonlinear turn rate in response to changes in variance is tracked using an adaptive point process filter determining the rate of adaptation to different stimulus profiles. Supported by NIH Grant 1DP2EB022359 and NSF Grant PHY-1455015.

  5. Eye emergencies

    Science.gov (United States)

    ... eye can be caused by a work-related accident. It can also be caused by common household ... hammers, or other striking tools Working with toxic chemicals Cycling or when in windy and ... A.D.A.M.'s editorial policy , editorial process and privacy policy . A.D.A.M. is ...

  6. Eye Cancer

    Science.gov (United States)

    ... layer of tissue underneath the retina that contains connective tissue and melanocytes, which are pigmented (colored) cells, and nourishes the inside of the eye. The choroid is the most common site for a tumor. Types of intraocular cancer The most common intraocular cancer in adults is ...

  7. Eye trauma

    African Journals Online (AJOL)

    2011-02-02

    Feb 2, 2011 ... Note your findings in an orderly fashion: orbit, lids, conjunctiva, cornea, anterior chamber, iris, pupil reaction, lens, fundus. • Stain cornea with fluorescein. It is advisable to examine the eye as soon as possible since a delay will invariably lead to lid swelling, making the examination far more difficult. This can ...

  8. Experimental evidence for nutrition regulated stress resistance in Drosophila ananassae.

    Directory of Open Access Journals (Sweden)

    Seema Sisodia

    Full Text Available The amount and quality of nutrients consumed by organisms have a strong impact on stress resistance, life-history traits and reproduction. The balance between energy acquisition and expenditure is crucial to the survival and reproductive success of animals. The ability of organisms to adjust their development, physiology or behavior in response to environmental conditions, called phenotypic plasticity, is a defining property of life. One of the most familiar and important examples of phenotypic plasticity is the response of stress tolerance and reproduction to changes in developmental nutrition. Larval nutrition may affect a range of different life-history traits as well as responses to environmental stress in adult.Here we investigate the effect of larval nutrition on desiccation, starvation, chill-coma recovery, heat resistance as well as egg to adult viability, egg production and ovariole number in Drosophila ananassae. We raised larvae on either protein rich diet or carbohydrate rich diet. We found that flies consuming protein rich diet have higher desiccation and heat shock resistance whereas flies developed on carbohydrate rich diet have higher starvation and cold resistance. Egg production was higher in females developed on protein rich diet and we also found trade-off between egg production and Egg to adult viability of the flies. Viability was higher in carbohydrate rich diet. However, sex specific viability was found in different nutritional regimes. Higher Egg production might be due to higher ovariole number in females of protein rich diet.Thus, Drosophila ananassae adapts different stress tolerance and life-history strategies according to the quality of the available diet, which are correlated with phenotypic adjustment at anatomical and physiological levels.

  9. Experimental evidence for nutrition regulated stress resistance in Drosophila ananassae.

    Science.gov (United States)

    Sisodia, Seema; Singh, Bashisth N

    2012-01-01

    The amount and quality of nutrients consumed by organisms have a strong impact on stress resistance, life-history traits and reproduction. The balance between energy acquisition and expenditure is crucial to the survival and reproductive success of animals. The ability of organisms to adjust their development, physiology or behavior in response to environmental conditions, called phenotypic plasticity, is a defining property of life. One of the most familiar and important examples of phenotypic plasticity is the response of stress tolerance and reproduction to changes in developmental nutrition. Larval nutrition may affect a range of different life-history traits as well as responses to environmental stress in adult. Here we investigate the effect of larval nutrition on desiccation, starvation, chill-coma recovery, heat resistance as well as egg to adult viability, egg production and ovariole number in Drosophila ananassae. We raised larvae on either protein rich diet or carbohydrate rich diet. We found that flies consuming protein rich diet have higher desiccation and heat shock resistance whereas flies developed on carbohydrate rich diet have higher starvation and cold resistance. Egg production was higher in females developed on protein rich diet and we also found trade-off between egg production and Egg to adult viability of the flies. Viability was higher in carbohydrate rich diet. However, sex specific viability was found in different nutritional regimes. Higher Egg production might be due to higher ovariole number in females of protein rich diet. Thus, Drosophila ananassae adapts different stress tolerance and life-history strategies according to the quality of the available diet, which are correlated with phenotypic adjustment at anatomical and physiological levels.

  10. Rehydration of forensically important larval Diptera specimens.

    Science.gov (United States)

    Sanford, Michelle R; Pechal, Jennifer L; Tomberlin, Jeffery K

    2011-01-01

    Established procedures for collecting and preserving evidence are essential for all forensic disciplines to be accepted in court and by the forensic community at large. Entomological evidence, such as Diptera larvae, are primarily preserved in ethanol, which can evaporate over time, resulting in the dehydration of specimens. In this study, methods used for rehydrating specimens were compared. The changes in larval specimens with respect to larval length and weight for three forensically important blow fly (Diptera: Calliphoridae) species in North America were quantified. Phormia regina (Meigen), Cochliomyia macellaria (F.), and Chrysomya rufifacies (Macquart) third-instar larvae were collected from various decomposing animals and preserved with three preservation methods (80% ethanol, 70% isopropyl alcohol, and hot-water kill then 80% ethanol). Preservative solutions were allowed to evaporate. Rehydration was attempted with either of the following: 80% ethanol, commercial trisodium phosphate substitute solution, or 0.5% trisodium phosphate solution. All three methods partially restored weight and length of specimens recorded before preservation. Analysis of variance results indicated that effects of preservation, rehydration treatment, and collection animal were different in each species. The interaction between preservative method and rehydration treatment had a significant effect on both P. regina and C. macellaria larval length and weight. In addition, there was a significant interaction effect of collection animal on larval C. macellaria measurements. No significant effect was observed in C. rufifacies larval length or weight among the preservatives or treatments. These methods could be used to establish a standard operating procedure for dealing with dehydrated larval specimens in forensic investigations.

  11. Maggot Instructor: Semi-Automated Analysis of Learning and Memory in Drosophila Larvae

    Directory of Open Access Journals (Sweden)

    Urte Tomasiunaite

    2018-06-01

    Full Text Available For several decades, Drosophila has been widely used as a suitable model organism to study the fundamental processes of associative olfactory learning and memory. More recently, this condition also became true for the Drosophila larva, which has become a focus for learning and memory studies based on a number of technical advances in the field of anatomical, molecular, and neuronal analyses. The ongoing efforts should be mentioned to reconstruct the complete connectome of the larval brain featuring a total of about 10,000 neurons and the development of neurogenic tools that allow individual manipulation of each neuron. By contrast, standardized behavioral assays that are commonly used to analyze learning and memory in Drosophila larvae exhibit no such technical development. Most commonly, a simple assay with Petri dishes and odor containers is used; in this method, the animals must be manually transferred in several steps. The behavioral approach is therefore labor-intensive and limits the capacity to conduct large-scale genetic screenings in small laboratories. To circumvent these limitations, we introduce a training device called the Maggot Instructor. This device allows automatic training up to 10 groups of larvae in parallel. To achieve such goal, we used fully automated, computer-controlled optogenetic activation of single olfactory neurons in combination with the application of electric shocks. We showed that Drosophila larvae trained with the Maggot Instructor establish an odor-specific memory, which is independent of handling and non-associative effects. The Maggot Instructor will allow to investigate the large collections of genetically modified larvae in a short period and with minimal human resources. Therefore, the Maggot Instructor should be able to help extensive behavioral experiments in Drosophila larvae to keep up with the current technical advancements. In the longer term, this condition will lead to a better understanding of

  12. Eye development in the four-eyed fish Anableps anableps: cranial and retinal adaptations to simultaneous aerial and aquatic vision.

    Science.gov (United States)

    Perez, Louise N; Lorena, Jamily; Costa, Carinne M; Araujo, Maysa S; Frota-Lima, Gabriela N; Matos-Rodrigues, Gabriel E; Martins, Rodrigo A P; Mattox, George M T; Schneider, Patricia N

    2017-04-12

    The unique eyes of the four-eyed fish Anableps anableps have long intrigued biologists. Key features associated with the bulging eye of Anableps include the expanded frontal bone and the duplicated pupils and cornea. Furthermore, the Anableps retina expresses different photoreceptor genes in dorsal and ventral regions, potentially associated with distinct aerial and aquatic stimuli. To gain insight into the developmental basis of the Anableps unique eye, we examined neurocranium and eye ontogeny, as well as photoreceptor gene expression during larval stages. First, we described six larval stages during which duplication of eye structures occurs. Our osteological analysis of neurocranium ontogeny revealed another distinctive Anablepid feature: an ossified interorbital septum partially separating the orbital cavities. Furthermore, we identified the onset of differences in cell proliferation and cell layer density between dorsal and ventral regions of the retina. Finally, we show that differential photoreceptor gene expression in the retina initiates during development, suggesting that it is inherited and not environmentally determined. In sum, our results shed light on the ontogenetic steps leading to the highly derived Anableps eye. © 2017 The Author(s).

  13. Soundscapes and Larval Settlement: Characterizing the Stimulus from a Larval Perspective.

    Science.gov (United States)

    Lillis, Ashlee; Eggleston, David B; Bohnenstiehl, DelWayne R

    2016-01-01

    There is growing evidence that underwater sounds serve as a cue for the larvae of marine organisms to locate suitable settlement habitats; however, the relevant spatiotemporal scales of variability in habitat-related sounds and how this variation scales with larval settlement processes remain largely uncharacterized, particularly in estuarine habitats. Here, we provide an overview of the approaches we have developed to characterize an estuarine soundscape as it relates to larval processes, and a conceptual framework is provided for how habitat-related sounds may influence larval settlement, using oyster reef soundscapes as an example.

  14. Genetic diversity, classification and comparative study on the larval ...

    African Journals Online (AJOL)

    Genetic diversity, classification and comparative study on the larval phenotypic ... B. mori showed different performance based on larval phenotypic data. The analysis of variance regarding the studied traits showed that different strains have ...

  15. Failure of irradiated beef and ham to induce genetic aberrations of Drosophila

    International Nuclear Information System (INIS)

    Mittler, S.

    1979-01-01

    Ham that had been irradiated by electrons and beef which had been exposed to gamma rays from 60 Co were fed to Drosophila melanogaster to determine whether meat sterilized by these methods would induce genetic aberrations. The results showed that for yB/sc 8 y + Y males, fed on irradiated ham or beef, thermally preserved beef or frozen beef for their entire larval life, there was no significant increase in the loss of X or Y chromosomes or non-disjunction of these chromosomes; there was also no significant increase in any of the broods. Similarly for the Oregon R males, there was no significant increase in yield of sex-linked recessive lethals. Thus feeding of irradiated ham and beef to Drosophila males did not induce significant increases in genetic aberrations. The present findings are discussed in relation to the conflicting results of previous studies. (U.K.)

  16. Functional conservation of the Drosophila gooseberry gene and its evolutionary alleles.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    Full Text Available The Drosophila Pax gene gooseberry (gsb is required for development of the larval cuticle and CNS, survival to adulthood, and male fertility. These functions can be rescued in gsb mutants by two gsb evolutionary alleles, gsb-Prd and gsb-Pax3, which express the Drosophila Paired and mouse Pax3 proteins under the control of gooseberry cis-regulatory region. Therefore, both Paired and Pax3 proteins have conserved all the Gsb functions that are required for survival of embryos to fertile adults, despite the divergent primary sequences in their C-terminal halves. As gsb-Prd and gsb-Pax3 uncover a gsb function involved in male fertility, construction of evolutionary alleles may provide a powerful strategy to dissect hitherto unknown gene functions. Our results provide further evidence for the essential role of cis-regulatory regions in the functional diversification of duplicated genes during evolution.

  17. Analysis of Neurotransmitter Tissue Content of Drosophila melanogaster in Different Life Stages

    Science.gov (United States)

    2015-01-01

    Drosophila melanogaster is a widely used model organism for studying neurological diseases with similar neurotransmission to mammals. While both larva and adult Drosophila have central nervous systems, not much is known about how neurotransmitter tissue content changes through development. In this study, we quantified tyramine, serotonin, octopamine, and dopamine in larval, pupal, and adult fly brains using capillary electrophoresis coupled to fast-scan cyclic voltammetry. Tyramine and octopamine content varied between life stages, with almost no octopamine being present in the pupa, while tyramine levels in the pupa were very high. Adult females had significantly higher dopamine content than males, but no other neurotransmitters were dependent on sex in the adult. Understanding the tissue content of different life stages will be beneficial for future work comparing the effects of diseases on tissue content throughout development. PMID:25437353

  18. A sleep state in Drosophila larvae required for neural stem cell proliferation

    Science.gov (United States)

    Szuperak, Milan; Churgin, Matthew A; Borja, Austin J; Raizen, David M; Fang-Yen, Christopher

    2018-01-01

    Sleep during development is involved in refining brain circuitry, but a role for sleep in the earliest periods of nervous system elaboration, when neurons are first being born, has not been explored. Here we identify a sleep state in Drosophila larvae that coincides with a major wave of neurogenesis. Mechanisms controlling larval sleep are partially distinct from adult sleep: octopamine, the Drosophila analog of mammalian norepinephrine, is the major arousal neuromodulator in larvae, but dopamine is not required. Using real-time behavioral monitoring in a closed-loop sleep deprivation system, we find that sleep loss in larvae impairs cell division of neural progenitors. This work establishes a system uniquely suited for studying sleep during nascent periods, and demonstrates that sleep in early life regulates neural stem cell proliferation. PMID:29424688

  19. Sex-specific weight loss mediates sexual size dimorphism in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Nicholas D Testa

    Full Text Available The selective pressures leading to the evolution of Sexual Size Dimorphism (SSD have been well studied in many organisms, yet, the underlying developmental mechanisms are poorly understood. By generating a complete growth profile by sex in Drosophila melanogaster, we describe the sex-specific pattern of growth responsible for SSD. Growth rate and critical size for pupariation significantly contributed to adult SSD, whereas duration of growth did not. Surprisingly, SSD at peak larval mass was twice that of the uneclosed adult SSD with weight loss between peak larval mass and pupariation playing an important role in generating the final SSD. Our finding that weight loss is an important regulator of SSD adds additional complexity to our understanding of how body size is regulated in different sexes. Collectively, these data allow for the elucidation of the molecular-genetic mechanisms that generate SSD, an important component of understanding how SSD evolves.

  20. Transcripts of mobile element MDG1 during ontogenesis of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Kuvakina, A.I.; Nurminskii, D.I.; Kogan, G.L.; Gvozdev, V.A.

    1989-01-01

    It has been demonstrated by Northern hybridization using a single-stranded labeled probes that the number of MDG1 transcripts as well as their size change during ontogenesis of Drosophila. The transcripts of MDG1 were not found in unfertilized eggs. The full-length transcript of MDG1 (about 7 kb long) appears in the embryonic and larval cells, and its quantity sharply increases in pupae and adults. A transcript of about 5 kb length is also found in the pupae and adults. Another, about 2 kb long transcript forms in the embryos, pupae and adults, which is absent in larvae. The main transcript in the larval cells, complementary to the inner part of the body of MDG1, is about 1 kb long. The transcription level of MDG1 and the mobile element copia do not change under heat shock at adult stage

  1. Targeted Lipidomics in Drosophila melanogaster Identifies Novel 2-Monoacylglycerols and N-acyl Amides

    Science.gov (United States)

    Takacs, Sara M.; Stuart, Jordyn M.; Basnet, Arjun; Raboune, Siham; Widlanski, Theodore S.; Doherty, Patrick; Bradshaw, Heather B.

    2013-01-01

    Lipid metabolism is critical to coordinate organ development and physiology in response to tissue-autonomous signals and environmental cues. Changes to the availability and signaling of lipid mediators can limit competitiveness, adaptation to environmental stressors, and augment pathological processes. Two classes of lipids, the N-acyl amides and the 2-acyl glycerols, have emerged as important signaling molecules in a wide range of species with important signaling properties, though most of what is known about their cellular functions is from mammalian models. Therefore, expanding available knowledge on the repertoire of these lipids in invertebrates will provide additional avenues of research aimed at elucidating biosynthetic, metabolic, and signaling properties of these molecules. Drosophila melanogaster is a commonly used organism to study intercellular communication, including the functions of bioactive lipids. However, limited information is available on the molecular identity of lipids with putative biological activities in Drosophila. Here, we used a targeted lipidomics approach to identify putative signaling lipids in third instar Drosophila larvae, possessing particularly large lipid mass in their fat body. We identified 2-linoleoyl glycerol, 2-oleoyl glycerol, and 45 N-acyl amides in larval tissues, and validated our findings by the comparative analysis of Oregon-RS, Canton-S and w1118 strains. Data here suggest that Drosophila represent another model system to use for the study of 2-acyl glycerol and N-acyl amide signaling. PMID:23874457

  2. Dietary glucose regulates yeast consumption in adult Drosophila males

    Directory of Open Access Journals (Sweden)

    Sebastien eLebreton

    2014-12-01

    Full Text Available The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males.

  3. Dietary glucose regulates yeast consumption in adult Drosophila males.

    Science.gov (United States)

    Lebreton, Sébastien; Witzgall, Peter; Olsson, Marie; Becher, Paul G

    2014-01-01

    The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males.

  4. Synaptic and genomic responses to JNK and AP-1 signaling in Drosophila neurons

    Directory of Open Access Journals (Sweden)

    Bohmann Dirk

    2005-06-01

    Full Text Available Abstract Background The transcription factor AP-1 positively controls synaptic plasticity at the Drosophila neuromuscular junction. Although in motor neurons, JNK has been shown to activate AP-1, a positive regulator of growth and strength at the larval NMJ, the consequences of JNK activation are poorly studied. In addition, the downstream transcriptional targets of JNK and AP-1 signaling in the Drosophila nervous system have yet to be identified. Here, we further investigated the role of JNK signaling at this model synapse employing an activated form of JNK-kinase; and using Serial Analysis of Gene Expression and oligonucleotide microarrays, searched for candidate early targets of JNK or AP-1 dependent transcription in neurons. Results Temporally-controlled JNK induction in postembryonic motor neurons triggers synaptic growth at the NMJ indicating a role in developmental plasticity rather than synaptogenesis. An unexpected observation that JNK activation also causes a reduction in transmitter release is inconsistent with JNK functioning solely through AP-1 and suggests an additional, yet-unidentified pathway for JNK signaling in motor neurons. SAGE profiling of mRNA expression helps define the neural transcriptome in Drosophila. Though many putative AP-1 and JNK target genes arose from the genomic screens, few were confirmed in subsequent validation experiments. One potentially important neuronal AP-1 target discovered, CG6044, was previously implicated in olfactory associative memory. In addition, 5 mRNAs regulated by RU486, a steroid used to trigger conditional gene expression were identified. Conclusion This study demonstrates a novel role for JNK signaling at the larval neuromuscular junction and provides a quantitative profile of gene transcription in Drosophila neurons. While identifying potential JNK/AP-1 targets it reveals the limitations of genome-wide analyses using complex tissues like the whole brain.

  5. Diabetic Eye Disease

    Science.gov (United States)

    ... Disease, & Other Dental Problems Diabetes & Sexual & Urologic Problems Diabetic Eye Disease What is diabetic eye disease? Diabetic eye disease is a group ... eye diseases that can threaten your sight are Diabetic retinopathy The retina is the inner lining at ...

  6. About the Eye

    Medline Plus

    Full Text Available ... eye behind the iris that helps to focus light on the retina. It allows the eye to ... of the eye. It regulates the amount of light entering the eye through the pupil. Pupil (PYOO- ...

  7. Eye Movement Disorders

    Science.gov (United States)

    ... work properly. There are many kinds of eye movement disorders. Two common ones are Strabismus - a disorder ... in "crossed eyes" or "walleye." Nystagmus - fast, uncontrollable movements of the eyes, sometimes called "dancing eyes" Some ...

  8. About the Eye

    Medline Plus

    Full Text Available ... for Kids >> About the Eye Listen All About Vision About the Eye Ask a Scientist Video Series ... Eye Health and Safety First Aid Tips Healthy Vision Tips Protective Eyewear Sports and Your Eyes Fun ...

  9. Why Do Eyes Water?

    Science.gov (United States)

    ... for Educators Search English Español Why Do Eyes Water? KidsHealth / For Kids / Why Do Eyes Water? What's ... coming out of your nose. Why Do Eyes Water? Eyes water for lots of different reasons besides ...

  10. Biophysical models of larval dispersal in the Benguela Current ...

    African Journals Online (AJOL)

    We synthesise and update results from the suite of biophysical, larval-dispersal models developed in the Benguela Current ecosystem. Biophysical models of larval dispersal use outputs of physical hydrodynamic models as inputs to individual-based models in which biological processes acting during the larval life are ...

  11. Evolutionary genetics: the Drosophila model

    Indian Academy of Sciences (India)

    Unknown

    Evolutionary genetics straddles the two fundamental processes of life, ... of the genus Drosophila have been used extensively as model systems in experimental ... issue will prove interesting, informative and thought-provoking for both estab-.

  12. Microtubules are organized independently of the centrosome in Drosophila neurons

    Directory of Open Access Journals (Sweden)

    Nguyen Michelle M

    2011-12-01

    Full Text Available Abstract Background The best-studied arrangement of microtubules is that organized by the centrosome, a cloud of microtubule nucleating and anchoring proteins is clustered around centrioles. However, noncentrosomal microtubule arrays are common in many differentiated cells, including neurons. Although microtubules are not anchored at neuronal centrosomes, it remains unclear whether the centrosome plays a role in organizing neuronal microtubules. We use Drosophila as a model system to determine whether centrosomal microtubule nucleation is important in mature neurons. Results In developing and mature neurons, centrioles were not surrounded by the core nucleation protein γ-tubulin. This suggests that the centrioles do not organize functional centrosomes in Drosophila neurons in vivo. Consistent with this idea, centriole position was not correlated with a specific region of the cell body in neurons, and growing microtubules did not cluster around the centriole, even after axon severing when the number of growing plus ends is dramatically increased. To determine whether the centrosome was required for microtubule organization in mature neurons, we used two approaches. First, we used DSas-4 centriole duplication mutants. In these mutants, centrioles were present in many larval sensory neurons, but they were not fully functional. Despite reduced centriole function, microtubule orientation was normal in axons and dendrites. Second, we used laser ablation to eliminate the centriole, and again found that microtubule polarity in axons and dendrites was normal, even 3 days after treatment. Conclusion We conclude that the centrosome is not a major site of microtubule nucleation in Drosophila neurons, and is not required for maintenance of neuronal microtubule organization in these cells.

  13. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    Science.gov (United States)

    Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-01

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297

  14. Innate immune responses of Drosophila melanogaster are altered by spaceflight.

    Directory of Open Access Journals (Sweden)

    Oana Marcu

    2011-01-01

    Full Text Available Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways.

  15. Biological radiation effects of Radon in Drosophila

    International Nuclear Information System (INIS)

    Pimentel P, A.E.

    1995-01-01

    In order to contribute to the knowledge on the effects of radon and its decay products, the aim of this investigation is to study the biological effects of radon using Drosophila melanogaster throught the somatic mutation and recombination test (SMART) and the analysis of some adaptative factors exposing larvaes to controlled radon atmosphers, considering that this insect could be used as biological monitor. Using the somatic mutation test a mutagenic effect was observed proportional to radon concentration, into an interval of 1 ± 0.3 to 111 ± 7.4 KBq/m 3 equivalent to doses under 0.0106 Gy. The correlation analysis gives a linear (r=0.80) relationship with a positive slope of 0.2217. The same happens when gamma rays are used in the interval of 1 to 20 Gy, given a linear dose-dependent effect (r=0.878) is obtained; nevetheless the slop is smaller (m=0.003) than for radon. Analysing the results of adaptative factors of the nine exposed generations, it was found that probably radon exposition induced dominant lethals during gametogenesis or/and a selection of the more component gamets of the treated individuals in larval state. It was reflected in the significant decrease on fecundity of the generation exposed. Nevertheless the laying eggs had an increase in egg-to-adult viability and the develop velocity was higher than in control for 3 KBq/m 3 , this suggest that radon concentrations used were able to induce repair mechanisms. These data agree with the Hormesis hypothesis that says: low doses have positive effects on health. It was not possible to obtain a dose-effect relationship except with the develop velocity where it was found a dose-effect inverse proportion. In conclusion, Drosophila melanogaster could be a good system to obtain in vivo damaged induction concentration dependent of radon and its decay products, as well as to study the effects in an exposed population by the analysis of adaptative factors. (Author)

  16. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Eye Health A-Z Symptoms Glasses & Contacts Tips & Prevention News Ask an Ophthalmologist Patient Stories Español Eye ... Eye Symptoms Causes of Dry Eye Dry Eye Treatment What Is Dry Eye? Leer en Español: ¿Qué ...

  17. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Eye? Dry Eye Symptoms Causes of Dry Eye Dry Eye Treatment What Is Dry Eye? Leer en Español: ¿Qué ... Inside of Your Eyelid Nov 29, 2017 New Dry Eye Treatment is a Tear-Jerker Jul 21, 2017 Three ...

  18. What Is Dry Eye?

    Science.gov (United States)

    ... Eye? Dry Eye Symptoms Causes of Dry Eye Dry Eye Treatment What Is Dry Eye? Leer en Español: ¿Qué ... Inside of Your Eyelid Nov 29, 2017 New Dry Eye Treatment is a Tear-Jerker Jul 21, 2017 Three ...

  19. The Identification of Congeners and Aliens by Drosophila Larvae.

    Directory of Open Access Journals (Sweden)

    Francisco Del Pino

    Full Text Available We investigated the role of Drosophila larva olfactory system in identification of congeners and aliens. We discuss the importance of these activities in larva navigation across substrates, and the implications for allocation of space and food among species of similar ecologies. Wild type larvae of cosmopolitan D. melanogaster and endemic D. pavani, which cohabit the same breeding sites, used species-specific volatiles to identify conspecifics and aliens moving toward larvae of their species. D. gaucha larvae, a sibling species of D. pavani that is ecologically isolated from D. melanogaster, did not respond to melanogaster odor cues. Similar to D. pavani larvae, the navigation of pavani female x gaucha male hybrids was influenced by conspecific and alien odors, whereas gaucha female x pavani male hybrid larvae exhibited behavior similar to the D. gaucha parent. The two sibling species exhibited substantial evolutionary divergence in processing the odor inputs necessary to identify conspecifics. Orco (Or83b mutant larvae of D. melanogaster, which exhibit a loss of sense of smell, did not distinguish conspecific from alien larvae, instead moving across the substrate. Syn97CS and rut larvae of D. melanogaster, which are unable to learn but can smell, moved across the substrate as well. The Orco (Or83b, Syn97CS and rut loci are necessary to orient navigation by D. melanogaster larvae. Individuals of the Trana strain of D. melanogaster did not respond to conspecific and alien larval volatiles and therefore navigated randomly across the substrate. By contrast, larvae of the Til-Til strain used larval volatiles to orient their movement. Natural populations of D. melanogaster may exhibit differences in identification of conspecific and alien larvae. Larval locomotion was not affected by the volatiles.

  20. Humidity Sensing in Drosophila.

    Science.gov (United States)

    Enjin, Anders; Zaharieva, Emanuela E; Frank, Dominic D; Mansourian, Suzan; Suh, Greg S B; Gallio, Marco; Stensmyr, Marcus C

    2016-05-23

    Environmental humidity influences the fitness and geographic distribution of all animals [1]. Insects in particular use humidity cues to navigate the environment, and previous work suggests the existence of specific sensory mechanisms to detect favorable humidity ranges [2-5]. Yet, the molecular and cellular basis of humidity sensing (hygrosensation) remains poorly understood. Here we describe genes and neurons necessary for hygrosensation in the vinegar fly Drosophila melanogaster. We find that members of the Drosophila genus display species-specific humidity preferences related to conditions in their native habitats. Using a simple behavioral assay, we find that the ionotropic receptors IR40a, IR93a, and IR25a are all required for humidity preference in D. melanogaster. Yet, whereas IR40a is selectively required for hygrosensory responses, IR93a and IR25a mediate both humidity and temperature preference. Consistent with this, the expression of IR93a and IR25a includes thermosensory neurons of the arista. In contrast, IR40a is excluded from the arista but is expressed (and required) in specialized neurons innervating pore-less sensilla of the sacculus, a unique invagination of the third antennal segment. Indeed, calcium imaging showed that IR40a neurons directly respond to changes in humidity, and IR40a knockdown or IR93a mutation reduced their responses to stimuli. Taken together, our results suggest that the preference for a specific humidity range depends on specialized sacculus neurons, and that the processing of environmental humidity can happen largely in parallel to that of temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Drosophila Myc is required for normal DREF gene expression

    International Nuclear Information System (INIS)

    Dang Thi Phuong Thao; Seto, Hirokazu; Yamaguchi, Masamitsu

    2008-01-01

    The Drosophila DNA replication-related element-binding factor (dDREF) is required for the expression of many proliferation-related genes carrying the DRE sequence, 5'-TATCGATA. Finding a canonical E-box, 5'-CACGTG, in the dDREF gene promoter prompted us to explore the possibility that the dDREF gene is a target of Drosophila Myc (dMyc). Luciferase transient expression assays combined with RNA interference in Drosophila S2 cells revealed that knockdown of dmyc reduced dDREF gene promoter activity by 35% to 82%, an effect at least partly mediated by the E-box in the promoter. dm 4 /Y hemizygous mutant larvae demonstrated no maternal dMyc and severe impairment of dDREF mRNA transcription. dMyc loss of function in dm 2 /dm 2 homozygous mutant follicle cell clones also resulted in loss of anti-dDREF immunostaining in nuclei. In contrast, co-expression of dMyc-dMax up-regulated dDREF promoter activity in S2 cells. Furthermore, dMyc over-expressing clones exhibited a high level of dDREF gene expression in wing and eye discs. These results taken together indicate that dMyc is indeed required for dDREF gene expression

  2. Eye Contricks

    Directory of Open Access Journals (Sweden)

    N Wade

    2011-04-01

    Full Text Available Icons are eye-cons: they provide a distillation of a complex object or idea into a simple pictorial shape. They create the impression of representing that which cannot be presented. Even at the level of the photograph, the links between icon and object are tenuous. The dimension of distance or depth is missing from the icon, and this alone introduces all manner of potential ambiguities. The history of art can be considered as an exploration of the missing link between icon and object. Eye-cons are more honest—they are tricks of vision so that what is seen does not necessarily correspond to what is presented. They are visual allusions rather than visual illusions, although they can display illusory effects. At its broadest, icon can be equated with image. The concept of image has thrived on its vagueness, and so attempts have been made to refine it. An icon corresponds to an optical image: it shares some of the projective characteristics of the object represented. Written words are also icons but they do not resemble the objects they represent—they are stylised or conventional rather than spatialised and projective. Words and images were set in delightful opposition by René Magritte (1898-1967 in a series of pipe paintings, and he also played on the theme of the arbitrariness of the verbal labels assigned to objects. What is surprising is that Magritte did not apply his painterly skills to transforming the word shapes he used. A similar reluctance to transform the typefaces pervades visual poetry. My interests are in the visual rather than the poetic dimension, and I will present a range of my own eye contricks which play with letter and word shapes in a variety of ways.

  3. moleculares de insectos (Drosophila y de primates

    Directory of Open Access Journals (Sweden)

    Enio Hernández Aguirre

    2006-01-01

    Full Text Available La mayoría de las especies poseen un macho heterogamético XY y una hembra homogamética XX. En el macho XY sólo se conservan unas regiones donde se intercambian información entre el X y el Y (Xpter y Ypter durante la meiosis, que se le llama región seudoautosómica (RSA. Se ha planteado la hipótesis que el cromosoma Y se deriva del cromosoma X, y que antiguamente eran homólogos en toda su extensión. Un posible mecanismo biológico implicado en este proceso evolutivo son fragmentos de ADN que pueden moverse a través del genoma. En general se llaman elementos genéticos móviles. Con base en los elementos génicos móviles y en los genes de la cutícula larval (Lcp se han realizado estudios en los cromosomas sexuales de Drosophila melanogaster, D. Permisilis, D. Seudooscura y D. Miranda. Los análisis moleculares realizados en D. Miranda son una clara evidencia científica de cómo un evento de translocacion cromosómica asociados a procesos biológicos naturales y normales del ADN, como lo es la transposición, pudieron generar un cromosoma “Y” a través de la evolución, que en su forma prístina fue homólogo del cromosoma X.

  4. Hermann Muller and Mutations in Drosophila

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Hermann Muller and Mutations in Drosophila Resources with University of Texas. In Austin his experiments on fruit flies (Drosophila) first showed that exposure to September to spend a year at the only Drosophila laboratory in Europe which was doing parallel work

  5. Use of Drosophila to study DNA repair

    International Nuclear Information System (INIS)

    Boyd, J.B.; Harris, P.V.; Sakaguchi, K.

    1988-01-01

    This paper discusses Drosophila, the premier metazoan organism for analyzing many fundamental features of eukaryotic gene regulation. The authors present adaptations of several approaches for studying DNA repair to an analysis of repair-defective mutants in Drosophila. A current understanding of Drosophila DNA repair is described

  6. Brain development in the yellow fever mosquito Aedes aegypti: a comparative immunocytochemical analysis using cross-reacting antibodies from Drosophila melanogaster.

    Science.gov (United States)

    Mysore, Keshava; Flister, Susanne; Müller, Pie; Rodrigues, Veronica; Reichert, Heinrich

    2011-12-01

    Considerable effort has been directed towards understanding the organization and function of peripheral and central nervous system of disease vector mosquitoes such as Aedes aegypti. To date, all of these investigations have been carried out on adults but none of the studies addressed the development of the nervous system during the larval and pupal stages in mosquitoes. Here, we first screen a set of 30 antibodies, which have been used to study brain development in Drosophila, and identify 13 of them cross-reacting and labeling epitopes in the developing brain of Aedes. We then use the identified antibodies in immunolabeling studies to characterize general neuroanatomical features of the developing brain and compare them with the well-studied model system, Drosophila melanogaster, in larval, pupal, and adult stages. Furthermore, we use immunolabeling to document the development of specific components of the Aedes brain, namely the optic lobes, the subesophageal neuropil, and serotonergic system of the subesophageal neuropil in more detail. Our study reveals prominent differences in the developing brain in the larval stage as compared to the pupal (and adult) stage of Aedes. The results also uncover interesting similarities and marked differences in brain development of Aedes as compared to Drosophila. Taken together, this investigation forms the basis for future cellular and molecular investigations of brain development in this important disease vector. © Springer-Verlag 2011

  7. Molecular phylogeny and larval morphological diversity of the lanternfish genus Hygophum (Teleostei: Myctophidae).

    Science.gov (United States)

    Yamaguchi, M; Miya, M; Okiyama, M; Nishida, M

    2000-04-01

    Larvae of the deep-sea lanternfish genus Hygophum (Myctophidae) exhibit a remarkable morphological diversity that is quite unexpected, considering their homogeneous adult morphology. In an attempt to elucidate the evolutionary patterns of such larval morphological diversity, nucleotide sequences of a portion of the mitochondrially encoded 16S ribosomal RNA gene were determined for seven Hygophum species and three outgroup taxa. Secondary structure-based alignment resulted in a character matrix consisting of 1172 bp of unambiguously aligned sequences, which were subjected to phylogenetic analyses using maximum-parsimony, maximum-likelihood, and neighbor-joining methods. The resultant tree topologies from the three methods were congruent, with most nodes, including that of the genus Hygophum, being strongly supported by various tree statistics. The most parsimonious reconstruction of the three previously recognized, distinct larval morphs onto the molecular phylogeny revealed that one of the morphs had originated as the common ancestor of the genus, the other two having diversified separately in two subsequent major clades. The patterns of such diversification are discussed in terms of the unusual larval eye morphology and geographic distribution. Copyright 2000 Academic Press.

  8. Respiratory metabolism of salivary glands during the late larval and prepupal development of Drosophila melanogaster

    Czech Academy of Sciences Publication Activity Database

    Farkaš, R.; Sláma, Karel

    2015-01-01

    Roč. 81, October 01 (2015), s. 109-117 ISSN 0022-1910 Institutional support: RVO:60077344 Keywords : salivary glands * in vitro culture * metamorphosis Subject RIV: ED - Physiology Impact factor: 2.267, year: 2015 http://www.sciencedirect.com/science/article/pii/S0022191015001328

  9. A Novel Forward Genetic Screen for Identifying Mutations Affecting Larval Neuronal Dendrite Development in Drosophila melanogaster

    OpenAIRE

    Medina, Paul Mark B.; Swick, Lance L.; Andersen, Ryan; Blalock, Zachary; Brenman, Jay E.

    2006-01-01

    Vertebrate and invertebrate dendrites are information-processing compartments that can be found on both central and peripheral neurons. Elucidating the molecular underpinnings of information processing in the nervous system ultimately requires an understanding of the genetic pathways that regulate dendrite formation and maintenance. Despite the importance of dendrite development, few forward genetic approaches have been used to analyze the latest stages of dendrite development, including the ...

  10. Effect of massing on larval growth rate.

    Science.gov (United States)

    Johnson, Aidan P; Wallman, James F

    2014-08-01

    Estimation of minimum postmortem interval commonly relies on predicting the age of blowfly larvae based on their size and an estimate of the temperatures to which they have been exposed throughout their development. The majority of larval growth rate data have been developed using small larval masses in order to avoid excess heat generation. The current study collected growth rate data for larvae at different mass volumes, and assessed the temperature production of these masses, for two forensically important blow fly species, Chrysomya rufifacies and Calliphora vicina. The growth rate of larvae in a small mass, exposed to the higher temperatures equivalent to those experienced by large masses, was also assessed to determine if observed differences were due to the known temperature effects of maggot masses. The results showed that temperature production increased with increasing mass volume, with temperature increases of 11 °C observed in the large Ch. rufifacies masses and increases of 5 °C in the large C. vicina masses. Similarly, the growth rate of the larvae was affected by mass size. The larvae from small masses grown at the higher temperatures experienced by large masses displayed an initial delay in growth, but then grew at a similar rate to those larvae at a constant 23 °C. Since these larvae from masses of equivalent sizes displayed similar patterns of growth rate, despite differing temperatures, and these growth rates differed from larger masses exposed to the same temperatures, it can be concluded that larval growth rate within a mass may be affected by additional factors other than temperature. Overall, this study highlights the importance of understanding the role of massing in larval development and provides initial developmental data for mass sizes of two forensically important blowfly species commonly encountered in Australian forensic casework. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Granulomatous responses in larval taeniid infections.

    Science.gov (United States)

    Díaz, Á; Sagasti, C; Casaravilla, C

    2018-05-01

    Granulomas are responses to persistent nonliving bodies or pathogens, centrally featuring specialized macrophage forms called epithelioid and multinucleated giant cells. The larval stages of the cestode parasites of the Taeniidae family (Taenia, Echinococcus) develop for years in fixed tissue sites in mammals. In consequence, they are targets of granulomatous responses. The information on tissue responses to larval taeniids is fragmented among host and parasite species and scattered over many decades. We attempt to draw an integrated picture of these responses in solid tissues. The intensity of inflammation around live parasites spans a spectrum from minimal to high, parasite vitality correlating with low inflammation. The low end of the inflammatory spectrum features collagen capsules proximal to the parasites and moderate distal infiltration. The middle of the spectrum is dominated by classical granulomatous responses, whereas the high end features massive eosinophil invasions. Across the range of parasite species, much observational evidence suggests that eosinophils are highly effective at killing larval taeniids in solid tissues, before and during chronic granulomatous responses. The evidence available also suggests that these parasites are adapted to inhibit host granulomatous responses, in part through the exacerbation of host regulatory mechanisms including regulatory T cells and TGF-β. © 2018 John Wiley & Sons Ltd.

  12. Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae.

    Directory of Open Access Journals (Sweden)

    Annina Huser

    Full Text Available The biogenic amine serotonin (5-HT is an important neuroactive molecule in the central nervous system of the majority of animal phyla. 5-HT binds to specific G protein-coupled and ligand-gated ion receptors to regulate particular aspects of animal behavior. In Drosophila, as in many other insects this includes the regulation of locomotion and feeding. Due to its genetic amenability and neuronal simplicity the Drosophila larva has turned into a useful model for studying the anatomical and molecular basis of chemosensory behaviors. This is particularly true for the olfactory system, which is mostly described down to the synaptic level over the first three orders of neuronal information processing. Here we focus on the 5-HT receptor system of the Drosophila larva. In a bipartite approach consisting of anatomical and behavioral experiments we describe the distribution and the implications of individual 5-HT receptors on naïve and acquired chemosensory behaviors. Our data suggest that 5-HT1A, 5-HT1B, and 5-HT7 are dispensable for larval naïve olfactory and gustatory choice behaviors as well as for appetitive and aversive associative olfactory learning and memory. In contrast, we show that 5-HT/5-HT2A signaling throughout development, but not as an acute neuronal function, affects associative olfactory learning and memory using high salt concentration as a negative unconditioned stimulus. These findings describe for the first time an involvement of 5-HT signaling in learning and memory in Drosophila larvae. In the longer run these results may uncover developmental, 5-HT dependent principles related to reinforcement processing possibly shared with adult Drosophila and other insects.

  13. Functions of the nonsense-mediated mRNA decay pathway in Drosophila development.

    Directory of Open Access Journals (Sweden)

    Mark M Metzstein

    2006-12-01

    Full Text Available Nonsense-mediated mRNA decay (NMD is a cellular surveillance mechanism that degrades transcripts containing premature translation termination codons, and it also influences expression of certain wild-type transcripts. Although the biochemical mechanisms of NMD have been studied intensively, its developmental functions and importance are less clear. Here, we describe the isolation and characterization of Drosophila "photoshop" mutations, which increase expression of green fluorescent protein and other transgenes. Mapping and molecular analyses show that photoshop mutations are loss-of-function mutations in the Drosophila homologs of NMD genes Upf1, Upf2, and Smg1. We find that Upf1 and Upf2 are broadly active during development, and they are required for NMD as well as for proper expression of dozens of wild-type genes during development and for larval viability. Genetic mosaic analysis shows that Upf1 and Upf2 are required for growth and/or survival of imaginal cell clones, but this defect can be overcome if surrounding wild-type cells are eliminated. By contrast, we find that the PI3K-related kinase Smg1 potentiates but is not required for NMD or for viability, implying that the Upf1 phosphorylation cycle that is required for mammalian and Caenorhabditis elegans NMD has a more limited role during Drosophila development. Finally, we show that the SV40 3' UTR, present in many Drosophila transgenes, targets the transgenes for regulation by the NMD pathway. The results establish that the Drosophila NMD pathway is broadly active and essential for development, and one critical function of the pathway is to endow proliferating imaginal cells with a competitive growth advantage that prevents them from being overtaken by other proliferating cells.

  14. Larval recovery of Toxocara cati in experimentally infected Rattus norvegicus and analysis of the rat as potential reservoir for this ascarid

    Directory of Open Access Journals (Sweden)

    Sérgio V Santos

    2009-09-01

    Full Text Available Toxocara cati is a common feline parasite transmitted by the ingestion of embryonated eggs, by the transmammary route or by predation of paratenic hosts harbouring third-stage larvae in their bodies. In the present study, the larval distribution of T. cati in tissues and organs of Rattus norvegicus experimentally infected with 300 embryonated eggs was analysed. Third-stage larvae were recovered from livers, lungs, kidneys, eyes, brains and carcasses of infected rats, following tissue digestion with HCl 0.5% for 24 h at 37°C. Some differences from the known larval distribution of Toxocara canisin the same rodent species were found.

  15. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Tips & Prevention News Ask an Ophthalmologist Patient Stories Español Eye Health / Eye Health A-Z Dry Eye ... Eye Treatment What Is Dry Eye? Leer en Español: ¿Qué es el ojo seco? Written By: Kierstan ...

  16. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Eye Symptoms Causes of Dry Eye Dry Eye Treatment What Is Dry Eye? Leer en Español: ¿Qué ... Your Eyelid Nov 29, 2017 New Dry Eye Treatment is a Tear-Jerker Jul 21, 2017 Three ...

  17. Bags Under Eyes

    Science.gov (United States)

    Bags under eyes Overview Bags under eyes — mild swelling or puffiness under the eyes — are common as you age. With aging, the tissues around your ... space below your eyes, adding to the swelling. Bags under eyes are usually a cosmetic concern and ...

  18. About the Eye

    Medline Plus

    Full Text Available ... Ask a Scientist Video Series Glossary The Visual System Your Eyes’ Natural Defenses Eye Health and Safety First Aid Tips Healthy Vision Tips Protective Eyewear Sports and Your Eyes Fun Stuff Cool Eye Tricks Links to More Information Optical Illusions Printables About the Eye Your eyes ...

  19. Nutrient-Dependent Impact of Microbes on Drosophila suzukii Development.

    Science.gov (United States)

    Bing, XiaoLi; Gerlach, Joseph; Loeb, Gregory; Buchon, Nicolas

    2018-03-20

    wing drosophila. Our study results demonstrate that the abundance and structure of microbiota in D. suzukii are strongly affected by the environment, where microbes have variable roles depending on the nutritional situation. For instance, we found that the presence of microbes is deleterious for flies growing on a protein-rich diet and yet is beneficial for flies growing on a diet of protein-poor fruits. Additionally, germ-free flies must feed on microbes to obtain the necessary protein for larval development on strawberries and blueberries. Our report validates the complexity seen in host-microbe interactions and may provide information useful for D. suzukii pest control. Copyright © 2018 Bing et al.

  20. Origin and specification of type II neuroblasts in the Drosophila embryo.

    Science.gov (United States)

    Álvarez, José-Andrés; Díaz-Benjumea, Fernando J

    2018-04-05

    In Drosophila , neural stem cells or neuroblasts (NBs) acquire different identities according to their site of origin in the embryonic neuroectoderm. Their identity determines the number of times they will divide and the types of daughter cells they will generate. All NBs divide asymmetrically, with type I NBs undergoing self-renewal and generating another cell that will divide only once more. By contrast, a small set of NBs in the larval brain, type II NBs, divides differently, undergoing self-renewal and generating an intermediate neural progenitor (INP) that continues to divide asymmetrically several more times, generating larger lineages. In this study, we have analysed the origin of type II NBs and how they are specified. Our results indicate that these cells originate in three distinct clusters in the dorsal protocerebrum during stage 12 of embryonic development. Moreover, it appears that their specification requires the combined action of EGFR signalling and the activity of the related genes buttonhead and Drosophila Sp1 In addition, we also show that the INPs generated in the embryo enter quiescence at the end of embryogenesis, resuming proliferation during the larval stage. © 2018. Published by The Company of Biologists Ltd.

  1. The ADAR RNA editing enzyme controls neuronal excitability in Drosophila melanogaster

    Science.gov (United States)

    Li, Xianghua; Overton, Ian M.; Baines, Richard A.; Keegan, Liam P.; O’Connell, Mary A.

    2014-01-01

    RNA editing by deamination of specific adenosine bases to inosines during pre-mRNA processing generates edited isoforms of proteins. Recoding RNA editing is more widespread in Drosophila than in vertebrates. Editing levels rise strongly at metamorphosis, and Adar5G1 null mutant flies lack editing events in hundreds of CNS transcripts; mutant flies have reduced viability, severely defective locomotion and age-dependent neurodegeneration. On the other hand, overexpressing an adult dADAR isoform with high enzymatic activity ubiquitously during larval and pupal stages is lethal. Advantage was taken of this to screen for genetic modifiers; Adar overexpression lethality is rescued by reduced dosage of the Rdl (Resistant to dieldrin), gene encoding a subunit of inhibitory GABA receptors. Reduced dosage of the Gad1 gene encoding the GABA synthetase also rescues Adar overexpression lethality. Drosophila Adar5G1 mutant phenotypes are ameliorated by feeding GABA modulators. We demonstrate that neuronal excitability is linked to dADAR expression levels in individual neurons; Adar-overexpressing larval motor neurons show reduced excitability whereas Adar5G1 null mutant or targeted Adar knockdown motor neurons exhibit increased excitability. GABA inhibitory signalling is impaired in human epileptic and autistic conditions, and vertebrate ADARs may have a relevant evolutionarily conserved control over neuronal excitability. PMID:24137011

  2. Molecular Diagnosis of Human Taenia martis Eye Infection.

    Science.gov (United States)

    Koch, Till; Schoen, Christoph; Muntau, Birgit; Addo, Marylyn; Ostertag, Helmut; Wiechens, Burkhard; Tappe, Dennis

    2016-05-04

    Taenia martis, a tapeworm harbored in the intestine of mustelids, is a rarely encountered zoonotic cysticercosis pathogen. The larval stage closely resembles the Taenia solium cysticercus, but the natural host and thus the epidemiology of the disease is different. We here report a human eye infection diagnosed molecularly in a previously healthy female German patient. The case represents the third human infection described worldwide; the two previous cases were also European, involving eye and brain. © The American Society of Tropical Medicine and Hygiene.

  3. An investigation of nutrient-dependent mRNA translation in Drosophila larvae

    Directory of Open Access Journals (Sweden)

    Sabarish Nagarajan

    2014-10-01

    Full Text Available The larval period of the Drosophila life cycle is characterized by immense growth. In nutrient rich conditions, larvae increase in mass approximately two hundred-fold in five days. However, upon nutrient deprivation, growth is arrested. The prevailing view is that dietary amino acids drive this larval growth by activating the conserved insulin/PI3 kinase and Target of rapamycin (TOR pathways and promoting anabolic metabolism. One key anabolic process is protein synthesis. However, few studies have attempted to measure mRNA translation during larval development or examine the signaling requirements for nutrient-dependent regulation. Our work addresses this issue. Using polysome analyses, we observed that starvation rapidly (within thirty minutes decreased larval mRNA translation, with a maximal decrease at 6–18 hours. By analyzing individual genes, we observed that nutrient-deprivation led to a general reduction in mRNA translation, regardless of any starvation-mediated changes (increase or decrease in total transcript levels. Although sugars and amino acids are key regulators of translation in animal cells and are the major macronutrients in the larval diet, we found that they alone were not sufficient to maintain mRNA translation in larvae. The insulin/PI3 kinase and TOR pathways are widely proposed as the main link between nutrients and mRNA translation in animal cells. However, we found that genetic activation of PI3K and TOR signaling, or regulation of two effectors – 4EBP and S6K – could not prevent the starvation-mediated translation inhibition. Similarly, we showed that the nutrient stress-activated eIF2α kinases, GCN2 and PERK, were not required for starvation-induced inhibition of translation in larvae. These findings indicate that nutrient control of mRNA translation in larvae is more complex than simply amino acid activation of insulin and TOR signaling.

  4. Phylogeny of the Genus Drosophila

    Science.gov (United States)

    O’Grady, Patrick M.; DeSalle, Rob

    2018-01-01

    Understanding phylogenetic relationships among taxa is key to designing and implementing comparative analyses. The genus Drosophila, which contains over 1600 species, is one of the most important model systems in the biological sciences. For over a century, one species in this group, Drosophila melanogaster, has been key to studies of animal development and genetics, genome organization and evolution, and human disease. As whole-genome sequencing becomes more cost-effective, there is increasing interest in other members of this morphologically, ecologically, and behaviorally diverse genus. Phylogenetic relationships within Drosophila are complicated, and the goal of this paper is to provide a review of the recent taxonomic changes and phylogenetic relationships in this genus to aid in further comparative studies. PMID:29716983

  5. The function of the frizzled pathway in the Drosophila wing is dependent on inturned and fuzzy.

    OpenAIRE

    Lee, Haeryun; Adler, Paul N

    2002-01-01

    The Drosophila epidermis is characterized by a dramatic planar or tissue polarity. The frizzled pathway has been shown to be a key regulator of planar polarity for hairs on the wing, ommatidia in the eye, and sensory bristles on the notum. We have investigated the genetic relationships between putative frizzled pathway downstream genes inturned, fuzzy, and multiple wing hairs (inturned-like genes) and upstream genes such as frizzled, prickle, and starry night (frizzled-like genes). Previous d...

  6. Modelling Cooperative Tumorigenesis in Drosophila

    Science.gov (United States)

    2018-01-01

    The development of human metastatic cancer is a multistep process, involving the acquisition of several genetic mutations, tumour heterogeneity, and interactions with the surrounding microenvironment. Due to the complexity of cancer development in mammals, simpler model organisms, such as the vinegar fly, Drosophila melanogaster, are being utilized to provide novel insights into the molecular mechanisms involved. In this review, we highlight recent advances in modelling tumorigenesis using the Drosophila model, focusing on the cooperation of oncogenes or tumour suppressors, and the interaction of mutant cells with the surrounding tissue in epithelial tumour initiation and progression. PMID:29693007

  7. Modelling Cooperative Tumorigenesis in Drosophila

    Directory of Open Access Journals (Sweden)

    Helena E. Richardson

    2018-01-01

    Full Text Available The development of human metastatic cancer is a multistep process, involving the acquisition of several genetic mutations, tumour heterogeneity, and interactions with the surrounding microenvironment. Due to the complexity of cancer development in mammals, simpler model organisms, such as the vinegar fly, Drosophila melanogaster, are being utilized to provide novel insights into the molecular mechanisms involved. In this review, we highlight recent advances in modelling tumorigenesis using the Drosophila model, focusing on the cooperation of oncogenes or tumour suppressors, and the interaction of mutant cells with the surrounding tissue in epithelial tumour initiation and progression.

  8. About the Eye

    Medline Plus

    Full Text Available ... your eye. It helps your eye focus light so things look sharp and clear. Sclera (SKLEH-ruh) ... the different parts of your eye work together so you can see and make sense of the ...

  9. About the Eye

    Medline Plus

    Full Text Available ... Glossary The Visual System Your Eyes’ Natural Defenses Eye Health and Safety First Aid Tips Healthy Vision ... to More Information Optical Illusions Printables About the Eye Your eyes are made up of many different ...

  10. Fluorescein eye stain

    Science.gov (United States)

    Abnormal results may point to: Abnormal tear production (dry eye) Blocked tear duct Corneal abrasion (a scratch on ... object in eye ) Infection Injury or trauma Severe dry eye associated with arthritis (keratoconjunctivitis sicca)

  11. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Member Services Advocacy Foundation About Subspecialties & More Eye Health Home Annual Meeting Clinical Education Practice Management Member ... Center Redmond Ethics Center Global Ophthalmology Guide Eye Health Find an Ophthalmologist Academy Store Eye Health A- ...

  12. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Ophthalmology/Strabismus Ocular Pathology/Oncology Oculoplastics/Orbit Refractive Management/Intervention Retina/Vitreous Uveitis Focus On ... Dry Eye Sections What Is Dry Eye? Dry Eye Symptoms Causes of ...

  13. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Dry Eye Symptoms Related Ask an Ophthalmologist Answers Can a six-month dissolvable punctal plug be removed ... my eyes dry after LASIK? Jun 19, 2016 Can I be tested whether I close my eyes ...

  14. Eye Injuries at Work

    Science.gov (United States)

    ... National Standards Institute (ANSI) to meet their eye protection standards. If an eye injury occurs, see an ophthalmologist or go to the emergency room immediately, even if the eye injury appears minor. Delaying medical attention can result in permanent vision ...

  15. EyeGENE

    Data.gov (United States)

    U.S. Department of Health & Human Services — The eyeGENE® Biorepository and corresponding Database contain family history and clinical eye exam data from subjects enrolled in eyeGENE® Program coupled to...

  16. Fish larval transport in the coastal waters through ecological modelling

    Digital Repository Service at National Institute of Oceanography (India)

    George, G.

    are as follows: (i) to find out the influence of environmental parameters on the biology of the given ecosystem (ii) to track larval transport and biological abundance in relation to environmental vari- ables (iii) to compare biological abundance and fish larval... include the following investigations: (i) analysis of satellite chlorophyll data along the southwest coastal waters of India to derive a biological calender for sardine (ii) tracking the larval survival and establish a link between food and sardine inter...

  17. Genetic analysis of the claret locus of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Sequeira, W.; Nelson, C.R.; Szauter, P.

    1989-01-01

    The claret (ca) locus of Drosophila melanogaster comprises two separately mutable domains, one responsible for eye color and one responsible for proper disjunction of chromosomes in meiosis and early cleavage divisions. Previously isolated alleles are of three types: (1) alleles of the claret (ca) type that affect eye color only, (2) alleles of the claret-nondisjunctional (ca nd ) type that affect eye color and chromosome behavior, and (3) a meiotic mutation, non-claret disjunctional (ncd), that affects chromosome behavior only. In order to investigate the genetic structure of the claret locus, the authors have isolated 19 radiation-induced alleles of claret on the basis of the eye color phenotype. Two of these 19 new alleles are of the ca nd type, while 17 are of the ca type, demonstrating that the two domains do not often act as a single target for mutagenesis. This suggests that the two separately mutable functions are likely to be encoded by separate or overlapping genes rather than by a single gene. One of the new alleles of the ca nd type is a chromosome rearrangement with a breakpoint at the position of the claret locus. If this breakpoint is the cause of the mutant phenotype and there are no other mutations associated with the rearrangement, the two functions must be encoded by overlapping genes

  18. Biological radiation effects of Radon in Drosophila; Efectos biologicos del radon en Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel P, A E

    1996-12-31

    In order to contribute to the knowledge on the effects of radon and its decay products, the aim of this investigation is to study the biological effects of radon using Drosophila melanogaster throught the somatic mutation and recombination test (SMART) and the analysis of some adaptative factors exposing larvaes to controlled radon atmosphers, considering that this insect could be used as biological monitor. Using the somatic mutation test a mutagenic effect was observed proportional to radon concentration, into an interval of 1 {+-} 0.3 to 111 {+-} 7.4 KBq/m{sup 3} equivalent to doses under 0.0106 Gy. The correlation analysis gives a linear (r=0.80) relationship with a positive slope of 0.2217. The same happens when gamma rays are used in the interval of 1 to 20 Gy, given a linear dose-dependent effect (r=0.878) is obtained; nevetheless the slop is smaller (m=0.003) than for radon. Analysing the results of adaptative factors of the nine exposed generations, it was found that probably radon exposition induced dominant lethals during gametogenesis or/and a selection of the more component gamets of the treated individuals in larval state. It was reflected in the significant decrease on fecundity of the generation exposed. Nevertheless the laying eggs had an increase in egg-to-adult viability and the develop velocity was higher than in control for 3 KBq/m{sup 3}, this suggest that radon concentrations used were able to induce repair mechanisms. These data agree with the Hormesis hypothesis that says: low doses have positive effects on health. It was not possible to obtain a dose-effect relationship except with the develop velocity where it was found a dose-effect inverse proportion. In conclusion, Drosophila melanogaster could be a good system to obtain in vivo damaged induction concentration dependent of radon and its decay products, as well as to study the effects in an exposed population by the analysis of adaptative factors. (Author).

  19. Evaluating sampling strategies for larval cisco (Coregonus artedi)

    Science.gov (United States)

    Myers, J.T.; Stockwell, J.D.; Yule, D.L.; Black, J.A.

    2008-01-01

    To improve our ability to assess larval cisco (Coregonus artedi) populations in Lake Superior, we conducted a study to compare several sampling strategies. First, we compared density estimates of larval cisco concurrently captured in surface waters with a 2 x 1-m paired neuston net and a 0.5-m (diameter) conical net. Density estimates obtained from the two gear types were not significantly different, suggesting that the conical net is a reasonable alternative to the more cumbersome and costly neuston net. Next, we assessed the effect of tow pattern (sinusoidal versus straight tows) to examine if propeller wash affected larval density. We found no effect of propeller wash on the catchability of larval cisco. Given the availability of global positioning systems, we recommend sampling larval cisco using straight tows to simplify protocols and facilitate straightforward measurements of volume filtered. Finally, we investigated potential trends in larval cisco density estimates by sampling four time periods during the light period of a day at individual sites. Our results indicate no significant trends in larval density estimates during the day. We conclude estimates of larval cisco density across space are not confounded by time at a daily timescale. Well-designed, cost effective surveys of larval cisco abundance will help to further our understanding of this important Great Lakes forage species.

  20. Regulation of the activity of the tumor suppressor PTEN by thioredoxin in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Song, Zuohe; Saghafi, Negin; Gokhale, Vijay; Brabant, Marc; Meuillet, Emmanuelle J.

    2007-01-01

    Human Thioredoxin-1 (hTrx-1) is a small redox protein with a molecular weight of 12 kDa that contains two cysteine residues found in its catalytic site. HTrx-1 plays an important role in cell growth, apoptosis, and cancer patient prognosis. Recently, we have demonstrated that hTrx-1 binds to the C2 domain of the human tumor suppressor, PTEN, in a redox dependent manner. This binding leads to the inhibition of PTEN lipid phosphatase activity in mammalian tissue culture systems. In this study, we show that over-expression of hTrx-1 in Drosophila melanogaster promotes cell growth and proliferation during eye development as measured by eye size and ommatidia size. Furthermore, hTrx-1 rescues the small eye phenotype induced by the over-expression of PTEN. We demonstrate that this rescue of the PTEN-induced eye size phenotype requires cysteine-218 in the C2 domain of PTEN. We also show that hTrx-1 over-expression results in increased Akt phosphorylation in fly head extracts supporting our observations that the hTrx-1-induced eye size increase results from the inhibition of PTEN activity. Our study confirms the redox regulation of PTEN through disulfide bond formation with the hTrx-1 in Drosophila and suggests conserved mechanisms for thioredoxins and their interactions with the phosphatidylinositol-3-kinase signaling pathway in humans and fruit flies

  1. Scavenger receptors mediate the role of SUMO and Ftz-f1 in Drosophila steroidogenesis.

    Directory of Open Access Journals (Sweden)

    Ana Talamillo

    2013-04-01

    Full Text Available SUMOylation participates in ecdysteroid biosynthesis at the onset of metamorphosis in Drosophila melanogaster. Silencing the Drosophila SUMO homologue smt3 in the prothoracic gland leads to reduced lipid content, low ecdysone titers, and a block in the larval-pupal transition. Here we show that the SR-BI family of Scavenger Receptors mediates SUMO functions. Reduced levels of Snmp1 compromise lipid uptake in the prothoracic gland. In addition, overexpression of Snmp1 is able to recover lipid droplet levels in the smt3 knockdown prothoracic gland cells. Snmp1 expression depends on Ftz-f1 (an NR5A-type orphan nuclear receptor, the expression of which, in turn, depends on SUMO. Furthermore, we show by in vitro and in vivo experiments that Ftz-f1 is SUMOylated. RNAi-mediated knockdown of ftz-f1 phenocopies that of smt3 at the larval to pupal transition, thus Ftz-f1 is an interesting candidate to mediate some of the functions of SUMO at the onset of metamorphosis. Additionally, we demonstrate that the role of SUMOylation, Ftz-f1, and the Scavenger Receptors in lipid capture and mobilization is conserved in other steroidogenic tissues such as the follicle cells of the ovary. smt3 knockdown, as well as ftz-f1 or Scavenger knockdown, depleted the lipid content of the follicle cells, which could be rescued by Snmp1 overexpression. Therefore, our data provide new insights into the regulation of metamorphosis via lipid homeostasis, showing that Drosophila Smt3, Ftz-f1, and SR-BIs are part of a general mechanism for uptake of lipids such as cholesterol, required during development in steroidogenic tissues.

  2. The glucuronyltransferase GlcAT-P is required for stretch growth of peripheral nerves in Drosophila.

    Directory of Open Access Journals (Sweden)

    Rahul Pandey

    Full Text Available During development, the growth of the animal body is accompanied by a concomitant elongation of the peripheral nerves, which requires the elongation of integrated nerve fibers and the axons projecting therein. Although this process is of fundamental importance to almost all organisms of the animal kingdom, very little is known about the mechanisms regulating this process. Here, we describe the identification and characterization of novel mutant alleles of GlcAT-P, the Drosophila ortholog of the mammalian glucuronyltransferase b3gat1. GlcAT-P mutants reveal shorter larval peripheral nerves and an elongated ventral nerve cord (VNC. We show that GlcAT-P is expressed in a subset of neurons in the central brain hemispheres, in some motoneurons of the ventral nerve cord as well as in central and peripheral nerve glia. We demonstrate that in GlcAT-P mutants the VNC is under tension of shorter peripheral nerves suggesting that the VNC elongates as a consequence of tension imparted by retarded peripheral nerve growth during larval development. We also provide evidence that for growth of peripheral nerve fibers GlcAT-P is critically required in hemocytes; however, glial cells are also important in this process. The glial specific repo gene acts as a modifier of GlcAT-P and loss or reduction of repo function in a GlcAT-P mutant background enhances VNC elongation. We propose a model in which hemocytes are required for aspects of glial cell biology which in turn affects the elongation of peripheral nerves during larval development. Our data also identifies GlcAT-P as a first candidate gene involved in growth of integrated peripheral nerves and therefore establishes Drosophila as an amenable in-vivo model system to study this process at the cellular and molecular level in more detail.

  3. Morphological identification and development of neurite in Drosophila ventral nerve cord neuropil.

    Directory of Open Access Journals (Sweden)

    Guangming Gan

    Full Text Available In Drosophila, ventral nerve cord (VNC occupies most of the larval central nervous system (CNS. However, there is little literature elaborating upon the specific types and growth of neurites as defined by their structural appearance in Drosophila larval VNC neuropil. Here we report the ultrastructural development of different types VNC neurites in ten selected time points in embryonic and larval stages utilizing transmission electron microscopy. There are four types of axonal neurites as classified by the type of vesicular content: clear vesicle (CV neurites have clear vesicles and some T-bar structures; Dense-core vesicle (DV neurites have dense-core vesicles and without T-bar structures; Mixed vesicle (MV neurites have mixed vesicles and some T-bar structures; Large vesicle (LV neurites are dominated by large, translucent spherical vesicles but rarely display T-bar structures. We found dramatic remodeling in CV neurites which can be divided into five developmental phases. The neurite is vacuolated in primary (P phase, they have mitochondria, microtubules or big dark vesicles in the second (S phase, and they contain immature synaptic features in the third (T phase. The subsequent bifurcate (B phase appears to undergo major remodeling with the appearance of the bifurcation or dendritic growth. In the final mature (M phase, high density of commensurate synaptic vesicles are distributed around T-bar structures. There are four kinds of morphological elaboration of the CVI neurite sub-types. First, new neurite produces at the end of axon. Second, new neurite bubbles along the axon. Third, the preexisting neurite buds and develops into several neurites. The last, the bundled axons form irregularly shape neurites. Most CVI neurites in M phase have about 1.5-3 µm diameter, they could be suitable to analyze their morphology and subcellular localization of specific proteins by light microscopy, and they could serve as a potential model in CNS in vivo

  4. Morphological identification and development of neurite in Drosophila ventral nerve cord neuropil.

    Science.gov (United States)

    Gan, Guangming; Lv, Huihui; Xie, Wei

    2014-01-01

    In Drosophila, ventral nerve cord (VNC) occupies most of the larval central nervous system (CNS). However, there is little literature elaborating upon the specific types and growth of neurites as defined by their structural appearance in Drosophila larval VNC neuropil. Here we report the ultrastructural development of different types VNC neurites in ten selected time points in embryonic and larval stages utilizing transmission electron microscopy. There are four types of axonal neurites as classified by the type of vesicular content: clear vesicle (CV) neurites have clear vesicles and some T-bar structures; Dense-core vesicle (DV) neurites have dense-core vesicles and without T-bar structures; Mixed vesicle (MV) neurites have mixed vesicles and some T-bar structures; Large vesicle (LV) neurites are dominated by large, translucent spherical vesicles but rarely display T-bar structures. We found dramatic remodeling in CV neurites which can be divided into five developmental phases. The neurite is vacuolated in primary (P) phase, they have mitochondria, microtubules or big dark vesicles in the second (S) phase, and they contain immature synaptic features in the third (T) phase. The subsequent bifurcate (B) phase appears to undergo major remodeling with the appearance of the bifurcation or dendritic growth. In the final mature (M) phase, high density of commensurate synaptic vesicles are distributed around T-bar structures. There are four kinds of morphological elaboration of the CVI neurite sub-types. First, new neurite produces at the end of axon. Second, new neurite bubbles along the axon. Third, the preexisting neurite buds and develops into several neurites. The last, the bundled axons form irregularly shape neurites. Most CVI neurites in M phase have about 1.5-3 µm diameter, they could be suitable to analyze their morphology and subcellular localization of specific proteins by light microscopy, and they could serve as a potential model in CNS in vivo development.

  5. The glucuronyltransferase GlcAT-P is required for stretch growth of peripheral nerves in Drosophila.

    Science.gov (United States)

    Pandey, Rahul; Blanco, Jorge; Udolph, Gerald

    2011-01-01

    During development, the growth of the animal body is accompanied by a concomitant elongation of the peripheral nerves, which requires the elongation of integrated nerve fibers and the axons projecting therein. Although this process is of fundamental importance to almost all organisms of the animal kingdom, very little is known about the mechanisms regulating this process. Here, we describe the identification and characterization of novel mutant alleles of GlcAT-P, the Drosophila ortholog of the mammalian glucuronyltransferase b3gat1. GlcAT-P mutants reveal shorter larval peripheral nerves and an elongated ventral nerve cord (VNC). We show that GlcAT-P is expressed in a subset of neurons in the central brain hemispheres, in some motoneurons of the ventral nerve cord as well as in central and peripheral nerve glia. We demonstrate that in GlcAT-P mutants the VNC is under tension of shorter peripheral nerves suggesting that the VNC elongates as a consequence of tension imparted by retarded peripheral nerve growth during larval development. We also provide evidence that for growth of peripheral nerve fibers GlcAT-P is critically required in hemocytes; however, glial cells are also important in this process. The glial specific repo gene acts as a modifier of GlcAT-P and loss or reduction of repo function in a GlcAT-P mutant background enhances VNC elongation. We propose a model in which hemocytes are required for aspects of glial cell biology which in turn affects the elongation of peripheral nerves during larval development. Our data also identifies GlcAT-P as a first candidate gene involved in growth of integrated peripheral nerves and therefore establishes Drosophila as an amenable in-vivo model system to study this process at the cellular and molecular level in more detail.

  6. The Him gene inhibits the development of Drosophila flight muscles during metamorphosis.

    Science.gov (United States)

    Soler, Cédric; Taylor, Michael V

    2009-07-01

    During Drosophila metamorphosis some larval tissues escape the general histolysis and are remodelled to form adult tissues. One example is the dorso-longitudinal muscles (DLMs) of the indirect flight musculature. They are formed by an intriguing process in which residual larval oblique muscles (LOMs) split and fuse with imaginal myoblasts associated with the wing disc. These myoblasts arise in the embryo, but remain undifferentiated throughout embryogenesis and larval life, and thus share characteristics with mammalian satellite cells. However, the mechanisms that maintain the Drosophila myoblasts in an undifferentiated state until needed for LOM remodelling are not understood. Here we show that the Him gene is expressed in these myoblasts, but is undetectable in developing DLM fibres. Consistent with this, we found that Him could inhibit DLM development: it inhibited LOM splitting and resulted in fibre degeneration. We then uncovered a balance between mef2, a positive factor required for proper DLM development, and the inhibitory action of Him. Mef2 suppressed the inhibitory effect of Him on DLM development, while Him could suppress the premature myosin expression induced by mef2 in myoblasts. Furthermore, either decreased Him function or increased mef2 function disrupted DLM development. These findings, together with the co-expression of Him and Mef2 in myoblasts, indicate that Him may antagonise mef2 function during normal DLM development and that Him participates in a balance of signals that controls adult myoblast differentiation and remodelling of these muscle fibres. Lastly, we provide evidence for a link between Notch function and Him and mef2 in this balance.

  7. The eyes and vision of butterflies.

    Science.gov (United States)

    Arikawa, Kentaro

    2017-08-15

    Butterflies use colour vision when searching for flowers. Unlike the trichromatic retinas of humans (blue, green and red cones; plus rods) and honeybees (ultraviolet, blue and green photoreceptors), butterfly retinas typically have six or more photoreceptor classes with distinct spectral sensitivities. The eyes of the Japanese yellow swallowtail (Papilio xuthus) contain ultraviolet, violet, blue, green, red and broad-band receptors, with each ommatidium housing nine photoreceptor cells in one of three fixed combinations. The Papilio eye is thus a random patchwork of three types of spectrally heterogeneous ommatidia. To determine whether Papilio use all of their receptors to see colours, we measured their ability to discriminate monochromatic lights of slightly different wavelengths. We found that Papilio can detect differences as small as 1-2 nm in three wavelength regions, rivalling human performance. We then used mathematical modelling to infer which photoreceptors are involved in wavelength discrimination. Our simulation indicated that the Papilio vision is tetrachromatic, employing the ultraviolet, blue, green and red receptors. The random array of three ommatidial types is a common feature in butterflies. To address the question of how the spectrally complex eyes of butterflies evolved, we studied their developmental process. We have found that the development of butterfly eyes shares its molecular logic with that of Drosophila: the three-way stochastic expression pattern of the transcription factor Spineless determines the fate of ommatidia, creating the random array in Papilio. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  8. Investigation of lipid homeostasis in living Drosophila by coherent anti-Stokes Raman scattering microscopy

    Science.gov (United States)

    Chien, Cheng-Hao; Chen, Wei-Wen; Wu, June-Tai; Chang, Ta-Chau

    2012-12-01

    To improve our understanding of lipid metabolism, Drosophila is used as a model animal, and its lipid homeostasis is monitored by coherent anti-Stokes Raman scattering microscopy. We are able to achieve in vivo imaging of larval fat body (analogous to adipose tissue in mammals) and oenocytes (analogous to hepatocytes) in Drosophila larvae at subcellular level without any labeling. By overexpressing two lipid regulatory proteins-Brummer lipase (Bmm) and lipid storage droplet-2 (Lsd-2)-we found different phenotypes and responses under fed and starved conditions. Comparing with the control larva, we observed more lipid droplet accumulation by ˜twofold in oenocytes of fat-body-Bmm-overexpressing (FB-Bmm-overexpressing) mutant under fed condition, and less lipid by ˜fourfold in oenocytes of fat-body-Lsd-2-overexpressing (FB-Lsd-2-overexpressing) mutant under starved condition. Moreover, together with reduced size of lipid droplets, the lipid content in the fat body of FB-Bmm-overexpressing mutant decreases much faster than that of the control and FB-Lsd-2-overexpressing mutant during starvation. From long-term starvation assay, we found FB-Bmm-overexpressing mutant has a shorter lifespan, which can be attributed to faster consumption of lipid in its fat body. Our results demonstrate in vivo observations of direct influences of Bmm and Lsd-2 on lipid homeostasis in Drosophila larvae.

  9. Asymmetric cell division and Notch signaling specify dopaminergic neurons in Drosophila.

    Directory of Open Access Journals (Sweden)

    Murni Tio

    Full Text Available In Drosophila, dopaminergic (DA neurons can be found from mid embryonic stages of development till adulthood. Despite their functional involvement in learning and memory, not much is known about the developmental as well as molecular mechanisms involved in the events of DA neuronal specification, differentiation and maturation. In this report we demonstrate that most larval DA neurons are generated during embryonic development. Furthermore, we show that loss of function (l-o-f mutations of genes of the apical complex proteins in the asymmetric cell division (ACD machinery, such as inscuteable and bazooka result in supernumerary DA neurons, whereas l-o-f mutations of genes of the basal complex proteins such as numb result in loss or reduction of DA neurons. In addition, when Notch signaling is reduced or abolished, additional DA neurons are formed and conversely, when Notch signaling is activated, less DA neurons are generated. Our data demonstrate that both ACD and Notch signaling are crucial mechanisms for DA neuronal specification. We propose a model in which ACD results in differential Notch activation in direct siblings and in this context Notch acts as a repressor for DA neuronal specification in the sibling that receives active Notch signaling. Our study provides the first link of ACD and Notch signaling in the specification of a neurotransmitter phenotype in Drosophila. Given the high degree of conservation between Drosophila and vertebrate systems, this study could be of significance to mechanisms of DA neuronal differentiation not limited to flies.

  10. Gene expression profile change and growth inhibition in Drosophila larvae treated with azadirachtin.

    Science.gov (United States)

    Lai, Duo; Jin, Xiaoyong; Wang, Hao; Yuan, Mei; Xu, Hanhong

    2014-09-20

    Azadirachtin is a botanical insecticide that affects various biological processes. The effects of azadirachtin on the digital gene expression profile and growth inhibition in Drosophila larvae have not been investigated. In this study, we applied high-throughput sequencing technology to detect the differentially expressed genes of Drosophila larvae regulated by azadirachtin. A total of 15,322 genes were detected, and 28 genes were found to be significantly regulated by azadirachtin. Biological process and pathway analysis showed that azadirachtin affected starch and sucrose metabolism, defense response, signal transduction, instar larval or pupal development, and chemosensory behavior processes. The genes regulated by azadirachtin were mainly enriched in starch and sucrose metabolism. This study provided a general digital gene expression profile of dysregulated genes in response to azadirachtin and showed that azadirachtin provoked potent growth inhibitory effects in Drosophila larvae by regulating the genes of cuticular protein, amylase, and odorant-binding protein. Finally, we propose a potential mechanism underlying the dysregulation of the insulin/insulin-like growth factor signaling pathway by azadirachtin. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A conserved plan for wiring up the fan-shaped body in the grasshopper and Drosophila.

    Science.gov (United States)

    Boyan, George; Liu, Yu; Khalsa, Sat Kartar; Hartenstein, Volker

    2017-07-01

    The central complex comprises an elaborate system of modular neuropils which mediate spatial orientation and sensory-motor integration in insects such as the grasshopper and Drosophila. The neuroarchitecture of the largest of these modules, the fan-shaped body, is characterized by its stereotypic set of decussating fiber bundles. These are generated during development by axons from four homologous protocerebral lineages which enter the commissural system and subsequently decussate at stereotypic locations across the brain midline. Since the commissural organization prior to fan-shaped body formation has not been previously analyzed in either species, it was not clear how the decussating bundles relate to individual lineages, or if the projection pattern is conserved across species. In this study, we trace the axonal projections from the homologous central complex lineages into the commissural system of the embryonic and larval brains of both the grasshopper and Drosophila. Projections into the primordial commissures of both species are found to be lineage-specific and allow putatively equivalent fascicles to be identified. Comparison of the projection pattern before and after the commencement of axon decussation in both species reveals that equivalent commissural fascicles are involved in generating the columnar neuroarchitecture of the fan-shaped body. Further, the tract-specific columns in both the grasshopper and Drosophila can be shown to contain axons from identical combinations of central complex lineages, suggesting that this columnar neuroarchitecture is also conserved.

  12. Effective but costly, evolved mechanisms of defense against a virulent opportunistic pathogen in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Yixin H Ye

    2009-04-01

    Full Text Available Drosophila harbor substantial genetic variation for antibacterial defense, and investment in immunity is thought to involve a costly trade-off with life history traits, including development, life span, and reproduction. To understand the way in which insects invest in fighting bacterial infection, we selected for survival following systemic infection with the opportunistic pathogen Pseudomonas aeruginosa in wild-caught Drosophila melanogaster over 10 generations. We then examined genome-wide changes in expression in the selected flies relative to unselected controls, both of which had been infected with the pathogen. This powerful combination of techniques allowed us to specifically identify the genetic basis of the evolved immune response. In response to selection, population-level survivorship to infection increased from 15% to 70%. The evolved capacity for defense was costly, however, as evidenced by reduced longevity and larval viability and a rapid loss of the trait once selection pressure was removed. Counter to expectation, we observed more rapid developmental rates in the selected flies. Selection-associated changes in expression of genes with dual involvement in developmental and immune pathways suggest pleiotropy as a possible mechanism for the positive correlation. We also found that both the Toll and the Imd pathways work synergistically to limit infectivity and that cellular immunity plays a more critical role in overcoming P. aeruginosa infection than previously reported. This work reveals novel pathways by which Drosophila can survive infection with a virulent pathogen that may be rare in wild populations, however, due to their cost.

  13. The Drosophila melanogaster methuselah gene: a novel gene with ancient functions.

    Directory of Open Access Journals (Sweden)

    Ana Rita Araújo

    Full Text Available The Drosophila melanogaster G protein-coupled receptor gene, methuselah (mth, has been described as a novel gene that is less than 10 million years old. Nevertheless, it shows a highly specific expression pattern in embryos, larvae, and adults, and has been implicated in larval development, stress resistance, and in the setting of adult lifespan, among others. Although mth belongs to a gene subfamily with 16 members in D. melanogaster, there is no evidence for functional redundancy in this subfamily. Therefore, it is surprising that a novel gene influences so many traits. Here, we explore the alternative hypothesis that mth is an old gene. Under this hypothesis, in species distantly related to D. melanogaster, there should be a gene with features similar to those of mth. By performing detailed phylogenetic, synteny, protein structure, and gene expression analyses we show that the D. virilis GJ12490 gene is the orthologous of mth in species distantly related to D. melanogaster. We also show that, in D. americana (a species of the virilis group of Drosophila, a common amino acid polymorphism at the GJ12490 orthologous gene is significantly associated with developmental time, size, and lifespan differences. Our results imply that GJ12490 orthologous genes are candidates for developmental time and lifespan differences in Drosophila in general.

  14. Org-1-dependent lineage reprogramming generates the ventral longitudinal musculature of the Drosophila heart.

    Science.gov (United States)

    Schaub, Christoph; März, Johannes; Reim, Ingolf; Frasch, Manfred

    2015-02-16

    Only few examples of transdifferentiation, which denotes the conversion of one differentiated cell type to another, are known to occur during normal development, and more often, it is associated with regeneration processes. With respect to muscles, dedifferentiation/redifferentiation processes have been documented during post-traumatic muscle regeneration in blastema of newts as well as during myocardial regeneration. As shown herein, the ventral longitudinal muscles of the adult Drosophila heart arise from specific larval alary muscles in a process that represents the first known example of syncytial muscle transdifferentiation via dedifferentiation into mononucleate myoblasts during normal development. We demonstrate that this unique process depends on the reinitiation of a transcriptional program previously employed for embryonic alary muscle development, in which the factors Org-1 (Drosophila Tbx1) and Tailup (Drosophila Islet1) are key components. During metamorphosis, the action of these factors is combined with cell-autonomous inputs from the ecdysone steroid and the Hox gene Ultrabithorax, which provide temporal and spatial specificity to the transdifferentiation events. Following muscle dedifferentiation, inductive cues, particularly from the remodeling heart tube, are required for the redifferentiation of myoblasts into ventral longitudinal muscles. Our results provide new insights into mechanisms of lineage commitment and cell-fate plasticity during development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Modeling glial contributions to seizures and epileptogenesis: cation-chloride cotransporters in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Zeid M Rusan

    Full Text Available Flies carrying a kcc loss-of-function mutation are more seizure-susceptible than wild-type flies. The kcc gene is the highly conserved Drosophila melanogaster ortholog of K+/Cl- cotransporter genes thought to be expressed in all animal cell types. Here, we examined the spatial and temporal requirements for kcc loss-of-function to modify seizure-susceptibility in flies. Targeted RNA interference (RNAi of kcc in various sets of neurons was sufficient to induce severe seizure-sensitivity. Interestingly, kcc RNAi in glia was particularly effective in causing seizure-sensitivity. Knockdown of kcc in glia or neurons during development caused a reduction in seizure induction threshold, cell swelling, and brain volume increase in 24-48 hour old adult flies. Third instar larval peripheral nerves were enlarged when kcc RNAi was expressed in neurons or glia. Results suggest that a threshold of K+/Cl- cotransport dysfunction in the nervous system during development is an important determinant of seizure-susceptibility in Drosophila. The findings presented are the first attributing a causative role for glial cation-chloride cotransporters in seizures and epileptogenesis. The importance of elucidating glial cell contributions to seizure disorders and the utility of Drosophila models is discussed.

  16. Cardiac optogenetic pacing in drosophila melanogaster using red-shifted opsins (Conference Presentation)

    Science.gov (United States)

    Men, Jing; Li, Airong; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2017-02-01

    Electrical pacing is the current gold standard for investigation of mammalian cardiac electrical conduction systems as well as for treatment of certain cardiac pathologies. However, this method requires an invasive surgical procedure to implant the pacing electrodes. Recently, optogenetic pacing has been developed as an alternative, non-invasive method for heartbeat pacing in animals. It induces heartbeats by shining pulsed light on transgene-generated microbial opsins which in turn activate light gated ion channels in animal hearts. However, commonly used opsins, such as channelrhodopsin-2 (ChR2), require short light wavelength stimulation (475 nm), which is strongly absorbed and scattered by tissue. Here, we expressed recently engineered red-shifted opsins, ReaChR and CsChrimson, in the heart of a well-developed animal model, Drosophila melanogaster, for the first time. Optogenetic pacing was successfully conducted in both ReaChR and CsChrimson flies at their larval, pupal, and adult stages using 617 nm excitation light pulse, enabling a much deeper tissue penetration compared to blue stimulation light. A customized high speed and ultrahigh resolution OCM system was used to non-invasively monitor the heartbeat pacing in Drosophila. Compared to previous studies on optogenetic pacing of Drosophila, higher penetration depth of optogenetic excitation light was achieved in opaque late pupal flies. Lower stimulating power density is needed for excitation at each developmental stage of both groups, which improves the safety of this technique for heart rhythm studies.

  17. Turbulence-enhanced prey encounter rates in larval fish : Effects of spatial scale, larval behaviour and size

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; MacKenzie, Brian

    1995-01-01

    Turbulent water motion has several effects on the feeding ecology of larval fish and other planktivorous predators. In this paper, we consider the appropriate spatial scales for estimating relative velocities between larval fish predators and their prey, and the effect that different choices of s...... in the range in which turbulent intensity has an overall positive effect on larval fish ingestion rate probability. However, experimental data to test the model predictions are lacking. We suggest that the model inputs require further empirical study....

  18. Adaptive locomotor behavior in larval zebrafish.

    Science.gov (United States)

    Portugues, Ruben; Engert, Florian

    2011-01-01

    In this study we report that larval zebrafish display adaptive locomotor output that can be driven by unexpected visual feedback. We develop a new assay that addresses visuomotor integration in restrained larval zebrafish. The assay involves a closed-loop environment in which the visual feedback a larva receives depends on its own motor output in a way that resembles freely swimming conditions. The experimenter can control the gain of this closed feedback loop, so that following a given motor output the larva experiences more or less visual feedback depending on whether the gain is high or low. We show that increases and decreases in this gain setting result in adaptive changes in behavior that lead to a generalized decrease or increase of motor output, respectively. Our behavioral analysis shows that both the duration and tail beat frequency of individual swim bouts can be modified, as well as the frequency with which bouts are elicited. These changes can be implemented rapidly, following an exposure to a new gain of just 175 ms. In addition, modifications in some behavioral parameters accumulate over tens of seconds and effects last for at least 30 s from trial to trial. These results suggest that larvae establish an internal representation of the visual feedback expected from a given motor output and that the behavioral modifications are driven by an error signal that arises from the discrepancy between this expectation and the actual visual feedback. The assay we develop presents a unique possibility for studying visuomotor integration using imaging techniques available in the larval zebrafish.

  19. Snipper, an Eri1 homologue, affects histone mRNA abundance and is crucial for normal Drosophila melanogaster development.

    Science.gov (United States)

    Alexiadis, Anastasios; Delidakis, Christos; Kalantidis, Kriton

    2017-07-01

    The conserved 3'-5' RNA exonuclease ERI1 is implicated in RNA interference inhibition, 5.8S rRNA maturation and histone mRNA maturation and turnover. The single ERI1 homologue in Drosophila melanogaster Snipper (Snp) is a 3'-5' exonuclease, but its in vivo function remains elusive. Here, we report Snp requirement for normal Drosophila development, since its perturbation leads to larval arrest and tissue-specific downregulation results in abnormal tissue development. Additionally, Snp directly interacts with histone mRNA, and its depletion results in drastic reduction in histone transcript levels. We propose that Snp protects the 3'-ends of histone mRNAs and upon its absence, histone transcripts are readily degraded. This in turn may lead to cell cycle delay or arrest, causing growth arrest and developmental perturbations. © 2017 Federation of European Biochemical Societies.

  20. Microhabitat influence on larval fish assemblages within ...

    Science.gov (United States)

    We examined larval and juvenile fish assemblage structure in relation to microhabitat variables within the St. Louis River estuary, a drowned river mouth of Lake Superior. Fish were sampled in vegetated beds throughout the estuary, across a gradient of vegetation types and densities (including disturbed, preserved and post-restoration sites). Canonical correspondence analysis, relating species abundances to environmental variables revealed that plant species richness, turbidity and aquatic plant cover were most influential in structuring assemblages. Results from this microhabitat analysis at this crucial life stage has potential to inform wetland restoration efforts within the St. Louis River and other Great Lake coastal wetlands. not applicable

  1. Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Emma V Ridley

    Full Text Available Animals are chronically infected by benign and beneficial microorganisms that generally promote animal health through their effects on the nutrition, immune function and other physiological systems of the host. Insight into the host-microbial interactions can be obtained by comparing the traits of animals experimentally deprived of their microbiota and untreated animals. Drosophila melanogaster is an experimentally tractable system to study host-microbial interactions.The nutritional significance of the microbiota was investigated in D. melanogaster bearing unmanipulated microbiota, demonstrated by 454 sequencing of 16S rRNA amplicons to be dominated by the α-proteobacterium Acetobacter, and experimentally deprived of the microbiota by egg dechorionation (conventional and axenic flies, respectively. In axenic flies, larval development rate was depressed with no effect on adult size relative to conventional flies, indicating that the microbiota promotes larval growth rates. Female fecundity did not differ significantly between conventional and axenic flies, but axenic flies had significantly reduced metabolic rate and altered carbohydrate allocation, including elevated glucose levels.We have shown that elimination of the resident microbiota extends larval development and perturbs energy homeostasis and carbohydrate allocation patterns of of D. melanogaster. Our results indicate that the resident microbiota promotes host nutrition and interacts with the regulation of host metabolism.

  2. Alternative NF-κB Isoforms in the Drosophila Neuromuscular Junction and Brain.

    Directory of Open Access Journals (Sweden)

    Bo Zhou

    Full Text Available The Drosophila NF-κB protein Dorsal is expressed at the larval neuromuscular junction, where its expression appears unrelated to known Dorsal functions in embryonic patterning and innate immunity. Using confocal microscopy with domain-specific antisera, we demonstrate that larval muscle expresses only the B isoform of Dorsal, which arises by intron retention. We find that Dorsal B interacts with and stabilizes Cactus at the neuromuscular junction, but exhibits Cactus independent localization and an absence of detectable nuclear translocation. We further find that the Dorsal-related immune factor Dif encodes a B isoform, reflecting a conservation of B domains across a range of insect NF-κB proteins. Carrying out mutagenesis of the Dif locus via a site-specific recombineering approach, we demonstrate that Dif B is the major, if not sole, Dif isoform in the mushroom bodies of the larval brain. The Dorsal and Dif B isoforms thus share a specific association with nervous system tissues as well as an alternative protein structure.

  3. Naturally occurring genetic variation affecting the expression of sn-glycerol-3-phosphate dehydrogenase in Drosophila melanogaster.

    Science.gov (United States)

    Laurie-Ahlberg, C C; Bewley, G C

    1983-10-01

    Genetic variation among second and third chromosomes from natural populations of Drosophila melanogaster affects the activity level of sn-glycerol-3-phosphate dehydrogenase (EC 1.1.1.8; GPDH) at both the larval and the adult stages. The genetic effects, represented by differences among chromosome substitution lines with coisogenic backgrounds, are very repeatable over time and are generally substantially larger than environmental and measurement error effects. Neither the GPDH allozyme, the geographic origin, nor the karyotype of the chromosome contributes significantly to GPDH activity variation. The strong relationship between GPDH activity level and GPDH-specific CRM level, as well as our failure to find any thermostability variation among the lines, indicates that most, if not all, of the activity variation is due to variation in the steady-state quantity of enzyme rather than in its catalytic properties. The lack of a strong relationship between adult and larval activity levels suggests the importance of stage- or isozyme-specific effects.

  4. The molecular mechanisms of OPA1-mediated optic atrophy in Drosophila model and prospects for antioxidant treatment.

    Directory of Open Access Journals (Sweden)

    Will Yarosh

    2008-01-01

    Full Text Available Mutations in optic atrophy 1 (OPA1, a nuclear gene encoding a mitochondrial protein, is the most common cause for autosomal dominant optic atrophy (DOA. The condition is characterized by gradual loss of vision, color vision defects, and temporal optic pallor. To understand the molecular mechanism by which OPA1 mutations cause optic atrophy and to facilitate the development of an effective therapeutic agent for optic atrophies, we analyzed phenotypes in the developing and adult Drosophila eyes produced by mutant dOpa1 (CG8479, a Drosophila ortholog of human OPA1. Heterozygous mutation of dOpa1 by a P-element or transposon insertions causes no discernable eye phenotype, whereas the homozygous mutation results in embryonic lethality. Using powerful Drosophila genetic techniques, we created eye-specific somatic clones. The somatic homozygous mutation of dOpa1 in the eyes caused rough (mispatterning and glossy (decreased lens and pigment deposition eye phenotypes in adult flies; this phenotype was reversible by precise excision of the inserted P-element. Furthermore, we show the rough eye phenotype is caused by the loss of hexagonal lattice cells in developing eyes, suggesting an increase in lattice cell apoptosis. In adult flies, the dOpa1 mutation caused an increase in reactive oxygen species (ROS production as well as mitochondrial fragmentation associated with loss and damage of the cone and pigment cells. We show that superoxide dismutase 1 (SOD1, Vitamin E, and genetically overexpressed human SOD1 (hSOD1 is able to reverse the glossy eye phenotype of dOPA1 mutant large clones, further suggesting that ROS play an important role in cone and pigment cell death. Our results show dOpa1 mutations cause cell loss by two distinct pathogenic pathways. This study provides novel insights into the pathogenesis of optic atrophy and demonstrates the promise of antioxidants as therapeutic agents for this condition.

  5. Mechanical Control of Whole Body Shape by a Single Cuticular Protein Obstructor-E in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Reiko Tajiri

    2017-01-01

    Full Text Available Body shapes are much more variable than body plans. One way to alter body shapes independently of body plans would be to mechanically deform bodies. To what extent body shapes are regulated physically, or molecules involved in physical control of morphogenesis, remain elusive. During fly metamorphosis, the cuticle (exoskeleton covering the larval body contracts longitudinally and expands laterally to become the ellipsoidal pupal case (puparium. Here we show that Drosophila melanogaster Obstructor-E (Obst-E is a protein constituent of the larval cuticle that confers the oriented contractility/expandability. In the absence of obst-E function, the larval cuticle fails to undergo metamorphic shape change and finally becomes a twiggy puparium. We present results indicating that Obst-E regulates the arrangement of chitin, a long-chain polysaccharide and a central component of the insect cuticle, and directs the formation of supracellular ridges on the larval cuticle. We further show that Obst-E is locally required for the oriented shape change of the cuticle during metamorphosis, which is associated with changes in the morphology of those ridges. Thus, Obst-E dramatically affects the body shape in a direct, physical manner by controlling the mechanical property of the exoskeleton.

  6. A novel ecdysone receptor mediates steroid-regulated developmental events during the mid-third instar of Drosophila.

    Directory of Open Access Journals (Sweden)

    Benjamin F B Costantino

    2008-06-01

    Full Text Available The larval salivary gland of Drosophila melanogaster synthesizes and secretes glue glycoproteins that cement developing animals to a solid surface during metamorphosis. The steroid hormone 20-hydroxyecdysone (20E is an essential signaling molecule that modulates most of the physiological functions of the larval gland. At the end of larval development, it is known that 20E--signaling through a nuclear receptor heterodimer consisting of EcR and USP--induces the early and late puffing cascade of the polytene chromosomes and causes the exocytosis of stored glue granules into the lumen of the gland. It has also been reported that an earlier pulse of hormone induces the temporally and spatially specific transcriptional activation of the glue genes; however, the receptor responsible for triggering this response has not been characterized. Here we show that the coordinated expression of the glue genes midway through the third instar is mediated by 20E acting to induce genes of the Broad Complex (BRC through a receptor that is not an EcR/USP heterodimer. This result is novel because it demonstrates for the first time that at least some 20E-mediated, mid-larval, developmental responses are controlled by an uncharacterized receptor that does not contain an RXR-like component.

  7. Monitoring the effects of a lepidopteran insecticide, Flubendiamide, on the biology of a non-target dipteran insect, Drosophila melanogaster.

    Science.gov (United States)

    Sarkar, Saurabh; Roy, Sumedha

    2017-10-13

    Various organisms are adversely affected when subjected to chronic fluoride exposure. This highly electronegative ion present in several insecticide formulations is found to be lethal to target pests. In the present study, Drosophila melanogaster is treated with sub-lethal concentrations of a diamide insecticide formulation, Flubendiamide. Chronic exposure to the diamide (0.5-100 μg/mL) was found to be responsible for increase in fluoride ion concentration in larval as well as adult body fluid. Interestingly, 100 μg/mL Flubendiamide exposure resulted in 107 and 298% increase in fluoride ion concentration whereas only 23 and 52% of Flubendiamide concentration increase in larval and adult body fluid, respectively. Further, in this study, selected life cycle parameters like larval duration, pupal duration and emergence time showed minimal changes, whereas percentage of emergence and fecundity revealed significant treatment-associated variation. It can be noted that nearly 79% reduction in fecundity was observed with 100 μg/mL Flubendiamide exposure. The variations in these parameters indicate probable involvement of fluoride ion in detectable alterations in the biology of the non-target model insect, D. melanogaster. Furthermore, the outcomes of life cycle study suggest change in resource allocation pattern in the treated flies. The altered resource allocation might have been sufficient to resist changes in selective life cycle parameters, but it could not defend the changes in fecundity. The significant alterations indicate a definite trade-off pattern, where the treated individuals happen to compromise. Thus, survival is apparently taking an upper hand in comparison to reproductive ability in response to Flubendiamide exposure. Graphical abstract The figure demonstrates increase in Fluoride and Flubendiamide concentrations in Drosophila melanogaster after chronic sub-lethal exposure to Flubendiamide. Treatment-induced alterations in larval and pupal duration

  8. Effect of genetic variation in a Drosophila model of diabetes-associated misfolded human proinsulin.

    Science.gov (United States)

    He, Bin Z; Ludwig, Michael Z; Dickerson, Desiree A; Barse, Levi; Arun, Bharath; Vilhjálmsson, Bjarni J; Jiang, Pengyao; Park, Soo-Young; Tamarina, Natalia A; Selleck, Scott B; Wittkopp, Patricia J; Bell, Graeme I; Kreitman, Martin

    2014-02-01

    The identification and validation of gene-gene interactions is a major challenge in human studies. Here, we explore an approach for studying epistasis in humans using a Drosophila melanogaster model of neonatal diabetes mellitus. Expression of the mutant preproinsulin (hINS(C96Y)) in the eye imaginal disc mimics the human disease: it activates conserved stress-response pathways and leads to cell death (reduction in eye area). Dominant-acting variants in wild-derived inbred lines from the Drosophila Genetics Reference Panel produce a continuous, highly heritable distribution of eye-degeneration phenotypes in a hINS(C96Y) background. A genome-wide association study (GWAS) in 154 sequenced lines identified a sharp peak on chromosome 3L, which mapped to a 400-bp linkage block within an intron of the gene sulfateless (sfl). RNAi knockdown of sfl enhanced the eye-degeneration phenotype in a mutant-hINS-dependent manner. RNAi against two additional genes in the heparan sulfate (HS) biosynthetic pathway (ttv and botv), in which sfl acts, also modified the eye phenotype in a hINS(C96Y)-dependent manner, strongly suggesting a novel link between HS-modified proteins and cellular responses to misfolded proteins. Finally, we evaluated allele-specific expression difference between the two major sfl-intronic haplotypes in heterozygtes. The results showed significant heterogeneity in marker-associated gene expression, thereby leaving the causal mutation(s) and its mechanism unidentified. In conclusion, the ability to create a model of human genetic disease, map a QTL by GWAS to a specific gene, and validate its contribution to disease with available genetic resources and the potential to experimentally link the variant to a molecular mechanism demonstrate the many advantages Drosophila holds in determining the genetic underpinnings of human disease.

  9. Composition of agarose substrate affects behavioral output of Drosophila larvae

    Directory of Open Access Journals (Sweden)

    Anthi Aristomenis Apostolopoulou

    2014-01-01

    Full Text Available In the last decade the Drosophila larva has evolved into a simple model organism offering the opportunity to integrate molecular genetics with systems neuroscience. This led to a detailed understanding of the functional neuronal networks for a number of sensory functions and behaviors including olfaction, vision, gustation and learning and memory. Typically, behavioral assays in use exploit simple Petri dish setups with either agarose or agar as a substrate. However, neither the quality nor the concentration of the substrate is generally standardized across these experiments and there is no data available on how larval behavior is affected by such different substrates. Here, we have investigated the effects of different agarose concentrations on several larval behaviors. We demonstrate that agarose concentration is an important parameter, which affects all behaviors tested: preference, feeding, learning and locomotion. Larvae can discriminate between different agarose concentrations, they feed differently on them, they can learn to associate an agarose concentration with an odor stimulus and crawl faster on a substrate of higher agarose concentration. Additionally, we have investigated the effect of agarose concentration on three quinine based behaviors: preference, feeding and learning. We show that in all cases examined the behavioral output changes in an agarose concentration-dependent manner. Our results suggest that comparisons between experiments performed on substrates differing in agarose concentration should be done with caution. It should be taken into consideration that the agarose concentration can affect the behavioral output and thereby the experimental outcomes per se potentially due to an increased escape response on more rigid substrates.

  10. The larval development of the red mangrove crab Sesarma meinerti ...

    African Journals Online (AJOL)

    The larval stages of the red mangrove crab Sesarma meinerti de Man were reared in the laboratory. Larval development consists of five zoeal stages and one megalopa. Zoeal development lasts an average of 25 days at 25°C. The external morphology of larvae is described in detail and their relationship with larvae of.

  11. Semi-automated quantitative Drosophila wings measurements.

    Science.gov (United States)

    Loh, Sheng Yang Michael; Ogawa, Yoshitaka; Kawana, Sara; Tamura, Koichiro; Lee, Hwee Kuan

    2017-06-28

    Drosophila melanogaster is an important organism used in many fields of biological research such as genetics and developmental biology. Drosophila wings have been widely used to study the genetics of development, morphometrics and evolution. Therefore there is much interest in quantifying wing structures of Drosophila. Advancement in technology has increased the ease in which images of Drosophila can be acquired. However such studies have been limited by the slow and tedious process of acquiring phenotypic data. We have developed a system that automatically detects and measures key points and vein segments on a Drosophila wing. Key points are detected by performing image transformations and template matching on Drosophila wing images while vein segments are detected using an Active Contour algorithm. The accuracy of our key point detection was compared against key point annotations of users. We also performed key point detection using different training data sets of Drosophila wing images. We compared our software with an existing automated image analysis system for Drosophila wings and showed that our system performs better than the state of the art. Vein segments were manually measured and compared against the measurements obtained from our system. Our system was able to detect specific key points and vein segments from Drosophila wing images with high accuracy.

  12. Drosophila larvae synthesize the putative oncometabolite L-2-hydroxyglutarate during normal developmental growth.

    Science.gov (United States)

    Li, Hongde; Chawla, Geetanjali; Hurlburt, Alexander J; Sterrett, Maria C; Zaslaver, Olga; Cox, James; Karty, Jonathan A; Rosebrock, Adam P; Caudy, Amy A; Tennessen, Jason M

    2017-02-07

    L-2-hydroxyglutarate (L-2HG) has emerged as a putative oncometabolite that is capable of inhibiting enzymes involved in metabolism, chromatin modification, and cell differentiation. However, despite the ability of L-2HG to interfere with a broad range of cellular processes, this molecule is often characterized as a metabolic waste product. Here, we demonstrate that Drosophila larvae use the metabolic conditions established by aerobic glycolysis to both synthesize and accumulate high concentrations of L-2HG during normal developmental growth. A majority of the larval L-2HG pool is derived from glucose and dependent on the Drosophila estrogen-related receptor (dERR), which promotes L-2HG synthesis by up-regulating expression of the Drosophila homolog of lactate dehydrogenase (dLdh). We also show that dLDH is both necessary and sufficient for directly synthesizing L-2HG and the Drosophila homolog of L-2-hydroxyglutarate dehydrogenase (dL2HGDH), which encodes the enzyme that breaks down L-2HG, is required for stage-specific degradation of the L-2HG pool. In addition, dLDH also indirectly promotes L-2HG accumulation via synthesis of lactate, which activates a metabolic feed-forward mechanism that inhibits dL2HGDH activity and stabilizes L-2HG levels. Finally, we use a genetic approach to demonstrate that dLDH and L-2HG influence position effect variegation and DNA methylation, suggesting that this compound serves to coordinate glycolytic flux with epigenetic modifications. Overall, our studies demonstrate that growing animal tissues synthesize L-2HG in a controlled manner, reveal a mechanism that coordinates glucose catabolism with L-2HG synthesis, and establish the fly as a unique model system for studying the endogenous functions of L-2HG during cell growth and proliferation.

  13. Drosophila larvae synthesize the putative oncometabolite L-2-hydroxyglutarate during normal developmental growth

    Science.gov (United States)

    Li, Hongde; Chawla, Geetanjali; Hurlburt, Alexander J.; Sterrett, Maria C.; Zaslaver, Olga; Cox, James; Karty, Jonathan A.; Rosebrock, Adam P.; Caudy, Amy A.

    2017-01-01

    L-2-hydroxyglutarate (L-2HG) has emerged as a putative oncometabolite that is capable of inhibiting enzymes involved in metabolism, chromatin modification, and cell differentiation. However, despite the ability of L-2HG to interfere with a broad range of cellular processes, this molecule is often characterized as a metabolic waste product. Here, we demonstrate that Drosophila larvae use the metabolic conditions established by aerobic glycolysis to both synthesize and accumulate high concentrations of L-2HG during normal developmental growth. A majority of the larval L-2HG pool is derived from glucose and dependent on the Drosophila estrogen-related receptor (dERR), which promotes L-2HG synthesis by up-regulating expression of the Drosophila homolog of lactate dehydrogenase (dLdh). We also show that dLDH is both necessary and sufficient for directly synthesizing L-2HG and the Drosophila homolog of L-2-hydroxyglutarate dehydrogenase (dL2HGDH), which encodes the enzyme that breaks down L-2HG, is required for stage-specific degradation of the L-2HG pool. In addition, dLDH also indirectly promotes L-2HG accumulation via synthesis of lactate, which activates a metabolic feed-forward mechanism that inhibits dL2HGDH activity and stabilizes L-2HG levels. Finally, we use a genetic approach to demonstrate that dLDH and L-2HG influence position effect variegation and DNA methylation, suggesting that this compound serves to coordinate glycolytic flux with epigenetic modifications. Overall, our studies demonstrate that growing animal tissues synthesize L-2HG in a controlled manner, reveal a mechanism that coordinates glucose catabolism with L-2HG synthesis, and establish the fly as a unique model system for studying the endogenous functions of L-2HG during cell growth and proliferation. PMID:28115720

  14. A Drosophila wing spot test

    International Nuclear Information System (INIS)

    Ayaki, Toshikazu; Yoshikawa, Isao; Niikawa, Norio; Hoshi, Masaharu.

    1986-01-01

    A Drosophila wing spot test system was used to investigate the effects of low doses of X-rays, gamma rays, and both 2.3 and 14.1 MeV neutrons on somatic chromosome mutation (SCM) induction. The incidence of SCM was significantly increased with any type of radiation, with evident linear dose-response relationship within the range of 3 to 20 cGy. It was estimated that relative biological effectiveness value for SCM induction of 2.3 MeV neutrons to X-rays and gamma rays is much higher than that of 14.1 MeV neutrons to those photons (2.4 vs 8.0). The Drosophila wing spot test system seems to become a promising in vivo experimental method for higher animals in terms of the lack of necessity for a marvelously large number of materials required in conventional test system. (Namekawa, K.)

  15. Limited taste discrimination in Drosophila.

    Science.gov (United States)

    Masek, Pavel; Scott, Kristin

    2010-08-17

    In the gustatory systems of mammals and flies, different populations of sensory cells recognize different taste modalities, such that there are cells that respond selectively to sugars and others to bitter compounds. This organization readily allows animals to distinguish compounds of different modalities but may limit the ability to distinguish compounds within one taste modality. Here, we developed a behavioral paradigm in Drosophila melanogaster to evaluate directly the tastes that a fly distinguishes. These studies reveal that flies do not discriminate among different sugars, or among different bitter compounds, based on chemical identity. Instead, flies show a limited ability to distinguish compounds within a modality based on intensity or palatability. Taste associative learning, similar to olfactory learning, requires the mushroom bodies, suggesting fundamental similarities in brain mechanisms underlying behavioral plasticity. Overall, these studies provide insight into the discriminative capacity of the Drosophila gustatory system and the modulation of taste behavior.

  16. The cuticular nature of corneal lenses in Drosophila melanogaster.

    Science.gov (United States)

    Stahl, Aaron L; Charlton-Perkins, Mark; Buschbeck, Elke K; Cook, Tiffany A

    2017-07-01

    The dioptric visual system relies on precisely focusing lenses that project light onto a neural retina. While the proteins that constitute the lenses of many vertebrates are relatively well characterized, less is known about the proteins that constitute invertebrate lenses, especially the lens facets in insect compound eyes. To address this question, we used mass spectrophotometry to define the major proteins that comprise the corneal lenses from the adult Drosophila melanogaster compound eye. This led to the identification of four cuticular proteins: two previously identified lens proteins, drosocrystallin and retinin, and two newly identified proteins, Cpr66D and Cpr72Ec. To determine which ommatidial cells contribute each of these proteins to the lens, we conducted in situ hybridization at 50% pupal development, a key age for lens secretion. Our results confirm previous reports that drosocrystallin and retinin are expressed in the two primary corneagenous cells-cone cells and primary pigment cells. Cpr72Ec and Cpr66D, on the other hand, are more highly expressed in higher order interommatidial pigment cells. These data suggest that the complementary expression of cuticular proteins give rise to the center vs periphery of the corneal lens facet, possibly facilitating a refractive gradient that is known to reduce spherical aberration. Moreover, these studies provide a framework for future studies aimed at understanding the cuticular basis of corneal lens function in holometabolous insect eyes.

  17. Molecular genetics of rhodopsin and phototrans duction in the visual system of Drosophila

    International Nuclear Information System (INIS)

    Zuker, C.; Cowman, A.; Montell, C.; Rubin, G.

    1987-01-01

    The authors have isolated the genes encoding four Drosophila visual pigments. Each of these opsins is expressed in a set of functionally and anatomically distinct photoreceptor cells of the eye. One is expressed in the six outer photoreceptor cells (R1-R6), the second in the central R8 photoreceptor cell, and the other two in the UV sensitive R7 photoreceptor cells. They have determined the structure and nucleotide sequence of each of these genes. They have used P element-mediated gene transfer to introduce the cloned structural gene for the R1-R6 opsin in the Drosophila germline and restored the ninaE mutant phenotype to wild-type. In an attempt to study the contribution of the various opsins to the specific functional properties of the different photoreceptor cell types, they have genetically engineered Drosophila lines that express R8 opsin in the R1-R6 photoreceptor cells. In collaboration with Drs. Ozaki and Pak at Purdue University, they have used oligonucleotide site-directed mutagenesis to mutate selected amino acids and regions of the rhodopsin molecule and reintroduced the mutated genes into Drosophila to analyze structure-function relationships in the rhodopsin molecule

  18. Studies on Drosophila radiosensitive strains

    International Nuclear Information System (INIS)

    Varentsova, E.P.; Zakharov, I.A.

    1976-01-01

    45 of radiosensitive strains of Drosophila melanogaster were isolated by Curly/Lobe technique after EMS treatment of Livadia population males. The lethality of non-Curly late larvae after gamma-irradiation (4000r) characterized radiosensitivity strains. Most of them exhibited higher frequency of the spontaneous dominant lethals (up to 69%). The males of 6 strains were semi-sterile. 5 of these strains exhibited higher frequency of X-chromosome non-disjunction

  19. Olfactory memory traces in Drosophila

    OpenAIRE

    Berry, Jacob; Krause, William C.; Davis, Ronald L.

    2008-01-01

    In Drosophila the fruit fly, coincident exposure to an odor and an aversive electric shock can produce robust behavioral memory. This behavioral memory is thought to be regulated by cellular memory traces within the central nervous system of the fly. These molecular, physiological or structural changes in neurons, induced by pairing odor and shock, regulate behavior by altering the neurons’ response to the learned environment. Recently, novel in vivo functional imaging techniques have allowed...

  20. Multidendritic sensory neurons in the adult Drosophila abdomen: origins, dendritic morphology, and segment- and age-dependent programmed cell death

    Directory of Open Access Journals (Sweden)

    Sugimura Kaoru

    2009-10-01

    Full Text Available Abstract Background For the establishment of functional neural circuits that support a wide range of animal behaviors, initial circuits formed in early development have to be reorganized. One way to achieve this is local remodeling of the circuitry hardwiring. To genetically investigate the underlying mechanisms of this remodeling, one model system employs a major group of Drosophila multidendritic sensory neurons - the dendritic arborization (da neurons - which exhibit dramatic dendritic pruning and subsequent growth during metamorphosis. The 15 da neurons are identified in each larval abdominal hemisegment and are classified into four categories - classes I to IV - in order of increasing size of their receptive fields and/or arbor complexity at the mature larval stage. Our knowledge regarding the anatomy and developmental basis of adult da neurons is still fragmentary. Results We identified multidendritic neurons in the adult Drosophila abdomen, visualized the dendritic arbors of the individual neurons, and traced the origins of those cells back to the larval stage. There were six da neurons in abdominal hemisegment 3 or 4 (A3/4 of the pharate adult and the adult just after eclosion, five of which were persistent larval da neurons. We quantitatively analyzed dendritic arbors of three of the six adult neurons and examined expression in the pharate adult of key transcription factors that result in the larval class-selective dendritic morphologies. The 'baseline design' of A3/4 in the adult was further modified in a segment-dependent and age-dependent manner. One of our notable findings is that a larval class I neuron, ddaE, completed dendritic remodeling in A2 to A4 and then underwent caspase-dependent cell death within 1 week after eclosion, while homologous neurons in A5 and in more posterior segments degenerated at pupal stages. Another finding is that the dendritic arbor of a class IV neuron, v'ada, was immediately reshaped during post

  1. Drosophila: Retrotransposons Making up Telomeres.

    Science.gov (United States)

    Casacuberta, Elena

    2017-07-19

    Drosophila and extant species are the best-studied telomerase exception. In this organism, telomere elongation is coupled with targeted retrotransposition of Healing Transposon (HeT-A) and Telomere Associated Retrotransposon (TART) with sporadic additions of Telomere Associated and HeT-A Related (TAHRE), all three specialized non-Long Terminal Repeat (non-LTR) retrotransposons. These three very special retroelements transpose in head to tail arrays, always in the same orientation at the end of the chromosomes but never in interior locations. Apparently, retrotransposon and telomerase telomeres might seem very different, but a detailed view of their mechanisms reveals similarities explaining how the loss of telomerase in a Drosophila ancestor could successfully have been replaced by the telomere retrotransposons. In this review, we will discover that although HeT-A, TART, and TAHRE are still the only examples to date where their targeted transposition is perfectly tamed into the telomere biology of Drosophila, there are other examples of retrotransposons that manage to successfully integrate inside and at the end of telomeres. Because the aim of this special issue is viral integration at telomeres, understanding the base of the telomerase exceptions will help to obtain clues on similar strategies that mobile elements and viruses could have acquired in order to ensure their survival in the host genome.

  2. Optogenetic pacing in Drosophila melanogaster

    Science.gov (United States)

    Alex, Aneesh; Li, Airong; Tanzi, Rudolph E.; Zhou, Chao

    2015-01-01

    Electrical stimulation is currently the gold standard for cardiac pacing. However, it is invasive and nonspecific for cardiac tissues. We recently developed a noninvasive cardiac pacing technique using optogenetic tools, which are widely used in neuroscience. Optogenetic pacing of the heart provides high spatial and temporal precisions, is specific for cardiac tissues, avoids artifacts associated with electrical stimulation, and therefore promises to be a powerful tool in basic cardiac research. We demonstrated optogenetic control of heart rhythm in a well-established model organism, Drosophila melanogaster. We developed transgenic flies expressing a light-gated cation channel, channelrhodopsin-2 (ChR2), specifically in their hearts and demonstrated successful optogenetic pacing of ChR2-expressing Drosophila at different developmental stages, including the larva, pupa, and adult stages. A high-speed and ultrahigh-resolution optical coherence microscopy imaging system that is capable of providing images at a rate of 130 frames/s with axial and transverse resolutions of 1.5 and 3.9 μm, respectively, was used to noninvasively monitor Drosophila cardiac function and its response to pacing stimulation. The development of a noninvasive integrated optical pacing and imaging system provides a novel platform for performing research studies in developmental cardiology. PMID:26601299

  3. Quantification of Drosophila Grooming Behavior.

    Science.gov (United States)

    Barradale, Francesca; Sinha, Kairav; Lebestky, Tim

    2017-07-19

    Drosophila grooming behavior is a complex multi-step locomotor program that requires coordinated movement of both forelegs and hindlegs. Here we present a grooming assay protocol and novel chamber design that is cost-efficient and scalable for either small or large-scale studies of Drosophila grooming. Flies are dusted all over their body with Brilliant Yellow dye and given time to remove the dye from their bodies within the chamber. Flies are then deposited in a set volume of ethanol to solubilize the dye. The relative spectral absorbance of dye-ethanol samples for groomed versus ungroomed animals are measured and recorded. The protocol yields quantitative data of dye accumulation for individual flies, which can be easily averaged and compared across samples. This allows experimental designs to easily evaluate grooming ability for mutant animal studies or circuit manipulations. This efficient procedure is both versatile and scalable. We show work-flow of the protocol and comparative data between WT animals and mutant animals for the Drosophila type I Dopamine Receptor (DopR).

  4. GROWTH AND BEHAVIOR OF LARVAL ZEBRAFISH Danio ...

    Science.gov (United States)

    Because Zebrafish (Danio rerio) have become a popular and important model for scientific research, the capability to rear larval zebrafish to adulthood is of great importance. Recently research examining the effects of diet (live versus processed) have been published. In the current study we examined whether the larvae can be reared on a processed diet alone, live food alone, or the combination while maintaining normal locomotor behavior, and acceptable survival, length and weight at 14 dpf in a static system. A 14 day feeding trial was conducted in glass crystallizing dishes containing 500 ml of 4 ppt Instant Ocean. On day 0 pdf 450 embryos were selected as potential study subjects and placed in a 26○C incubator on a 14:10 (light:dark) light cycle. At 4 dpf 120 normally developing embryos were selected per treatment and divided into 3 bowls of 40 embryos (for an n=3 per treatment; 9 bowls total). Treatment groups were: G (Gemma Micro 75 only), R (L-type marine rotifers (Brachionus plicatilis) only) or B (Gemma and rotifers). Growth (length), survival, water quality and rotifer density were monitored on days 5-14. On day 14, weight of larva in each bowl was measured and 8 larva per bowl were selected for use in locomotor testing. This behavior paradigm tests individual larval zebrafish under both light and dark conditions in a 24-well plate.After 14 dpf, survival among the groups was not different (92-98%). By days 7 -14 R and B larvae were ~2X longer

  5. Mutational Analysis of Drosophila Basigin Function in the Visual System

    Science.gov (United States)

    Munro, Michelle; Akkam, Yazan; Curtin, Kathryn D.

    2009-01-01

    Drosophila basigin is a cell-surface glycoprotein of the Ig superfamily and a member of a protein family that includes mammalian EMMPRIN/CD147/basigin, neuroplastin, and embigin. Our previous work on Drosophila basigin has shown that it is required for normal photoreceptor cell structure and normal neuron-glia interaction in the fly visual system. Specifically, the photoreceptor neurons of mosaic animals that are mutant in the eye for basigin show altered cell structure with nuclei, mitochondria and rER misplaced and variable axon diameter compared to wild-type. In addition, glia cells in the optic lamina that contact photoreceptor axons are misplaced and show altered structure. All these defects are rescued by expression of either transgenic fly basigin or transgenic mouse basigin in the photoreceptors demonstrating that mouse basigin can functionally replace fly basigin. To determine what regions of the basigin protein are required for each of these functions, we have created mutant basigin transgenes coding for proteins that are altered in conserved residues, introduced these into the fly genome, and tested them for their ability to rescue both photoreceptor cell structure defects and neuron-glia interaction defects of basigin. The results suggest that the highly conserved transmembrane domain and the extracellular domains are crucial for basigin function in the visual system while the short intracellular tail may not play a role in these functions. PMID:19782733

  6. Evidence for a Complex Class of Nonadenylated mRNA in Drosophila

    Science.gov (United States)

    Zimmerman, J. Lynn; Fouts, David L.; Manning, Jerry E.

    1980-01-01

    The amount, by mass, of poly(A+) mRNA present in the polyribosomes of third-instar larvae of Drosophila melanogaster, and the relative contribution of the poly(A+) mRNA to the sequence complexity of total polysomal RNA, has been determined. Selective removal of poly(A+) mRNA from total polysomal RNA by use of either oligo-dT-cellulose, or poly(U)-sepharose affinity chromatography, revealed that only 0.15% of the mass of the polysomal RNA was present as poly(A+) mRNA. The present study shows that this RNA hybridized at saturation with 3.3% of the single-copy DNA in the Drosophila genome. After correction for asymmetric transcription and reactability of the DNA, 7.4% of the single-copy DNA in the Drosophila genome is represented in larval poly(A+) mRNA. This corresponds to 6.73 x 106 nucleotides of mRNA coding sequences, or approximately 5,384 diverse RNA sequences of average size 1,250 nucleotides. However, total polysomal RNA hybridizes at saturation to 10.9% of the single-copy DNA sequences. After correcting this value for asymmetric transcription and tracer DNA reactability, 24% of the single-copy DNA in Drosophila is represented in total polysomal RNA. This corresponds to 2.18 x 107 nucleotides of RNA coding sequences or 17,440 diverse RNA molecules of size 1,250 nucleotides. This value is 3.2 times greater than that observed for poly(A+) mRNA, and indicates that ≃69% of the polysomal RNA sequence complexity is contributed by nonadenylated RNA. Furthermore, if the number of different structural genes represented in total polysomal RNA is ≃1.7 x 104, then the number of genes expressed in third-instar larvae exceeds the number of chromomeres in Drosophila by about a factor of three. This numerology indicates that the number of chromomeres observed in polytene chromosomes does not reflect the number of structural gene sequences in the Drosophila genome. PMID:6777246

  7. Mosquito larval source management for controlling malaria

    Science.gov (United States)

    Tusting, Lucy S; Thwing, Julie; Sinclair, David; Fillinger, Ulrike; Gimnig, John; Bonner, Kimberly E; Bottomley, Christian; Lindsay, Steven W

    2015-01-01

    Background Malaria is an important cause of illness and death in people living in many parts of the world, especially sub-Saharan Africa. Long-lasting insecticide treated bed nets (LLINs) and indoor residual spraying (IRS) reduce malaria transmission by targeting the adult mosquito vector and are key components of malaria control programmes. However, mosquito numbers may also be reduced by larval source management (LSM), which targets mosquito larvae as they mature in aquatic habitats. This is conducted by permanently or temporarily reducing the availability of larval habitats (habitat modification and habitat manipulation), or by adding substances to standing water that either kill or inhibit the development of larvae (larviciding). Objectives To evaluate the effectiveness of mosquito LSM for preventing malaria. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register; Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE; EMBASE; CABS Abstracts; and LILACS up to 24 October 2012. We handsearched the Tropical Diseases Bulletin from 1900 to 2010, the archives of the World Health Organization (up to 11 February 2011), and the literature database of the Armed Forces Pest Management Board (up to 2 March 2011). We also contacted colleagues in the field for relevant articles. Selection criteria We included cluster randomized controlled trials (cluster-RCTs), controlled before-and-after trials with at least one year of baseline data, and randomized cross-over trials that compared LSM with no LSM for malaria control. We excluded trials that evaluated biological control of anopheline mosquitoes with larvivorous fish. Data collection and analysis At least two authors assessed each trial for eligibility. We extracted data and at least two authors independently determined the risk of bias in the included studies. We resolved all disagreements through discussion with a third author. We analyzed the data using Review Manager 5 software

  8. Insulators form gene loops by interacting with promoters in Drosophila.

    Science.gov (United States)

    Erokhin, Maksim; Davydova, Anna; Kyrchanova, Olga; Parshikov, Alexander; Georgiev, Pavel; Chetverina, Darya

    2011-09-01

    Chromatin insulators are regulatory elements involved in the modulation of enhancer-promoter communication. The 1A2 and Wari insulators are located immediately downstream of the Drosophila yellow and white genes, respectively. Using an assay based on the yeast GAL4 activator, we have found that both insulators are able to interact with their target promoters in transgenic lines, forming gene loops. The existence of an insulator-promoter loop is confirmed by the fact that insulator proteins could be detected on the promoter only in the presence of an insulator in the transgene. The upstream promoter regions, which are required for long-distance stimulation by enhancers, are not essential for promoter-insulator interactions. Both insulators support basal activity of the yellow and white promoters in eyes. Thus, the ability of insulators to interact with promoters might play an important role in the regulation of basal gene transcription.

  9. Radioresistance and radiosensitivity in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Reguly, M.L.

    1983-01-01

    Studying the mechanisms controlling radioresistant in Drosophila the sensibility of four strains of Drosophila melanogaster to sex-linked recessive lethal mutations induced by 5kR Cobalt-60 gamma radiation and 0,006 M EMS or 0,25% of caffeine was determined. (M.A.C.) [pt

  10. The Drosophila melanogaster circadian pacemaker circuit

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Keywords. circadian rhythm; neuronal network; ion channel; behaviour; neurotransmitter; electrophysiology; Drosophila. Abstract. As an experimental model system, the fruit fly Drosophila melanogaster has been seminal in shaping our understanding of the circadian clockwork. The wealth of genetic tools ...

  11. Eyes Wide Open

    Directory of Open Access Journals (Sweden)

    Zoi Manesi

    2016-04-01

    Full Text Available Research from evolutionary psychology suggests that the mere presence of eye images can promote prosocial behavior. However, the “eye images effect” is a source of considerable debate, and findings across studies have yielded somewhat inconsistent support. We suggest that one critical factor may be whether the eyes really need to be watching to effectively enhance prosocial behavior. In three experiments, we investigated the impact of eye images on prosocial behavior, assessed in a laboratory setting. Participants were randomly assigned to view an image of watching eyes (eyes with direct gaze, an image of nonwatching eyes (i.e., eyes closed for Study 1 and averted eyes for Studies 2 and 3, or an image of flowers (control condition. Upon exposure to the stimuli, participants decided whether or not to help another participant by completing a dull cognitive task. Three independent studies produced somewhat mixed results. However, combined analysis of all three studies, with a total of 612 participants, showed that the watching component of the eyes is important for decision-making in this context. Images of watching eyes led to significantly greater inclination to offer help as compared to images of nonwatching eyes (i.e., eyes closed and averted eyes or images of flowers. These findings suggest that eyes gazing at an individual, rather than any proxy to social presence (e.g., just the eyes, serve as a reminder of reputation. Taken together, we conclude that it is “eyes that pay attention” that can lift the veil of anonymity and potentially facilitate prosocial behavior.

  12. Dry eyes : a commonly missed eye condition

    OpenAIRE

    Vella, Mario;

    2014-01-01

    Tears are an important component in providing moisture and lubrication for the eyes, thereby maintaining vision and comfort. Dry eyes (keratoconjunctivitis sicca) result when there is either decreased production of tears or by poor tear quality which in turn lead to more rapid evaporation.

  13. Effects of diet and development on the Drosophila lipidome

    Science.gov (United States)

    Carvalho, Maria; Sampaio, Julio L; Palm, Wilhelm; Brankatschk, Marko; Eaton, Suzanne; Shevchenko, Andrej

    2012-01-01

    Cells produce tens of thousands of different lipid species, but the importance of this complexity in vivo is unclear. Analysis of individual tissues and cell types has revealed differences in abundance of individual lipid species, but there has been no comprehensive study comparing tissue lipidomes within a single developing organism. Here, we used quantitative shotgun profiling by high-resolution mass spectrometry to determine the absolute (molar) content of 250 species of 14 major lipid classes in 6 tissues of animals at 27 developmental stages raised on 4 different diets. Comparing these lipidomes revealed unexpected insights into lipid metabolism. Surprisingly, the fatty acids present in dietary lipids directly influence tissue phospholipid composition throughout the animal. Furthermore, Drosophila differentially regulates uptake, mobilization and tissue accumulation of specific sterols, and undergoes unsuspected shifts in fat metabolism during larval and pupal development. Finally, we observed striking differences between tissue lipidomes that are conserved between phyla. This study provides a comprehensive, quantitative and expandable resource for further pharmacological and genetic studies of metabolic disorders and molecular mechanisms underlying dietary response. PMID:22864382

  14. Defensive repertoire of Drosophila larvae in response to toxic fungi.

    Science.gov (United States)

    Trienens, Monika; Kraaijeveld, Ken; Wertheim, Bregje

    2017-10-01

    Chemical warfare including insecticidal secondary metabolites is a well-known strategy for environmental microbes to monopolize a food source. Insects in turn have evolved behavioural and physiological defences to eradicate or neutralize the harmful microorganisms. We studied the defensive repertoire of insects in this interference competition by combining behavioural and developmental assays with whole-transcriptome time-series analysis. Confrontation with the toxic filamentous fungus Aspergillus nidulans severely reduced the survival of Drosophila melanogaster larvae. Nonetheless, the larvae did not behaviourally avoid the fungus, but aggregated at it. Confrontation with fungi strongly affected larval gene expression, including many genes involved in detoxification (e.g., CYP, GST and UGT genes) and the formation of the insect cuticle (e.g., Tweedle genes). The most strongly upregulated genes were several members of the insect-specific gene family Osiris, and CHK-kinase-like domains were over-represented. Immune responses were not activated, reflecting the competitive rather than pathogenic nature of the antagonistic interaction. While internal microbes are widely acknowledged as important, our study emphasizes the underappreciated role of environmental microbes as fierce competitors. © 2017 John Wiley & Sons Ltd.

  15. Methyl Farnesoate Plays a Dual Role in Regulating Drosophila Metamorphosis

    Science.gov (United States)

    Wen, Di; Rivera-Perez, Crisalejandra; Abdou, Mohamed; Jia, Qiangqiang; He, Qianyu; Liu, Xi; Zyaan, Ola; Xu, Jingjing; Bendena, William G.; Tobe, Stephen S.; Noriega, Fernando G.; Palli, Subba R.; Wang, Jian; Li, Sheng

    2015-01-01

    Corpus allatum (CA) ablation results in juvenile hormone (JH) deficiency and pupal lethality in Drosophila. The fly CA produces and releases three sesquiterpenoid hormones: JH III bisepoxide (JHB3), JH III, and methyl farnesoate (MF). In the whole body extracts, MF is the most abundant sesquiterpenoid, followed by JHB3 and JH III. Knockout of JH acid methyl transferase (jhamt) did not result in lethality; it decreased biosynthesis of JHB3, but MF biosynthesis was not affected. RNAi-mediated reduction of 3-hydroxy-3-methylglutaryl CoA reductase (hmgcr) expression in the CA decreased biosynthesis and titers of the three sesquiterpenoids, resulting in partial lethality. Reducing hmgcr expression in the CA of the jhamt mutant further decreased MF titer to a very low level, and caused complete lethality. JH III, JHB3, and MF function through Met and Gce, the two JH receptors, and induce expression of Kr-h1, a JH primary-response gene. As well, a portion of MF is converted to JHB3 in the hemolymph or peripheral tissues. Topical application of JHB3, JH III, or MF precluded lethality in JH-deficient animals, but not in the Met gce double mutant. Taken together, these experiments show that MF is produced by the larval CA and released into the hemolymph, from where it exerts its anti-metamorphic effects indirectly after conversion to JHB3, as well as acting as a hormone itself through the two JH receptors, Met and Gce. PMID:25774983

  16. Decapentaplegic and growth control in the developing Drosophila wing.

    Science.gov (United States)

    Akiyama, Takuya; Gibson, Matthew C

    2015-11-19

    As a central model for morphogen action during animal development, the bone morphogenetic protein 2/4 (BMP2/4)-like ligand Decapentaplegic (Dpp) is proposed to form a long-range signalling gradient that directs both growth and pattern formation during Drosophila wing disc development. While the patterning role of Dpp secreted from a stripe of cells along the anterior-posterior compartmental boundary is well established, the mechanism by which a Dpp gradient directs uniform cell proliferation remains controversial and poorly understood. Here, to determine the precise spatiotemporal requirements for Dpp during wing disc development, we use CRISPR-Cas9-mediated genome editing to generate a flippase recognition target (FRT)-dependent conditional null allele. By genetically removing Dpp from its endogenous stripe domain, we confirm the requirement of Dpp for the activation of a downstream phospho-Mothers against dpp (p-Mad) gradient and the regulation of the patterning targets spalt (sal), optomotor blind (omb; also known as bifid) and brinker (brk). Surprisingly, however, third-instar wing blade primordia devoid of compartmental dpp expression maintain relatively normal rates of cell proliferation and exhibit only mild defects in growth. These results indicate that during the latter half of larval development, the Dpp morphogen gradient emanating from the anterior-posterior compartment boundary is not directly required for wing disc growth.

  17. Zoonotic helminths affecting the human eye

    Science.gov (United States)

    2011-01-01

    Nowaday, zoonoses are an important cause of human parasitic diseases worldwide and a major threat to the socio-economic development, mainly in developing countries. Importantly, zoonotic helminths that affect human eyes (HIE) may cause blindness with severe socio-economic consequences to human communities. These infections include nematodes, cestodes and trematodes, which may be transmitted by vectors (dirofilariasis, onchocerciasis, thelaziasis), food consumption (sparganosis, trichinellosis) and those acquired indirectly from the environment (ascariasis, echinococcosis, fascioliasis). Adult and/or larval stages of HIE may localize into human ocular tissues externally (i.e., lachrymal glands, eyelids, conjunctival sacs) or into the ocular globe (i.e., intravitreous retina, anterior and or posterior chamber) causing symptoms due to the parasitic localization in the eyes or to the immune reaction they elicit in the host. Unfortunately, data on HIE are scant and mostly limited to case reports from different countries. The biology and epidemiology of the most frequently reported HIE are discussed as well as clinical description of the diseases, diagnostic considerations and video clips on their presentation and surgical treatment. Homines amplius oculis, quam auribus credunt Seneca Ep 6,5 Men believe their eyes more than their ears PMID:21429191

  18. Zoonotic helminths affecting the human eye

    Directory of Open Access Journals (Sweden)

    Eberhard Mark L

    2011-03-01

    Full Text Available Abstract Nowaday, zoonoses are an important cause of human parasitic diseases worldwide and a major threat to the socio-economic development, mainly in developing countries. Importantly, zoonotic helminths that affect human eyes (HIE may cause blindness with severe socio-economic consequences to human communities. These infections include nematodes, cestodes and trematodes, which may be transmitted by vectors (dirofilariasis, onchocerciasis, thelaziasis, food consumption (sparganosis, trichinellosis and those acquired indirectly from the environment (ascariasis, echinococcosis, fascioliasis. Adult and/or larval stages of HIE may localize into human ocular tissues externally (i.e., lachrymal glands, eyelids, conjunctival sacs or into the ocular globe (i.e., intravitreous retina, anterior and or posterior chamber causing symptoms due to the parasitic localization in the eyes or to the immune reaction they elicit in the host. Unfortunately, data on HIE are scant and mostly limited to case reports from different countries. The biology and epidemiology of the most frequently reported HIE are discussed as well as clinical description of the diseases, diagnostic considerations and video clips on their presentation and surgical treatment. Homines amplius oculis, quam auribus credunt Seneca Ep 6,5 Men believe their eyes more than their ears

  19. The Drosophila Netrin receptor frazzled/DCC functions as an invasive tumor suppressor

    Directory of Open Access Journals (Sweden)

    Duman-Scheel Molly

    2011-06-01

    Full Text Available Abstract Background Loss of heterozygosity at 18q, which includes the Deleted in Colorectal Cancer (DCC gene, has been linked to many human cancers. However, it is unclear if loss of DCC is the specific underlying cause of these cancers. The Drosophila imaginal discs are excellent systems in which to study DCC function, as it is possible to model human tumors through the generation of somatic clones of cells bearing multiple genetic lesions. Here, these attributes of the fly system were utilized to investigate the potential tumor suppressing functions of the Drosophila DCC homologue frazzled (fra during eye-antennal disc development. Results Most fra loss of function clones are eliminated during development. However, when mutant clone cells generated in the developing eye were rescued from death, partially differentiated eye cells were found outside of the normal eye field, and in extreme cases distant sites of the body. Characterization of these cells during development indicates that fra mutant cells display characteristics of invasive tumor cells, including increased levels of phospho-ERK, phospho-JNK, and Mmp-1, changes in cadherin expression, remodeling of the actin cytoskeleton, and loss of polarity. Mutation of fra promotes basement membrane degradation and invasion which are repressed by inhibition of Rho1 signaling. Although inhibition of JNK signaling blocks invasive phenotypes in some metastatic cancer models in flies, blocking JNK signaling inhibits fra mutant cell death, thereby enhancing the fra mutant phenotype. Conclusions The results of this investigation provide the first direct link between point mutations in fra/DCC and metastatic phenotypes in an animal model and suggest that Fra functions as an invasive tumor suppressor during Drosophila development.

  20. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Kierstan Boyd Reviewed By: Brenda Pagan-Duran MD Sep. 01, 2017 Our eyes need tears to stay ... tear duct to insert a permanent punctal plug? Sep 12, 2017 Why are my eyes bloodshot when ...

  1. What Is Dry Eye?

    Medline Plus

    Full Text Available ... seasonal allergens and dry eye Apr 27, 2015 Choosing Wisely When It Comes to Eye Care, Part ... Name: Member ID: * Phone Number: * Email: * Enter code: * Message: Thank you Your feedback has been sent.

  2. About the Eye

    Medline Plus

    Full Text Available ... Disease Education Program Glaucoma Education Program Low Vision Education Program ... Eye Ask a Scientist Video Series Glossary The Visual System Your Eyes’ Natural Defenses Eye Health and Safety ...

  3. Pink Eye (Conjunctivitis)

    Science.gov (United States)

    ... or child care if you're not able to take time off — just stay consistent in practicing good hygiene. Preventing pink eye in newborns Newborns' eyes are susceptible to bacteria normally present in the mother's birth canal. ...

  4. About the Eye

    Medline Plus

    Full Text Available ... Ask a Scientist Video Series Glossary The Visual System Your Eyes’ Natural Defenses Eye Health and Safety ... much as it does on your eyes. ... of Health | USA.gov NIH…Turning Discovery Into Health ®

  5. About the Eye

    Medline Plus

    Full Text Available ... Eye Institute’s mission is to “conduct and support research, training, health information dissemination, and other programs with respect to blinding eye diseases, visual disorders, mechanisms of visual function, preservation of sight, and the ...

  6. Preventing Eye Injuries

    Science.gov (United States)

    ... Your Eyes Sep 20, 2017 Eye Injuries from Laundry Packets On the Rise Jun 30, 2017 ... Medical Disclaimer Privacy Policy Terms of Service For Advertisers For Media Ophthalmology Job Center © American ...

  7. About the Eye

    Medline Plus

    Full Text Available ... National Eye Institute’s mission is to “conduct and support research, training, health information dissemination, and other programs with respect to blinding eye diseases, visual disorders, mechanisms of visual function, preservation of sight, ...

  8. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Eye Health Home Annual Meeting Clinical Education Practice Management Member Services Advocacy Foundation About Subspecialties & More Academy Publications EyeNet Ophthalmology Ophthalmology Retina Information for: International Ophthalmologists Media Medical Students Patients and ...

  9. What Is Dry Eye?

    Medline Plus

    Full Text Available ... right type of tears or tear film . How do tears work? When you blink, a film of ... layer cleans the eye, washing away particles that do not belong in the eye. This layer comes ...

  10. About the Eye

    Medline Plus

    Full Text Available ... The Visual System Your Eyes’ Natural Defenses Eye Health and Safety First Aid ... Your eyes are made up of many different parts that work together to help you see. Check out the ...

  11. About the Eye

    Medline Plus

    Full Text Available ... Vision Education Program Hispanic/Latino Program Vision and Aging Program African American Program Training and Jobs Fellowships ... Defenses Eye Health and Safety First Aid Tips Healthy Vision Tips Protective Eyewear Sports and Your Eyes ...

  12. About the Eye

    Medline Plus

    Full Text Available ... Clinical Director Laboratories, Sections and Units Division of Epidemiology and Clinical Applications eyeGENE Research Directors Office Office ... Diabetic Eye Disease Education Program Glaucoma Education Program Low Vision Education Program Hispanic/Latino Program Vision and ...

  13. About the Eye

    Medline Plus

    Full Text Available ... Home » NEI for Kids » About the Eye Listen All About Vision About the Eye Ask a Scientist ... you can see and make sense of the world around you. Did You Know? Vision depends on ...

  14. About the Eye

    Medline Plus

    Full Text Available ... search for current job openings visit HHS USAJobs Home >> NEI for Kids >> About the Eye Listen All ... much as it does on your eyes. NEI Home Contact Us A-Z Site Map NEI on ...

  15. About the Eye

    Medline Plus

    Full Text Available ... NIH), the National Eye Institute’s mission is to “conduct and support research, training, health information dissemination, and other programs with respect to blinding eye diseases, visual disorders, mechanisms of visual function, preservation of ...

  16. Eye Involvement in TSC

    Science.gov (United States)

    ... eye involvement. Nonretinal and Retinal Eye Findings Facial angiofibromas may involve the eyelids of individuals with TSC, ... the hamartomas have many blood vessels (as are angiofibromas of the skin). Less than half of the ...

  17. What Is Dry Eye?

    Medline Plus

    Full Text Available ... removed or pushed down the tear duct to insert a permanent punctal plug? Sep 12, 2017 Why ... Eye from Jennifer Aniston Sep 02, 2016 The link between seasonal allergens and dry eye Apr 27, ...

  18. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Services Advocacy Foundation About Subspecialties & More Eye Health Home Annual Meeting Clinical Education Practice Management Member Services Advocacy Foundation About Subspecialties & More Academy Publications EyeNet ...

  19. About the Eye

    Medline Plus

    Full Text Available ... First Aid Tips Healthy Vision Tips Protective Eyewear Sports and Your Eyes Fun Stuff Cool Eye Tricks ... website is maintained by the NEI Office of Science Communications, Public Liaison, and Education. Technical questions about ...

  20. About the Eye

    Medline Plus

    Full Text Available ... search for current job openings visit HHS USAJobs Home » NEI for Kids » About the Eye Listen All ... much as it does on your eyes. NEI Home Contact Us A-Z Site Map NEI on ...

  1. About the Eye

    Medline Plus

    Full Text Available ... the special health problems and requirements of the blind.” News & Events Events Calendar NEI Press Releases News ... First Aid Tips Healthy Vision Tips Protective Eyewear Sports and Your Eyes Fun Stuff Cool Eye Tricks ...

  2. Immunology of the eye

    OpenAIRE

    Weronika Ratajczak; Beata Tokarz-Deptuła; Wiesław Deptuła

    2018-01-01

    The eye is an organ of sight characterized by unusual immunological properties, resulting from its anatomical structure and physiology, as well as the presence of specific elements that, through the mechanisms of innate and adaptive immunity, provide homeostasis of the eyeball. This article reviews the defensive elements of individual eye structures: conjunctiva, cornea, lacrimal gland, anterior chamber of the eye, uvea, retina and eye-associated lymphoid tissue (EALT), where we distinguish a...

  3. Downregulation of dTps1 in Drosophila melanogaster larvae confirms involvement of trehalose in redox regulation following desiccation.

    Science.gov (United States)

    Thorat, Leena; Mani, Krishna-Priya; Thangaraj, Pradeep; Chatterjee, Suvro; Nath, Bimalendu B

    2016-03-01

    As a survival strategy to environmental water deficits, desiccation-tolerant organisms are commonly known for their ability to recruit stress-protective biomolecules such as trehalose. We have previously reported the pivotal role of trehalose in larval desiccation tolerance in Drosophila melanogaster. Trehalose has emerged as a versatile molecule, serving mainly as energy source in insects and also being a stress protectant. While several recent reports have revealed the unconventional role of trehalose in scavenging reactive oxygen species in yeast and plants, this aspect has not received much attention in animals. We examined the status of desiccation-induced generation of reactive oxygen species in D. melanogaster larvae and the possible involvement of trehalose in ameliorating the harmful consequences thereof. Insect trehalose synthesis is governed by the enzyme trehalose 6-phosphate synthase 1 (TPS1). Using the ubiquitous da-GAL4-driven expression of the dTps1-RNAi transgene, we generated dTps1-downregulated Drosophila larvae possessing depleted levels of dTps1 transcripts. This resulted in the inability of the larvae for trehalose synthesis, thereby allowing us to elucidate the significance of trehalose in the regulation of desiccation-responsive redox homeostasis. Furthermore, the results from molecular genetics studies, biochemical assays, electron spin resonance analyses and a simple, non-invasive method of whole larval live imaging suggested that trehalose in collaboration with superoxide dismutase (SOD) is involved in the maintenance of redox state in D. melanogaster.

  4. Red eye: Rule out Ophthalmomyiasis too

    Directory of Open Access Journals (Sweden)

    Pankaj Choudhary

    2013-01-01

    Full Text Available Ophthalmomyiasis is the infestation of human eye by the larvae of certain flies. Sheep botfly commonly manifests as Ophthalmomyiasis externa when there is conjunctival involvement or rarely as Opthalmomyiasis interna when there is larval penetration into the eyeball. It appears to be more common than what has been indicated by previously published reports. We present a report of seven cases of Ophthalmomyiasis by Oestrus ovis, from central India who presented with features of conjunctivitis varying between mild to severe. The larvae were seen in bulbar and palpebral conjunctiva and also entangled in lashes with discharge. Since the larvae are photophobic, it is prudent to look for them in the fornices and also in discharge. Prompt removal of the larvae from the conjunctiva helps in relieving the symptoms and also prevents serious complications. Taxonomic identification of the species is important to estimate the risk of globe penetration by the larvae.

  5. The all seeing eye?

    NARCIS (Netherlands)

    Koenderink, Jan J.

    2014-01-01

    The All Seeing Eye? Did you know that you are probably a believer in the All Seeing Eye? The odds are that I’m right—why? Well, the bulk of mainstream vision literature blindly relies on the All Seeing Eye. It is written all over papers, albeit between the lines. Understandably so, for scientists

  6. About the Eye

    Medline Plus

    Full Text Available ... other programs with respect to blinding eye diseases, visual disorders, mechanisms of visual function, preservation of sight, and the special health ... Eye Ask a Scientist Video Series Glossary The Visual System Your Eyes’ Natural Defenses Eye Health and ...

  7. Dwarf Eye Disorder

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    Johns Hopkins researchers at the Wilmer Eye Institute have discovered what appears to be the first human gene mutation that causes extreme farsightedness. The researchers report that nanophthalmos, Greek for "dwarf eye," is a rare, potentially blinding disorder caused by an alteration in a gene called MFRP that helps control eye growth and…

  8. Fish eye optics

    Science.gov (United States)

    Hudec, R.; Michalova, S.

    2017-07-01

    We report on small student (high—school) project of the Czech Academy of Sciences dealing with animal (fish) eyes and possible application in science and technology. Albeit most fishes have refractive eyes, the recent discoveries confirm that some fishes have reflective eyes with strange arrangements as well.

  9. Eye and orbital cavity

    International Nuclear Information System (INIS)

    Panfilova, G.V.; Koval', G.Yu.

    1984-01-01

    Radioanatomy of eyes and orbit is described. Diseases of the orbit (developmental anomalies, inflammatory diseases, lacrimal apparatus deseases, toxoplasmosis, tumors and cysts et al.), methods of foreign body localization in the eye are considered. Roentgenograms of the orbit and calculation table for foreign body localization in spherical eyes of dissimilar diameter are presented

  10. Unique and Overlapping Functions of Formins Frl and DAAM During Ommatidial Rotation and Neuronal Development in Drosophila

    OpenAIRE

    Dollar, Gretchen; Gombos, Rita; Barnett, Austen A.; Sanchez Hernandez, David; Maung, Saw M. T.; Mih?ly, Jozsef; Jenny, Andreas

    2016-01-01

    The noncanonical Frizzled/planar cell polarity (PCP) pathway regulates establishment of polarity within the plane of an epithelium to generate diversity of cell fates, asymmetric, but highly aligned structures, or to orchestrate the directional migration of cells during convergent extension during vertebrate gastrulation. In Drosophila, PCP signaling is essential to orient actin wing hairs and to align ommatidia in the eye, in part by coordinating the movement of groups of photoreceptor cells...

  11. Selector genes display tumor cooperation and inhibition in Drosophila epithelium in a developmental context-dependent manner

    OpenAIRE

    Ram Prakash Gupta; Anjali Bajpai; Pradip Sinha

    2017-01-01

    During animal development, selector genes determine identities of body segments and those of individual organs. Selector genes are also misexpressed in cancers, although their contributions to tumor progression per se remain poorly understood. Using a model of cooperative tumorigenesis, we show that gain of selector genes results in tumor cooperation, but in only select developmental domains of the wing, haltere and eye-antennal imaginal discs of Drosophila larva. Thus, the field selector, Ey...

  12. Selector genes display tumor cooperation and inhibition in Drosophila epithelium in a developmental context-dependent manner

    OpenAIRE

    Gupta, Ram Prakash; Bajpai, Anjali; Sinha, Pradip

    2017-01-01

    ABSTRACT During animal development, selector genes determine identities of body segments and those of individual organs. Selector genes are also misexpressed in cancers, although their contributions to tumor progression per se remain poorly understood. Using a model of cooperative tumorigenesis, we show that gain of selector genes results in tumor cooperation, but in only select developmental domains of the wing, haltere and eye-antennal imaginal discs of Drosophila larva. Thus, the field sel...

  13. Recognizing and Treating Eye Injuries

    Science.gov (United States)

    ... Eye Injuries First Aid for Eye Scratches Protective Eyewear Children’s Eye Injuries: Prevention and Care Eye Injuries ... Academy Jobs at the Academy Financial Relationships with Industry Medical Disclaimer Privacy Policy Terms of Service For ...

  14. Chemical cues from fish heighten visual sensitivity in larval crabs through changes in photoreceptor structure and function.

    Science.gov (United States)

    Charpentier, Corie L; Cohen, Jonathan H

    2015-11-01

    Several predator avoidance strategies in zooplankton rely on the use of light to control vertical position in the water column. Although light is the primary cue for such photobehavior, predator chemical cues or kairomones increase swimming responses to light. We currently lack a mechanistic understanding for how zooplankton integrate visual and chemical cues to mediate phenotypic plasticity in defensive photobehavior. In marine systems, kairomones are thought to be amino sugar degradation products of fish body mucus. Here, we demonstrate that increasing concentrations of fish kairomones heightened sensitivity of light-mediated swimming behavior for two larval crab species (Rhithropanopeus harrisii and Hemigrapsus sanguineus). Consistent with these behavioral results, we report increased visual sensitivity at the retinal level in larval crab eyes directly following acute (1-3 h) kairomone exposure, as evidenced electrophysiologically from V-log I curves and morphologically from wider, shorter rhabdoms. The observed increases in visual sensitivity do not correspond with a decline in temporal resolution, because latency in electrophysiological responses actually increased after kairomone exposure. Collectively, these data suggest that phenotypic plasticity in larval crab photobehavior is achieved, at least in part, through rapid changes in photoreceptor structure and function. © 2015. Published by The Company of Biologists Ltd.

  15. Measurements and Counts for Larval and Juvenile Beryx Specimens

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Larval alfonsin (Beryx species) were collected in the vicinity of the Southeast Hancock Seamount. A three-net Tucker trawl (I m2 effective mouth opening and 0.333 mm...

  16. The calcineurin inhibitor Sarah (Nebula) exacerbates Aβ42 phenotypes in a Drosophila model of Alzheimer's disease.

    Science.gov (United States)

    Lee, Soojin; Bang, Se Min; Hong, Yoon Ki; Lee, Jang Ho; Jeong, Haemin; Park, Seung Hwan; Liu, Quan Feng; Lee, Im-Soon; Cho, Kyoung Sang

    2016-03-01

    Expression of the Down syndrome critical region 1 (DSCR1) protein, an inhibitor of the Ca(2+)-dependent phosphatase calcineurin, is elevated in the brains of individuals with Down syndrome (DS) or Alzheimer's disease (AD). Although increased levels of DSCR1 were often observed to be deleterious to neuronal health, its beneficial effects against AD neuropathology have also been reported, and the roles of DSCR1 on the pathogenesis of AD remain controversial. Here, we investigated the role of sarah (sra; also known as nebula), a Drosophila DSCR1 ortholog, in amyloid-β42 (Aβ42)-induced neurological phenotypes in Drosophila. We detected sra expression in the mushroom bodies of the fly brain, which are a center for learning and memory in flies. Moreover, similar to humans with AD, Aβ42-expressing flies showed increased Sra levels in the brain, demonstrating that the expression pattern of DSCR1 with regard to AD pathogenesis is conserved in Drosophila. Interestingly, overexpression of sra using the UAS-GAL4 system exacerbated the rough-eye phenotype, decreased survival rates and increased neuronal cell death in Aβ42-expressing flies, without modulating Aβ42 expression. Moreover, neuronal overexpression of sra in combination with Aβ42 dramatically reduced both locomotor activity and the adult lifespan of flies, whereas flies with overexpression of sra alone showed normal climbing ability, albeit with a slightly reduced lifespan. Similarly, treatment with chemical inhibitors of calcineurin, such as FK506 and cyclosporin A, or knockdown of calcineurin expression by RNA interference (RNAi), exacerbated the Aβ42-induced rough-eye phenotype. Furthermore, sra-overexpressing flies displayed significantly decreased mitochondrial DNA and ATP levels, as well as increased susceptibility to oxidative stress compared to that of control flies. Taken together, our results demonstrating that sra overexpression augments Aβ42 cytotoxicity in Drosophila suggest that DSCR1

  17. The calcineurin inhibitor Sarah (Nebula exacerbates Aβ42 phenotypes in a Drosophila model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Soojin Lee

    2016-03-01

    Full Text Available Expression of the Down syndrome critical region 1 (DSCR1 protein, an inhibitor of the Ca2+-dependent phosphatase calcineurin, is elevated in the brains of individuals with Down syndrome (DS or Alzheimer's disease (AD. Although increased levels of DSCR1 were often observed to be deleterious to neuronal health, its beneficial effects against AD neuropathology have also been reported, and the roles of DSCR1 on the pathogenesis of AD remain controversial. Here, we investigated the role of sarah (sra; also known as nebula, a Drosophila DSCR1 ortholog, in amyloid-β42 (Aβ42-induced neurological phenotypes in Drosophila. We detected sra expression in the mushroom bodies of the fly brain, which are a center for learning and memory in flies. Moreover, similar to humans with AD, Aβ42-expressing flies showed increased Sra levels in the brain, demonstrating that the expression pattern of DSCR1 with regard to AD pathogenesis is conserved in Drosophila. Interestingly, overexpression of sra using the UAS-GAL4 system exacerbated the rough-eye phenotype, decreased survival rates and increased neuronal cell death in Aβ42-expressing flies, without modulating Aβ42 expression. Moreover, neuronal overexpression of sra in combination with Aβ42 dramatically reduced both locomotor activity and the adult lifespan of flies, whereas flies with overexpression of sra alone showed normal climbing ability, albeit with a slightly reduced lifespan. Similarly, treatment with chemical inhibitors of calcineurin, such as FK506 and cyclosporin A, or knockdown of calcineurin expression by RNA interference (RNAi, exacerbated the Aβ42-induced rough-eye phenotype. Furthermore, sra-overexpressing flies displayed significantly decreased mitochondrial DNA and ATP levels, as well as increased susceptibility to oxidative stress compared to that of control flies. Taken together, our results demonstrating that sra overexpression augments Aβ42 cytotoxicity in Drosophila suggest that DSCR1

  18. Investigations on radiosensitive and radioresistant populations of Drosophila melanogaster. Pt. 12

    International Nuclear Information System (INIS)

    Noethel, H.

    1981-01-01

    In earlier studies the recessive genetic factor rar-3 (3 - 49.8) of Drosophila melanogaster had been found to reduce the sensitivity of immature oocytes to the mutagenic action of X-rays. The present work was devoted to an extension of these studies to other germ-cell stages in both male and female and also somatic cells. The results show that, in the female, the effects of rar-3 are manifest in all germ-cell stages including gonia and nurse cells but not in mature oocytes. In the male germ-cell stages, rar-3 was without any measurable effect; maternal-effect studies were likewise negative. Somatic tissues were also unaffected. Furthermore, rar-3 was apparently not active in larval oogonia. It is therefore concluded that the activity of rar-3 is switched on in oogonia during puparium formation or metamorphosis and persists until before the formation of the mature oocyte. (orig.)

  19. Delivery of circulating lipoproteins to specific neurons in the Drosophila brain regulates systemic insulin signaling.

    Science.gov (United States)

    Brankatschk, Marko; Dunst, Sebastian; Nemetschke, Linda; Eaton, Suzanne

    2014-10-02

    The Insulin signaling pathway couples growth, development and lifespan to nutritional conditions. Here, we demonstrate a function for the Drosophila lipoprotein LTP in conveying information about dietary lipid composition to the brain to regulate Insulin signaling. When yeast lipids are present in the diet, free calcium levels rise in Blood Brain Barrier glial cells. This induces transport of LTP across the Blood Brain Barrier by two LDL receptor-related proteins: LRP1 and Megalin. LTP accumulates on specific neurons that connect to cells that produce Insulin-like peptides, and induces their release into the circulation. This increases systemic Insulin signaling and the rate of larval development on yeast-containing food compared with a plant-based food of similar nutritional content.

  20. PICK1 expression in the Drosophila central nervous system primarily occurs in the neuroendocrine system

    DEFF Research Database (Denmark)

    Jansen, Anna M; Nässel, Dick R; Madsen, Kenneth L

    2009-01-01

    in the adult and larval Drosophila central nervous system. PICK1 was found in cell bodies in the subesophageal ganglion, the antennal lobe, the protocerebrum, and the neuroendocrine center pars intercerebralis. The cell types that express PICK1 were identified using GAL4 enhancer trap lines. The PICK1...... (AMPA) receptor subunit GluR2 and the dopamine transporter. PICK1 is strongly implicated in GluR2 trafficking and synaptic plasticity. In mammals, PICK1 has been characterized extensively in cell culture studies. To study PICK1 in an intact system, we characterized PICK1 expression immunohistochemically...... neurons in the neuroendocrine system, which express the transcription factor DIMM and the amidating enzyme peptidylglycine-alpha-hydroxylating monooxygenase (PHM). The PICK1-positive cells include neurosecretory cells that produce the insulin-like peptide dILP2. PICK1 expression in insulin-producing cells...

  1. The Crossroads of Synaptic Growth Signaling, Membrane Traffic and Neurological Disease: Insights from Drosophila.

    Science.gov (United States)

    Deshpande, Mugdha; Rodal, Avital A

    2016-02-01

    Neurons require target-derived autocrine and paracrine growth factors to maintain proper identity, innervation, homeostasis and survival. Neuronal growth factor signaling is highly dependent on membrane traffic, both for the packaging and release of the growth factors themselves, and for regulation of intracellular signaling by their transmembrane receptors. Here, we review recent findings from the Drosophila larval neuromuscular junction (NMJ) that illustrate how specific steps of intracellular traffic and inter-organelle interactions impinge on signaling, particularly in the bone morphogenic protein, Wingless and c-Jun-activated kinase pathways, regulating elaboration and stability of NMJ arbors, construction of synapses and synaptic transmission and homeostasis. These membrane trafficking and signaling pathways have been implicated in human motor neuron diseases including amyotrophic lateral sclerosis and hereditary spastic paraplegia, highlighting their importance for neuronal health and survival. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Larval diet affects mosquito development and permissiveness to Plasmodium infection

    OpenAIRE

    Gendrin, MEM; Christophides; Linenberg, Inbar

    2016-01-01

    The larval stages of malaria vector mosquitoes develop in water pools, feeding mostly on microorganisms and environmental detritus. Richness in the nutrient supply to larvae influences the development and metabolism of larvae and adults. Here, we investigated the effects of larval diet on the development, microbiota content and permissiveness to Plasmodium of Anopheles coluzzii . We tested three fish diets often used to rear mosquitoes in the laboratory, including two pelleted diets, Dr. Clar...

  3. Contributions for larval development optimization of Homarus gammarus

    Directory of Open Access Journals (Sweden)

    Pedro Tiago Fonseca Sá

    2014-06-01

    The seawater rising temperature resulted in a decrease of intermoult period in all larval development stages and at all tested temperatures, ranging from 4.77 (Z1 to 16.5 days (Z3 at 16°C, whereas at 23°C, ranged from 3:02 (Z1 and 9.75 days (Z3. The results obtained are an extremely useful guide for future optimization of protocols on larval development of H. gammarus.

  4. Multiple nuclear and mitochondrial genotyping identifies emperors and large-eye breams (Teleostei : Lethrinidae) from New Caledonia and reveals new large-eye bream species

    OpenAIRE

    Borsa, Philippe; Collet, Adeline; Carassou, Laure; Ponton, Dominique; Chen, W. J.

    2010-01-01

    International audience; Species identification is fundamental to address questions about community ecology, biodiversity, conservation and resource management, at any life history stage. Current studies on fish larval ecology of tropical species are hampered by the lack of reliable and effective tools for identifying larvae at the species level. Emperors and large-eye breams comprise fish species from the perciform fish family Lethrinidae. They inhabit coastal and coral-reef habitats of the t...

  5. Identification of the Drosophila eIF4A gene as a target of the DREF transcription factor

    International Nuclear Information System (INIS)

    Ida, Hiroyuki; Yoshida, Hideki; Nakamura, Kumi; Yamaguchi, Masamitsu

    2007-01-01

    The DNA replication-related element-binding factor (DREF) regulates cell proliferation-related gene expression in Drosophila. We have carried out a genetic screening, taking advantage of the rough eye phenotype of transgenic flies that express full-length DREF in the eye imaginal discs and identified the eukaryotic initiation factor 4A (eIF4A) gene as a dominant suppressor of the DREF-induced rough eye phenotype. The eIF4A gene was here found to carry three DRE sequences, DRE1 (- 40 to - 47), DRE2 (- 48 to - 55), and DRE3 (- 267 to - 274) in its promoter region, these all being important for the eIF4A gene promoter activity in cultured Drosophila Kc cells and in living flies. Knockdown of DREF in Drosophila S2 cells decreased the eIF4A mRNA level and the eIF4A gene promoter activity. Furthermore, specific binding of DREF to genomic regions containing DRE sequences was demonstrated by chromatin immunoprecipitation assays using anti-DREF antibodies. Band mobility shift assays using Kc cell nuclear extracts revealed that DREF could bind to DRE1 and DRE3 sequences in the eIF4A gene promoter in vitro, but not to the DRE2 sequence. The results suggest that the eIF4A gene is under the control of the DREF pathway and DREF is therefore involved in the regulation of protein synthesis

  6. EYE GAZE TRACKING

    DEFF Research Database (Denmark)

    2017-01-01

    This invention relates to a method of performing eye gaze tracking of at least one eye of a user, by determining the position of the center of the eye, said method comprising the steps of: detecting the position of at least three reflections on said eye, transforming said positions to spanning...... a normalized coordinate system spanning a frame of reference, wherein said transformation is performed based on a bilinear transformation or a non linear transformation e.g. a möbius transformation or a homographic transformation, detecting the position of said center of the eye relative to the position...... of said reflections and transforming this position to said normalized coordinate system, tracking the eye gaze by tracking the movement of said eye in said normalized coordinate system. Thereby calibration of a camera, such as knowledge of the exact position and zoom level of the camera, is avoided...

  7. Helminths parasitizing larval fish from Pantanal, Brazil.

    Science.gov (United States)

    Lacerda, A C F; Santin, M; Takemoto, R M; Pavanelli, G C; Bialetzki, A; Tavernari, F C

    2009-03-01

    Fish larvae of 'corvinas' (Pachyurus bonariensis and Plagioscion ternetzi) from Sinhá Mariana Lagoon, Mato Grosso State, were collected from March 2000 to March 2004, in order to determine the parasitic fauna of fishes. Larvae from the two species were parasitized by the same endoparasites: Contracaecum sp. Type 2 (larvae) (Nematoda: Anisakidae) in the mesentery and Neoechinorhynchus (Neoechinorhynchus) paraguayensis (Acanthocephala: Neoechinorhynchidae) in the stomach and the terminal portion of the intestine. Statistical analysis showed that there was a significant positive correlation between the standard length of hosts and the abundance of acanthocephalans and nematodes, and that the prevalence of nematodes presented a significant positive correlation with the standard length of the two species of hosts, indicating the presence of a cumulative process of infection. The present study constitutes the first record of nematodes and acanthocephalans parasitizing larval fish, as well as the first record of endoparasites in fish larvae in Brazil. In addition, it lists a new locality and two species of hosts for Contracaecum sp. Type 2 (larva) and N. (N.) paraguayensis.

  8. Arrested larval development in cattle nematodes.

    Science.gov (United States)

    Armour, J; Duncan, M

    1987-06-01

    Most economically important cattle nematodes are able to arrest their larval development within the host - entering a period of dormancy or hypobiosis. Arrested larvae have a low death rate, and large numbers can accumulate in infected cattle during the grazing season. Because of this, outbreaks of disease caused by such nematodes can occur at times when recent infection with the parasites could not have occurred, for example during winter in temperature northern climates when cattle are normally housed. The capacity to arrest is a heritable trait. It is seen as an adaptation by the parasite to avoid further development to its free-living stages during times when the climate is unsuitable for free-living survival. But levels of arrestment can vary markedly in different regions, in different cattle, and under different management regimes. Climatic factors, previous conditioning, host immune status, and farm management all seem to affect arrestment levels. In this article, James Armour and Mary Duncan review the biological basis of the phenomenon, and discuss the apparently conflicting views on how it is controlled.

  9. Assessment of sampling mortality of larval fishes

    International Nuclear Information System (INIS)

    Cada, G.F.; Hergenrader, G.L.

    1978-01-01

    A study was initiated to assess the mortality of larval fishes that were entrained in the condenser cooling systems of two nuclear power plants on the Missouri River in Nebraska. High mortalities were observed not only in the discharge collections but also in control samples taken upriver from the plants where no entrainment effects were possible. As a result, entrainment mortality generally could not be demonstrated. A technique was developed which indicated that (1) a significant portion of the observed mortality above the power plants was the result of net-induced sampling mortality, and (2) a direct relationship existed between observed mortality and water velocity in the nets when sampling at the control sites, which was described by linear regression equations. When these equations were subsequently used to remove the effects of wide differences in sampling velocities between control and discharge collections, significant entrainment mortality was noted in all cases. The equations were also used to derive estimates of the natural mortality of ichthyoplankton in this portion of the Missouri River

  10. Evaluating the Autonomy of the Drosophila Circadian Clock in Dissociated Neuronal Culture.

    Science.gov (United States)

    Sabado, Virginie; Vienne, Ludovic; Nagoshi, Emi

    2017-01-01

    Circadian behavioral rhythms offer an excellent model to study intricate interactions between the molecular and neuronal mechanisms of behavior. In mammals, pacemaker neurons in the suprachiasmatic nucleus (SCN) generate rhythms cell-autonomously, which are synchronized by the network interactions within the circadian circuit to drive behavioral rhythms. However, whether this principle is universal to circadian systems in animals remains unanswered. Here, we examined the autonomy of the Drosophila circadian clock by monitoring transcriptional and post-transcriptional rhythms of individual clock neurons in dispersed culture with time-lapse microscopy. Expression patterns of the transcriptional reporter show that CLOCK/CYCLE (CLK/CYC)-mediated transcription is constantly active in dissociated clock neurons. In contrast, the expression profile of the post-transcriptional reporter indicates that PERIOD (PER) protein levels fluctuate and ~10% of cells display rhythms in PER levels with periods in the circadian range. Nevertheless, PER and TIM are enriched in the cytoplasm and no periodic PER nuclear accumulation was observed. These results suggest that repression of CLK/CYC-mediated transcription by nuclear PER is impaired, and thus the negative feedback loop of the molecular clock is incomplete in isolated clock neurons. We further demonstrate that, by pharmacological assays using the non-amidated form of neuropeptide pigment-dispersing factor (PDF), which could be specifically secreted from larval LNvs and adult s-LNvs, downstream events of the PDF signaling are partly impaired in dissociated larval clock neurons. Although non-amidated PDF is likely to be less active than the amidated one, these results point out the possibility that alteration in PDF downstream signaling may play a role in dampening of molecular rhythms in isolated clock neurons. Taken together, our results suggest that Drosophila clocks are weak oscillators that need to be in the intact circadian

  11. Evaluating the Autonomy of the Drosophila Circadian Clock in Dissociated Neuronal Culture

    Directory of Open Access Journals (Sweden)

    Virginie Sabado

    2017-10-01

    Full Text Available Circadian behavioral rhythms offer an excellent model to study intricate interactions between the molecular and neuronal mechanisms of behavior. In mammals, pacemaker neurons in the suprachiasmatic nucleus (SCN generate rhythms cell-autonomously, which are synchronized by the network interactions within the circadian circuit to drive behavioral rhythms. However, whether this principle is universal to circadian systems in animals remains unanswered. Here, we examined the autonomy of the Drosophila circadian clock by monitoring transcriptional and post-transcriptional rhythms of individual clock neurons in dispersed culture with time-lapse microscopy. Expression patterns of the transcriptional reporter show that CLOCK/CYCLE (CLK/CYC-mediated transcription is constantly active in dissociated clock neurons. In contrast, the expression profile of the post-transcriptional reporter indicates that PERIOD (PER protein levels fluctuate and ~10% of cells display rhythms in PER levels with periods in the circadian range. Nevertheless, PER and TIM are enriched in the cytoplasm and no periodic PER nuclear accumulation was observed. These results suggest that repression of CLK/CYC-mediated transcription by nuclear PER is impaired, and thus the negative feedback loop of the molecular clock is incomplete in isolated clock neurons. We further demonstrate that, by pharmacological assays using the non-amidated form of neuropeptide pigment-dispersing factor (PDF, which could be specifically secreted from larval LNvs and adult s-LNvs, downstream events of the PDF signaling are partly impaired in dissociated larval clock neurons. Although non-amidated PDF is likely to be less active than the amidated one, these results point out the possibility that alteration in PDF downstream signaling may play a role in dampening of molecular rhythms in isolated clock neurons. Taken together, our results suggest that Drosophila clocks are weak oscillators that need to be in the

  12. Sandeel ( Ammodytes marinus ) larval transport patterns in the North Sea from an individual-based hydrodynamic egg and larval model

    DEFF Research Database (Denmark)

    Christensen, Asbjørn; Jensen, Henrik; Mosegaard, Henrik

    2008-01-01

    We have calculated a time series of larval transport indices for the central and southern North Sea covering 1970-2004, using a combined three-dimensional hydrodynamic and individual-based modelling framework for studying sandeel (Ammodytes marinus) eggs, larval transport, and growth. The egg phase...... is modelled by a stochastic, nonlinear degree-day model describing the extended hatch period. The larval growth model is parameterized by individually back-tracking the local physical environment of larval survivors from their catch location and catch time. Using a detailed map of sandeel habitats...... analyzed, and we introduce novel a scheme to quantify direct and indirect connectivity on equal footings in terms of an interbank transit time scale....

  13. A loss of Pdxk model of Parkinson disease in Drosophila can be suppressed by Buffy.

    Science.gov (United States)

    M'Angale, P Githure; Staveley, Brian E

    2017-06-12

    The identification of a DNA variant in pyridoxal kinase (Pdxk) associated with increased risk to Parkinson disease (PD) gene led us to study the inhibition of this gene in the Dopa decarboxylase (Ddc)-expressing neurons of the well-studied model organism Drosophila melanogaster. The multitude of biological functions attributable to the vitamers catalysed by this kinase reveal an overabundance of possible links to PD, that include dopamine synthesis, antioxidant activity and mitochondrial function. Drosophila possesses a single homologue of Pdxk and we used RNA interference to inhibit the activity of this kinase in the Ddc-Gal4-expressing neurons. We further investigated any association between this enhanced disease risk gene with the established PD model induced by expression of α-synuclein in the same neurons. We relied on the pro-survival functions of Buffy, an anti-apoptotic Bcl-2 homologue, to rescue the Pdxk-induced phenotypes. To drive the expression of Pdxk RNA interference in DA neurons of Drosophila, we used Ddc-Gal4 which drives expression in both dopaminergic and serotonergic neurons, to result in decreased longevity and compromised climbing ability, phenotypes that are strongly associated with Drosophila models of PD. The inhibition of Pdxk in the α-synuclein-induced Drosophila model of PD did not alter longevity and climbing ability of these flies. It has been previously shown that deficiency in vitamers lead to mitochondrial dysfunction and neuronal decay, therefore, co-expression of Pdxk-RNAi with the sole pro-survival Bcl-2 homologue Buffy in the Ddc-Gal4-expressing neurons, resulted in increased survival and a restored climbing ability. In a similar manner, when we inhibited Pdxk in the developing eye using GMR-Gal4, we found that there was a decrease in the number of ommatidia and the disruption of the ommatidial array was more pronounced. When Pdxk was inhibited with the α-synuclein-induced developmental eye defects, the eye phenotypes were

  14. Adaptive genic evolution in the Drosophila genomes

    DEFF Research Database (Denmark)

    Shapiro, Joshua A; Huang, Wei; Zhang, Chenhui

    2007-01-01

    and stable population. In this study, we sequenced 419 genes from 24 lines of Drosophila melanogaster and its close relatives. Together with data from Drosophila simulans, these data reveal the following. (i) Approximately 10% of the loci in regions of normal recombination are much less polymorphic at silent...... sites than expected, hinting at the action of selective sweeps. (ii) The level of polymorphism is negatively correlated with the rate of nonsynonymous divergence across loci. Thus, even under strict neutrality, the ratio of amino acid to silent nucleotide changes (A:S) between Drosophila species...

  15. Drosophila Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules.

    Science.gov (United States)

    Pulipparacharuvil, Suprabha; Akbar, Mohammed Ali; Ray, Sanchali; Sevrioukov, Evgueny A; Haberman, Adam S; Rohrer, Jack; Krämer, Helmut

    2005-08-15

    Mutations that disrupt trafficking to lysosomes and lysosome-related organelles cause multiple diseases, including Hermansky-Pudlak syndrome. The Drosophila eye is a model system for analyzing such mutations. The eye-color genes carnation and deep orange encode two subunits of the Vps-C protein complex required for endosomal trafficking and pigment-granule biogenesis. Here we demonstrate that dVps16A (CG8454) encodes another Vps-C subunit. Biochemical experiments revealed a specific interaction between the dVps16A C-terminus and the Sec1/Munc18 homolog Carnation but not its closest homolog, dVps33B. Instead, dVps33B interacted with a related protein, dVps16B (CG18112). Deep orange bound both Vps16 homologs. Like a deep orange null mutation, eye-specific RNAi-induced knockdown of dVps16A inhibited lysosomal delivery of internalized ligands and interfered with biogenesis of pigment granules. Ubiquitous knockdown of dVps16A was lethal. Together, these findings demonstrate that Drosophila Vps16A is essential for lysosomal trafficking. Furthermore, metazoans have two types of Vps-C complexes with non-redundant functions.

  16. Role of JAK/STAT signaling in neuroepithelial stem cell maintenance and proliferation in the Drosophila optic lobe

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Li, Yonggang; Zhou, Liya; Yue, Haitao [School of Life Sciences, Tsinghua University, Beijing 100084 (China); Luo, Hong, E-mail: luohong@mail.tsinghua.edu.cn [School of Life Sciences, Tsinghua University, Beijing 100084 (China)

    2011-07-15

    Highlights: {yields} JAK/STAT activity is graded in the Drosophila optic lobe neuroepithelium. {yields} Inactivation of JAK signaling causes disintegration of the optic lobe neuroepithelium and depletion of the neuroepithelial stem cells. {yields} JAK pathway overactivation promotes neuroepithelial overgrowth. {yields} Notch signaling acts downstream of JAK/STAT to promote neuroepithelial growth and expansion. -- Abstract: During Drosophila optic lobe development, proliferation and differentiation must be tightly modulated to reach its normal size for proper functioning. The JAK/STAT pathway plays pleiotropic roles in Drosophila development and in the larval brain, has been shown to inhibit medulla neuroblast formation. In this study, we find that JAK/STAT activity is required for the maintenance and proliferation of the neuroepithelial stem cells in the optic lobe. In loss-of-function JAK/STAT mutant brains, the neuroepithelial cells lose epithelial cell characters and differentiate prematurely while ectopic activation of this pathway is sufficient to induce neuroepithelial overgrowth in the optic lobe. We further show that Notch signaling acts downstream of JAK/STAT to control the maintenance and growth of the optic lobe neuroepithelium. Thus, in addition to its role in suppression of neuroblast formation, the JAK/STAT pathway is necessary and sufficient for optic lobe neuroepithelial growth.

  17. An Org-1-Tup transcriptional cascade reveals different types of alary muscles connecting internal organs in Drosophila.

    Science.gov (United States)

    Boukhatmi, Hadi; Schaub, Christoph; Bataillé, Laetitia; Reim, Ingolf; Frendo, Jean-Louis; Frasch, Manfred; Vincent, Alain

    2014-10-01

    The T-box transcription factor Tbx1 and the LIM-homeodomain transcription factor Islet1 are key components in regulatory circuits that generate myogenic and cardiogenic lineage diversity in chordates. We show here that Org-1 and Tup, the Drosophila orthologs of Tbx1 and Islet1, are co-expressed and required for formation of the heart-associated alary muscles (AMs) in the abdomen. The same holds true for lineage-related muscles in the thorax that have not been described previously, which we name thoracic alary-related muscles (TARMs). Lineage analyses identified the progenitor cell for each AM and TARM. Three-dimensional high-resolution analyses indicate that AMs and TARMs connect the exoskeleton to the aorta/heart and to different regions of the midgut, respectively, and surround-specific tracheal branches, pointing to an architectural role in the internal anatomy of the larva. Org-1 controls tup expression in the AM/TARM lineage by direct binding to two regulatory sites within an AM/TARM-specific cis-regulatory module, tupAME. The contributions of Org-1 and Tup to the specification of Drosophila AMs and TARMs provide new insights into the transcriptional control of Drosophila larval muscle diversification and highlight new parallels with gene regulatory networks involved in the specification of cardiopharyngeal mesodermal derivatives in chordates. © 2014. Published by The Company of Biologists Ltd.

  18. Partial venom gland transcriptome of a Drosophila parasitoid wasp, Leptopilina heterotoma, reveals novel and shared bioactive profiles with stinging Hymenoptera

    Science.gov (United States)

    Heavner, Mary E.; Gueguen, Gwenaelle; Rajwani, Roma; Pagan, Pedro E.; Small, Chiyedza; Govind, Shubha

    2013-01-01

    Analysis of natural host-parasite relationships reveals the evolutionary forces that shape the delicate and unique specificity characteristic of such interactions. The accessory long gland-reservoir complex of the wasp Leptopilina heterotoma (Figitidae) produces venom with virus-like particles. Upon delivery, venom components delay host larval development and completely block host immune responses. The host range of this Drosophila endoparasitoid notably includes the highly-studied model organism, Drosophila melanogaster. Categorization of 827 unigenes, using similarity as an indicator of putative homology, reveals that approximately 25% are novel or classified as hypothetical proteins. Most of the remaining unigenes are related to processes involved in signaling, cell cycle, and cell physiology including detoxification, protein biogenesis, and hormone production. Analysis of L. heterotoma’s predicted venom gland proteins demonstrates conservation among endo- and ectoparasitoids within the Apocrita (e.g., this wasp and the jewel wasp Nasonia vitripennis) and stinging aculeates (e.g., the honey bee and ants). Enzyme and KEGG pathway profiling predicts that kinases, esterases, and hydrolases may contribute to venom activity in this unique wasp. To our knowledge, this investigation marks the first functional genomic study for a natural parasitic wasp of Drosophila. Our findings will help explain how L. heterotoma shuts down its hosts’ immunity and shed light on the molecular basis of a natural arms race between these insects. PMID:23688557

  19. Drosophila convoluted/dALS is an essential gene required for tracheal tube morphogenesis and apical matrix organization.

    Science.gov (United States)

    Swanson, Lianna E; Yu, Marcus; Nelson, Kevin S; Laprise, Patrick; Tepass, Ulrich; Beitel, Greg J

    2009-04-01

    Insulin-like growth factors (IGFs) control cell and organism growth through evolutionarily conserved signaling pathways. The mammalian acid-labile subunit (ALS) is a secreted protein that complexes with IGFs to modulate their activity. Recent work has shown that a Drosophila homolog of ALS, dALS, can also complex with and modulate the activity of a Drosophila IGF. Here we report the first mutations in the gene encoding dALS. Unexpectedly, we find that these mutations are allelic to a previously described mutation in convoluted (conv), a gene required for epithelial morphogenesis. In conv mutants, the tubes of the Drosophila tracheal system become abnormally elongated without altering tracheal cell number. conv null mutations cause larval lethality, but do not disrupt several processes required for tracheal tube size control, including septate junction formation, deposition of a lumenal/apical extracellular matrix, and lumenal secretion of Vermiform and Serpentine, two putative matrix-modifying proteins. Clearance of lumenal matrix and subcellular localization of clathrin also appear normal in conv mutants. However, we show that Conv/dALS is required for the dynamic organization of the transient lumenal matrix and normal structure of the cuticle that lines the tracheal lumen. These and other data suggest that the Conv/dALS-dependent tube size control mechanism is distinct from other known processes involved in tracheal tube size regulation. Moreover, we present evidence indicating that Conv/dALS has a novel, IGF-signaling independent function in tracheal morphogenesis.

  20. Artificial Induction of Associative Olfactory Memory by Optogenetic and Thermogenetic Activation of Olfactory Sensory Neurons and Octopaminergic Neurons in Drosophila Larvae.

    Science.gov (United States)

    Honda, Takato; Lee, Chi-Yu; Honjo, Ken; Furukubo-Tokunaga, Katsuo

    2016-01-01

    The larval brain of Drosophila melanogaster provides an excellent system for the study of the neurocircuitry mechanism of memory. Recent development of neurogenetic techniques in fruit flies enables manipulations of neuronal activities in freely behaving animals. This protocol describes detailed steps for artificial induction of olfactory associative memory in Drosophila larvae. In this protocol, the natural reward signal is substituted by thermogenetic activation of octopaminergic neurons in the brain. In parallel, the odor signal is substituted by optogenetic activation of a specific class of olfactory receptor neurons. Association of reward and odor stimuli is achieved with the concomitant application of blue light and heat that leads to activation of both sets of neurons in living transgenic larvae. Given its operational simplicity and robustness, this method could be utilized to further our knowledge on the neurocircuitry mechanism of memory in the fly brain.

  1. Organization of eye bank

    International Nuclear Information System (INIS)

    Reddy, S.C.

    1999-01-01

    Comeal transplantation is the only method of combating the blindness due to corneal opacity caused by infections, malnutrition, trauma and hereditary diseases. Comeal blindness is more prevalent in the developing countries. The availability of the donor cornea, trained ophthalmic surgeons and microsurgery facilities are the key factors in restoring vision in-patients with comeal blindness. The eye bank organization is somewhat similar to that of blood bank. The eye bank should be located in a hospital or a medical centre in which a laboratory may be established for the evaluation and storage of donor tissue. The medical director (Ophthalmologist), technician, secretary and public relation officer are the persons who play an important role in the successful organization of eye bank. The function of the eye bank are procurement, assessment, processing, distribution of donor eyes/corneas, training of technicians/doctors, and conducting research related to storage of donor tissue and corneal transplantation. The necessary infrastructure required for the organization of an eye bank include separate accommodation area for the personnel and the laboratory, telephone, computer, refrigerator, laminar air flow hood. Slitlamp, specular microscope, storage media and equipment, instrument for enucleation of donor eyes, and a motor vehicle. The details of responsibilities of the staff of eye bank, source of donor eyes, suitability of donor material, procurement of the donor cornea, tissue assessment, storage and preservation, distribution of donor tissue, and limitation of eye bank will be discussed at the time of presentation

  2. Influence of the temperature on the early larval development of the Pacific red snapper, Lutjanus peru (Nichols & Murphy, 1922

    Directory of Open Access Journals (Sweden)

    José Antonio Estrada-Godínez

    2015-03-01

    Full Text Available The Pacific red snapper, Lutjanus peru, is a commercially important species throughout its distribution range, making it a good alternative for aquaculture; however, there is few information regarding environmental conditions and their influence on early development of this species. Temperature is one of the main factors affecting embryo and larval development in marine fishes. In this paper, the effects of different temperatures upon hatching rate, growth, consumption of yolk sac and oil droplet and the formation of the digestive system and eye pigmentation were evaluated in larvae of this species under experimental conditions. Eggs incubated between 20 and 32°C showed hatching rates higher than 90%. However, larvae maintained at 26°C showed significantly larger notochord length and were the first to complete the pigmentation of the eyes and the formation of the digestive system when still possessing enough reserves in the yolk sac. Therefore, according to the results obtained, it is recommended that the incubation of eggs and larval rearing in Pacific red snapper takes place between 25 and 26°C.

  3. Studies on Drosophila radiosensitivity strains

    International Nuclear Information System (INIS)

    Varentsova, E.R.; Sharygin, V.I.; Khromykh, Yu.U.

    1985-01-01

    Fertility of radiosensitive mutant drosophila female strain rad (2) 201 61 after irradiation and frequency of dominant lethal mutations (DLM), induced by γ-radiation for 0-5 h and 5-7 days, are investigated. It is shown, that oocytes of the mutant strain are more radiosensitive as compared with cells of mongrel flies as to criterion of DLM appearance over the period of maturing. Early oocytes of stages 2-7 are the most sensitive, i.e. at the stages, corresponding to the manifestation of previously established recombination-defective properties of mutations rad (2) 201 61 . It is also sown, that doses of γ-rays, exceeding 10 Gy produce a strong sterilizing effect on mutant females due to destruction and resorption of egg chambers, irradiated at the stages of previtellogenetic growth of oocytes. In females, carrying mutation of radiosensitivity there is no direct correlation betwen sensitivity of oocytes proper to DLM induction and sensitivity of egg folleicles to resorbing effect of γ-rays. The ways of possible involvement of mutant locus studied into genetic processes in various specialized cells of drosophila

  4. EyeMusic: Making Music with the Eyes

    OpenAIRE

    Hornof, Anthony J.; Sato, Linda

    2004-01-01

    Though musical performers routinely use eye movements to communicate with each other during musical performances, very few performers or composers have used eye tracking devices to direct musical compositions and performances. EyeMusic is a system that uses eye movements as an input to electronic music compositions. The eye movements can directly control the music, or the music can respond to the eyes moving around a visual scene. EyeMusic is implemented so that any composer using established...

  5. Kinesin Khc-73/KIF13B modulates retrograde BMP signaling by influencing endosomal dynamics at the Drosophila neuromuscular junction.

    Science.gov (United States)

    Liao, Edward H; Gray, Lindsay; Tsurudome, Kazuya; El-Mounzer, Wassim; Elazzouzi, Fatima; Baim, Christopher; Farzin, Sarah; Calderon, Mario R; Kauwe, Grant; Haghighi, A Pejmun

    2018-01-01

    Retrograde signaling is essential for neuronal growth, function and survival; however, we know little about how signaling endosomes might be directed from synaptic terminals onto retrograde axonal pathways. We have identified Khc-73, a plus-end directed microtubule motor protein, as a regulator of sorting of endosomes in Drosophila larval motor neurons. The number of synaptic boutons and the amount of neurotransmitter release at the Khc-73 mutant larval neuromuscular junction (NMJ) are normal, but we find a significant decrease in the number of presynaptic release sites. This defect in Khc-73 mutant larvae can be genetically enhanced by a partial genetic loss of Bone Morphogenic Protein (BMP) signaling or suppressed by activation of BMP signaling in motoneurons. Consistently, activation of BMP signaling that normally enhances the accumulation of phosphorylated form of BMP transcription factor Mad in the nuclei, can be suppressed by genetic removal of Khc-73. Using a number of assays including live imaging in larval motor neurons, we show that loss of Khc-73 curbs the ability of retrograde-bound endosomes to leave the synaptic area and join the retrograde axonal pathway. Our findings identify Khc-73 as a regulator of endosomal traffic at the synapse and modulator of retrograde BMP signaling in motoneurons.

  6. FMAj: a tool for high content analysis of muscle dynamics in Drosophila metamorphosis

    Science.gov (United States)

    2014-01-01

    Background During metamorphosis in Drosophila melanogaster, larval muscles undergo two different developmental fates; one population is removed by cell death, while the other persistent subset undergoes morphological remodeling and survives to adulthood. Thanks to the ability to perform live imaging of muscle development in transparent pupae and the power of genetics, metamorphosis in Drosophila can be used as a model to study the regulation of skeletal muscle mass. However, time-lapse microscopy generates sizeable image data that require new tools for high throughput image analysis. Results We performed targeted gene perturbation in muscles and acquired 3D time-series images of muscles in metamorphosis using laser scanning confocal microscopy. To quantify the phenotypic effects of gene perturbations, we designed the Fly Muscle Analysis tool (FMAj) which is based on the ImageJ and MySQL frameworks for image processing and data storage, respectively. The image analysis pipeline of FMAj contains three modules. The first module assists in adding annotations to time-lapse datasets, such as genotypes, experimental parameters and temporal reference points, which are used to compare different datasets. The second module performs segmentation and feature extraction of muscle cells and nuclei. Users can provide annotations to the detected objects, such as muscle identities and anatomical information. The third module performs comparative quantitative analysis of muscle phenotypes. We applied our tool to the phenotypic characterization of two atrophy related genes that were silenced by RNA interference. Reduction of Drosophila Tor (Target of Rapamycin) expression resulted in enhanced atrophy compared to control, while inhibition of the autophagy factor Atg9 caused suppression of atrophy and enlarged muscle fibers of abnormal morphology. FMAj enabled us to monitor the progression of atrophic and hypertrophic phenotypes of individual muscles throughout metamorphosis

  7. FMAj: a tool for high content analysis of muscle dynamics in Drosophila metamorphosis.

    Science.gov (United States)

    Kuleesha, Yadav; Puah, Wee Choo; Lin, Feng; Wasser, Martin

    2014-01-01

    During metamorphosis in Drosophila melanogaster, larval muscles undergo two different developmental fates; one population is removed by cell death, while the other persistent subset undergoes morphological remodeling and survives to adulthood. Thanks to the ability to perform live imaging of muscle development in transparent pupae and the power of genetics, metamorphosis in Drosophila can be used as a model to study the regulation of skeletal muscle mass. However, time-lapse microscopy generates sizeable image data that require new tools for high throughput image analysis. We performed targeted gene perturbation in muscles and acquired 3D time-series images of muscles in metamorphosis using laser scanning confocal microscopy. To quantify the phenotypic effects of gene perturbations, we designed the Fly Muscle Analysis tool (FMAj) which is based on the ImageJ and MySQL frameworks for image processing and data storage, respectively. The image analysis pipeline of FMAj contains three modules. The first module assists in adding annotations to time-lapse datasets, such as genotypes, experimental parameters and temporal reference points, which are used to compare different datasets. The second module performs segmentation and feature extraction of muscle cells and nuclei. Users can provide annotations to the detected objects, such as muscle identities and anatomical information. The third module performs comparative quantitative analysis of muscle phenotypes. We applied our tool to the phenotypic characterization of two atrophy related genes that were silenced by RNA interference. Reduction of Drosophila Tor (Target of Rapamycin) expression resulted in enhanced atrophy compared to control, while inhibition of the autophagy factor Atg9 caused suppression of atrophy and enlarged muscle fibers of abnormal morphology. FMAj enabled us to monitor the progression of atrophic and hypertrophic phenotypes of individual muscles throughout metamorphosis. We designed a new tool to

  8. Dose-dependent effect of silver nanoparticles (AgNPs on fertility and survival of Drosophila: An in-vivo study.

    Directory of Open Access Journals (Sweden)

    Akanksha Raj

    Full Text Available Silver nanoparticles (AgNPs containing consumer products have been proliferating in the market due to its unique antimicrobial property, however, lack of in-depth knowledge about their potential effect on human health in a longer run is of great concern. Therefore, we investigated dose-dependent in vivo effect of AgNPs using Drosophila as a model system. Drosophila, a genetically tractable organism with distinct developmental stages, short life cycle and significant homology with human serves as an ideal organism to study nanomaterial-mediated toxicity. Our studies suggest that ingestion of AgNPs in Drosophila during adult stage for short and long duration significantly affects egg laying capability along with impaired growth of ovary. Additionally, dietary intake of AgNPs from larval stage has more deleterious effects that result in reduced survival, longevity, ovary size and egg laying capability at a further lower dosage. Interestingly, the trans-generational effect of AgNPs was also observed without feeding progeny with AgNPs, thereby suggesting its impact from previous generation. Our results strongly imply that higher doses of AgNPs and its administration early during development is detrimental to the reproductive health and survival of Drosophila that follows in generations to come without feeding them to AgNPs.

  9. cGMP-Dependent Protein Kinase Inhibition Extends the Upper Temperature Limit of Stimulus-Evoked Calcium Responses in Motoneuronal Boutons of Drosophila melanogaster Larvae.

    Science.gov (United States)

    Krill, Jennifer L; Dawson-Scully, Ken

    2016-01-01

    While the mammalian brain functions within a very narrow range of oxygen concentrations and temperatures, the fruit fly, Drosophila melanogaster, has employed strategies to deal with a much wider range of acute environmental stressors. The foraging (for) gene encodes the cGMP-dependent protein kinase (PKG), has been shown to regulate thermotolerance in many stress-adapted species, including Drosophila, and could be a potential therapeutic target in the treatment of hyperthermia in mammals. Whereas previous thermotolerance studies have looked at the effects of PKG variation on Drosophila behavior or excitatory postsynaptic potentials at the neuromuscular junction (NMJ), little is known about PKG effects on presynaptic mechanisms. In this study, we characterize presynaptic calcium ([Ca2+]i) dynamics at the Drosophila larval NMJ to determine the effects of high temperature stress on synaptic transmission. We investigated the neuroprotective role of PKG modulation both genetically using RNA interference (RNAi), and pharmacologically, to determine if and how PKG affects presynaptic [Ca2+]i dynamics during hyperthermia. We found that PKG activity modulates presynaptic neuronal Ca2+ responses during acute hyperthermia, where PKG activation makes neurons more sensitive to temperature-induced failure of Ca2+ flux and PKG inhibition confers thermotolerance and maintains normal Ca2+ dynamics under the same conditions. Targeted motoneuronal knockdown of PKG using RNAi demonstrated that decreased PKG expression was sufficient to confer thermoprotection. These results demonstrate that the PKG pathway regulates presynaptic motoneuronal Ca2+ signaling to influence thermotolerance of presynaptic function during acute hyperthermia.

  10. L(3)mbt and the LINT complex safeguard cellular identity in the Drosophila ovary.

    Science.gov (United States)

    Coux, Rémi-Xavier; Teixeira, Felipe Karam; Lehmann, Ruth

    2018-04-04

    Maintenance of cellular identity is essential for tissue development and homeostasis. At the molecular level, cell identity is determined by the coordinated activation and repression of defined sets of genes. The tumor suppressor L(3)mbt has been shown to secure cellular identity in Drosophila larval brains by repressing germline-specific genes. Here, we interrogate the temporal and spatial requirements for L(3)mbt in the Drosophila ovary, and show that it safeguards the integrity of both somatic and germline tissues. l(3)mbt mutant ovaries exhibit multiple developmental defects, which we find to be largely caused by the inappropriate expression of a single gene, nanos , a key regulator of germline fate, in the somatic ovarian cells. In the female germline, we find that L(3)mbt represses testis-specific and neuronal genes. At the molecular level, we show that L(3)mbt function in the ovary is mediated through its co-factor Lint-1 but independently of the dREAM complex. Together, our work uncovers a more complex role for L(3)mbt than previously understood and demonstrates that L(3)mbt secures tissue identity by preventing the simultaneous expression of original identity markers and tissue-specific misexpression signatures. © 2018. Published by The Company of Biologists Ltd.

  11. Ten-a affects the fusion of central complex primordia in Drosophila.

    Directory of Open Access Journals (Sweden)

    Xuebo Cheng

    Full Text Available The central complex of Drosophila melanogaster plays important functions in various behaviors, such as visual and olfactory memory, visual orientation, sleep, and movement control. However little is known about the genes regulating the development of the central complex. Here we report that a mutant gene affecting central complex morphology, cbd (central brain defect, was mapped to ten-a, a type II trans-membrane protein coding gene. Down-regulation of ten-a in pan-neural cells contributed to abnormal morphology of central complex. Over-expression of ten-a by C767-Gal4 was able to partially restore the abnormal central complex morphology in the cbd mutant. Tracking the development of FB primordia revealed that C767-Gal4 labeled interhemispheric junction that separated fan-shaped body precursors at larval stage withdrew to allow the fusion of the precursors. While the C767-Gal4 labeled structure did not withdraw properly and detached from FB primordia, the two fan-shaped body precursors failed to fuse in the cbd mutant. We propose that the withdrawal of C767-Gal4 labeled structure is related to the formation of the fan-shaped body. Our result revealed the function of ten-a in central brain development, and possible cellular mechanism underlying Drosophila fan-shaped body formation.

  12. Drosophila TRF2 and TAF9 regulate lipid droplet size and phospholipid fatty acid composition.

    Science.gov (United States)

    Fan, Wei; Lam, Sin Man; Xin, Jingxue; Yang, Xiao; Liu, Zhonghua; Liu, Yuan; Wang, Yong; Shui, Guanghou; Huang, Xun

    2017-03-01

    The general transcription factor TBP (TATA-box binding protein) and its associated factors (TAFs) together form the TFIID complex, which directs transcription initiation. Through RNAi and mutant analysis, we identified a specific TBP family protein, TRF2, and a set of TAFs that regulate lipid droplet (LD) size in the Drosophila larval fat body. Among the three Drosophila TBP genes, trf2, tbp and trf1, only loss of function of trf2 results in increased LD size. Moreover, TRF2 and TAF9 regulate fatty acid composition of several classes of phospholipids. Through RNA profiling, we found that TRF2 and TAF9 affects the transcription of a common set of genes, including peroxisomal fatty acid β-oxidation-related genes that affect phospholipid fatty acid composition. We also found that knockdown of several TRF2 and TAF9 target genes results in large LDs, a phenotype which is similar to that of trf2 mutants. Together, these findings provide new insights into the specific role of the general transcription machinery in lipid homeostasis.

  13. Dying cells protect survivors from radiation-induced cell death in Drosophila.

    Directory of Open Access Journals (Sweden)

    Amber Bilak

    2014-03-01

    Full Text Available We report a phenomenon wherein induction of cell death by a variety of means in wing imaginal discs of Drosophila larvae resulted in the activation of an anti-apoptotic microRNA, bantam. Cells in the vicinity of dying cells also become harder to kill by ionizing radiation (IR-induced apoptosis. Both ban activation and increased protection from IR required receptor tyrosine kinase Tie, which we identified in a genetic screen for modifiers of ban. tie mutants were hypersensitive to radiation, and radiation sensitivity of tie mutants was rescued by increased ban gene dosage. We propose that dying cells activate ban in surviving cells through Tie to make the latter cells harder to kill, thereby preserving tissues and ensuring organism survival. The protective effect we report differs from classical radiation bystander effect in which neighbors of irradiated cells become more prone to death. The protective effect also differs from the previously described effect of dying cells that results in proliferation of nearby cells in Drosophila larval discs. If conserved in mammals, a phenomenon in which dying cells make the rest harder to kill by IR could have implications for treatments that involve the sequential use of cytotoxic agents and radiation therapy.

  14. A dual function for Deep orange in programmed autophagy in the Drosophila melanogaster fat body

    International Nuclear Information System (INIS)

    Lindmo, Karine; Simonsen, Anne; Brech, Andreas; Finley, Kim; Rusten, Tor Erik; Stenmark, Harald

    2006-01-01

    Lysosomal degradation of cytoplasm by way of autophagy is essential for cellular amino acid homeostasis and for tissue remodeling. In insects such as Drosophila, autophagy is developmentally upregulated in the larval fat body prior to metamorphosis. Here, autophagy is induced by the hormone ecdysone through down-regulation of the autophagy-suppressive phosphoinositide 3-kinase (PI3K) signaling pathway. In yeast, Vps18 and other members of the HOPS complex have been found essential for autophagic degradation. In Drosophila, the Vps18 homologue Deep orange (Dor) has previously been shown to mediate fusion of multivesicular endosomes with lysosomes. A requirement of Dor for ecdysone-mediated chromosome puffing has also been reported. In the present report, we have tested the hypothesis that Dor may control programmed autophagy at the level of ecdysone signaling as well as by mediating autophagosome-to-lysosome fusion. We show that dor mutants are defective in programmed autophagy and provide evidence that autophagy is blocked at two levels. First, PI3K activity was not down-regulated correctly in dor larvae, which correlated with a decrease in ecdysone reporter activity. The down-regulation of PI3K activity was restored by feeding ecdysone to the mutant larvae. Second, neither exogenous ecdysone nor overexpression of PTEN, a silencer of PI3K signaling, restored fusion of autophagosomes with lysosomes in the fat body of dor mutants. These results indicate that Dor controls autophagy indirectly, via ecdysone signaling, as well as directly, via autolysosomal fusion

  15. Altered gene regulation and synaptic morphology in Drosophila learning and memory mutants

    Science.gov (United States)

    Guan, Zhuo; Buhl, Lauren K.; Quinn, William G.; Littleton, J. Troy

    2011-01-01

    Genetic studies in Drosophila have revealed two separable long-term memory pathways defined as anesthesia-resistant memory (ARM) and long-lasting long-term memory (LLTM). ARM is disrupted in radish (rsh) mutants, whereas LLTM requires CREB-dependent protein synthesis. Although the downstream effectors of ARM and LLTM are distinct, pathways leading to these forms of memory may share the cAMP cascade critical for associative learning. Dunce, which encodes a cAMP-specific phosphodiesterase, and rutabaga, which encodes an adenylyl cyclase, both disrupt short-term memory. Amnesiac encodes a pituitary adenylyl cyclase-activating peptide homolog and is required for middle-term memory. Here, we demonstrate that the Radish protein localizes to the cytoplasm and nucleus and is a PKA phosphorylation target in vitro. To characterize how these plasticity pathways may manifest at the synaptic level, we assayed synaptic connectivity and performed an expression analysis to detect altered transcriptional networks in rutabaga, dunce, amnesiac, and radish mutants. All four mutants disrupt specific aspects of synaptic connectivity at larval neuromuscular junctions (NMJs). Genome-wide DNA microarray analysis revealed ∼375 transcripts that are altered in these mutants, suggesting defects in multiple neuronal signaling pathways. In particular, the transcriptional target Lapsyn, which encodes a leucine-rich repeat cell adhesion protein, localizes to synapses and regulates synaptic growth. This analysis provides insights into the Radish-dependent ARM pathway and novel transcriptional targets that may contribute to memory processing in Drosophila. PMID:21422168

  16. Orthodenticle is required for the development of olfactory projection neurons and local interneurons in Drosophila

    Directory of Open Access Journals (Sweden)

    Sonia Sen

    2014-07-01

    Full Text Available The accurate wiring of nervous systems involves precise control over cellular processes like cell division, cell fate specification, and targeting of neurons. The nervous system of Drosophila melanogaster is an excellent model to understand these processes. Drosophila neurons are generated by stem cell like precursors called neuroblasts that are formed and specified in a highly stereotypical manner along the neuroectoderm. This stereotypy has been attributed, in part, to the expression and function of transcription factors that act as intrinsic cell fate determinants in the neuroblasts and their progeny during embryogenesis. Here we focus on the lateral neuroblast lineage, ALl1, of the antennal lobe and show that the transcription factor-encoding cephalic gap gene orthodenticle is required in this lineage during postembryonic brain development. We use immunolabelling to demonstrate that Otd is expressed in the neuroblast of this lineage during postembryonic larval stages. Subsequently, we use MARCM clonal mutational methods to show that the majority of the postembryonic neuronal progeny in the ALl1 lineage undergoes apoptosis in the absence of orthodenticle. Moreover, we demonstrate that the neurons that survive in the orthodenticle loss-of-function condition display severe targeting defects in both the proximal (dendritic and distal (axonal neurites. These findings indicate that the cephalic gap gene orthodenticle acts as an important intrinsic determinant in the ALl1 neuroblast lineage and, hence, could be a member of a putative combinatorial code involved in specifying the fate and identity of cells in this lineage.

  17. Signalling pathways involved in adult heart formation revealed by gene expression profiling in Drosophila.

    Directory of Open Access Journals (Sweden)

    Bruno Zeitouni

    2007-10-01

    Full Text Available Drosophila provides a powerful system for defining the complex genetic programs that drive organogenesis. Under control of the steroid hormone ecdysone, the adult heart in Drosophila forms during metamorphosis by a remodelling of the larval cardiac organ. Here, we evaluated the extent to which transcriptional signatures revealed by genomic approaches can provide new insights into the molecular pathways that underlie heart organogenesis. Whole-genome expression profiling at eight successive time-points covering adult heart formation revealed a highly dynamic temporal map of gene expression through 13 transcript clusters with distinct expression kinetics. A functional atlas of the transcriptome profile strikingly points to the genomic transcriptional response of the ecdysone cascade, and a sharp regulation of key components belonging to a few evolutionarily conserved signalling pathways. A reverse genetic analysis provided evidence that these specific signalling pathways are involved in discrete steps of adult heart formation. In particular, the Wnt signalling pathway is shown to participate in inflow tract and cardiomyocyte differentiation, while activation of the PDGF-VEGF pathway is required for cardiac valve formation. Thus, a detailed temporal map of gene expression can reveal signalling pathways responsible for specific developmental programs and provides here substantial grasp into heart formation.

  18. Drosophila Cbp53E Regulates Axon Growth at the Neuromuscular Junction.

    Directory of Open Access Journals (Sweden)

    Kimberly R Hagel

    Full Text Available Calcium is a primary second messenger in all cells that functions in processes ranging from cellular proliferation to synaptic transmission. Proper regulation of calcium is achieved through numerous mechanisms involving channels, sensors, and buffers notably containing one or more EF-hand calcium binding domains. The Drosophila genome encodes only a single 6 EF-hand domain containing protein, Cbp53E, which is likely the prototypic member of a small family of related mammalian proteins that act as calcium buffers and calcium sensors. Like the mammalian homologs, Cbp53E is broadly though discretely expressed throughout the nervous system. Despite the importance of calcium in neuronal function and growth, nothing is known about Cbp53E's function in neuronal development. To address this deficiency, we generated novel null alleles of Drosophila Cbp53E and examined neuronal development at the well-characterized larval neuromuscular junction. Loss of Cbp53E resulted in increases in axonal branching at both peptidergic and glutamatergic neuronal terminals. This overgrowth could be completely rescued by expression of exogenous Cbp53E. Overexpression of Cbp53E, however, only affected the growth of peptidergic neuronal processes. These findings indicate that Cbp53E plays a significant role in neuronal growth and suggest that it may function in both local synaptic and global cellular mechanisms.

  19. Functional Analysis of Drosophila NF1

    National Research Council Canada - National Science Library

    Bernards, Andre

    2005-01-01

    ...) for Ras, yet homozygous loss of a highly conserved Drosophila NF1 ortholog results in several phenotypes that are insensitive to manipulating Ras signal transduction, but rescued by increasing...

  20. The Drosophila bipectinata species complex: phylogenetic ...

    Indian Academy of Sciences (India)

    PARUL BANERJEE

    c Indian Academy of Sciences. RESEARCH ARTICLE. The Drosophila bipectinata species complex: phylogenetic relationship among different members based on chromosomal variations. PARUL BANERJEE and BASHISTH N. SINGH. ∗. Genetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi ...

  1. Drosophila melanogaster gene expression changes after spaceflight.

    Data.gov (United States)

    National Aeronautics and Space Administration — Gene expression levels were determined in 3rd instar and adult Drosophila melanogaster reared during spaceflight to elucidate the genetic and molecular mechanisms...

  2. Ecdysteroid receptors in Drosophila melanogaster adult females

    Science.gov (United States)

    Ecdysteroid receptors were identified and partially characterized from total cell extracts of whole animals and dissected tissues from Drosophila melanogaster adult females. Binding studies indicated the presence of two ecdysteroid binding components having high affinity and specificity consistent w...

  3. p53- and ERK7-dependent ribosome surveillance response regulates Drosophila insulin-like peptide secretion.

    Directory of Open Access Journals (Sweden)

    Kiran Hasygar

    2014-11-01

    Full Text Available Insulin-like signalling is a conserved mechanism that coordinates animal growth and metabolism with nutrient status. In Drosophila, insulin-producing median neurosecretory cells (IPCs regulate larval growth by secreting insulin-like peptides (dILPs in a diet-dependent manner. Previous studies have shown that nutrition affects dILP secretion through humoral signals derived from the fat body. Here we uncover a novel mechanism that operates cell autonomously in the IPCs to regulate dILP secretion. We observed that impairment of ribosome biogenesis specifically in the IPCs strongly inhibits dILP secretion, which consequently leads to reduced body size and a delay in larval development. This response is dependent on p53, a known surveillance factor for ribosome biogenesis. A downstream effector of this growth inhibitory response is an atypical MAP kinase ERK7 (ERK8/MAPK15, which is upregulated in the IPCs following impaired ribosome biogenesis as well as starvation. We show that ERK7 is sufficient and essential to inhibit dILP secretion upon impaired ribosome biogenesis, and it acts epistatically to p53. Moreover, we provide evidence that p53 and ERK7 contribute to the inhibition of dILP secretion upon starvation. Thus, we conclude that a cell autonomous ribosome surveillance response, which leads to upregulation of ERK7, inhibits dILP secretion to impede tissue growth under limiting dietary conditions.

  4. A pair of pharyngeal gustatory receptor neurons regulates caffeine-dependent ingestion in Drosophila larvae

    Directory of Open Access Journals (Sweden)

    Jaekyun Choi

    2016-07-01

    Full Text Available The sense of taste is an essential chemosensory modality that enables animals to identify appropriate food sources and control feeding behavior. In particular, the recognition of bitter taste prevents animals from feeding on harmful substances. Feeding is a complex behavior comprised of multiple steps, and food quality is continuously assessed. We here examined the role of pharyngeal gustatory organs in ingestion behavior. As a first step, we constructed a gustatory receptor-to-neuron map of the larval pharyngeal sense organs, and examined corresponding gustatory receptor neuron projections in the larval brain. Out of 22 candidate bitter compounds, we found 14 bitter compounds that elicit inhibition of ingestion in a dose-dependent manner. We provide evidence that certain pharyngeal gustatory receptor neurons are necessary and sufficient for the ingestion response of larvae to caffeine. Additionally, we show that a specific pair of pharyngeal gustatory receptor neurons, DP1, responds to caffeine by calcium imaging. In this study we show that a specific pair of gustatory receptor neurons in the pharyngeal sense organs coordinates caffeine sensing with regulation of behavioral responses such as ingestion. Our results indicate that in Drosophila larvae, the pharyngeal gustatory receptor neurons have a major role in sensing food palatability to regulate ingestion behavior. The pharyngeal sense organs are prime candidates to influence ingestion due to their position in the pharynx, and they may act as first level sensors of ingested food.

  5. Yorkie regulates epidermal wound healing in Drosophila larvae independently of cell proliferation and apoptosis.

    Science.gov (United States)

    Tsai, Chang-Ru; Anderson, Aimee E; Burra, Sirisha; Jo, Juyeon; Galko, Michael J

    2017-07-01

    Yorkie (Yki), the transcriptional co-activator of the Hippo signaling pathway, has well-characterized roles in balancing apoptosis and cell division during organ growth control. Yki is also required in diverse tissue regenerative contexts. In most cases this requirement reflects its well-characterized roles in balancing apoptosis and cell division. Whether Yki has repair functions outside of the control of cell proliferation, death, and growth is not clear. Here we show that Yki and Scalloped (Sd) are required for epidermal wound closure in the Drosophila larval epidermis. Using a GFP-tagged Yki transgene we show that Yki transiently translocates to some epidermal nuclei upon wounding. Genetic analysis strongly suggests that Yki interacts with the known wound healing pathway, Jun N-terminal kinase (JNK), but not with Platelet Derived Growth Factor/Vascular-Endothelial Growth Factor receptor (Pvr). Yki likely acts downstream of or parallel to JNK signaling and does not appear to regulate either proliferation or apoptosis in the larval epidermis during wound repair. Analysis of actin structures after wounding suggests that Yki and Sd promote wound closure through actin regulation. In sum, we found that Yki regulates an epithelial tissue repair process independently of its previously documented roles in balancing proliferation and apoptosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A role for the adult fat body in Drosophila male courtship behavior.

    Directory of Open Access Journals (Sweden)

    Anna A Lazareva

    2007-01-01

    Full Text Available Mating behavior in Drosophila depends critically on the sexual identity of specific regions in the brain, but several studies have identified courtship genes that express products only outside the nervous system. Although these genes are each active in a variety of non-neuronal cell types, they are all prominently expressed in the adult fat body, suggesting an important role for this tissue in behavior. To test its role in male courtship, fat body was feminized using the highly specific Larval serum protein promoter. We report here that the specific feminization of this tissue strongly reduces the competence of males to perform courtship. This effect is limited to the fat body of sexually mature adults as the feminization of larval fat body that normally persists in young adults does not affect mating. We propose that feminization of fat body affects the synthesis of male-specific secreted circulating proteins that influence the central nervous system. In support of this idea, we demonstrate that Takeout, a protein known to influence mating, is present in the hemolymph of adult males but not females and acts as a secreted protein.

  7. γ-glutamyl transpeptidase 1 specifically suppresses green-light avoidance via GABAA receptors in Drosophila.

    Science.gov (United States)

    Liu, Jiangqu; Gong, Zhefeng; Liu, Li

    2014-08-01

    Drosophila larvae innately show light avoidance behavior. Compared with robust blue-light avoidance, larvae exhibit relatively weaker green-light responses. In our previous screening for genes involved in larval light avoidance, compared with control w(1118) larvae, larvae with γ-glutamyl transpeptidase 1 (Ggt-1) knockdown or Ggt-1 mutation were found to exhibit higher percentage of green-light avoidance which was mediated by Rhodopsin6 (Rh6) photoreceptors. However, their responses to blue light did not change significantly. By adjusting the expression level of Ggt-1 in different tissues, we found that Ggt-1 in malpighian tubules was both necessary and sufficient for green-light avoidance. Our results showed that glutamate levels were lower in Ggt-1 null mutants compared with controls. Feeding Ggt-1 null mutants glutamate can normalize green-light avoidance, indicating that high glutamate concentrations suppressed larval green-light avoidance. However, rather than directly, glutamate affected green-light avoidance indirectly through GABA, the level of which was also lower in Ggt-1 mutants compared with controls. Mutants in glutamate decarboxylase 1, which encodes GABA synthase, and knockdown lines of the GABAA receptor, both exhibit elevated levels of green-light avoidance. Thus, our results elucidate the neurobiological mechanisms mediating green-light avoidance, which was inhibited in wild-type larvae. © 2014 International Society for Neurochemistry.

  8. The use of a mutationally unstable X-chromosome in Drosophila melanogaster for mutagenicity testing

    International Nuclear Information System (INIS)

    Rasmuson, B.; Svahlin, H.; Rasmuson, A.; Montell, I.; Olofsson, H.

    1978-01-01

    Somatic eye-colour mutations in an unstable genetic system, caused by a transposable element in the white locus of the X-chromosome in Drosophila melanogaster, is suggested as an assay system for mutagenicity testing. The system is evaluated by comparison with a corresponding system in a stable X-chromosome. Its sensitivity is confirmed with X-ray and EMS treatment, and it is found to be confined to the specific segment of the X-chromosome where the transposable element is localized. (Auth.)

  9. Biochemical and genetic analysis of the Drk SH2/SH3 adaptor protein of Drosophila.

    OpenAIRE

    Raabe, T; Olivier, J P; Dickson, B J; Liu, X; Gish, G D; Pawson, T; Hafen, E

    1995-01-01

    The Drk SH3-SH2-SH3 adaptor protein has been genetically identified in a screen for rate-limiting components acting downstream of the Sevenless (Sev) receptor tyrosine kinase in the developing eye of Drosophila. It provides a link between the activated Sev receptor and Sos, a guanine nucleotide release factor that activates Ras1. We have used a combined biochemical and genetic approach to study the interactions between Sev, Drk and Sos. We show that Tyr2546 in the cytoplasmic tail of Sev is r...

  10. Male Drosophila melanogaster learn to prefer an arbitrary trait associated with female mating status

    DEFF Research Database (Denmark)

    Verzijden, Machteld Nicolette; Abbott, Jessica K.; Philipsborn, Anne von

    2015-01-01

    Although males are generally less discriminating than females when it comes to choosing a mate, they still benefit from distinguishing between mates that are receptive to courtship and those that are not, in order to avoid wasting time and energy. It is known that males of Drosophila melanogaster...... color, but that males which were trained with sexually receptive females of a given eye color showed a preference for that color during a standard binary choice experiment. The learned cue was indeed likely to be truly visual, since the preference disappeared when the binary choice phase...

  11. Mapping of gene mutations in drosophila melanogaster

    OpenAIRE

    Halvorsen, Charlotte Marie

    2004-01-01

    In this experiment, mutant genes of a given unknown mutant strain of Drosophila melanogaster were mapped to specific chromosomes. Drosophila melanogaster, commonly known as the fruit fly, was the appropriate choice for the organism to use in this specific experiment because of its relatively rapid life cycle of 10-14 days and because of the small amount of space and food neccessary for maintaining thousands of flies. The D. Melanogaster unknown strain specifically used in this experiment wa...

  12. Quantification of vestibular-induced eye movements in zebrafish larvae

    Directory of Open Access Journals (Sweden)

    Mo Weike

    2010-09-01

    Full Text Available Abstract Background Vestibular reflexes coordinate movements or sensory input with changes in body or head position. Vestibular-evoked responses that involve the extraocular muscles include the vestibulo-ocular reflex (VOR, a compensatory eye movement to stabilize retinal images. Although an angular VOR attributable to semicircular canal stimulation was reported to be absent in free-swimming zebrafish larvae, recent studies reveal that vestibular-induced eye movements can be evoked in zebrafish larvae by both static tilts and dynamic rotations that tilt the head with respect to gravity. Results We have determined herein the basis of sensitivity of the larval eye movements with respect to vestibular stimulus, developmental stage, and sensory receptors of the inner ear. For our experiments, video recordings of larvae rotated sinusoidally at 0.25 Hz were analyzed to quantitate eye movements under infrared illumination. We observed a robust response that appeared as early as 72 hours post fertilization (hpf, which increased in amplitude over time. Unlike rotation about an earth horizontal axis, rotation about an earth vertical axis at 0.25 Hz did not evoke eye movements. Moreover, vestibular-induced responses were absent in mutant cdh23 larvae and larvae lacking anterior otoliths. Conclusions Our results provide evidence for a functional vestibulo-oculomotor circuit in 72 hpf zebrafish larvae that relies upon sensory input from anterior/utricular otolith organs.

  13. Eye Disease and Development

    DEFF Research Database (Denmark)

    Andersen, Thomas Barnebeck; Dalgaard, Carl-Johan Lars; Selaya, Pablo

    This research advances the hypothesis that cross-country variation in the historical incidence of eye disease has influenced the current global distribution of per capita income. The theory is that pervasive eye disease diminished the incentive to accumulate skills, thereby delaying the fertility...... transition and the take-off to sustained economic growth. In order to estimate the influence from eye disease incidence empirically, we draw on an important fact from the field of epidemiology: Exposure to solar ultraviolet B radiation (UVB-R) is an underlying determinant of several forms of eye disease...

  14. Inflammation in dry eye.

    Science.gov (United States)

    Stern, Michael E; Pflugfelder, Stephen C

    2004-04-01

    Dry eye is a condition of altered tear composition that results from a diseased or dysfunctional lacrimal functional unit. Evidence suggests that inflammation causes structural alterations and/or functional paralysis of the tear-secreting glands. Changes in tear composition resulting from lacrimal dysfunction, increased evaporation and/or poor clearance have pro-inflammatory effects on the ocular surface. This inflammation is responsible in part for the irritation symptoms, ocular surface epithelial disease, and altered corneal epithelial barrier function in dry eye. Anti-inflammatory therapies for dry eye target one or more of the inflammatory mediators/pathways that have been identified in dry eye.

  15. LASIK eye surgery

    Science.gov (United States)

    ... Assisted In Situ Keratomileusis; Laser vision correction; Nearsightedness - Lasik; Myopia - Lasik ... cornea (curvature) and the length of the eye. LASIK uses an excimer laser (an ultraviolet laser) to ...

  16. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Ophthalmology Education Center Oculofacial Plastic Surgery Center Laser Surgery Education Center Redmond Ethics ... Services Advocacy Foundation About Subspecialties & More Eye ...

  17. Prevention of Eye Injuries

    OpenAIRE

    Pashby, Tom

    1981-01-01

    In Canada 30,000 people are registered as blind; in one third of these, blindness might have been avoided. Prevention is the key to reducing the number of eye injuries and blind eyes. The role of the family physician in early identification of treatable conditions and in the education of patients is discussed, but responsibility for prevention belongs to all physicians. The success of prevention is seen in the great reduction in eye injuries in industry and sports since eye protectors have be...

  18. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Education Center Oculofacial Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ...

  19. Trehalose as an indicator of desiccation stress in Drosophila melanogaster larvae: A potential marker of anhydrobiosis

    Energy Technology Data Exchange (ETDEWEB)

    Thorat, Leena J. [Centre for Advanced Studies, Department of Zoology, University of Pune, Pune 411007 (India); Gaikwad, Sushama M. [Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008 (India); Nath, Bimalendu B., E-mail: bbnath@unipune.ac.in [Centre for Advanced Studies, Department of Zoology, University of Pune, Pune 411007 (India)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer First report confirming anhydrobiosis in Drosophila melanogaster larvae. Black-Right-Pointing-Pointer Trehalose synthesis and accumulation in larvae that hydrolyzed on rehydration. Black-Right-Pointing-Pointer Trehalose synthesis in concert with the enzymes involved in trehalose metabolism. Black-Right-Pointing-Pointer Inhibition of trehalose hydrolysis in presence of a specific trehalase inhibitor. Black-Right-Pointing-Pointer Trehalose proposed as a reliable marker for biomonitoring of climate change studies. -- Abstract: In the current scenario of global climate change, desiccation is considered as one of the major environmental stressors for the biota exposed to altered levels of ambient temperature and humidity. Drosophila melanogaster, a cosmopolitan terrestrial insect has been chosen as a humidity-sensitive bioindicator model for the present study since its habitat undergoes frequent stochastic and/or seasonally aggravated dehydration regimes. We report here for the first time the occurrence of anhydrobiosis in D. melanogaster larvae by subjecting them to desiccation stress under laboratory conditions. Larvae desiccated for ten hours at <5% relative humidity could enter anhydrobiosis and could revive upon rehydration followed by resumption of active metabolism. As revealed by FTIR and HPLC analyzes, our findings strongly indicated the synthesis and accumulation of trehalose in the desiccating larvae. Biochemical measurements pointed out the desiccation-responsive trehalose metabolic pathway that was found to be coordinated in concert with the enzymes trehalose 6-phosphate synthase and trehalase. Further, an inhibitor-based experimental approach using deoxynojirimycin, a specific trehalase inhibitor, demonstrated the pivotal role of trehalose in larval anhydrobiosis of D. melanogaster. We therefore propose trehalose as a potential marker for the assessment of anhydrobiosis in Drosophila. The present findings thus add

  20. Drosophila TRPA1 isoforms detect UV light via photochemical production of H2O2

    Science.gov (United States)

    Guntur, Ananya R.; Gu, Pengyu; Takle, Kendra; Chen, Jingyi; Xiang, Yang; Yang, Chung-Hui

    2015-01-01

    The transient receptor potential A1 (TRPA1) channel is an evolutionarily conserved detector of temperature and irritant chemicals. Here, we show that two specific isoforms of TRPA1 in Drosophila are H2O2 sensitive and that they can detect strong UV light via sensing light-induced production of H2O2. We found that ectopic expression of these H2O2-sensitive Drosophila TRPA1 (dTRPA1) isoforms conferred UV sensitivity to light-insensitive HEK293 cells and Drosophila neurons, whereas expressing the H2O2-insensitive isoform did not. Curiously, when expressed in one specific group of motor neurons in adult flies, the H2O2-sensitive dTRPA1 isoforms were as competent as the blue light-gated channelrhodopsin-2 in triggering motor output in response to light. We found that the corpus cardiacum (CC) cells, a group of neuroendocrine cells that produce the adipokinetic hormone (AKH) in the larval ring gland endogenously express these H2O2-sensitive dTRPA1 isoforms and that they are UV sensitive. Sensitivity of CC cells required dTRPA1 and H2O2 production but not conventional phototransduction molecules. Our results suggest that specific isoforms of dTRPA1 can sense UV light via photochemical production of H2O2. We speculate that UV sensitivity conferred by these isoforms in CC cells may allow young larvae to activate stress response—a function of CC cells—when they encounter strong UV, an aversive stimulus for young larvae. PMID:26443856

  1. High sugar-induced insulin resistance in Drosophila relies on the lipocalin Neural Lazarillo.

    Directory of Open Access Journals (Sweden)

    Matthieu Y Pasco

    Full Text Available In multicellular organisms, insulin/IGF signaling (IIS plays a central role in matching energy needs with uptake and storage, participating in functions as diverse as metabolic homeostasis, growth, reproduction and ageing. In mammals, this pleiotropy of action relies in part on a dichotomy of action of insulin, IGF-I and their respective membrane-bound receptors. In organisms with simpler IIS, this functional separation is questionable. In Drosophila IIS consists of several insulin-like peptides called Dilps, activating a unique membrane receptor and its downstream signaling cascade. During larval development, IIS is involved in metabolic homeostasis and growth. We have used feeding conditions (high sugar diet, HSD that induce an important change in metabolic homeostasis to monitor possible effects on growth. Unexpectedly we observed that HSD-fed animals exhibited severe growth inhibition as a consequence of peripheral Dilp resistance. Dilp-resistant animals present several metabolic disorders similar to those observed in type II diabetes (T2D patients. By exploring the molecular mechanisms involved in Drosophila Dilp resistance, we found a major role for the lipocalin Neural Lazarillo (NLaz, a target of JNK signaling. NLaz expression is strongly increased upon HSD and animals heterozygous for an NLaz null mutation are fully protected from HSD-induced Dilp resistance. NLaz is a secreted protein homologous to the Retinol-Binding Protein 4 involved in the onset of T2D in human and mice. These results indicate that insulin resistance shares common molecular mechanisms in flies and human and that Drosophila could emerge as a powerful genetic system to study some aspects of this complex syndrome.

  2. Trehalose as an indicator of desiccation stress in Drosophila melanogaster larvae: A potential marker of anhydrobiosis

    International Nuclear Information System (INIS)

    Thorat, Leena J.; Gaikwad, Sushama M.; Nath, Bimalendu B.

    2012-01-01

    Highlights: ► First report confirming anhydrobiosis in Drosophila melanogaster larvae. ► Trehalose synthesis and accumulation in larvae that hydrolyzed on rehydration. ► Trehalose synthesis in concert with the enzymes involved in trehalose metabolism. ► Inhibition of trehalose hydrolysis in presence of a specific trehalase inhibitor. ► Trehalose proposed as a reliable marker for biomonitoring of climate change studies. -- Abstract: In the current scenario of global climate change, desiccation is considered as one of the major environmental stressors for the biota exposed to altered levels of ambient temperature and humidity. Drosophila melanogaster, a cosmopolitan terrestrial insect has been chosen as a humidity-sensitive bioindicator model for the present study since its habitat undergoes frequent stochastic and/or seasonally aggravated dehydration regimes. We report here for the first time the occurrence of anhydrobiosis in D. melanogaster larvae by subjecting them to desiccation stress under laboratory conditions. Larvae desiccated for ten hours at <5% relative humidity could enter anhydrobiosis and could revive upon rehydration followed by resumption of active metabolism. As revealed by FTIR and HPLC analyzes, our findings strongly indicated the synthesis and accumulation of trehalose in the desiccating larvae. Biochemical measurements pointed out the desiccation-responsive trehalose metabolic pathway that was found to be coordinated in concert with the enzymes trehalose 6-phosphate synthase and trehalase. Further, an inhibitor-based experimental approach using deoxynojirimycin, a specific trehalase inhibitor, demonstrated the pivotal role of trehalose in larval anhydrobiosis of D. melanogaster. We therefore propose trehalose as a potential marker for the assessment of anhydrobiosis in Drosophila. The present findings thus add to the growing list of novel biochemical markers in specific bioindicator organisms for fulfilling the urgent need of

  3. Tissue- and stage-dependent dosage compensation on the Neo-X chromosome in drosophila pseudoobscura

    KAUST Repository

    Nozawa, Masafumi

    2013-12-03

    Sex chromosome dosage compensation (DC) is widely accepted in various organisms. This concept is mostly supported by comparisons of gene expression between chromosomes and between sexes. However, genes on the X chromosome and autosomes are mostly not homologous, and the average gene expression level on these chromosomes may not be the same even under DC, which complicates comparisons between chromosomes. Many genes with sex-biased expression also make comparisons between sexes difficult. To overcome these issues, we investigated DC by comparing the expression of neo-X-linked genes in Drosophila pseudoobscura with those of their autosomal orthologs in other Drosophila species. The ratio of the former to the latter in males would be 1 under DC, whereas it becomes 0.5 without DC. We found that the ratio was ∼0.85 for adult whole bodies, indicating that the DC is incomplete on the neo-X chromosome in adults as a whole. The ratio (∼0.90) was also significantly less than 1 for adult bodies without gonads, whereas it was ∼1.0 for adult heads. These results indicate that DC varies among tissues. Our sliding-window analysis of the ratio also revealed that the upregulation of neo-X-linked genes in males occurred chromosome wide in all tissues analyzed, indicating global upregulation mechanisms. However, we found that gene functions also affected the levels of DC. Furthermore, most of the genes recently moved to the X were already under DC at the larval stage but not at the adult stage. These results suggest that DC in Drosophila species operates in a tissue/stage-dependent manner. © 2013 The Author 2013. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved.

  4. Metabolome analysis of Drosophila melanogaster during embryogenesis.

    Science.gov (United States)

    An, Phan Nguyen Thuy; Yamaguchi, Masamitsu; Bamba, Takeshi; Fukusaki, Eiichiro

    2014-01-01

    The Drosophila melanogaster embryo has been widely utilized as a model for genetics and developmental biology due to its small size, short generation time, and large brood size. Information on embryonic metabolism during developmental progression is important for further understanding the mechanisms of Drosophila embryogenesis. Therefore, the aim of this study is to assess the changes in embryos' metabolome that occur at different stages of the Drosophila embryonic development. Time course samples of Drosophila embryos were subjected to GC/MS-based metabolome analysis for profiling of low molecular weight hydrophilic metabolites, including sugars, amino acids, and organic acids. The results showed that the metabolic profiles of Drosophila embryo varied during the course of development and there was a strong correlation between the metabolome and different embryonic stages. Using the metabolome information, we were able to establish a prediction model for developmental stages of embryos starting from their high-resolution quantitative metabolite composition. Among the important metabolites revealed from our model, we suggest that different amino acids appear to play distinct roles in different developmental stages and an appropriate balance in trehalose-glucose ratio is crucial to supply the carbohydrate source for the development of Drosophila embryo.

  5. Characterization of Autophagic Responses in Drosophila melanogaster.

    Science.gov (United States)

    Xu, T; Kumar, S; Denton, D

    2017-01-01

    Drosophila is an excellent model system for studying autophagy during animal development due to the availability of genetic reagents and opportunity for in vivo cell biological analysis. The regulation and mechanism of autophagy are highly evolutionarily conserved and the role of autophagy has been characterized during various stages of Drosophila development as well as following starvation. Studies in Drosophila have revealed novel insights into the role of distinct components of the autophagy machinery. This chapter describes protocols for examining autophagy during Drosophila development. A crucial step in the induction of autophagy is the incorporation of Atg8a into the autophagosome. This can be measured as autophagic puncta using live fluorescent imaging, immunostaining, or immunoblot analysis of LC3/Atg8a processing. The level of autophagy can also be examined using other specific components of the autophagy pathway as markers detected by immunofluorescent imaging. Based on the distinct morphology of autophagy, it can also be examined by transmission electron microscopy. In addition, one of the advantages of using Drosophila as a model is the ability to undertake genetic analysis of individual components of the autophagy machinery. Current approaches that can be used to monitor autophagy, including the overall flux and individual steps in Drosophila melanogaster, will be discussed. © 2017 Elsevier Inc. All rights reserved.

  6. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster.

    Science.gov (United States)

    Koštál, Vladimír; Korbelová, Jaroslava; Poupardin, Rodolphe; Moos, Martin; Šimek, Petr

    2016-08-01

    The fruit fly Drosophila melanogaster is an insect of tropical origin. Its larval stage is evolutionarily adapted for rapid growth and development under warm conditions and shows high sensitivity to cold. In this study, we further developed an optimal acclimation and freezing protocol that significantly improves larval freeze tolerance (an ability to survive at -5°C when most of the freezable fraction of water is converted to ice). Using the optimal protocol, freeze survival to adult stage increased from 0.7% to 12.6% in the larvae fed standard diet (agar, sugar, yeast, cornmeal). Next, we fed the larvae diets augmented with 31 different amino compounds, administered in different concentrations, and observed their effects on larval metabolomic composition, viability, rate of development and freeze tolerance. While some diet additives were toxic, others showed positive effects on freeze tolerance. Statistical correlation revealed tight association between high freeze tolerance and high levels of amino compounds involved in arginine and proline metabolism. Proline- and arginine-augmented diets showed the highest potential, improving freeze survival to 42.1% and 50.6%, respectively. Two plausible mechanisms by which high concentrations of proline and arginine might stimulate high freeze tolerance are discussed: (i) proline, probably in combination with trehalose, could reduce partial unfolding of proteins and prevent membrane fusions in the larvae exposed to thermal stress (prior to freezing) or during freeze dehydration; (ii) both arginine and proline are exceptional among amino compounds in their ability to form supramolecular aggregates which probably bind partially unfolded proteins and inhibit their aggregation under increasing freeze dehydration. © 2016. Published by The Company of Biologists Ltd.

  7. Live imaging of muscle histolysis in Drosophila metamorphosis.

    Science.gov (United States)

    Kuleesha, Yadav; Puah, Wee Choo; Wasser, Martin

    2016-05-04

    The contribution of programmed cell death (PCD) to muscle wasting disorders remains a matter of debate. Drosophila melanogaster metamorphosis offers the opportunity to study muscle cell death in the context of development. Using live cell imaging of the abdomen, two groups of larval muscles can be observed, doomed muscles that undergo histolysis and persistent muscles that are remodelled and survive into adulthood. To identify and characterize genes that control the decision between survival and cell death of muscles, we developed a method comprising in vivo imaging, targeted gene perturbation and time-lapse image analysis. Our approach enabled us to study the cytological and temporal aspects of abnormal cell death phenotypes. In a previous genetic screen for genes controlling muscle size and cell death in metamorphosis, we identified gene perturbations that induced cell death of persistent or inhibit histolysis of doomed larval muscles. RNA interference (RNAi) of the genes encoding the helicase Rm62 and the lysosomal Cathepsin-L homolog Cysteine proteinase 1 (Cp1) caused premature cell death of persistent muscle in early and mid-pupation, respectively. Silencing of the transcriptional co-repressor Atrophin inhibited histolysis of doomed muscles. Overexpression of dominant-negative Target of Rapamycin (TOR) delayed the histolysis of a subset of doomed and induced ablation of all persistent muscles. RNAi of AMPKα, which encodes a subunit of the AMPK protein complex that senses AMP and promotes ATP formation, led to loss of attachment and a spherical morphology. None of the perturbations affected the survival of newly formed adult muscles, suggesting that the method is useful to find genes that are crucial for the survival of metabolically challenged muscles, like those undergoing atrophy. The ablation of persistent muscles did not affect eclosion of adult flies. Live imaging is a versatile approach to uncover gene functions that are required for the survival of

  8. Effect of non-nutritive sugars to decrease the survivorship of spotted wing drosophila, Drosophila suzukii

    Science.gov (United States)

    In this study, we investigated the effects of non-nutritive sugars and sugar alcohols on the survivorship of spotted wing drosophila, Drosophila suzukii, and found erythritol and erythrose as potentially toxic to the fly. In a dose-dependent study, erythritol and erythrose significantly reduced fly ...

  9. New record for the invasive Spotted Wing Drosophila, Drosophila suzukii Matsumura (Diptera: Drosophilidae) in Anillaco, Argentina

    Science.gov (United States)

    The invasive Spotted Wing Drosophila (SWD), Drosophila suzukii Matsumura, is reported for the first time in La Rioja, Argentina. This represents a major range expansion for this species. The natural enemies of SWD, Leptopilina clavipes and Ganaspis hookeri were also collected with the SWD at the s...

  10. Effect of Hawthorn on Drosophila Melanogaster Antioxidant-Related ...

    African Journals Online (AJOL)

    Results: The results indicate that hawthorn extract prolonged the life span of Drosophila, with 50 % survival time of 0.8 ... Drosophila's aging gene is highly similar to humans [4,5]. ..... reduces lipid peroxidation in senescence-accelerated mice .

  11. Gustatory Processing in Drosophila melanogaster.

    Science.gov (United States)

    Scott, Kristin

    2018-01-07

    The ability to identify nutrient-rich food and avoid toxic substances is essential for an animal's survival. Although olfaction and vision contribute to food detection, the gustatory system acts as a final checkpoint control for food acceptance or rejection. The vinegar fly Drosophila melanogaster tastes many of the same stimuli as mammals and provides an excellent model system for comparative studies of taste detection. The relative simplicity of the fly brain and behaviors, along with the molecular genetic and functional approaches available in this system, allow the examination of gustatory neural circuits from sensory input to motor output. This review discusses the molecules and cells that detect taste compounds in the periphery and the circuits that process taste information in the brain. These studies are providing insight into how the detection of taste compounds regulates feeding decisions.

  12. Larval dispersal in three coral reef decapod species: Influence of larval duration on the metapopulation structure

    Science.gov (United States)

    Zavala-Hidalgo, Jorge; Allende-Arandía, Eugenia; Hermoso-Salazar, Margarita

    2018-01-01

    Most coral-associated decapod species have non-migratory adult populations and depend on their planktonic larvae for dispersal. This study examined the metapopulation structure of three decapod species with different pelagic larval duration (PLD) from twelve coral reef complexes of the Gulf of Mexico. The dispersion of larvae was analyzed through the use of a realistic numerical simulation of the Gulf of Mexico with the Hybrid Coordinate Ocean Model. To study the transport and dispersion of particles in near-surface waters, a particle-tracking subroutine was run using as input the currents from the model. The simulation consisted of the launch of 100 passive particles (virtual larvae) every 24 hours from each reef throughout five years, and tracked for as long as 210 days. Results indicated that species with a short PLD, Mithraculus sculptus (PLD 8‒13 days), had a weak connection among the reefs, but higher self-recruitment, especially on the narrow western shelf. The species with a longer PLD, Dromia erythropus (28‒30 days), had a stronger connection among neighboring reefs (< 300 km). Finally, the species with an even longer PLD, Stenopus hispidus (123‒210 days), had a wider potential distribution than the other species. Circulation on synoptic, seasonal and interannual scales had differential effects on the larval dispersal of each species. The metapopulation structure of M. sculptus and D. erythropus seemed to combine features of the non-equilibrium and the patchy models, whereas that of S. hispidus presumably fit to a patchy model. These findings support previous observations that indicate that species with longer PLD tend to occupy larger areas than species with short PLD, although recruitment of juveniles to the adult populations will also depend on other factors, such as the availability of suitable habitats and the ability to colonize them. PMID:29558478

  13. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Ophthalmologists Young Ophthalmologists Tools and Services EyeCare America Help IRIS Registry Medicare Physician Payment Meetings and Deadlines ... Ophthalmologists Young Ophthalmologists Tools and Services EyeCare America Help IRIS Registry Medicare Physician Payment Meetings and Deadlines ...

  14. Eye tracking social preferences

    NARCIS (Netherlands)

    Jiang, Ting; Potters, Jan; Funaki, Yukihiko

    We hypothesize that if people are motivated by a particular social preference, then choosing in accordance with this preference will lead to an identifiable pattern of eye movements. We track eye movements while subjects make choices in simple three-person distribution experiments. We characterize

  15. XI. THE WATERING EYE

    African Journals Online (AJOL)

    cause a watering eye; this condition is.called epiphora. Clearly, then, in investigating ... blockage is a common disease in the middle age-groups seen in hospital .... a dry eye, and this is so much worse than a wet one that the procedure is only ...

  16. Dry eye syndrome

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000426.htm Dry eye syndrome To use the sharing features on this page, ... second-hand smoke exposure Cold or allergy medicines Dry eye can also be caused by: Heat or ... Symptoms may include: Blurred vision Burning, itching, ...

  17. What Is Dry Eye?

    Medline Plus

    Full Text Available ... is also when your eyes do not make the right type of tears or tear film . How do tears work? When you blink, a film of tears spreads over the eye. This keeps the eye’s surface smooth and ...

  18. Photorefraction of the Eye

    Science.gov (United States)

    Colicchia, Giuseppe; Wiesner, Hartmut; Zollman, Dean

    2015-01-01

    Photorefraction is a method to easily estimate the refractive state of the eye. The principle of photorefraction involves projecting light into the eye during flash photography and then examining the paths of light that emerge from the pupil after scattering on the back portion of the interior of the eyeball (fundus). We will explain the optical…

  19. Lasik eye surgery - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100206.htm Lasik eye surgery - series—Normal anatomy To use the ... A.M. Editorial team. Related MedlinePlus Health Topics Laser Eye Surgery A.D.A.M., Inc. is accredited by ...

  20. About the Eye

    Medline Plus

    Full Text Available ... luh) is the small, sensitive area of the retina needed for central vision. It contains the fovea. Lens is the clear part of the eye behind the iris that helps to focus light on the retina. It allows the eye to focus on both ...

  1. LASIK Eye Surgery

    Science.gov (United States)

    ... at the front of your eye — to improve vision. Normally, images are clearly focused on the retina in the back of your eye because the ... sharply, light rays focus in front of the retina and blur distant vision. You can see objects that are close fairly ...

  2. About the Eye

    Medline Plus

    Full Text Available ... NIH), the National Eye Institute’s mission is to “conduct and support research, training, health information dissemination, and other programs with respect to blinding eye diseases, visual disorders, mechanisms of visual function, preservation of sight, and ...

  3. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Services EyeCare America Help IRIS Registry Medicare Physician Payment Meetings and Deadlines Museum of Vision Ophthalmology Job ... Services EyeCare America Help IRIS Registry Medicare Physician Payment Meetings and Deadlines Museum of Vision Ophthalmology Job ...

  4. What Is Dry Eye?

    Medline Plus

    Full Text Available ... also when your eyes do not make the right type of tears or tear film . How do tears work? When you blink, a film of tears spreads over the eye. This keeps the eye’s surface smooth and clear. The tear film is important for good vision. The tear film is made of three ...

  5. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Medicare Physician Payment Meetings and Deadlines Museum of Vision Ophthalmology Job Center Our Sites EyeWiki International Society ... Medicare Physician Payment Meetings and Deadlines Museum of Vision Ophthalmology Job Center Our Sites EyeWiki International Society ...

  6. Smoking and Eye Health

    Science.gov (United States)

    ... Patient Stories Español Eye Health / Tips & Prevention Sections Smoking and Eye Disease Leer en Español: El cigarrillo ... By: Brenda Pagan-Duran MD Apr. 27, 2017 Smoking contributes to a number of major health problems, ...

  7. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Payment Meetings and Deadlines Museum of Vision Ophthalmology Job Center Our Sites EyeWiki International Society of Refractive ... Payment Meetings and Deadlines Museum of Vision Ophthalmology Job Center Our Sites EyeWiki International Society of Refractive ...

  8. About the Eye

    Medline Plus

    Full Text Available ... Learn how the different parts of your eye work together so you can see and make sense of the world around you. Did You Know? Vision depends on your brain as much as it does on your eyes. NEI Home Contact Us A-Z Site Map NEI on ...

  9. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Media Medical Students Patients and Public Technicians and Nurses Senior Ophthalmologists Young Ophthalmologists Tools and Services EyeCare ... Media Medical Students Patients and Public Technicians and Nurses Senior Ophthalmologists Young Ophthalmologists Tools and Services EyeCare ...

  10. BullsEye

    DEFF Research Database (Denmark)

    Klokmose, Clemens Nylandsted; Kristensen, Janus Bager; Bagge, Rolf

    2014-01-01

    implemented primarily in shaders on the GPU. The techniques are realized in the BullsEye computer vision software. We demonstrate experimentally that BullsEye provides sub-pixel accuracy down to a tenth of a pixel, which is a significant improvement compared to the commonly used reacTIVision software....

  11. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Young Ophthalmologists Tools and Services EyeCare America Help IRIS Registry Medicare Physician Payment Meetings and Deadlines Museum ... Young Ophthalmologists Tools and Services EyeCare America Help IRIS Registry Medicare Physician Payment Meetings and Deadlines Museum ...

  12. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Senior Ophthalmologists Young Ophthalmologists Tools and Services EyeCare America Help IRIS Registry Medicare Physician Payment Meetings and ... Senior Ophthalmologists Young Ophthalmologists Tools and Services EyeCare America Help IRIS Registry Medicare Physician Payment Meetings and ...

  13. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Public Technicians and Nurses Senior Ophthalmologists Young Ophthalmologists Tools and Services EyeCare America Help IRIS Registry Medicare ... Public Technicians and Nurses Senior Ophthalmologists Young Ophthalmologists Tools and Services EyeCare America Help IRIS Registry Medicare ...

  14. What Is Dry Eye?

    Medline Plus

    Full Text Available ... bloodshot when I wake up? Jun 26, 2016 Why are my eyes dry after LASIK? Jun 19, 2016 Can I be tested whether I close my eyes when I sleep? Feb 10, 2016 Can light sensitivity from Parkinson’s ...

  15. Apoptosis in the eye.

    OpenAIRE

    Chahory , Sabine; Torriglia , Alicia

    2006-01-01

    Apoptosis is a normal component of the development and health of multicellular organisms. Cells die during apoptosis in a controlled, regulated fashion. This form of cell death is very important in eye development as well as in eye pathology. We review in this chapter our current knowledge in this topic.

  16. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Medical Students Patients and Public Technicians and Nurses Senior Ophthalmologists Young Ophthalmologists Tools and Services EyeCare America ... Medical Students Patients and Public Technicians and Nurses Senior Ophthalmologists Young Ophthalmologists Tools and Services EyeCare America ...

  17. Eyes, Bulging (Proptosis)

    Science.gov (United States)

    ... Early Breast Cancer to Avoid Chemo Could a Blood Test Spot Lung Cancer Early? Experimental Drug Shows 'Modest' Benefit ... often done when bulging affects only one eye. Blood tests to measure how well the thyroid is working are done when ... When bulging leads to severe dry eyes, lubrication with artificial tears is needed to ...

  18. Effects of two stressors on amphibian larval development.

    Science.gov (United States)

    Stark, Karolina; Scott, David E; Tsyusko, Olga; Coughlin, Daniel P; Hinton, Thomas G

    2012-05-01

    In parallel with a renewed interest in nuclear power and its possible environmental impacts, a new environmental radiation protection system calls for environmental indicators of radiological stress. However, because environmental stressors seldom occur alone, this study investigated the combined effects of an ecological stressor (larval density) and an anthropogenic stressor (ionizing radiation) on amphibians. Scaphiopus holbrookii tadpoles reared at different larval densities were exposed to four low irradiation dose rates (0.13, 2.4, 21, and 222 mGy d(-1)) from (137)Cs during the sensitive period prior to and throughout metamorphosis. Body size at metamorphosis and development rate served as fitness correlates related to population dynamics. Results showed that increased larval density decreased body size but did not affect development rate. Low dose rate radiation had no impact on either endpoint. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Mapping chromatic pathways in the Drosophila visual system.

    Science.gov (United States)

    Lin, Tzu-Yang; Luo, Jiangnan; Shinomiya, Kazunori; Ting, Chun-Yuan; Lu, Zhiyuan; Meinertzhagen, Ian A; Lee, Chi-Hon

    2016-02-01

    In Drosophila, color vision and wavelength-selective behaviors are mediated by the compound eye's narrow-spectrum photoreceptors R7 and R8 and their downstream medulla projection (Tm) neurons Tm5a, Tm5b, Tm5c, and Tm20 in the second optic neuropil or medulla. These chromatic Tm neurons project axons to a deeper optic neuropil, the lobula, which in insects has been implicated in processing and relaying color information to the central brain. The synaptic targets of the chromatic Tm neurons in the lobula are not known, however. Using a modified GFP reconstitution across synaptic partners (GRASP) method to probe connections between the chromatic Tm neurons and 28 known and novel types of lobula neurons, we identify anatomically the visual projection neurons LT11 and LC14 and the lobula intrinsic neurons Li3 and Li4 as synaptic targets of the chromatic Tm neurons. Single-cell GRASP analyses reveal that Li4 receives synaptic contacts from over 90% of all four types of chromatic Tm neurons, whereas LT11 is postsynaptic to the chromatic Tm neurons, with only modest selectivity and at a lower frequency and density. To visualize synaptic contacts at the ultrastructural level, we develop and apply a "two-tag" double-labeling method to label LT11's dendrites and the mitochondria in Tm5c's presynaptic terminals. Serial electron microscopic reconstruction confirms that LT11 receives direct contacts from Tm5c. This method would be generally applicable to map the connections of large complex neurons in Drosophila and other animals. © 2015 Wiley Periodicals, Inc.

  20. The SCF ubiquitin ligase Slimb controls Nerfin-1 turnover in Drosophila.

    Science.gov (United States)

    Lin, Xiaohui; Wang, Feng; Li, Yuanpei; Zhai, Chaojun; Wang, Guiping; Zhang, Xiaoting; Gao, Yang; Yi, Tao; Sun, Dan; Wu, Shian

    2018-01-01

    The C2H2 type zinc-finger transcription factor Nerfin-1 expresses dominantly in Drosophila nervous system and plays an important role in early axon guidance decisions and preventing neurons dedifferentiation. Recently, increasing reports indicated that INSM1 (homologue to nerfin-1 in mammals) is a useful marker for prognosis of neuroendocrine tumors. The dynamic expression of Nerfin-1 is regulated post-transcriptionally by multiple microRNAs; however, its post-translational regulation is still unclear. Here we showed that the protein turnover of Nerfin-1 is regulated by Slimb, the substrate adaptor of SCF Slimb ubiquitin ligase complex. Mechanistically, Slimb associates with Nerfin-1 and promotes it ubiquitination and degradation in Drosophila S2R + cells. Furthermore, we determined that the C-terminal half of Nerfin-1 (Nerfin-1 CT ) is required for its binding to Slimb. Genetic epistasis assays showed that Slimb misexpression antagonizes, while knock-down enhances the activity of Nerfin-1 CT in Drosophila eyes. Our data revealed a new link to understand the underlying mechanism for Nerfin-1 turnover in post-translational level, and provided useful insights in animal development and disease treatment by manipulating the activity of Slimb and Nerfin-1. Copyright © 2017 Elsevier Inc. All rights reserved.