WorldWideScience

Sample records for driven diffusive system

  1. Real-space renormalization group approach to driven diffusive systems

    Energy Technology Data Exchange (ETDEWEB)

    Hanney, T [SUPA and School of Physics, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ (United Kingdom); Stinchcombe, R B [Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP (United Kingdom)

    2006-11-24

    We introduce a real-space renormalization group procedure for driven diffusive systems which predicts both steady state and dynamic properties. We apply the method to the boundary driven asymmetric simple exclusion process and recover exact results for the steady state phase diagram, as well as the crossovers in the relaxation dynamics for each phase.

  2. Real-space renormalization group approach to driven diffusive systems

    International Nuclear Information System (INIS)

    Hanney, T; Stinchcombe, R B

    2006-01-01

    We introduce a real-space renormalization group procedure for driven diffusive systems which predicts both steady state and dynamic properties. We apply the method to the boundary driven asymmetric simple exclusion process and recover exact results for the steady state phase diagram, as well as the crossovers in the relaxation dynamics for each phase

  3. Statistical mechanics of driven diffusive systems

    CERN Document Server

    Schmittmann, B

    1995-01-01

    Far-from-equilibrium phenomena, while abundant in nature, are not nearly as well understood as their equilibrium counterparts. On the theoretical side, progress is slowed by the lack of a simple framework, such as the Boltzmann-Gbbs paradigm in the case of equilibrium thermodynamics. On the experimental side, the enormous structural complexity of real systems poses serious obstacles to comprehension. Similar difficulties have been overcome in equilibrium statistical mechanics by focusing on model systems. Even if they seem too simplistic for known physical systems, models give us considerable insight, provided they capture the essential physics. They serve as important theoretical testing grounds where the relationship between the generic physical behavior and the key ingredients of a successful theory can be identified and understood in detail. Within the vast realm of non-equilibrium physics, driven diffusive systems form a subset with particularly interesting properties. As a prototype model for these syst...

  4. Reduced equations of motion for quantum systems driven by diffusive Markov processes.

    Science.gov (United States)

    Sarovar, Mohan; Grace, Matthew D

    2012-09-28

    The expansion of a stochastic Liouville equation for the coupled evolution of a quantum system and an Ornstein-Uhlenbeck process into a hierarchy of coupled differential equations is a useful technique that simplifies the simulation of stochastically driven quantum systems. We expand the applicability of this technique by completely characterizing the class of diffusive Markov processes for which a useful hierarchy of equations can be derived. The expansion of this technique enables the examination of quantum systems driven by non-Gaussian stochastic processes with bounded range. We present an application of this extended technique by simulating Stark-tuned Förster resonance transfer in Rydberg atoms with nonperturbative position fluctuations.

  5. Population death sequences and Cox processes driven by interacting Feller diffusions

    CERN Document Server

    Wei Gang; Feng Jian Feng

    2002-01-01

    We carry out a complete study on the relationship between Cox processes driven by interacting Feller diffusions and death sequences of immigration-emigration linked population networks. It is first proved that the Cox process driven by a Feller diffusion is equivalent to the death sequence of a birth and death process. The conclusion is then generalized to the case of Cox processes driven by interacting Feller diffusions and death sequences of interacting populations.

  6. Population death sequences and Cox processes driven by interacting Feller diffusions

    International Nuclear Information System (INIS)

    Wei Gang; Clifford, Peter; Feng Jianfeng

    2002-01-01

    We carry out a complete study on the relationship between Cox processes driven by interacting Feller diffusions and death sequences of immigration-emigration linked population networks. It is first proved that the Cox process driven by a Feller diffusion is equivalent to the death sequence of a birth and death process. The conclusion is then generalized to the case of Cox processes driven by interacting Feller diffusions and death sequences of interacting populations

  7. Population death sequences and Cox processes driven by interacting Feller diffusions

    Energy Technology Data Exchange (ETDEWEB)

    Wei Gang [Department of Mathematics, Baptist University, Hong Kong (China); Clifford, Peter [Department of Statistics, 1 South Parks Road, Oxford (United Kingdom); Feng Jianfeng [COGS, Sussex University, Brighton (United Kingdom)

    2002-11-08

    We carry out a complete study on the relationship between Cox processes driven by interacting Feller diffusions and death sequences of immigration-emigration linked population networks. It is first proved that the Cox process driven by a Feller diffusion is equivalent to the death sequence of a birth and death process. The conclusion is then generalized to the case of Cox processes driven by interacting Feller diffusions and death sequences of interacting populations.

  8. Diffusion Driven Combustion Waves in Porous Media

    Science.gov (United States)

    Aldushin, A. P.; Matkowsky, B. J.

    2000-01-01

    Filtration of gas containing oxidizer, to the reaction zone in a porous medium, due, e.g., to a buoyancy force or to an external pressure gradient, leads to the propagation of Filtration combustion (FC) waves. The exothermic reaction occurs between the fuel component of the solid matrix and the oxidizer. In this paper, we analyze the ability of a reaction wave to propagate in a porous medium without the aid of filtration. We find that one possible mechanism of propagation is that the wave is driven by diffusion of oxidizer from the environment. The solution of the combustion problem describing diffusion driven waves is similar to the solution of the Stefan problem describing the propagation of phase transition waves, in that the temperature on the interface between the burned and unburned regions is constant, the combustion wave is described by a similarity solution which is a function of the similarity variable x/square root of(t) and the wave velocity decays as 1/square root of(t). The difference between the two problems is that in the combustion problem the temperature is not prescribed, but rather, is determined as part of the solution. We will show that the length of samples in which such self-sustained combustion waves can occur, must exceed a critical value which strongly depends on the combustion temperature T(sub b). Smaller values of T(sub b) require longer sample lengths for diffusion driven combustion waves to exist. Because of their relatively small velocity, diffusion driven waves are considered to be relevant for the case of low heat losses, which occur for large diameter samples or in microgravity conditions, Another possible mechanism of porous medium combustion describes waves which propagate by consuming the oxidizer initially stored in the pores of the sample. This occurs for abnormally high pressure and gas density. In this case, uniformly propagating planar waves, which are kinetically controlled, can propagate, Diffusion of oxidizer decreases

  9. Diffusion-driven steady states of the Z-pinch

    International Nuclear Information System (INIS)

    Lehnert, B.

    1988-01-01

    Steady states of a Z-pinch where no electric field is imposed along the pinch axis by external means are investigated. In this case, diffusion-driven states become possible when imposed volume sources of particles and heat drive a radial diffusion velocity that, in its turn, generates the electric plasma current. The particle sources can be from pellet injection or a neutral gas blanket, and the heat sources provided by thermonuclear reactions or auxiliary heating. The present analysis and associated kinetic considerations indicate that steady diffusion-driven operation should become possible for certain classes of plasma profiles, without running into singularity problems at the pinch axis. Such operation leads to higher axial currents in a Z-pinch without an axial magnetic field than in a tokamaklike case under similar plasma conditions. The technical difficulty in realizing a volume distribution of particle sinks introduces certain constraints on the plasma and current profiles. This fact has to be taken into account in a stability analysis. Neoclassical or anomalous diffusion will increase the diffusion velocity of the plasma but is not expected to affect the main physical features of the present results

  10. Evaluation of diffusivity in the anterior lobe of the pituitary gland: 3D turbo field echo with diffusion-sensitized driven-equilibrium preparation.

    Science.gov (United States)

    Hiwatashi, A; Yoshiura, T; Togao, O; Yamashita, K; Kikuchi, K; Kobayashi, K; Ohga, M; Sonoda, S; Honda, H; Obara, M

    2014-01-01

    3D turbo field echo with diffusion-sensitized driven-equilibrium preparation is a non-echo-planar technique for DWI, which enables high-resolution DWI without field inhomogeneity-related image distortion. The purpose of this study was to evaluate the feasibility of diffusion-sensitized driven-equilibrium turbo field echo in evaluating diffusivity in the normal pituitary gland. First, validation of diffusion-sensitized driven-equilibrium turbo field echo was attempted by comparing it with echo-planar DWI. Five healthy volunteers were imaged by using diffusion-sensitized driven-equilibrium turbo field echo and echo-planar DWI. The imaging voxel size was 1.5 × 1.5 × 1.5 mm(3) for diffusion-sensitized driven-equilibrium turbo field echo and 1.5 × 1.9 × 3.0 mm(3) for echo-planar DWI. ADCs measured by the 2 methods in 15 regions of interests (6 in gray matter and 9 in white matter) were compared by using the Pearson correlation coefficient. The ADC in the pituitary anterior lobe was then measured in 10 volunteers by using diffusion-sensitized driven-equilibrium turbo field echo, and the results were compared with those in the pons and vermis by using a paired t test. The ADCs from the 2 methods showed a strong correlation (r = 0.79; P pituitary gland were 1.37 ± 0.13 × 10(-3) mm(2)/s, which were significantly higher than those in the pons (1.01 ± 0.24 × 10(-3) mm(2)/s) and the vermis (0.89 ± 0.25 × 10(-3) mm(2)/s, P pituitary gland.

  11. Diffusive smoothing of surfzone bathymetry by gravity-driven sediment transport

    Science.gov (United States)

    Moulton, M. R.; Elgar, S.; Raubenheimer, B.

    2012-12-01

    Gravity-driven sediment transport often is assumed to have a small effect on the evolution of nearshore morphology. Here, it is shown that down-slope gravity-driven sediment transport is an important process acting to smooth steep bathymetric features in the surfzone. Gravity-driven transport can be modeled as a diffusive term in the sediment continuity equation governing temporal (t) changes in bed level (h): ∂h/∂t ≈ κ ▽2h, where κ is a sediment diffusion coefficient that is a function of the bed shear stress (τb) and sediment properties, such as the grain size and the angle of repose. Field observations of waves, currents, and the evolution of large excavated holes (initially 10-m wide and 2-m deep, with sides as steep as 35°) in an energetic surfzone are consistent with diffusive smoothing by gravity. Specifically, comparisons of κ estimated from the measured bed evolution with those estimated with numerical model results for several transport theories suggest that gravity-driven sediment transport dominates the bed evolution, with κ proportional to a power of τb. The models are initiated with observed bathymetry and forced with observed waves and currents. The diffusion coefficients from the measurements and from the model simulations were on average of order 10-5 m2/s, implying evolution time scales of days for features with length scales of 10 m. The dependence of κ on τb varies for different transport theories and for high and low shear stress regimes. The US Army Corps of Engineers Field Research Facility, Duck, NC provided excellent logistical support. Funded by a National Security Science and Engineering Faculty Fellowship, a National Defense Science and Engineering Graduate Fellowship, and the Office of Naval Research.

  12. Diffusion-weighted magnetic resonance imaging of extraocular muscles in patients with Grave's ophthalmopathy using turbo field echo with diffusion-sensitized driven-equilibrium preparation.

    Science.gov (United States)

    Hiwatashi, A; Togao, O; Yamashita, K; Kikuchi, K; Momosaka, D; Honda, H

    2018-03-20

    The purpose of this study was to correlate diffusivity of extraocular muscles, measured by three-dimensional turbo field echo (3DTFE) magnetic resonance (MR) imaging using diffusion-sensitized driven-equilibrium preparation, with their size and activity in patients with Grave's ophthalmopathy. Twenty-three patients with Grave's ophthalmopathy were included. There were 17 women and 6 men with a mean age of 55.8±12.6 (SD) years (range: 26-83 years). 3DTFE with diffusion-sensitized driven-equilibrium MR images were obtained with b-values of 0 and 500s/mm 2 . The apparent diffusion coefficient (ADC) of extraocular muscles was measured on coronal reformatted MR images. Signal intensities of extraocular muscles on conventional MR images were compared to those of normal-appearing white matter, and cross-sectional areas of the muscles were also measured. The clinical activity score was also evaluated. Statistical analyses were performed with Pearson correlation and Mann-Whitney U tests. On 3DTFE with diffusion-sensitized driven-equilibrium preparation, the mean ADC of the extraocular muscles was 2.23±0.37 (SD)×10 -3 mm2/s (range: 1.70×10 -3 -3.11×10 -3 mm 2 /s). There was a statistically significant moderate correlation between ADC and the size of the muscles (r=0.61). There were no statistically significant correlations between ADC and signal intensity on conventional MR and the clinical activity score. 3DTFE with diffusion-sensitized driven-equilibrium preparation technique allows quantifying diffusivity of extraocular muscles in patients with Grave's ophthalmopathy. The diffusivity of the extraocular muscles on 3DTFE with diffusion-sensitized driven-equilibrium preparation MR images moderately correlates with their size. Copyright © 2018. Published by Elsevier Masson SAS.

  13. Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains

    KAUST Repository

    Madzvamuse, Anotida; Gaffney, Eamonn A.; Maini, Philip K.

    2009-01-01

    By using asymptotic theory, we generalise the Turing diffusively-driven instability conditions for reaction-diffusion systems with slow, isotropic domain growth. There are two fundamental biological differences between the Turing conditions on fixed and growing domains, namely: (i) we need not enforce cross nor pure kinetic conditions and (ii) the restriction to activator-inhibitor kinetics to induce pattern formation on a growing biological system is no longer a requirement. Our theoretical findings are confirmed and reinforced by numerical simulations for the special cases of isotropic linear, exponential and logistic growth profiles. In particular we illustrate an example of a reaction-diffusion system which cannot exhibit a diffusively-driven instability on a fixed domain but is unstable in the presence of slow growth. © Springer-Verlag 2009.

  14. Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains

    KAUST Repository

    Madzvamuse, Anotida

    2009-08-29

    By using asymptotic theory, we generalise the Turing diffusively-driven instability conditions for reaction-diffusion systems with slow, isotropic domain growth. There are two fundamental biological differences between the Turing conditions on fixed and growing domains, namely: (i) we need not enforce cross nor pure kinetic conditions and (ii) the restriction to activator-inhibitor kinetics to induce pattern formation on a growing biological system is no longer a requirement. Our theoretical findings are confirmed and reinforced by numerical simulations for the special cases of isotropic linear, exponential and logistic growth profiles. In particular we illustrate an example of a reaction-diffusion system which cannot exhibit a diffusively-driven instability on a fixed domain but is unstable in the presence of slow growth. © Springer-Verlag 2009.

  15. Interestingness-Driven Diffusion Process Summarization in Dynamic Networks

    DEFF Research Database (Denmark)

    Qu, Qiang; Liu, Siyuan; Jensen, Christian S.

    2014-01-01

    The widespread use of social networks enables the rapid diffusion of information, e.g., news, among users in very large communities. It is a substantial challenge to be able to observe and understand such diffusion processes, which may be modeled as networks that are both large and dynamic. A key...... tool in this regard is data summarization. However, few existing studies aim to summarize graphs/networks for dynamics. Dynamic networks raise new challenges not found in static settings, including time sensitivity and the needs for online interestingness evaluation and summary traceability, which...... render existing techniques inapplicable. We study the topic of dynamic network summarization: how to summarize dynamic networks with millions of nodes by only capturing the few most interesting nodes or edges over time, and we address the problem by finding interestingness-driven diffusion processes...

  16. Pattern formation, social forces, and diffusion instability in games with success-driven motion

    Science.gov (United States)

    Helbing, Dirk

    2009-02-01

    A local agglomeration of cooperators can support the survival or spreading of cooperation, even when cooperation is predicted to die out according to the replicator equation, which is often used in evolutionary game theory to study the spreading and disappearance of strategies. In this paper, it is shown that success-driven motion can trigger such local agglomeration and may, therefore, be used to supplement other mechanisms supporting cooperation, like reputation or punishment. Success-driven motion is formulated here as a function of the game-theoretical payoffs. It can change the outcome and dynamics of spatial games dramatically, in particular as it causes attractive or repulsive interaction forces. These forces act when the spatial distributions of strategies are inhomogeneous. However, even when starting with homogeneous initial conditions, small perturbations can trigger large inhomogeneities by a pattern-formation instability, when certain conditions are fulfilled. Here, these instability conditions are studied for the prisoner’s dilemma and the snowdrift game. Furthermore, it is demonstrated that asymmetrical diffusion can drive social, economic, and biological systems into the unstable regime, if these would be stable without diffusion.

  17. Ultra-high gain diffusion-driven organic transistor

    Science.gov (United States)

    Torricelli, Fabrizio; Colalongo, Luigi; Raiteri, Daniele; Kovács-Vajna, Zsolt Miklós; Cantatore, Eugenio

    2016-01-01

    Emerging large-area technologies based on organic transistors are enabling the fabrication of low-cost flexible circuits, smart sensors and biomedical devices. High-gain transistors are essential for the development of large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show a new organic field-effect transistor architecture with a gain larger than 700. This is the highest gain ever reported for organic field-effect transistors. In the proposed organic field-effect transistor, the charge injection and extraction at the metal–semiconductor contacts are driven by the charge diffusion. The ideal conditions of ohmic contacts with negligible contact resistance and flat current saturation are demonstrated. The approach is general and can be extended to any thin-film technology opening unprecedented opportunities for the development of high-performance flexible electronics. PMID:26829567

  18. Rethinking pattern formation in reaction-diffusion systems

    Science.gov (United States)

    Halatek, J.; Frey, E.

    2018-05-01

    The present theoretical framework for the analysis of pattern formation in complex systems is mostly limited to the vicinity of fixed (global) equilibria. Here we present a new theoretical approach to characterize dynamical states arbitrarily far from (global) equilibrium. We show that reaction-diffusion systems that are driven by locally mass-conserving interactions can be understood in terms of local equilibria of diffusively coupled compartments. Diffusive coupling generically induces lateral redistribution of the globally conserved quantities, and the variable local amounts of these quantities determine the local equilibria in each compartment. We find that, even far from global equilibrium, the system is well characterized by its moving local equilibria. We apply this framework to in vitro Min protein pattern formation, a paradigmatic model for biological pattern formation. Within our framework we can predict and explain transitions between chemical turbulence and order arbitrarily far from global equilibrium. Our results reveal conceptually new principles of self-organized pattern formation that may well govern diverse dynamical systems.

  19. Non-diffusive transport in 3-D pressure driven plasma turbulence

    International Nuclear Information System (INIS)

    Del-Castillo-Negrete, D.; Carreras, B.A.; Lynch, V.

    2005-01-01

    Numerical evidence of non-diffusive transport in 3-dimensional, resistive, pressure-gradient-driven plasma turbulence is presented. It is shown that the probability density function (pdf) of tracers is strongly non-Gaussian and exhibits algebraic decaying tails. To describe these results, a transport model using fractional derivative operators in proposed. The model incorporates in a unified way non-locality (i.e., non-Fickian transport), memory effects (i.e., non-Markovian transport), and non-diffusive scaling features known to be present in fusion plasmas. There is quantitative agreement between the model and the turbulent transport numerical calculations. In particular, the model reproduces the shape and space-time scaling of the pdf, and the super-diffusive scaling of the moments. (author)

  20. Double-diffusive mixed convection in a lid-driven cavity with non ...

    Indian Academy of Sciences (India)

    S SIVASANKARAN

    2017-11-11

    Nov 11, 2017 ... transfer are solved using the finite-volume method. The numerical ... Keywords. Mixed convection; double diffusion; non-uniform heating; lid-driven cavity. 1. ... exhaustive research due to its importance in various engi- neering ...

  1. Understanding Whole Systems Change in Health Care: Insights into System Level Diffusion from Nursing Service Delivery Innovations--A Multiple Case Study

    Science.gov (United States)

    Berta, Whitney; Virani, Tazim; Bajnok, Irmajean; Edwards, Nancy; Rowan, Margo

    2014-01-01

    Our study responds to calls for theory-driven approaches to studying innovation diffusion processes in health care. While most research on diffusion in health care is situated at the service delivery level, we study innovations and associated processes that have diffused to the system level, and refer to work on complex adaptive systems and whole…

  2. Delay-induced wave instabilities in single-species reaction-diffusion systems

    Science.gov (United States)

    Otto, Andereas; Wang, Jian; Radons, Günter

    2017-11-01

    The Turing (wave) instability is only possible in reaction-diffusion systems with more than one (two) components. Motivated by the fact that a time delay increases the dimension of a system, we investigate the presence of diffusion-driven instabilities in single-species reaction-diffusion systems with delay. The stability of arbitrary one-component systems with a single discrete delay, with distributed delay, or with a variable delay is systematically analyzed. We show that a wave instability can appear from an equilibrium of single-species reaction-diffusion systems with fluctuating or distributed delay, which is not possible in similar systems with constant discrete delay or without delay. More precisely, we show by basic analytic arguments and by numerical simulations that fast asymmetric delay fluctuations or asymmetrically distributed delays can lead to wave instabilities in these systems. Examples, for the resulting traveling waves are shown for a Fisher-KPP equation with distributed delay in the reaction term. In addition, we have studied diffusion-induced instabilities from homogeneous periodic orbits in the same systems with variable delay, where the homogeneous periodic orbits are attracting resonant periodic solutions of the system without diffusion, i.e., periodic orbits of the Hutchinson equation with time-varying delay. If diffusion is introduced, standing waves can emerge whose temporal period is equal to the period of the variable delay.

  3. Innovation diffusion on time-varying activity driven networks

    Science.gov (United States)

    Rizzo, Alessandro; Porfiri, Maurizio

    2016-01-01

    Since its introduction in the 1960s, the theory of innovation diffusion has contributed to the advancement of several research fields, such as marketing management and consumer behavior. The 1969 seminal paper by Bass [F.M. Bass, Manag. Sci. 15, 215 (1969)] introduced a model of product growth for consumer durables, which has been extensively used to predict innovation diffusion across a range of applications. Here, we propose a novel approach to study innovation diffusion, where interactions among individuals are mediated by the dynamics of a time-varying network. Our approach is based on the Bass' model, and overcomes key limitations of previous studies, which assumed timescale separation between the individual dynamics and the evolution of the connectivity patterns. Thus, we do not hypothesize homogeneous mixing among individuals or the existence of a fixed interaction network. We formulate our approach in the framework of activity driven networks to enable the analysis of the concurrent evolution of the interaction and individual dynamics. Numerical simulations offer a systematic analysis of the model behavior and highlight the role of individual activity on market penetration when targeted advertisement campaigns are designed, or a competition between two different products takes place.

  4. Periodic and quasiperiodic revivals in periodically driven interacting quantum systems

    Science.gov (United States)

    Luitz, David J.; Lazarides, Achilleas; Bar Lev, Yevgeny

    2018-01-01

    Recently it has been shown that interparticle interactions generically destroy dynamical localization in periodically driven systems, resulting in diffusive transport and heating. In this Rapid Communication we rigorously construct a family of interacting driven systems which are dynamically localized and effectively decoupled from the external driving potential. We show that these systems exhibit tunable periodic or quasiperiodic revivals of the many-body wave function and thus of all physical observables. By numerically examining spinless fermions on a one-dimensional lattice we show that the analytically obtained revivals of such systems remain stable for finite systems with open boundary conditions while having a finite lifetime in the presence of static spatial disorder. We find this lifetime to be inversely proportional to the disorder strength.

  5. Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage

    KAUST Repository

    Allen, Rebecca

    2015-04-01

    ABSTRACT Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage Rebecca Allen Geological CO2 storage is an engineering feat that has been undertaken around the world for more than two decades, thus accurate modeling of flow and transport behavior is of practical importance. Diffusive and convective transport are relevant processes for buoyancy-driven convection of CO2 into underlying fluid, a scenario that has received the attention of numerous modeling studies. While most studies focus on Darcy-scale modeling of this scenario, relatively little work exists at the pore-scale. In this work, properties evaluated at the pore-scale are used to investigate the transport behavior modeled at the Darcy-scale. We compute permeability and two different forms of tortuosity, namely hydraulic and diffusive. By generating various pore ge- ometries, we find hydraulic and diffusive tortuosity can be quantitatively different in the same pore geometry by up to a factor of ten. As such, we emphasize that these tortuosities should not be used interchangeably. We find pore geometries that are characterized by anisotropic permeability can also exhibit anisotropic diffusive tortuosity. This finding has important implications for buoyancy-driven convection modeling; when representing the geological formation with an anisotropic permeabil- ity, it is more realistic to also account for an anisotropic diffusivity. By implementing a non-dimensional model that includes both a vertically and horizontally orientated 5 Rayleigh number, we interpret our findings according to the combined effect of the anisotropy from permeability and diffusive tortuosity. In particular, we observe the Rayleigh ratio may either dampen or enhance the diffusing front, and our simulation data is used to express the time of convective onset as a function of the Rayleigh ratio. Also, we implement a lattice Boltzmann model for thermal convective flows, which we treat as an analog for

  6. Master stability functions reveal diffusion-driven pattern formation in networks

    Science.gov (United States)

    Brechtel, Andreas; Gramlich, Philipp; Ritterskamp, Daniel; Drossel, Barbara; Gross, Thilo

    2018-03-01

    We study diffusion-driven pattern formation in networks of networks, a class of multilayer systems, where different layers have the same topology, but different internal dynamics. Agents are assumed to disperse within a layer by undergoing random walks, while they can be created or destroyed by reactions between or within a layer. We show that the stability of homogeneous steady states can be analyzed with a master stability function approach that reveals a deep analogy between pattern formation in networks and pattern formation in continuous space. For illustration, we consider a generalized model of ecological meta-food webs. This fairly complex model describes the dispersal of many different species across a region consisting of a network of individual habitats while subject to realistic, nonlinear predator-prey interactions. In this example, the method reveals the intricate dependence of the dynamics on the spatial structure. The ability of the proposed approach to deal with this fairly complex system highlights it as a promising tool for ecology and other applications.

  7. Flagella-Driven Flows Circumvent Diffusive Bottlenecks that Inhibit Metabolite Exchange

    Science.gov (United States)

    Short, Martin; Solari, Cristian; Ganguly, Sujoy; Kessler, John; Goldstein, Raymond; Powers, Thomas

    2006-03-01

    The evolution of single cells to large and multicellular organisms requires matching the organisms' needs to the rate of exchange of metabolites with the environment. This logistic problem can be a severe constraint on development. For organisms with a body plan that approximates a spherical shell, such as colonies of the volvocine green algae, the required current of metabolites grows quadratically with colony radius whereas the rate at which diffusion can exchange metabolites grows only linearly with radius. Hence, there is a bottleneck radius beyond which the diffusive current cannot keep up with metabolic demands. Using Volvox carteri as a model organism, we examine experimentally and theoretically the role that advection of fluid by surface-mounted flagella plays in enhancing nutrient uptake. We show that fluid flow driven by the coordinated beating of flagella produces a convective boundary layer in the concentration of a diffusing solute which in turn renders the metabolite exchange rate quadratic in the colony radius. This enhanced transport circumvents the diffusive bottleneck, allowing increase in size and thus evolutionary transitions to multicellularity in the Volvocales.

  8. Diffusive instabilities in hyperbolic reaction-diffusion equations

    Science.gov (United States)

    Zemskov, Evgeny P.; Horsthemke, Werner

    2016-03-01

    We investigate two-variable reaction-diffusion systems of the hyperbolic type. A linear stability analysis is performed, and the conditions for diffusion-driven instabilities are derived. Two basic types of eigenvalues, real and complex, are described. Dispersion curves for both types of eigenvalues are plotted and their behavior is analyzed. The real case is related to the Turing instability, and the complex one corresponds to the wave instability. We emphasize the interesting feature that the wave instability in the hyperbolic equations occurs in two-variable systems, whereas in the parabolic case one needs three reaction-diffusion equations.

  9. Concentration fluctuations in non-isothermal reaction-diffusion systems. II. The nonlinear case

    NARCIS (Netherlands)

    Bedeaux, D.; Ortiz de Zárate, J.M.; Pagonabarraga, I.; Sengers, J.V.; Kjelstrup, S.

    2011-01-01

    In this paper, we consider a simple reaction-diffusion system, namely, a binary fluid mixture with an association-dissociation reaction between two species. We study fluctuations at hydrodynamic spatiotemporal scales when this mixture is driven out of equilibrium by the presence of a temperature

  10. Diffusion of elements and vacancies in multi-component systems

    Czech Academy of Sciences Publication Activity Database

    Fischer, F. D.; Svoboda, Jiří

    2014-01-01

    Roč. 60, MAR (2014), s. 338-367 ISSN 0079-6425 Institutional support: RVO:68081723 Keywords : multi-component diffusion * vacancy activity * manning theory * stress-driven diffusion Subject RIV: BJ - Thermodynamics Impact factor: 27.417, year: 2014

  11. Diffusion-advection within dynamic biological gaps driven by structural motion

    Science.gov (United States)

    Asaro, Robert J.; Zhu, Qiang; Lin, Kuanpo

    2018-04-01

    To study the significance of advection in the transport of solutes, or particles, within thin biological gaps (channels), we examine theoretically the process driven by stochastic fluid flow caused by random thermal structural motion, and we compare it with transport via diffusion. The model geometry chosen resembles the synaptic cleft; this choice is motivated by the cleft's readily modeled structure, which allows for well-defined mechanical and physical features that control the advection process. Our analysis defines a Péclet-like number, AD, that quantifies the ratio of time scales of advection versus diffusion. Another parameter, AM, is also defined by the analysis that quantifies the full potential extent of advection in the absence of diffusion. These parameters provide a clear and compact description of the interplay among the well-defined structural, geometric, and physical properties vis-a ̀-vis the advection versus diffusion process. For example, it is found that AD˜1 /R2 , where R is the cleft diameter and hence diffusion distance. This curious, and perhaps unexpected, result follows from the dependence of structural motion that drives fluid flow on R . AM, on the other hand, is directly related (essentially proportional to) the energetic input into structural motion, and thereby to fluid flow, as well as to the mechanical stiffness of the cleftlike structure. Our model analysis thus provides unambiguous insight into the prospect of competition of advection versus diffusion within biological gaplike structures. The importance of the random, versus a regular, nature of structural motion and of the resulting transient nature of advection under random motion is made clear in our analysis. Further, by quantifying the effects of geometric and physical properties on the competition between advection and diffusion, our results clearly demonstrate the important role that metabolic energy (ATP) plays in this competitive process.

  12. Data-Driven H∞ Control for Nonlinear Distributed Parameter Systems.

    Science.gov (United States)

    Luo, Biao; Huang, Tingwen; Wu, Huai-Ning; Yang, Xiong

    2015-11-01

    The data-driven H∞ control problem of nonlinear distributed parameter systems is considered in this paper. An off-policy learning method is developed to learn the H∞ control policy from real system data rather than the mathematical model. First, Karhunen-Loève decomposition is used to compute the empirical eigenfunctions, which are then employed to derive a reduced-order model (ROM) of slow subsystem based on the singular perturbation theory. The H∞ control problem is reformulated based on the ROM, which can be transformed to solve the Hamilton-Jacobi-Isaacs (HJI) equation, theoretically. To learn the solution of the HJI equation from real system data, a data-driven off-policy learning approach is proposed based on the simultaneous policy update algorithm and its convergence is proved. For implementation purpose, a neural network (NN)- based action-critic structure is developed, where a critic NN and two action NNs are employed to approximate the value function, control, and disturbance policies, respectively. Subsequently, a least-square NN weight-tuning rule is derived with the method of weighted residuals. Finally, the developed data-driven off-policy learning approach is applied to a nonlinear diffusion-reaction process, and the obtained results demonstrate its effectiveness.

  13. Survey report for fiscal 1999. Project of diffusing gas driven cooling systems in Oman; 1999 nendo Oman koku ni okeru gas reibo fukyu jigyo chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    With the clean development mechanism (CDM) borne in mind, a study is made about the diffusion of gas driven cooling systems in Oman. The project under study aims to replace the motor driven turbo cooling systems, now in use at the Royal Hospital and other buildings in various areas, with gas driven cooling systems. It is then found that, when the Royal Hotel is equipped with such systems, energy will be saved by 1,855 tons/year in terms of oil, and greenhouse gas reduced by 5,129 tons/year in terms of CO2. When the Royal Hospital and other large buildings with heavy cooling loads, situated at or near the center of Muscat City and in the vicinity of the existing natural gas pipelines, are taken into account, energy will be saved by 13,049 tons/year in terms of oil and greenhouse gas will be reduced by 31,636 tons/year in terms of CO2, thanks to the presence of universities, hotels, and a sector occupied by government offices. As for the time necessary for investment recovery, it will be 4.7-5.3 years in case the investment does not cover a gas decompression station construction cost and 6.2-6.8 years in case it covers such. The new system will cost 7% less than the existing system. When a comparison is made in terms of electricity charges, the new system will be 30% lower than the existing system. The Omani Government is critical of a plan for allowing Japan to establish there an energy supply company (financed by Japan). (NEDO)

  14. Diffuse charge dynamics in ionic thermoelectrochemical systems.

    Science.gov (United States)

    Stout, Robert F; Khair, Aditya S

    2017-08-01

    Thermoelectrics are increasingly being studied as promising electrical generators in the ongoing search for alternative energy sources. In particular, recent experimental work has examined thermoelectric materials containing ionic charge carriers; however, the majority of mathematical modeling has been focused on their steady-state behavior. Here, we determine the time scales over which the diffuse charge dynamics in ionic thermoelectrochemical systems occur by analyzing the simplest model thermoelectric cell: a binary electrolyte between two parallel, blocking electrodes. We consider the application of a temperature gradient across the device while the electrodes remain electrically isolated from each other. This results in a net voltage, called the thermovoltage, via the Seebeck effect. At the same time, the Soret effect results in migration of the ions toward the cold electrode. The charge dynamics are described mathematically by the Poisson-Nernst-Planck equations for dilute solutions, in which the ion flux is driven by electromigration, Brownian diffusion, and thermal diffusion under a temperature gradient. The temperature evolves according to the heat equation. This nonlinear set of equations is linearized in the (experimentally relevant) limit of a "weak" temperature gradient. From this, we show that the time scale on which the thermovoltage develops is the Debye time, 1/Dκ^{2}, where D is the Brownian diffusion coefficient of both ion species, and κ^{-1} is the Debye length. However, the concentration gradient due to the Soret effect develops on the bulk diffusion time, L^{2}/D, where L is the distance between the electrodes. For thin diffuse layers, which is the condition under which most real devices operate, the Debye time is orders of magnitude less than the diffusion time. Therefore, rather surprisingly, the majority of ion motion occurs after the steady thermovoltage has developed. Moreover, the dynamics are independent of the thermal diffusion

  15. Diffuse charge dynamics in ionic thermoelectrochemical systems

    Science.gov (United States)

    Stout, Robert F.; Khair, Aditya S.

    2017-08-01

    Thermoelectrics are increasingly being studied as promising electrical generators in the ongoing search for alternative energy sources. In particular, recent experimental work has examined thermoelectric materials containing ionic charge carriers; however, the majority of mathematical modeling has been focused on their steady-state behavior. Here, we determine the time scales over which the diffuse charge dynamics in ionic thermoelectrochemical systems occur by analyzing the simplest model thermoelectric cell: a binary electrolyte between two parallel, blocking electrodes. We consider the application of a temperature gradient across the device while the electrodes remain electrically isolated from each other. This results in a net voltage, called the thermovoltage, via the Seebeck effect. At the same time, the Soret effect results in migration of the ions toward the cold electrode. The charge dynamics are described mathematically by the Poisson-Nernst-Planck equations for dilute solutions, in which the ion flux is driven by electromigration, Brownian diffusion, and thermal diffusion under a temperature gradient. The temperature evolves according to the heat equation. This nonlinear set of equations is linearized in the (experimentally relevant) limit of a "weak" temperature gradient. From this, we show that the time scale on which the thermovoltage develops is the Debye time, 1 /D κ2 , where D is the Brownian diffusion coefficient of both ion species, and κ-1 is the Debye length. However, the concentration gradient due to the Soret effect develops on the bulk diffusion time, L2/D , where L is the distance between the electrodes. For thin diffuse layers, which is the condition under which most real devices operate, the Debye time is orders of magnitude less than the diffusion time. Therefore, rather surprisingly, the majority of ion motion occurs after the steady thermovoltage has developed. Moreover, the dynamics are independent of the thermal diffusion

  16. Bifurcation in the Lengyel–Epstein system for the coupled reactors with diffusion

    Directory of Open Access Journals (Sweden)

    Shaban Aly

    2016-01-01

    Full Text Available The main goal of this paper is to continue the investigations of the important system of Fengqi et al. (2008. The occurrence of Turing and Hopf bifurcations in small homogeneous arrays of two coupled reactors via diffusion-linked mass transfer which described by a system of ordinary differential equations is considered. I study the conditions of the existence as well as stability properties of the equilibrium solutions and derive the precise conditions on the parameters to show that the Hopf bifurcation occurs. Analytically I show that a diffusion driven instability occurs at a certain critical value, when the system undergoes a Turing bifurcation, patterns emerge. The spatially homogeneous equilibrium loses its stability and two new spatially non-constant stable equilibria emerge which are asymptotically stable. Numerically, at a certain critical value of diffusion the periodic solution gets destabilized and two new spatially nonconstant periodic solutions arise by Turing bifurcation.

  17. Thermal diffusion segregation of an impurity in a driven granular fluid

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Francisco Vega; Garzó, Vicente [Departamento de Física, Universidad de Extremadura, E-06071 Badajoz, Spain and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06071 Badajoz (Spain)

    2014-12-09

    We study segregation of an impurity in a driven granular fluid under two types of steady states. In the first state, the granular gas is driven by a stochastic volume force field with a Fourier-type profile while in the second state, the granular gas is sheared in such a way that inelastic cooling is balanced by viscous heating. We compare theoretical results derived from a solution of the (inelastic) Boltzmann equation at Navier-Stokes (NS) order with those obtained from the Direct Monte Carlo simulation (DSMC) method and molecular dynamics (MD) simulations. Good agreement is found between theory and simulation, which provides strong evidence of the reliability of NS granular hydrodynamics for these steady states (including the dynamics of the impurity), even at high inelasticity. In addition, preliminary results for thermal diffusion in granular fluids at moderate densities are also presented. As for dilute gases, excellent agreement is also found in this more general case.

  18. Solar systems diffusion in local markets

    International Nuclear Information System (INIS)

    Sidiras, D.K.; Koukios, E.G.

    2004-01-01

    This paper reports on a study of the driving forces and barriers of the spectacular diffusion of solar energy use for domestic hot-water production in Greece. Through the various kinds of questionnaires used in this work, the main diffusion actors have been requested to grade the various diffusion factors identified by desk and preliminary field research. Households identify a number of economic (available family income), technical (new technologies), political (new incentives), and socio-cultural (sensitivity in energy matters) factors as dominant. According to the solar industry, advertising, distribution and quality control standards have to be added to the list of critical factors. Technical experts contribute with identifying, besides R and D, public awareness on energy matters. Solar collector diffusion, despite the fact that it has followed a market-driven mechanism, was revealed to be a multi-actor, multi-dimensional and multi-parametric phenomenon. Presently, the phenomenon is constrained by the available family income, with technology-related factors, i.e., research, and standardization quality control, playing increasing roles

  19. Driven diffusion against electrostatic or effective energy barrier across α-hemolysin

    Energy Technology Data Exchange (ETDEWEB)

    Ansalone, Patrizio [Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, Torino, IT-10135 (Italy); Chinappi, Mauro [Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Via Regina Elena 291, 00161 Roma (Italy); Rondoni, Lamberto [Scienze Matematiche, Politecnico di Torino Corso Duca degli Abruzzi 24, Torino, IT-10129, Italy and INFN, Sez. di Torino, Via P. Giuria 1, Torino IT-10125 (Italy); Cecconi, Fabio, E-mail: fabio.cecconi@roma1.infn.it [CNR-Istituto dei Sistemi Complessi UoS “Sapienza,” Via dei Taurini 19, 00185 Roma (Italy)

    2015-10-21

    We analyze the translocation of a charged particle across an α-Hemolysin (αHL) pore in the framework of a driven diffusion over an extended energy barrier generated by the electrical charges of the αHL. A one-dimensional electrostatic potential is extracted from the full 3D solution of the Poisson’s equation. We characterize the particle transport under the action of a constant forcing by studying the statistics of the translocation time. We derive an analytical expression of translocation time average that compares well with the results from Brownian dynamic simulations of driven particles over the electrostatic potential. Moreover, we show that the translocation time distributions can be perfectly described by a simple theory which replaces the true barrier by an equivalent structureless square barrier. Remarkably, our approach maintains its accuracy also for low-applied voltage regimes where the usual inverse-Gaussian approximation fails. Finally, we discuss how the comparison between the simulated time distributions and their theoretical prediction results to be greatly simplified when using the notion of the empirical Laplace transform technique.

  20. Diffusion-driven and excitation-dependent recombination rate in blue InGaN/GaN quantum well structures

    International Nuclear Information System (INIS)

    Aleksiejūnas, R.; Gelžinytė, K.; Nargelas, S.; Jarašiūnas, K.; Vengris, M.; Armour, E. A.; Byrnes, D. P.; Arif, R. A.; Lee, S. M.; Papasouliotis, G. D.

    2014-01-01

    We report on diffusion-driven and excitation-dependent carrier recombination rate in multiple InGaN/GaN quantum wells by using photoluminescence, light-induced absorption, and diffraction techniques. We demonstrate gradually increasing with excitation carrier diffusivity and its correlation with the recombination rate. At low carrier densities, an increase in radiative emission and carrier lifetime was observed due to partial saturation of non-radiative recombination centers. However, at carrier densities above ∼5 × 10 18  cm −3 , a typical value of photoluminescence efficiency droop, a further increase of diffusivity forces the delocalized carriers to face higher number of fast non-radiative recombination centers leading to an increase of non-radiative losses

  1. Diffusion-driven and excitation-dependent recombination rate in blue InGaN/GaN quantum well structures

    Energy Technology Data Exchange (ETDEWEB)

    Aleksiejūnas, R.; Gelžinytė, K.; Nargelas, S., E-mail: saulius.nargelas@ff.vu.lt; Jarašiūnas, K. [Department of Semiconductor Optoelectronics, Institute of Applied Research, Vilnius University, Saulėtekio 9–III, 10222 Vilnius (Lithuania); Vengris, M. [Laser Research Center, Vilnius University, Saulėtekio 10, 10223 Vilnius (Lithuania); Armour, E. A.; Byrnes, D. P.; Arif, R. A.; Lee, S. M.; Papasouliotis, G. D. [Veeco Instruments, Turbodisc Operations, 394 Elizabeth Avenue, Somerset, New Jersey 08873 (United States)

    2014-01-13

    We report on diffusion-driven and excitation-dependent carrier recombination rate in multiple InGaN/GaN quantum wells by using photoluminescence, light-induced absorption, and diffraction techniques. We demonstrate gradually increasing with excitation carrier diffusivity and its correlation with the recombination rate. At low carrier densities, an increase in radiative emission and carrier lifetime was observed due to partial saturation of non-radiative recombination centers. However, at carrier densities above ∼5 × 10{sup 18} cm{sup −3}, a typical value of photoluminescence efficiency droop, a further increase of diffusivity forces the delocalized carriers to face higher number of fast non-radiative recombination centers leading to an increase of non-radiative losses.

  2. Energy diffusion in strongly driven quantum chaotic systems: the role of correlations of the matrix elements

    International Nuclear Information System (INIS)

    Elyutin, P V; Rubtsov, A N

    2008-01-01

    The energy evolution of a quantum chaotic system under the perturbation that harmonically depends on time is studied for the case of large perturbation, in which the rate of transition calculated from the Fermi golden rule (FGR) is about or exceeds the frequency of perturbation. For this case, the models of the Hamiltonian with random non-correlated matrix elements demonstrate that the energy evolution retains its diffusive character, but the rate of diffusion increases slower than the square of the magnitude of perturbation, thus destroying the quantum-classical correspondence for the energy diffusion and the energy absorption in the classical limit ℎ → 0. The numerical calculation carried out for a model built from the first principles (the quantum analog of the Pullen-Edmonds oscillator) demonstrates that the evolving energy distribution, apart from the diffusive component, contains a ballistic one with the energy dispersion that is proportional to the square of time. This component originates from the chains of matrix elements with correlated signs and vanishes if the signs of matrix elements are randomized. The presence of the ballistic component formally extends the applicability of the FGR to the non-perturbative domain and restores the quantum-classical correspondence

  3. Dynamos driven by poloidal flows in untwisted, curved and flat Riemannian diffusive flux tubes

    International Nuclear Information System (INIS)

    De Andrade, L.C.G.

    2010-01-01

    Recently Vishik anti-fast dynamo theorem has been tested against non-stretching flux tubes (Phys. Plasmas, 15 (2008)). In this paper, another anti dynamo theorem, called Cowling's theorem, which states that axisymmetric magnetic fields cannot support dynamo action, is carefully tested against thick tubular and curved Riemannian untwisted flows, as well as thin flux tubes in diffusive and diffusion less media. In the non-diffusive media Cowling's theorem is not violated in thin Riemann-flat untwisted flux tubes, where the Frenet curvature is negative. Nevertheless the diffusion action in the thin flux tube leads to a dynamo action driven by poloidal flows as shown by Love and Gubbins (Geophysical Res., 23 (1996) 857) in the context of geo dynamos. Actually it is shown that a slow dynamo action is obtained. In this case the Frenet and Riemann curvature still vanishes. In the case of magnetic filaments in diffusive media dynamo action is obtained when the Frenet scalar curvature is negative. Since the Riemann curvature tensor can be expressed in terms of the Frenet curvature of the magnetic flux tube axis, this result can be analogous to a recent result obtained by Chicone, Latushkin and Smith, which states that geodesic curvature in compact Riemannian manifolds can drive dynamo action in the manifold. It is also shown that in the absence of diffusion, magnetic energy does not grow but magnetic toroidal magnetic field can be generated by the poloidal field, what is called a plasma dynamo.

  4. Soret-driven double diffusive magneto-convection in couple stress liquid

    Directory of Open Access Journals (Sweden)

    Mishra P.

    2012-07-01

    Full Text Available The stability analysis of Soret driven double diffusive convection for electrically conducting couple stress liquid is investigated theoretically. The couple stress liquid is confined between two horizontal surfaces and a constant vertical magnetic field is applied across the surfaces. Linear stability analysis is used to investigate the effect of various parameters on the onset of convection. Effect of magnetic field on the onset of convection is presented by means of Chandrasekhar number. The problem is analyzed as a function of Chandrasekhar number (Q, positive and negative Soret parameter (S r and couple stress parameter (C, mainly. The results show that the Q, both positive and negative Sr and C delay the onset of convection. The effect of other parameters is also discussed in paper and shown by graphs.

  5. Gaseous diffusion system

    International Nuclear Information System (INIS)

    Garrett, G.A.; Shacter, J.

    1978-01-01

    A gaseous diffusion system is described comprising a plurality of diffusers connected in cascade to form a series of stages, each of the diffusers having a porous partition dividing it into a high pressure chamber and a low pressure chamber, and means for combining a portion of the enriched gas from a succeeding stage with a portion of the enriched gas from the low pressure chamber of each stage and feeding it into one extremity of the high pressure chamber thereof

  6. Data-Driven Diffusion Of Innovations: Successes And Challenges In 3 Large-Scale Innovative Delivery Models.

    Science.gov (United States)

    Dorr, David A; Cohen, Deborah J; Adler-Milstein, Julia

    2018-02-01

    Failed diffusion of innovations may be linked to an inability to use and apply data, information, and knowledge to change perceptions of current practice and motivate change. Using qualitative and quantitative data from three large-scale health care delivery innovations-accountable care organizations, advanced primary care practice, and EvidenceNOW-we assessed where data-driven innovation is occurring and where challenges lie. We found that implementation of some technological components of innovation (for example, electronic health records) has occurred among health care organizations, but core functions needed to use data to drive innovation are lacking. Deficits include the inability to extract and aggregate data from the records; gaps in sharing data; and challenges in adopting advanced data functions, particularly those related to timely reporting of performance data. The unexpectedly high costs and burden incurred during implementation of the innovations have limited organizations' ability to address these and other deficits. Solutions that could help speed progress in data-driven innovation include facilitating peer-to-peer technical assistance, providing tailored feedback reports to providers from data aggregators, and using practice facilitators skilled in using data technology for quality improvement to help practices transform. Policy efforts that promote these solutions may enable more rapid uptake of and successful participation in innovative delivery system reforms.

  7. Design and simulation of a heat transformer of a directly solar-driven diffusion absorption chiller; Auslegung und Simulation von Waermeuebertragern einer direkt solarthermisch angetriebenen Diffusions-Absorptionskaeltemaschine

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Josua; Schmid, Fabian; Spindler, Klaus [Stuttgart Univ. (DE). Inst. fuer Thermodynamik und Waermetechnik (ITW)

    2011-07-01

    The ITW is working on a directly solar-driven diffusion absorption chiller. Solar cooling offers vast potential for saving fossil resources, e.g. owing to the good temporal agreement between insolation and cold demand for cooling of office buildings and domestic buildings. So far, the focus has been on central systems with indirect solar thermal operation. Direct solar thermal plants can be decentral. A diffusion-absorption refrigeration system without mechanical components was constructed. Solvent circulation is achieved by the thermosyphon principle, which makes the plant noiseless, wear-free, and low-maintenance. In the course of a study, a mathematical model of the heat exchangers was established on the basis of the heat transfer equations, and optimisation suggestions for the heat exchanger were identified on this basis. The influence of the pressure gradient - which is decisive -, and the influence of geometry and materials were investigated. The simulations were validated by measurements. Concrete optimisation potentials were identified, and first suggestions were implemented. [German] Am ITW wird intensiv an einer direkt solarthermisch angetriebenen Diffusions-Absorptionskaeltemaschine (DAKM) geforscht. Die solare Kuehlung bietet grosse Potentiale zur Einsparung fossiler Energietraeger. Ein Grund dafuer ist die gute zeitliche Uebereinstimmung zwischen Solarstrahlung und dem Kaeltebedarf fuer die Kuehlung von Wohngebaeuden und Bueros. Bislang standen zentrale und indirekt solarthermisch angetriebene Systeme zur Kaelteerzeugung im Fokus. Die direkt solarthermisch angetriebene Anlage kann auf Grund ihres neuen Konzepts dezentral aufgebaut und betrieben werden. Auf Grundlage des Diffusions-Absorptionskaelteprozesses wurde eine Anlage gebaut, die ohne mechanische Bauteile funktioniert. Der Loesungsmittelumlauf erfolgt durch das Thermosiphonprinzip. Dadurch ist die Anlage im Betrieb geraeuschlos, verschleissfrei und wartungsarm. Im Rahmen einer Studienarbeit

  8. Diffusion driven optofluidic dye lasers encapsulated into polymer chips

    DEFF Research Database (Denmark)

    Wienhold, Tobias; Breithaupt, Felix; Vannahme, Christoph

    2012-01-01

    Lab-on-a-chip systems made of polymers are promising for the integration of active optical elements, enabling e.g. on-chip excitation of fluorescent markers or spectroscopy. In this work we present diffusion operation of tunable optofluidic dye lasers in a polymer foil. We demonstrate that these ......Lab-on-a-chip systems made of polymers are promising for the integration of active optical elements, enabling e.g. on-chip excitation of fluorescent markers or spectroscopy. In this work we present diffusion operation of tunable optofluidic dye lasers in a polymer foil. We demonstrate...... that these first order distributed feedback lasers can be operated for more than 90 min at a pulse repetition rate of 2 Hz without fluidic pumping. Ultra-high output pulse energies of more than 10 μJ and laser thresholds of 2 μJ are achieved for resonator lengths of 3 mm. By introducing comparatively large on......-chip dye solution reservoirs, the required exchange of dye molecules is accomplished solely by diffusion. Polymer chips the size of a microscope cover slip (18 × 18 mm2) were fabricated in batches on a wafer using a commercially available polymer (TOPAS® Cyclic Olefin Copolymer). Thermal imprinting...

  9. Diffusion-driven magnesium and iron isotope fractionation in Hawaiian olivine

    Science.gov (United States)

    Teng, F.-Z.; Dauphas, N.; Helz, R.T.; Gao, S.; Huang, S.

    2011-01-01

    Diffusion plays an important role in Earth sciences to estimate the timescales of geological processes such as erosion, sediment burial, and magma cooling. In igneous systems, these diffusive processes are recorded in the form of crystal zoning. However, meaningful interpretation of these signatures is often hampered by the fact that they cannot be unambiguously ascribed to a single process (e.g., magmatic fractionation, diffusion limited transport in the crystal or in the liquid). Here we show that Mg and Fe isotope fractionations in olivine crystals can be used to trace diffusive processes in magmatic systems. Over sixty olivine fragments from Hawaiian basalts show isotopically fractionated Mg and Fe relative to basalts worldwide, with up to 0.4??? variation in 26Mg/24Mg ratios and 1.6??? variation in 56Fe/54Fe ratios. The linearly and negatively correlated Mg and Fe isotopic compositions [i.e., ??56Fe=(??3.3??0.3)????26Mg], co-variations of Mg and Fe isotopic compositions with Fe/Mg ratios of olivine fragments, and modeling results based on Mg and Fe elemental profiles demonstrate the coupled Mg and Fe isotope fractionation to be a manifestation of Mg-Fe inter-diffusion in zoned olivines during magmatic differentiation. This characteristic can be used to constrain the nature of mineral zoning in igneous and metamorphic rocks, and hence determine the residence times of crystals in magmas, the composition of primary melts, and the duration of metamorphic events. With improvements in methodology, in situ isotope mapping will become an essential tool of petrology to identify diffusion in crystals. ?? 2011 Elsevier B.V.

  10. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow.

    Science.gov (United States)

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2013-01-01

    This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space.

  11. Image classification using multiscale information fusion based on saliency driven nonlinear diffusion filtering.

    Science.gov (United States)

    Hu, Weiming; Hu, Ruiguang; Xie, Nianhua; Ling, Haibin; Maybank, Stephen

    2014-04-01

    In this paper, we propose saliency driven image multiscale nonlinear diffusion filtering. The resulting scale space in general preserves or even enhances semantically important structures such as edges, lines, or flow-like structures in the foreground, and inhibits and smoothes clutter in the background. The image is classified using multiscale information fusion based on the original image, the image at the final scale at which the diffusion process converges, and the image at a midscale. Our algorithm emphasizes the foreground features, which are important for image classification. The background image regions, whether considered as contexts of the foreground or noise to the foreground, can be globally handled by fusing information from different scales. Experimental tests of the effectiveness of the multiscale space for the image classification are conducted on the following publicly available datasets: 1) the PASCAL 2005 dataset; 2) the Oxford 102 flowers dataset; and 3) the Oxford 17 flowers dataset, with high classification rates.

  12. Test-driven modeling of embedded systems

    DEFF Research Database (Denmark)

    Munck, Allan; Madsen, Jan

    2015-01-01

    To benefit maximally from model-based systems engineering (MBSE) trustworthy high quality models are required. From the software disciplines it is known that test-driven development (TDD) can significantly increase the quality of the products. Using a test-driven approach with MBSE may have...... a similar positive effect on the quality of the system models and the resulting products and may therefore be desirable. To define a test-driven model-based systems engineering (TD-MBSE) approach, we must define this approach for numerous sub disciplines such as modeling of requirements, use cases...... suggest that our method provides a sound foundation for rapid development of high quality system models....

  13. Dynamical critical phenomena in driven-dissipative systems.

    Science.gov (United States)

    Sieberer, L M; Huber, S D; Altman, E; Diehl, S

    2013-05-10

    We explore the nature of the Bose condensation transition in driven open quantum systems, such as exciton-polariton condensates. Using a functional renormalization group approach formulated in the Keldysh framework, we characterize the dynamical critical behavior that governs decoherence and an effective thermalization of the low frequency dynamics. We identify a critical exponent special to the driven system, showing that it defines a new dynamical universality class. Hence critical points in driven systems lie beyond the standard classification of equilibrium dynamical phase transitions. We show how the new critical exponent can be probed in experiments with driven cold atomic systems and exciton-polariton condensates.

  14. Pacemaker-driven stochastic resonance on diffusive and complex networks of bistable oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Perc, Matjaz; Gosak, Marko [Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroska cesta 160, SI-2000 Maribor (Slovenia)], E-mail: matjaz.perc@uni-mb.si

    2008-05-15

    We study the phenomenon of stochastic resonance on diffusive, small-world and scale-free networks consisting of bistable overdamped oscillators. Important thereby is the fact that the external subthreshold periodic forcing is introduced only to a single oscillator of the network. Hence, the forcing acts as a pacemaker trying to impose its rhythm on the whole network through the unit to which it is introduced. Without the addition of additive spatiotemporal noise, however, the whole network, including the unit that is directly exposed to the pacemaker, remains trapped forever in one of the two stable steady states of the local dynamics. We show that the correlation between the frequency of subthreshold pacemaker activity and the response of the network is resonantly dependent on the intensity of additive noise. The reported pacemaker-driven stochastic resonance depends most significantly on the coupling strength and the underlying network structure. Namely, the outreach of the pacemaker obeys the classic diffusion law in the case of nearest-neighbor interactions, thus being proportional to the square root of the coupling strength, whereas it becomes superdiffusive by an appropriate small-world or scale-free topology of the interaction network. In particular, the scale-free topology is identified as being optimal for the dissemination of localized rhythmic activity across the whole network. Also, we show that the ratio between the clustering coefficient and the characteristic path length is the crucial quantity defining the ability of a small-world network to facilitate the outreach of the pacemaker-emitted subthreshold rhythm. We additionally confirm these findings by using the FitzHugh-Nagumo excitable system as an alternative to the bistable overdamped oscillator.

  15. Pacemaker-driven stochastic resonance on diffusive and complex networks of bistable oscillators

    International Nuclear Information System (INIS)

    Perc, Matjaz; Gosak, Marko

    2008-01-01

    We study the phenomenon of stochastic resonance on diffusive, small-world and scale-free networks consisting of bistable overdamped oscillators. Important thereby is the fact that the external subthreshold periodic forcing is introduced only to a single oscillator of the network. Hence, the forcing acts as a pacemaker trying to impose its rhythm on the whole network through the unit to which it is introduced. Without the addition of additive spatiotemporal noise, however, the whole network, including the unit that is directly exposed to the pacemaker, remains trapped forever in one of the two stable steady states of the local dynamics. We show that the correlation between the frequency of subthreshold pacemaker activity and the response of the network is resonantly dependent on the intensity of additive noise. The reported pacemaker-driven stochastic resonance depends most significantly on the coupling strength and the underlying network structure. Namely, the outreach of the pacemaker obeys the classic diffusion law in the case of nearest-neighbor interactions, thus being proportional to the square root of the coupling strength, whereas it becomes superdiffusive by an appropriate small-world or scale-free topology of the interaction network. In particular, the scale-free topology is identified as being optimal for the dissemination of localized rhythmic activity across the whole network. Also, we show that the ratio between the clustering coefficient and the characteristic path length is the crucial quantity defining the ability of a small-world network to facilitate the outreach of the pacemaker-emitted subthreshold rhythm. We additionally confirm these findings by using the FitzHugh-Nagumo excitable system as an alternative to the bistable overdamped oscillator

  16. Amplitude equations for a sub-diffusive reaction-diffusion system

    International Nuclear Information System (INIS)

    Nec, Y; Nepomnyashchy, A A

    2008-01-01

    A sub-diffusive reaction-diffusion system with a positive definite memory operator and a nonlinear reaction term is analysed. Amplitude equations (Ginzburg-Landau type) are derived for short wave (Turing) and long wave (Hopf) bifurcation points

  17. Milstein Approximation for Advection-Diffusion Equations Driven by Multiplicative Noncontinuous Martingale Noises

    International Nuclear Information System (INIS)

    Barth, Andrea; Lang, Annika

    2012-01-01

    In this paper, the strong approximation of a stochastic partial differential equation, whose differential operator is of advection-diffusion type and which is driven by a multiplicative, infinite dimensional, càdlàg, square integrable martingale, is presented. A finite dimensional projection of the infinite dimensional equation, for example a Galerkin projection, with nonequidistant time stepping is used. Error estimates for the discretized equation are derived in L 2 and almost sure senses. Besides space and time discretizations, noise approximations are also provided, where the Milstein double stochastic integral is approximated in such a way that the overall complexity is not increased compared to an Euler–Maruyama approximation. Finally, simulations complete the paper.

  18. Geometry-Driven-Diffusion filtering of MR Brain Images using dissimilarities and optimal relaxation parameter

    Energy Technology Data Exchange (ETDEWEB)

    Bajla, Ivan [Austrian Research Centres Sibersdorf, Department of High Performance Image Processing and Video-Technology, A-2444 Seibersdorf (Austria); Hollander, Igor [Institute of information Processing, Austrian Academy of Sciences, Sonnenfelsgasse 19/2, 1010 Wien (Austria)

    1999-12-31

    A novel method of local adapting of the conductance using a pixel dissimilarity measure is developed. An alternative processing methodology is proposed, which is based on intensity gradient histogram calculated for region interiors and boundaries of a phantom which models real MR brain scans. It involves a specific cost function suitable for the calculation of the optimum relaxation parameter Kopt and for the selection of the optimal exponential conductance. Computer experiments for locally adaptive geometry-driven-diffusion filtering of an MR brain phantom have been performed and evaluated. (authors) 6 refs., 3 figs.2 tabs.

  19. Geometry-Driven-Diffusion filtering of MR Brain Images using dissimilarities and optimal relaxation parameter

    International Nuclear Information System (INIS)

    Bajla, Ivan; Hollander, Igor

    1998-01-01

    A novel method of local adapting of the conductance using a pixel dissimilarity measure is developed. An alternative processing methodology is proposed, which is based on intensity gradient histogram calculated for region interiors and boundaries of a phantom which models real MR brain scans. It involves a specific cost function suitable for the calculation of the optimum relaxation parameter Kopt and for the selection of the optimal exponential conductance. Computer experiments for locally adaptive geometry-driven-diffusion filtering of an MR brain phantom have been performed and evaluated. (authors)

  20. Diffusion in ordered binary solid systems

    International Nuclear Information System (INIS)

    Stolwijk, N.A.

    1980-01-01

    This thesis contains contributions to the field of diffusion in ordered binary solid systems. An extensive experimental investigation of the self diffusion in CoGa is presented. The results of these diffusion measurements strongly suggest that a substantial part of the atomic migration is caused by a new type of defect. A quantitative description of the atomic displacements via this defect is given. Finally computer simulations are presented of diffusion and ordering in binary solid systems. (Auth.)

  1. Exploring dynamical complexity in diffusion driven predator-prey systems: Effect of toxin producing phytoplankton and spatial heterogeneities

    International Nuclear Information System (INIS)

    Upadhyay, Ranjit Kumar; Kumari, Nitu; Rai, Vikas

    2009-01-01

    In this paper, dynamical complexities in two reaction-diffusion (RD) model systems are explored. A spatial heterogeneity in the form of linear spatial gradient in the reproductive growth rate of the phytoplankton is incorporated in both the model systems. Extra mortality of the zooplankton due to toxin production by the phytoplankton is included in the second reaction diffusion model system. Effect of toxin production and spatial heterogeneity in the model systems are studied. Toxin production does not seem to have an appreciable effect on the asymptotic dynamics of the model systems. On the other hand, spatial heterogeneity does influence the dynamics. In particular, it increases the frequency of occurrence of chaos as evident from two dimensional parameter scans. Both these model systems display short term recurrent chaos [Rai V. Chaos in natural populations: edge or wedge? Ecol Complex 2004;1: 127-38] as they reside on 'edges of chaos' (EOC) [Rai V, Upadhyay RK. Evolving to the edge of chaos: chance or necessity? Chaos, Solitons and Fractals 2006;30:1074-87]. This suggests that the ecological systems have a tendency to evolve to EOC. The study corroborates the inferences drawn from an earlier study by Rai and Upadhyay [Rai V, Upadhyay RK. Evolving to the edge of chaos: chance or necessity? Chaos, Solitons and Fractals 2006;30:1074-87]. The system's dynamics is largely unpredictable and admits bursts of short-term predictability.

  2. Instability induced by cross-diffusion in reaction-diffusion systems

    DEFF Research Database (Denmark)

    Tian, Canrong; Lin, Zhigui; Pedersen, Michael

    2010-01-01

    In this paper the instability of the uniform equilibrium of a general strongly coupled reaction–diffusion is discussed. In unbounded domain and bounded domain the sufficient conditions for the instability are obtained respectively. The conclusion is applied to the ecosystem, it is shown that cros...... can induce the instability of an equilibrium which is stable for the kinetic system and for the self-diffusion–reaction system.......In this paper the instability of the uniform equilibrium of a general strongly coupled reaction–diffusion is discussed. In unbounded domain and bounded domain the sufficient conditions for the instability are obtained respectively. The conclusion is applied to the ecosystem, it is shown that cross-diffusion...

  3. Self-Adaptive Event-Driven Simulation of Multi-Scale Plasma Systems

    Science.gov (United States)

    Omelchenko, Yuri; Karimabadi, Homayoun

    2005-10-01

    Multi-scale plasmas pose a formidable computational challenge. The explicit time-stepping models suffer from the global CFL restriction. Efficient application of adaptive mesh refinement (AMR) to systems with irregular dynamics (e.g. turbulence, diffusion-convection-reaction, particle acceleration etc.) may be problematic. To address these issues, we developed an alternative approach to time stepping: self-adaptive discrete-event simulation (DES). DES has origin in operations research, war games and telecommunications. We combine finite-difference and particle-in-cell techniques with this methodology by assuming two caveats: (1) a local time increment, dt for a discrete quantity f can be expressed in terms of a physically meaningful quantum value, df; (2) f is considered to be modified only when its change exceeds df. Event-driven time integration is self-adaptive as it makes use of causality rules rather than parametric time dependencies. This technique enables asynchronous flux-conservative update of solution in accordance with local temporal scales, removes the curse of the global CFL condition, eliminates unnecessary computation in inactive spatial regions and results in robust and fast parallelizable codes. It can be naturally combined with various mesh refinement techniques. We discuss applications of this novel technology to diffusion-convection-reaction systems and hybrid simulations of magnetosonic shocks.

  4. Turing instability in reaction-diffusion systems with nonlinear diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Zemskov, E. P., E-mail: zemskov@ccas.ru [Russian Academy of Sciences, Dorodnicyn Computing Center (Russian Federation)

    2013-10-15

    The Turing instability is studied in two-component reaction-diffusion systems with nonlinear diffusion terms, and the regions in parametric space where Turing patterns can form are determined. The boundaries between super- and subcritical bifurcations are found. Calculations are performed for one-dimensional brusselator and oregonator models.

  5. Resonances in a periodically driven bosonic system

    NARCIS (Netherlands)

    Quelle, Anton; de Morais Smith, Cristiane

    2017-01-01

    Periodically driven systems are a common topic in modern physics. In optical lattices specifically, driving is at the origin of many interesting phenomena. However, energy is not conserved in driven systems, and under periodic driving, heating of a system is a real concern. In an effort to better

  6. Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor

    Science.gov (United States)

    Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi

    2018-01-01

    The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.

  7. Diffused sunlight driven highly synergistic pathway for complete mineralization of organic contaminants using reduced graphene oxide supported photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Babu, Sundaram Ganesh; Ramalingam Vinoth [SRM Research Institute, SRM University, Kattankulathur 603203, Chennai, Tamilnadu (India); Neppolian, Bernaurdshaw, E-mail: neppolian.b@res.srmuniv.ac.in [SRM Research Institute, SRM University, Kattankulathur 603203, Chennai, Tamilnadu (India); Dionysiou, Dionysios D. [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Ashokkumar, Muthupandian [The School of Chemistry, University of Melbourne, Parkville, Melbourne, Victoria 3010 (Australia)

    2015-06-30

    Highlights: • Diffused sunlight is firstly used as an effective source for the degradation of organics. • More than 10 fold synergistic effect is achieved by sono-photocatalysis. • rGO enhances the degradation efficiency up to 54% as compared with CuO–TiO{sub 2} alone. • Plausible mechanism and intermediates formed are supported with experimental studies. - Abstract: Diffused sunlight is found to be an effective light source for the efficient degradation and mineralization of organic pollutant (methyl orange as a probe) by sono-photocatalytic degradation using reduced graphene oxide (rGO) supported CuO–TiO{sub 2} photocatalyst. The prepared catalysts are characterized by XRD, XPS, UV–vis DRS, PL, photoelectrochemical, SEM-EDS and TEM. A 10 fold synergy is achieved for the first time by combining sonochemical and photocatalytic degradation under diffused sunlight. rGO loading augments the activity of bare CuO–TiO{sub 2} more than two fold. The ability of rGO in storing, transferring, and shuttling electrons at the heterojunction between TiO{sub 2} and CuO facilitates the separation of photogenerated electron–hole pairs, as evidenced by the photoluminescence results. The complete mineralization of MO and the by-products within a short span of time is confirmed by TOC analysis. Further, hydroxyl radical mediated degradation under diffused sunlight is confirmed by LC–MS. This system shows similar activity for the degradation of methylene blue and 4-chlorophenol indicating the versatility of the catalyst for the degradation of various pollutants. This investigation is likely to open new possibilities for the development of highly efficient diffused sunlight driven TiO{sub 2} based photocatalysts for the complete mineralization of organic contaminants.

  8. On fusion driven systems (FDS) for transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Aagren, O (Uppsala Univ., Aangstroem laboratory, div. of electricity, Uppsala (Sweden)); Moiseenko, V.E. (Inst. of Plasma Physics, National Science Center, Kharkov Inst. of Physics and Technology, Kharkov (Ukraine)); Noack, K. (Forschungszentrum Dresden-Rossendorf (Germany))

    2008-10-15

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  9. On fusion driven systems (FDS) for transmutation

    International Nuclear Information System (INIS)

    Aagren, O; Moiseenko, V.E.; Noack, K.

    2008-10-01

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  10. Diffusion tensor magnetic resonance imaging driven growth modeling for radiotherapy target definition in glioblastoma

    DEFF Research Database (Denmark)

    Jensen, Morten B; Guldberg, Trine L; Harbøll, Anja

    2017-01-01

    the microscopic tumor cell spread. Gliomas favor spread along the white matter fiber tracts. Tumor growth models incorporating the MRI diffusion tensors (DTI) allow to account more consistently for the glioma growth. The aim of the study was to investigate the potential of a DTI driven growth model to improve...... target definition in glioblastoma (GBM). MATERIAL AND METHODS: Eleven GBM patients were scanned using T1w, T2w FLAIR, T1w + Gd and DTI. The brain was segmented into white matter, gray matter and cerebrospinal fluid. The Fisher-Kolmogorov growth model was used assuming uniform proliferation...

  11. Microscopic origin and macroscopic implications of lane formation in mixtures of oppositely-driven particles

    Science.gov (United States)

    Whitelam, Stephen

    Colloidal particles of two types, driven in opposite directions, can segregate into lanes. I will describe some results on this phenomenon obtained by simple physical arguments and computer simulations. Laning results from rectification of diffusion on the scale of a particle diameter: oppositely-driven particles must, in the time taken to encounter each other in the direction of the drive, diffuse in the perpendicular direction by about one particle diameter. This geometric constraint implies that the diffusion constant of a particle, in the presence of those of the opposite type, grows approximately linearly with Peclet number, a prediction confirmed by our numerics. Such environment-dependent diffusion is statistically similar to an effective interparticle attraction; consistent with this observation, we find that oppositely-driven colloids display features characteristic of the simplest model system possessing both interparticle attractions and persistent motion, the driven Ising lattice gas. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  12. Relativistic collective diffusion in one-dimensional systems

    Science.gov (United States)

    Lin, Gui-Wu; Lam, Yu-Yiu; Zheng, Dong-Qin; Zhong, Wei-Rong

    2018-05-01

    The relativistic collective diffusion in one-dimensional molecular system is investigated through nonequilibrium molecular dynamics with Monte Carlo methods. We have proposed the relationship among the speed, the temperature, the density distribution and the collective diffusion coefficient of particles in a relativistic moving system. It is found that the relativistic speed of the system has no effect on the temperature, but the collective diffusion coefficient decreases to zero as the velocity of the system approaches to the speed of light. The collective diffusion coefficient is modified as D‧ = D(1 ‑w2 c2 )3 2 for satisfying the relativistic circumstances. The present results may contribute to the understanding of the behavior of the particles transport diffusion in a high speed system, as well as enlighten the study of biological metabolism at relativistic high speed situation.

  13. Phase field study of interfacial diffusion-driven spheroidization in a composite comprized of two mutually insoluble phases

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Liang [Ames Laboratory; Russell, Alan [Ames Laboratory

    2014-03-27

    The phase field approach is a powerful computational technique to simulate morphological and microstructural evolution at the mesoscale. Spheroidization is a frequently observed morphological change of mesoscale heterogeneous structures during annealing. In this study, we used the diffuse interface phase field method to investigate the interfacial diffusion-driven spheroidization of cylindrical rod structures in a composite comprised of two mutually insoluble phases in a two-dimensional case. Perturbation of rod radius along a cylinder's axis has long been known to cause the necessary chemical potential gradient that drives spheroidization of the rod by Lord Rayleigh's instability theory. This theory indicates that a radius perturbation wavelength larger than the initial rod circumference would lead to cylindrical spheroidization. We investigated the effect of perturbation wavelength, interfacial energy, volume diffusion, phase composition, and interfacial percentage on the kinetics of spheroidization. The results match well with both the Rayleigh's instability criterion and experimental observations.

  14. Development of a direct solar driven diffusion absorption chiller; Entwicklung einer direkt solarthermisch angetriebenen Diffusions-Absorptionskaeltemaschine

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Fabian; Bierling, Bernd; Spindler, Klaus [Stuttgart Univ. (Germany). Inst. fuer Thermodynamik und Waermetechnik (ITW)

    2013-03-15

    At the ITW, a decentralized solar cooling system is developed based on the diffusion-absorption refrigeration cycle. The generator and the bubble pump of the process are integrated in a solar collector, and therefore directly heated. The main research focus after reaching a stable operation of the system is a detailed investigation of the auxiliary gas circuit. (orig.)

  15. Thermodynamic stability of driven open systems and control of phase separation by electro-autocatalysis.

    Science.gov (United States)

    Bazant, Martin Z

    2017-07-01

    Motivated by the possibility of electrochemical control of phase separation, a variational theory of thermodynamic stability is developed for driven reactive mixtures, based on a nonlinear generalization of the Cahn-Hilliard and Allen-Cahn equations. The Glansdorff-Prigogine stability criterion is extended for driving chemical work, based on variations of nonequilibrium Gibbs free energy. Linear stability is generally determined by the competition of chemical diffusion and driven autocatalysis. Novel features arise for electrochemical systems, related to controlled total current (galvanostatic operation), concentration-dependent exchange current (Butler-Volmer kinetics), and negative differential reaction resistance (Marcus kinetics). The theory shows how spinodal decomposition can be controlled by solo-autocatalytic charge transfer, with only a single faradaic reaction. Experimental evidence is presented for intercalation and electrodeposition in rechargeable batteries, and further applications are discussed in solid state ionics, electrovariable optics, electrochemical precipitation, and biological pattern formation.

  16. A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Alex M.; Gülder, Ömer L. [Institute for Aerospace Studies, University of Toronto, Toronto, Ontario M3H 5T6 (Canada)

    2016-05-15

    Optical diagnostics and physical probing of the soot processes in high pressure combustion pose challenges that are not faced in atmospheric flames. One of the preferred methods of studying soot in atmospheric flames is in situ thermophoretic sampling followed by transmission electron microscopy imaging and analysis for soot sizing and morphology. The application of this method of sampling to high pressures has been held back by various operational and mechanical problems. In this work, we describe a rotating disk multi-probe thermophoretic soot sampling system, driven by a microstepping stepper motor, fitted into a high-pressure chamber capable of producing sooting laminar diffusion flames up to 100 atm. Innovative aspects of the sampling system design include an easy and precise control of the sampling time down to 2.6 ms, avoidance of the drawbacks of the pneumatic drivers used in conventional thermophoretic sampling systems, and the capability to collect ten consecutive samples in a single experimental run. Proof of principle experiments were performed using this system in a laminar diffusion flame of methane, and primary soot diameter distributions at various pressures up to 10 atm were determined. High-speed images of the flame during thermophoretic sampling were recorded to assess the influence of probe intrusion on the flow field of the flame.

  17. Shock propagation in locally driven granular systems

    Science.gov (United States)

    Joy, Jilmy P.; Pathak, Sudhir N.; Das, Dibyendu; Rajesh, R.

    2017-09-01

    We study shock propagation in a system of initially stationary hard spheres that is driven by a continuous injection of particles at the origin. The disturbance created by the injection of energy spreads radially outward through collisions between particles. Using scaling arguments, we determine the exponent characterizing the power-law growth of this disturbance in all dimensions. The scaling functions describing the various physical quantities are determined using large-scale event-driven simulations in two and three dimensions for both elastic and inelastic systems. The results are shown to describe well the data from two different experiments on granular systems that are similarly driven.

  18. Second-Order Multiagent Systems with Event-Driven Consensus Control

    Directory of Open Access Journals (Sweden)

    Jiangping Hu

    2013-01-01

    Full Text Available Event-driven control scheduling strategies for multiagent systems play a key role in future use of embedded microprocessors of limited resources that gather information and actuate the agent control updates. In this paper, a distributed event-driven consensus problem is considered for a multi-agent system with second-order dynamics. Firstly, two kinds of event-driven control laws are, respectively, designed for both leaderless and leader-follower systems. Then, the input-to-state stability of the closed-loop multi-agent system with the proposed event-driven consensus control is analyzed and the bound of the inter-event times is ensured. Finally, some numerical examples are presented to validate the proposed event-driven consensus control.

  19. Diffusion between evolving interfaces

    International Nuclear Information System (INIS)

    Juntunen, Janne; Merikoski, Juha

    2010-01-01

    Diffusion in an evolving environment is studied by continuous-time Monte Carlo simulations. Diffusion is modeled by continuous-time random walkers on a lattice, in a dynamic environment provided by bubbles between two one-dimensional interfaces driven symmetrically towards each other. For one-dimensional random walkers constrained by the interfaces, the bubble size distribution dominates diffusion. For two-dimensional random walkers, it is also controlled by the topography and dynamics of the interfaces. The results of the one-dimensional case are recovered in the limit where the interfaces are strongly driven. Even with simple hard-core repulsion between the interfaces and the particles, diffusion is found to depend strongly on the details of the dynamical rules of particles close to the interfaces.

  20. Comments to accelerator-driven system

    International Nuclear Information System (INIS)

    Taka aki, Matsumoto

    2003-01-01

    Accelerator-driven system (ADS) that was a subcritical nuclear reactor driven by a high power proton accelerator was recently studied by several large organisations over the world. This paper described two comments for ADS: philosophical and technological ones. The latter was made from a view point of micro ball lightning (BL) that was newly discovered by the author. Negative and positive aspects of micro BL for ADS were discussed. (author)

  1. Diffusion-assisted selective dynamical recoupling: A new approach to measure background gradients in magnetic resonance

    Science.gov (United States)

    Álvarez, Gonzalo A.; Shemesh, Noam; Frydman, Lucio

    2014-02-01

    Dynamical decoupling, a generalization of the original NMR spin-echo sequence, is becoming increasingly relevant as a tool for reducing decoherence in quantum systems. Such sequences apply non-equidistant refocusing pulses for optimizing the coupling between systems, and environmental fluctuations characterized by a given noise spectrum. One such sequence, dubbed Selective Dynamical Recoupling (SDR) [P. E. S. Smith, G. Bensky, G. A. Álvarez, G. Kurizki, and L. Frydman, Proc. Natl. Acad. Sci. 109, 5958 (2012)], allows one to coherently reintroduce diffusion decoherence effects driven by fluctuations arising from restricted molecular diffusion [G. A. Álvarez, N. Shemesh, and L. Frydman, Phys. Rev. Lett. 111, 080404 (2013)]. The fully-refocused, constant-time, and constant-number-of-pulses nature of SDR also allows one to filter out "intrinsic" T1 and T2 weightings, as well as pulse errors acting as additional sources of decoherence. This article explores such features when the fluctuations are now driven by unrestricted molecular diffusion. In particular, we show that diffusion-driven SDR can be exploited to investigate the decoherence arising from the frequency fluctuations imposed by internal gradients. As a result, SDR presents a unique way of probing and characterizing these internal magnetic fields, given an a priori known free diffusion coefficient. This has important implications in studies of structured systems, including porous media and live tissues, where the internal gradients may serve as fingerprints for the system's composition or structure. The principles of this method, along with full analytical solutions for the unrestricted diffusion-driven modulation of the SDR signal, are presented. The potential of this approach is demonstrated with the generation of a novel source of MRI contrast, based on the background gradients active in an ex vivo mouse brain. Additional features and limitations of this new method are discussed.

  2. Diffusion-assisted selective dynamical recoupling: A new approach to measure background gradients in magnetic resonance

    International Nuclear Information System (INIS)

    Álvarez, Gonzalo A.; Shemesh, Noam; Frydman, Lucio

    2014-01-01

    Dynamical decoupling, a generalization of the original NMR spin-echo sequence, is becoming increasingly relevant as a tool for reducing decoherence in quantum systems. Such sequences apply non-equidistant refocusing pulses for optimizing the coupling between systems, and environmental fluctuations characterized by a given noise spectrum. One such sequence, dubbed Selective Dynamical Recoupling (SDR) [P. E. S. Smith, G. Bensky, G. A. Álvarez, G. Kurizki, and L. Frydman, Proc. Natl. Acad. Sci. 109, 5958 (2012)], allows one to coherently reintroduce diffusion decoherence effects driven by fluctuations arising from restricted molecular diffusion [G. A. Álvarez, N. Shemesh, and L. Frydman, Phys. Rev. Lett. 111, 080404 (2013)]. The fully-refocused, constant-time, and constant-number-of-pulses nature of SDR also allows one to filter out “intrinsic” T 1 and T 2 weightings, as well as pulse errors acting as additional sources of decoherence. This article explores such features when the fluctuations are now driven by unrestricted molecular diffusion. In particular, we show that diffusion-driven SDR can be exploited to investigate the decoherence arising from the frequency fluctuations imposed by internal gradients. As a result, SDR presents a unique way of probing and characterizing these internal magnetic fields, given an a priori known free diffusion coefficient. This has important implications in studies of structured systems, including porous media and live tissues, where the internal gradients may serve as fingerprints for the system's composition or structure. The principles of this method, along with full analytical solutions for the unrestricted diffusion-driven modulation of the SDR signal, are presented. The potential of this approach is demonstrated with the generation of a novel source of MRI contrast, based on the background gradients active in an ex vivo mouse brain. Additional features and limitations of this new method are discussed

  3. Oscillatory pulses and wave trains in a bistable reaction-diffusion system with cross diffusion.

    Science.gov (United States)

    Zemskov, Evgeny P; Tsyganov, Mikhail A; Horsthemke, Werner

    2017-01-01

    We study waves with exponentially decaying oscillatory tails in a reaction-diffusion system with linear cross diffusion. To be specific, we consider a piecewise linear approximation of the FitzHugh-Nagumo model, also known as the Bonhoeffer-van der Pol model. We focus on two types of traveling waves, namely solitary pulses that correspond to a homoclinic solution, and sequences of pulses or wave trains, i.e., a periodic solution. The effect of cross diffusion on wave profiles and speed of propagation is analyzed. We find the intriguing result that both pulses and wave trains occur in the bistable cross-diffusive FitzHugh-Nagumo system, whereas only fronts exist in the standard bistable system without cross diffusion.

  4. Diffusion and particle mobility in 1D system

    International Nuclear Information System (INIS)

    Borman, V.D.; Johansson, B.; Skorodumova, N.V.; Tronin, I.V.; Tronin, V.N.; Troyan, V.I.

    2006-01-01

    The transport properties of one-dimensional (1D) systems have been studied theoretically. Contradictory experimental results on molecular transport in quasi-1D systems, such as zeolite structures, when both diffusion transport acceleration and the existence of the diffusion mode with lower particle mobility (single-file diffusion ( 2 >∼t 1/2 )) have been reported, are consolidated in a consistent model. Transition from the single-file diffusion mode to an Einstein-like diffusion 2 >∼t with diffusion coefficient increasing with the density has been predicted to occur at large observation times

  5. Microscopic origin and macroscopic implications of lane formation in mixtures of oppositely driven particles

    Science.gov (United States)

    Klymko, Katherine; Geissler, Phillip L.; Whitelam, Stephen

    2016-08-01

    Colloidal particles of two types, driven in opposite directions, can segregate into lanes [Vissers et al., Soft Matter 7, 2352 (2011), 10.1039/c0sm01343a]. This phenomenon can be reproduced by two-dimensional Brownian dynamics simulations of model particles [Dzubiella et al., Phys. Rev. E 65, 021402 (2002), 10.1103/PhysRevE.65.021402]. Here we use computer simulation to assess the generality of lane formation with respect to variation of particle type and dynamical protocol. We find that laning results from rectification of diffusion on the scale of a particle diameter: oppositely driven particles must, in the time taken to encounter each other in the direction of the drive, diffuse in the perpendicular direction by about one particle diameter. This geometric constraint implies that the diffusion constant of a particle, in the presence of those of the opposite type, grows approximately linearly with the Péclet number, a prediction confirmed by our numerics over a range of model parameters. Such environment-dependent diffusion is statistically similar to an effective interparticle attraction; consistent with this observation, we find that oppositely driven nonattractive colloids display features characteristic of the simplest model system possessing both interparticle attractions and persistent motion, the driven Ising lattice gas [Katz, Leibowitz, and Spohn, J. Stat. Phys. 34, 497 (1984), 10.1007/BF01018556]. These features include long-ranged correlations in the disordered regime, a critical regime characterized by a change in slope of the particle current with the Péclet number, and fluctuations that grow with system size. By analogy, we suggest that lane formation in the driven colloid system is a phase transition in the macroscopic limit, but that macroscopic phase separation would not occur in finite time upon starting from disordered initial conditions.

  6. Turing instability for a competitor-competitor-mutualist model with nonlinear cross-diffusion effects

    International Nuclear Information System (INIS)

    Wen, Zijuan; Fu, Shengmao

    2016-01-01

    This paper deals with a strongly coupled reaction-diffusion system modeling a competitor-competitor-mutualist three-species model with diffusion, self-diffusion and nonlinear cross-diffusion and subject to Neumann boundary conditions. First, we establish the persistence of a corresponding reaction-diffusion system without self- and cross-diffusion. Second, the global asymptotic stability of the unique positive equilibrium for weakly coupled PDE system is established by using a comparison method. Moreover, under certain conditions about the intra- and inter-species effects, we prove that the uniform positive steady state is linearly unstable for the cross-diffusion system when one of the cross-diffusions is large enough. The results indicate that Turing instability can be driven solely from strong diffusion effect of the first species (or the second species or the third species) due to the pressure of the second species (or the first species).

  7. Resonances in a periodically driven bosonic system

    Science.gov (United States)

    Quelle, Anton; Smith, Cristiane Morais

    2017-11-01

    Periodically driven systems are a common topic in modern physics. In optical lattices specifically, driving is at the origin of many interesting phenomena. However, energy is not conserved in driven systems, and under periodic driving, heating of a system is a real concern. In an effort to better understand this phenomenon, the heating of single-band systems has been studied, with a focus on disorder- and interaction-induced effects, such as many-body localization. Nevertheless, driven systems occur in a much wider context than this, leaving room for further research. Here, we fill this gap by studying a noninteracting model, characterized by discrete, periodically spaced energy levels that are unbounded from above. We couple these energy levels resonantly through a periodic drive, and discuss the heating dynamics of this system as a function of the driving protocol. In this way, we show that a combination of stimulated emission and absorption causes the presence of resonant stable states. This will serve to elucidate the conditions under which resonant driving causes heating in quantum systems.

  8. Resonances in a periodically driven bosonic system.

    Science.gov (United States)

    Quelle, Anton; Smith, Cristiane Morais

    2017-11-01

    Periodically driven systems are a common topic in modern physics. In optical lattices specifically, driving is at the origin of many interesting phenomena. However, energy is not conserved in driven systems, and under periodic driving, heating of a system is a real concern. In an effort to better understand this phenomenon, the heating of single-band systems has been studied, with a focus on disorder- and interaction-induced effects, such as many-body localization. Nevertheless, driven systems occur in a much wider context than this, leaving room for further research. Here, we fill this gap by studying a noninteracting model, characterized by discrete, periodically spaced energy levels that are unbounded from above. We couple these energy levels resonantly through a periodic drive, and discuss the heating dynamics of this system as a function of the driving protocol. In this way, we show that a combination of stimulated emission and absorption causes the presence of resonant stable states. This will serve to elucidate the conditions under which resonant driving causes heating in quantum systems.

  9. PC driven integrated vacuum system

    International Nuclear Information System (INIS)

    Curuia, M.; Culcer, M.; Brandea, I.; Anghel, M.

    2001-01-01

    The paper presents a integrated vacuum system which was designed and manufactured in our institute. The main parts of this system are the power supply unit for turbo-melecular pumps and the vacuummeter. Both parts of the system are driven by means of a personal computer using a serial communication, according to the RS 232 hardware standard.(author)

  10. Problems in the neutron dynamics of source-driven systems

    International Nuclear Information System (INIS)

    Ravetto, P.

    2001-01-01

    The present paper presents some neutronic features of source-driven neutron multiplying systems, with special regards to dynamics, discussing the validity and limitations of classical methods, developed for systems in the vicinity of criticality. Specific characteristics, such as source dominance and the role of delayed neutron emissions are illustrated. Some dynamic peculiarities of innovative concepts proposed for accelerator-driven systems, such as fluid-fuel, are also discussed. The second portion of the work formulates the quasi-static methods for source-driven systems, evidencing its novel features and presenting some numerical results. (author)

  11. Classical and quantum dynamics of driven elliptical billiards

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Florian

    2009-12-09

    Subject of this thesis is the investigation of the classical dynamics of the driven elliptical billiard and the development of a numerical method allowing the propagation of arbitrary initial states in the quantum version of the system. In the classical case, we demonstrate that there is Fermi acceleration in the driven billiard. The corresponding transport process in momentum space shows a surprising crossover from sub- to normal diffusion. This crossover is not parameter induced, but rather occurs dynamically in the evolution of the ensemble. The four-dimensional phase space is analyzed in depth, especially how its composition changes in different velocity regimes. We show that the stickiness properties, which eventually determine the diffusion, are intimately connected with this change of the composition of the phase space with respect to velocity. In the course of the evolution, the accelerating ensemble thus explores regions of varying stickiness, leading to the mentioned crossover in the diffusion. In the quantum case, a series of transformations tailored to the elliptical billiard is applied to circumvent the time-dependent Dirichlet boundary conditions. By means of an expansion ansatz, this eventually yields a large system of coupled ordinary differential equations, which can be solved by standard techniques. (orig.)

  12. Classical and quantum dynamics of driven elliptical billiards

    International Nuclear Information System (INIS)

    Lenz, Florian

    2009-01-01

    Subject of this thesis is the investigation of the classical dynamics of the driven elliptical billiard and the development of a numerical method allowing the propagation of arbitrary initial states in the quantum version of the system. In the classical case, we demonstrate that there is Fermi acceleration in the driven billiard. The corresponding transport process in momentum space shows a surprising crossover from sub- to normal diffusion. This crossover is not parameter induced, but rather occurs dynamically in the evolution of the ensemble. The four-dimensional phase space is analyzed in depth, especially how its composition changes in different velocity regimes. We show that the stickiness properties, which eventually determine the diffusion, are intimately connected with this change of the composition of the phase space with respect to velocity. In the course of the evolution, the accelerating ensemble thus explores regions of varying stickiness, leading to the mentioned crossover in the diffusion. In the quantum case, a series of transformations tailored to the elliptical billiard is applied to circumvent the time-dependent Dirichlet boundary conditions. By means of an expansion ansatz, this eventually yields a large system of coupled ordinary differential equations, which can be solved by standard techniques. (orig.)

  13. Diffuse endocrine system, neuroendocrine tumors and immunity: what's new?

    Science.gov (United States)

    Ameri, Pietro; Ferone, Diego

    2012-01-01

    During the last two decades, research into the modulation of immunity by the neuroendocrine system has flourished, unravelling significant effects of several neuropeptides, including somatostatin (SRIH), and especially cortistatin (CST), on immune cells. Scientists have learnt that the diffuse neuroendocrine system can regulate the immune system at all its levels: innate immunity, adaptive immunity, and maintenance of immune tolerance. Compelling studies with animal models have demonstrated that some neuropeptides may be effective in treating inflammatory disorders, such as sepsis, and T helper 1-driven autoimmune diseases, like Crohn's disease and rheumatoid arthritis. Here, the latest findings concerning the neuroendocrine control of the immune system are discussed, with emphasis on SRIH and CST. The second part of the review deals with the immune response to neuroendocrine tumors (NETs). The anti-NET immune response has been described in the last years and it is still being characterized, similarly to what is happening for several other types of cancer. In parallel with investigations addressing the mechanisms by which the immune system contrasts NET growth and spreading, ground-breaking clinical trials of dendritic cell vaccination as immunotherapy for metastatic NETs have shown in principle that the immune reaction to NETs can be exploited for treatment. Copyright © 2012 S. Karger AG, Basel.

  14. Diffusion in Deterministic Interacting Lattice Systems

    Science.gov (United States)

    Medenjak, Marko; Klobas, Katja; Prosen, Tomaž

    2017-09-01

    We study reversible deterministic dynamics of classical charged particles on a lattice with hard-core interaction. It is rigorously shown that the system exhibits three types of transport phenomena, ranging from ballistic, through diffusive to insulating. By obtaining an exact expressions for the current time-autocorrelation function we are able to calculate the linear response transport coefficients, such as the diffusion constant and the Drude weight. Additionally, we calculate the long-time charge profile after an inhomogeneous quench and obtain diffusive profilewith the Green-Kubo diffusion constant. Exact analytical results are corroborated by Monte Carlo simulations.

  15. Nonlinear analysis of a reaction-diffusion system: Amplitude equations

    Energy Technology Data Exchange (ETDEWEB)

    Zemskov, E. P., E-mail: zemskov@ccas.ru [Russian Academy of Sciences, Dorodnicyn Computing Center (Russian Federation)

    2012-10-15

    A reaction-diffusion system with a nonlinear diffusion term is considered. Based on nonlinear analysis, the amplitude equations are obtained in the cases of the Hopf and Turing instabilities in the system. Turing pattern-forming regions in the parameter space are determined for supercritical and subcritical instabilities in a two-component reaction-diffusion system.

  16. A gradient structure for reaction–diffusion systems and for energy-drift-diffusion systems

    International Nuclear Information System (INIS)

    Mielke, Alexander

    2011-01-01

    In recent years the theory of the Wasserstein metric has opened up new treatments of diffusion equations as gradient systems, where the free energy or entropy take the role of the driving functional and where the space is equipped with the Wasserstein metric. We show on the formal level that this gradient structure can be generalized to reaction–diffusion systems with reversible mass-action kinetic. The metric is constructed using the dual dissipation potential, which is a quadratic functional of all chemical potentials including the mobilities as well as the reaction kinetics. The metric structure is obtained by Legendre transform from the dual dissipation potential. The same ideas extend to systems including electrostatic interactions or a correct energy balance via coupling to the heat equation. We show this by treating the semiconductor equations involving the electron and hole densities, the electrostatic potential, and the temperature. Thus, the models in Albinus et al (2002 Nonlinearity 15 367–83), which stimulated this work, have a gradient structure

  17. Improvement in performance of a direct solar-thermally driven diffusion-absorption refrigerator; Leistungssteigerung einer direkt solarthermisch angetriebenen Diffusions-Absorptionskaeltemaschine

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Fabian; Bierling, Bernd; Spindler, Klaus [Stuttgart Univ. (Germany). Inst. fuer Thermodynamik und Waermetechnik (ITW)

    2012-07-01

    The diffusion-absorption refrigeration process offers the possibility of a wear-free refrigeration system without electricity and noise. At the Institute for Thermodynamics and Thermal Engineering (Stuttgart, Federal Republic of Germany), a decentralized solar refrigeration system is developed based on this process. The expeller and the thermosiphon pump of this process are integrated in the collector, and thus are heated directly. The diffusion-absorption refrigeration process also can be used for domestic water heating by means of a second cycle in the collector. A cooling capacity of 400 W is to be achieved for each solar collector (2.5 m{sup 2}). Several refrigeration systems can be modular interconnected for higher cooling capacities. As part of the DKV Conference 2011, the construction of the plant, the first measurement data and results were presented. Since then, both the cooling capacity and the coefficient of performance of the diffusion-absorption refrigeration system could be increased significantly. For this, solvent heat exchanger, evaporator, absorber and gas heat exchanger have been optimized in terms of system efficiency. In addition, a stable system operation could be achieved by means of a bypass line. About this line, an exaggerated refrigerant already is removed in the solvent heat exchanger. In addition, a condensate pre-cooler was integrated in order to increase the efficiency. For a detailed investigation of the auxiliary gas cycle facilities, the volume flow and the concentration of the auxiliary gas circuit were examined under utilization of an ultrasonic sensor. In order to evaluate the influence factors by means of a parametric study, the mass transfer in the auxiliary gas circuit was simulated using the two-fluid model. The results of these studies, the current system configuration and the current results are presented in the contribution under consideration.

  18. Deformation-driven diffusion and plastic flow in amorphous granular pillars.

    Science.gov (United States)

    Li, Wenbin; Rieser, Jennifer M; Liu, Andrea J; Durian, Douglas J; Li, Ju

    2015-06-01

    We report a combined experimental and simulation study of deformation-induced diffusion in compacted quasi-two-dimensional amorphous granular pillars, in which thermal fluctuations play a negligible role. The pillars, consisting of bidisperse cylindrical acetal plastic particles standing upright on a substrate, are deformed uniaxially and quasistatically by a rigid bar moving at a constant speed. The plastic flow and particle rearrangements in the pillars are characterized by computing the best-fit affine transformation strain and nonaffine displacement associated with each particle between two stages of deformation. The nonaffine displacement exhibits exponential crossover from ballistic to diffusive behavior with respect to the cumulative deviatoric strain, indicating that in athermal granular packings, the cumulative deviatoric strain plays the role of time in thermal systems and drives effective particle diffusion. We further study the size-dependent deformation of the granular pillars by simulation, and find that different-sized pillars follow self-similar shape evolution during deformation. In addition, the yield stress of the pillars increases linearly with pillar size. Formation of transient shear lines in the pillars during deformation becomes more evident as pillar size increases. The width of these elementary shear bands is about twice the diameter of a particle, and does not vary with pillar size.

  19. Diffusion tensor magnetic resonance imaging driven growth modeling for radiotherapy target definition in glioblastoma.

    Science.gov (United States)

    Jensen, Morten B; Guldberg, Trine L; Harbøll, Anja; Lukacova, Slávka; Kallehauge, Jesper F

    2017-11-01

    The clinical target volume (CTV) in radiotherapy is routinely based on gadolinium contrast enhanced T1 weighted (T1w + Gd) and T2 weighted fluid attenuated inversion recovery (T2w FLAIR) magnetic resonance imaging (MRI) sequences which have been shown to over- or underestimate the microscopic tumor cell spread. Gliomas favor spread along the white matter fiber tracts. Tumor growth models incorporating the MRI diffusion tensors (DTI) allow to account more consistently for the glioma growth. The aim of the study was to investigate the potential of a DTI driven growth model to improve target definition in glioblastoma (GBM). Eleven GBM patients were scanned using T1w, T2w FLAIR, T1w + Gd and DTI. The brain was segmented into white matter, gray matter and cerebrospinal fluid. The Fisher-Kolmogorov growth model was used assuming uniform proliferation and a difference in white and gray matter diffusion of a ratio of 10. The tensor directionality was tested using an anisotropy weighting parameter set to zero (γ0) and twenty (γ20). The volumetric comparison was performed using Hausdorff distance, Dice similarity coefficient (DSC) and surface area. The median of the standard CTV (CTVstandard) was 180 cm 3 . The median surface area of CTVstandard was 211 cm 2 . The median surface area of respective CTV γ0 and CTV γ20 significantly increased to 338 and 376 cm 2 , respectively. The Hausdorff distance was greater than zero and significantly increased for both CTV γ0 and CTV γ20 with respective median of 18.7 and 25.2 mm. The DSC for both CTV γ0 and CTV γ20 were significantly below one with respective median of 0.74 and 0.72, which means that 74 and 72% of CTVstandard were included in CTV γ0 and CTV γ20, respectively. DTI driven growth models result in CTVs with a significantly increased surface area, a significantly increased Hausdorff distance and decreased overlap between the standard and model derived volume.

  20. Vlasov dynamics of periodically driven systems

    Science.gov (United States)

    Banerjee, Soumyadip; Shah, Kushal

    2018-04-01

    Analytical solutions of the Vlasov equation for periodically driven systems are of importance in several areas of plasma physics and dynamical systems and are usually approximated using ponderomotive theory. In this paper, we derive the plasma distribution function predicted by ponderomotive theory using Hamiltonian averaging theory and compare it with solutions obtained by the method of characteristics. Our results show that though ponderomotive theory is relatively much easier to use, its predictions are very restrictive and are likely to be very different from the actual distribution function of the system. We also analyse all possible initial conditions which lead to periodic solutions of the Vlasov equation for periodically driven systems and conjecture that the irreducible polynomial corresponding to the initial condition must only have squares of the spatial and momentum coordinate. The resulting distribution function for other initial conditions is aperiodic and can lead to complex relaxation processes within the plasma.

  1. Diffusion and mixing in gravity-driven dense granular flows.

    Science.gov (United States)

    Choi, Jaehyuk; Kudrolli, Arshad; Rosales, Rodolfo R; Bazant, Martin Z

    2004-04-30

    We study the transport properties of particles draining from a silo using imaging and direct particle tracking. The particle displacements show a universal transition from superdiffusion to normal diffusion, as a function of the distance fallen, independent of the flow speed. In the superdiffusive (but sub-ballistic) regime, which occurs before a particle falls through its diameter, the displacements have fat-tailed and anisotropic distributions. In the diffusive regime, we observe very slow cage breaking and Péclet numbers of order 100, contrary to the only previous microscopic model (based on diffusing voids). Overall, our experiments show that diffusion and mixing are dominated by geometry, consistent with long-lasting contacts but not thermal collisions, as in normal fluids.

  2. From State Dependent Diffusion to Constant Diffusion in Stochastic Differential Equations by the Lamperti Transform

    DEFF Research Database (Denmark)

    Møller, Jan Kloppenborg; Madsen, Henrik

    the Lamperti transform. This note gives an example driven introduction to the Lamperti transform. The general applicability of the Lamperti transform is limited to univariate diffusion processes, but for a restricted class of multivariate diffusion processes Lamperti type transformations are available...

  3. The fluctuation–dissipation relation in sub-diffusive systems: the case of granular single-file diffusion

    International Nuclear Information System (INIS)

    Villamaina, D; Puglisi, A; Vulpiani, A

    2008-01-01

    We study a gas of hard rods on a ring, driven by an external thermostat, with either elastic or inelastic collisions, which exhibits sub-diffusive behavior, 2 > ∼ t 1/2 . We show the validity of the usual fluctuation–dissipation (FD) relation, i.e. the proportionality between the response function and the correlation function, when the gas is elastic or diluted. In contrast, in strongly inelastic or dense cases, when the tracer velocity is no longer independent of the other degrees of freedom, the Einstein formula fails and must be replaced by a more general FD relation. (letter)

  4. Nonlinear degenerate cross-diffusion systems with nonlocal interaction

    OpenAIRE

    Di Francesco, M.; Esposito, A.; Fagioli, S.

    2017-01-01

    We investigate a class of systems of partial differential equations with nonlinear cross-diffusion and nonlocal interactions, which are of interest in several contexts in social sciences, finance, biology, and real world applications. Assuming a uniform "coerciveness" assumption on the diffusion part, which allows to consider a large class of systems with degenerate cross-diffusion (i.e. of porous medium type) and relaxes sets of assumptions previously considered in the literature, we prove g...

  5. Noise-driven phenomena in hysteretic systems

    CERN Document Server

    Dimian, Mihai

    2014-01-01

    Noise-Driven Phenomena in Hysteretic Systems provides a general approach to nonlinear systems with hysteresis driven by noisy inputs, which leads to a unitary framework for the analysis of various stochastic aspects of hysteresis. This book includes integral, differential and algebraic models that are used to describe scalar and vector hysteretic nonlinearities originating from various areas of science and engineering. The universality of the authors approach is also reflected by the diversity of the models used to portray the input noise, from the classical Gaussian white noise to its impulsive forms, often encountered in economics and biological systems, and pink noise, ubiquitous in multi-stable electronic systems. The book is accompanied by HysterSoft© - a robust simulation environment designed to perform complex hysteresis modeling – that can be used by the reader to reproduce many of the results presented in the book as well as to research both disruptive and constructive effects of noise in hysteret...

  6. System driven technology selection for future European launch systems

    Science.gov (United States)

    Baiocco, P.; Ramusat, G.; Sirbi, A.; Bouilly, Th.; Lavelle, F.; Cardone, T.; Fischer, H.; Appel, S.

    2015-02-01

    In the framework of the next generation launcher activity at ESA, a top-down approach and a bottom-up approach have been performed for the identification of promising technologies and alternative conception of future European launch vehicles. The top-down approach consists in looking for system-driven design solutions and the bottom-up approach features design solutions leading to substantial advantages for the system. The main investigations have been focused on the future launch vehicle technologies. Preliminary specifications have been used in order to permit sub-system design to find the major benefit for the overall launch system. The development cost, non-recurring and recurring cost, industrialization and operational aspects have been considered as competitiveness factors for the identification and down-selection of the most interesting technologies. The recurring cost per unit payload mass has been evaluated. The TRL/IRL has been assessed and a preliminary development plan has been traced for the most promising technologies. The potentially applicable launch systems are Ariane and VEGA evolution. The main FLPP technologies aim at reducing overall structural mass, increasing structural margins for robustness, metallic and composite containment of cryogenic hydrogen and oxygen propellants, propellant management subsystems, elements significantly reducing fabrication and operational costs, avionics, pyrotechnics, etc. to derive performing upper and booster stages. Application of the system driven approach allows creating performing technology demonstrators in terms of need, demonstration objective, size and cost. This paper outlines the process of technology down selection using a system driven approach, the accomplishments already achieved in the various technology fields up to now, as well as the potential associated benefit in terms of competitiveness factors.

  7. Onset of density-driven instabilities in fractured aquifers

    Science.gov (United States)

    Jafari Raad, Seyed Mostafa; Hassanzadeh, Hassan

    2018-04-01

    Linear stability analysis is conducted to study the onset of density-driven convection involved in solubility trapping of C O2 in fractured aquifers. The effect of physical properties of a fracture network on the stability of a diffusive boundary layer in a saturated fractured porous media is investigated using the dual porosity concept. Linear stability analysis results show that both fracture interporosity flow and fracture storativity play an important role in the stability behavior of the system. It is shown that a diffusive boundary layer under the gravity field in fractured porous media with lower fracture storativity and/or higher fracture interporosity flow coefficient is more stable. We present scaling relations for the onset of convective instability in fractured aquifers with single and variable matrix block size distribution. These findings improve our understanding of density-driven flow in fractured aquifers and are important in the estimation of potential storage capacity, risk assessment, and storage site characterization and screening.

  8. On stability of accelerator driven systems

    International Nuclear Information System (INIS)

    Makai, Mihaly

    2003-01-01

    An unsolved problem of energy production in nuclear reactors is the waste management. A large portion of the nuclear waste is the spent fuel. At present, two possibilities are seen. The first one is to 'wrap up' all the radioactive waste safely and to bury it at a remote quiet place where it can rest undisturbed until its activity decreases to a tolerable level. The second one is to exploit the excitation energy still present in the nuclear waste. In order to release that energy, the spent fuel is bombarded by high energy particles obtained from an accelerator. The resulting system is called accelerator driven system (ADS). In an ADS, the spent fuel forms a subcritical reactor, which is driven by an external source. (author)

  9. Effects of intrinsic stochasticity on delayed reaction-diffusion patterning systems

    KAUST Repository

    Woolley, Thomas E.; Baker, Ruth E.; Gaffney, Eamonn A.; Maini, Philip K.; Seirin-Lee, Sungrim

    2012-01-01

    Cellular gene expression is a complex process involving many steps, including the transcription of DNA and translation of mRNA; hence the synthesis of proteins requires a considerable amount of time, from ten minutes to several hours. Since diffusion-driven instability has been observed to be sensitive to perturbations in kinetic delays, the application of Turing patterning mechanisms to the problem of producing spatially heterogeneous differential gene expression has been questioned. In deterministic systems a small delay in the reactions can cause a large increase in the time it takes a system to pattern. Recently, it has been observed that in undelayed systems intrinsic stochasticity can cause pattern initiation to occur earlier than in the analogous deterministic simulations. Here we are interested in adding both stochasticity and delays to Turing systems in order to assess whether stochasticity can reduce the patterning time scale in delayed Turing systems. As analytical insights to this problem are difficult to attain and often limited in their use, we focus on stochastically simulating delayed systems. We consider four different Turing systems and two different forms of delay. Our results are mixed and lead to the conclusion that, although the sensitivity to delays in the Turing mechanism is not completely removed by the addition of intrinsic noise, the effects of the delays are clearly ameliorated in certain specific cases. © 2012 American Physical Society.

  10. Effects of intrinsic stochasticity on delayed reaction-diffusion patterning systems

    KAUST Repository

    Woolley, Thomas E.

    2012-05-22

    Cellular gene expression is a complex process involving many steps, including the transcription of DNA and translation of mRNA; hence the synthesis of proteins requires a considerable amount of time, from ten minutes to several hours. Since diffusion-driven instability has been observed to be sensitive to perturbations in kinetic delays, the application of Turing patterning mechanisms to the problem of producing spatially heterogeneous differential gene expression has been questioned. In deterministic systems a small delay in the reactions can cause a large increase in the time it takes a system to pattern. Recently, it has been observed that in undelayed systems intrinsic stochasticity can cause pattern initiation to occur earlier than in the analogous deterministic simulations. Here we are interested in adding both stochasticity and delays to Turing systems in order to assess whether stochasticity can reduce the patterning time scale in delayed Turing systems. As analytical insights to this problem are difficult to attain and often limited in their use, we focus on stochastically simulating delayed systems. We consider four different Turing systems and two different forms of delay. Our results are mixed and lead to the conclusion that, although the sensitivity to delays in the Turing mechanism is not completely removed by the addition of intrinsic noise, the effects of the delays are clearly ameliorated in certain specific cases. © 2012 American Physical Society.

  11. Universality in driven-dissipative quantum many-body systems

    International Nuclear Information System (INIS)

    Sieberer, L.M.

    2015-01-01

    Recent experimental investigations of condensation phenomena in driven-dissipative quantum many-body systems raise the question of what kind of novel universal behavior can emerge under non-equilibrium conditions. We explore various aspects of universality in this context. Our results are of relevance for a variety of open quantum systems on the interface of quantum optics and condensed matter physics, ranging from exciton-polariton condensates to cold atomic gases. In Part I we characterize the dynamical critical behavior at the Bose-Einstein condensation phase transition in driven open quantum systems in three spatial dimensions. Although thermodynamic equilibrium conditions are emergent at low frequencies, the approach to this thermalized low-frequency regime is described by a critical exponent which is specific to the non-equilibrium transition, and places the latter beyond the standard classification of equilibrium dynamical critical behavior. Our theoretical approach is based on the functional renormalization group within the framework of Keldysh non-equilibrium field theory, which is equivalent to a microscopic description of the open system dynamics in terms of a many-body quantum master equation. Universal behavior in the coherence properties of driven-dissipative condensates in reduced dimensions is investigated in Part II. We show that driven two-dimensional Bose systems cannot exhibit algebraic order as in thermodynamic equilibrium, unless they are sufficiently anisotropic. However, we find evidence that even isotropic systems may have a finite superfluidity fraction. In one-dimensional systems, non-equilibrium conditions are traceable in the behavior of the autocorrelation function. We obtain these results by mapping the long-wavelength condensate dynamics onto the Kardar-Parisi-Zhang equation. In Part III we show that systems in thermodynamic equilibrium have a specific symmetry, which makes them distinct from generic driven open systems. The novel

  12. Pore and surface diffusion in multicomponent adsorption and liquid chromatography systems

    International Nuclear Information System (INIS)

    Ma, Z.; Whitley, R.D.; Wang, N.H.L.

    1996-01-01

    A generalized parallel pore and surface diffusion model for multicomponent adsorption and liquid chromatography is formulated and solved numerically. Analytical solution for first- and second-order central moments for a pulse on a plateau input is used as benchmarks for the numerical solutions. Theoretical predictions are compared with experimental data for two systems: ion-exchange of strontium, sodium, and calcium in a zeolite and competitive adsorption of two organics on activated carbon. In a linear isotherm region of single-component systems, both surface and pore diffusion cause symmetric spreading in breakthrough curves. In a highly nonlinear isotherm region, however, surface diffusion causes pronounced tailing in breakthrough curves; the larger the step change in concentration, the more pronounced tailing, in contrast to relatively symmetric breakthroughs due to pore diffusion. If only a single diffusion mechanism is assumed in analyzing the data of parallel diffusion systems, a concentration-dependent apparent surface diffusivity or pore diffusivity results; for a convex isotherm, the apparent surface diffusivity increases, whereas the apparent pore diffusivity decreases with increasing concentration. For a multicomponent nonlinear system, elution order can change if pore diffusion dominates for a low-affinity solute, whereas surface diffusion dominates for a high-affinity solute

  13. Relaxation and Diffusion in Complex Systems

    CERN Document Server

    Ngai, K L

    2011-01-01

    Relaxation and Diffusion in Complex Systems comprehensively presents a variety of experimental evidences of universal relaxation and diffusion properties in complex materials and systems. The materials discussed include liquids, glasses, colloids, polymers, rubbers, plastic crystals and aqueous mixtures, as well as carbohydrates, biomolecules, bioprotectants and pharmaceuticals. Due to the abundance of experimental data, emphasis is placed on glass-formers and the glass transition problem, a still unsolved problem in condensed matter physics and chemistry. The evidence for universal properties of relaxation and diffusion dynamics suggests that a fundamental physical law is at work. The origin of the universal properties is traced to the many-body effects of the interaction, rigorous theory of which does not exist at the present time. However, using solutions of simplified models as guides, key quantities have been identified and predictions of the universal properties generated. These predictions from Ngai’...

  14. Maxwell-Stefan diffusion coefficient estimation for ternary systems: an ideal ternary alcohol system.

    Science.gov (United States)

    Allie-Ebrahim, Tariq; Zhu, Qingyu; Bräuer, Pierre; Moggridge, Geoff D; D'Agostino, Carmine

    2017-06-21

    The Maxwell-Stefan model is a popular diffusion model originally developed to model diffusion of gases, which can be considered thermodynamically ideal mixtures, although its application has been extended to model diffusion in non-ideal liquid mixtures as well. A drawback of the model is that it requires the Maxwell-Stefan diffusion coefficients, which are not based on measurable quantities but they have to be estimated. As a result, numerous estimation methods, such as the Darken model, have been proposed to estimate these diffusion coefficients. However, the Darken model was derived, and is only well defined, for binary systems. This model has been extended to ternary systems according to two proposed forms, one by R. Krishna and J. M. van Baten, Ind. Eng. Chem. Res., 2005, 44, 6939-6947 and the other by X. Liu, T. J. H. Vlugt and A. Bardow, Ind. Eng. Chem. Res., 2011, 50, 10350-10358. In this paper, the two forms have been analysed against the ideal ternary system of methanol/butan-1-ol/propan-1-ol and using experimental values of self-diffusion coefficients. In particular, using pulsed gradient stimulated echo nuclear magnetic resonance (PGSTE-NMR) we have measured the self-diffusion coefficients in various methanol/butan-1-ol/propan-1-ol mixtures. The experimental values of self-diffusion coefficients were then used as the input data required for the Darken model. The predictions of the two proposed multicomponent forms of this model were then compared to experimental values of mutual diffusion coefficients for the ideal alcohol ternary system. This experimental-based approach showed that the Liu's model gives better predictions compared to that of Krishna and van Baten, although it was only accurate to within 26%. Nonetheless, the multicomponent Darken model in conjunction with self-diffusion measurements from PGSTE-NMR represents an attractive method for a rapid estimation of mutual diffusion in multicomponent systems, especially when compared to exhaustive

  15. Solute coupled diffusion in osmotically driven membrane processes.

    Science.gov (United States)

    Hancock, Nathan T; Cath, Tzahi Y

    2009-09-01

    Forward osmosis (FO) is an emerging water treatment technology with potential applications in desalination and wastewater reclamation. In FO, water is extracted from a feed solution using the high osmotic pressure of a hypertonic solution that flows on the opposite side of a semipermeable membrane; however, solutes diffuse simultaneously through the membrane in both directions and may jeopardize the process. In this study, we have comprehensively explored the effects of different operating conditions on the forward diffusion of solutes commonly found in brackish water and seawater, and reverse diffusion of common draw solution solutes. Results show that reverse transport of solutes through commercially available FO membranes range between 80 mg to nearly 3,000 mg per liter of water produced. Divalent feed solutes have low permeation rates (less than 1 mmol/m2-hr) while monovalent ions and uncharged solutes exhibit higher permeation. Findings have significant implications on the performance and sustainability of the FO process.

  16. Cancer: a profit-driven biosystem?

    Science.gov (United States)

    Deisboeck, Thomas S

    2008-08-01

    The argument is made that solid malignant tumors behave as profit-driven biological systems in that they expand their nutrient-uptaking surface to increase energetic revenue, at a comparably low metabolic cost. Within this conceptual framework, cancer cell migration is a critical mechanism as it maximizes systemic surface expansion while minimizing diffusion distance. Treating these tumor systems with adjuvant anti-proliferative regimen only should increase the energetic net gain of the viable cancer cells left behind, hence would facilitate tumor recurrence. Therapeutic attempts to better control tumor (re)growth should therefore aim primarily at containing its surface expansion, thus reducing its energetic revenue, or increasing its metabolic costs or better yet, both.

  17. Application of a numerical transport correction in diffusion calculations

    International Nuclear Information System (INIS)

    Tomatis, Daniele; Dall'Osso, Aldo

    2011-01-01

    Full core calculations by ordinary transport methods can demand considerable computational time, hardly acceptable in the industrial work frame. However, the trend of next generation nuclear cores goes toward more heterogeneous systems, where transport phenomena of neutrons become very important. On the other hand, using diffusion solvers is more practical allowing faster calculations, but a specific formulation of the diffusion coefficient is requested to reproduce the scalar flux with reliable physical accuracy. In this paper, the Ronen method is used to evaluate numerically the diffusion coefficient in the slab reactor. The new diffusion solution is driven toward the solution of the integral neutron transport equation by non linear iterations. Better estimates of currents are computed and diffusion coefficients are corrected at node interfaces, still assuming Fick's law. This method enables obtaining closer results to the transport solution by a common solver in multigroup diffusion. (author)

  18. Review of solar PV policies, interventions and diffusion in East Africa

    DEFF Research Database (Denmark)

    Hansen, Ulrich Elmer; Pedersen, Mathilde Brix; Nygaard, Ivan

    2015-01-01

    from donor and government-based support to market-driven diffusion of solar PV; and (ii) a transition from small-scale, off-grid systems towards mini-grids and large-scale, grid-connected solar power plants. The paper points out three generic factors that have contributed to encouraging SHS diffusion......Previous research on the diffusion of solar PV in Africa has mainly focused on solar home systems (SHS) in individual countries and thus overlooked developments in other PV market segments that have recently emerged. In contrast this paper adopts a regional perspective by reviewing developments...... in supportive policies, donor programs and diffusion status in all PV market segments in Kenya, Tanzania and Uganda, as well as identifying the key factors put forward in the literature to explain differences in the diffusion of SHS in these three countries. The paper finds two emerging trends: (i) a movement...

  19. Mathematical aspects of reacting and diffusing systems

    CERN Document Server

    Fife, Paul C

    1979-01-01

    Modeling and analyzing the dynamics of chemical mixtures by means of differ- tial equations is one of the prime concerns of chemical engineering theorists. These equations often take the form of systems of nonlinear parabolic partial d- ferential equations, or reaction-diffusion equations, when there is diffusion of chemical substances involved. A good overview of this endeavor can be had by re- ing the two volumes by R. Aris (1975), who himself was one of the main contributors to the theory. Enthusiasm for the models developed has been shared by parts of the mathematical community, and these models have, in fact, provided motivation for some beautiful mathematical results. There are analogies between chemical reactors and certain biological systems. One such analogy is rather obvious: a single living organism is a dynamic structure built of molecules and ions, many of which react and diffuse. Other analogies are less obvious; for example, the electric potential of a membrane can diffuse like a chemical, and ...

  20. Oscillatory variation of anomalous diffusion in pendulum systems

    Indian Academy of Sciences (India)

    driven and parametrically-driven pendulum systems are presented. When the frequency of the periodic driving force is varied, the exponent μ, which is the rate of divergence of the mean square displacement with time, is found to vary in an ...

  1. Keldysh field theory for driven open quantum systems.

    Science.gov (United States)

    Sieberer, L M; Buchhold, M; Diehl, S

    2016-09-01

    Recent experimental developments in diverse areas-ranging from cold atomic gases to light-driven semiconductors to microcavity arrays-move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.

  2. Transmutation of fission products in reactors and accelerator-driven systems

    International Nuclear Information System (INIS)

    Janssen, A.J.

    1994-01-01

    Energy flows and mass flows in several scenarios are considered. Economical and safety aspects of the transmutation scenarios are compared. It is difficult to find a sound motivation for the transmutation of fission products with accelerator-driven systems. If there would be any hesitation in transmuting fission products in nuclear reactors, there would be an even stronger hesitation to use accelerator-driven systems, mainly because of their lower energy efficiency and their poor cost effectiveness. The use of accelerator-driven systems could become a 'meaningful' option only if nuclear energy would be banished completely. (orig./HP)

  3. Proliferation Potential of Accelerator-Driven Systems: Feasibility Calculations

    International Nuclear Information System (INIS)

    Riendeau, C.D.; Moses, D.L.; Olson, A.P.

    1998-01-01

    Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proliferator. The objective of this study is to review the state of technology development for accelerator-driven spallation neutron sources and subcritical reactors. Energy and power requirements were calculated for a proton accelerator-driven neutron spallation source and subcritical reactors to produce a significant amount of fissile material--plutonium

  4. Theory of ion-temperature-gradient-driven turbulence in tokamaks

    International Nuclear Information System (INIS)

    Lee, G.S.; Diamond, P.H.

    1986-01-01

    An analytic theory of ion-temperature-gradient-driven turbulence in tokamaks is presented. Energy-conserving, renormalized spectrum equations are derived and solved in order to obtain the spectra of stationary ion-temperature-gradient-driven turbulence. Corrections to mixing-length estimates are calculated explicitly. The resulting anomalous ion thermal diffusivity chi/sub i/ = 0.4[(π/2)ln(1 + eta/sub i/)] 2 [(1 + eta/sub i/)/tau] 2 rho/sub s/ 2 c/sub s//L/sub s/ is derived and is found to be consistent with experimentally-deduced thermal diffusivities. The associated electron thermal diffusivity and particle and heat-pinch velocities are also calculated. The effect of impurity gradients on saturated ion-temperature-gradient-driven turbulence is discussed and a related explanation of density profile steepening during Z-mode operation is proposed. 35 refs., 4 figs

  5. Particle diffusion in a spheromak

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.; Levinton, F.M.; Yamada, M.

    1988-01-01

    The local carbon particle diffusion coefficient was measured in the Proto S-1/C spheromak using a test particle injection scheme. When the plasma was not in a force-free Taylor state, and when there were pressure gradients in the plasma, the particle diffusion was five times that predicted by Bohm and was consistent with collisional drift wave diffusion. The diffusion appears to be driven by correlations of the fluctuating electric field and density. During the decay phase of the discharge when the plasma was in the Taylor state, the diffusion coefficient of the carbon was classical. 23 refs., 4 figs

  6. Plasma diffusion in systems with disrupted magnetic surfaces

    International Nuclear Information System (INIS)

    Morozov, D.K.; Pogutse, O.P.

    1982-01-01

    Plasma diffusion is analyzed in the case in which the system of magnetic surfaces is disrupted by a stochastic perturbation of the magnetic field. The diffusion coefficient is related to the statistical properties of the field. The statistical characteristics of the field are found when the magnetic surfaces near the separatrix are disrupted by an external perturbation. The diffusion coefficient is evaluated in the region in which the magnetic surfaces are disrupted. In this region the diffusion coefficient is of the Bohm form

  7. International conference on sub-critical accelerator driven systems. Proceedings

    International Nuclear Information System (INIS)

    Litovkina, L.P.; Titarenko, Yu.E.

    1999-01-01

    The International Meeting on Sub-Critical Accelerator Driven Systems was organized by the State Scientific Center - Institute for Theoretical and Experimental Physics with participation of Atomic Ministry of RF. The Meeting objective was to analyze the recent achievements and tendencies of the accelerator-driven systems development. The Meeting program covers a broad range of problems including the accelerator-driven systems (ADS) conceptual design; analyzing the ADS role in nuclear fuel cycle; accuracy of modeling the main parameters of ADS; conceptual design of high-current accelerators. Moreover, the results of recent experimental and theoretical studies on nuclear data accumulation to support the ADS technologies are presented. About 70 scientists from the main scientific centers of Russia, as well as scientists from USA, France, Belgium, India, and Yugoslavia, attended the meeting and presented 44 works [ru

  8. On Rank Driven Dynamical Systems

    Science.gov (United States)

    Veerman, J. J. P.; Prieto, F. J.

    2014-08-01

    We investigate a class of models related to the Bak-Sneppen (BS) model, initially proposed to study evolution. The BS model is extremely simple and yet captures some forms of "complex behavior" such as self-organized criticality that is often observed in physical and biological systems. In this model, random fitnesses in are associated to agents located at the vertices of a graph . Their fitnesses are ranked from worst (0) to best (1). At every time-step the agent with the worst fitness and some others with a priori given rank probabilities are replaced by new agents with random fitnesses. We consider two cases: The exogenous case where the new fitnesses are taken from an a priori fixed distribution, and the endogenous case where the new fitnesses are taken from the current distribution as it evolves. We approximate the dynamics by making a simplifying independence assumption. We use Order Statistics and Dynamical Systems to define a rank-driven dynamical system that approximates the evolution of the distribution of the fitnesses in these rank-driven models, as well as in the BS model. For this simplified model we can find the limiting marginal distribution as a function of the initial conditions. Agreement with experimental results of the BS model is excellent.

  9. Coherent states of the driven Rydberg atom: Quantum-classical correspondence of periodically driven systems

    International Nuclear Information System (INIS)

    Vela-Arevalo, Luz V.; Fox, Ronald F.

    2005-01-01

    A methodology to calculate generalized coherent states for a periodically driven system is presented. We study wave packets constructed as a linear combination of suitable Floquet states of the three-dimensional Rydberg atom in a microwave field. The driven coherent states show classical space localization, spreading, and revivals and remain localized along the classical trajectory. The microwave strength and frequency have a great effect in the localization of Floquet states, since quasienergy avoided crossings produce delocalization of the Floquet states, showing that tuning of the parameters is very important. Using wavelet-based time-frequency analysis, the classical phase-space structure is determined, which allows us to show that the driven coherent state is located in a large regular region in which the z coordinate is in resonance with the external field. The expectation values of the wave packet show that the driven coherent state evolves along the classical trajectory

  10. Cluster geometry and survival probability in systems driven by reaction-diffusion dynamics

    International Nuclear Information System (INIS)

    Windus, Alastair; Jensen, Henrik J

    2008-01-01

    We consider a reaction-diffusion model incorporating the reactions A→φ, A→2A and 2A→3A. Depending on the relative rates for sexual and asexual reproduction of the quantity A, the model exhibits either a continuous or first-order absorbing phase transition to an extinct state. A tricritical point separates the two phase lines. While we comment on this critical behaviour, the main focus of the paper is on the geometry of the population clusters that form. We observe the different cluster structures that arise at criticality for the three different types of critical behaviour and show that there exists a linear relationship for the survival probability against initial cluster size at the tricritical point only.

  11. Hysteretic behavior of spin-crossover noise driven system

    Energy Technology Data Exchange (ETDEWEB)

    Gudyma, Iurii [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Maksymov, Artur, E-mail: maxyartur@gmail.com [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Advanced Materials Research Institute, University of New Orleans, LA 70148 (United States); Dimian, Mihai [Department of Electrical and Computer Engineering, Howard University, Washington DC, 20059 (United States); Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University, Suceava 720229 (Romania)

    2016-04-01

    The influence of white Gaussian noise on hysteretic behavior of spin-crossover system is analyzed in the framework of stochastic Langevin dynamics. Various stochastic simulations are performed and several important properties of spin-transition in spin-crossover system driven by noise are reproduced. The numerical results are tested against the stationary probability function and the associated dynamic potential obtained from Fokker–Planck equation corresponding to spin-crossover Langevin dynamics. The dependence of light-induced optical hysteresis width and non-hysteretic transition curve slope on the noise intensity is illustrated. The role of low-spin and high-spin phase stabilities in the hysteretic behavior of noise-driven spin-crossover system is discussed.

  12. Diffusion and transport in locally disordered driven lattices

    International Nuclear Information System (INIS)

    Wulf, Thomas; Okupnik, Alexander; Schmelcher, Peter

    2016-01-01

    We study the effect of disorder on the particle density evolution in a classical Hamiltonian driven lattice setup. If the disorder is localized within a finite sub-domain of the lattice, the emergence of strong tails in the density distribution which even increases towards larger positions is shown, thus yielding a highly non-Gaussian particle density evolution. As the key underlying mechanism, we identify the conversion between different components of the unperturbed systems mixed phase space which is induced by the disorder. Based on the introduction of individual conversion rates between chaotic and regular components, a theoretical model is developed which correctly predicts the scaling of the particle density. The effect of disorder on the transport properties is studied where a significant enhancement of the transport for cases of localized disorder is shown, thereby contrasting strongly the merely weak modification of the transport for global disorder.

  13. Diffusion and transport in locally disordered driven lattices

    Energy Technology Data Exchange (ETDEWEB)

    Wulf, Thomas, E-mail: Thomas.Wulf@physnet.uni-hamburg.de; Okupnik, Alexander [Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Schmelcher, Peter, E-mail: Peter.Schmelcher@physnet.uni-hamburg.de [Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2016-09-15

    We study the effect of disorder on the particle density evolution in a classical Hamiltonian driven lattice setup. If the disorder is localized within a finite sub-domain of the lattice, the emergence of strong tails in the density distribution which even increases towards larger positions is shown, thus yielding a highly non-Gaussian particle density evolution. As the key underlying mechanism, we identify the conversion between different components of the unperturbed systems mixed phase space which is induced by the disorder. Based on the introduction of individual conversion rates between chaotic and regular components, a theoretical model is developed which correctly predicts the scaling of the particle density. The effect of disorder on the transport properties is studied where a significant enhancement of the transport for cases of localized disorder is shown, thereby contrasting strongly the merely weak modification of the transport for global disorder.

  14. A Model-Driven Development Method for Management Information Systems

    Science.gov (United States)

    Mizuno, Tomoki; Matsumoto, Keinosuke; Mori, Naoki

    Traditionally, a Management Information System (MIS) has been developed without using formal methods. By the informal methods, the MIS is developed on its lifecycle without having any models. It causes many problems such as lack of the reliability of system design specifications. In order to overcome these problems, a model theory approach was proposed. The approach is based on an idea that a system can be modeled by automata and set theory. However, it is very difficult to generate automata of the system to be developed right from the start. On the other hand, there is a model-driven development method that can flexibly correspond to changes of business logics or implementing technologies. In the model-driven development, a system is modeled using a modeling language such as UML. This paper proposes a new development method for management information systems applying the model-driven development method to a component of the model theory approach. The experiment has shown that a reduced amount of efforts is more than 30% of all the efforts.

  15. Diffusion of innovative domestic heating systems and multi-storey wood-framed buildings in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Krushna

    2007-10-15

    influence of a national investment subsidy and a local marketing campaign by the district heating company, Jaemtkraft, on the diffusion of district heating. The surveys revealed that about 80% of the respondents, particularly those with resistance heaters, did not intend to install a new heating system. Economic aspects, functional reliability and indoor air quality were found to be the most important factors influencing respondents' choice of a new heating system. Low priority was given to environmental aspects. Since the diffusion of heating systems is largely cost driven, economic policy instruments, e.g. internalizing the external costs, appears to be an effective means of inducing homeowners to install an IHS. Homeowners with resistance heaters accorded more importance to investment cost, and therefore an investment subsidy was more important for them when deciding to install an IHS. Installers were the most important source of information on heating systems. Survey respondents thought that a bedrock heat pump system had advantages with respect to the annual cost of heating, security of fuel supply, environmental benignity, market value of the home and low greenhouse gas emission, a district heating system had advantages regarding functional reliability, system automation and the time required to obtain information, while a pellet boiler system had the advantage of the relatively low investment cost. Thus, a heat pump has more advantages than a pellet boiler, particularly with regard to the most important factor 'annual cost of heating', and therefore diffuses faster. The expansion of district heating networks in the detached home sector, particularly those homes with resistance heaters, is often considered difficult. However, results showed that, in Oestersund, the government investment subsidy and Jaemtkraft's marketing campaign motivated 78% of the homeowners to adopt district heating. The marketing strategy of Jaemtkraft reflects the results

  16. Dynamic Systems Driven by Non-Poissonian Impulses

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Iwankiewicz, R.

    interarrival times. The moment equations for the augmented Poisson driven system are derived and closed by an ordinary cumulant neglect closure at the order N=4. The obtained moments are compared with these obtained by Monte Carlo simulations for both the original process with lognormally distributed......Dynamic systems under random trains of impulses driven by renewal point processes are studied. Then the system state variables no longer form a Markov vector as it is in the case of Poisson impulses. A general format is given for the replacing an ordinary renewal process by an equivalent Poisson...... process at the expense of the introduction of auxiliary state variables. A technique is devised for truncating the hierarchy of stochastic equations governing the auxiliary state variables. For the generalized Erlang process, suitable for approximating a wide class of renewal processes, the technique...

  17. Concept evaluation of nuclear fusion driven symbiotic energy systems

    International Nuclear Information System (INIS)

    Renier, J.P.; Hoffman, T.J.

    1979-01-01

    This paper analyzes systems based on D-T and semi-catalyzed D-D fusion-powered U233 breeders. Two different blanket types were used: metallic thorium pebble-bed blankets with a batch reprocessing mode and a molten salt blanket with on-line continuous or batch reprocessing. All fusion-driven blankets are assumed to have spherical geometries, with a 85% closure. Neutronics depletion calculations were performed with a revised version of the discrete ordinates code XSDRN-PM, using multigroup (100 neutron, 21 gamma-ray groups) coupled cross-section libraries. These neutronics calculations are coupled with a scenario optimization and cost analysis code. Also, the fusion burn was shaped so as to keep the blanket maximum power density below a preset value, and to improve the performance of the fusion-driven systems. The fusion-driven symbiotes are compared with LMFBR-driven energy systems. The nuclear fission breeders that were used as drivers have parameters characteristic of heterogeneous, oxide LMFBRs. They are net plutonium users - the plutonium is obtained from the discharges of LWRs - and U233 is bred in the fission breeder thorium blankets. The analyses of the symbiotic energy systems were performed at equilibrium, at maximum rate of grid expansion, and for a given nuclear power demand

  18. Microfluidic diffusivity meter: a tool to optimize CO2 driven enhanced oil recovery

    Science.gov (United States)

    Puneeth, S. B.; Kim, Young Ho; Goel, Sanket

    2017-02-01

    As the energy demands continue to swell with growing population and there persists a lack of unexploited oilfields, the prime focus of any nation would be to maximize the oil recovery factor from existing oil fields. CO2-Enhanced oil recovery is a process to improve the recovery of crude oil from an oil field and works at high pressure and in very deep conditions. CO2 and oil are miscible at high pressure, resulting in low viscosity and oil swells. This swelling can be measured based on mathematical calculations in real time and correlated with the CO2 concentration. This process has myriad advantages over its counterparts which include being able to harness oil trapped in reservoirs besides being cheaper and more efficient. A Diffusivity meter is inevitable in the measurement of the diffusion co-efficient of two samples. Diffusivity meters currently available in the market are weighed down by disadvantages like the requirement of large samples for testing, high cost and complexity. This elicits the need for a Microfluidic based diffusivity meter capable of analyzing Nano-liter sample volumes besides being more precise and affordable. The scope of this work involves the design and development of a Microfluidic robust and inexpensive prototype diffusivity meter using a capillary tube and endorsing its performance by comparison of results with known diffusivity range and supervision of the results with an electronic microscope coupled to PC and Data Acquisition System. The prototype produced at the end of the work is expected to outweigh disadvantages in existing products in terms of sample size, efficiency and time saving.

  19. Contribution to the study of diffusion in poly-phase system; Contribution a l'etude de la diffusion en systeme polyphase

    Energy Technology Data Exchange (ETDEWEB)

    Adda, Y; Philibert, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires; Institut de Recherches de la Siderurgie Francaise (IRSID), 78 - Saint-Germain-en-Laye (France)

    1959-07-01

    After chemical diffusion between two metals, at temperatures where, according to the equilibrium diagram, several phases exist, parallel bands corresponding to these various phases can be seen in a section which is perpendicular to the diffusion front. It is known that in this case there are discontinuities in the concentration-penetration curve, corresponding to the interfaces. The concentrations at the point where the discontinuities occur give the limits of solubility in each of the present phases. During our experiments on the system uranium-zirconium, we verified that these concentrations do not vary with the diffusion time and therefore that the conditions of thermodynamical equilibrium are obeyed. It follows that an interesting method is available for determining the equilibrium diagram for the solid state. We have applied this method to the U-Zr system. Kinetic studies of poly-phase diffusion are as yet relatively scarce as a result of difficulty of experimentation. Various methods based on purely micro-graphical studies (measurement of the thickness of intermediate phases) are also proposed for evaluating the coefficient of diffusion. Our experimental results show that the hypotheses on which these methods are based are rarely valid. We have established concentration-penetration curves for the systems U-Zr (between 590 deg. C and 950 deg. C) and U-Mo (between 800 deg. C and 1050 deg. C). These curves have very often a very accentuated curvature, thus indicating variations in the diffusion coefficient, which cannot be expressed by simple relationships. Finally, we have observed certain anomalies in the neighbourhood of the interfaces between adjacent phases. Further we have studied the Kirkendall effect in poly-phase system by marking the plane of welding with tungsten wires, and compared these results to those from a previous study in the homogeneous phase. We have found that the presence of phase boundaries accentuates this effect. The interpretation of

  20. Decay to Equilibrium for Energy-Reaction-Diffusion Systems

    KAUST Repository

    Haskovec, Jan

    2018-02-06

    We derive thermodynamically consistent models of reaction-diffusion equations coupled to a heat equation. While the total energy is conserved, the total entropy serves as a driving functional such that the full coupled system is a gradient flow. The novelty of the approach is the Onsager structure, which is the dual form of a gradient system, and the formulation in terms of the densities and the internal energy. In these variables it is possible to assume that the entropy density is strictly concave such that there is a unique maximizer (thermodynamical equilibrium) given linear constraints on the total energy and suitable density constraints. We consider two particular systems of this type, namely, a diffusion-reaction bipolar energy transport system, and a drift-diffusion-reaction energy transport system with confining potential. We prove corresponding entropy-entropy production inequalities with explicitly calculable constants and establish the convergence to thermodynamical equilibrium, first in entropy and later in L norm using Cziszár–Kullback–Pinsker type inequalities.

  1. Decay to Equilibrium for Energy-Reaction-Diffusion Systems

    KAUST Repository

    Haskovec, Jan; Hittmeir, Sabine; Markowich, Peter A.; Mielke, Alexander

    2018-01-01

    We derive thermodynamically consistent models of reaction-diffusion equations coupled to a heat equation. While the total energy is conserved, the total entropy serves as a driving functional such that the full coupled system is a gradient flow. The novelty of the approach is the Onsager structure, which is the dual form of a gradient system, and the formulation in terms of the densities and the internal energy. In these variables it is possible to assume that the entropy density is strictly concave such that there is a unique maximizer (thermodynamical equilibrium) given linear constraints on the total energy and suitable density constraints. We consider two particular systems of this type, namely, a diffusion-reaction bipolar energy transport system, and a drift-diffusion-reaction energy transport system with confining potential. We prove corresponding entropy-entropy production inequalities with explicitly calculable constants and establish the convergence to thermodynamical equilibrium, first in entropy and later in L norm using Cziszár–Kullback–Pinsker type inequalities.

  2. Cluster geometry and survival probability in systems driven by reaction-diffusion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Windus, Alastair; Jensen, Henrik J [The Institute for Mathematical Sciences, 53 Prince' s Gate, South Kensington, London SW7 2PG (United Kingdom)], E-mail: h.jensen@imperial.ac.uk

    2008-11-15

    We consider a reaction-diffusion model incorporating the reactions A{yields}{phi}, A{yields}2A and 2A{yields}3A. Depending on the relative rates for sexual and asexual reproduction of the quantity A, the model exhibits either a continuous or first-order absorbing phase transition to an extinct state. A tricritical point separates the two phase lines. While we comment on this critical behaviour, the main focus of the paper is on the geometry of the population clusters that form. We observe the different cluster structures that arise at criticality for the three different types of critical behaviour and show that there exists a linear relationship for the survival probability against initial cluster size at the tricritical point only.

  3. Diffusion characteristics in the Cu-Ti system

    Energy Technology Data Exchange (ETDEWEB)

    Laik, Arijit; Kale, Gajanan Balaji [Bhabha Atomic Reseach Centre, Mumbai (India). Materials Science Div.; Bhanumurthy, Karanam [Bhabha Atomic Reseach Centre, Mumbai (India). Scientific Information Resource Div.; Kashyap, Bhagwati Prasad [Indian Institute of Technology Bombay, Mumbai (India). Dept. of Metallurgical Engineering

    2012-06-15

    The formation and growth of intermetallic compounds by diffusion reaction of Cu and Ti were investigated in the temperature range 720 - 860 C using bulk diffusion couples. Only four, out of the seven stable intermediate compounds of the Cu-Ti system, were formed in the diffusion reaction zone in the sequence CuTi, Cu{sub 4}Ti, Cu{sub 4}Ti{sub 3} and CuTi{sub 2}. The activation energies required for the growth of these compounds were determined. The diffusion characteristics of Cu{sub 4}Ti, CuTi and Cu{sub 4}Ti{sub 3} and Cu(Ti) solid solution were evaluated. The activation energies for diffusion in these compounds were 192.2, 187.7 and 209.2 kJ mol{sup -1} respectively, while in Cu(Ti), the activation energy increased linearly from 201.0 kJ mol{sup -1} to 247.5 kJ mol{sup -1} with increasing concentration of Ti, in the range 0.5 - 4.0 at.%. The impurity diffusion coefficient of Ti in Cu and its temperature dependence were also estimated. A correlation between the impurity diffusion parameters for several elements in Cu matrix has been established. (orig.)

  4. A Weak Comparison Principle for Reaction-Diffusion Systems

    Directory of Open Access Journals (Sweden)

    José Valero

    2012-01-01

    Full Text Available We prove a weak comparison principle for a reaction-diffusion system without uniqueness of solutions. We apply the abstract results to the Lotka-Volterra system with diffusion, a generalized logistic equation, and to a model of fractional-order chemical autocatalysis with decay. Moreover, in the case of the Lotka-Volterra system a weak maximum principle is given, and a suitable estimate in the space of essentially bounded functions L∞ is proved for at least one solution of the problem.

  5. Neutron Transport Methods for Accelerator-Driven Systems

    International Nuclear Information System (INIS)

    Nicholas Tsoulfanidis; Elmer Lewis

    2005-01-01

    The objective of this project has been to develop computational methods that will enable more effective analysis of Accelerator Driven Systems (ADS). The work is centered at the University of Missouri at Rolla, with a subcontract at Northwestern University, and close cooperation with the Nuclear Engineering Division at Argonne National Laboratory. The work has fallen into three categories. First, the treatment of the source for neutrons originating from the spallation target which drives the neutronics calculations of the ADS. Second, the generalization of the nodal variational method to treat the R-Z geometry configurations frequently needed for scoping calculations in Accelerator Driven Systems. Third, the treatment of void regions within variational nodal methods as needed to treat the accelerator beam tube

  6. Maximum Principle for General Controlled Systems Driven by Fractional Brownian Motions

    International Nuclear Information System (INIS)

    Han Yuecai; Hu Yaozhong; Song Jian

    2013-01-01

    We obtain a maximum principle for stochastic control problem of general controlled stochastic differential systems driven by fractional Brownian motions (of Hurst parameter H>1/2). This maximum principle specifies a system of equations that the optimal control must satisfy (necessary condition for the optimal control). This system of equations consists of a backward stochastic differential equation driven by both fractional Brownian motions and the corresponding underlying standard Brownian motions. In addition to this backward equation, the maximum principle also involves the Malliavin derivatives. Our approach is to use conditioning and Malliavin calculus. To arrive at our maximum principle we need to develop some new results of stochastic analysis of the controlled systems driven by fractional Brownian motions via fractional calculus. Our approach of conditioning and Malliavin calculus is also applied to classical system driven by standard Brownian motions while the controller has only partial information. As a straightforward consequence, the classical maximum principle is also deduced in this more natural and simpler way.

  7. Accelerating Science Driven System Design With RAMP

    Energy Technology Data Exchange (ETDEWEB)

    Wawrzynek, John [Univ. of California, Berkeley, CA (United States)

    2015-05-01

    Researchers from UC Berkeley, in collaboration with the Lawrence Berkeley National Lab, are engaged in developing an Infrastructure for Synthesis with Integrated Simulation (ISIS). The ISIS Project was a cooperative effort for “application-driven hardware design” that engages application scientists in the early parts of the hardware design process for future generation supercomputing systems. This project served to foster development of computing systems that are better tuned to the application requirements of demanding scientific applications and result in more cost-effective and efficient HPC system designs. In order to overcome long conventional design-cycle times, we leveraged reconfigurable devices to aid in the design of high-efficiency systems, including conventional multi- and many-core systems. The resulting system emulation/prototyping environment, in conjunction with the appropriate intermediate abstractions, provided both a convenient user programming experience and retained flexibility, and thus efficiency, of a reconfigurable platform. We initially targeted the Berkeley RAMP system (Research Accelerator for Multiple Processors) as that hardware emulation environment to facilitate and ultimately accelerate the iterative process of science-driven system design. Our goal was to develop and demonstrate a design methodology for domain-optimized computer system architectures. The tangible outcome is a methodology and tools for rapid prototyping and design-space exploration, leading to highly optimized and efficient HPC systems.

  8. Phase transformations and systems driven far from equilibrium

    International Nuclear Information System (INIS)

    Ma, E.; Atzmon, M.; Bellon, P.; Trivedi, R.

    1998-01-01

    This volume compiles invited and contributed papers that were presented at Symposium B of the 1997 Materials Research Society Fall Meeting, Phase Transformations and Systems Driven Far From Equilibrium, which was held December 1--5, in Boston, Massachusetts. While this symposium followed the tradition of previous MRS symposia on the fundamental topic of phase transformations, this year the emphasis was on materials systems driven far from equilibrium. The central theme of the majority of the work presented is the understanding of the thermodynamics and kinetics of phase transformations, with significant coverage of metastable materials and externally forced transformations driven, for example, by energy beams or mechanical deformation. The papers are arranged in seven sections: solidification theory and experiments; nucleation; solid state transformations and microstructural evolution; beam-induced transformations; amorphous solids; interfacial and thin film transformations; and nanophases and mechanical alloying. One hundred three papers have been processed separately for inclusion on the data base

  9. Size dependent diffusive parameters and tensorial diffusion equations in neutronic models for optically small nuclear systems

    International Nuclear Information System (INIS)

    Premuda, F.

    1983-01-01

    Two lines in improved neutron diffusion theory extending the efficiency of finite-difference diffusion codes to the field of optically small systems, are here reviewed. The firs involves the nodal solution for tensorial diffusion equation in slab geometry and tensorial formulation in parallelepiped and cylindrical gemometry; the dependence of critical eigenvalue from small slab thicknesses is also analitically investigated and finally a regularized tensorial diffusion equation is derived for slab. The other line refer to diffusion models formally unchanged with respect to the classical one, but where new size-dependent RTGB definitions for diffusion parameters are adopted, requiring that they allow to reproduce, in diffusion approach, the terms of neutron transport global balance; the trascendental equation for the buckling, arising in slab, sphere and parallelepiped geometry from the above requirement, are reported and the sizedependence of the new diffusion coefficient and extrapolated end point is investigated

  10. Diffusion by extrinsic noise in the kicked Harper map

    International Nuclear Information System (INIS)

    Park, Gunyoung; Chang, C. S.

    2001-01-01

    A significantly improved analytic understanding of the extrinsically driven diffusion process is presented in a nonlinear dynamical system in which the phase space is divided into periodic two-dimensional tiles of regular motion, separated by a connected separatrix network (web) [previously studied by A. J. Lichtenberg and Blake P. Wood, Phys. Rev. Lett. >62, 2213 (1989)]. The system is represented by the usual 'kicked Harper map' with added extrinsic noise terms. Three different diffusion regimes are found depending upon the strength of the extrinsic perturbation l relative to the web and regular motions. When the extrinsic noise is dominant over the intrinsic stochasticity and the regular rotation motions in the tile, diffusion obeys the random phase scaling l 2 . When the extrinsic noise is dominant over the intrinsic stochasticity, but weaker than the regular rotation motion, the diffusion scales as lK 1/2 , where K is the strength of the intrinsic kick. These findings agree well with numerical simulation results. When the extrinsic noise process is weaker than the stochastic web process, we analytically reproduce the well-known numerical result: The web diffusion is reduced by the ratio of phase-space areas of intrinsic to extrinsic stochasticity

  11. Stress in film/substrate system due to diffusion and thermal misfit effects

    International Nuclear Information System (INIS)

    Shao Shanshan; Xuan Fuzhen; Wang Zhengdong; Tu Shantung

    2009-01-01

    The stress in film/substrate systems has been analysed taking into consideration the coupling effects of diffusion and thermal misfit within the framework of Fick's second law. The solution of diffusion-induced stress in a film/substrate system involving the thermal misfit stress feedback is developed. The effects of modulus ratios, diffusivity ratios, thickness ratios of the substrate and the film and the partial molar volume of the diffusing component on the stress distribution in the film/substrate system are then discussed with the help of the finite difference method. Results indicate that the stresses in the film/substrate system vary with diffusion time. Diffusion enhances the magnitudes of film stress when the thermal misfit stress is compressive in the film. Furthermore, the absolute values of stress in the film increase with the increasing modulus ratios of the substrate and film, while they reduce with the increasing partial molar volume of the diffusing component and the diffusivity ratio of the substrate and the film.

  12. Accelerator-driven transmutation reactor analysis code system (ATRAS)

    Energy Technology Data Exchange (ETDEWEB)

    Sasa, Toshinobu; Tsujimoto, Kazufumi; Takizuka, Takakazu; Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-03-01

    JAERI is proceeding a design study of the hybrid type minor actinide transmutation system which mainly consist of an intense proton accelerator and a fast subcritical core. Neutronics and burnup characteristics of the accelerator-driven system is important from a view point of the maintenance of subcriticality and energy balance during the system operation. To determine those characteristics accurately, it is necessary to involve reactions at high-energy region, which are not treated on ordinary reactor analysis codes. The authors developed a code system named ATRAS to analyze the neutronics and burnup characteristics of accelerator-driven subcritical reactor systems. ATRAS has a function of burnup analysis taking account of the effect of spallation neutron source. ATRAS consists of a spallation analysis code, a neutron transport codes and a burnup analysis code. Utility programs for fuel exchange, pre-processing and post-processing are also incorporated. (author)

  13. Contribution to the study of diffusion in poly-phase system; Contribution a l'etude de la diffusion en systeme polyphase

    Energy Technology Data Exchange (ETDEWEB)

    Adda, Y.; Philibert, J. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires; Institut de Recherches de la Siderurgie Francaise (IRSID), 78 - Saint-Germain-en-Laye (France)

    1959-07-01

    After chemical diffusion between two metals, at temperatures where, according to the equilibrium diagram, several phases exist, parallel bands corresponding to these various phases can be seen in a section which is perpendicular to the diffusion front. It is known that in this case there are discontinuities in the concentration-penetration curve, corresponding to the interfaces. The concentrations at the point where the discontinuities occur give the limits of solubility in each of the present phases. During our experiments on the system uranium-zirconium, we verified that these concentrations do not vary with the diffusion time and therefore that the conditions of thermodynamical equilibrium are obeyed. It follows that an interesting method is available for determining the equilibrium diagram for the solid state. We have applied this method to the U-Zr system. Kinetic studies of poly-phase diffusion are as yet relatively scarce as a result of difficulty of experimentation. Various methods based on purely micro-graphical studies (measurement of the thickness of intermediate phases) are also proposed for evaluating the coefficient of diffusion. Our experimental results show that the hypotheses on which these methods are based are rarely valid. We have established concentration-penetration curves for the systems U-Zr (between 590 deg. C and 950 deg. C) and U-Mo (between 800 deg. C and 1050 deg. C). These curves have very often a very accentuated curvature, thus indicating variations in the diffusion coefficient, which cannot be expressed by simple relationships. Finally, we have observed certain anomalies in the neighbourhood of the interfaces between adjacent phases. Further we have studied the Kirkendall effect in poly-phase system by marking the plane of welding with tungsten wires, and compared these results to those from a previous study in the homogeneous phase. We have found that the presence of phase boundaries accentuates this effect. The interpretation of

  14. Scanning, non-contact, hybrid broadband diffuse optical spectroscopy and diffuse correlation spectroscopy system.

    Science.gov (United States)

    Johansson, Johannes D; Mireles, Miguel; Morales-Dalmau, Jordi; Farzam, Parisa; Martínez-Lozano, Mar; Casanovas, Oriol; Durduran, Turgut

    2016-02-01

    A scanning system for small animal imaging using non-contact, hybrid broadband diffuse optical spectroscopy (ncDOS) and diffuse correlation spectroscopy (ncDCS) is presented. The ncDOS uses a two-dimensional spectrophotometer retrieving broadband (610-900 nm) spectral information from up to fifty-seven source-detector distances between 2 and 5 mm. The ncDCS data is simultaneously acquired from four source-detector pairs. The sample is scanned in two dimensions while tracking variations in height. The system has been validated with liquid phantoms, demonstrated in vivo on a human fingertip during an arm cuff occlusion and on a group of mice with xenoimplanted renal cell carcinoma.

  15. Development and testing of a novel survey to assess Stakeholder-driven Community Diffusion of childhood obesity prevention efforts.

    Science.gov (United States)

    Korn, Ariella R; Hennessy, Erin; Hammond, Ross A; Allender, Steven; Gillman, Matthew W; Kasman, Matt; McGlashan, Jaimie; Millar, Lynne; Owen, Brynle; Pachucki, Mark C; Swinburn, Boyd; Tovar, Alison; Economos, Christina D

    2018-05-31

    Involving groups of community stakeholders (e.g., steering committees) to lead community-wide health interventions appears to support multiple outcomes ranging from policy and systems change to individual biology. While numerous tools are available to measure stakeholder characteristics, many lack detail on reliability and validity, are not context specific, and may not be sensitive enough to capture change over time. This study describes the development and reliability of a novel survey to measure Stakeholder-driven Community Diffusion via assessment of stakeholders' social networks, knowledge, and engagement about childhood obesity prevention. This study was completed in three phases. Phase 1 included conceptualization and online survey development through literature reviews and expert input. Phase 2 included a retrospective study with stakeholders from two completed whole-of-community interventions. Between May-October 2015, 21 stakeholders from the Shape Up Somerville and Romp & Chomp interventions recalled their social networks, knowledge, and engagement pre-post intervention. We also assessed one-week test-retest reliability of knowledge and engagement survey modules among Shape Up Somerville respondents. Phase 3 included survey modifications and a second prospective reliability assessment. Test-retest reliability was assessed in May 2016 among 13 stakeholders involved in ongoing interventions in Victoria, Australia. In Phase 1, we developed a survey with 7, 20 and 50 items for the social networks, knowledge, and engagement survey modules, respectively. In the Phase 2 retrospective study, Shape Up Somerville and Romp & Chomp networks included 99 and 54 individuals. Pre-post Shape Up Somerville and Romp & Chomp mean knowledge scores increased by 3.5 points (95% CI: 0.35-6.72) and (- 0.42-7.42). Engagement scores did not change significantly (Shape Up Somerville: 1.1 points (- 0.55-2.73); Romp & Chomp: 0.7 points (- 0.43-1.73)). Intraclass correlation

  16. Diffusion-weighted imaging of the musculoskeletal system in humans

    International Nuclear Information System (INIS)

    Baur, A.; Reiser, M.F.

    2000-01-01

    This article reviews the principles of diffusion-weighted imaging (DWI) and recent results in DWI of the musculoskeletal system. The potential of DWI in the diagnosis of pathology of the musculoskeletal system is discussed. DWI is a relatively new MR imaging technique that has already been established in neuroradiology, especially in the early detection of brain ischemia. The random motion of water protons on a molecular basis can be measured with DWI. To date DWI of the abdomen and of the musculoskeletal system has only been employed in scientific studies, but first results indicate that it may also be beneficial in these fields. Different diffusion characteristics have been found in normal tissues such as muscle, fat and bone marrow. Also, pathologic entities such as neoplasms, post-therapeutic soft tissue changes and inflammatory processes can be differentiated. Normal muscle shows significantly higher diffusion values than subcutaneous fat and bone marrow, due to a higher mobility of water protons within muscle. Soft tissue tumors exhibit a significantly lower diffusion value compared with post-therapeutic soft tissue changes and inflammatory processes. Necrotic tumor tissue can be distinguished from viable tumor due to significantly higher diffusion of water protons within necrotic tissue. (orig.)

  17. Splitting Schemes & Segregation In Reaction-(Cross-)Diffusion Systems

    OpenAIRE

    Carrillo, José A.; Fagioli, Simone; Santambrogio, Filippo; Schmidtchen, Markus

    2017-01-01

    One of the most fascinating phenomena observed in reaction-diffusion systems is the emergence of segregated solutions, i.e. population densities with disjoint supports. We analyse such a reaction cross-diffusion system. In order to prove existence of weak solutions for a wide class of initial data without restriction about their supports or their positivity, we propose a variational splitting scheme combining ODEs with methods from optimal transport. In addition, this approach allows us to pr...

  18. A numerical study of one-dimensional replicating patterns in reaction-diffusion systems with non-linear diffusion coefficients

    International Nuclear Information System (INIS)

    Ferreri, J. C.; Carmen, A. del

    1998-01-01

    A numerical study of the dynamics of pattern evolution in reaction-diffusion systems is performed, although limited to one spatial dimension. The diffusion coefficients are nonlinear, based on powers of the scalar variables. The system keeps the dynamics of previous studies in the literature, but the presence of nonlinear diffusion generates a field of strong nonlinear interactions due to the presence of receding travelling waves. This field is limited by the plane of symmetry of the space domain and the last born outgoing travelling wave. These effects are discussed. (author). 10 refs., 7 figs

  19. Image Structure-Preserving Denoising Based on Difference Curvature Driven Fractional Nonlinear Diffusion

    Directory of Open Access Journals (Sweden)

    Xuehui Yin

    2015-01-01

    Full Text Available The traditional integer-order partial differential equations and gradient regularization based image denoising techniques often suffer from staircase effect, speckle artifacts, and the loss of image contrast and texture details. To address these issues, in this paper, a difference curvature driven fractional anisotropic diffusion for image noise removal is presented, which uses two new techniques, fractional calculus and difference curvature, to describe the intensity variations in images. The fractional-order derivatives information of an image can deal well with the textures of the image and achieve a good tradeoff between eliminating speckle artifacts and restraining staircase effect. The difference curvature constructed by the second order derivatives along the direction of gradient of an image and perpendicular to the gradient can effectively distinguish between ramps and edges. Fourier transform technique is also proposed to compute the fractional-order derivative. Experimental results demonstrate that the proposed denoising model can avoid speckle artifacts and staircase effect and preserve important features such as curvy edges, straight edges, ramps, corners, and textures. They are obviously superior to those of traditional integral based methods. The experimental results also reveal that our proposed model yields a good visual effect and better values of MSSIM and PSNR.

  20. Intra-regional Diffusion of Spectrum License Allocation Policies

    DEFF Research Database (Denmark)

    Pogrebnyakov, Nicolai; Maitland, Carleen F.

    2013-01-01

    -depth qualitative analyses to compare effects of various diffusion mechanisms; diffusion of spectrum license allocation policies at the regional level was more strongly driven by a policy’s likely effectiveness, as compared to potential payoffs for policymakers; and conversely, at the national level diffusion...... regions. Design/methodology/approach – A qualitative comparative case method is used. Cases are developed from secondary data from the European Union and South America, and analyzed at the national and regional levels. Findings – The results suggest: the expected utility model can be used for in...... was driven by both payoffs for the policymakers and likely policy effectiveness. Originality/value – The two academic contributions of the paper are its expansion of a unified policy diffusion model to simultaneously account for regional and national levels of governance, as well as for technological change...

  1. A novel finite volume discretization method for advection-diffusion systems on stretched meshes

    Science.gov (United States)

    Merrick, D. G.; Malan, A. G.; van Rooyen, J. A.

    2018-06-01

    This work is concerned with spatial advection and diffusion discretization technology within the field of Computational Fluid Dynamics (CFD). In this context, a novel method is proposed, which is dubbed the Enhanced Taylor Advection-Diffusion (ETAD) scheme. The model equation employed for design of the scheme is the scalar advection-diffusion equation, the industrial application being incompressible laminar and turbulent flow. Developed to be implementable into finite volume codes, ETAD places specific emphasis on improving accuracy on stretched structured and unstructured meshes while considering both advection and diffusion aspects in a holistic manner. A vertex-centered structured and unstructured finite volume scheme is used, and only data available on either side of the volume face is employed. This includes the addition of a so-called mesh stretching metric. Additionally, non-linear blending with the existing NVSF scheme was performed in the interest of robustness and stability, particularly on equispaced meshes. The developed scheme is assessed in terms of accuracy - this is done analytically and numerically, via comparison to upwind methods which include the popular QUICK and CUI techniques. Numerical tests involved the 1D scalar advection-diffusion equation, a 2D lid driven cavity and turbulent flow case. Significant improvements in accuracy were achieved, with L2 error reductions of up to 75%.

  2. Role of Rayleigh numbers on characteristics of double diffusive salt fingers

    Science.gov (United States)

    Rehman, F.; Singh, O. P.

    2018-05-01

    Double diffusion convection, driven by two constituents of the fluid with different molecular diffusivity, is widely applied in oceanography and large number of other fields like astrophysics, geology, chemistry and metallurgy. In case of ocean, heat (T) and salinity (S) are the two components with varying diffusivity, where heat diffuses hundred times faster than salt. Component (T) stabilizes the system whereas components (S) destabilizes the system with overall density remains stable and forms the rising and sinking fingers known as salt fingers. Recent observations suggest that salt finger characteristics such as growth rates, wavenumber, and fluxes are strongly depending on the Rayleigh numbers as major driving force. In this paper, we corroborate this observation with the help of experiments, numerical simulations and linear theory. An eigenvalue expression for growth rate is derived from the linearized governing equations with explicit dependence on Rayleigh numbers, density stability ratio, Prandtl number and diffusivity ratio. Expressions for fastest growing fingers are also derived as a function various non-dimensional parameter. The predicted results corroborate well with the data reported from the field measurements, experiments and numerical simulations.

  3. Speech-driven environmental control systems--a qualitative analysis of users' perceptions.

    Science.gov (United States)

    Judge, Simon; Robertson, Zoë; Hawley, Mark; Enderby, Pam

    2009-05-01

    To explore users' experiences and perceptions of speech-driven environmental control systems (SPECS) as part of a larger project aiming to develop a new SPECS. The motivation for this part of the project was to add to the evidence base for the use of SPECS and to determine the key design specifications for a new speech-driven system from a user's perspective. Semi-structured interviews were conducted with 12 users of SPECS from around the United Kingdom. These interviews were transcribed and analysed using a qualitative method based on framework analysis. Reliability is the main influence on the use of SPECS. All the participants gave examples of occasions when their speech-driven system was unreliable; in some instances, this unreliability was reported as not being a problem (e.g., for changing television channels); however, it was perceived as a problem for more safety critical functions (e.g., opening a door). Reliability was cited by participants as the reason for using a switch-operated system as back up. Benefits of speech-driven systems focused on speech operation enabling access when other methods were not possible; quicker operation and better aesthetic considerations. Overall, there was a perception of increased independence from the use of speech-driven environmental control. In general, speech was considered a useful method of operating environmental controls by the participants interviewed; however, their perceptions regarding reliability often influenced their decision to have backup or alternative systems for certain functions.

  4. Visualization-based decision support for value-driven system design

    Science.gov (United States)

    Tibor, Elliott

    In the past 50 years, the military, communication, and transportation systems that permeate our world, have grown exponentially in size and complexity. The development and production of these systems has seen ballooning costs and increased risk. This is particularly critical for the aerospace industry. The inability to deal with growing system complexity is a crippling force in the advancement of engineered systems. Value-Driven Design represents a paradigm shift in the field of design engineering that has potential to help counteract this trend. The philosophy of Value-Driven Design places the desires of the stakeholder at the forefront of the design process to capture true preferences and reveal system alternatives that were never previously thought possible. Modern aerospace engineering design problems are large, complex, and involve multiple levels of decision-making. To find the best design, the decision-maker is often required to analyze hundreds or thousands of combinations of design variables and attributes. Visualization can be used to support these decisions, by communicating large amounts of data in a meaningful way. Understanding the design space, the subsystem relationships, and the design uncertainties is vital to the advancement of Value-Driven Design as an accepted process for the development of more effective, efficient, robust, and elegant aerospace systems. This research investigates the use of multi-dimensional data visualization tools to support decision-making under uncertainty during the Value-Driven Design process. A satellite design system comprising a satellite, ground station, and launch vehicle is used to demonstrate effectiveness of new visualization methods to aid in decision support during complex aerospace system design. These methods are used to facilitate the exploration of the feasible design space by representing the value impact of system attribute changes and comparing the results of multi-objective optimization formulations

  5. Quantitative system validation in model driven design

    DEFF Research Database (Denmark)

    Hermanns, Hilger; Larsen, Kim Guldstrand; Raskin, Jean-Francois

    2010-01-01

    The European STREP project Quasimodo1 develops theory, techniques and tool components for handling quantitative constraints in model-driven development of real-time embedded systems, covering in particular real-time, hybrid and stochastic aspects. This tutorial highlights the advances made, focus...

  6. Information system design for demand-driven supply networks

    OpenAIRE

    Selk, Bernhard

    2004-01-01

    Information system design for demand-driven supply networks : integrating CRM & SCM / B. Selk, K. Turowski, C. Winnewisser. - In: EIS : Fourth International ICSC Symposium on Engineering of Intelligent Systems, EIS 2004. [Elektronische Ressource]. - Millet, Alberta : ICSC Interdisciplinary Research Canada, 2004. - 8 S. auf CD-ROM

  7. Cosmic ray driven outflows in an ultraluminous galaxy

    Science.gov (United States)

    Fujita, Akimi; Mac Low, Mordecai-Mark

    2018-06-01

    In models of galaxy formation, feedback driven both by supernova (SN) and active galactic nucleus is not efficient enough to quench star formation in massive galaxies. Models of smaller galaxies have suggested that cosmic rays (CRs) play a major role in expelling material from the star-forming regions by diffusing SN energy to the lower density outskirts. We therefore run gas dynamical simulations of galactic outflows from a galaxy contained in a halo with 5 × 1012 M⊙ that resembles a local ultraluminous galaxy, including both SN thermal energy and a treatment of CRs using the same diffusion approximation as Salem & Bryan. We find that CR pressure drives a low-density bubble beyond the edge of the shell swept up by thermal pressure, but the main bubble driven by SN thermal pressure overtakes it later, which creates a large-scale biconical outflow. CRs diffusing into the disc are unable to entrain its gas in the outflows, yielding a mass-loading rate of only ˜ 0.1 per cent with varied CR diffusion coefficients. We find no significant difference in mass-loading rates in SN-driven outflows with or without CR pressure. Our simulations strongly suggest that it is hard to drive a heavily mass-loaded outflow with CRs from a massive halo potential, although more distributed star formation could lead to a different result.

  8. Parametric spatiotemporal oscillation in reaction-diffusion systems.

    Science.gov (United States)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2016-03-01

    We consider a reaction-diffusion system in a homogeneous stable steady state. On perturbation by a time-dependent sinusoidal forcing of a suitable scaling parameter the system exhibits parametric spatiotemporal instability beyond a critical threshold frequency. We have formulated a general scheme to calculate the threshold condition for oscillation and the range of unstable spatial modes lying within a V-shaped region reminiscent of Arnold's tongue. Full numerical simulations show that depending on the specificity of nonlinearity of the models, the instability may result in time-periodic stationary patterns in the form of standing clusters or spatially localized breathing patterns with characteristic wavelengths. Our theoretical analysis of the parametric oscillation in reaction-diffusion system is corroborated by full numerical simulation of two well-known chemical dynamical models: chlorite-iodine-malonic acid and Briggs-Rauscher reactions.

  9. Distribution in flowing reaction-diffusion systems

    KAUST Repository

    Kamimura, Atsushi; Herrmann, Hans J.; Ito, Nobuyasu

    2009-01-01

    A power-law distribution is found in the density profile of reacting systems A+B→C+D and 2A→2C under a flow in two and three dimensions. Different densities of reactants A and B are fixed at both ends. For the reaction A+B, the concentration of reactants asymptotically decay in space as x-1/2 and x-3/4 in two dimensions and three dimensions, respectively. For 2A, it decays as log (x) /x in two dimensions. The decay of A+B is explained considering the effect of segregation of reactants in the isotropic case. The decay for 2A is explained by the marginal behavior of two-dimensional diffusion. A logarithmic divergence of the diffusion constant with system size is found in two dimensions. © 2009 The American Physical Society.

  10. Distribution in flowing reaction-diffusion systems

    KAUST Repository

    Kamimura, Atsushi

    2009-12-28

    A power-law distribution is found in the density profile of reacting systems A+B→C+D and 2A→2C under a flow in two and three dimensions. Different densities of reactants A and B are fixed at both ends. For the reaction A+B, the concentration of reactants asymptotically decay in space as x-1/2 and x-3/4 in two dimensions and three dimensions, respectively. For 2A, it decays as log (x) /x in two dimensions. The decay of A+B is explained considering the effect of segregation of reactants in the isotropic case. The decay for 2A is explained by the marginal behavior of two-dimensional diffusion. A logarithmic divergence of the diffusion constant with system size is found in two dimensions. © 2009 The American Physical Society.

  11. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases.

    Science.gov (United States)

    Taoka, Toshiaki; Masutani, Yoshitaka; Kawai, Hisashi; Nakane, Toshiki; Matsuoka, Kiwamu; Yasuno, Fumihiko; Kishimoto, Toshifumi; Naganawa, Shinji

    2017-04-01

    The activity of the glymphatic system is impaired in animal models of Alzheimer's disease (AD). We evaluated the activity of the human glymphatic system in cases of AD with a diffusion-based technique called diffusion tensor image analysis along the perivascular space (DTI-ALPS). Diffusion tensor images were acquired to calculate diffusivities in the x, y, and z axes of the plane of the lateral ventricle body in 31 patients. We evaluated the diffusivity along the perivascular spaces as well as projection fibers and association fibers separately, to acquire an index for diffusivity along the perivascular space (ALPS-index) and correlated them with the mini mental state examinations (MMSE) score. We found a significant negative correlation between diffusivity along the projection fibers and association fibers. We also observed a significant positive correlation between diffusivity along perivascular spaces shown as ALPS-index and the MMSE score, indicating lower water diffusivity along the perivascular space in relation to AD severity. Activity of the glymphatic system may be evaluated with diffusion images. Lower diffusivity along the perivascular space on DTI-APLS seems to reflect impairment of the glymphatic system. This method may be useful for evaluating the activity of the glymphatic system.

  12. Logarithmic Superdiffusion in Two Dimensional Driven Lattice Gases

    Science.gov (United States)

    Krug, J.; Neiss, R. A.; Schadschneider, A.; Schmidt, J.

    2018-03-01

    The spreading of density fluctuations in two-dimensional driven diffusive systems is marginally anomalous. Mode coupling theory predicts that the diffusivity in the direction of the drive diverges with time as (ln t)^{2/3} with a prefactor depending on the macroscopic current-density relation and the diffusion tensor of the fluctuating hydrodynamic field equation. Here we present the first numerical verification of this behavior for a particular version of the two-dimensional asymmetric exclusion process. Particles jump strictly asymmetrically along one of the lattice directions and symmetrically along the other, and an anisotropy parameter p governs the ratio between the two rates. Using a novel massively parallel coupling algorithm that strongly reduces the fluctuations in the numerical estimate of the two-point correlation function, we are able to accurately determine the exponent of the logarithmic correction. In addition, the variation of the prefactor with p provides a stringent test of mode coupling theory.

  13. Wave of chaos in a diffusive system: Generating realistic patterns of patchiness in plankton-fish dynamics

    International Nuclear Information System (INIS)

    Upadhyay, Ranjit Kumar; Kumari, Nitu; Rai, Vikas

    2009-01-01

    We show that wave of chaos (WOC) can generate two-dimensional time-independent spatial patterns which can be a potential candidate for understanding planktonic patchiness observed in marine environments. These spatio-temporal patterns were obtained in computer simulations of a minimal model of phytoplankton-zooplankton dynamics driven by forces of diffusion. We also attempt to figure out the average lifetimes of these non-linear non-equilibrium patterns. These spatial patterns serve as a realistic model for patchiness found in aquatic systems (e.g., marine and oceanic). Additionally, spatio-temporal chaos produced by bi-directional WOCs is robust to changes in key parameters of the system; e.g., intra-specific competition among individuals of phytoplankton and the rate of fish predation. The ideas contained in the present paper may find applications in diverse fields of human endeavor.

  14. Turing Patterns in a Reaction-Diffusion System

    International Nuclear Information System (INIS)

    Wu Yanning; Wang Pingjian; Hou Chunju; Liu Changsong; Zhu Zhengang

    2006-01-01

    We have further investigated Turing patterns in a reaction-diffusion system by theoretical analysis and numerical simulations. Simple Turing patterns and complex superlattice structures are observed. We find that the shape and type of Turing patterns depend on dynamical parameters and external periodic forcing, and is independent of effective diffusivity rate σ in the Lengyel-Epstein model. Our numerical results provide additional insight into understanding the mechanism of development of Turing patterns and predicting new pattern formations.

  15. Data-driven modelling of LTI systems using symbolic regression

    NARCIS (Netherlands)

    Khandelwal, D.; Toth, R.; Van den Hof, P.M.J.

    2017-01-01

    The aim of this project is to automate the task of data-driven identification of dynamical systems. The underlying goal is to develop an identification tool that models a physical system without distinguishing between classes of systems such as linear, nonlinear or possibly even hybrid systems. Such

  16. Network-driven design principles for neuromorphic systems

    OpenAIRE

    Partzsch, Johannes; Sch?ffny, Rene

    2015-01-01

    Synaptic connectivity is typically the most resource-demanding part of neuromorphic systems. Commonly, the architecture of these systems is chosen mainly on technical considerations. As a consequence, the potential for optimization arising from the inherent constraints of connectivity models is left unused. In this article, we develop an alternative, network-driven approach to neuromorphic architecture design. We describe methods to analyse performance of existing neuromorphic architectures i...

  17. Analysis of Fuel Cell Driven Ground Source Heat Pump Systems in Community Buildings

    Directory of Open Access Journals (Sweden)

    Jong-Keun Shin

    2013-05-01

    Full Text Available In the present study, a fuel cell driven ground source heat pump (GSHP system is applied in a community building and heat pump system performance is analyzed by computational methods. Conduction heat transfer between the brine pipe and ground is analyzed by TEACH code in order to predict the performance of the heat pump system. The predicted coefficient of performance (COP of the heat pump system and the energy cost were compared with the variation of the location of the objective building, the water saturation rate of the soil, and the driven powers of the heat pump system. Compared to the late-night electricity driven system, a significant reduction of energy cost can be accomplished by employing the fuel cell driven heat pump system. This is due to the low cost of electricity production of the fuel cell system and to the application of the recovered waste heat generated during the electricity production process to the heating of the community building.

  18. Pattern formation induced by cross-diffusion in a predator–prey system

    International Nuclear Information System (INIS)

    Sun Guiquan; Jin Zhen; Liu Quanxing; Li Li

    2008-01-01

    This paper considers the Holling–Tanner model for predator–prey with self and cross-diffusion. From the Turing theory, it is believed that there is no Turing pattern formation for the equal self-diffusion coefficients. However, combined with cross-diffusion, it shows that the system will exhibit spotted pattern by both mathematical analysis and numerical simulations. Furthermore, asynchrony of the predator and the prey in the space. The obtained results show that cross-diffusion plays an important role on the pattern formation of the predator–prey system. (general)

  19. Hamiltonian-Driven Adaptive Dynamic Programming for Continuous Nonlinear Dynamical Systems.

    Science.gov (United States)

    Yang, Yongliang; Wunsch, Donald; Yin, Yixin

    2017-08-01

    This paper presents a Hamiltonian-driven framework of adaptive dynamic programming (ADP) for continuous time nonlinear systems, which consists of evaluation of an admissible control, comparison between two different admissible policies with respect to the corresponding the performance function, and the performance improvement of an admissible control. It is showed that the Hamiltonian can serve as the temporal difference for continuous-time systems. In the Hamiltonian-driven ADP, the critic network is trained to output the value gradient. Then, the inner product between the critic and the system dynamics produces the value derivative. Under some conditions, the minimization of the Hamiltonian functional is equivalent to the value function approximation. An iterative algorithm starting from an arbitrary admissible control is presented for the optimal control approximation with its convergence proof. The implementation is accomplished by a neural network approximation. Two simulation studies demonstrate the effectiveness of Hamiltonian-driven ADP.

  20. Consistency properties of chaotic systems driven by time-delayed feedback

    Science.gov (United States)

    Jüngling, T.; Soriano, M. C.; Oliver, N.; Porte, X.; Fischer, I.

    2018-04-01

    Consistency refers to the property of an externally driven dynamical system to respond in similar ways to similar inputs. In a delay system, the delayed feedback can be considered as an external drive to the undelayed subsystem. We analyze the degree of consistency in a generic chaotic system with delayed feedback by means of the auxiliary system approach. In this scheme an identical copy of the nonlinear node is driven by exactly the same signal as the original, allowing us to verify complete consistency via complete synchronization. In the past, the phenomenon of synchronization in delay-coupled chaotic systems has been widely studied using correlation functions. Here, we analytically derive relationships between characteristic signatures of the correlation functions in such systems and unequivocally relate them to the degree of consistency. The analytical framework is illustrated and supported by numerical calculations of the logistic map with delayed feedback for different replica configurations. We further apply the formalism to time series from an experiment based on a semiconductor laser with a double fiber-optical feedback loop. The experiment constitutes a high-quality replica scheme for studying consistency of the delay-driven laser and confirms the general theoretical results.

  1. Nonlinear reaction-diffusion systems conditional symmetry, exact solutions and their applications in biology

    CERN Document Server

    Cherniha, Roman

    2017-01-01

    This book presents several fundamental results in solving nonlinear reaction-diffusion equations and systems using symmetry-based methods. Reaction-diffusion systems are fundamental modeling tools for mathematical biology with applications to ecology, population dynamics, pattern formation, morphogenesis, enzymatic reactions and chemotaxis. The book discusses the properties of nonlinear reaction-diffusion systems, which are relevant for biological applications, from the symmetry point of view, providing rigorous definitions and constructive algorithms to search for conditional symmetry (a nontrivial generalization of the well-known Lie symmetry) of nonlinear reaction-diffusion systems. In order to present applications to population dynamics, it focuses mainly on two- and three-component diffusive Lotka-Volterra systems. While it is primarily a valuable guide for researchers working with reaction-diffusion systems  and those developing the theoretical aspects of conditional symmetry conception,...

  2. Two Dimensional Drug Diffusion Between Nanoparticles and Fractal Tumors

    Science.gov (United States)

    Samioti, S. E.; Karamanos, K.; Tsiantis, A.; Papathanasiou, A.; Sarris, I.

    2017-11-01

    Drug delivery methods based on nanoparticles are some of the most promising medical applications in nanotechnology to treat cancer. It is observed that drug released by nanoparticles to the cancer tumors may be driven by diffusion. A fractal tumor boundary of triangular Von Koch shape is considered here and the diffusion mechanism is studied for different drug concentrations and increased fractality. A high order Finite Elements method based on the Fenics library is incorporated in fine meshes to fully resolve these irregular boundaries. Drug concentration, its transfer rates and entropy production are calculated in an up to forth order fractal iteration boundaries. We observed that diffusion rate diminishes for successive prefractal generations. Also, the entropy production around the system changes greatly as the order of the fractal curve increases. Results indicate with precision where the active sites are, in which most of the diffusion takes place and thus drug arrives to the tumor.

  3. Thermodynamics and kinetics of interstitial diffusion in a two-component system

    International Nuclear Information System (INIS)

    McKee, R.A.

    1980-01-01

    Diffusion theory is developed for a two-component system in which only the interstitial element is mobile. A thermodynamic formalism is used in direct parallel with a kinetic theory to construct a mechanism-independent relationship between tracer- and chemical-diffusion coefficients. It is found that D/sup I/=(D-italic*/f)(1+partiallnγ/partiallnC). D/sup I/ is the intrinsic- or chemical-diffusion coefficient for the interstitial, D* is the tracer-diffusion coefficient, f is the correlation factor, and γ is the activity coefficient. This expression accounts for site exclusion, correlation, and drift effects that occur as the interstitial content changes. Generalized phenomenological coefficients that are determined in this analysis can be used for standard representations of diffusion in electric fields and temperature gradients. Moreover, the forms that the phenomenological coefficients take for the interstitial system are the same as those previously derived for vacancy diffusion. A test of this predicted relationship between tracer- and chemical-diffusion coefficients is developed using a comparison between theory and experiment for carbon diffusion in fcc iron

  4. [Novel concepts in biology of diffuse endocrine system: results and future investigations].

    Science.gov (United States)

    Iaglov, V V; Iaglova, N V

    2012-01-01

    Diffuse endocrine system is a largest part of endocrine system of vertebrates. Recend findings showed that DES-cells are not neuroectodermal but have ectodermal, mesodermal, and entodermal ontogeny. The article reviews novel concept of diffuse endocrine system anatomy and physiology, functional role of DES hormones and poorly investigated aspects like DES-cell morphology, hormones secretion in normal and pathologic conditions. Further research of diffuse endocrine system has a great significance for biochemistry, morphology, and clinical medicine.

  5. Anomalous edge states and the bulk-edge correspondence for periodically-driven two dimensional systems

    DEFF Research Database (Denmark)

    Rudner, Mark Spencer; Lindner, Netanel; Berg, Erez

    2013-01-01

    revealed phenomena that cannot be characterized by analogy to the topological classification framework for static systems. In particular, in driven systems in two dimensions (2D), robust chiral edge states can appear even though the Chern numbers of all the bulk Floquet bands are zero. Here, we elucidate...... the crucial distinctions between static and driven 2D systems, and construct a new topological invariant that yields the correct edge-state structure in the driven case. We provide formulations in both the time and frequency domains, which afford additional insight into the origins of the “anomalous” spectra...... that arise in driven systems. Possibilities for realizing these phenomena in solid-state and cold-atomic systems are discussed....

  6. Wave-driven Rotation in Supersonically Rotating Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    A. Fetterman and N.J. Fisch

    2010-02-15

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  7. Wave-driven Rotation in Supersonically Rotating Mirrors

    International Nuclear Information System (INIS)

    Fetterman, A.; Fisch, N.J.

    2010-01-01

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  8. Cross-diffusional effect in a telegraph reaction diffusion Lotka-Volterra two competitive system

    International Nuclear Information System (INIS)

    Abdusalam, H.A; Fahmy, E.S.

    2003-01-01

    It is known now that, telegraph equation is more suitable than ordinary diffusion equation in modelling reaction diffusion in several branches of sciences. Telegraph reaction diffusion Lotka-Volterra two competitive system is considered. We observed that this system can give rise to diffusive instability only in the presence of cross-diffusion. Local and global stability analysis in the cross-diffusional effect are studied by considering suitable Lyapunov functional

  9. High power radiation guiding systems for laser driven accelerators

    International Nuclear Information System (INIS)

    Cutolo, A.

    1985-01-01

    This paper reviews the main problems encountered in the design of an optical system for transmitting high fluence radiation in a laser driven accelerator. Particular attention is devoted to the analysis of mirror and waveguide systems. (orig.)

  10. Stabilization of breathers in a parametrically driven sine-Gordon system with loss

    DEFF Research Database (Denmark)

    Grønbech-Jensen, N.; Kivshar, Yu. S.; Samuelsen, Mogens Rugholm

    1991-01-01

    We demonstrate that in a parametrically driven sine-Gordon system with loss, a breather, if driven, can be maintained in a steady state at half the external frequency. In the small-amplitude limit the system is described by the effective perturbed nonlinear Schrödinger equation. For an arbitrary...

  11. The entropy dissipation method for spatially inhomogeneous reaction-diffusion-type systems

    KAUST Repository

    Di Francesco, M.

    2008-12-08

    We study the long-time asymptotics of reaction-diffusion-type systems that feature a monotone decaying entropy (Lyapunov, free energy) functional. We consider both bounded domains and confining potentials on the whole space for arbitrary space dimensions. Our aim is to derive quantitative expressions for (or estimates of) the rates of convergence towards an (entropy minimizing) equilibrium state in terms of the constants of diffusion and reaction and with respect to conserved quantities. Our method, the so-called entropy approach, seeks to quantify convergence to equilibrium by using functional inequalities, which relate quantitatively the entropy and its dissipation in time. The entropy approach is well suited to nonlinear problems and known to be quite robust with respect to model variations. It has already been widely applied to scalar diffusion-convection equations, and the main goal of this paper is to study its generalization to systems of partial differential equations that contain diffusion and reaction terms and admit fewer conservation laws than the size of the system. In particular, we successfully apply the entropy approach to general linear systems and to a nonlinear example of a reaction-diffusion-convection system arising in solid-state physics as a paradigm for general nonlinear systems. © 2008 The Royal Society.

  12. CONSTRUCTION TECHNOLOGY DIFFUSION IN DEVELOPING COUNTRIES: LIMITATIONS OF PREVAILING INNOVATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Emilia van Egmond-deWilde de Ligny

    2008-12-01

    Full Text Available The diffusion of innovative technologies in the market is usually a complex and difficult process with a varying degree of success and the effects of the diffused innovative technologies are very un-balanced. The objective of our research is to gain insight into the reasons why the diffusion of innovative technology fails, even though they promise a superior performance compared to incumbent technologies. Drawing on innovation systems theories, we have identified and used the concepts of technological regime, actor network and technology sets to analyze technology diffusion in a case study in the dwelling construction industry in Costa Rica. The results showed bottlenecks in the prevailing innovation system that curtailed the diffusion of an innovative construction technology.

  13. Group decision support system for customer-driven product design

    Science.gov (United States)

    Lin, Zhihang; Chen, Hang; Chen, Kuen; Che, Ada

    2000-10-01

    This paper describes the work on the development of a group decision support system for customer driven product design. The customer driven is to develop products, which meet all customer requirements in whole life cycle of products. A process model of decision during product primary design is proposed to formulate the structured, semi-structured and unstructured decision problems. The framework for the decision support system is presented that integrated both advances in the group decision making and distributed artificial intelligent. The system consists of the product primary design tool kit and the collaborative platform with multi-agent structure. The collaborative platform of the system and the product primary design tool kit, including the VOC (Voice of Customer) tool, QFD (Quality Function Deployment) tool, the Conceptual design tool, Reliability analysis tool and the cost and profit forecasting tool, are indicated.

  14. Two-dimensional simulation of reactive diffusion in binary systems

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Stopka, J.; Fischer, F. D.

    2014-01-01

    Roč. 95, DEC (2014), s. 309-315 ISSN 0927-0256 R&D Projects: GA ČR(CZ) GA14-24252S Institutional support: RVO:68081723 Keywords : Phase transformation * Diffusion-controlled interface migration * Reactive diffusion * Multiphase system * Intermetallic compounds Subject RIV: BJ - Thermodynamics Impact factor: 2.131, year: 2014

  15. Reaction-diffusion systems in intracellular molecular transport and control.

    Science.gov (United States)

    Soh, Siowling; Byrska, Marta; Kandere-Grzybowska, Kristiana; Grzybowski, Bartosz A

    2010-06-07

    Chemical reactions make cells work only if the participating chemicals are delivered to desired locations in a timely and precise fashion. Most research to date has focused on active-transport mechanisms, although passive diffusion is often equally rapid and energetically less costly. Capitalizing on these advantages, cells have developed sophisticated reaction-diffusion (RD) systems that control a wide range of cellular functions-from chemotaxis and cell division, through signaling cascades and oscillations, to cell motility. These apparently diverse systems share many common features and are "wired" according to "generic" motifs such as nonlinear kinetics, autocatalysis, and feedback loops. Understanding the operation of these complex (bio)chemical systems requires the analysis of pertinent transport-kinetic equations or, at least on a qualitative level, of the characteristic times of the constituent subprocesses. Therefore, in reviewing the manifestations of cellular RD, we also describe basic theory of reaction-diffusion phenomena.

  16. Osmotically-driven membrane processes for water reuse and energy recovery

    Science.gov (United States)

    Achilli, Andrea

    Osmotically-driven membrane processes are an emerging class of membrane separation processes that utilize concentrated brines to separate liquid streams. Their versatility of application make them an attractive alternative for water reuse and energy production/recovery. This work focused on innovative applications of osmotically-driven membrane processes. The novel osmotic membrane bioreactor (OMBR) system for water reuse was presented. Experimental results demonstrated high sustainable flux and relatively low reverse diffusion of solutes from the draw solution into the mixed liquor. Membrane fouling was minimal and controlled with osmotic backwashing. The OMBR system was found to remove greater than 99% of organic carbon and ammonium-nitrogen. Forward osmosis (FO) can employ different draw solution in its process. More than 500 inorganic compounds were screened as draw solution candidates, the desktop screening process resulted in 14 draw solutions suitable for FO applications. The 14 draw solutions were then tested in the laboratory to evaluate water flux and reverse salt diffusion through the membrane. Results indicated a wide range of water flux and reverse salt diffusion depending on the draw solution utilized. Internal concentration polarization was found to lower both water flux and reverse salt diffusion by reducing the draw solution concentration at the interface between the support and dense layer of the membrane. A small group of draw solutions was found to be most suitable for FO processes with currently available FO membranes. Another application of osmotically-driven membrane processes is pressure retarded osmosis (PRO). PRO was investigated as a viable source of renewable energy. A PRO model was developed to predict water flux and power density under specific experimental conditions. The predictive model was tested using experimental results from a bench-scale PRO system. Previous investigations of PRO were unable to verify model predictions due to

  17. System and safety studies of accelerator driven transmutation systems. Annual report 1997

    International Nuclear Information System (INIS)

    Wallenius, J.; Carlsson, Johan; Gudowski, W.

    1997-12-01

    In November 1996, SKB started financing of the project ''System and safety studies of accelerator driven transmutation systems and development of a spallation target''. The aim of the project was stated as: 1) Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. 2) Build up of competence regarding issues related to spallation targets development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration-experiment. In the present report, activities within the framework of the project performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1997, are accounted for

  18. System and safety studies of accelerator driven transmutation systems. Annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Wallenius, J.; Carlsson, Johan; Gudowski, W. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    1997-12-01

    In November 1996, SKB started financing of the project ``System and safety studies of accelerator driven transmutation systems and development of a spallation target``. The aim of the project was stated as: 1) Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. 2) Build up of competence regarding issues related to spallation targets development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration-experiment. In the present report, activities within the framework of the project performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1997, are accounted for. 13 refs, 6 figs.

  19. System and safety studies of accelerator driven transmutation systems. Annual report 1999

    International Nuclear Information System (INIS)

    Gudowski, Waclaw; Wallenius, Jan; Eriksson, Marcus; Carlsson, Johan; Seltborg, Per; Tucek, Kamil

    2000-05-01

    In 1996, SKB commenced funding of the project 'System and safety studies of accelerator driven transmutation systems and development of a spallation target'. The aim of the project was stated as: Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. Build up of competence regarding issues related to spallation targets, development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation. target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration experiment. In the present report, activities within and related to the framework of the project, performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1999, are accounted for

  20. System and safety studies of accelerator driven transmutation systems. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, Waclaw; Wallenius, Jan; Eriksson, Marcus; Carlsson, Johan; Seltborg, Per; Tucek, Kamil [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    2000-05-01

    In 1996, SKB commenced funding of the project 'System and safety studies of accelerator driven transmutation systems and development of a spallation target'. The aim of the project was stated as: Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. Build up of competence regarding issues related to spallation targets, development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation. target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration experiment. In the present report, activities within and related to the framework of the project, performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1999, are accounted for.

  1. Understanding the Effects of Lower Boundary Conditions and Eddy Diffusion on the Ionosphere-Thermosphere System

    Science.gov (United States)

    Malhotra, G.; Ridley, A. J.; Marsh, D. R.; Wu, C.; Paxton, L. J.

    2017-12-01

    The exchange of energy between lower atmospheric regions with the ionosphere-thermosphere (IT) system is not well understood. A number of studies have observed day-to-day and seasonal variabilities in the difference between data and model output of various IT parameters. It is widely speculated that the forcing from the lower atmosphere, variability in weather systems and gravity waves that propagate upward from troposphere into the upper mesosphere and lower thermosphere (MLT) may be responsible for these spatial and temporal variations in the IT region, but their exact nature is unknown. These variabilities can be interpreted in two ways: variations in state (density, temperature, wind) of the upper mesosphere or spatial and temporal changes in the small-scale mixing, or Eddy diffusion that is parameterized within the model.In this study, firstly, we analyze the sensitivity of the thermospheric and ionospheric states - neutral densities, O/N2, total electron content (TEC), peak electron density, and peak electron height - to various lower boundary conditions in the Global Ionosphere Thermosphere Model (GITM). We use WACCM-X and GSWM to drive the lower atmospheric boundary in GITM at 100 km, and compare the results with the current MSIS-driven version of GITM, analyzing which of these simulations match the measurements from GOCE, GUVI, CHAMP, and GPS-derived TEC best. Secondly, we analyze the effect of eddy diffusion in the IT system. The turbulence due to eddy mixing cannot be directly measured and it is a challenge to completely characterize its linear and non-linear effects from other influences, since the eddy diffusion both influences the composition through direct mixing and the temperature structure due to turbulent conduction changes. In this study we input latitudinal and seasonal profiles of eddy diffusion into GITM and then analyze the changes in the thermospheric and ionospheric parameters. These profiles will be derived from both WACC-X simulations

  2. Continuous Energy Improvement in Motor Driven Systems - A Guidebook for Industry

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert A. McCoy and John G. Douglass

    2014-02-01

    This guidebook provides a step-by-step approach to developing a motor system energy-improvement action plan. An action plan includes which motors should be repaired or replaced with higher efficiency models, recommendations on maintaining a spares inventory, and discussion of improvements in maintenance practices. The guidebook is the successor to DOE’s 1997 Energy Management for Motor Driven Systems. It builds on its predecessor publication by including topics such as power transmission systems and matching driven equipment to process requirements in addition to motors.

  3. Estimation and prediction of convection-diffusion-reaction systems from point measurement

    NARCIS (Netherlands)

    Vries, D.

    2008-01-01

    Different procedures with respect to estimation and prediction of systems characterized by convection, diffusion and reactions on the basis of point measurement data, have been studied. Two applications of these convection-diffusion-reaction (CDR) systems have been used as a case study of the

  4. Nonadiabatic population transfer in a driven four-level system

    International Nuclear Information System (INIS)

    Prants, S.V.

    1994-01-01

    The coherent dynamics of a four-level quantum system with an arbitrary level configuration is described analytically in the modulated polychromatic laser field. The method of dynamical symmetries is invoked to develop the formalism for explicit calculation of the evolution matrix of the system in the resonance fields. The method is free of the usual adiabatic-passage, weak-field approximations, and approximation of the slowly varying amplitudes. The conditions for occurrence of the coherent effects of the total inversion and the total depletion of the initial level of a system driven simultaneously driven simultaneously at several transitions by the laser pulses of arbitrary shape are derived analytically. The obtained results can be applied to problems of the control of quantum processes in multilevel atoms and molecules. 14 refs

  5. Pattern dynamics of the reaction-diffusion immune system.

    Science.gov (United States)

    Zheng, Qianqian; Shen, Jianwei; Wang, Zhijie

    2018-01-01

    In this paper, we will investigate the effect of diffusion, which is ubiquitous in nature, on the immune system using a reaction-diffusion model in order to understand the dynamical behavior of complex patterns and control the dynamics of different patterns. Through control theory and linear stability analysis of local equilibrium, we obtain the optimal condition under which the system loses stability and a Turing pattern occurs. By combining mathematical analysis and numerical simulation, we show the possible patterns and how these patterns evolve. In addition, we establish a bridge between the complex patterns and the biological mechanism using the results from a previous study in Nature Cell Biology. The results in this paper can help us better understand the biological significance of the immune system.

  6. Feasibility of waste transmutation using accelerator-driven IRIS subcritical system

    International Nuclear Information System (INIS)

    Petroviae, B.; Carelli, M.; Paramonov, D.

    2001-01-01

    Waste transmutation is considered for reducing radio-toxicity of nuclear waste generated in power reactors. Accelerator driven subcritical systems (ADS) offer certain advantages over the use of nuclear reactors. Transmutation of fission products (e.g. 99 Tc) generally requires thermal neutron spectrum, while for actinides fast spectrum provides better performance. Proposed solutions to this problem include a multi-strata approach as well as a multi-zone (thermal/fast-spectrum) single systems. In this paper we examine the feasibility of employing a dual-spectrum two-zone accelerator-driven IRIS subcritical for waste transmutation. (author)

  7. Diffusion tensor driven contour closing for cell microinjection targeting.

    Science.gov (United States)

    Becattini, Gabriele; Mattos, Leonardo S; Caldwell, Darwin G

    2010-01-01

    This article introduces a novel approach to robust automatic detection of unstained living cells in bright-field (BF) microscope images with the goal of producing a target list for an automated microinjection system. The overall image analysis process is described and includes: preprocessing, ridge enhancement, image segmentation, shape analysis and injection point definition. The developed algorithm implements a new version of anisotropic contour completion (ACC) based on the partial differential equation (PDE) for heat diffusion which improves the cell segmentation process by elongating the edges only along their tangent direction. The developed ACC algorithm is equivalent to a dilation of the binary edge image with a continuous elliptic structural element that takes into account local orientation of the contours preventing extension towards normal direction. Experiments carried out on real images of 10 to 50 microm CHO-K1 adherent cells show a remarkable reliability in the algorithm along with up to 85% success for cell detection and injection point definition.

  8. Development of regional meteorological and atmospheric diffusion simulation system

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Iwashige, Kengo; Kasano, Toshio

    2002-01-01

    Regional atmospheric diffusion online network (RADON) with atmospheric diffusion analysis code (ADAC) : a simulation program of diffusion of radioactive materials, volcanic ash, pollen, NOx and SOx was developed. This system can be executed in personal computer (PC) and note PC on Windows. Emission data consists of online, offline and default data. It uses the meteorology data sources such as meteorological forecasting mesh data, automated meteorological data acquisition system (AMeDAS) data, meteorological observation data in site and municipality observation data. The meteorological forecasting mesh data shows forecasting value of temperature, wind speed, wind direction and humidity in about two days. The nuclear environmental monitoring center retains the online data (meteorological data, emission source data, monitoring station data) in its PC server and can run forecasting or repeating calculation using these data and store and print out the calculation results. About 30 emission materials can be calculated simultaneously. This system can simulate a series of weather from the past and real time to the future. (S.Y.)

  9. Jump locations of jump-diffusion processes with state-dependent rates

    International Nuclear Information System (INIS)

    Miles, Christopher E; Keener, James P

    2017-01-01

    We propose a general framework for studying statistics of jump-diffusion systems driven by both Brownian noise (diffusion) and a jump process with state-dependent intensity. Of particular natural interest in many physical systems are the jump locations: the system evaluated at the jump times. As an example, this could be the voltage at which a neuron fires, or the so-called ‘threshold voltage’. However, the state-dependence of the jump rate provides direct coupling between the diffusion and jump components, making it difficult to disentangle the two to study individually. In this work, we provide an iterative map formulation of the sequence of distributions of jump locations. The distributions computed by this map can be used to elucidate other interesting quantities about the process, including statistics of the interjump times. Ultimately, the limit of the map reveals that knowledge of the stationary distribution of the full process is sufficient to recover (but not necessarily equal to) the distribution of jump locations. We propose two biophysical examples to illustrate the use of this framework to provide insight about a system. We find that a sharp threshold voltage emerges robustly in a simple stochastic integrate-and-fire neuronal model. The interplay between the two sources of noise is also investigated in a stepping model of molecular motor in intracellular transport pulling a diffusive cargo. (paper)

  10. Documentation Driven Development for Complex Real-Time Systems

    Science.gov (United States)

    2004-12-01

    This paper presents a novel approach for development of complex real - time systems , called the documentation-driven development (DDD) approach. This... time systems . DDD will also support automated software generation based on a computational model and some relevant techniques. DDD includes two main...stakeholders to be easily involved in development processes and, therefore, significantly improve the agility of software development for complex real

  11. Diffusion in the plutonium zirconium system; Diffusion dans le systeme plutonium zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Lauthier, J C [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-01-15

    Research on the compound PuZr{sub 2}: It cannot be obtained by a direct synthesis. We suppose that its formation is due to an oxygen amount which enhances diffusion processes by a contribution of bound extrinsic vacancies. This investigation which concerned a great range of alloys (from 15 to 50 at per cent Pu) has led us to point out the nature of the isothermal transformation. It takes place at 615 deg. + 5 deg. C and is of the peritectoid type. Pu {epsilon} (bcc) + Zr {alpha} (hex) {r_reversible} Pu {delta} (f. cc) Diffusion in hexagonal phase: Diffusion coefficients have been determined from couples made of Pu Zr dilute alloys (1.15 and 0.115 at per cent Pu) and of pure zirconium; these couples have been annealed between 700 and 840 deg. C from 1000 to 3000 hours. The curves C = f(x) were plotted by X ray microanalysis and a autoradiography. They have been analysed assuming that the diffusion coefficient was constant. Our results are the following: D Zr Pu (1.15 % = 11.1 exp (-65000/RT) and D Zr Pu (0.115 %) 0.1 exp (-54000/RT). (author) [French] Recherche du compose PuZr2: II ne peut etre obtenu par synthese directe. Nous pensons que sa formation est liee a la presence d'oxygene, qui, par son apport de lacunes extrinseques accelere les processus de diffusion. Cette etude qui a porte sur toute une serie d'alliages (de 15 a 50 pour cent atomique de Pu), nous a permis de preciser la nafure de la transformation isotherme. Elle situe a 615 deg. + 5 deg. C et est du type peritectoide. Pu {epsilon} (c.c.) + Zr {alpha} (h.c.) {r_reversible} Pu {delta} (c.f.c.) Diffusion en phase {alpha} hexagonale: Les coefficients de diffusion chimique ont ete determines a partir de couples constitues d'alliages PuZr dilues (1,15 pour cent et 0,115 pour cent atomique de Pu) et de zirconium pur. Ces couples ont ete recuits entre 700 et 840 deg. C durant des temps de 1000 a 3000 heures. Les courbes C = f(x) ont ete tracees par microanalyse X et autoradiographie {alpha}. Elles ont ete

  12. Chip Integrated, Hybrid EHD/Capillary Driven Thermal Management System

    Data.gov (United States)

    National Aeronautics and Space Administration — Chip-Integrated, Hybrid EHD/Capillary-Driven Thermal Management System is a two year that will leverage independently attained yet related prototype hardware...

  13. Interaction-driven versus disorder-driven transport in ultra-dilute GaAs two-dimensional hole systems

    Science.gov (United States)

    Huang, Jian; Pfeiffer, L. N.; West, K. W.

    2012-02-01

    It is well-known that the insulating behavior in the two-dimensional metal-to-insulator transition demonstrates a finite temperature conduction via hopping. Recently, however, some very strongly interacting higher purity two-dimensional electron systems at temperatures T->0 demonstrate certain nonactivated insulating behaviors that are absent in more disordered systems. Through measuring in dark the T-dependence of the conductivity of ultra-high quality 2D holes with charge densities down to 7x10^8 cm-2, an approximate power-law behavior is identified. Moreover, for the lowest charge densities, the exponent exhibits a linearly decreasing density-dependence which suggests an interaction-driven nature. Such an electron state is fragile to even a slight increase of disorder which causes a crossover from nonactivated to activated conduction. The non-activated conduction may well be an universal interaction-driven signature of an electron state of strongly correlated (semiquantum) liquid.

  14. Use of perforated acoustic panels as supply air diffusers in diffuse ceiling ventilation systems

    DEFF Research Database (Denmark)

    Iqbal, Ahsan; Kazemi, Seyed Hossein; Ardkapan, Siamak Rahimi

    Ventilation is needed for diluting and removing the contaminants, odour and excess heat from the building interior. It is important that the inhabitants perceive the ventilated spaces as comfortable. Therefore, the supply air should reach all parts of the occupied zones. Troldtekt has been...... manufacturing perforated acoustic panels for the last 13 years. The panels can be used not only in applications related to acoustics but also as low pressure drop supply air diffusers, particularly in diffuse ceiling ventilation systems. The present study verifies on a theoretically level the performance...

  15. Nonequilibrium steady states and resonant tunneling in time-periodically driven systems with interactions

    Science.gov (United States)

    Qin, Tao; Hofstetter, Walter

    2018-03-01

    Time-periodically driven systems are a versatile toolbox for realizing interesting effective Hamiltonians. Heating, caused by excitations to high-energy states, is a challenge for experiments. While most setups so far address the relatively weakly interacting regime, it is of general interest to study heating in strongly correlated systems. Using Floquet dynamical mean-field theory, we study nonequilibrium steady states (NESS) in the Falicov-Kimball model, with time-periodically driven kinetic energy or interaction. We systematically investigate the nonequilibrium properties of the NESS. For a driven kinetic energy, we show that resonant tunneling, where the interaction is an integer multiple of the driving frequency, plays an important role in the heating. In the strongly correlated regime, we show that this can be well understood using Fermi's golden rule and the Schrieffer-Wolff transformation for a time-periodically driven system. We furthermore demonstrate that resonant tunneling can be used to control the population of Floquet states to achieve "photodoping." For driven interactions introduced by an oscillating magnetic field near a widely adopted Feshbach resonance, we find that the double occupancy is strongly modulated. Our calculations apply to shaken ultracold-atom systems and to solid-state systems in a spatially uniform but time-dependent electric field. They are also closely related to lattice modulation spectroscopy. Our calculations are helpful to understand the latest experiments on strongly correlated Floquet systems.

  16. Data-driven design of fault diagnosis and fault-tolerant control systems

    CERN Document Server

    Ding, Steven X

    2014-01-01

    Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems presents basic statistical process monitoring, fault diagnosis, and control methods, and introduces advanced data-driven schemes for the design of fault diagnosis and fault-tolerant control systems catering to the needs of dynamic industrial processes. With ever increasing demands for reliability, availability and safety in technical processes and assets, process monitoring and fault-tolerance have become important issues surrounding the design of automatic control systems. This text shows the reader how, thanks to the rapid development of information technology, key techniques of data-driven and statistical process monitoring and control can now become widely used in industrial practice to address these issues. To allow for self-contained study and facilitate implementation in real applications, important mathematical and control theoretical knowledge and tools are included in this book. Major schemes are presented in algorithm form and...

  17. EPES information depth for an overlayer/substrate system with a diffuse interface

    International Nuclear Information System (INIS)

    Zommer, L.

    2009-01-01

    The information depth (ID) of elastic peak electron spectroscopy (EPES) was considered for an overlayer/substrate system with a diffuse interface. The interface was assumed to have an exponential concentration profile. The paradox previously found by Zommer and Jablonski for the Rh/Al and Al/Rh systems with sharp interfaces also occurs for these systems with diffuse interfaces. We compared IDs for diffuse and sharp interfaces. Deviations between the IDs depend on the interface width, overlayer thickness, and selected system for a given primary energy (here 2000 eV). The deviations for the Rh/Al and Al/Rh systems differ profoundly. These results are of importance when interpreting EPES measurements of layered system

  18. Accelerator-driven nuclear synergetic systems-an overview of the research activities in Sweden

    International Nuclear Information System (INIS)

    Conde, H.; Baecklin, A.; Carius, S.

    1995-01-01

    The rapid development of the accelerator technology which enables the construction of reliable and very intense neutron sources has initiated a growing interest for accelerator driven transmutation systems in Sweden. After the Specialist Meeting on Accelerator-Driven Transmutation Technology for Radwaste and other Applications on 24-28 June 1991 at Saltsjoebaden, Sweden, the research activities oriented towards accelerator-driven systems have been started at several research centers in Sweden. Also the governmental agencies responsible for the spent fuel policy showed a positive attitude to these activities through a limited financial support, particularly for studies of the safety aspects of these systems. Also the nuclear power industry and utilities show a positive interest in the research on these concepts. The present paper presents an overview of the Swedish research activities on accelerator-driven systems and the proposed future coordination, organizations and prospects for this research in the context of the national nuclear energy and spent fuel policy. The Swedish perspective for international cooperation is also described

  19. Accelerator-driven nuclear synergetic systems-an overview of the research activities in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Conde, H.; Baecklin, A.; Carius, S. [Uppsala Univ. (Sweden)] [and others

    1995-10-01

    The rapid development of the accelerator technology which enables the construction of reliable and very intense neutron sources has initiated a growing interest for accelerator driven transmutation systems in Sweden. After the Specialist Meeting on Accelerator-Driven Transmutation Technology for Radwaste and other Applications on 24-28 June 1991 at Saltsjoebaden, Sweden, the research activities oriented towards accelerator-driven systems have been started at several research centers in Sweden. Also the governmental agencies responsible for the spent fuel policy showed a positive attitude to these activities through a limited financial support, particularly for studies of the safety aspects of these systems. Also the nuclear power industry and utilities show a positive interest in the research on these concepts. The present paper presents an overview of the Swedish research activities on accelerator-driven systems and the proposed future coordination, organizations and prospects for this research in the context of the national nuclear energy and spent fuel policy. The Swedish perspective for international cooperation is also described.

  20. A Quality-Driven Methodology for Information Systems Integration

    Directory of Open Access Journals (Sweden)

    Iyad Zikra

    2017-10-01

    Full Text Available Information systems integration is an essential instrument for organizations to attain advantage in today’s growing and fast changing business and technology landscapes. Integration solutions generate added value by combining the functionality and services of heterogeneous and diverse systems. Existing integration environments tend to rely heavily on technical, platform-dependent skills. Consequently, the solutions that they enable are not optimally aligned with the envisioned business goals of the organization. Furthermore, the gap between the goals and the solutions complicates the task of evaluating the quality of integration solutions. To address these challenges, we propose a quality-driven, model-driven methodology for designing and developing integration solutions. The methodology spans organizational and systems design details, providing a holistic view of the integration solution and its underlying business goals. A multi-view meta-model provides the basis for the integration design. Quality factors that affect various aspects of the integration solution guide and inform the progress of the methodology. An example business case is presented to demonstrate the application of the methodology.

  1. Modeling 2D and 3D diffusion.

    Science.gov (United States)

    Saxton, Michael J

    2007-01-01

    Modeling obstructed diffusion is essential to the understanding of diffusion-mediated processes in the crowded cellular environment. Simple Monte Carlo techniques for modeling obstructed random walks are explained and related to Brownian dynamics and more complicated Monte Carlo methods. Random number generation is reviewed in the context of random walk simulations. Programming techniques and event-driven algorithms are discussed as ways to speed simulations.

  2. Theory of many-body localization in periodically driven systems

    International Nuclear Information System (INIS)

    Abanin, Dmitry A.; De Roeck, Wojciech; Huveneers, François

    2016-01-01

    We present a theory of periodically driven, many-body localized (MBL) systems. We argue that MBL persists under periodic driving at high enough driving frequency: The Floquet operator (evolution operator over one driving period) can be represented as an exponential of an effective time-independent Hamiltonian, which is a sum of quasi-local terms and is itself fully MBL. We derive this result by constructing a sequence of canonical transformations to remove the time-dependence from the original Hamiltonian. When the driving evolves smoothly in time, the theory can be sharpened by estimating the probability of adiabatic Landau–Zener transitions at many-body level crossings. In all cases, we argue that there is delocalization at sufficiently low frequency. We propose a phase diagram of driven MBL systems.

  3. Chaos control and synchronization in Bragg acousto-optic bistable systems driven by a separate chaotic system.

    Science.gov (United States)

    Wang, Rong; Gao, Jin-Yue

    2005-09-01

    In this paper we propose a new scheme to achieve chaos control and synchronization in Bragg acousto-optic bistable systems. In the scheme, we use the output of one system to drive two identical chaotic systems. Using the maximal conditional Lyapunov exponent (MCLE) as the criterion, we analyze the conditions for realizing chaos synchronization. Numerical calculation shows that the two identical systems in chaos with negative MCLEs and driven by a chaotic system can go into chaotic synchronization whether or not they were in chaos initially. The two systems can go into different periodic states from chaos following an inverse period-doubling bifurcation route as well when driven by a periodic system.

  4. Sustained currents in coupled diffusive systems

    International Nuclear Information System (INIS)

    Larralde, Hernán; Sanders, David P

    2014-01-01

    Coupling two diffusive systems may give rise to a nonequilibrium stationary state (NESS) with a non-trivial persistent, circulating current. We study a simple example that is exactly soluble, consisting of random walkers with different biases towards a reflecting boundary, modelling, for example, Brownian particles with different charge states in an electric field. We obtain analytical expressions for the concentrations and currents in the NESS for this model, and exhibit the main features of the system by numerical simulation. (paper)

  5. A cable-driven locomotor training system for restoration of gait in human SCI.

    Science.gov (United States)

    Wu, Ming; Hornby, T George; Landry, Jill M; Roth, Heidi; Schmit, Brian D

    2011-02-01

    A novel cable-driven robotic locomotor training system was developed to provide compliant assistance/resistance forces to the legs during treadmill training in patients with incomplete spinal cord injury (SCI). Eleven subjects with incomplete SCI were recruited to participate in two experiments to test the feasibility of the robotic gait training system. Specifically, 10 subjects participated in one experimental session to test the characteristics of the robotic gait training system and one subject participated in repeated testing sessions over 8 weeks with the robotic device to test improvements in locomotor function. Limb kinematics were recorded in one experiment to evaluate the system characteristics of the cable-driven locomotor trainer and the overground gait speed and 6 min walking distance were evaluated at pre, 4 and 8 weeks post treadmill training of a single subject as well. The results indicated that the cable driven robotic gait training system improved the kinematic performance of the leg during treadmill walking and had no significant impact on the variability of lower leg trajectory, suggesting a high backdrivability of the cable system. In addition, results from a patient with incomplete SCI indicated that prolonged robotic gait training using the cable robot improved overground gait speed. Results from this study suggested that a cable driven robotic gait training system is effective in improving leg kinematic performance, yet allows variability of gait kinematics. Thus, it seems feasible to improve the locomotor function in human SCI using this cable driven robotic system, warranting testing with a larger group of patients. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Diffusion tensor analysis with nuclear magnetic resonance in human central nervous system

    International Nuclear Information System (INIS)

    Nakayama, Naoki

    1998-01-01

    Nuclear magnetic resonance has been used to measure the diffusivity of water molecules. In central nervous system, anisotropic diffusion, which is characterized by apparent diffusion tensor D app ξ , is thought to be related to neuronal fiber tract orientation. For precise observation of anisotropic diffusion, it is needed to determine the diagonal and off-diagonal elements of D app ξ . Once D app ξ is estimated from a series of diffusion weighted images, a tissue's orthotropic principal axes and diffusivity of each direction are determined from eigenvalues and eigenvectors of D app ξ . There are several methods to represent anisotropic diffusion with D app ξ . Examples are diffusion ellipsoids constructed in each voxel depicting both these principal axes and the mean diffusion length in these directions, trace invariant values and its mapping image, largest eigenvalue, and ratio of largest eigenvalue to the other eigenvalue. In this study, the author investigated practical procedure to analyze diffusion tensor D app ξ using both of spin-echo end echo-planer diffusion weighted imagings with 3-tesla magnetic resonance machine in human brain. The ellipsoid representation provided particularly useful information about microanatomy including neuronal fiber tract orientation and molecular mobility reflective of microstructure. Furthermore, in the lesion of Wallerian degeneration, the loss of anisotropy of local apparent diffusion was observed. It is suggested that the function of axons can be observed via degree of anisotropy of apparent diffusion. Consequently, diffusion tensor analysis is expected to be a powerful, noninvasive method capable of quantitative and functional evaluation of the central nervous system. (author)

  7. Whether diffusion in axisymmetric confinement systems is intrinsically ambipolar

    International Nuclear Information System (INIS)

    Kovrizhnykh, L.M.

    1997-01-01

    The problem of diffusion ambipolarity in axisymmetric magnetic systems is analyzed. The question is discussed of whether diffusion is intrinsically ambipolar (and if so, then in which particular cases) or the ambipolarity constraint is an additional independent condition, which does not follow from the equations of motion and, hence, contains new information. It is shown that the second assertion is correct: strictly speaking, diffusion can never be intrinsically ambipolar, and, in the presence of several different mechanisms causing electron and ion losses across the magnetic field, only the total fluxes, but not the partial ones, should satisfy the ambipolarity constraint. (UK)

  8. An incomplete assembly with thresholding algorithm for systems of reaction-diffusion equations in three space dimensions IAT for reaction-diffusion systems

    International Nuclear Information System (INIS)

    Moore, Peter K.

    2003-01-01

    Solving systems of reaction-diffusion equations in three space dimensions can be prohibitively expensive both in terms of storage and CPU time. Herein, I present a new incomplete assembly procedure that is designed to reduce storage requirements. Incomplete assembly is analogous to incomplete factorization in that only a fixed number of nonzero entries are stored per row and a drop tolerance is used to discard small values. The algorithm is incorporated in a finite element method-of-lines code and tested on a set of reaction-diffusion systems. The effect of incomplete assembly on CPU time and storage and on the performance of the temporal integrator DASPK, algebraic solver GMRES and preconditioner ILUT is studied

  9. Data-Driven Cyber-Physical Systems via Real-Time Stream Analytics and Machine Learning

    OpenAIRE

    Akkaya, Ilge

    2016-01-01

    Emerging distributed cyber-physical systems (CPSs) integrate a wide range of heterogeneous components that need to be orchestrated in a dynamic environment. While model-based techniques are commonly used in CPS design, they be- come inadequate in capturing the complexity as systems become larger and extremely dynamic. The adaptive nature of the systems makes data-driven approaches highly desirable, if not necessary.Traditionally, data-driven systems utilize large volumes of static data sets t...

  10. Advances in Optimizing Weather Driven Electric Power Systems.

    Science.gov (United States)

    Clack, C.; MacDonald, A. E.; Alexander, A.; Dunbar, A. D.; Xie, Y.; Wilczak, J. M.

    2014-12-01

    The importance of weather-driven renewable energies for the United States (and global) energy portfolio is growing. The main perceived problems with weather-driven renewable energies are their intermittent nature, low power density, and high costs. The National Energy with Weather System Simulator (NEWS) is a mathematical optimization tool that allows the construction of weather-driven energy sources that will work in harmony with the needs of the system. For example, it will match the electric load, reduce variability, decrease costs, and abate carbon emissions. One important test run included existing US carbon-free power sources, natural gas power when needed, and a High Voltage Direct Current power transmission network. This study shows that the costs and carbon emissions from an optimally designed national system decrease with geographic size. It shows that with achievable estimates of wind and solar generation costs, that the US could decrease its carbon emissions by up to 80% by the early 2030s, without an increase in electric costs. The key requirement would be a 48 state network of HVDC transmission, creating a national market for electricity not possible in the current AC grid. These results were found without the need for storage. Further, we tested the effect of changing natural gas fuel prices on the optimal configuration of the national electric power system. Another test that was carried out was an extension to global regions. The extension study shows that the same properties found in the US study extend to the most populous regions of the planet. The extra test is a simplified version of the US study, and is where much more research can be carried out. We compare our results to other model results.

  11. A RADIANT AIR-CONDITIONING SYSTEM USING SOLAR-DRIVEN

    Directory of Open Access Journals (Sweden)

    S. A. ABDALLA

    2006-12-01

    Full Text Available Every air-conditioning system needs some fresh air to provide adequate ventilation air required to remove moisture, gases like ammonia and hydrogen sulphide, disease organisms, and heat from occupied spaces. However, natural ventilation is difficult to control because urban areas outside air is often polluted and cannot be supplied to inner spaces before being filtered. Besides the high electrical demand of refrigerant compression units used by most air-conditioning systems, and fans used to transport the cool air through the thermal distribution system draw a significant amount of electrical energy in comparison with electrical energy used by the building thermal conditioning systems. Part of this electricity heats the cooled air; thereby add to the internal thermal cooling peak load. In addition, refrigerant compression has both direct and indirect negative effects on the environment on both local and global scales. In seeking for innovative air-conditioning systems that maintain and improve indoor air quality under potentially more demanding performance criteria without increasing environmental impact, this paper presents radiant air-conditioning system which uses a solar-driven liquid desiccant evaporative cooler. The paper describes the proposed solar-driven liquid desiccant evaporative cooling system and the method used for investigating its performance in providing cold water for a radiant air-conditioning system in Khartoum (Central Sudan. The results of the investigation show that the system can operate in humid as well as dry climates and that employing such a system reduces air-conditioning peak electrical demands as compared to vapour compression systems.

  12. Diffusion behavior in the films of Nb-Ti systems

    International Nuclear Information System (INIS)

    Yoshitake, Michiko; Yoshihara, Kazuhiro

    1990-01-01

    The diffusion behavior of substrate element into a deposited film was investigated. The observed systems were a Nb film/Ti substrate and a Ti film/Nb substrate. When the Nb film/Ti substrate was heated in a vacuum, Ti diffused very rapidly in the Nb film. The pre-exponential factor of the diffusion constant of Ti in the Nb film was 5.6x10 -2 m 2 s -1 , and the activation energy was 220 kJmol -1 . The observed activation energy is about 60% of that of Ti in the bulk Nb. On the other hand, when the Ti film/Nb substrate was heated in a vacuum, Nb did not diffuse so rapidly. Titanium diffused through the Nb film rapidly and was concentrated on the surface of the Nb film. The chemical state of the concentrated Ti was metallic, and neither titanium oxides nor titanium carbide was observed. Therefore, the driving force of the rapid diffusion of Ti in the Nb film is considered as the reduction of the surface energy of Nb film. The difference in the diffusion behavior between Ti through the Nb film and Nb through the Ti film is explained supposing that the segregation of Ti reduces the surface energy of the Nb film but the segregation of Nb does not reduce the surface energy of the Ti film. After heating of the Nb film/Ti substrate for a long time, a new phase was formed at the interface between the Nb film and the Ti substrate. The chemical composition of the new phase is about 50% of Ti and 50% of Nb. This phase has not been reported in the phase diagram of the bulk Ti-Nb system. The surface area of the Nb film is considered to be quite large, so the contribution of surface energy to the thermodynamic state of the Nb film cannot be neglected. Therefore, the chemical potential of the film is different from that of the bulk. Then, the new phase, which does not exist in the phase diagram of the bulk system, is formed by an interaction of the films. (author)

  13. Spatiotemporal chaos in the dynamics of buoyantly and diffusively unstable chemical fronts

    Science.gov (United States)

    Baroni, M. P. M. A.; Guéron, E.; De Wit, A.

    2012-03-01

    Nonlinear dynamics resulting from the interplay between diffusive and buoyancy-driven Rayleigh-Taylor (RT) instabilities of autocatalytic traveling fronts are analyzed numerically for various values of the relevant parameters. These are the Rayleigh numbers of the reactant A and autocatalytic product B solutions as well as the ratio D =DB/DA between the diffusion coefficients of the two key chemical species. The interplay between the coarsening dynamics characteristic of the RT instability and the constant short wavelength modulation of the diffusive instability can lead in some regimes to complex dynamics dominated by irregular succession of birth and death of fingers. By using spectral entropy measurements, we characterize the transition between order and spatial disorder in this system. The analysis of the power spectrum and autocorrelation function, moreover, identifies similarities between the various spatial patterns. The contribution of the diffusive instability to the complex dynamics is discussed.

  14. Self- and zinc diffusion in gallium antimonide

    International Nuclear Information System (INIS)

    Nicols, Samuel Piers

    2002-01-01

    The technological age has in large part been driven by the applications of semiconductors, and most notably by silicon. Our lives have been thoroughly changed by devices using the broad range of semiconductor technology developed over the past forty years. Much of the technological development has its foundation in research carried out on the different semiconductors whose properties can be exploited to make transistors, lasers, and many other devices. While the technological focus has largely been on silicon, many other semiconductor systems have applications in industry and offer formidable academic challenges. Diffusion studies belong to the most basic studies in semiconductors, important from both an application as well as research standpoint. Diffusion processes govern the junctions formed for device applications. As the device dimensions are decreased and the dopant concentrations increased, keeping pace with Moore's Law, a deeper understanding of diffusion is necessary to establish and maintain the sharp dopant profiles engineered for optimal device performance. From an academic viewpoint, diffusion in semiconductors allows for the study of point defects. Very few techniques exist which allow for the extraction of as much information of their properties. This study focuses on diffusion in the semiconductor gallium antimonide (GaSb). As will become clear, this compound semiconductor proves to be a powerful one for investigating both self- and foreign atom diffusion. While the results have direct applications for work on GaSb devices, the results should also be taken in the broader context of III-V semiconductors. Results here can be compared and contrasted to results in systems such as GaAs and even GaN, indicating trends within this common group of semiconductors. The results also have direct importance for ternary and quaternary semiconductor systems used in devices such as high speed InP/GaAsSb/InP double heterojunction bipolar transistors (DHBT

  15. Reactivity Monitoring of Accelerator-Driven Nuclear Reactor Systems

    NARCIS (Netherlands)

    Uyttenhove, W.

    2016-01-01

    This thesis provides a methodology and set-up of a reactivity monitoring tool for Accelerator-Driven Systems (ADS). The reactivity monitoring tool should guarantee the operation of an ADS at a safe margin from criticality. Robustness is assured in different aspects of the monitoring tool: the choice

  16. Nonlocal Symmetries to Systems of Nonlinear Diffusion Equations

    International Nuclear Information System (INIS)

    Qu Changzheng; Kang Jing

    2008-01-01

    In this paper, we study potential symmetries to certain systems of nonlinear diffusion equations. Those systems have physical applications in soil science, mathematical biology, and invariant curve flows in R 3 . Lie point symmetries of the potential system, which cannot be projected to vector fields of the given dependent and independent variables, yield potential symmetries. The class of the system that admits potential symmetries is expanded.

  17. Particle deposition due to turbulent diffusion in the upper respiratory system

    Science.gov (United States)

    Hamill, P.

    1979-01-01

    Aerosol deposition in the upper respiratory system (trachea to segmental bronchi) is considered and the importance of turbulent diffusion as a deposition mechanism is evaluated. It is demonstrated that for large particles (diameter greater than about 5 microns), turbulent diffusion is the dominant deposition mechanism in the trachea. Conditions under which turbulent diffusion may be important in successive generations of the pulmonary system are determined. The probability of particle deposition is compared with probabilities of deposition, as determined by the equations generally used in regional deposition models. The analysis is theoretical; no new experimental data is presented.

  18. Modelling of two-zone accelerator-driven systems

    Directory of Open Access Journals (Sweden)

    V. A. Babenko

    2012-09-01

    Full Text Available Neutron-physical modelings of two-zone subcritical reactor driven by high-intensity neutron generator are considered. The cascade principle in subcritical reactors, the use of which can hypothetically substantially amplify the neutron flux from the external source is discussed in this article. The theoretical preconditions of the cascade principle are discussed, and the directions of practical realization of the cascade subcritical system are considered, namely the possible methods of neutron feedback between reactor sections elimination. The results of Monte Carlo neutron-physical modeling of the cascade subcritical systems are presented and discussed.

  19. Asymptotic work distributions in driven bistable systems

    International Nuclear Information System (INIS)

    Nickelsen, D; Engel, A

    2012-01-01

    The asymptotic tails of the probability distributions of thermodynamic quantities convey important information about the physics of nanoscopic systems driven out of equilibrium. We apply a recently proposed method to analytically determine the asymptotics of work distributions in Langevin systems to an one-dimensional model of single-molecule force spectroscopy. The results are in excellent agreement with numerical simulations, even in the centre of the distributions. We compare our findings with a recent proposal for an universal form of the asymptotics of work distributions in single-molecule experiments.

  20. Weapon plutonium in accelerator driven power system

    International Nuclear Information System (INIS)

    Shvedov, O.V.; Murin, B.P.; Kochurov, B.P.; Shubin, Yu.M.; Volk, V.I.; Bogdanov, P.V.

    1997-01-01

    Accelerator Driven Systems are planned to be developed for the use (or destruction) of dozens of tons of weapon-grade Plutonium (W-Pu) resulted from the reducing of nuclear weapons. In the paper are compared the parameters of various types of accelerators, the physical properties of various types of targets and blankets, and the results of fuel cycle simulation. Some economical aspects are also discussed

  1. Laboratory measurements of radon diffusion through multilayered cover systems for uranium tailings

    International Nuclear Information System (INIS)

    Nielson, K.K.; Rogers, V.C.; Rich, D.C.; Nederhand, F.A.; Sandquist, G.M.; Jensen, C.M.

    1981-12-01

    Laboratory measurements of radon fluxes and radon concentration profiles were conducted to characterize the effectiveness of multilayer cover systems for uranium tailings. The cover systems utilized soil and clay materials from proposed disposal sites for the Vitro, Durango, Shiprock, Grand Junction and Riverton tailings piles. Measured radon fluxes were in reasonable agreement with values predicted by multilayer diffusion theory. Results obtained by using air-filled porosities in the diffusion calculations were similar to those obtained by using total porosities. Measured diffusion coefficients were a better basis for predicting radon fluxes than were correlations of diffusion coefficient with moisture or with air porosity. Radon concentration profiles were also fitted by equations for multilayer diffusion in the air-filled space. Layer-order effects in the multilayer cover systems were examined and estimated to amount to 10 to 20 percent for the systems tested. Quality control measurements in support of the multilayer diffusion tests indicated that moisture absorption was not a significant problem in radon flux sampling with charcoal canisters, but that the geometry of the sampler was critical. The geometric design of flux-can samplers was also shown to be important. Enhanced radon diffusion along the walls of the test columns was examined and was found to be insignificant except when the columns had been physically disturbed. Additional moisture injected into two test columns decreased the radon flux, as expected, but appeared to migrate into surrounding materials or to be lost by evaporation. Control of moisture content and compaction in the test columns appeared to be the critical item affecting the accuracies of the experiments

  2. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases

    OpenAIRE

    Taoka, Toshiaki; Masutani, Yoshitaka; Kawai, Hisashi; Nakane, Toshiki; Matsuoka, Kiwamu; Yasuno, Fumihiko; Kishimoto, Toshifumi; Naganawa, Shinji

    2017-01-01

    Purpose: The activity of the glymphatic system is impaired in animal models of Alzheimer’s disease (AD). We evaluated the activity of the human glymphatic system in cases of AD with a diffusion-based technique called diffusion tensor image analysis along the perivascular space (DTI-ALPS). Materials and methods: Diffusion tensor images were acquired to calculate diffusivities in the x, y, and z axes of the plane of the lateral ventricle body in 31 patients. We evaluated the diffusivity along t...

  3. Diffuse-interface model for rapid phase transformations in nonequilibrium systems.

    Science.gov (United States)

    Galenko, Peter; Jou, David

    2005-04-01

    A thermodynamic approach to rapid phase transformations within a diffuse interface in a binary system is developed. Assuming an extended set of independent thermodynamic variables formed by the union of the classic set of slow variables and the space of fast variables, we introduce finiteness of the heat and solute diffusive propagation at the finite speed of the interface advancing. To describe transformations within the diffuse interface, we use the phase-field model which allows us to follow steep but smooth changes of phase within the width of the diffuse interface. Governing equations of the phase-field model are derived for the hyperbolic model, a model with memory, and a model of nonlinear evolution of transformation within the diffuse interface. The consistency of the model is proved by the verification of the validity of the condition of positive entropy production and by outcomes of the fluctuation-dissipation theorem. A comparison with existing sharp-interface and diffuse-interface versions of the model is given.

  4. Multiple Scattering in Random Mechanical Systems and Diffusion Approximation

    Science.gov (United States)

    Feres, Renato; Ng, Jasmine; Zhang, Hong-Kun

    2013-10-01

    This paper is concerned with stochastic processes that model multiple (or iterated) scattering in classical mechanical systems of billiard type, defined below. From a given (deterministic) system of billiard type, a random process with transition probabilities operator P is introduced by assuming that some of the dynamical variables are random with prescribed probability distributions. Of particular interest are systems with weak scattering, which are associated to parametric families of operators P h , depending on a geometric or mechanical parameter h, that approaches the identity as h goes to 0. It is shown that ( P h - I)/ h converges for small h to a second order elliptic differential operator on compactly supported functions and that the Markov chain process associated to P h converges to a diffusion with infinitesimal generator . Both P h and are self-adjoint (densely) defined on the space of square-integrable functions over the (lower) half-space in , where η is a stationary measure. This measure's density is either (post-collision) Maxwell-Boltzmann distribution or Knudsen cosine law, and the random processes with infinitesimal generator respectively correspond to what we call MB diffusion and (generalized) Legendre diffusion. Concrete examples of simple mechanical systems are given and illustrated by numerically simulating the random processes.

  5. Modeling the Thermosphere as a Driven-Dissipative Thermodynamic System

    Science.gov (United States)

    2013-03-01

    8 Figure 2: Illustration of the geocentric solar magnetospheric coordinate system............15 Figure 3: Diagram of the...to test new methods of modeling the thermospheric environment. Thermosphere as a Driven-Dissipative Thermodynamic System One approach for modeling... approach uses empirical coupling and relaxation constants to model the 4 input of energy to the thermosphere from the solar wind during

  6. Plant air systems safety study: Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    1982-05-01

    The Portsmouth Gaseous Diffusion Plant Air System facilities and operations are reviewed for potential safety problems not covered by standard industrial safety procedures. Information is presented under the following section headings: facility and process description (general); air plant equipment; air distribution system; safety systems; accident analysis; plant air system safety overview; and conclusion

  7. Traveling wave solutions for reaction-diffusion systems

    DEFF Research Database (Denmark)

    Lin, Zhigui; Pedersen, Michael; Tian, Canrong

    2010-01-01

    This paper is concerned with traveling waves of reaction–diffusion systems. The definition of coupled quasi-upper and quasi-lower solutions is introduced for systems with mixed quasimonotone functions, and the definition of ordered quasi-upper and quasi-lower solutions is also given for systems...... with quasimonotone nondecreasing functions. By the monotone iteration method, it is shown that if the system has a pair of coupled quasi-upper and quasi-lower solutions, then there exists at least a traveling wave solution. Moreover, if the system has a pair of ordered quasi-upper and quasi-lower solutions...

  8. Heat Driven Cooling in District Energy Systems; Vaermedriven Kyla

    Energy Technology Data Exchange (ETDEWEB)

    Rydstrand, Magnus; Martin, Viktoria; Westermark, Mats [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2004-07-01

    high costs. However heat sinks are unavoidable from a system perspective and there are potential cost savings since a low-pressure steam turbines will not be required if heat driven cooling is implemented. The fuel utilization for some technologies (not necessarily the best technology) was evaluated in two different scenarios: 1) with electricity production from coal; and 2) with electricity production from natural gas. It is shown in the scenarios that the heat driven cooling technologies give lower fuel consumption as compared producing electricity as an intermediate product before cooling is produced. Further it should be noted that electricity is produced, not consumed, if heat is used directly for the production of cooling. We claim that cost effective solutions for district heat driven chillers and/or combined production of electricity and district cooling can be found in all climates with high enough density of heating and cooling demands. It was found that district heat driven chillers can be very energy efficient in warm and humid climates since desiccant systems are an effective way of handling latent cooling loads. In dry climates, with low latent loads, water distributed cooling has a large potential and absorption cooling will give high fuel utilization seen from a system perspective. In climates where water shortage is a problem it is possible that the temperature lift of the conventional absorption chiller has to be increased in order to be able to use dry cooling towers. The temperature lift can be increased by changing the chiller design or by using a different working pair. Heat driven cooling can be integrated into an energy system in different ways. In USA and Japan, district heating is not well developed. Instead small, distributed combined heat and power (CHP) plants with high exhaust temperatures are widespread. Cooling is often produced, in these regions, through absorption cooling (using heat from CHP) or compression chillers depending on

  9. Wind-Driven Wireless Networked System of Mobile Sensors for Mars Exploration

    Science.gov (United States)

    Davoodi, Faranak; Murphy, Neil

    2013-01-01

    A revolutionary way is proposed of studying the surface of Mars using a wind-driven network of mobile sensors: GOWON. GOWON would be a scalable, self-powered and autonomous distributed system that could allow in situ mapping of a wide range of environmental phenomena in a much larger portion of the surface of Mars compared to earlier missions. It could improve the possibility of finding rare phenomena such as "blueberries' or bio-signatures and mapping their occurrence, through random wind-driven search. It would explore difficult terrains that were beyond the reach of previous missions, such as regions with very steep slopes and cluttered surfaces. GOWON has a potentially long life span, as individual elements can be added to the array periodically. It could potentially provide a cost-effective solution for mapping wide areas of Martian terrain, enabling leaving a long-lasting sensing and searching infrastructure on the surface of Mars. The system proposed here addresses this opportunity using technology advances in a distributed system of wind-driven sensors, referred to as Moballs.

  10. Oxygen Chemical Diffusion Coefficients of (Pu,Am)O2 Fuels

    International Nuclear Information System (INIS)

    Watanabe, M.; Kato, M.; Matsumoto, T.

    2015-01-01

    Minor actinide (MA)-bearing MOX fuels have been developed as candidate fuels which are used in fast neutron spectrum cores such as sodium-cooled fast reactor (SFR) cores and experimental accelerator driven system (ADS) cores. Americium (Am) which is one of the MA elements significantly affects basic properties. It is known that Am content causes oxygen potential to increase and that influences irradiation behaviour such as fuel-cladding chemical interaction (FCCI) and chemical state of fission products. However, the effects of Am content on changes of basic properties are not clear. In this work, the oxygen chemical diffusion coefficients were calculated from measured data and the relationship between oxygen diffusion and oxygen potential of (Pu,Am)O 2-x was discussed. (authors)

  11. Model Driven Development of Data Sensitive Systems

    DEFF Research Database (Denmark)

    Olsen, Petur

    2014-01-01

    storage systems, where the actual values of the data is not relevant for the behavior of the system. For many systems the values are important. For instance the control flow of the system can be dependent on the input values. We call this type of system data sensitive, as the execution is sensitive...... to the values of variables. This theses strives to improve model-driven development of such data-sensitive systems. This is done by addressing three research questions. In the first we combine state-based modeling and abstract interpretation, in order to ease modeling of data-sensitive systems, while allowing...... efficient model-checking and model-based testing. In the second we develop automatic abstraction learning used together with model learning, in order to allow fully automatic learning of data-sensitive systems to allow learning of larger systems. In the third we develop an approach for modeling and model-based...

  12. Feasibility analysis of constant TRU feeding in waste transmutation system using accelerator-driven subcritical system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kun Jai; Cho, Nam Zin; Jo, Chang Keun; Park, Chang Je; Kim, Do Sam; Park, Jeong Hwan [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    1999-03-01

    It is probable that the issue of nuclear spent fuel and high-level waste can have negative impact on the future expansion of nuclear power programs. Accelerator-driven nuclear waste transmutation with constant composition TRU feeding which satisfies non-proliferation condition will help establish the long-range nuclear waste disposal strategy. In this study, current status of accelerator-driven transmutation of waste technology, and feasibility analysis of constant composition TRU feeding system were investigated. We ascertained that solid system using constant composition TRU is feasible with the the capability of transmutation. (author). 13 refs., 53 figs., 20 tabs.

  13. Nuclear data requirements for accelerator driven sub-critical systems

    Indian Academy of Sciences (India)

    The development of accelerator driven sub-critical systems (ADSS) require significant amount of new nuclear data in extended energy regions as well as for a variety of new materials. This paper reviews these perspectives in the Indian context.

  14. Dynamics of the diffusive DM-DE interaction – Dynamical system approach

    Energy Technology Data Exchange (ETDEWEB)

    Haba, Zbigniew [Institute of Theoretical Physics, University of Wroclaw, Plac Maxa Borna 9, 50-204 Wrocław (Poland); Stachowski, Aleksander; Szydłowski, Marek, E-mail: zhab@ift.uni.wroc.pl, E-mail: aleksander.stachowski@uj.edu.pl, E-mail: marek.szydlowski@uj.edu.pl [Astronomical Observatory, Jagiellonian University, Orla 171, 30-244 Krakow (Poland)

    2016-07-01

    We discuss dynamics of a model of an energy transfer between dark energy (DE) and dark matter (DM) . The energy transfer is determined by a non-conservation law resulting from a diffusion of dark matter in an environment of dark energy. The relativistic invariance defines the diffusion in a unique way. The system can contain baryonic matter and radiation which do not interact with the dark sector. We treat the Friedman equation and the conservation laws as a closed dynamical system. The dynamics of the model is examined using the dynamical systems methods for demonstration how solutions depend on initial conditions. We also fit the model parameters using astronomical observation: SNIa, H ( z ), BAO and Alcock-Paczynski test. We show that the model with diffuse DM-DE is consistent with the data.

  15. Analytically solvable models of reaction-diffusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Zemskov, E P; Kassner, K [Institut fuer Theoretische Physik, Otto-von-Guericke-Universitaet, Universitaetsplatz 2, 39106 Magdeburg (Germany)

    2004-05-01

    We consider a class of analytically solvable models of reaction-diffusion systems. An analytical treatment is possible because the nonlinear reaction term is approximated by a piecewise linear function. As particular examples we choose front and pulse solutions to illustrate the matching procedure in the one-dimensional case.

  16. Lie and conditional symmetries of the three-component diffusive Lotka–Volterra system

    International Nuclear Information System (INIS)

    Cherniha, Roman; Davydovych, Vasyl’

    2013-01-01

    Lie and Q-conditional symmetries of the classical three-component diffusive Lotka–Volterra system in the case of one space variable are studied. The group-classification problems for finding Lie symmetries and Q-conditional symmetries of the first type are completely solved. Notably, non-Lie symmetries (Q-conditional symmetry operators) for a multi-component nonlinear reaction–diffusion system are constructed for the first time. The results are compared with those derived for the two-component diffusive Lotka–Volterra system. The conditional symmetry obtained for the non-Lie reduction of the three-component system used for modeling competition between three species in population dynamics is applied and the relevant exact solutions are found. Particularly, the exact solution describing different scenarios of competition between three species is constructed. (paper)

  17. Ashing vs. electric generation in accelerator driven system

    International Nuclear Information System (INIS)

    Solanilla, Roberto B.

    1999-01-01

    Accelerator Driven Systems have been conceived as an alternative for the processing of the radioactive wastes contained in spent fuel elements from nuclear power plants. These systems are formed by the coupling of a nuclear reactor - preferably a subcritical reactor - with a particle accelerator providing particles with energy in the order of the GeV. The long-lived fission products and actinides of the spent fuels are transformed by nuclear reactions in stable isotopes or in short-lived radioisotopes. The basic parameters for the electric energy production of the different systems are analysed. (author)

  18. Product diffusion through on-demand information-seeking behaviour.

    Science.gov (United States)

    Riedl, Christoph; Bjelland, Johannes; Canright, Geoffrey; Iqbal, Asif; Engø-Monsen, Kenth; Qureshi, Taimur; Sundsøy, Pål Roe; Lazer, David

    2018-02-01

    Most models of product adoption predict S-shaped adoption curves. Here we report results from two country-scale experiments in which we find linear adoption curves. We show evidence that the observed linear pattern is the result of active information-seeking behaviour: individuals actively pulling information from several central sources facilitated by modern Internet searches. Thus, a constant baseline rate of interest sustains product diffusion, resulting in a linear diffusion process instead of the S-shaped curve of adoption predicted by many diffusion models. The main experiment seeded 70 000 (48 000 in Experiment 2) unique voucher codes for the same product with randomly sampled nodes in a social network of approximately 43 million individuals with about 567 million ties. We find that the experiment reached over 800 000 individuals with 80% of adopters adopting the same product-a winner-take-all dynamic consistent with search engine driven rankings that would not have emerged had the products spread only through a network of social contacts. We provide evidence for (and characterization of) this diffusion process driven by active information-seeking behaviour through analyses investigating (a) patterns of geographical spreading; (b) the branching process; and (c) diffusion heterogeneity. Using data on adopters' geolocation we show that social spreading is highly localized, while on-demand diffusion is geographically independent. We also show that cascades started by individuals who actively pull information from central sources are more effective at spreading the product among their peers. © 2018 The Authors.

  19. Dynamics of a quantum two-level system under the action of phase-diffusion field

    Energy Technology Data Exchange (ETDEWEB)

    Sobakinskaya, E.A. [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation); Pankratov, A.L., E-mail: alp@ipm.sci-nnov.ru [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation); Vaks, V.L. [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation)

    2012-01-09

    We study a behavior of quantum two-level system, interacting with noisy phase-diffusion field. The dynamics is shown to split into two regimes, determined by the coherence time of the phase-diffusion field. For both regimes we present a model of quantum system behavior and discuss possible applications of the obtained effect for spectroscopy. In particular, the obtained analytical formula for the macroscopic polarization demonstrates that the phase-diffusion field does not affect the absorption line shape, which opens up an intriguing possibility of noisy spectroscopy, based on broadband sources with Lorentzian line shape. -- Highlights: ► We study dynamics of quantum system interacting with noisy phase-diffusion field. ► At short times the phase-diffusion field induces polarization in the quantum system. ► At long times the noise leads to polarization decay and heating of a quantum system. ► Simple model of interaction is derived. ► Application of the described effects for spectroscopy is discussed.

  20. Qualitative analysis on a cubic predator-prey system with diffusion

    Directory of Open Access Journals (Sweden)

    Qunyi Bie

    2011-04-01

    Full Text Available In this paper, we study a cubic predator-prey model with diffusion. We first establish the global stability of the trivial and nontrivial constant steady states for the reaction diffusion system, and then prove the existence and non-existence results concerning non-constant positive stationary solutions by using topological argument and the energy method, respectively.

  1. Chip Integrated, Hybrid EHD/Capillary Driven Thermal Management System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Chip-Integrated, Hybrid EHD/Capillary-Driven Thermal Management System is a two year that will leverage independently attained yet related prototype hardware...

  2. Theoretical modelling and optimization of bubble column dehumidifier for a solar driven humidification-dehumidification system

    Science.gov (United States)

    Ranjitha, P. Raj; Ratheesh, R.; Jayakumar, J. S.; Balakrishnan, Shankar

    2018-02-01

    Availability and utilization of energy and water are the top most global challenges being faced by the new millennium. At the present state water scarcity has become a global as well as a regional challenge. 40 % of world population faces water shortage. Challenge of water scarcity can be tackled only with increase in water supply beyond what is obtained from hydrological cycle. This can be achieved either by desalinating the sea water or by reusing the waste water. High energy requirement need to be overcome for either of the two processes. Of many desalination technologies, humidification dehumidification (HDH) technology powered by solar energy is widely accepted for small scale production. Detailed optimization studies on system have the potential to effectively utilize the solar energy for brackish water desalination. Dehumidification technology, specifically, require further study because the dehumidifier effectiveness control the energetic performance of the entire HDH system. The reason attributes to the high resistance involved to diffuse dilute vapor through air in a dehumidifier. The present work intends to optimize the design of a bubble column dehumidifier for a solar energy driven desalination process. Optimization is carried out using Matlab simulation. Design process will identify the unique needs of a bubble column dehumidifier in HDH system.

  3. Numerical Diffusion Effect in Dynamic Simulation of Thermohydraulic Systems

    International Nuclear Information System (INIS)

    Zanocco, Pablo; Gimenez, Marcelo; Delmastro, Dario

    2003-01-01

    In this work, the behavior of the explicit - up-wind method is studied in two phase natural convection circuit, near the instabilities boundaries.The effect of the numerical diffusion of the scheme upon the system stability is evaluated by means of linearization by small perturbations.The results are compared with a non-diffusive method, in the frequency domain, that solves analytically the linearized equations around a steady state condition.Moreover, a conservation equation transport model using the method of characteristics is implemented and studied.This method is compared with the explicit - up-wind scheme and it is found that it significantly reduces numerical diffusion in the equations solution. Several advantages are visualized for particular cases

  4. Diffuse Ceiling Inlet Systems and the Room Air Distribution

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Jensen, Rasmus Lund; Rong, Li

    2010-01-01

    A diffuse ceiling inlet system is an air distribution system which is supplying the air through the whole ceiling. The system can remove a large heat load without creating draught in the room. The paper describes measurements in the case of both cooling and heating, and CFD predictions are given...

  5. Microcontroller-driven fluid-injection system for atomic force microscopy.

    Science.gov (United States)

    Kasas, S; Alonso, L; Jacquet, P; Adamcik, J; Haeberli, C; Dietler, G

    2010-01-01

    We present a programmable microcontroller-driven injection system for the exchange of imaging medium during atomic force microscopy. Using this low-noise system, high-resolution imaging can be performed during this process of injection without disturbance. This latter circumstance was exemplified by the online imaging of conformational changes in DNA molecules during the injection of anticancer drug into the fluid chamber.

  6. Dataset-driven research for improving recommender systems for learning

    NARCIS (Netherlands)

    Verbert, Katrien; Drachsler, Hendrik; Manouselis, Nikos; Wolpers, Martin; Vuorikari, Riina; Duval, Erik

    2011-01-01

    Verbert, K., Drachsler, H., Manouselis, N., Wolpers, M., Vuorikari, R., & Duval, E. (2011). Dataset-driven research for improving recommender systems for learning. In Ph. Long, & G. Siemens (Eds.), Proceedings of 1st International Conference Learning Analytics & Knowledge (pp. 44-53). February,

  7. Diffusion coefficients of tracers in glassy polymer systems prepared by gamma radiolysis

    International Nuclear Information System (INIS)

    Tonge, M.P.; Gilbert, R.G.

    1996-01-01

    Diffusion-controlled reactions are common in free radical polymerisation reactions, especially in glassy polymer matrices. Such reactions commonly have an important influence on the polymerisation process and final polymer properties. For example, the dominant growth-stopping event (bimolecular termination) is generally diffusion-controlled. In glassy polymer systems, where molecular mobility is very low, the chain growth mechanism (propagation) may become diffusion-controlled. At present, the mechanism for propagation in glassy polymers is poorly understood, but it is expected by the Smoluchowski expression applied to propagation to depend strongly on the diffusion coefficient of monomer. The objective of this study is to measure reliable diffusion coefficients of small tracer molecules in glassy polymers, and compare these with propagation rate coefficients in similar systems, by the prediction above. Samples were initially prepared in a sealed sampled cell containing monomer, inert diluent, and tracer dye. After irradiation for several days, complete conversion of monomer to polymer can be obtained. The diffusion coefficients for two tracer dyes have been measured as a function of weight fraction polymer glassy poly(methyl methacrylate) samples

  8. Introduction of fusion driven subcritical system plasma design

    International Nuclear Information System (INIS)

    Bin Wu

    2003-01-01

    Fusion driven subcritical nuclear system (FDS) is a multifunctional hybrid reactor, which could breed nuclear fuel, transmute long-lived wastes, producing tritium and so on. This paper presents an introduction of FDS plasma design. Several different advance equilibrium configurations have been proposed and a 1.5-D discharge simulation of FDS was also present

  9. Lateral diffusion of nutrients by mammalian herbivores in terrestrial ecosystems.

    Directory of Open Access Journals (Sweden)

    Adam Wolf

    Full Text Available Animals translocate nutrients by consuming nutrients at one point and excreting them or dying at another location. Such lateral fluxes may be an important mechanism of nutrient supply in many ecosystems, but lack quantification and a systematic theoretical framework for their evaluation. This paper presents a mathematical framework for quantifying such fluxes in the context of mammalian herbivores. We develop an expression for lateral diffusion of a nutrient, where the diffusivity is a biologically determined parameter depending on the characteristics of mammals occupying the domain, including size-dependent phenomena such as day range, metabolic demand, food passage time, and population size. Three findings stand out: (a Scaling law-derived estimates of diffusion parameters are comparable to estimates calculated from estimates of each coefficient gathered from primary literature. (b The diffusion term due to transport of nutrients in dung is orders of magnitude large than the coefficient representing nutrients in bodymass. (c The scaling coefficients show that large herbivores make a disproportionate contribution to lateral nutrient transfer. We apply the diffusion equation to a case study of Kruger National Park to estimate the conditions under which mammal-driven nutrient transport is comparable in magnitude to other (abiotic nutrient fluxes (inputs and losses. Finally, a global analysis of mammalian herbivore transport is presented, using a comprehensive database of contemporary animal distributions. We show that continents vary greatly in terms of the importance of animal-driven nutrient fluxes, and also that perturbations to nutrient cycles are potentially quite large if threatened large herbivores are driven to extinction.

  10. Homogenization of a thermo-diffusion system with Smoluchowski interactions

    NARCIS (Netherlands)

    Krehel, O.; Aiki, T.; Muntean, A.

    2014-01-01

    We study the solvability and homogenization of a thermal-diffusion reaction problem posed in a periodically perforated domain. The system describes the motion of populations of hot colloidal particles interacting together via Smoluchowski production terms. The upscaled system, obtained via two-scale

  11. Multiscale integration schemes for jump-diffusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Givon, D.; Kevrekidis, I.G.

    2008-12-09

    We study a two-time-scale system of jump-diffusion stochastic differential equations. We analyze a class of multiscale integration methods for these systems, which, in the spirit of [1], consist of a hybridization between a standard solver for the slow components and short runs for the fast dynamics, which are used to estimate the effect that the fast components have on the slow ones. We obtain explicit bounds for the discrepancy between the results of the multiscale integration method and the slow components of the original system.

  12. Film drainage and interfacial instabilities in polymeric systems with diffuse interfaces

    NARCIS (Netherlands)

    Zdravkov, A.N.; Peters, G.W.M.; Meijer, H.E.H.

    2006-01-01

    We report an experimental investigation on the effect of mutual diffusion in polymeric systems on film drainage between two captive drops. The main objective is to study the influence of diffuse interfaces on film drainage. This is done by using material combinations with different interfacial

  13. A simple polarized-based diffused reflectance colour imaging system

    African Journals Online (AJOL)

    A simple polarized-based diffuse reflectance imaging system has been developed. The system is designed for both in vivo and in vitro imaging of agricultural specimen in the visible region. The system uses a commercial web camera and a halogen lamp that makes it relatively simple and less expensive for diagnostic ...

  14. Suppression of dissipation in a laser-driven qubit by white noise

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Lei-Lei [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Jian-Qi [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Jing, Jun, E-mail: junjing@jlu.edu.cn [Institute of Atomic and Molecular Physics and Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012 (China); Feng, Mang, E-mail: mangfeng@wipm.ac.cn [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China)

    2015-10-16

    Decoherence of an open quantum system could be universally slowed down via ultra-fast modulation including regular, concatenated, random and even noisy control pulse sequences. We propose two noisy control schemes for a laser-driven qubit in order to suppress the dissipation induced by the environment, where employment of a weak driving laser is to alleviate the requirement for the control pulse strength down to the microwave regime. Calculations and analyses are based on a dynamical decoupling approach governed by the quantum-state-diffusion equation and the standard perturbation theory. The schemes can be applied to various systems, such as the cold atoms and quantum dots, manipulated by lasers for quantum information processing. - Highlights: • Two noisy control schemes for a laser-driven qubit are proposed. • Inspiring dissipation-suppression process is demonstrated both analytically and numerically. • The fidelity improvement is specified for the trapped ion by controlling the key parameters.

  15. Traffic and related self-driven many-particle systems

    Science.gov (United States)

    Helbing, Dirk

    2001-10-01

    Since the subject of traffic dynamics has captured the interest of physicists, many surprising effects have been revealed and explained. Some of the questions now understood are the following: Why are vehicles sometimes stopped by ``phantom traffic jams'' even though drivers all like to drive fast? What are the mechanisms behind stop-and-go traffic? Why are there several different kinds of congestion, and how are they related? Why do most traffic jams occur considerably before the road capacity is reached? Can a temporary reduction in the volume of traffic cause a lasting traffic jam? Under which conditions can speed limits speed up traffic? Why do pedestrians moving in opposite directions normally organize into lanes, while similar systems ``freeze by heating''? All of these questions have been answered by applying and extending methods from statistical physics and nonlinear dynamics to self-driven many-particle systems. This article considers the empirical data and then reviews the main approaches to modeling pedestrian and vehicle traffic. These include microscopic (particle-based), mesoscopic (gas-kinetic), and macroscopic (fluid-dynamic) models. Attention is also paid to the formulation of a micro-macro link, to aspects of universality, and to other unifying concepts, such as a general modeling framework for self-driven many-particle systems, including spin systems. While the primary focus is upon vehicle and pedestrian traffic, applications to biological or socio-economic systems such as bacterial colonies, flocks of birds, panics, and stock market dynamics are touched upon as well.

  16. Design of Efficient Sound Systems for Low Voltage Battery Driven Applications

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Oortgiesen, Rien; Knott, Arnold

    2016-01-01

    The efficiency of portable battery driven sound systems is crucial as it relates to both the playback time and cost of the system. This paper presents design considerations when designing such systems. This include loudspeaker and amplifier design. Using a low resistance voice coil realized...

  17. FoodWiki: Ontology-Driven Mobile Safe Food Consumption System

    Directory of Open Access Journals (Sweden)

    Duygu Çelik

    2015-01-01

    Full Text Available An ontology-driven safe food consumption mobile system is considered. Over 3,000 compounds are being added to processed food, with numerous effects on the food: to add color, stabilize, texturize, preserve, sweeten, thicken, add flavor, soften, emulsify, and so forth. According to World Health Organization, governments have lately focused on legislation to reduce such ingredients or compounds in manufactured foods as they may have side effects causing health risks such as heart disease, cancer, diabetes, allergens, and obesity. By supervising what and how much to eat as well as what not to eat, we can maximize a patient’s life quality through avoidance of unhealthy ingredients. Smart e-health systems with powerful knowledge bases can provide suggestions of appropriate foods to individuals. Next-generation smart knowledgebase systems will not only include traditional syntactic-based search, which limits the utility of the search results, but will also provide semantics for rich searching. In this paper, performance of concept matching of food ingredients is semantic-based, meaning that it runs its own semantic based rule set to infer meaningful results through the proposed Ontology-Driven Mobile Safe Food Consumption System (FoodWiki.

  18. Design and implementation of ejector driven micropump

    International Nuclear Information System (INIS)

    Chuech, S.G.; Chen, C.-C.; Lu, J.-C.; Yan, M.-M.

    2007-01-01

    The working principle of the ejector, which converts fluid energy into suction power, was utilized for designing the miniaturized pump. The present micropump with the structure scale in the size range of microns to millimeters was fabricated through the MEMS manufacturing processes. The pump may offer portable convenience and requires no electrical power; especially it can be used in many applications where electricity is unsafe or impractical. To optimize the design, the size of the diffuser throat in the micropump was varied and used as a design parameter. The optimization results indicate that there exists an optimal width for the diffuser throat, which is critically important to the design of an ejector driven micropump. For testing the pump, the fabricated micropump was driven by compressed air from a portable can to pump water and air. In the experimental tests, the pumping flow rates of water and air were measured and compared for design optimization

  19. Control of transversal instabilities in reaction-diffusion systems

    Science.gov (United States)

    Totz, Sonja; Löber, Jakob; Totz, Jan Frederik; Engel, Harald

    2018-05-01

    In two-dimensional reaction-diffusion systems, local curvature perturbations on traveling waves are typically damped out and vanish. However, if the inhibitor diffuses much faster than the activator, transversal instabilities can arise, leading from flat to folded, spatio-temporally modulated waves and to spreading spiral turbulence. Here, we propose a scheme to induce or inhibit these instabilities via a spatio-temporal feedback loop. In a piecewise-linear version of the FitzHugh–Nagumo model, transversal instabilities and spiral turbulence in the uncontrolled system are shown to be suppressed in the presence of control, thereby stabilizing plane wave propagation. Conversely, in numerical simulations with the modified Oregonator model for the photosensitive Belousov–Zhabotinsky reaction, which does not exhibit transversal instabilities on its own, we demonstrate the feasibility of inducing transversal instabilities and study the emerging wave patterns in a well-controlled manner.

  20. Impact of time-of-day on diffusivity measures of brain tissue derived from diffusion tensor imaging.

    Science.gov (United States)

    Thomas, Cibu; Sadeghi, Neda; Nayak, Amrita; Trefler, Aaron; Sarlls, Joelle; Baker, Chris I; Pierpaoli, Carlo

    2018-06-01

    Diurnal fluctuations in MRI measures of structural and functional properties of the brain have been reported recently. These fluctuations may have a physiological origin, since they have been detected using different MRI modalities, and cannot be explained by factors that are typically known to confound MRI measures. While preliminary evidence suggests that measures of structural properties of the brain based on diffusion tensor imaging (DTI) fluctuate as a function of time-of-day (TOD), the underlying mechanism has not been investigated. Here, we used a longitudinal within-subjects design to investigate the impact of time-of-day on DTI measures. In addition to using the conventional monoexponential tensor model to assess TOD-related fluctuations, we used a dual compartment tensor model that allowed us to directly assess if any change in DTI measures is due to an increase in CSF/free-water volume fraction or due to an increase in water diffusivity within the parenchyma. Our results show that Trace or mean diffusivity, as measured using the conventional monoexponential tensor model tends to increase systematically from morning to afternoon scans at the interface of grey matter/CSF, most prominently in the major fissures and the sulci of the brain. Interestingly, in a recent study of the glymphatic system, these same regions were found to show late enhancement after intrathecal injection of a CSF contrast agent. The increase in Trace also impacts DTI measures of diffusivity such as radial and axial diffusivity, but does not affect fractional anisotropy. The dual compartment analysis revealed that the increase in diffusivity measures from PM to AM was driven by an increase in the volume fraction of CSF-like free-water. Taken together, our findings provide important insight into the likely physiological origins of diurnal fluctuations in MRI measurements of structural properties of the brain. Published by Elsevier Inc.

  1. Diffuse-Illumination Systems for Growing Plants

    Science.gov (United States)

    May, George; Ryan, Robert

    2010-01-01

    Agriculture in both terrestrial and space-controlled environments relies heavily on artificial illumination for efficient photosynthesis. Plant-growth illumination systems require high photon flux in the spectral range corresponding with plant photosynthetic active radiation (PAR) (400 700 nm), high spatial uniformity to promote uniform growth, and high energy efficiency to minimize electricity usage. The proposed plant-growth system takes advantage of the highly diffuse reflective surfaces on the interior of a sphere, hemisphere, or other nearly enclosed structure that is coated with highly reflective materials. This type of surface and structure uniformly mixes discrete light sources to produce highly uniform illumination. Multiple reflections from within the domelike structures are exploited to obtain diffuse illumination, which promotes the efficient reuse of photons that have not yet been absorbed by plants. The highly reflective surfaces encourage only the plant tissue (placed inside the sphere or enclosure) to absorb the light. Discrete light sources, such as light emitting diodes (LEDs), are typically used because of their high efficiency, wavelength selection, and electronically dimmable properties. The light sources are arranged to minimize shadowing and to improve uniformity. Different wavelengths of LEDs (typically blue, green, and red) are used for photosynthesis. Wavelengths outside the PAR range can be added for plant diagnostics or for growth regulation

  2. Diffusion Monte Carlo calculation of three-body systems

    International Nuclear Information System (INIS)

    Lu Mengjiao; Lin Qihu; Ren Zhongzhou

    2012-01-01

    The application of the diffusion Monte Carlo algorithm in three-body systems is studied. We develop a program and use it to calculate the property of various three-body systems. Regular Coulomb systems such as atoms, molecules, and ions are investigated. The calculation is then extended to exotic systems where electrons are replaced by muons. Some nuclei with neutron halos are also calculated as three-body systems consisting of a core and two external nucleons. Our results agree well with experiments and others' work. (authors)

  3. Treatment outcome in early diffuse cutaneous systemic sclerosis

    DEFF Research Database (Denmark)

    Herrick, Ariane L; Pan, Xiaoyan; Peytrignet, Sébastien

    2017-01-01

    OBJECTIVES: The rarity of early diffuse cutaneous systemic sclerosis (dcSSc) makes randomised controlled trials very difficult. We aimed to use an observational approach to compare effectiveness of currently used treatment approaches. METHODS: This was a prospective, observational cohort study...

  4. Quantum revivals in periodically driven systems close to nonlinear resonances

    International Nuclear Information System (INIS)

    Saif, Farhan; Fortunato, Mauro

    2002-01-01

    We calculate the quantum revival time for a wave packet initially well localized in a one-dimensional potential in the presence of an external periodic modulating field. The dependence of the revival time on various parameters of the driven system is shown analytically. As an example of an application of our approach, we compare the analytically obtained values of the revival time for various modulation strengths with the numerically computed ones in the case of a driven gravitational cavity. We show that they are in very good agreement

  5. Implementation of 252Cf-source-driven power spectrum density measurement system

    International Nuclear Information System (INIS)

    Ren Yong; Wei Biao; Feng Peng; Li Jiansheng; Ye Cenming

    2012-01-01

    The principle of 252 Cf-source-driven power spectrum density measurement method is introduced. A measurement system and platform is realized accordingly, which is a combination of hardware and software, for measuring nuclear parameters. The detection method of neutron pulses based on an ultra-high-speed data acquisition card (three channels, 1 GHz sampling rate, 1 ns synchronization) is described, and the data processing process and the power spectrum density algorithm on PC are designed. This 252 Cf-source-driven power spectrum density measurement system can effectively obtain the nuclear tag parameters of nuclear random processes, such as correlation function and power spectrum density. (authors)

  6. Development of a coupled dynamics code with transport theory capability and application to accelerator driven systems transients

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Ama, T.; Palmiotti, G.; Taiwo, T.A.; Yang, W.S.

    2000-01-01

    The VARIANT-K and DIF3D-K nodal spatial kinetics computer codes have been coupled to the SAS4A and SASSYS-1 liquid metal reactor accident and systems analysis codes. SAS4A and SASSYS-1 have been extended with the addition of heavy liquid metal (Pb and Pb-Bi) thermophysical properties, heat transfer correlations, and fluid dynamics correlations. The coupling methodology and heavy liquid metal modeling additions are described. The new computer code suite has been applied to analysis of neutron source and thermal-hydraulics transients in a model of an accelerator-driven minor actinide burner design proposed in an OECD/NEA/NSC benchmark specification. Modeling assumptions and input data generation procedures are described. Results of transient analyses are reported, with emphasis on comparison of P1 and P3 variational nodal transport theory results with nodal diffusion theory results, and on significance of spatial kinetics effects

  7. Mobile Phenotyping System Using an Aeromotively Stabilized Cable-Driven Robot

    Science.gov (United States)

    Newman, M. B.; Zygielbaum, A. I.

    2017-12-01

    Agricultural researchers are constantly attempting to generate superior agricultural crops. Whether this means creating crops with greater yield, crops that are more resilient to disease, or crops that can tolerate harsh environments with fewer failures, test plots of these experimental crops must be studied in real-world environments with minimal invasion to determine how they will perform in full-scale agricultural settings. To monitor these crops without interfering with their natural growth, a noninvasive sensor system has been implemented. This system, instituted by the College of Agricultural Sciences and Natural Resources at the University of Nebraska - Lincoln (UNL), uses a system of poles, cables, and winches to support and maneuver a sensor platform above the crops at an outdoor phenotyping site. In this work, we improve upon the UNL outdoor phenotyping system presenting the concept design for a mobile, cable-driven phenotyping system as opposed to a permanent phenotyping facility. One major challenge in large-scale, cable-driven robots is stability of the end-effector. As a result, this mobile system seeks to use a novel method of end-effector stabilization using an onboard rotor drive system, herein referred to as the Instrument Platform Aeromotive Stabilization System (IPASS). A prototype system is developed and analyzed to determine the viability of IPASS.

  8. A data-driven prediction method for fast-slow systems

    Science.gov (United States)

    Groth, Andreas; Chekroun, Mickael; Kondrashov, Dmitri; Ghil, Michael

    2016-04-01

    In this work, we present a prediction method for processes that exhibit a mixture of variability on low and fast scales. The method relies on combining empirical model reduction (EMR) with singular spectrum analysis (SSA). EMR is a data-driven methodology for constructing stochastic low-dimensional models that account for nonlinearity and serial correlation in the estimated noise, while SSA provides a decomposition of the complex dynamics into low-order components that capture spatio-temporal behavior on different time scales. Our study focuses on the data-driven modeling of partial observations from dynamical systems that exhibit power spectra with broad peaks. The main result in this talk is that the combination of SSA pre-filtering with EMR modeling improves, under certain circumstances, the modeling and prediction skill of such a system, as compared to a standard EMR prediction based on raw data. Specifically, it is the separation into "fast" and "slow" temporal scales by the SSA pre-filtering that achieves the improvement. We show, in particular that the resulting EMR-SSA emulators help predict intermittent behavior such as rapid transitions between specific regions of the system's phase space. This capability of the EMR-SSA prediction will be demonstrated on two low-dimensional models: the Rössler system and a Lotka-Volterra model for interspecies competition. In either case, the chaotic dynamics is produced through a Shilnikov-type mechanism and we argue that the latter seems to be an important ingredient for the good prediction skills of EMR-SSA emulators. Shilnikov-type behavior has been shown to arise in various complex geophysical fluid models, such as baroclinic quasi-geostrophic flows in the mid-latitude atmosphere and wind-driven double-gyre ocean circulation models. This pervasiveness of the Shilnikow mechanism of fast-slow transition opens interesting perspectives for the extension of the proposed EMR-SSA approach to more realistic situations.

  9. Some reflections on the diffusion of pellet heating systems in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Krushna; Gustavsson, Leif [1Mid Sweden University, Ecotechnology, SE-831 25 Oestersund (Sweden); Madlener, Reinhard [CEPE - Centre for Energy Policy and Economics, Swiss Federal Institute of Technology, Zurich (Switzerland)

    2002-07-01

    In the context of global warming and dependence on fossil fuels, modern bioenergy systems have appeared as important sustainable energy solutions with a large untapped potential in Sweden and the rest of the European Union. Small-scale pellet heating systems for space heating of small houses is one of these solutions. In Sweden, such systems have relative advantages over oil- or electricity boiler systems both in terms of greenhouse gas emission reduction and total lifetime cost of equipment and fuel. However, so far the market diffusion process of this technology has been rather slow. This paper, by employing concepts and insights from the literature of evolutionary economics and sociology, studies the factors involved in the diffusion of such systems.

  10. Grey Box Modelling of Flow in Sewer Systems with State Dependent Diffusion

    DEFF Research Database (Denmark)

    Breinholt, Anders; Thordarson, Fannar Örn; Møller, Jan Kloppenborg

    2011-01-01

    . It is shown that an additive diffusion noise term description leads to a violation of the physical constraints of the system, whereas a state dependent diffusion noise avoids this problem and should be favoured. It is also shown that a logarithmic transformation of the flow measurements secures positive lower...... flow prediction limits, because the observation noise is proportionally scaled with the modelled output. Finally it is concluded that a state proportional diffusion term best and adequately describes the one-step flow prediction uncertainty, and a proper description of the system noise is important......Generating flow forecasts with uncertainty limits from rain gauge inputs in sewer systems require simple models with identifiable parameters that can adequately describe the stochastic phenomena of the system. In this paper, a simple grey-box model is proposed that is attractive for both...

  11. Preliminary analysis of advanced equilibrium configuration for the fusion-driven subcritical system

    International Nuclear Information System (INIS)

    Chu Delin; Wu Bin; Wu Yican

    2003-01-01

    The Fusion-Driven Subcritical System (FDS) is a subcritical nuclear energy system driven by fusion neutron source. In this paper, an advanced plasma configuration for FDS system has been proposed, which aims at high beta, high bootstrap current and good confinement. A fixed-boundary equilibrium code has been used to obtain ideal equilibrium configuration. In order to determine the feasibility of FDS operation, a two-dimensional time-dependent free boundary simulation code has been adopted to simulate time-scale evolution of plasma current profile and boundary position. By analyses, the Reversed Shear mode as the most attractive one has been recommended for the FDS equilibrium configuration design

  12. Accelerator driven systems for energy production and waste incineration: Physics, design and related nuclear data

    International Nuclear Information System (INIS)

    Herman, M.; Stanculescu, A.; Paver, N.

    2003-01-01

    This volume contains the notes of lectures given at the workshops 'Hybrid Nuclear Systems for Energy Production, Utilisation of Actinides and Transmutation of Long-lived Radioactive Waste' and 'Nuclear Data for Science and Technology: Accelerator Driven Waste Incineration', held at the Abdus Salam ICTP in September 2001. The subject of the first workshop was focused on the so-called Accelerator Driven Systems, and covered the most important physics and technological aspects of this innovative field. The second workshop was devoted to an exhaustive survey on the acquisition, evaluation, retrieval and validation of the nuclear data relevant to the design of Accelerator Driven Systems

  13. Accelerator driven systems for energy production and waste incineration: Physics, design and related nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Herman, M; Stanculescu, A [International Atomic Energy Agency, Vienna (Austria); Paver, N [University of Trieste and INFN, Trieste (Italy)

    2003-06-15

    This volume contains the notes of lectures given at the workshops 'Hybrid Nuclear Systems for Energy Production, Utilisation of Actinides and Transmutation of Long-lived Radioactive Waste' and 'Nuclear Data for Science and Technology: Accelerator Driven Waste Incineration', held at the Abdus Salam ICTP in September 2001. The subject of the first workshop was focused on the so-called Accelerator Driven Systems, and covered the most important physics and technological aspects of this innovative field. The second workshop was devoted to an exhaustive survey on the acquisition, evaluation, retrieval and validation of the nuclear data relevant to the design of Accelerator Driven Systems.

  14. Diffusion in multicomponent systems: a free energy approach

    International Nuclear Information System (INIS)

    Emmanuel, Simon; Cortis, Andrea; Berkowitz, Brian

    2004-01-01

    This work examines diffusion in ternary non-ideal systems and derives coupled non-linear equations based on a non-equilibrium thermodynamic approach in which an explicit expression for the free energy is substituted into standard diffusion equations. For ideal solutions, the equations employ four mobility parameters (M aa , M ab , M ba , and M bb ), and uphill diffusion is predicted for certain initial conditions and combinations of mobilities. For the more complex case of ternary Simple Mixtures, two non-ideality parameters (χ ac and χ bc ) that are directly related to the excess free energy of mixing are introduced. The solution of the equations is carried out by means of two different numerical schemes: (1) spectral collocation and (2) finite element. An error minimization technique is coupled with the spectral collocation method and applied to diffusional profiles to extract the M and χ parameters. The model satisfactorily reproduces diffusional profiles from published data for silicate melts. Further improvements in numerical and experimental techniques are then suggested

  15. Fractional diffusion models of transport in magnetically confined plasmas

    International Nuclear Information System (INIS)

    Castillo-Negrete, D. del; Carreras, B. A.; Lynch, V. E.

    2005-01-01

    Experimental and theoretical evidence suggests that transport in magnetically confined fusion plasmas deviates from the standard diffusion paradigm. Some examples include the confinement time scaling in L-mode plasmas, rapid pulse propagation phenomena, and inward transport in off-axis fueling experiments. The limitations of the diffusion paradigm can be traced back to the restrictive assumptions in which it is based. In particular, Fick's law, one of the cornerstones of diffusive transport, assumes that the fluxes only depend on local quantities, i. e. the spatial gradient of the field (s). another key issue is the Markovian assumption that neglects memory effects. Also, at a microscopic level, standard diffusion assumes and underlying Gaussian, uncorrelated stochastic process (i. e. a Brownian random walk) with well defined characteristic spatio-temporal scales. Motivated by the need to develop models of non-diffusive transport, we discuss here a class of transport models base on the use of fractional derivative operators. The models incorporates in a unified way non-Fickian transport, non-Markovian processes or memory effects, and non-diffusive scaling. At a microscopic level, the models describe an underlying stochastic process without characteristic spatio-temporal scales that generalizes the Brownian random walk. As a concrete case study to motivate and test the model, we consider transport of tracers in three-dimensional, pressure-gradient-driven turbulence. We show that in this system transport is non-diffusive and cannot be described in the context of the standard diffusion parading. In particular, the probability density function (pdf) of the radial displacements of tracers is strongly non-Gaussian with algebraic decaying tails, and the moments of the tracer displacements exhibit super-diffusive scaling. there is quantitative agreement between the turbulence transport calculations and the proposed fractional diffusion model. In particular, the model

  16. Diffusion and phase growth in heterophase systems. 1

    International Nuclear Information System (INIS)

    Mchedlov-Petrosyan, P.O.

    1989-01-01

    The present paper gives the view of theoretical study of diffusion processes in ternary and more component solid-state systems, caused by chemical reactions and phase growth. Internal oxidation of alloys, nitridation, borating etc. are the well-known and widely investigated processes of such type. Self-consistent theoretical model of such processes must take into account both the effect of concentration macroscopic districutions on new phase precipitation growth and precipitation reaction on concentration distribution; heterophase must be explicitly allowed for. As for binary system, diffusion theory, running into the phase growth, is well developed and completely presented in monographs, the carried out theoretical investigations of ternary systems are explicitly deficient. The first part of the review presents analysis of available theoretical studies approximately up to 1980. Ratios between various analytically solved models are discussed in detail. It is shown that they don't satisfy to full extent the above-given requirements. More consistent, both numerically and analytically solvable models developed for the last years, are considered in the review second part. 119 refs

  17. A fuzzy multi-criteria decision-making model for CCHP systems driven by different energy sources

    International Nuclear Information System (INIS)

    Jing Youyin; Bai He; Wang Jiangjiang

    2012-01-01

    Because of its energy-saving and pollutant emission reduction potentials, combined cooling, heating and power (CCHP) system has been widely used in different kinds of buildings to solve building-related energetic problems and environmental issues. As various kinds of clean energy and renewable energy have been focused and applied to CCHP systems, it is urgent to find a practical decision making methodology for CCHP systems driven by different energy sources. In this paper, an evaluation model which integrates fuzzy theory with multi-criteria decision making process is proposed to assess the comprehensive benefits of CCHP systems from technology, economic, society and environment criterions. Grey relation analysis and combination weighting method are also employed to compare the integrated performances of CCHP systems driven by natural gas, fuel cell, biomass energy and combined gas-steam cycle respectively with a separation production system. Finally, a baseline residential building in Beijing, China is selected as a case to obtain the optimal CCHP system alternative. The results indicate that gas–steam combined cycle CCHP system is the optimum scheme among the five options. - Graphical abstract: A fuzzy multi-criteria decision-making model combined with combination weighting method and grey system theory is presented in this paper, which can be used to evaluate CCHP systems driven by different energy sources from technology, economic, environment and society criteria. Highlights: ► The integrated benefits of CCHP systems driven by different energy sources are evaluated. ► A fuzzy multi-criteria model combined with combination weighting method is proposed. ► Environment evaluation criteria play an important role in the decision-making process. ► CCHP system driven by gas–steam combined cycle is the optimal alternative.

  18. Support systems for the diffusion of renewable energy technologies-an investor perspective

    International Nuclear Information System (INIS)

    Dinica, Valentina

    2006-01-01

    Concern over climate change impacts and the projected depletion of fossil fuels has urged more governments to adopt policies that stimulate the diffusion of renewable energy technologies (RET). With an increasingly diverse suite of support instruments, the question emerges as to which instruments or combinations are able to achieve faster, more substantial diffusion results. Although various support instruments were extensively addressed in policy studies, there is still no consensus. This is partly because many policy studies take a policy-maker approach in comparing support instruments, leaving relationships between policy design and policy results as a black box. This paper proposes an investor-oriented perspective to analyze the diffusion potential of support systems for RET. The main argument is that it is not the type of support instrument but rather its risk/profitability characteristics that influence investor behavior and the rate of diffusion. The two instruments most frequently discussed and compared are the feed-in-tariff and the quota model. The analysis in this paper concludes that policy design is crucial: while often feed-in tariffs are applauded and quota system feared, feed-in tariffs may also bring about disappointing diffusion results when poorly designed while quota systems may be also conceived as attractive instruments for independent power producers

  19. Accelerator driven radiation clean nuclear power system conceptual research symposium

    International Nuclear Information System (INIS)

    Zhao Zhixiang

    2000-06-01

    The R and D of ADS (Accelerators Driven Subcritical System) in China introduced. 31 theses are presented. It includes the basic principle of ADS, accelerators, sub-critical reactors, neutron physics, nuclear data, partitioning and transmutation

  20. Rotation driven translational diffusion of polyatomic ions in water: A novel mechanism for breakdown of Stokes-Einstein relation

    Science.gov (United States)

    Banerjee, Puja; Yashonath, Subramanian; Bagchi, Biman

    2017-04-01

    While most of the existing theoretical and simulation studies have focused on simple, spherical, halide and alkali ions, many chemically, biologically, and industrially relevant electrolytes involve complex non-spherical polyatomic ions like nitrate, chlorate, and sulfate to name only a few. Interestingly, some polyatomic ions in spite of being larger in size show anomalously high diffusivity and therefore cause a breakdown of the venerable Stokes-Einstein (S-E) relation between the size and diffusivity. Here we report a detailed analysis of the dynamics of anions in aqueous potassium nitrate (KNO3) and aqueous potassium acetate (CH3COOK) solutions. The two ions, nitrate (-NO3) and acetate (CH3-CO2 ), with their similar size show a large difference in diffusivity values. We present evidence that the translational motion of these polyatomic ions is coupled to the rotational motion of the ion. We show that unlike the acetate ion, nitrate ion with a symmetric charge distribution among all periphery oxygen atoms shows a faster rotational motion with large amplitude rotational jumps which enhances its translational motion due to translational-rotational coupling. By creating a family of modified-charge model systems, we have analysed the rotational motion of asymmetric polyatomic ions and the contribution of it to the translational motion. These model systems help clarifying and establishing the relative contribution of rotational motion in enhancing the diffusivity of the nitrate ion over the value predicted by the S-E relation and also over the other polyatomic ions having asymmetric charge distribution like the acetate ion. In the latter case, reduced rotational motion results in lower diffusivity values than those with symmetric charge distribution. We propose translational-rotational coupling as a general mechanism of the breakdown of the S-E relation in the case of polyatomic ions.

  1. Discrete changes of current statistics in periodically driven stochastic systems

    International Nuclear Information System (INIS)

    Chernyak, Vladimir Y; Sinitsyn, N A

    2010-01-01

    We demonstrate that the counting statistics of currents in periodically driven ergodic stochastic systems can show sharp changes of some of its properties in response to continuous changes of the driving protocol. To describe this effect, we introduce a new topological phase factor in the evolution of the moment generating function which is akin to the topological geometric phase in the evolution of a periodically driven quantum mechanical system with time-reversal symmetry. This phase leads to the prediction of a sign change for the difference of the probabilities to find even and odd numbers of particles transferred in a stochastic system in response to cyclic evolution of control parameters. The driving protocols that lead to this sign change should enclose specific degeneracy points in the space of control parameters. The relation between the topology of the paths in the control parameter space and the sign changes can be described in terms of the first Stiefel–Whitney class of topological invariants. (letter)

  2. System for diffusing light from an optical fiber or light guide

    Science.gov (United States)

    Maitland, Duncan J [Pleasant Hill, CA; Wilson, Thomas S [San Leandro, CA; Benett, William J [Livermore, CA; Small, IV, Ward [

    2008-06-10

    A system for diffusing light from an optical fiber wherein the optical fiber is coupled to a light source, comprising forming a polymer element adapted to be connected to the optical fiber and incorporating a scattering element with the polymer element wherein the scattering element diffuses the light from the polymer element. The apparatus of the present invention comprises a polymer element operatively connected to the optical fiber and a scattering element operatively connected with the shape polymer element that diffuses the light from the polymer element.

  3. The mechanism of Turing pattern formation in a positive feedback system with cross diffusion

    International Nuclear Information System (INIS)

    Yang, Xiyan; Liu, Tuoqi; Zhang, Jiajun; Zhou, Tianshou

    2014-01-01

    In this paper, we analyze a reaction–diffusion (R–D) system with a double negative feedback loop and find cases where self diffusion alone cannot lead to Turing pattern formation but cross diffusion can. Specifically, we first derive a set of sufficient conditions for Turing instability by performing linear stability analysis, then plot two bifurcation diagrams that specifically identify Turing regions in the parameter phase plane, and finally numerically demonstrate representative Turing patterns according to the theoretical predictions. Our analysis combined with previous studies actually implies an interesting fact that Turing patterns can be generated not only in a class of monostable R–D systems where cross diffusion is not necessary but also in a class of bistable R–D systems where cross diffusion is necessary. In addition, our model would be a good candidate for experimentally testing Turing pattern formation from the viewpoint of synthetic biology. (paper)

  4. Viscosity and viscoelasticity of two-phase systems having diffuse interfaces

    Science.gov (United States)

    Hopper, R. W.

    1976-01-01

    The equilibrium stability criterion for diffuse interfaces in a two-component solution with a miscibility gap requires that the interdiffusion flux vanish. If the system is continuously deformed, convective fluxes disrupt the equilibrium in the interface regions and induce a counter diffusive flux, which is dissipative and contributes to the apparent viscosity of the mixture. Chemical free energy is recoverably stored, causing viscoelastic phenomena. Both effects are significant.

  5. Fast accelerator driven subcritical system for energy production: nuclear fuel evolution

    International Nuclear Information System (INIS)

    Barros, Graiciany de P.; Pereira, Claubia; Veloso, Maria A.F.; Costa, Antonella L.

    2011-01-01

    Accelerators Driven Systems (ADS) are an innovative type of nuclear system, which is useful for long-lived fission product transmutation and fuel regeneration. The ADS consist of a coupling of a sub-critical nuclear core reactor and a proton beam produced by a particle accelerator. These particles are injected into a target for the neutrons production by spallation reactions. The neutrons are then used to maintain the fission chain in the sub-critical core. The aim of this study is to investigate the nuclear fuel evolution of a lead cooled accelerator driven system used for energy production. The fuel studied is a mixture based upon "2"3"2Th and "2"3"3U. Since thorium is an abundant fertile material, there is hope for the thorium-cycle fuels for an accelerator driven sub-critical system. The target is a lead spallation target and the core is filled with a hexagonal lattice. High energy neutrons are used to reduce the negative reactivity caused by the presence of protoactinium, since this effect is most pronounced in the thermal range of the neutron spectrum. For that reason, such material is not added moderator to the system. In this work is used the Monte Carlo code MCNPX 2.6.0, that presents the the depletion/ burnup capability. The k_e_f_f evolution, the neutron energy spectrum in the core and the nuclear fuel evolution using ADS source (SDEF) and kcode-mode are evaluated during the burnup. (author)

  6. The physics design of accelerator-driven transmutation systems

    International Nuclear Information System (INIS)

    Venneri, F.

    1995-01-01

    Nuclear systems under study in the Los Alamos Accelerator-Driven Transmutation Technology program (ADTT) will allow the destruction of nuclear spent fuel and weapons-return plutonium, as well as the production of nuclear energy from the thorium cycle, without a long-lived radioactive waste stream. The subcritical systems proposed represent a radical departure from traditional nuclear concepts (reactors), yet the actual implementation of ADTT systems is based on modest extrapolations of existing technology. These systems strive to keep the best that the nuclear technology has developed over the years, within a sensible conservative design envelope and eventually manage to offer a safer, less expensive and more environmentally sound approach to nuclear power

  7. The physics design of accelerator-driven transmutation systems

    Energy Technology Data Exchange (ETDEWEB)

    Venneri, F. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    Nuclear systems under study in the Los Alamos Accelerator-Driven Transmutation Technology program (ADTT) will allow the destruction of nuclear spent fuel and weapons-return plutonium, as well as the production of nuclear energy from the thorium cycle, without a long-lived radioactive waste stream. The subcritical systems proposed represent a radical departure from traditional nuclear concepts (reactors), yet the actual implementation of ADTT systems is based on modest extrapolations of existing technology. These systems strive to keep the best that the nuclear technology has developed over the years, within a sensible conservative design envelope and eventually manage to offer a safe, less expensive and more environmentally sound approach to nuclear power.

  8. On Uniform Decay of the Entropy for Reaction–Diffusion Systems

    KAUST Repository

    Mielke, Alexander

    2014-09-10

    This work provides entropy decay estimates for classes of nonlinear reaction–diffusion systems modeling reversible chemical reactions under the detailed-balance condition. We obtain explicit bounds for the exponential decay of the relative logarithmic entropy, being based essentially on the application of the Log-Sobolev estimate and a convexification argument only, making it quite robust to model variations. An important feature of our analysis is the interaction of the two different dissipative mechanisms: pure diffusion, forcing the system asymptotically to the homogeneous state, and pure reaction, forcing the solution to the (possibly inhomogeneous) chemical equilibrium. Only the interaction of both mechanisms provides the convergence to the homogeneous equilibrium. Moreover, we introduce two generalizations of the main result: (i) vanishing diffusion constants in some chemical components and (ii) usage of different entropy functionals. We provide a few examples to highlight the usability of our approach and shortly discuss possible further applications and open questions.

  9. Spin diffusion from an inhomogeneous quench in an integrable system.

    Science.gov (United States)

    Ljubotina, Marko; Žnidarič, Marko; Prosen, Tomaž

    2017-07-13

    Generalized hydrodynamics predicts universal ballistic transport in integrable lattice systems when prepared in generic inhomogeneous initial states. However, the ballistic contribution to transport can vanish in systems with additional discrete symmetries. Here we perform large scale numerical simulations of spin dynamics in the anisotropic Heisenberg XXZ spin 1/2 chain starting from an inhomogeneous mixed initial state which is symmetric with respect to a combination of spin reversal and spatial reflection. In the isotropic and easy-axis regimes we find non-ballistic spin transport which we analyse in detail in terms of scaling exponents of the transported magnetization and scaling profiles of the spin density. While in the easy-axis regime we find accurate evidence of normal diffusion, the spin transport in the isotropic case is clearly super-diffusive, with the scaling exponent very close to 2/3, but with universal scaling dynamics which obeys the diffusion equation in nonlinearly scaled time.

  10. ? filtering for stochastic systems driven by Poisson processes

    Science.gov (United States)

    Song, Bo; Wu, Zheng-Guang; Park, Ju H.; Shi, Guodong; Zhang, Ya

    2015-01-01

    This paper investigates the ? filtering problem for stochastic systems driven by Poisson processes. By utilising the martingale theory such as the predictable projection operator and the dual predictable projection operator, this paper transforms the expectation of stochastic integral with respect to the Poisson process into the expectation of Lebesgue integral. Then, based on this, this paper designs an ? filter such that the filtering error system is mean-square asymptotically stable and satisfies a prescribed ? performance level. Finally, a simulation example is given to illustrate the effectiveness of the proposed filtering scheme.

  11. Study on mutual diffusion and phase diagram in the Ni-Ta system

    International Nuclear Information System (INIS)

    Pimenov, V.N.; Ugaste, Yu.Eh.; Akkushkarova, K.A.

    1977-01-01

    The mutual diffusion in the Ni-Ta system has been investigated with a view of refining the constitutional diagram. The mutual diffusion factors and their effective values in the various phases and the diffusion activation energies are calculated. Given are the dependences of the phase growth constants and the mutual diffusion factors upon the temperature. The existence of five new phases Ta 2 Ni, TaNi, TaNi 2 , TaNi 3 , TaNi 8 has been discovered in the range of temperatures between 1150 and 1300 deg C. It is established that all the phases have a small concentration range of existence. It is noted that the diffusion characteristics in the phases (mutual diffusion factor and activation energy) differ widely, but fail to correlate with their melting points

  12. Diffusion Strategy-Based Distributed Operation of Microgrids Using Multiagent System

    Directory of Open Access Journals (Sweden)

    Van-Hai Bui

    2017-07-01

    Full Text Available In distributed operation, each unit is operated by its local controller instead of using a centralized controller, which allows the action to be based on local information rather than global information. Most of the distributed solutions have implemented the consensus method, however, convergence time of the consensus method is quite long, while diffusion strategy includes a stochastic gradient term and can reach convergence much faster compared with consensus method. Therefore, in this paper, a diffusion strategy-based distributed operation of microgrids (MGs is proposed using multiagent system for both normal and emergency operation modes. In normal operation, the MG system is operated by a central controller instead of the distributed controller to minimize the operation cost. If any event (fault occurs in the system, MG system can be divided into two parts to isolate the faulty region. In this case, the MG system is changed to emergency operation mode. The normal part is rescheduled by the central controller while the isolated part schedules its resources in a distributed manner. The isolated part carries out distributed communication using diffusion between neighboring agents for optimal operation of this part. The proposed method enables peer-to-peer communication among the agents without the necessity of a centralized controller, and simultaneously performs resource optimization. Simulation results show that the system can be operated in an economic way in both normal operation and emergency operation modes.

  13. Transient analyses for lead–bismuth cooled accelerator-driven system

    International Nuclear Information System (INIS)

    Sugawara, Takanori; Nishihara, Kenji; Tsujimoto, Kazufumi

    2013-01-01

    Highlights: ► The transient analyses for the LBE cooled accelerator-driven system were performed. ► The purpose was to investigate the possibility of the core damage. ► All results except the protected loss of heat sink satisfied the no-damage criteria. - Abstract: The transient analyses for the lead–bismuth cooled Accelerator-Driven System (ADS) were performed with the use of the SIMMER-III and RELAP5/mod3.2 codes to investigate the possibility of the core damage. Five accidents; the beam window breakage, the protected loss of heat sink, the beam overpower, the unprotected loss of flow and the unprotected blockage accident were analyzed as the typical accidents in the ADS. Through these calculations, it was confirmed that all calculation results except the protected loss of heat sink satisfied the no-damage criteria. In the protected loss of heat sink, the cladding tube temperature reached at the melting temperature after 20 h although the calculation condition was very conservative. It is required to design a safety system of the ADS to decrease the frequencies of the accidents and to ease the accidents

  14. Nonlinear dynamics of a parametrically driven sine-Gordon system

    DEFF Research Database (Denmark)

    Grønbech-Jensen, Niels; Kivshar, Yuri S.; Samuelsen, Mogens Rugholm

    1993-01-01

    We consider a sine-Gordon system, driven by an ac parametric force in the presence of loss. It is demonstrated that a breather can be maintained in a steady state at half of the external frequency. In the small-amplitude limit the effect is described by an effective nonlinear Schrodinger equation...

  15. The Adoption and Diffusion of eLearning in UK Universities: \\ud A Comparative Case Study Using Giddens’s Theory of Structuration

    OpenAIRE

    Singh, Gurmak; Hardaker, Glenn

    2011-01-01

    This exploratory study identifies the factors that influence the adoption and diffusion of instructional technology at five prominent universities in the United Kingdom. The study examines the organisational factors that enable and inhibit organisational adoption and diffusion of innovation. Five diverse approaches to adoption and diffusions of instructional technology were examined; top-down, integrated top-down and bottom, research driven and project driven approach. The paper argues that s...

  16. Controller synthesis for negative imaginary systems: a data driven approach

    KAUST Repository

    Mabrok, Mohamed; Petersen, Ian R.

    2016-01-01

    -driven controller synthesis methodology for NI systems is presented. In this approach, measured frequency response data of the plant is used to construct the controller frequency response at every frequency by minimising a cost function. Then, this controller

  17. Alternative definitions of kinetic parameters for accelerator driven systems

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry; Dulla, Sandra; Ravetto, Piero

    2012-01-01

    Highlights: ► New definition of kinetic parameters for accelerator driven systems. ► Difference between effective and average delayed neutron fraction. ► Difference between effective and average prompt neutron lifetime. ► Effect of the neutron source (Cf, D–D, D–T) on k src . ► Effect of the (n, xn) reactions and source energy-angle distribution on k src . - Abstract: This study introduces a new formulation of kinetic parameters for accelerator driven systems and it is structured into two parts. The first part is dedicated to the classic definition of the kinetic parameters and compares different calculation methodologies. The second part considers a new definition of the kinetic parameters for subcritical assemblies, with particular emphasis on the delayed neutron fraction and the prompt neutron lifetime. This new definition takes into account neutrons from the external neutron source and (n, xn) reactions, which increase the fraction of prompt neutrons. The developed theoretical framework has been applied by Monte Carlo and deterministic calculations to the YALINA Thermal subcritical assembly located in Belarus. This facility can be driven by californium, deuterium–deuterium (D–D), or deuterium–tritium (D–T) external neutron sources. For the D–T neutron source, (n, xn) reactions must be taken into account in order to produce accurate results because the average energy of D–T source neutrons is 14.1 MeV, a value which is much higher than the threshold energy of the (n, 2n) cross section of uranium isotopes.

  18. A Cost Benefit Analysis of an Accelerator Driven Transmutation System

    International Nuclear Information System (INIS)

    Westlen, D.; Gudowski, W.; Wallenius, J.; Tucek, K.

    2002-01-01

    This paper estimates the economical costs and benefits associated with a nuclear waste transmutation strategy. An 800 MWth, fast neutron spectrum, subcritical core design has been used in the study (the so called Sing-Sing Core). Three different fuel cycle scenarios have been compared. The main purpose of the paper has been to identify the cost drivers of a partitioning and transmutation strategy, and to estimate the cost of electricity generated in a nuclear park with operating accelerator driven systems. It has been found that directing all transuranic discharges from spent light water reactor (LWR) uranium oxide (UOX) fuel to accelerator driven systems leads to a cost increase for nuclear power of 50±15%, while introduction of a mixed oxide (MOX) burning step in the LWRs diminishes the cost penalty to 35±10%. (authors)

  19. Global dynamics of a reaction-diffusion system

    Directory of Open Access Journals (Sweden)

    Yuncheng You

    2011-02-01

    Full Text Available In this work the existence of a global attractor for the semiflow of weak solutions of a two-cell Brusselator system is proved. The method of grouping estimation is exploited to deal with the challenge in proving the absorbing property and the asymptotic compactness of this type of coupled reaction-diffusion systems with cubic autocatalytic nonlinearity and linear coupling. It is proved that the Hausdorff dimension and the fractal dimension of the global attractor are finite. Moreover, the existence of an exponential attractor for this solution semiflow is shown.

  20. Energy Conversion and Transmission Characteristics Analysis of Ice Storage Air Conditioning System Driven by Distributed Photovoltaic Energy System

    Directory of Open Access Journals (Sweden)

    Yongfeng Xu

    2016-01-01

    Full Text Available In order to reduce the investment and operation cost of distributed PV energy system, ice storage technology was introduced to substitute batteries for solar energy storage. Firstly, the ice storage air conditioning system (ISACS driven by distributed photovoltaic energy system (DPES was proposed and the feasibility studies have been investigated in this paper. And then, the theoretical model has been established and experimental work has been done to analyze the energy coupling and transferring characteristics in light-electricity-cold conversion process. In addition, the structure optimization analysis was investigated. Results revealed that energy losses were high in ice making process of ice slide maker with only 17.38% energy utilization efficiency and the energy efficiency and exergy efficiency of ISACS driven by DPES were 5.44% and 67.30%, respectively. So the immersed evaporator and cointegrated exchanger were adopted for higher energy utilization efficiency and better financial rewards in structure optimization. The COP and exergy efficiency of ice maker can be increased to 1.48 and 81.24%, respectively, after optimization and the energy utilization efficiency of ISACS driven by DPES could be improved 2.88 times. Moreover, ISACS has the out-of-the-box function of ordinary air conditioning system. In conclusion, ISACS driven by DPES will have good application prospects in tropical regions without power grid.

  1. A new costing model in hospital management: time-driven activity-based costing system.

    Science.gov (United States)

    Öker, Figen; Özyapıcı, Hasan

    2013-01-01

    Traditional cost systems cause cost distortions because they cannot meet the requirements of today's businesses. Therefore, a new and more effective cost system is needed. Consequently, time-driven activity-based costing system has emerged. The unit cost of supplying capacity and the time needed to perform an activity are the only 2 factors considered by the system. Furthermore, this system determines unused capacity by considering practical capacity. The purpose of this article is to emphasize the efficiency of the time-driven activity-based costing system and to display how it can be applied in a health care institution. A case study was conducted in a private hospital in Cyprus. Interviews and direct observations were used to collect the data. The case study revealed that the cost of unused capacity is allocated to both open and laparoscopic (closed) surgeries. Thus, by using the time-driven activity-based costing system, managers should eliminate the cost of unused capacity so as to obtain better results. Based on the results of the study, hospital management is better able to understand the costs of different surgeries. In addition, managers can easily notice the cost of unused capacity and decide how many employees to be dismissed or directed to other productive areas.

  2. Taylor dispersion in wind-driven current

    Science.gov (United States)

    Li, Gang; Wang, Ping; Jiang, Wei-Quan; Zeng, Li; Li, Zhi; Chen, G. Q.

    2017-12-01

    Taylor dispersion associated with wind-driven currents in channels, shallow lakes and estuaries is essential to hydrological environmental management. For solute dispersion in a wind-driven current, presented in this paper is an analytical study of the evolution of concentration distribution. The concentration moments are intensively derived for an accurate presentation of the mean concentration distribution, up to the effect of kurtosis. The vertical divergence of concentration is then deduced by Gill's method of series expansion up to the fourth order. Based on the temporal evolution of the vertical concentration distribution, the dispersion process in the wind-driven current is concretely characterized. The uniform shear leads to a special symmetrical distribution of mean concentration free of skewness. The non-uniformity of vertical concentration is caused by convection and smeared out gradually by the effect of diffusion, but fails to disappear even at large times.

  3. Carbon dioxide sequestration: Modeling the diffusive and convective transport under a CO2 cap

    KAUST Repository

    Allen, Rebecca; Sun, Shuyu

    2012-01-01

    of low permeability. CO2 from this ‘capped' region diffuses into the fluid underlying it, and the resulting CO2-fluid mixture increases in density. This increase in density leads to gravity-driven convection. Accordingly, diffusive-convective transport

  4. Performance of active feedforward control systems in non-ideal, synthesized diffuse sound fields.

    Science.gov (United States)

    Misol, Malte; Bloch, Christian; Monner, Hans Peter; Sinapius, Michael

    2014-04-01

    The acoustic performance of passive or active panel structures is usually tested in sound transmission loss facilities. A reverberant sending room, equipped with one or a number of independent sound sources, is used to generate a diffuse sound field excitation which acts as a disturbance source on the structure under investigation. The spatial correlation and coherence of such a synthesized non-ideal diffuse-sound-field excitation, however, might deviate significantly from the ideal case. This has consequences for the operation of an active feedforward control system which heavily relies on the acquisition of coherent disturbance source information. This work, therefore, evaluates the spatial correlation and coherence of ideal and non-ideal diffuse sound fields and considers the implications on the performance of a feedforward control system. The system under consideration is an aircraft-typical double panel system, equipped with an active sidewall panel (lining), which is realized in a transmission loss facility. Experimental results for different numbers of sound sources in the reverberation room are compared to simulation results of a comparable generic double panel system excited by an ideal diffuse sound field. It is shown that the number of statistically independent noise sources acting on the primary structure of the double panel system depends not only on the type of diffuse sound field but also on the sample lengths of the processed signals. The experimental results show that the number of reference sensors required for a defined control performance exhibits an inverse relationship to control filter length.

  5. Theory of neoclassical ion temperature-gradient-driven turbulence

    Science.gov (United States)

    Kim, Y. B.; Diamond, P. H.; Biglari, H.; Callen, J. D.

    1991-02-01

    The theory of collisionless fluid ion temperature-gradient-driven turbulence is extended to the collisional banana-plateau regime. Neoclassical ion fluid evolution equations are developed and utilized to investigate linear and nonlinear dynamics of negative compressibility ηi modes (ηi≡d ln Ti/d ln ni). In the low-frequency limit (ωB2p. As a result of these modifications, growth rates are dissipative, rather than sonic, and radial mode widths are broadened [i.e., γ˜k2∥c2s(ηi -(2)/(3) )/μi, Δx˜ρs(Bt/Bp) (1+ηi)1/2, where k∥, cs, and ρs are the parallel wave number, sound velocity, and ion gyroradius, respectively]. In the limit of weak viscous damping, enhanced neoclassical polarization persists and broadens radial mode widths. Linear mixing length estimates and renormalized turbulence theory are used to determine the ion thermal diffusivity in both cases. In both cases, a strong favorable dependence of ion thermal diffusivity on Bp (and hence plasma current) is exhibited. Furthermore, the ion thermal diffusivity for long wavelength modes exhibits favorable density scaling. The possible role of neoclassical ion temperature-gradient-driven modes in edge fluctuations and transport in L-phase discharges and the L to H transition is discussed.

  6. Diffusion-controlled interface kinetics-inclusive system-theoretic propagation models for molecular communication systems

    Science.gov (United States)

    Chude-Okonkwo, Uche A. K.; Malekian, Reza; Maharaj, B. T.

    2015-12-01

    Inspired by biological systems, molecular communication has been proposed as a new communication paradigm that uses biochemical signals to transfer information from one nano device to another over a short distance. The biochemical nature of the information transfer process implies that for molecular communication purposes, the development of molecular channel models should take into consideration diffusion phenomenon as well as the physical/biochemical kinetic possibilities of the process. The physical and biochemical kinetics arise at the interfaces between the diffusion channel and the transmitter/receiver units. These interfaces are herein termed molecular antennas. In this paper, we present the deterministic propagation model of the molecular communication between an immobilized nanotransmitter and nanoreceiver, where the emission and reception kinetics are taken into consideration. Specifically, we derived closed-form system-theoretic models and expressions for configurations that represent different communication systems based on the type of molecular antennas used. The antennas considered are the nanopores at the transmitter and the surface receptor proteins/enzymes at the receiver. The developed models are simulated to show the influence of parameters such as the receiver radius, surface receptor protein/enzyme concentration, and various reaction rate constants. Results show that the effective receiver surface area and the rate constants are important to the system's output performance. Assuming high rate of catalysis, the analysis of the frequency behavior of the developed propagation channels in the form of transfer functions shows significant difference introduce by the inclusion of the molecular antennas into the diffusion-only model. It is also shown that for t > > 0 and with the information molecules' concentration greater than the Michaelis-Menten kinetic constant of the systems, the inclusion of surface receptors proteins and enzymes in the models

  7. A critical comparison of constant and pulsed flow systems exploiting gas diffusion.

    Science.gov (United States)

    Silva, Claudineia Rodrigues; Henriquez, Camelia; Frizzarin, Rejane Mara; Zagatto, Elias Ayres Guidetti; Cerda, Victor

    2016-02-01

    Considering the beneficial aspects arising from the implementation of pulsed flows in flow analysis, and the relevance of in-line gas diffusion as an analyte separation/concentration step, influence of flow pattern in flow systems with in-line gas diffusion was critically investigated. To this end, constant or pulsed flows delivered by syringe or solenoid pumps were exploited. For each flow pattern, two variants involving different interaction times of the donor with the acceptor streams were studied. In the first one, both the acceptor and donor streams were continuously flowing, whereas in the second one, the acceptor was stopped during the gas diffusion step. Four different volatile species (ammonia, ethanol, carbon dioxide and hydrogen sulfide) were selected as models. For the flow patterns and variants studied, the efficiencies of mass transport in the gas diffusion process were compared, and sensitivity, repeatability, sampling frequency and recorded peak shape were evaluated. Analysis of the results revealed that sensitivity is strongly dependent on the implemented variant, and that flow pattern is an important feature in flow systems with in-line gas diffusion. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Diffusion-controlled melting in granitic systems at 800-900degC and 100-200 MPa. Temperature and pressure dependence of the minimum diffusivity in granitic melts

    International Nuclear Information System (INIS)

    Yuguchi, Takashi; Yamaguchi, Takashi; Iwamoto, Manji-rou; Eguchi, Hibiki; Isobe, Hiroshi; Nishiyama, Tadao

    2012-01-01

    This paper presents the temperature and pressure dependence of the minimum binary diffusivity in granitic melts. The minimum diffusivities are determined by monitoring the temporal development of the diffusion-controlled melt layer(DCM) in granitic systems (albite (Ab)-quartz (Qtz)-H 2 O and orthoclase (Or)-Qtz-H 2 O) gathered during 31 melting experiments under conditions of 800-900degC and 100-200 MPa for durations of 19-72 h. The DCM is formed between single crystals (Ab or Or crystals) and powdered quartz in all runs and is characterized by a distinct concentration gradient. The maximum thickness of the DCM increases systematically with temperature, pressure, and run duration. Temporal development of the DCM obeys the parabolic growth rate law, using which the diffusivity can be estimated. Plots of concentrations along the diffusion paths in ternary diagrams (Na 2 O-Al 2 O 3 -SiO 2 diagram for the Ab-Qtz-H 2 O system and K 2 O-Al 2 O 3 -SiO 2 diagram for the Or-Qtz-H 2 O system) show linear trends rather than S-shaped trends, indicating that binary nature of diffusion occurs in these systems. Therefore, the diffusive component can be interpreted as an albite component or orthoclase and quartz components (SiO 2 ) rather than an oxide or a cation. (author)

  9. Diffusion and chemical activity of Zr-Sn and Zr-Ti systems

    International Nuclear Information System (INIS)

    Zee, R.H.; Watters, J.F.; Davidson, R.D.

    1986-01-01

    A modified evaporation method was used to determine the diffusion coefficients and the emission rates of Sn and Ti in Zr-Sn and Zr-Ti, respectively, at temperatures between 1605 and 1970 K. Results show that both Sn and Ti diffuse in their respective alloys via a vacancy mechanism. Comparison with data in the literature reveals that the activation energy for diffusion of Sn in Zr-Sn, with Sn content between 3 and 5 at.X is relatively constant from 1200 to 1970 K. From the measured emission rates, values of 103 and 98 kcal/mol were obtained for the enthalpies of sublimation for Sn and Ti in their alloys. With a comparison of the solute vapor pressures with those of the pure elements, partial molar free energies, entropies, and enthalpies for the two systems were determined in the temperature range investigated. The Zr-Sn system shows a very large negative heat of formation (-33 kcal/mol) whereas the Zr-Ti system behaves quite ideally, in agreement with phase-diagram predictions

  10. Dichotomous-noise-induced pattern formation in a reaction-diffusion system

    Science.gov (United States)

    Das, Debojyoti; Ray, Deb Shankar

    2013-06-01

    We consider a generic reaction-diffusion system in which one of the parameters is subjected to dichotomous noise by controlling the flow of one of the reacting species in a continuous-flow-stirred-tank reactor (CSTR) -membrane reactor. The linear stability analysis in an extended phase space is carried out by invoking Furutzu-Novikov procedure for exponentially correlated multiplicative noise to derive the instability condition in the plane of the noise parameters (correlation time and strength of the noise). We demonstrate that depending on the correlation time an optimal strength of noise governs the self-organization. Our theoretical analysis is corroborated by numerical simulations on pattern formation in a chlorine-dioxide-iodine-malonic acid reaction-diffusion system.

  11. The entropy dissipation method for spatially inhomogeneous reaction-diffusion-type systems

    KAUST Repository

    Di Francesco, M.; Fellner, K.; Markowich, P. A

    2008-01-01

    and reaction terms and admit fewer conservation laws than the size of the system. In particular, we successfully apply the entropy approach to general linear systems and to a nonlinear example of a reaction-diffusion-convection system arising in solid

  12. Solid-state diffusion-controlled growth of the phases in the Au-Sn system

    Science.gov (United States)

    Baheti, Varun A.; Kashyap, Sanjay; Kumar, Praveen; Chattopadhyay, Kamanio; Paul, Aloke

    2018-01-01

    The solid state diffusion-controlled growth of the phases is studied for the Au-Sn system in the range of room temperature to 200 °C using bulk and electroplated diffusion couples. The number of product phases in the interdiffusion zone decreases with the decrease in annealing temperature. These phases grow with significantly high rates even at the room temperature. The growth rate of the AuSn4 phase is observed to be higher in the case of electroplated diffusion couple because of the relatively small grains and hence high contribution of the grain boundary diffusion when compared to the bulk diffusion couple. The diffraction pattern analysis indicates the same equilibrium crystal structure of the phases in these two types of diffusion couples. The analysis in the AuSn4 phase relating the estimated tracer diffusion coefficients with grain size, crystal structure, the homologous temperature of experiments and the concept of the sublattice diffusion mechanism in the intermetallic compounds indicate that Au diffuses mainly via the grain boundaries, whereas Sn diffuses via both the grain boundaries and the lattice.

  13. Kinetic parameters for source driven systems

    International Nuclear Information System (INIS)

    Dulla, S.; Ravetto, P.; Carta, M.; D'Angelo, A.

    2006-01-01

    The definition of the characteristic kinetic parameters of a subcritical source-driven system constitutes an interesting problem in reactor physics with important consequences for practical applications. Consistent and physically meaningful values of the parameters allow to obtain accurate results from kinetic simulation tools and to correctly interpret kinetic experiments. For subcritical systems a preliminary problem arises for the adoption of a suitable weighting function to be used in the projection procedure to derive a point model. The present work illustrates a consistent factorization-projection procedure which leads to the definition of the kinetic parameters in a straightforward manner. The reactivity term is introduced coherently with the generalized perturbation theory applied to the source multiplication factor ks, which is thus given a physical role in the kinetic model. The effective prompt lifetime is introduced on the assumption that a neutron generation can be initiated by both the fission process and the source emission. Results are presented for simplified configurations to fully comprehend the physical features and for a more complicated highly decoupled system treated in transport theory. (authors)

  14. Inertial effects in diffusion-limited reactions

    International Nuclear Information System (INIS)

    Dorsaz, N; Foffi, G; De Michele, C; Piazza, F

    2010-01-01

    Diffusion-limited reactions are commonly found in biochemical processes such as enzyme catalysis, colloid and protein aggregation and binding between different macromolecules in cells. Usually, such reactions are modeled within the Smoluchowski framework by considering purely diffusive boundary problems. However, inertial effects are not always negligible in real biological or physical media on typical observation time frames. This is all the more so for non-bulk phenomena involving physical boundaries, that introduce additional time and space constraints. In this paper, we present and test a novel numerical scheme, based on event-driven Brownian dynamics, that allows us to explore a wide range of velocity relaxation times, from the purely diffusive case to the underdamped regime. We show that our algorithm perfectly reproduces the solution of the Fokker-Planck problem with absorbing boundary conditions in all the regimes considered and is thus a good tool for studying diffusion-guided reactions in complex biological environments.

  15. Model-driven dependability assessment of software systems

    CERN Document Server

    Bernardi, Simona; Petriu, Dorina C

    2013-01-01

    In this book, the authors present cutting-edge model-driven techniques for modeling and analysis of software dependability. Most of them are based on the use of UML as software specification language. From the software system specification point of view, such techniques exploit the standard extension mechanisms of UML (i.e., UML profiling). UML profiles enable software engineers to add non-functional properties to the software model, in addition to the functional ones. The authors detail the state of the art on UML profile proposals for dependability specification and rigorously describe the t

  16. Performance analysis of a new design of office diffuse ceiling ventilation system

    DEFF Research Database (Denmark)

    Fan, Jianhua; Hviid, Christian Anker; Yang, Honglu

    2013-01-01

    This paper aims to document and analyse performance of a new design of diffuse ceiling ventilation system in a typical office room. A full scale measurement is carried out in a climate chamber with an office setup at the Technical University of Denmark. Indoor air temperatures, air speeds, wall...... surface temperatures, pressure loss of the ceiling and ventilation effectiveness are measured for an air change rate of 3.5 h-1 and 5.1 h -1 respectively. A computational fluid dynamics model of the office with the diffuse ceiling ventilation system is built and validated by the full scale measurement....... The measurements of pressure loss across the ceiling show a low pressure drop between the plenum and the occupied zone. Ventilation effectiveness is measured to be close to 1 on average under the tested conditions. It is shown that the diffuse ceiling ventilation system is able to remove indoor pollutant...

  17. The problem of birth of autowaves in parabolic systems with small diffusion

    International Nuclear Information System (INIS)

    Kolesov, A Yu; Rozov, N Kh; Sadovnichii, V A

    2007-01-01

    A parabolic reaction-diffusion system with zero Neumann boundary conditions at the end-points of a finite interval is considered under the following basic assumptions. First, the matrix diffusion coefficient in the system is proportional to a small parameter ε>0, and the system itself possesses a spatially homogeneous cycle (independent of the space variable) of amplitude of order √ε born by a zero equilibrium at an Andronov-Hopf bifurcation. Second, it is assumed that the matrix diffusion depends on an additional small parameter μ≥0, and for μ=0 there occurs in the stability problem for the homogeneous cycle the critical case of characteristic multiplier 1 of multiplicity 2 without Jordan block. Under these constraints and for independently varied parameters ε and μ the problem of the existence and the stability of spatially inhomogeneous auto-oscillations branching from the homogeneous cycle is analysed. Bibliography: 16 titles.

  18. A universal piezo-driven ultrasonic cell microinjection system.

    Science.gov (United States)

    Huang, Haibo; Mills, James K; Lu, Cong; Sun, Dong

    2011-08-01

    Over the past decade, the rapid development of biotechnologies such as gene injection, in-vitro fertilization, intracytoplasmic sperm injection (ICSI) and drug development have led to great demand for highly automated, high precision equipment for microinjection. Recently a new cell injection technology using piezo-driven pipettes with a very small mercury column was proposed and successfully applied in ICSI to a variety of mammal species. Although this technique significantly improves the survival rates of the ICSI process, shortcomings due to the toxicity of mercury and damage to the cell membrane due to large lateral tip oscillations of the injector pipette may limit its application. In this paper, a new cell injection system for automatic batch injection of suspended cells is developed. A new design of the piezo-driven cell injector is proposed for automated suspended cell injection. This new piezo-driven cell injector design relocates the piezo oscillation actuator to the injector pipette which eliminates the vibration effect on other parts of the micromanipulator. A small piezo stack is sufficient to perform the cell injection process. Harmful lateral tip oscillations of the injector pipette are reduced substantially without the use of a mercury column. Furthermore, ultrasonic vibration micro-dissection (UVM) theory is utilized to analyze the piezo-driven cell injection process, and the source of the lateral oscillations of the injector pipette is investigated. From preliminary experiments of cell injection of a large number of zebrafish embryos (n = 200), the injector pipette can easily pierce through the cell membrane at a low injection speed and almost no deformation of the cell wall, and with a high success rate(96%) and survival rate(80.7%) This new injection approach shows good potential for precision injection with less damage to the injected cells.

  19. Observation of structural universality in disordered systems using bulk diffusion measurement

    Science.gov (United States)

    Papaioannou, Antonios; Novikov, Dmitry S.; Fieremans, Els; Boutis, Gregory S.

    2017-12-01

    We report on an experimental observation of classical diffusion distinguishing between structural universality classes of disordered systems in one dimension. Samples of hyperuniform and short-range disorder were designed, characterized by the statistics of the placement of micrometer-thin parallel permeable barriers, and the time-dependent diffusion coefficient was measured by NMR methods over three orders of magnitude in time. The relation between the structural exponent, characterizing disorder universality class, and the dynamical exponent of the diffusion coefficient is experimentally verified. The experimentally established relation between structure and transport exemplifies the hierarchical nature of structural complexity—dynamics are mainly determined by the universality class, whereas microscopic parameters affect the nonuniversal coefficients. These results open the way for noninvasive characterization of structural correlations in porous media, complex materials, and biological tissues via a bulk diffusion measurement.

  20. Coupled diffusion systems with localized nonlinear reactions

    DEFF Research Database (Denmark)

    Pedersen, M.; Lin, Zhigui

    2001-01-01

    This paper deals with the blowup rate and profile near the blowup time for the system of diffusion equations uit - δui = ui+1Pi(x0, t), (i = 1,...,k, uk+1 := uu) in Ω × (0, T) with boundary conditions ui = 0 on ∂Ω × [0, T). We show that the solution has a global blowup. The exact rate...

  1. Diffusion microscopist simulator - The development and application of a Monte Carlo simulation system for diffusion MRI

    International Nuclear Information System (INIS)

    Yeh, C.H.

    2011-09-01

    Diffusion magnetic resonance imaging (dMRI) has made a significant breakthrough in neurological disorders and brain research thanks to its exquisite sensitivity to tissue cyto-architecture. However, as the water diffusion process in neuronal tissues is a complex biophysical phenomena at molecular scale, it is difficult to infer tissue microscopic characteristics on a voxel scale from dMRI data. The major methodological contribution of this thesis is the development of an integrated and generic Monte Carlo simulation framework, 'Diffusion Microscopist Simulator' (DMS), which has the capacity to create 3D biological tissue models of various shapes and properties, as well as to synthesize dMRI data for a large variety of MRI methods, pulse sequence design and parameters. DMS aims at bridging the gap between the elementary diffusion processes occurring at a micrometric scale and the resulting diffusion signal measured at millimetric scale, providing better insights into the features observed in dMRI, as well as offering ground-truth information for optimization and validation of dMRI acquisition protocols for different applications. We have verified the performance and validity of DMS through various benchmark experiments, and applied to address particular research topics in dMRI. Based on DMS, there are two major application contributions in this thesis. First, we use DMS to investigate the impact of finite diffusion gradient pulse duration (delta) on fibre orientation estimation in dMRI. We propose that current practice of using long delta, which is enforced by the hardware limitation of clinical MRI scanners, is actually beneficial for mapping fibre orientations, even though it violates the underlying assumption made in q-space theory. Second, we employ DMS to investigate the feasibility of estimating axon radius using a clinical MRI system. The results suggest that the algorithm for mapping the direct microstructures is applicable to dMRI data acquired from

  2. Variable speed gas engine-driven air compressor system

    Science.gov (United States)

    Morgan, J. R.; Ruggles, A. E.; Chen, T. N.; Gehret, J.

    1992-11-01

    Tecogen Inc. and Ingersoll-Rand Co. as a subcontractor have designed a nominal 150-hp gas engine-driven air compressor utilizing the TECODRIVE 8000 engine and the Ingersoll-Rand 178.5-mm twin screw compressor. Phase 1 included the system engineering and design, economic and applications studies, and a draft commercialization plan. Phase 2 included controls development, laboratory prototype construction, and performance testing. The testing conducted verified that the compressor meets all design specifications.

  3. Entanglement replication in driven dissipative many-body systems.

    Science.gov (United States)

    Zippilli, S; Paternostro, M; Adesso, G; Illuminati, F

    2013-01-25

    We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.

  4. Ternary mutual diffusion of isoniazid in aqueous sodium chloride, sodium hydroxide, and hydrochloric acid at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Ana C.F., E-mail: anacfrib@ci.uc.p [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal); Santos, Ana C.G., E-mail: anacatarinasantos123@gmail.co [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal); Lobo, Victor M.M., E-mail: vlobo@ci.uc.p [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal); Sobral, Abilio J.F.N., E-mail: asobral@ci.uc.p [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal); Cabral, Ana M.T.D.P.V., E-mail: acabral@ff.uc.p [Faculty of Pharmacy, University of Coimbra, 3000-295 Coimbra (Portugal); Esteso, Miguel A., E-mail: miguel.esteso@uah.e [Departamento de Quimica Fisica, Facultad de Farmacia, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain)

    2010-07-15

    Ternary mutual diffusion coefficients measured by Taylor dispersion method (D{sub 11}, D{sub 22}, D{sub 12}, and D{sub 21}) are reported for aqueous solutions containing isoniazid and different electrolytes (NaCl, NaOH, or HCl) at T = 298.15 K at different carrier concentrations. These diffusion coefficients have been measured having in mind a better understanding of the structure of these systems and the thermodynamic behaviour of isoniazid in different media. For example, it is possible to make conclusions about the influence of these electrolytes in diffusion of isoniazid, and to obtain information concerning the number of moles of each component transported per mole of the other component driven by its own concentration gradient.

  5. A European roadmap for developing accelerator driven systems (ADS) for nuclear waste incineration. Executive summary

    International Nuclear Information System (INIS)

    The European Technical Working Group on ADS

    2001-01-01

    In 1998 the Research Ministers of France, Italy and Spain, set up a Ministers' Advisors Group on the use of accelerator driven systems (ADS) for nuclear waste transmutation. This led to the establishing of a technical working group under the chairmanship of Prof. Carlo Rubbia to identify the critical technical issues and to prepare a 'Roadmap' for a demonstration programme to be performed within 12 years. In the following Roadmap, the technical working group (consisting of representatives from Austria, Belgium, Finland, France, Germany, Italy, Portugal, Spain, Sweden and the JRC) has identified the steps necessary to start the construction of an experimental accelerator driven system towards the end of the decade. This is considered as an essential prerequisite to assess the safe and efficient behaviour of such systems for a large-scale deployment for transmutation purposes in the first half of this century. The development and deployment of accelerator driven systems requires three steps: a comprehensive mid- and long-term R and D program, to develop the single elements and components of the system. This includes development of new fuels and fuel cycle systems; planning, design, construction and operation of an Experimental Accelerator Driven System for the demonstration of the concept; planning, design, construction and operation of a large size prototype accelerator driven systems with subsequent large-scale deployment. Following a first phase of R and D focused on the understanding of the basic principles of ADS (already partly underway), the programmes should be streamlined and focused on a practical demonstration of the key issues. These demonstrations should cover high intensity proton accelerators (beam currents in the range 1-20 mA), spallation targets of high power (of power in excess of 1 megawatt), and their effective coupling with a sub-critical core. Cost estimates are taken into account as well as the ADS activities in Japan and USA

  6. Planck intermediate results. XII: Diffuse Galactic components in the Gould Belt System

    DEFF Research Database (Denmark)

    Planck Collaboration,; Ade, P. A. R.; Aghanim, N.

    2013-01-01

    We perform an analysis of the diffuse low-frequency Galactic components in the Southern part of the Gould Belt system (130^\\circ\\leq l\\leq 230^\\circ and -50^\\circ\\leq b\\leq -10^\\circ). Strong ultra-violet (UV) flux coming from the Gould Belt super-association is responsible for bright diffuse...

  7. Transmembrane protein diffusion in gel-supported dual-leaflet membranes.

    Science.gov (United States)

    Wang, Chih-Ying; Hill, Reghan J

    2014-11-18

    Tools to measure transmembrane-protein diffusion in lipid bilayer membranes have advanced in recent decades, providing a need for predictive theoretical models that account for interleaflet leaflet friction on tracer mobility. Here we address the fully three-dimensional flows driven by a (nonprotruding) transmembrane protein embedded in a dual-leaflet membrane that is supported above and below by soft porous supports (e.g., hydrogel or extracellular matrix), each of which has a prescribed permeability and solvent viscosity. For asymmetric configurations, i.e., supports with contrasting permeability, as realized for cells in contact with hydrogel scaffolds or culture media, the diffusion coefficient can reflect interleaflet friction. Reasonable approximations, for sufficiently large tracers on low-permeability supports, are furnished by a recent phenomenological theory from the literature. Interpreting literature data, albeit for hard-supported membranes, provides a theoretical basis for the phenomenological Stokes drag law as well as strengthening assertions that nonhydrodynamic interactions are important in supported bilayer systems, possibly leading to overestimates of the membrane/leaflet viscosity. Our theory provides a theoretical foundation for future experimental studies of tracer diffusion in gel-supported membranes.

  8. Validation of Portable Muscle Tone Measurement Device Based on a Motor-Driven System

    National Research Council Canada - National Science Library

    Chen, Jia-Jin

    2001-01-01

    .... The aim of this study is to extend a sophisticated motor-driven measurement system, developed in our previous research, as a validation platform for developing a portable muscle tone measurement system...

  9. Generating a fractal butterfly Floquet spectrum in a class of driven SU(2) systems

    Science.gov (United States)

    Wang, Jiao; Gong, Jiangbin

    2010-02-01

    A scheme for generating a fractal butterfly Floquet spectrum, first proposed by Wang and Gong [Phys. Rev. A 77, 031405(R) (2008)], is extended to driven SU(2) systems such as a driven two-mode Bose-Einstein condensate. A class of driven systems without a link with the Harper-model context is shown to have an intriguing butterfly Floquet spectrum. The found butterfly spectrum shows remarkable deviations from the known Hofstadter’s butterfly. In addition, the level crossings between Floquet states of the same parity and between Floquet states of different parities are studied and highlighted. The results are relevant to studies of fractal statistics, quantum chaos, and coherent destruction of tunneling, as well as the validity of mean-field descriptions of Bose-Einstein condensates.

  10. Generating a fractal butterfly Floquet spectrum in a class of driven SU(2) systems

    International Nuclear Information System (INIS)

    Wang Jiao; Gong Jiangbin

    2010-01-01

    A scheme for generating a fractal butterfly Floquet spectrum, first proposed by Wang and Gong [Phys. Rev. A 77, 031405(R) (2008)], is extended to driven SU(2) systems such as a driven two-mode Bose-Einstein condensate. A class of driven systems without a link with the Harper-model context is shown to have an intriguing butterfly Floquet spectrum. The found butterfly spectrum shows remarkable deviations from the known Hofstadter's butterfly. In addition, the level crossings between Floquet states of the same parity and between Floquet states of different parities are studied and highlighted. The results are relevant to studies of fractal statistics, quantum chaos, and coherent destruction of tunneling, as well as the validity of mean-field descriptions of Bose-Einstein condensates.

  11. Stochastic modeling and simulation of reaction-diffusion system with Hill function dynamics.

    Science.gov (United States)

    Chen, Minghan; Li, Fei; Wang, Shuo; Cao, Young

    2017-03-14

    Stochastic simulation of reaction-diffusion systems presents great challenges for spatiotemporal biological modeling and simulation. One widely used framework for stochastic simulation of reaction-diffusion systems is reaction diffusion master equation (RDME). Previous studies have discovered that for the RDME, when discretization size approaches zero, reaction time for bimolecular reactions in high dimensional domains tends to infinity. In this paper, we demonstrate that in the 1D domain, highly nonlinear reaction dynamics given by Hill function may also have dramatic change when discretization size is smaller than a critical value. Moreover, we discuss methods to avoid this problem: smoothing over space, fixed length smoothing over space and a hybrid method. Our analysis reveals that the switch-like Hill dynamics reduces to a linear function of discretization size when the discretization size is small enough. The three proposed methods could correctly (under certain precision) simulate Hill function dynamics in the microscopic RDME system.

  12. Controller synthesis for negative imaginary systems: a data driven approach

    KAUST Repository

    Mabrok, Mohamed

    2016-02-17

    The negative imaginary (NI) property occurs in many important applications. For instance, flexible structure systems with collocated force actuators and position sensors can be modelled as negative imaginary systems. In this study, a data-driven controller synthesis methodology for NI systems is presented. In this approach, measured frequency response data of the plant is used to construct the controller frequency response at every frequency by minimising a cost function. Then, this controller response is used to identify the controller transfer function using system identification methods. © The Institution of Engineering and Technology 2016.

  13. Role of accelerator-driven systems in waste incineration scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Salvatores, M.; Slessarev, I.; Tchistiakov, A. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Reacteurs Nucleaires; Spiro, M.; Terrien, Y.; Mouney, H.; Vergnes, J.

    1997-12-31

    At CEA accelerator-driven systems (ADS) are studied in the frame of the R and D required to answer the request of a law voted in 1991 by the French Parliament, `to search for solutions allowing to partition and transmute long lived radioactive wastes, in order to reduce their volume and toxicity`. These systems (called `INCAs`) are still at a conceptual level. However, the role of ADS has been clarified as a first step, and this will be the subject of the present paper. (author)

  14. From quantum stochastic differential equations to Gisin-Percival state diffusion

    Science.gov (United States)

    Parthasarathy, K. R.; Usha Devi, A. R.

    2017-08-01

    Starting from the quantum stochastic differential equations of Hudson and Parthasarathy [Commun. Math. Phys. 93, 301 (1984)] and exploiting the Wiener-Itô-Segal isomorphism between the boson Fock reservoir space Γ (L2(R+ ) ⊗(Cn⊕Cn ) ) and the Hilbert space L2(μ ) , where μ is the Wiener probability measure of a complex n-dimensional vector-valued standard Brownian motion {B (t ) ,t ≥0 } , we derive a non-linear stochastic Schrödinger equation describing a classical diffusion of states of a quantum system, driven by the Brownian motion B. Changing this Brownian motion by an appropriate Girsanov transformation, we arrive at the Gisin-Percival state diffusion equation [N. Gisin and J. Percival, J. Phys. A 167, 315 (1992)]. This approach also yields an explicit solution of the Gisin-Percival equation, in terms of the Hudson-Parthasarathy unitary process and a randomized Weyl displacement process. Irreversible dynamics of system density operators described by the well-known Gorini-Kossakowski-Sudarshan-Lindblad master equation is unraveled by coarse-graining over the Gisin-Percival quantum state trajectories.

  15. The out of equilibrium response function in sub-diffusive systems

    International Nuclear Information System (INIS)

    Gradenigo, G; Puglisi, A; Sarracino, A; Vulpiani, A; Villamaina, D

    2012-01-01

    We study the Einstein relation between spontaneous fluctuations and the response to an external perturbation for the comb model and the single file, which are examples of systems with sub-diffusive transport properties. The relevance of nonequilibrium conditions is investigated: when a stationary current (in the form of a drift or an energy flux) is present, the Einstein relation breaks down. In the case of the comb model, a general relation - appearing in the recent literature - between the response function and an unperturbed suitable correlation function allows us to explain the obtained results. This suggests that the relevant ingredient in breaking the Einstein formula, for stationary regimes, is not anomalous diffusion but the presence of currents driving the system out of equilibrium.

  16. New superconducting cyclotron driven scanning proton therapy systems

    International Nuclear Information System (INIS)

    Klein, Hans-Udo; Baumgarten, Christian; Geisler, Andreas; Heese, Juergen; Hobl, Achim; Krischel, Detlef; Schillo, Michael; Schmidt, Stefan; Timmer, Jan

    2005-01-01

    Since one and a half decades ACCEL is investing in development and engineering of state of the art particle-therapy systems. A new medical superconducting 250 MeV proton cyclotron with special focus on the present and future beam requirements of fast scanning treatment systems has been designed. The first new ACCEL medical proton cyclotron is under commissioning at PSI for their PROSCAN proton therapy facility having undergone successful factory tests especially of the closed loop cryomagnetic system. The second cyclotron is part of ACCEL's integrated proton therapy system for Europe's first clinical center, RPTC in Munich. The cyclotron, the energy selection system, the beamline as well as the four gantries and patient positioners have been installed. The scanning system and major parts of the control software have already been tested. We will report on the concept of ACCEL's superconducting cyclotron driven scanning proton therapy systems and the current status of the commissioning work at PSI and RPTC

  17. Heat transport in the XXZ spin chain: from ballistic to diffusive regimes and dephasing enhancement

    International Nuclear Information System (INIS)

    Mendoza-Arenas, J J; Al-Assam, S; Clark, S R; Jaksch, D

    2013-01-01

    In this work we study the heat transport in an XXZ spin-1/2 Heisenberg chain with homogeneous magnetic field, incoherently driven out of equilibrium by reservoirs at the boundaries. We focus on the effect of bulk dephasing (energy-dissipative) processes in different parameter regimes of the system. The non-equilibrium steady state of the chain is obtained by simulating its evolution under the corresponding Lindblad master equation, using the time evolving block decimation method. In the absence of dephasing, the heat transport is ballistic for weak interactions, while being diffusive in the strongly interacting regime, as evidenced by the heat current scaling with the system size. When bulk dephasing takes place in the system, diffusive transport is induced in the weakly interacting regime, with the heat current monotonically decreasing with the dephasing rate. In contrast, in the strongly interacting regime, the heat current can be significantly enhanced by dephasing for systems of small size. (paper)

  18. Self-diffusion measurements in heterogeneous systems using NMR pulsed field gradient technique

    International Nuclear Information System (INIS)

    Heink, W.; Kaerger, J.; Walter, A.

    1978-01-01

    The experimental pecularities of the NMR pulsed field gradient technique are critical surveyed in its application to zeolite adsorbate adsorbent systems. After a presentation of the different transport parameters accessible by this technique, the consequences of the existence of inner field gradients being inherent to heterogeneous systems are analyzed. Experimental conditions and consequences of an application of pulsed field gradients of high intensity which are necessary for the measurement of small intracrystalline self-diffusion coefficients, are discussed. Gradient pulses of 0.15 Tcm -1 with pulse widths of 2 ms maximum and relative deviations of less than 0.01 per mille can be realized. Since for a number of adsorbate adsorbent systems a distinct dependence of the intracrystalline self-diffusion coeffcients on adsorbate concentration is observed, determination of zeolite pore fiiling factor is of considerable importance for the interpretation of the diffusivities obtained. It is demonstrated that also this information can be obtained by NMR technique in a straightforward way with a mean error of less than 5 to 10 %. Applying this new method and using an optimum experimental device as described, pore filling factor dependences of the self-diffusion coefficients of alkanes in NaX zeolites can be followed over more than two orders of magnitude. (author)

  19. Temperature Profile of the Solution Vessel of an Accelerator-Driven Subcritical Fissile Solution System

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Determan, John C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-14

    Dynamic System Simulation (DSS) models of fissile solution systems have been developed and verified against a variety of historical configurations. DSS techniques have been applied specifically to subcritical accelerator-driven systems using fissile solution fuels of uranium. Initial DSS models were developed in DESIRE, a specialized simulation scripting language. In order to tailor the DSS models to specifically meet needs of system designers they were converted to a Visual Studio implementation, and one of these subsequently to National Instrument’s LabVIEW for human factors engineering and operator training. Specific operational characteristics of subcritical accelerator-driven systems have been examined using a DSS model tailored to this particular class using fissile fuel.

  20. Temperature Profile of the Solution Vessel of an Accelerator-Driven Subcritical Fissile Solution System

    International Nuclear Information System (INIS)

    Klein, Steven Karl; Determan, John C.

    2015-01-01

    Dynamic System Simulation (DSS) models of fissile solution systems have been developed and verified against a variety of historical configurations. DSS techniques have been applied specifically to subcritical accelerator-driven systems using fissile solution fuels of uranium. Initial DSS models were developed in DESIRE, a specialized simulation scripting language. In order to tailor the DSS models to specifically meet needs of system designers they were converted to a Visual Studio implementation, and one of these subsequently to National Instrument's LabVIEW for human factors engineering and operator training. Specific operational characteristics of subcritical accelerator-driven systems have been examined using a DSS model tailored to this particular class using fissile fuel.

  1. Lattice animals in diffusion limited binary colloidal system

    Science.gov (United States)

    Shireen, Zakiya; Babu, Sujin B.

    2017-08-01

    In a soft matter system, controlling the structure of the amorphous materials has been a key challenge. In this work, we have modeled irreversible diffusion limited cluster aggregation of binary colloids, which serves as a model for chemical gels. Irreversible aggregation of binary colloidal particles leads to the formation of a percolating cluster of one species or both species which are also called bigels. Before the formation of the percolating cluster, the system forms a self-similar structure defined by a fractal dimension. For a one component system when the volume fraction is very small, the clusters are far apart from each other and the system has a fractal dimension of 1.8. Contrary to this, we will show that for the binary system, we observe the presence of lattice animals which has a fractal dimension of 2 irrespective of the volume fraction. When the clusters start inter-penetrating, we observe a fractal dimension of 2.5, which is the same as in the case of the one component system. We were also able to predict the formation of bigels using a simple inequality relation. We have also shown that the growth of clusters follows the kinetic equations introduced by Smoluchowski for diffusion limited cluster aggregation. We will also show that the chemical distance of a cluster in the flocculation regime will follow the same scaling law as predicted for the lattice animals. Further, we will also show that irreversible binary aggregation comes under the universality class of the percolation theory.

  2. Seabed resident event driven profiling system (SREP). Concept, design and tests

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.A.M.Q.; Afzulpurkar, S.; Maurya, P.K.; Fernandes, L.; Madhan, R.; Desa, E.S.; Dabolkar, N.A.; Navelkar, G.S.; Naik, L.; Shetye, V.G.; Shetty, N.B.; Prabhudesai, S.P.; Nagvekar, S.; Vimalakumari, D.

    The seabed resident event driven profiling system (SREP) described here offers a novel, optimized approach to profiling in coastal waters from seabed to sea surface during the rough seas encountered in the southwest monsoon season (June...

  3. Detecting causality in policy diffusion processes

    Science.gov (United States)

    Grabow, Carsten; Macinko, James; Silver, Diana; Porfiri, Maurizio

    2016-08-01

    A universal question in network science entails learning about the topology of interaction from collective dynamics. Here, we address this question by examining diffusion of laws across US states. We propose two complementary techniques to unravel determinants of this diffusion process: information-theoretic union transfer entropy and event synchronization. In order to systematically investigate their performance on law activity data, we establish a new stochastic model to generate synthetic law activity data based on plausible networks of interactions. Through extensive parametric studies, we demonstrate the ability of these methods to reconstruct networks, varying in size, link density, and degree heterogeneity. Our results suggest that union transfer entropy should be preferred for slowly varying processes, which may be associated with policies attending to specific local problems that occur only rarely or with policies facing high levels of opposition. In contrast, event synchronization is effective for faster enactment rates, which may be related to policies involving Federal mandates or incentives. This study puts forward a data-driven toolbox to explain the determinants of legal activity applicable to political science, across dynamical systems, information theory, and complex networks.

  4. Deuterium permeation and diffusion in high-purity beryllium

    International Nuclear Information System (INIS)

    Abramov, E.; Riehm, M.P.; Thompson, D.A.; Smeltzer, W.W.

    1990-01-01

    The permeation rate of deuterium through high-purity beryllium membranes was measured using the gas-driven permeation technique. The time-dependent and the steady-state deuterium flux data were analyzed and the effective diffusivities of the samples were determined. Using multilayer permeation theory the effects of surface oxide were eliminated and the diffusion coefficients of the bulk beryllium determined. The diffusion parameters obtained for the extra-grade beryllium samples (99.8%) are D 0 =6.7x10 -9 m 2 /s and E D =28.4 kJ/mol. For the high-grade beryllium samples (99%) the parameters are D 0 =8.0x10 -9 m 2 /s and E D =35.1 kJ/mol. (orig.)

  5. State Estimation for Linear Systems Driven Simultaneously by Wiener and Poisson Processes.

    Science.gov (United States)

    1978-12-01

    The state estimation problem of linear stochastic systems driven simultaneously by Wiener and Poisson processes is considered, especially the case...where the incident intensities of the Poisson processes are low and the system is observed in an additive white Gaussian noise. The minimum mean squared

  6. The analytical benchmark solution of spatial diffusion kinetics in source driven systems for homogeneous media

    International Nuclear Information System (INIS)

    Oliveira, F.L. de; Maiorino, J.R.; Santos, R.S.

    2007-01-01

    This paper describes a closed form solution obtained by the expansion method for the general time dependent diffusion model with delayed emission for source transients in homogeneous media. In particular, starting from simple models, and increasing the complexity, numerical results were obtained for different types of source transients. Thus, first an analytical solution of the one group without precursors was solved, followed by considering one precursors family. The general case of G-groups with R families of precursor although having a closed form solution, cannot be solved analytically, since there are no explicit formulae for the eigenvalues, and numerical methods must be used to solve such problem. To illustrate the general solution, the multi-group (three groups) time-dependent without precursors was also solved and the results inter compared with results obtained by the previous one group models for a given fast homogeneous media, and different types of source transients. The results are being compared with the obtained by numerical methods. (author)

  7. Lasing by driven atoms-cavity system in collective strong coupling regime.

    Science.gov (United States)

    Sawant, Rahul; Rangwala, S A

    2017-09-12

    The interaction of laser cooled atoms with resonant light is determined by the natural linewidth of the excited state. An optical cavity is another optically resonant system where the loss from the cavity determines the resonant optical response of the system. The near resonant combination of an optical Fabry-Pérot cavity with laser cooled and trapped atoms couples two distinct optical resonators via light and has great potential for precision measurements and the creation of versatile quantum optics systems. Here we show how driven magneto-optically trapped atoms in collective strong coupling regime with the cavity leads to lasing at a frequency red detuned from the atomic transition. Lasing is demonstrated experimentally by the observation of a lasing threshold accompanied by polarization and spatial mode purity, and line-narrowing in the outcoupled light. Spontaneous emission into the cavity mode by the driven atoms stimulates lasing action, which is capable of operating as a continuous wave laser in steady state, without a seed laser. The system is modeled theoretically, and qualitative agreement with experimentally observed lasing is seen. Our result opens up a range of new measurement possibilities with this system.

  8. Data-Driven Assistance Functions for Industrial Automation Systems

    International Nuclear Information System (INIS)

    Windmann, Stefan; Niggemann, Oliver

    2015-01-01

    The increasing amount of data in industrial automation systems overburdens the user in process control and diagnosis tasks. One possibility to cope with these challenges consists of using smart assistance systems that automatically monitor and optimize processes. This article deals with aspects of data-driven assistance systems such as assistance functions, process models and data acquisition. The paper describes novel approaches for self-diagnosis and self-optimization, and shows how these assistance functions can be integrated in different industrial environments. The considered assistance functions are based on process models that are automatically learned from process data. Fault detection and isolation is based on the comparison of observations of the real system with predictions obtained by application of the process models. The process models are further employed for energy efficiency optimization of industrial processes. Experimental results are presented for fault detection and energy efficiency optimization of a drive system. (paper)

  9. Advection diffusion model for particles deposition in Rayleigh-Benard turbulent flows

    International Nuclear Information System (INIS)

    Oresta, P.; Lippolis, A.; Verzicco, R.; Soldati, A.

    2005-01-01

    In this paper, Direct Numerical Simulation (DNS) and Lagrangian Particle Tracking are used to precisely investigate the turbulent thermally driven flow and particles dispersion in a closed, slender cylindrical domain. The numerical simulations are carried out for Rayleigh (Ra) and Prandtl numbers (Pr) equal to Ra = 2X10 8 and Pr = 0.7, considering three sets of particles with Stokes numbers, based on Kolmogorov scale, equal to St k 1.3, St k 0.65 and St k = 0.13. This data are used to calculate a priori the drift velocity and the turbulent diffusion coefficient for the Advection Diffusion model. These quantities are function of the Stokes, Froude, Rayleigh and Prandtl numbers only. One dimensional, time dependent, Advection- Diffusion Equation (ADE) is presented to predict particles deposition in Rayleigh-Benard flow in the cylindrical domain. This archetype configuration models flow and aerosol dynamics, produced in case of accident in the passive containment cooling system (PCCS) of a nuclear reactor. ADE results show a good agreement with DNS data for all the sets of particles investigated. (author)

  10. Thermonuclear-driven fast magnetosonic-wave heating in tokamak plasmas

    International Nuclear Information System (INIS)

    Sutton, W.R. III.

    1982-01-01

    A thermonuclear driven fast magnetosonic wave instability is investigated in tokamak plasmas for propagation transverse to the external magnetic field at frequencies of several times the alpha particle gyro rate: ω approx. = L Ω/sub α/ = k/sub perpendicular/ v/sub A/, L approx. 4 to 8, k/sub parallel/ << k/sub perpendicular/. The 2-D differential quasi-linear diffusion equation is derived in circular cylindrical, v/sub perpendicular/-v/sub parallel/ geometry. We perform an expansion in the small parameter k/sub parallel/k/sub perpendicucular/ of the quasi-linear diffusion coefficients

  11. Synchronous parallel kinetic Monte Carlo for continuum diffusion-reaction systems

    International Nuclear Information System (INIS)

    Martinez, E.; Marian, J.; Kalos, M.H.; Perlado, J.M.

    2008-01-01

    A novel parallel kinetic Monte Carlo (kMC) algorithm formulated on the basis of perfect time synchronicity is presented. The algorithm is intended as a generalization of the standard n-fold kMC method, and is trivially implemented in parallel architectures. In its present form, the algorithm is not rigorous in the sense that boundary conflicts are ignored. We demonstrate, however, that, in their absence, or if they were correctly accounted for, our algorithm solves the same master equation as the serial method. We test the validity and parallel performance of the method by solving several pure diffusion problems (i.e. with no particle interactions) with known analytical solution. We also study diffusion-reaction systems with known asymptotic behavior and find that, for large systems with interaction radii smaller than the typical diffusion length, boundary conflicts are negligible and do not affect the global kinetic evolution, which is seen to agree with the expected analytical behavior. Our method is a controlled approximation in the sense that the error incurred by ignoring boundary conflicts can be quantified intrinsically, during the course of a simulation, and decreased arbitrarily (controlled) by modifying a few problem-dependent simulation parameters

  12. An axisymmetric non-hydrostatic model for double-diffusive water systems

    Science.gov (United States)

    Hilgersom, Koen; Zijlema, Marcel; van de Giesen, Nick

    2018-02-01

    The three-dimensional (3-D) modelling of water systems involving double-diffusive processes is challenging due to the large computation times required to solve the flow and transport of constituents. In 3-D systems that approach axisymmetry around a central location, computation times can be reduced by applying a 2-D axisymmetric model set-up. This article applies the Reynolds-averaged Navier-Stokes equations described in cylindrical coordinates and integrates them to guarantee mass and momentum conservation. The discretized equations are presented in a way that a Cartesian finite-volume model can be easily extended to the developed framework, which is demonstrated by the implementation into a non-hydrostatic free-surface flow model. This model employs temperature- and salinity-dependent densities, molecular diffusivities, and kinematic viscosity. One quantitative case study, based on an analytical solution derived for the radial expansion of a dense water layer, and two qualitative case studies demonstrate a good behaviour of the model for seepage inflows with contrasting salinities and temperatures. Four case studies with respect to double-diffusive processes in a stratified water body demonstrate that turbulent flows are not yet correctly modelled near the interfaces and that an advanced turbulence model is required.

  13. Data-driven modeling and real-time distributed control for energy efficient manufacturing systems

    International Nuclear Information System (INIS)

    Zou, Jing; Chang, Qing; Arinez, Jorge; Xiao, Guoxian

    2017-01-01

    As manufacturers face the challenges of increasing global competition and energy saving requirements, it is imperative to seek out opportunities to reduce energy waste and overall cost. In this paper, a novel data-driven stochastic manufacturing system modeling method is proposed to identify and predict energy saving opportunities and their impact on production. A real-time distributed feedback production control policy, which integrates the current and predicted system performance, is established to improve the overall profit and energy efficiency. A case study is presented to demonstrate the effectiveness of the proposed control policy. - Highlights: • A data-driven stochastic manufacturing system model is proposed. • Real-time system performance and energy saving opportunity identification method is developed. • Prediction method for future potential system performance and energy saving opportunity is developed. • A real-time distributed feedback control policy is established to improve energy efficiency and overall system profit.

  14. Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems

    International Nuclear Information System (INIS)

    Owolabi, Kolade M.

    2016-01-01

    The aim of this paper is to examine pattern formation in the sub— and super-diffusive scenarios and compare it with that of classical or standard diffusive processes in two-component fractional reaction-diffusion systems that modeled a predator-prey dynamics. The focus of the work concentrates on the use of two separate mathematical techniques, we formulate a Fourier spectral discretization method as an efficient alternative technique to solve fractional reaction-diffusion problems in higher-dimensional space, and later advance the resulting systems of ODEs in time with the adaptive exponential time-differencing solver. Obviously, the fractional Fourier approach is able to achieve spectral convergence up to machine precision regardless of the fractional order α, owing to the fact that our approach is able to give full diagonal representation of the fractional operator. The complexity of the dynamics in this system is theoretically discussed and graphically displayed with some examples and numerical simulations in one, two and three dimensions.

  15. On Uniform Decay of the Entropy for Reaction–Diffusion Systems

    KAUST Repository

    Mielke, Alexander; Haskovec, Jan; Markowich, Peter A.

    2014-01-01

    This work provides entropy decay estimates for classes of nonlinear reaction–diffusion systems modeling reversible chemical reactions under the detailed-balance condition. We obtain explicit bounds for the exponential decay of the relative

  16. Dynamic analysis of an accelerator-driven fluid-fueled subcritical radioactive waste burning system

    International Nuclear Information System (INIS)

    Woosley, M.L. Jr.; Rydin, R.A.

    1998-01-01

    The recent revival of interest in accelerator-driven subcritical fluid-fueled systems is documented. Several important applications of these systems are mentioned, and this is used to motivate the need for dynamic analysis of the nuclear kinetics of such systems. A physical description of the Los alamos National Laboratory accelerator-based conversion (ABC) concept is provided. This system is used as the basis for the kinetics study in this research. The current approach to the dynamic simulation of an accelerator-driven subcritical fluid-fueled system includes four functional elements: a discrete ordinates model is used to calculate the flux distribution for the source-driven system; a nodal convection model is used to calculate time-dependent isotope and temperature distributions that impact reactivity; a nodal importance weighting model is used to calculate the reactivity impact of temperature and isotope distributions and to feed this information back to the time-dependent nodal convection model; and a transient driver is used to simulate transients, model the balance of plant, and record simulation data. Specific transients that have been analyzed with the current modeling system are discussed. These transients include loss-of-flow and loss-of-cooling accidents, xenon and samarium transients, and cold-plug and overfueling events. The results of various transients have uncovered unpredictable behavior, unresolved design issues, and the need for active control. The need for the development of a nodal-coupling spatial kinetics model is mentioned

  17. Double Diffusive Natural Convection in a Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Y. Hao; J. Nitao; T.A. Buscheck; Y. Sun

    2006-01-01

    In this study, we conduct a two-dimensional numerical analysis of double diffusive natural convection in an emplacement drift for a nuclear waste repository. In-drift heat and moisture transport is driven by combined thermal- and compositional-induced buoyancy forces. Numerical results demonstrate buoyancy-driven convective flow patterns and configurations during both repository heat-up and cool-down phases. It is also shown that boundary conditions, particularly on the drip-shield surface, have strong impacts on the in-drift convective flow and transport

  18. First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems

    Science.gov (United States)

    2014-03-01

    accuracy, with rapid convergence over each physical time step, typically less than five Newton iter - ations. 1 Contents 1 Introduction 3 2 Hyperbolic...however, we employ the Gauss - Seidel (GS) relaxation, which is also an O(N) method for the discretization arising from hyperbolic advection-diffusion system...advection-diffusion scheme. The linear dependency of the iterations on Table 1: Boundary layer problem ( Convergence criteria: Residuals < 10−8.) log10Re

  19. An innovative ultra-capacitor driven shape memory alloy actuator with an embedded control system

    International Nuclear Information System (INIS)

    Li, Peng; Song, Gangbing

    2014-01-01

    In this paper, an innovative ultra-capacitor driven shape memory alloy (SMA) actuator with an embedded control system is proposed targeting high power high-duty cycle SMA applications. The ultra-capacitor, which is capable of delivering massive amounts of instantaneous current in a compact dimension for high power applications, is chosen as the main component of the power supply. A specialized embedded system is designed from the ground up to control the ultra-capacitor driven SMA system. The control of the ultra-capacitor driven SMA is different from that of a regular constant voltage powered SMA system in that the energy and the voltage of the ultra-capacitor decrease as the system load increases. The embedded control system is also different from a computer-based control system in that it has limited computational power, and the control algorithm has to be designed to be simple while effective so that it can fit into the embedded system environment. The problem of a variable voltage power source induced by the use of the ultra-capacitor is solved by using a fuzzy PID (proportional integral and derivative) control. The method of using an ultra-capacitor to drive SMA actuators enabled SMA as a good candidate for high power high-duty cycle applications. The proposed embedded control system provides a good and ready-to-use solution for SMA high power applications. (paper)

  20. Diffusion of interstitials in metallic systems, illustration of a complex study case: aluminum

    Science.gov (United States)

    David, Matthieu; Connétable, Damien

    2017-11-01

    While diffusion mechanisms of interstitial elements in fcc systems are generally well-known, especially in the case of H atoms, we show in this work that even in the case of a simple metallic system (aluminum), the diffusion of interstitials exhibits a wide variety of paths and mechanisms that depend on the specie. We used an approach based on first-principles calculations associated with kinetic Monte-Carlo simulations and a multi-state diffusion formalism to compute the diffusion coefficients of five interstitial elements: hydrogen, boron, carbon, nitrogen and oxygen. For instance, at the atomic scale, whilst we find that C atoms prefer to be located in octahedral sites (labeled o) rather than in tetrahedral positions (labeled t), we find one additional stable position in the lattice (M). The diffusion through these three stable positions are thus studied in detail. In the case of B atoms, for which the tetrahedral site is found unstable, the diffusion path is between o-o sites. Similarly, in the case of oxygen, t positions are found to be the only stable positions (o are unstable) and the path of migration, along t-t direction, is found through a twice degenerated asymmetric transition state. In the case of H and N atoms for which t and o sites are stable, we explain why the only path is along the t-o direction. Finally, we discuss explicit formulas to compute coefficients of diffusion of interstitials in fcc structures.

  1. Accelerator Driven Sub-Critical System for the Radioactive Waste Transmutation

    International Nuclear Information System (INIS)

    Avramovic, I.; Pesic, M.

    2008-01-01

    Spent nuclear fuel discharged from nuclear power plants is the main problem during design of radioactive waste disposal. Most of the hazard stems from only a few chemical elements. The radiotoxicity of these elements can be efficiently reduced using partitioning and transmutation in fast reactors and accelerator driven subcritical systems. (author)

  2. Simulations of pattern dynamics for reaction-diffusion systems via SIMULINK.

    Science.gov (United States)

    Wang, Kaier; Steyn-Ross, Moira L; Steyn-Ross, D Alistair; Wilson, Marcus T; Sleigh, Jamie W; Shiraishi, Yoichi

    2014-04-11

    Investigation of the nonlinear pattern dynamics of a reaction-diffusion system almost always requires numerical solution of the system's set of defining differential equations. Traditionally, this would be done by selecting an appropriate differential equation solver from a library of such solvers, then writing computer codes (in a programming language such as C or Matlab) to access the selected solver and display the integrated results as a function of space and time. This "code-based" approach is flexible and powerful, but requires a certain level of programming sophistication. A modern alternative is to use a graphical programming interface such as Simulink to construct a data-flow diagram by assembling and linking appropriate code blocks drawn from a library. The result is a visual representation of the inter-relationships between the state variables whose output can be made completely equivalent to the code-based solution. As a tutorial introduction, we first demonstrate application of the Simulink data-flow technique to the classical van der Pol nonlinear oscillator, and compare Matlab and Simulink coding approaches to solving the van der Pol ordinary differential equations. We then show how to introduce space (in one and two dimensions) by solving numerically the partial differential equations for two different reaction-diffusion systems: the well-known Brusselator chemical reactor, and a continuum model for a two-dimensional sheet of human cortex whose neurons are linked by both chemical and electrical (diffusive) synapses. We compare the relative performances of the Matlab and Simulink implementations. The pattern simulations by Simulink are in good agreement with theoretical predictions. Compared with traditional coding approaches, the Simulink block-diagram paradigm reduces the time and programming burden required to implement a solution for reaction-diffusion systems of equations. Construction of the block-diagram does not require high-level programming

  3. Nonequilibrium relation between potential and stationary distribution for driven diffusion

    Czech Academy of Sciences Publication Activity Database

    Maes, C.; Netočný, Karel; Shergelashvili, B.M.

    2009-01-01

    Roč. 80, č. 1 (2009), 011121/1-011121/10 ISSN 1539-3755 R&D Projects: GA ČR GA202/07/0404 Institutional research plan: CEZ:AV0Z10100520 Keywords : diffusion * fluctuations * inverse problems Subject RIV: BE - Theoretical Physics Impact factor: 2.400, year: 2009 http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLEEE8000080000001011121000001&idtype=cvips&gifs=Yes

  4. Model-driven design-space exploration for embedded systems: the Octopus Toolset

    NARCIS (Netherlands)

    Basten, T.; van Benthum, E.; Geilen, M.C.W.; Hendriks, M.; Houben, F.; Igna, G.; Reckers, F.J.; Smet, de S.; Somers, L.J.A.M.; Teeselink, Egbert; Trcka, N.; Vaandrager, F.W.; Verriet, J.H.; Voorhoeve, M.; Yang, Y.; Margaria, T.; Steffen, B.

    2010-01-01

    The complexity of today’s embedded systems and their development trajectories requires a systematic, model-driven design approach, supported by tooling wherever possible. Only then, development trajectories become manageable, with high-quality, cost-effective results. This paper introduces the

  5. Network-driven design principles for neuromorphic systems

    Directory of Open Access Journals (Sweden)

    Johannes ePartzsch

    2015-10-01

    Full Text Available Synaptic connectivity is typically the most resource-demanding part of neuromorphic systems. Commonly, the architecture of these systems is chosen mainly on technical considerations. As a consequence, the potential for optimization arising from the inherent constraints of connectivity models is left unused. In this article, we develop an alternative, network-driven approach to neuromorphic architecture design. We describe methods to analyse performance of existing neuromorphic architectures in emulating certain connectivity models. Furthermore, we show step-by-step how to derive a neuromorphic architecture from a given connectivity model. For this, we introduce a generalized description for architectures with a synapse matrix, which takes into account shared use of circuit components for reducing total silicon area. Architectures designed with this approach are fitted to a connectivity model, essentially adapting to its connection density. They are guaranteeing faithful reproduction of the model on chip, while requiring less total silicon area. In total, our methods allow designers to implement more area-efficient neuromorphic systems and verify usability of the connectivity resources in these systems.

  6. Network-driven design principles for neuromorphic systems.

    Science.gov (United States)

    Partzsch, Johannes; Schüffny, Rene

    2015-01-01

    Synaptic connectivity is typically the most resource-demanding part of neuromorphic systems. Commonly, the architecture of these systems is chosen mainly on technical considerations. As a consequence, the potential for optimization arising from the inherent constraints of connectivity models is left unused. In this article, we develop an alternative, network-driven approach to neuromorphic architecture design. We describe methods to analyse performance of existing neuromorphic architectures in emulating certain connectivity models. Furthermore, we show step-by-step how to derive a neuromorphic architecture from a given connectivity model. For this, we introduce a generalized description for architectures with a synapse matrix, which takes into account shared use of circuit components for reducing total silicon area. Architectures designed with this approach are fitted to a connectivity model, essentially adapting to its connection density. They are guaranteeing faithful reproduction of the model on chip, while requiring less total silicon area. In total, our methods allow designers to implement more area-efficient neuromorphic systems and verify usability of the connectivity resources in these systems.

  7. A discrete model to study reaction-diffusion-mechanics systems.

    Science.gov (United States)

    Weise, Louis D; Nash, Martyn P; Panfilov, Alexander V

    2011-01-01

    This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.

  8. A discrete model to study reaction-diffusion-mechanics systems.

    Directory of Open Access Journals (Sweden)

    Louis D Weise

    Full Text Available This article introduces a discrete reaction-diffusion-mechanics (dRDM model to study the effects of deformation on reaction-diffusion (RD processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material. Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.

  9. Large-time behavior of solutions to a reaction-diffusion system with distributed microstructure

    NARCIS (Netherlands)

    Muntean, A.

    2009-01-01

    Abstract We study the large-time behavior of a class of reaction-diffusion systems with constant distributed microstructure arising when modeling diffusion and reaction in structured porous media. The main result of this Note is the following: As t ¿ 8 the macroscopic concentration vanishes, while

  10. Diffusive Promotion by Velocity Gradient of Cytoplasmic Streaming (CPS in Nitella Internodal Cells.

    Directory of Open Access Journals (Sweden)

    Kenji Kikuchi

    Full Text Available Cytoplasmic streaming (CPS is well known to assist the movement of nutrients, organelles and genetic material by transporting all of the cytoplasmic contents of a cell. CPS is generated by motility organelles that are driven by motor proteins near a membrane surface, where the CPS has been found to have a flat velocity profile in the flow field according to the sliding theory. There is a consistent mixing of contents inside the cell by CPS if the velocity gradient profile is flattened, which is not assisted by advection diffusion but is only supported by Brownian diffusion. Although the precise flow structure of the cytoplasm has an important role for cellular metabolism, the hydrodynamic mechanism of its convection has not been clarified. We conducted an experiment to visualise the flow of cytoplasm in Nitella cells by injecting tracer fluorescent nanoparticles and using a flow visualisation system in order to understand how the flow profile affects their metabolic system. We determined that the velocity field in the cytosol has an obvious velocity gradient, not a flattened gradient, which suggests that the gradient assists cytosolic mixing by Taylor-Aris dispersion more than by Brownian diffusion.

  11. Dimer-flipping-assisted diffusion on a Si(001) surface

    International Nuclear Information System (INIS)

    Zi, J.; Min, B. J.; Lu, Y.; Wang, C. Z.; Ho, K. M.

    2000-01-01

    The binding sites and diffusion pathways of Si adatoms on a c(4x2) reconstructed Si(001) surface are investigated by a tight-binding method with an environment-dependent silicon potential in conjunction with ab initio calculations using the Car--Parrinello method. A new diffusion pathway along the trough edge driven by dimer flipping is found with a barrier of 0.74 eV, comparable to that of 0.68 eV along the top of the dimer rows

  12. Diffusion in plasma: The Hall effect, compositional waves, and chemical spots

    Energy Technology Data Exchange (ETDEWEB)

    Urpin, V., E-mail: Vadim.urpin@uv.es [Ioffe Institute of Physics and Technology (Russian Federation)

    2017-03-15

    Diffusion caused by a combined influence of the electric current and Hall effect is considered, and it is argued that such diffusion can form inhomogeneities of a chemical composition in plasma. The considered mechanism can be responsible for the formation of element spots in laboratory and astrophysical plasmas. This current-driven diffusion can be accompanied by propagation of a particular type of waves in which the impurity number density oscillates alone. These compositional waves exist if the magnetic pressure in plasma is much greater than the gas pressure.

  13. Two-dimensional diffusion limited system for cell growth

    International Nuclear Information System (INIS)

    Hlatky, L.

    1985-11-01

    A new cell system, the ''sandwich'' system, was developed to supplement multicellular spheroids as tumor analogues. Sandwiches allow new experimental approaches to questions of diffusion, cell cycle effects and radiation resistance in tumors. In this thesis the method for setting up sandwiches is described both theoretically and experimentally followed by its use in x-ray irradiation studies. In the sandwich system, cells are grown in a narrow gap between two glass slides. Where nutrients and waste products can move into or out of the local environment of the cells only by diffusing through the narrow gap between the slides. Due to the competition between cells, self-created gradients of nutrients and metabolic products are set up resulting in a layer of cells which resembles a living spheroid cross section. Unlike the cells of the spheroid, however, cells in all regions of the sandwich are visible. Therefore, the relative sizes of the regions and their time-dependent growth can be monitored visually without fixation or sectioning. The oxygen and nutrient gradients can be ''turned off'' at any time without disrupting the spatial arrangement of the cells by removing the top slide of the assembly and subsequently turned back on if desired. Removal of the top slide also provides access to all the cells, including those near the necrotic center, of the sandwich. The cells can then be removed for analysis outside the sandwich system. 61 refs., 17 figs

  14. Design of a visible light driven photo-electrochemical/electro-Fenton coupling oxidation system for wastewater treatment

    International Nuclear Information System (INIS)

    Ding, Xing; Ai, Zhihui; Zhang, Lizhi

    2012-01-01

    Highlights: ► Coupling PEC and EF oxidation significantly improves pollutant degradation efficiency. ► The degradation of the PEC/EF system was increased by 154%. ► The instantaneous current efficiency of the PEC/EF system was increased by 26%. - Abstract: In this study, we report on a photo-electrochemical/electro-Fenton oxidation (PEC/EF) system by coupling visible light driven photo-electrochemical oxidation (PEC) and electro-Fenton oxidation (EF) in an undivided cell. Bi 2 WO 6 nanoplates deposited on FTO glass (Bi 2 WO 6 /FTO) and Fe-Fe 2 O 3 core–shell nanowires supported on activated carbon fiber (Fe-Fe 2 O 3 /ACF) were used as the anode and the cathode in the PEC/EF system, respectively. This novel PEC/EF system showed much higher activity than the single PEC and EF systems on degradation of rhodamine B in aqueous solution at natural pH. Moreover, the degradation and the instantaneous current efficiencies of the PEC/EF system were increased by 154% and 26% in comparison with the sum of those of single PEC and EF systems, respectively. These significant enhancements could be attributed to the synergetic effect from better separation of photo-generated carriers in the photo-anode and the transfer of photo-electrons to the oxygen diffusion cathode to generate more electro-generated H 2 O 2 and hydroxyl radicals on the Fenton cathode. The better separation of photo-generated carriers contribute more to the overall degradation enhancement than the photo-electrons generated H 2 O 2 and the subsequent Fenton reaction on the cathode during the PEC/EF process.

  15. A thermo-diffusion system with Smoluchowski interactions : well-posedness and homogenization

    NARCIS (Netherlands)

    Krehel, O.; Aiki, T.; Muntean, A.

    2014-01-01

    We study the solvability and homogenization of a thermal-diffusion reaction problem posed in a periodically perforated domain. The system describes the motion of populations of hot colloidal particles interacting together via Smoluchowski production terms. The upscaled system, obtained via two-scale

  16. Anomalous dimension in a two-species reaction-diffusion system

    Science.gov (United States)

    Vollmayr-Lee, Benjamin; Hanson, Jack; McIsaac, R. Scott; Hellerick, Joshua D.

    2018-01-01

    We study a two-species reaction-diffusion system with the reactions A+A\\to (0, A) and A+B\\to A , with general diffusion constants D A and D B . Previous studies showed that for dimensions d≤slant 2 the B particle density decays with a nontrivial, universal exponent that includes an anomalous dimension resulting from field renormalization. We demonstrate via renormalization group methods that the scaled B particle correlation function has a distinct anomalous dimension resulting in the asymptotic scaling \\tilde CBB(r, t) ˜ tφf(r/\\sqrt{t}) , where the exponent ϕ results from the renormalization of the square of the field associated with the B particles. We compute this exponent to first order in \

  17. An Open Framework for Dynamic Big-data-driven Application Systems (DBDDAS) Development

    KAUST Repository

    Douglas, Craig

    2014-01-01

    In this paper, we outline key features that dynamic data-driven application systems (DDDAS) have. A DDDAS is an application that has data assimilation that can change the models and/or scales of the computation and that the application controls the data collection based on the computational results. The term Big Data (BD) has come into being in recent years that is highly applicable to most DDDAS since most applications use networks of sensors that generate an overwhelming amount of data in the lifespan of the application runs. We describe what a dynamic big-data-driven application system (DBDDAS) toolkit must have in order to provide all of the essential building blocks that are necessary to easily create new DDDAS without re-inventing the building blocks.

  18. An Open Framework for Dynamic Big-data-driven Application Systems (DBDDAS) Development

    KAUST Repository

    Douglas, Craig

    2014-06-06

    In this paper, we outline key features that dynamic data-driven application systems (DDDAS) have. A DDDAS is an application that has data assimilation that can change the models and/or scales of the computation and that the application controls the data collection based on the computational results. The term Big Data (BD) has come into being in recent years that is highly applicable to most DDDAS since most applications use networks of sensors that generate an overwhelming amount of data in the lifespan of the application runs. We describe what a dynamic big-data-driven application system (DBDDAS) toolkit must have in order to provide all of the essential building blocks that are necessary to easily create new DDDAS without re-inventing the building blocks.

  19. Agent-based Modeling Automated: Data-driven Generation of Innovation Diffusion Models

    NARCIS (Netherlands)

    Jensen, T.; Chappin, E.J.L.

    2016-01-01

    Simulation modeling is useful to gain insights into driving mechanisms of diffusion of innovations. This study aims to introduce automation to make identification of such mechanisms with agent-based simulation modeling less costly in time and labor. We present a novel automation procedure in which

  20. Market-Driven Management: the Policy Implications

    OpenAIRE

    Bellini, Nicola

    2008-01-01

    The first policy implication of the diffusion of a Market-Driven Management approach is the same as the spreading of globalization, i.e. the obsolescence of industrial policies as traditionally designed and managed by Nation-States with the established toolbox of protectionism and subsidies, picking 'national champions', etc. The growing asymmetry between the physical jurisdiction of political bodies and the global operation space of modern corporations feeds the apparent trend toward company...

  1. Analysis of diffusivity of the oscillating reaction components in a microreactor system

    Directory of Open Access Journals (Sweden)

    Martina Šafranko

    2017-01-01

    Full Text Available When performing oscillating reactions, periodical changes in the concentrations of reactants, intermediaries, and products take place. Due to the mentioned periodical changes of the concentrations, the information about the diffusivity of the components included into oscillating reactions is very important for the control of the oscillating reactions. Non-linear dynamics makes oscillating reactions very interesting for analysis in different reactor systems. In this paper, the analysis of diffusivity of the oscillating reaction components was performed in a microreactor, with the aim of identifying the limiting component. The geometry of the microreactor microchannel and a well defined flow profile ensure optimal conditions for the diffusion phenomena analysis, because diffusion profiles in a microreactor depend only on the residence time. In this paper, the analysis of diffusivity of the oscillating reaction components was performed in a microreactor equipped with 2 Y-shape inlets and 2 Y-shape outlets, with active volume of V = 4 μL at different residence times.

  2. Hysteresis-controlled instability waves in a scale-free driven current sheet model

    Directory of Open Access Journals (Sweden)

    V. M. Uritsky

    2005-01-01

    Full Text Available Magnetospheric dynamics is a complex multiscale process whose statistical features can be successfully reproduced using high-dimensional numerical transport models exhibiting the phenomenon of self-organized criticality (SOC. Along this line of research, a 2-dimensional driven current sheet (DCS model has recently been developed that incorporates an idealized current-driven instability with a resistive MHD plasma system (Klimas et al., 2004a, b. The dynamics of the DCS model is dominated by the scale-free diffusive energy transport characterized by a set of broadband power-law distribution functions similar to those governing the evolution of multiscale precipitation regions of energetic particles in the nighttime sector of aurora (Uritsky et al., 2002b. The scale-free DCS behavior is supported by localized current-driven instabilities that can communicate in an avalanche fashion over arbitrarily long distances thus producing current sheet waves (CSW. In this paper, we derive the analytical expression for CSW speed as a function of plasma parameters controlling local anomalous resistivity dynamics. The obtained relation indicates that the CSW propagation requires sufficiently high initial current densities, and predicts a deceleration of CSWs moving from inner plasma sheet regions toward its northern and southern boundaries. We also show that the shape of time-averaged current density profile in the DCS model is in agreement with steady-state spatial configuration of critical avalanching models as described by the singular diffusion theory of the SOC. Over shorter time scales, SOC dynamics is associated with rather complex spatial patterns and, in particular, can produce bifurcated current sheets often seen in multi-satellite observations.

  3. Study on low temperature plasma driven permeation of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Takizawa, Masayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    It is one of the most important problem in PWI of fusion devices from the point of view of tritium leakage that hydrogen diffuses in the wall of the device and permeates through it, which results in hydrogen being released to the coolant side. In this study, plasma driven permeation experiments were carried out with several kinds of metal membranes in the low temperature plasma where ionic and atomic hydrogen as well as electron existed in order to survey PDP mechanism from the many view points. In addition, incident flux rate from the plasma to the membrane surface was evaluated by calculation analysis. As a result the mechanism of low temperature PDP was found out and described as PDP models. The simulation of the membrane pump system was executed and the system performance was estimated with the models. (author). 135 refs.

  4. Study on low temperature plasma driven permeation of hydrogen

    International Nuclear Information System (INIS)

    Takizawa, Masayuki

    1998-03-01

    It is one of the most important problem in PWI of fusion devices from the point of view of tritium leakage that hydrogen diffuses in the wall of the device and permeates through it, which results in hydrogen being released to the coolant side. In this study, plasma driven permeation experiments were carried out with several kinds of metal membranes in the low temperature plasma where ionic and atomic hydrogen as well as electron existed in order to survey PDP mechanism from the many view points. In addition, incident flux rate from the plasma to the membrane surface was evaluated by calculation analysis. As a result the mechanism of low temperature PDP was found out and described as PDP models. The simulation of the membrane pump system was executed and the system performance was estimated with the models. (author). 135 refs

  5. Convergence to a pulsating travelling wave for an epidemic reaction-diffusion system with non-diffusive susceptible population.

    Science.gov (United States)

    Ducrot, Arnaud; Giletti, Thomas

    2014-09-01

    In this work we study the asymptotic behaviour of the Kermack-McKendrick reaction-diffusion system in a periodic environment with non-diffusive susceptible population. This problem was proposed by Kallen et al. as a model for the spatial spread for epidemics, where it can be reasonable to assume that the susceptible population is motionless. For arbitrary dimensional space we prove that large classes of solutions of such a system have an asymptotic spreading speed in large time, and that the infected population has some pulse-like asymptotic shape. The analysis of the one-dimensional problem is more developed, as we are able to uncover a much more accurate description of the profile of solutions. Indeed, we will see that, for some initially compactly supported infected population, the profile of the solution converges to some pulsating travelling wave with minimal speed, that is to some entire solution moving at a constant positive speed and whose profile's shape is periodic in time.

  6. The experimental study on the wind turbine’s guide-vanes and diffuser of an exhaust air energy recovery system integrated with the cooling tower

    International Nuclear Information System (INIS)

    Chong, W.T.; Hew, W.P.; Yip, S.Y.; Fazlizan, A.; Poh, S.C.; Tan, C.J.; Ong, H.C.

    2014-01-01

    Highlights: • On-site exhaust air energy recovery turbine generator mounted above cooling tower. • Energy from wasted wind resources is re-used for electricity generation. • Optimum angle arrangement of guide-vanes and diffusers help to improve wind-flow. • Enclosure solves conventional wind turbine problems. • 13.3% reduction in CO 2 emission is expected to be achieved from this system. - Abstract: An assembly of two vertical axis wind turbines (VAWTs) and an enclosure is installed above a cooling tower to harness the discharged wind for electricity generation. The enclosure consists of guide-vanes and diffuser-plates, is used to enhance the rotational speed of the turbines for power augmentation. The angle of the guide-vanes is optimized to ensure the oncoming wind stream impinges the rotor blades of the turbine at an optimum angle. The diffuser-plates are tilted at an optimum angle to increase the discharged airflow rate. The performance of the system is tested in the laboratory followed by a field test on an actual size cooling tower. The VAWT performance is increased in the range of 7–8% with the integration of enclosure. There is no significant difference in the current consumption of the fan motor between the bare cooling tower and the one with installed VAWTs. With the presence of this system, approximately 17.5 GW h/year is expected to be recovered from 3000 units of cooling towers at commercial areas, assuming the cooling tower is driven by a 7.5 kW fan motor and operates 16 h/day. This amount of recovered energy can also be translated into 13% reduction in CO 2 emission

  7. DIFMIG - A computer program for calculation of diffusive migration through multi-barrier systems

    International Nuclear Information System (INIS)

    Bo, P.; Carlsen, L.

    1981-11-01

    The FORTRAN IV program DIFMIG calculates one-dimensionally (i.e. column) the diffusive migration of single substances through arbitrary multibarrier systems. Time dependent changes in concentration other than dispersion/diffusion (e.g. slow dissolution of a compound from a repository, radioactive decay, and/or build up of daughter products), and possible time dependent variations in the effective dispersion into account. The diffusion equation is solved by a finite difference implicite method, the resulting trigonal matrix equation being solved by standard methods. (author)

  8. Second-order generalized perturbation theory for source-driven systems

    International Nuclear Information System (INIS)

    Greenspan, E.; Gilai, D.; Oblow, E.M.

    1978-01-01

    A second-order generalized perturbation theory (GPT) for the effect of multiple system variations on a general flux functional in source-driven systems is derived. The derivation is based on a functional Taylor series in which second-order derivatives are retained. The resulting formulation accounts for the nonlinear effect of a given variation accurate to third order in the flux and adjoint perturbations. It also accounts for the effect of interaction between any number of variations. The new formulation is compared with exact perturbation theory as well as with perturbation theory for altered systems. The usefulnes of the second-order GPT formulation is illustrated by applying it to optimization problems. Its applicability to areas of cross-section sensitivity analysis and system design and evaluation is also discussed

  9. Studies of Accelerator-Driven Systems for Transmutation of Nuclear Waste

    International Nuclear Information System (INIS)

    Dahlfors, Marcus

    2006-01-01

    Accelerator-driven systems for transmutation of nuclear waste have been suggested as a means for dealing with spent fuel components that pose potential radiological hazard for long periods of time. While not entirely removing the need for underground waste repositories, this nuclear waste incineration technology provides a viable method for reducing both waste volumes and storage times. Potentially, the time spans could be diminished from hundreds of thousand years to merely 1.000 years or even less. A central aspect for accelerator-driven systems design is the prediction of safety parameters and fuel economy. The simulations performed rely heavily on nuclear data and especially on the precision of the neutron cross section representations of essential nuclides over a wide energy range, from the thermal to the fast energy regime. In combination with a more demanding neutron flux distribution as compared with ordinary light-water reactors, the expanded nuclear data energy regime makes exploration of the cross section sensitivity for simulations of accelerator-driven systems a necessity. This fact was observed throughout the work and a significant portion of the study is devoted to investigations of nuclear data related effects. The computer code package EA-MC, based on 3-D Monte Carlo techniques, is the main computational tool employed for the analyses presented. Directly related to the development of the code is the extensive IAEA ADS Benchmark 3.2, and an account of the results of the benchmark exercises as implemented with EA-MC is given. CERN's Energy Amplifier prototype is studied from the perspectives of neutron source types, nuclear data sensitivity and transmutation. The commissioning of the n T OF experiment, which is a neutron cross section measurement project at CERN, is also described

  10. Diffusion couple studies of the Ni-Bi-Sn system

    Directory of Open Access Journals (Sweden)

    Vassilev G.

    2012-01-01

    Full Text Available Investigations of Ni-Bi-Sn system were performed in order to inquire the phase diagram and to assess some diffusion kinetic parameters. For this purpose diffusion couples consisting of solid nickel (preliminary electroplated with tin and liquid Bi-Sn phase were annealed at 370 °C. Three compositions (0.8, 0.6 and 0.4 mole fractions Sn of the Bi-Sn melts were chosen. Annealing times from 24 to 216 h were applied. The phase and chemical compositions of the contact zone were determined by means of electron scanning microscope. It was confirmed that the diffusion layers consist mainly of Ni3Sn4 but other intermetallic phases grow as well. For the first time metastable Ni-Sn phases as NiSn and NiSn8 (NiSn9 were observed in metallurgical alloys (i.e. not in electroplated samples. The existence of a ternary compound previously reported in the literature was confirmed. More than one ternary Ni-Bi-Sn compounds might possibly be admitted. A growth coefficient of (2.29 ± 0.02 x 10-15 m2 s-1 was obtained. It was found that the apparent activation energy for diffusion layers growth (18 ± 8 kJ mol-1 is inferior to that one assessed at growth from solid state Bi-Sn mixtures (88 ± 12 kJ mol-1.

  11. Subcriticality of accelerator driven system by AESJ/JAERI working party

    International Nuclear Information System (INIS)

    Iwasaki, Tomohiko

    2002-01-01

    Under Atomic Energy Society of Japan (AESJ) and Japan Atomic Energy Research Institute (JAERI), a Working Party on Reactor Physics of Accelerator-Driven System (ADS-WP) has been set since March 1999 to review and investigate special subjects related to reactor physics research of Accelerator-Driven System (ADS). In the ADS-WP, the extensive and aggressive activity is being made by 25 professional members in the field of reactor physics in Japan. The ADS is now studying three subjects related to subcriticality of ADS; (1) calculation accuracy of subcriticality on ADS, (2) critical safety issues of ADS, and (3) theoretical review of subcriticality and its measurement methods. This paper describes two topics related to the subjects (1) and (2); one is an analysis of maximum reactivity potentially inserted to a subcritical core and the other is a benchmark proposal for checking calculation accuracy of subcriticality on ADS. The full specification of the calculation benchmark will be supplied by June 2002. Researchers from overseas, especially from Korea, are welcome to join this benchmark

  12. Study of the uranium-zirconium diffusion; Etude de la diffusion uranium-zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Adda, Y; Mairy, C; Bouchet, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    The intermetallic diffusion of uranium fuel and zirconium used as cladding is studied. Intermetallic diffusion can occur during the cladding of uranium rods and uranium can penetrate the zirconium cladding. Different parameters are involved in this mechanism as structure and mechanical properties of the diffusion area as well as presence of impurities in the metal. The uses of different analysis techniques (micrography, Castaing electronic microprobe, microhardness and autoradiography) have permitted to determine with great accuracy the diffusion coefficient in gamma phase (body centered cubic system) and the results have given important information on the intermetallic diffusion mechanisms. The existence of the Kirkendall effect in the U-Zr diffusion is also an argument in favor of the generality of the diffusion mechanism by vacancies in body centered cubic system. (M.P.)

  13. Deuterium permeation and diffusion in high purity beryllium

    International Nuclear Information System (INIS)

    Abramov, E.

    1990-05-01

    The permeation rate of deuterium through high-purity beryllium membranes was measured using the gas-driven permeation technique. The time-dependent and the steady-state deuterium flux data were analyzed and the effective diffusivities of the samples were determined. A multilayer permeation theory was used in order to eliminate the surface oxide effects and the diffusion coefficients of the bulk beryllium were determined. The diffusion parameters obtained for the extra-grade beryllium samples (99.8%) are D 0 = 6.7 x 10 -9 [m 2 /s] and E D = 28.4 [KJ/mol]; and for the high-grade beryllium samples (99%) the parameters are D 0 = 8.0 x 10 -9 [m 2 /s] and E D = 35.1 [KJ/mol

  14. Diffusion paths in Ti-Zr-Nb system

    International Nuclear Information System (INIS)

    Omasheva, G.Sh.; Gryzunov, V.I.; Sokolovskaya, E.M.

    1992-01-01

    Mutual diffusion at the temperature of 1273 K was studied. Diffusional paths were plotted and matrix of mutual diffusion coefficients D ij k for 26 points of concentrational triangle was calculated. It is ascertained that all diffusion coefficients are concentration-depending values, they wary by three orders with the change in the composition, corresponding to titanium angle, to niobium one

  15. Solar Distillation System Based on Multiple-Effect Diffusion Type Still

    KAUST Repository

    Huang, Bin-Juine; Chong, Tze-Ling; Chang, Hsien-Shun; Wu, Po-Hsien; Kao, Yeong-Chuan

    2014-01-01

    The present study intends to develop a high-performance solar-assisted desalination system (SADS) using multi-effect diffusion type still (MEDS) and the vacuum tube solar collector (VTSC). A MEDS prototype was designed and built. The measured result

  16. Optimum performance characteristics of a solar-driven Stirling heat engine system

    International Nuclear Information System (INIS)

    Liao, Tianjun; Lin, Jian

    2015-01-01

    Graphical abstract: T–S diagram of the SHE cycle. - Highlights: • Based on Lagrange multiplier method, the optimal performance are investigated. • The energy balance between the absorber and the hot side of Stirling heat engine is considered. • The effects of major parameters on the optimal performance are investigated. - Abstract: A solar-driven Stirling heat engine system composed of a Stirling heat engine, a solar collector, and a heat sink is presented, in which the radiation and convection heat losses of the solar collector, the heat-leak between the thermal absorber and heat sink, the regenerative losses of the Stirling heat engine, and the energy balance between the thermal absorber and the high isothermal process of the Stirling heat engine are taken into consideration. Based on the irreversible thermodynamics and Lagrange multiplier method, the maximum power output and the corresponding optimal efficiency of the system are determined and the absorber temperature that maximizes the optimal system efficiency is calculated numerically. The influences of some system parameters such as the concentrating ratio, the volume ratio during the regenerative processes and irreversibilities of heat exchange processes on the optimal efficiency are analyzed in details. The results obtained here may provide a new idea to design practical solar-driven Stirling heat engine system

  17. Towards cross-hierarchy simulation of collisionless driven reconnection in an open system

    OpenAIRE

    R., HORIUCHI; H., OHTANI; A., ISHIZAWA

    2006-01-01

    The basic idea of a cross-hierarchy model for magnetic reconnection in an open system is proposed, where a microscopic system is surrounded by a macroscopic system and the interaction between the two systems is expressed by the plasma inflow and outflow through the system boundary. Collisionless driven reconnection in two-dimensional and three-dimensional open systems is demonstrated using an open particle simulation model developed as a microscopic part of a cross-hierarchy model. It is foun...

  18. Emergent structures in reaction-advection-diffusion systems on a sphere

    Science.gov (United States)

    Krause, Andrew L.; Burton, Abigail M.; Fadai, Nabil T.; Van Gorder, Robert A.

    2018-04-01

    We demonstrate unusual effects due to the addition of advection into a two-species reaction-diffusion system on the sphere. We find that advection introduces emergent behavior due to an interplay of the traditional Turing patterning mechanisms with the compact geometry of the sphere. Unidirectional advection within the Turing space of the reaction-diffusion system causes patterns to be generated at one point of the sphere, and transported to the antipodal point where they are destroyed. We illustrate these effects numerically and deduce conditions for Turing instabilities on local projections to understand the mechanisms behind these behaviors. We compare this behavior to planar advection which is shown to only transport patterns across the domain. Analogous transport results seem to hold for the sphere under azimuthal transport or away from the antipodal points in unidirectional flow regimes.

  19. Data driven information system for supervision of judicial open

    Directory of Open Access Journals (Sweden)

    Ming LI

    2016-08-01

    Full Text Available Aiming at the four outstanding problems of informationized supervision for judicial publicity, the judicial public data is classified based on data driven to form the finally valuable data. Then, the functional structure, technical structure and business structure of the data processing system are put forward, including data collection module, data reduction module, data analysis module, data application module and data security module, etc. The development of the data processing system based on these structures can effectively reduce work intensity of judicial open iformation management, summarize the work state, find the problems, and promote the level of judicial publicity.

  20. Diffusion of photovoltaic systems for rural electrification in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Sriwannawit, Pranpreya; Laestadius, Staffan [Department of Industrial Economics and Management, Royal Institute of Technology (KTH), Lindstedtsvagen 30, Stockholm 10044 (Sweden)

    2013-07-01

    This paper studies a pilot project in which photovoltaic systems were installed in thirty-six places in the remote areas of Thailand with no access to electricity. One sub-project out of thirty-six was chosen for in-depth investigation. We discuss the appropriateness of solar energy for Thailand context. The diffusion process of PV systems is analyzed on four elements: innovation, communication channel, time and social system. This project is an extreme case as the PV systems and services were provided for free of charge. Even so, there are still some challenges to get acceptance for this sustainable form of energy.

  1. Diffusion of intrinsic localized modes by attractor hopping

    International Nuclear Information System (INIS)

    Meister, Matthias; Vazquez, Luis

    2003-01-01

    Propagating intrinsic localized modes exist in the damped-driven discrete sine-Gordon chain as attractors of the dynamics. The equations of motion of the system are augmented with Gaussian white noise in order to model the effects of temperature on the system. The noise induces random transitions between attracting configurations corresponding to opposite signs of the propagation velocity of the mode, which leads to a diffusive motion of the excitation. The Heun method is used to numerically generate the stochastic time-evolution of the configuration. We also present a theoretical model for the diffusion which contains two parameters, a transition probability θ and a delay time τ A . The mean value and the variance of the position of the intrinsic localized mode, obtained from simulations, can be fitted well with the predictions of our model, θ and τ A being used as parameters in the fit. After a transition period following the switching on of the noise, the variance shows a linear behaviour as a function of time and the mean value remains constant. An increase in the strength of the noise lowers the variance, leads to an increase in θ, a decrease in τ A and reduces the average distance a mode travels during the transition period

  2. Diffusion of intrinsic localized modes by attractor hopping

    Energy Technology Data Exchange (ETDEWEB)

    Meister, Matthias [Dpto FIsica de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza (Spain); Instituto de Biocomputacion y FIsica de Sistemas Complejos, Universidad de Zaragoza, 50009 Zaragoza (Spain); Vazquez, Luis [Dpto Matematica Aplicada, Facultad de Informatica, Universidad Complutense de Madrid, 28040 Madrid (Spain); Centro de AstrobiologIa (CSIC-INTA), 28850 Torrejon de Ardoz (Spain)

    2003-11-28

    Propagating intrinsic localized modes exist in the damped-driven discrete sine-Gordon chain as attractors of the dynamics. The equations of motion of the system are augmented with Gaussian white noise in order to model the effects of temperature on the system. The noise induces random transitions between attracting configurations corresponding to opposite signs of the propagation velocity of the mode, which leads to a diffusive motion of the excitation. The Heun method is used to numerically generate the stochastic time-evolution of the configuration. We also present a theoretical model for the diffusion which contains two parameters, a transition probability {theta} and a delay time {tau}{sub A}. The mean value and the variance of the position of the intrinsic localized mode, obtained from simulations, can be fitted well with the predictions of our model, {theta} and {tau}{sub A} being used as parameters in the fit. After a transition period following the switching on of the noise, the variance shows a linear behaviour as a function of time and the mean value remains constant. An increase in the strength of the noise lowers the variance, leads to an increase in {theta}, a decrease in {tau}{sub A} and reduces the average distance a mode travels during the transition period.

  3. Data-driven system to predict academic grades and dropout

    Science.gov (United States)

    Rovira, Sergi; Puertas, Eloi

    2017-01-01

    Nowadays, the role of a tutor is more important than ever to prevent students dropout and improve their academic performance. This work proposes a data-driven system to extract relevant information hidden in the student academic data and, thus, help tutors to offer their pupils a more proactive personal guidance. In particular, our system, based on machine learning techniques, makes predictions of dropout intention and courses grades of students, as well as personalized course recommendations. Moreover, we present different visualizations which help in the interpretation of the results. In the experimental validation, we show that the system obtains promising results with data from the degree studies in Law, Computer Science and Mathematics of the Universitat de Barcelona. PMID:28196078

  4. Experimental analysis of diffusion absorption refrigerator driven by electrical heater and engine exhaust gas

    Directory of Open Access Journals (Sweden)

    Mohamed Izzedine Serge ADJIBADE

    2017-09-01

    Full Text Available This work presents an experimental study of H20-NH3-H2 diffusion absorption refrigeration under two types of energy sources, i.e. the conventional electric energy from grid (electric and exhaust gas from internal combustion engine. Dynamic method is used to evaluate the behavior of the components of the system for both energy sources. Results obtained show that the performance of each component under different types of energy sources is almost coherent. For the generator, the electrical heater system requires more time to warm up, around three minutes, compared to the 40 s for system running with exhaust gas. For the evaporator, the decreasing rate is higher for the exhaust gas source and it took only about two hours to reach steady-state while for the electrical heat, the steady-state is reached after about seven hours of operation. For both energy sources, the evaporation temperature stabilizes to 3 °C and the minimum temperature to boil off ammonia is around 140 °C.

  5. On the dynamics of a non-local parabolic equation arising from the Gierer-Meinhardt system

    Science.gov (United States)

    Kavallaris, Nikos I.; Suzuki, Takashi

    2017-05-01

    The purpose of the current paper is to contribute to the comprehension of the dynamics of the shadow system of an activator-inhibitor system known as a Gierer-Meinhardt model. Shadow systems are intended to work as an intermediate step between single equations and reaction-diffusion systems. In the case where the inhibitor’s response to the activator’s growth is rather weak, then the shadow system of the Gierer-Meinhardt model is reduced to a single though non-local equation whose dynamics will be investigated. We mainly focus on the derivation of blow-up results for this non-local equation which can be seen as instability patterns of the shadow system. In particular, a diffusion driven instability (DDI), or Turing instability, in the neighbourhood of a constant stationary solution, which it is destabilised via diffusion-driven blow-up, is obtained. The latter actually indicates the formation of some unstable patterns, whilst some stability results of global-in-time solutions towards non-constant steady states guarantee the occurrence of some stable patterns.

  6. Solar thermally driven cooling systems: Some investigation results and perspectives

    International Nuclear Information System (INIS)

    Ajib, Salman; Günther, Wolfgang

    2013-01-01

    Highlights: ► Two types of solar thermally driven absorption refrigeration machines (ARMs) have been investigated. ► We investigated the influence of the operating conditions on the effectiveness of the ARMs. ► The influence of the flow rate of the work solution on the effectiveness of the ARMs has been tested. ► Two laboratory test plants have been built and tested under different operating conditions. - Abstract: A big increase in the number of solar thermal cooling installations and research efforts could be seen over the last years worldwide. Especially the producers of solar thermal collectors and systems have been looking for thermal chillers in the small capacity range to provide air conditioning for one or two family houses. Furthermore, many developments aim to increase the efficiency of the system and to decrease the specific costs of the produced refrigeration capacity. The growth in the use of solar thermal cooling systems amounted about 860% from 52 units in 2004 to 450 units in 2009 [1]. This tendency is expected to be continuously in the next years. The practical examinations on solar thermally driven absorption machines with refrigeration capacity of 15, 10 and 5 kW have shown that this technology has a good chance to be standardized and to replace partly the conventional one. These systems can save more primary energy at high fraction of solar thermally driving by suitable control and regulation of the system. The investing costs still higher as the conventional one, however, the operating costs are less than the conventional one. The Coefficient of Performance (COP) depends on the kind of the system, work temperatures and conditions as well as the refrigeration capacity of the systems. It lies between 0.4 and 1.2. In the framework of the research on this field, we built, tested and measured two prototypes. After measuring the first prototype, the chillers were redesigned to reduce internal heat losses and make the heat and mass transfer

  7. Architecture-driven Migration of Legacy Systems to Cloud-enabled Software

    DEFF Research Database (Denmark)

    Ahmad, Aakash; Babar, Muhammad Ali

    2014-01-01

    of legacy systems to cloud computing. The framework leverages the software reengineering concepts that aim to recover the architecture from legacy source code. Then the framework exploits the software evolution concepts to support architecture-driven migration of legacy systems to cloud-based architectures....... The Legacy-to-Cloud Migration Horseshoe comprises of four processes: (i) architecture migration planning, (ii) architecture recovery and consistency, (iii) architecture transformation and (iv) architecture-based development of cloud-enabled software. We aim to discover, document and apply the migration...

  8. Estimating the Diffusion Coefficients of Sugars Using Diffusion Experiments in Agar-Gel and Computer Simulations.

    Science.gov (United States)

    Miyamoto, Shuichi; Atsuyama, Kenji; Ekino, Keisuke; Shin, Takashi

    2018-01-01

    The isolation of useful microbes is one of the traditional approaches for the lead generation in drug discovery. As an effective technique for microbe isolation, we recently developed a multidimensional diffusion-based gradient culture system of microbes. In order to enhance the utility of the system, it is favorable to have diffusion coefficients of nutrients such as sugars in the culture medium beforehand. We have, therefore, built a simple and convenient experimental system that uses agar-gel to observe diffusion. Next, we performed computer simulations-based on random-walk concepts-of the experimental diffusion system and derived correlation formulas that relate observable diffusion data to diffusion coefficients. Finally, we applied these correlation formulas to our experimentally-determined diffusion data to estimate the diffusion coefficients of sugars. Our values for these coefficients agree reasonably well with values published in the literature. The effectiveness of our simple technique, which has elucidated the diffusion coefficients of some molecules which are rarely reported (e.g., galactose, trehalose, and glycerol) is demonstrated by the strong correspondence between the literature values and those obtained in our experiments.

  9. Data driven CAN node reliability assessment for manufacturing system

    Science.gov (United States)

    Zhang, Leiming; Yuan, Yong; Lei, Yong

    2017-01-01

    The reliability of the Controller Area Network(CAN) is critical to the performance and safety of the system. However, direct bus-off time assessment tools are lacking in practice due to inaccessibility of the node information and the complexity of the node interactions upon errors. In order to measure the mean time to bus-off(MTTB) of all the nodes, a novel data driven node bus-off time assessment method for CAN network is proposed by directly using network error information. First, the corresponding network error event sequence for each node is constructed using multiple-layer network error information. Then, the generalized zero inflated Poisson process(GZIP) model is established for each node based on the error event sequence. Finally, the stochastic model is constructed to predict the MTTB of the node. The accelerated case studies with different error injection rates are conducted on a laboratory network to demonstrate the proposed method, where the network errors are generated by a computer controlled error injection system. Experiment results show that the MTTB of nodes predicted by the proposed method agree well with observations in the case studies. The proposed data driven node time to bus-off assessment method for CAN networks can successfully predict the MTTB of nodes by directly using network error event data.

  10. Performance evaluation of solar photovoltaic panel driven refrigeration system

    Science.gov (United States)

    Rajoria, C. S.; Singh, Dharmendra; Gupta, Pankaj Kumar

    2018-03-01

    The solar photovoltaic (PV) panel driven refrigeration system employs solar PV panel and play a vital role when combined with storage batteries. The variation in performance of solar PV panel driven refrigeration system has been experimentally investigated in this paper. The change in battery voltage is analyzed with respect to panel size. Different series and parallel combinations have been applied on four solar PV panels of 35W each to get 24V. With the above combination a current in the range of 3-5 ampere has been obtained depending upon the solar intensity. A refrigerator of 110 W and 50 liters is used in the present investigation which requires 0.80 ampere AC at 230 V. The required current and voltage has been obtained from an inverter which draws about 7 ampere DC from the battery bank at 24V. The compressor of the refrigerator consumed 110W which required a PV panel size of 176 W approximately. It is important to note that the compressor consumed about 300W for first 50 milliseconds, 130 W for next five seconds and gradually comes to 110 W in 65 seconds. Thus panel size should be such that it may compensate for the initial load requirement.

  11. Method and apparatus for rapid adjustment of process gas inventory in gaseous diffusion cascades

    International Nuclear Information System (INIS)

    1980-01-01

    A method is specified for the operation of a gaseous diffusion cascade wherein electrically driven compressors circulate a process gas through a plurality of serially connected gaseous diffusion stages to establish first and second countercurrently flowing cascade streams of process gas, one of the streams being at a relatively low pressure and enriched in a component of the process gas and the other being at a higher pressure and depleted in the same, and wherein automatic control systems maintain the stage process gas pressures by positioning process gas flow control valve openings at values which are functions of the difference between reference-signal inputs to the systems, and signal inputs proportional to the process gas pressures in the gaseous diffusion stages associated with the systems, the cascade process gas inventory being altered, while the cascade is operating, by simultaneously directing into separate process-gas freezing zones a plurality of substreams derived from one of the first and second streams at different points along the lengths thereof to solidify approximately equal weights of process gas in the zone while reducing the reference-signal inputs to maintain the positions of the control valves substantially unchanged despite the removal of process gas inventory via the substreams. (author)

  12. Modeling of the interplay between single-file diffusion and conversion reaction in mesoporous systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing [Iowa State Univ., Ames, IA (United States)

    2013-01-11

    We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. A strict single-file (no passing) constraint occurs in the diffusion within such narrow pores. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice–gas model for this reaction–diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction–diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction–diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion (SFD) in this multispecies system. Noting the shortcomings of mf-RDE and h-RDE, we then develop a generalized hydrodynamic (GH) formulation of appropriate gh-RDE which incorporates an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The gh-RDE elucidate the non-exponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth. Then an extended model of a catalytic conversion reaction within a functionalized nanoporous material is developed to assess the effect of varying the reaction product – pore interior interaction from attractive to repulsive. The analysis is performed utilizing the generalized hydrodynamic formulation of the reaction-diffusion equations which can reliably capture the complex interplay between reaction and restricted transport for both irreversible and reversible reactions.

  13. Diffusion and Kirkendall effect in plutonium-zirconium system; Diffusion et effet Kirkendall dans le systeme plutonium-zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Remy, C [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-10-01

    Results are reported for the chemical diffusion in {epsilon}{beta} phase (bcc) over the range 10 - 70 atomic per cent plutonium. Concentration-penetration curves, obtained by using electron microprobe, have been analysed by Hall and Matano methods. Chemical diffusion coefficients, measured from 650 to 900 deg. C., increase with plutonium concentration and follow the Arrhenius law. Activation energies range from 18000 up to 44000 cal/mole for plutonium concentrations from 60 to 20 atomic per cent plutonium. Kirkendall effect has been observed by the shift of inert markers located originally at the Zr-PuZr interface. Analysis of intrinsic diffusion coefficients variation, flux of the two species and lattice velocity has been carried out by the incremental couples technique by using Darken and Heumann equations. It was found that D{sub Pu} > D{sub Zr}; the ratio D{sub Pu}/D{sub Zr} increases from 1 to 6 over the range 15 - 60 atomic per cent Pu. Activation energies for intrinsic diffusion coefficients vary between 25 and 50 Kcal/mole. (author) [French] Nous donnons des resultats sur la diffusion chimique en phase {epsilon}{beta} (cc) de 10 a 70 pour cent atomique en plutonium. Les courbes concentration-penetration, obtenues par microanalyse X ont ete depouillees par les methodes de HALL et de MATANO. Les coefficients de diffusion chimique mesures de 650 deg. C a 900 deg. C., augmentent avec la concentration en plutonium et suivent la loi d'ARRHENIUS. Les energies d'activation passent de 18000 a 44000 calories par mole pour des concentrations de 60 a 20 pour cent atomique en plutonium. L'existence d'un effet KIRKENDALL a ete mis en evidence par le deplacement de fils inertes places initialement dans le plan de soudure. L'analyse de la variation des coefficients de diffusion intrinseques, des flux des deux especes et de la vitesse du reseau a ete faite par la technique des couples incrementaux en utilisant les equations de DARKEN et de HEUMANN. On trouve D{sub Pu} > D

  14. Diffuse ceiling ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen

    Diffuse ceiling ventilation is an innovative ventilation concept where the suspended ceiling serves as air diffuser to supply fresh air into the room. Compared with conventional ventilation systems, diffuse ceiling ventilation can significantly reduce or even eliminate draught risk due to the low...

  15. Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains

    Science.gov (United States)

    Wang, Xiaohu; Lu, Kening; Wang, Bixiang

    2018-01-01

    In this paper, we study the Wong-Zakai approximations given by a stationary process via the Wiener shift and their associated long term behavior of the stochastic reaction-diffusion equation driven by a white noise. We first prove the existence and uniqueness of tempered pullback attractors for the Wong-Zakai approximations of stochastic reaction-diffusion equation. Then, we show that the attractors of Wong-Zakai approximations converges to the attractor of the stochastic reaction-diffusion equation for both additive and multiplicative noise.

  16. Energetics of silicate melts from thermal diffusion studies. Final report

    International Nuclear Information System (INIS)

    Walker, D.

    1997-01-01

    Initially this project was directed towards exploiting Soret diffusion of silicate liquids to learn about the internal energetics of the constituents of the liquids. During the course of this project this goal was realized at the same time a series of intellectual and technical developments expanded the scope of the undertaking. Briefly recapping some of the highlights, the project was initiated after the discovery that silicate liquids were strongly Soret-active. It was possible to observe the development of strong diffusive gradients in silicate liquid composition in response to laboratory-imposed thermal gradients. The character of the chemical separations was a direct window into the internal speciation of the liquids; the rise time of the separation was a useful entree to quantitatively measuring chemical diffusivity; and the steady state magnitude of the separation proved to be an excellent determinant of the constituents' mixing energies. A comprehensive program was initiated to measure the separations, rise times, and mixing energies of a range of geologically and technically interesting silicate liquids. An additional track of activities in the DOE project has run in parallel to the Soret investigation of single-phase liquids in a thermal gradient. This additional track is the study of liquid-plus-crystal systems in a thermal gradient. In these studies solubility-driven diffusion introduced many useful effects, some quite surprising. In partially molten silicate liquids the authors applied their experiments to understanding magmatic cumulate rocks. They have also applied their understanding of these systems to aspects of evaporite deposits in the geological record. They also undertook studies of this sort in systems with retrograde solubility in order to form the basis for understanding remediation for brine migration problems in evaporite-hosted nuclear waste repositories such as the WIPP

  17. General Purpose Data-Driven Online System Health Monitoring with Applications to Space Operations

    Science.gov (United States)

    Iverson, David L.; Spirkovska, Lilly; Schwabacher, Mark

    2010-01-01

    Modern space transportation and ground support system designs are becoming increasingly sophisticated and complex. Determining the health state of these systems using traditional parameter limit checking, or model-based or rule-based methods is becoming more difficult as the number of sensors and component interactions grows. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults, failures, or precursors of significant failures. The Inductive Monitoring System (IMS) is a general purpose, data-driven system health monitoring software tool that has been successfully applied to several aerospace applications and is under evaluation for anomaly detection in vehicle and ground equipment for next generation launch systems. After an introduction to IMS application development, we discuss these NASA online monitoring applications, including the integration of IMS with complementary model-based and rule-based methods. Although the examples presented in this paper are from space operations applications, IMS is a general-purpose health-monitoring tool that is also applicable to power generation and transmission system monitoring.

  18. Information filtering in sparse online systems: recommendation via semi-local diffusion.

    Science.gov (United States)

    Zeng, Wei; Zeng, An; Shang, Ming-Sheng; Zhang, Yi-Cheng

    2013-01-01

    With the rapid growth of the Internet and overwhelming amount of information and choices that people are confronted with, recommender systems have been developed to effectively support users' decision-making process in the online systems. However, many recommendation algorithms suffer from the data sparsity problem, i.e. the user-object bipartite networks are so sparse that algorithms cannot accurately recommend objects for users. This data sparsity problem makes many well-known recommendation algorithms perform poorly. To solve the problem, we propose a recommendation algorithm based on the semi-local diffusion process on the user-object bipartite network. The simulation results on two sparse datasets, Amazon and Bookcross, show that our method significantly outperforms the state-of-the-art methods especially for those small-degree users. Two personalized semi-local diffusion methods are proposed which further improve the recommendation accuracy. Finally, our work indicates that sparse online systems are essentially different from the dense online systems, so it is necessary to reexamine former algorithms and conclusions based on dense data in sparse systems.

  19. Classification Systems, their Digitization and Consequences for Data-Driven Decision Making

    DEFF Research Database (Denmark)

    Stein, Mari-Klara; Newell, Sue; Galliers, Robert D.

    2013-01-01

    Classification systems are foundational in many standardized software tools. This digitization of classification systems gives them a new ‘materiality’ that, jointly with the social practices of information producers/consumers, has significant consequences on the representational quality of such ...... and the foundational role of representational quality in understanding the success and consequences of data-driven decision-making.......-narration and meta-narration), and three different information production/consumption situations. We contribute to the relational theorization of representational quality and extend classification systems research by drawing explicit attention to the importance of ‘materialization’ of classification systems...

  20. Estimation of Knudsen diffusion coefficients from tracer experiments conducted with a binary gas system and a porous medium

    Science.gov (United States)

    Hibi, Yoshihiko; Kashihara, Ayumi

    2018-03-01

    A previous study has reported that Knudsen diffusion coefficients obtained by tracer experiments conducted with a binary gas system and a porous medium are consistently smaller than those obtained by permeability experiments conducted with a single-gas system and a porous medium. To date, however, that study is the only one in which tracer experiments have been conducted with a binary gas system. Therefore, to confirm this difference in Knudsen diffusion coefficients, we used a method we had developed previously to conduct tracer experiments with a binary carbon dioxide-nitrogen gas system and five porous media with permeability coefficients ranging from 10-13 to 10-11 m2. The results showed that the Knudsen diffusion coefficient of N2 (DN2) (cm2/s) was related to the effective permeability coefficient ke (m2) as DN2 = 7.39 × 107ke0.767. Thus, the Knudsen diffusion coefficients of N2 obtained by our tracer experiments were consistently 1/27 of those obtained by permeability experiments conducted with many porous media and air by other researchers. By using an inversion simulation to fit the advection-diffusion equation to the distribution of concentrations at observation points calculated by mathematically solving the equation, we confirmed that the method used to obtain the Knudsen diffusion coefficient in this study yielded accurate values. Moreover, because the Knudsen diffusion coefficient did not differ when columns with two different lengths, 900 and 1500 mm, were used, this column property did not influence the flow of gas in the column. The equation of the dusty gas model already includes obstruction factors for Knudsen diffusion and molecular diffusion, which relate to medium heterogeneity and tortuosity and depend only on the structure of the porous medium. Furthermore, there is no need to take account of any additional correction factor for molecular diffusion except the obstruction factor because molecular diffusion is only treated in a multicomponent

  1. Electron versus proton accelerator driven sub-critical system performance using TRIGA reactors at power

    International Nuclear Information System (INIS)

    Carta, M.; Burgio, N.; D'Angelo, A.; Santagata, A.; Petrovich, C.; Schikorr, M.; Beller, D.; Felice, L. S.; Imel, G.; Salvatores, M.

    2006-01-01

    This paper provides a comparison of the performance of an electron accelerator-driven experiment, under discussion within the Reactor Accelerator Coupling Experiments (RACE) Project, being conducted within the U.S. Dept. of Energy's Advanced Fuel Cycle Initiative (AFCI), and of the proton-driven experiment TRADE (TRIGA Accelerator Driven Experiment) originally planned at ENEA-Casaccia in Italy. Both experiments foresee the coupling to sub-critical TRIGA core configurations, and are aimed to investigate the relevant kinetic and dynamic accelerator-driven systems (ADS) core behavior characteristics in the presence of thermal reactivity feedback effects. TRADE was based on the coupling of an upgraded proton cyclotron, producing neutrons via spallation reactions on a tantalum (Ta) target, with the core driven at a maximum power around 200 kW. RACE is based on the coupling of an Electron Linac accelerator, producing neutrons via photoneutron reactions on a tungsten-copper (W-Cu) or uranium (U) target, with the core driven at a maximum power around 50 kW. The paper is focused on analysis of expected dynamic power response of the RACE core following reactivity and/or source transients. TRADE and RACE target-core power coupling coefficients are compared and discussed. (authors)

  2. Diffuse alveolar hemorrhage in a young woman with systemic lupus ...

    African Journals Online (AJOL)

    Diffuse Alveolar Hemorrhage (DAH) is rarely reported complication of Systemic Lupus Erythematosus (SLE). A young woman diagnosed SLE, with a previously normal plain chest radiograph, developed acute onset cough, dyspnoea and hemoptysis. The repeat urgent chest radiograph revealed alveolar opacities. The triad ...

  3. Driven topological systems in the classical limit

    Science.gov (United States)

    Duncan, Callum W.; Öhberg, Patrik; Valiente, Manuel

    2017-03-01

    Periodically driven quantum systems can exhibit topologically nontrivial behavior, even when their quasienergy bands have zero Chern numbers. Much work has been conducted on noninteracting quantum-mechanical models where this kind of behavior is present. However, the inclusion of interactions in out-of-equilibrium quantum systems can prove to be quite challenging. On the other hand, the classical counterpart of hard-core interactions can be simulated efficiently via constrained random walks. The noninteracting model, proposed by Rudner et al. [Phys. Rev. X 3, 031005 (2013), 10.1103/PhysRevX.3.031005], has a special point for which the system is equivalent to a classical random walk. We consider the classical counterpart of this model, which is exact at a special point even when hard-core interactions are present, and show how these quantitatively affect the edge currents in a strip geometry. We find that the interacting classical system is well described by a mean-field theory. Using this we simulate the dynamics of the classical system, which show that the interactions play the role of Markovian, or time-dependent disorder. By comparing the evolution of classical and quantum edge currents in small lattices, we find regimes where the classical limit considered gives good insight into the quantum problem.

  4. Diffusion-driven growth of nanowires by low-temperature molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Rueda-Fonseca, P.; Orrù, M. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CNRS, Institut NEEL, F-38000 Grenoble (France); CEA, INAC, F-38000 Grenoble (France); Bellet-Amalric, E.; Robin, E. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, INAC, F-38000 Grenoble (France); Den Hertog, M.; Genuist, Y.; André, R.; Tatarenko, S.; Cibert, J., E-mail: joel.cibert@neel.cnrs.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CNRS, Institut NEEL, F-38000 Grenoble (France)

    2016-04-28

    With ZnTe as an example, we use two different methods to unravel the characteristics of the growth of nanowires (NWs) by gold-catalyzed molecular beam epitaxy at low temperature. In the first approach, CdTe insertions have been used as markers, and the nanowires have been characterized by scanning transmission electron microscopy, including geometrical phase analysis and energy dispersive electron spectrometry; the second approach uses scanning electron microscopy and the statistics of the relationship between the length of the tapered nanowires and their base diameter. Axial and radial growth are quantified using a diffusion-limited model adapted to the growth conditions; analytical expressions describe well the relationship between the NW length and the total molecular flux (taking into account the orientation of the effusion cells), and the catalyst-nanowire contact area. A long incubation time is observed. This analysis allows us to assess the evolution of the diffusion lengths on the substrate and along the nanowire sidewalls, as a function of temperature and deviation from stoichiometric flux.

  5. From convection rolls to finger convection in double-diffusive turbulence

    NARCIS (Netherlands)

    Yang, Yantao; Verzicco, Roberto; Lohse, Detlef

    2015-01-01

    Double-diffusive convection (DDC), which is the buoyancy-driven flow with fluid density depending on two scalar components, is ubiquitous in many natural and engineering environments. Of great interests are scalars’ transfer rate and flow structures. Here we systematically investigate DDC flow

  6. Pattern formation in reaction diffusion systems with finite geometry

    International Nuclear Information System (INIS)

    Borzi, C.; Wio, H.

    1990-04-01

    We analyze the one-component, one-dimensional, reaction-diffusion equation through a simple inverse method. We confine the system and fix the boundary conditions as to induce pattern formation. We analyze the stability of those patterns. Our goal is to get information about the reaction term out of the preknowledgment of the pattern. (author). 5 refs

  7. Externally controlled anisotropy in pattern-forming reaction-diffusion systems.

    Science.gov (United States)

    Escala, Dario M; Guiu-Souto, Jacobo; Muñuzuri, Alberto P

    2015-06-01

    The effect of centrifugal forces is analyzed in a pattern-forming reaction-diffusion system. Numerical simulations conducted on the appropriate extension of the Oregonator model for the Belousov-Zhabotinsky reaction show a great variety of dynamical behaviors in such a system. In general, the system exhibits an anisotropy that results in new types of patterns or in a global displacement of the previous one. We consider the effect of both constant and periodically modulated centrifugal forces on the different types of patterns that the system may exhibit. A detailed analysis of the patterns and behaviors observed for the different parameter values considered is presented here.

  8. Client and event driven data hub system at CDF

    International Nuclear Information System (INIS)

    Kilminster, Ben; McFarland, Kevin; Vaiciulis, Tony; Matsunaga, Hiroyuki; Shimojima, Makoto

    2001-01-01

    The Consumer-Server Logger (CSL) system at the Collider Detector at Fermilab is a client and event driven data hub capable of receiving physics events from multiple connections, and logging them to multiple streams while distributing them to multiple online analysis programs (consumers). Its multiple-partitioned design allows data flowing through different paths of the detector sub-systems to be processed separately. The CSL system, using a set of internal memory buffers and message queues mapped to the location of events within its programs, and running on an SGI 2200 Server, is able to process at least the required 20 MB/s of constant event logging (75 Hz of 250 KB events) while also filtering up to 10 MB/s to consumers requesting specific types of events

  9. Ballistic and diffusive dynamics in a two-dimensional ideal gas of macroscopic chaotic Faraday waves.

    Science.gov (United States)

    Welch, Kyle J; Hastings-Hauss, Isaac; Parthasarathy, Raghuveer; Corwin, Eric I

    2014-04-01

    We have constructed a macroscopic driven system of chaotic Faraday waves whose statistical mechanics, we find, are surprisingly simple, mimicking those of a thermal gas. We use real-time tracking of a single floating probe, energy equipartition, and the Stokes-Einstein relation to define and measure a pseudotemperature and diffusion constant and then self-consistently determine a coefficient of viscous friction for a test particle in this pseudothermal gas. Because of its simplicity, this system can serve as a model for direct experimental investigation of nonequilibrium statistical mechanics, much as the ideal gas epitomizes equilibrium statistical mechanics.

  10. Stimulating the diffusion of photovoltaic systems: A behavioural perspective

    International Nuclear Information System (INIS)

    Jager, Wander

    2006-01-01

    This paper first discusses consumer motives for adopting photovoltaic systems (PV systems) from a behavioural-theoretical perspective. Different motives are discussed within a framework of underlying needs and the time sensitivity of various outcomes. Next, empirical data are presented concerning the motives of buyers of PV systems after a promotional and support campaign in the city of Groningen (the Netherlands). Financial support and general problem awareness are found to be critical motives, but the (strong) positive effects of information meetings, technical support meetings and social networks are also identified. Conclusions focus on the critical motives for adopting a PV system, and suggestions are presented concerning policy measures to stimulate the further diffusion of PV systems

  11. A Diffusion Model for Two-sided Service Systems

    Science.gov (United States)

    Homma, Koichi; Yano, Koujin; Funabashi, Motohisa

    A diffusion model is proposed for two-sided service systems. ‘Two-sided’ refers to the existence of an economic network effect between two different and interrelated groups, e.g., card holders and merchants in an electronic money service. The service benefit for a member of one side depends on the number and quality of the members on the other side. A mathematical model by J. H. Rohlfs explains the network (or bandwagon) effect of communications services. In Rohlfs' model, only the users' group exists and the model is one-sided. This paper extends Rohlfs' model to a two-sided model. We propose, first, a micro model that explains individual behavior in regard to service subscription of both sides and a computational method that drives the proposed model. Second, we develop macro models with two diffusion-rate variables by simplifying the micro model. As a case study, we apply the models to an electronic money service and discuss the simulation results and actual statistics.

  12. Transmutation and accelerator driven systems

    International Nuclear Information System (INIS)

    Shapira, J.P.

    2001-01-01

    Full text: Today, countries who are presently involved in nuclear energy are facing many challenges to maintain this option open for the next few decades. Among them, management of nuclear wastes produced in nuclear reactors and in fuel cycle operations has become a very strong environmental issue among the public. In most countries with sizeable commercial nuclear programs, deep geological disposal of ultimate highly active and long-lived nuclear wastes is considered as the reference long-term management scheme. But, many questions arise on the possibility to demonstrate that such wastes can be dealt in such a way as to protect the future generations and the environment. The characteristics of nuclear wastes, the various back end policies concerning spent fuels and the nuclear wastes long-term management options will be first described. Then recent proposals, based on transmutation, especially those using accelerator driven systems (ADS) and/or thorium will be presented. Finally, the possibility for the nuclear physics community to play a part in alleviating the nuclear wastes burden will be pointed out. (author)

  13. Linear regressive model structures for estimation and prediction of compartmental diffusive systems

    NARCIS (Netherlands)

    Vries, D; Keesman, K.J.; Zwart, Heiko J.

    In input-output relations of (compartmental) diffusive systems, physical parameters appear non-linearly, resulting in the use of (constrained) non-linear parameter estimation techniques with its short-comings regarding global optimality and computational effort. Given a LTI system in state space

  14. Linear regressive model structures for estimation and prediction of compartmental diffusive systems

    NARCIS (Netherlands)

    Vries, D.; Keesman, K.J.; Zwart, H.

    2006-01-01

    Abstract In input-output relations of (compartmental) diffusive systems, physical parameters appear non-linearly, resulting in the use of (constrained) non-linear parameter estimation techniques with its short-comings regarding global optimality and computational effort. Given a LTI system in state

  15. Stability properties of cold blanket systems for current driven modes

    International Nuclear Information System (INIS)

    Ohlsson, D.

    1977-12-01

    The stability problem of the boundary regions of cold blanket systems with induced currents parallel to the lines of force is formulated. Particular interest is focused on two types of modes: first electrostatic modes driven by the combined effects of a transverse resistivity gradient due to a spatially non-uniform electron temperature and a longitudinal current, second electromagnetic kink like modes driven by the torque arising from a transverse current density gradient and magnetic field perturbations. It is found that the combination of various dissipative and neutral gas effects introduces strong stabilizing effects within specific parameter ranges. For particular steady-state models investigated it is shown that these effects become of importance in laboratory plasmas at relatively high densities, low temperatures and moderate magnetic field strengths. Stability diagrams based on specific steady-state cold plasma blanket models will be presented

  16. Remodelling of cellular excitation (reaction) and intercellular coupling (diffusion) by chronic atrial fibrillation represented by a reaction-diffusion system

    Science.gov (United States)

    Zhang, Henggui; Garratt, Clifford J.; Kharche, Sanjay; Holden, Arun V.

    2009-06-01

    Human atrial tissue is an excitable system, in which myocytes are excitable elements, and cell-to-cell electrotonic interactions are via diffusive interactions of cell membrane potentials. We developed a family of excitable system models for human atrium at cellular, tissue and anatomical levels for both normal and chronic atrial fibrillation (AF) conditions. The effects of AF-induced remodelling of cell membrane ionic channels (reaction kinetics) and intercellular gap junctional coupling (diffusion) on atrial excitability, conduction of excitation waves and dynamics of re-entrant excitation waves are quantified. Both ionic channel and gap junctional coupling remodelling have rate dependent effects on atrial propagation. Membrane channel conductance remodelling allows the propagation of activity at higher rates than those sustained in normal tissue or in tissue with gap junctional remodelling alone. Membrane channel conductance remodelling is essential for the propagation of activity at rates higher than 300/min as seen in AF. Spatially heterogeneous gap junction coupling remodelling increased the risk of conduction block, an essential factor for the genesis of re-entry. In 2D and 3D anatomical models, the dynamical behaviours of re-entrant excitation waves are also altered by membrane channel modelling. This study provides insights to understand the pro-arrhythmic effects of AF-induced reaction and diffusion remodelling in atrial tissue.

  17. Theory of Feynman-alpha technique with masking window for accelerator-driven systems

    International Nuclear Information System (INIS)

    Kitamura, Yasunori; Misawa, Tsuyoshi

    2017-01-01

    Highlights: • A theory of the modified Feynman-alpha technique for the ADS was developed. • The experimental conditions under which this technique works were discussed. • It is expected this technique is applied to the subcriticality monitor for the ADS. - Abstract: Recently, a modified Feynman-alpha technique for the subcritical system driven by periodically triggered neutron bursts was developed. One of the main features of this technique is utilization of a simple formula that is advantageous in evaluating the subcriticality. However, owing to the absence of the theory of this technique, this feature has not been fully investigated yet. In the present study, a theory of this technique is provided. Furthermore, the experimental conditions under which the simple formula works are discussed to apply this technique to the subcriticality monitor for the accelerator-driven system.

  18. Solution of linear and nonlinear matrix systems. Application to a nonlinear diffusion equation

    International Nuclear Information System (INIS)

    Bonnet, M.; Meurant, G.

    1978-01-01

    Different methods of solution of linear and nonlinear algebraic systems are applied to the nonlinear system obtained by discretizing a nonlinear diffusion equation. For linear systems, methods in general use of alternating directions type or Gauss Seidel's methods are compared to more recent ones of the type of generalized conjugate gradient; the superiority of the latter is shown by numerical examples. For nonlinear systems, a method on nonlinear conjugate gradient is studied as also Newton's method and some of its variants. It should be noted, however that Newton's method is found to be more efficient when coupled with a good method for solution of the linear system. To conclude, such methods are used to solve a nonlinear diffusion problem and the numerical results obtained are to be compared [fr

  19. Solution of linear and nonlinear matrix systems. Application to a nonlinear diffusion equation

    International Nuclear Information System (INIS)

    Bonnet, M.; Meurant, G.

    1978-01-01

    The object of this study is to compare different methods of solving linear and nonlinear algebraic systems and to apply them to the nonlinear system obtained by discretizing a nonlinear diffusion equation. For linear systems the conventional methods of alternating direction type or Gauss Seidel's methods are compared to more recent ones of the type of generalized conjugate gradient; the superiority of the latter is shown by numerical examples. For nonlinear systems, a method of nonlinear conjugate gradient is studied together with Newton's method and some of its variants. It should be noted, however, that Newton's method is found to be more efficient when coupled with a good method for solving the linear system. As a conclusion, these methods are used to solve a nonlinear diffusion problem and the numerical results obtained are compared [fr

  20. A tri-junction diffusion couple analysis of the Nb-Cr-Ti system at 950{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    Thoma, D.J. [Los Alamos National Lab., NM (United States); Perepezko, J.H. [Wisconsin Univ., Madison, WI (United States). Dept. of Materials Science and Engineering

    1993-11-01

    With a three-way diffusion couple consisting of a tri-junction between three elements, a whole spectrum of phase development and ternary equilibria is available within a single isothermal sample. Binary equilibria (for the three binary systems) are also available in single sample by analyzing diffusion zones at composition limits outside the field of ternary interaction. The tri-junction approach was employed to evaluate ternary phase formation, ternary solubility limits of binary phases, and diffusion paths in a candidate high-temperature structural system (Nb-Cr-Ti). Ternary phase equilibria and tie lines have been defined at 950C and results confirmed with isothermal anneals of two-phase ternary alloys. The continuous solubility in TiCr{sub 2}-NbCr{sub 2} region is broadened by at least 5 at. % from binary intermetallic phase fields. No new ternary phases were detected in the Nb-CrTi system at 950C. By examining the relative shifts in the diffusion interfaces, a qualitative ranking of interdiffusion suggests that addition of Nb restricts diffusion of Cr into Ti compared to binary (Cr/Ti) behavior.

  1. Solid state reaction studies in Fe3O4–TiO2 system by diffusion couple method

    International Nuclear Information System (INIS)

    Ren, Zhongshan; Hu, Xiaojun; Xue, Xiangxin; Chou, Kuochih

    2013-01-01

    Highlights: •The solid state reactions of Fe2O3-TiO2 system was studied by the diffusion couple method. •Different products were formed by diffusion, and the FeTiO3 was more stable phase. •The inter-diffusion coefficients and diffusion activation energy were estimated. -- Abstract: The solid state reactions in Fe 3 O 4 –TiO 2 system has been studied by diffusion couple experiments at 1323–1473 K, in which the oxygen partial pressure was controlled by the CO–CO 2 gas mixture. The XRD analysis was used to confirm the phases of the inter-compound, and the concentration profiles were determined by electron probe microanalysis (EPMA). Based on the concentration profile of Ti, the inter-diffusion coefficients in Fe 3 O 4 phase, which were both temperature and concentration of Ti ions dependent, were calculated by the modified Boltzmann–Matano method. According to the relation between the thickness of diffusion layer and temperature, the diffusion coefficient of the Fe 3 O 4 –TiO 2 system was obtained. According to the Arrhenius equation, the estimated diffusion activation energy was about 282.1 ± 18.8 kJ mol −1

  2. Minor actinide transmutation in accelerator driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Friess, Friederike [IANUS, TU Darmstadt (Germany)

    2015-07-01

    Transmutation of radioactive waste, the legacy of nuclear energy use, gains rising interest. This includes the development of facilities able to transmute minor actinides (MA) into stable or short-lived isotopes before final disposal. The most common proposal is to use a double-strata approach with accelerator-driven-systems (ADS) for the efficient transmutation of MA and power reactors to dispose plutonium. An ADS consists of a sub-critical core that reaches criticality with neutrons supplied by a spallation target. An MCNP model of the ADS system Multi Purpose Research Reactor for Hightech Applications will be presented. Depletion calculations have been performed for both standard MOX fuel and transmutation fuel with an increased content of minor actinides. The resulting transmutation rates for MAs are compared to published values. Special attention is given to selected fission products such as Tc-99 and I-129, which impact the radiation from the spent fuel significantly.

  3. Spin-diffusions and diffusive molecular dynamics

    Science.gov (United States)

    Farmer, Brittan; Luskin, Mitchell; Plecháč, Petr; Simpson, Gideon

    2017-12-01

    Metastable configurations in condensed matter typically fluctuate about local energy minima at the femtosecond time scale before transitioning between local minima after nanoseconds or microseconds. This vast scale separation limits the applicability of classical molecular dynamics (MD) methods and has spurned the development of a host of approximate algorithms. One recently proposed method is diffusive MD which aims at integrating a system of ordinary differential equations describing the likelihood of occupancy by one of two species, in the case of a binary alloy, while quasistatically evolving the locations of the atoms. While diffusive MD has shown itself to be efficient and provide agreement with observations, it is fundamentally a model, with unclear connections to classical MD. In this work, we formulate a spin-diffusion stochastic process and show how it can be connected to diffusive MD. The spin-diffusion model couples a classical overdamped Langevin equation to a kinetic Monte Carlo model for exchange amongst the species of a binary alloy. Under suitable assumptions and approximations, spin-diffusion can be shown to lead to diffusive MD type models. The key assumptions and approximations include a well-defined time scale separation, a choice of spin-exchange rates, a low temperature approximation, and a mean field type approximation. We derive several models from different assumptions and show their relationship to diffusive MD. Differences and similarities amongst the models are explored in a simple test problem.

  4. Fractional diffusion equations and anomalous diffusion

    CERN Document Server

    Evangelista, Luiz Roberto

    2018-01-01

    Anomalous diffusion has been detected in a wide variety of scenarios, from fractal media, systems with memory, transport processes in porous media, to fluctuations of financial markets, tumour growth, and complex fluids. Providing a contemporary treatment of this process, this book examines the recent literature on anomalous diffusion and covers a rich class of problems in which surface effects are important, offering detailed mathematical tools of usual and fractional calculus for a wide audience of scientists and graduate students in physics, mathematics, chemistry and engineering. Including the basic mathematical tools needed to understand the rules for operating with the fractional derivatives and fractional differential equations, this self-contained text presents the possibility of using fractional diffusion equations with anomalous diffusion phenomena to propose powerful mathematical models for a large variety of fundamental and practical problems in a fast-growing field of research.

  5. Transport coefficients for dense hard-disk systems

    NARCIS (Netherlands)

    García-Rojo, R.; Luding, S.; Brey, J.J.

    2006-01-01

    A study of the transport coefficients of a system of elastic hard disks based on the use of Helfand-Einstein expressions is reported. The self-diffusion, the viscosity, and the heat conductivity are examined with averaging techniques especially appropriate for event-driven molecular dynamics

  6. MCNPX and MCB coupled methodology for the burnup calculation of the KIPT accelerator driven subcritical system

    International Nuclear Information System (INIS)

    Zhong, Z.; Gohar, Y.; Talamo, A.

    2009-01-01

    Argonne National Laboratory (ANL) of USA and Kharkov Inst. of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical facility (ADS). The facility will be utilized for basic research, medical isotopes production, and training young nuclear specialists. The burnup methodology and analysis of the KIPT ADS are presented in this paper. MCNPX and MCB Monte Carlo computer codes have been utilized. MCNPX has the capability of performing electron, photon and neutron coupled transport problems, but it lacks the burnup capability for driven subcritical systems. MCB has the capability for performing the burnup calculation of driven subcritical systems, while it cannot transport electrons. A calculational methodology coupling MCNPX and MCB has been developed, which can exploit the electrons transport capability of MCNPX for neutron production and the burnup capability of MCB for driven subcritical systems. In this procedure, a neutron source file is generated using MCNPX transport calculation, preserving the neutrons yield from photonuclear reactions initiated by electrons, and this source file is utilized by MCB for the burnup analyses with the same geometrical model. In this way, the ADS depletion calculation can be accurately. (authors)

  7. Ion-driven deuterium permeation through tungsten at high temperatures

    Science.gov (United States)

    Gasparyan, Yu. M.; Golubeva, A. V.; Mayer, M.; Pisarev, A. A.; Roth, J.

    2009-06-01

    The ion-driven permeation (IDP) through 50 μm thick pure tungsten foils was measured in the temperature range of 823-923 K during irradiation by 200 eV/D + ion beam with a flux of 10 17-10 18 D/m 2s. Gas driven permeation (GDP) from the deuterium background gas was observed as well. Calculations using both the analytical formula for the diffusion limited regime (DLR) and the TMAP 7 code gave good agreement with the experimental data. Defects with a detrapping energy of (2.05 ± 0.15) eV were found to limit the permeation lag time in our experimental conditions.

  8. Ion-driven deuterium permeation through tungsten at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Gasparyan, Yu.M., E-mail: yury.gasparyan@ipp.mpg.d [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmanstrasse 2, D-85748 Garching (Germany); Moscow Engineering and Physics Institute, Kashirskoe sh. 31, Moscow 115409 (Russian Federation); Golubeva, A.V. [RRC ' Kurchatov Institute' , Ac. Kurchatov sq., 1/1, Moscow RU-123182 (Russian Federation); Mayer, M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmanstrasse 2, D-85748 Garching (Germany); Pisarev, A.A. [Moscow Engineering and Physics Institute, Kashirskoe sh. 31, Moscow 115409 (Russian Federation); Roth, J. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmanstrasse 2, D-85748 Garching (Germany)

    2009-06-15

    The ion-driven permeation (IDP) through 50 mum thick pure tungsten foils was measured in the temperature range of 823-923 K during irradiation by 200 eV/D{sup +} ion beam with a flux of 10{sup 17}-10{sup 18} D/m{sup 2}s. Gas driven permeation (GDP) from the deuterium background gas was observed as well. Calculations using both the analytical formula for the diffusion limited regime (DLR) and the TMAP 7 code gave good agreement with the experimental data. Defects with a detrapping energy of (2.05 +- 0.15) eV were found to limit the permeation lag time in our experimental conditions.

  9. Ion-driven deuterium permeation through tungsten at high temperatures

    International Nuclear Information System (INIS)

    Gasparyan, Yu.M.; Golubeva, A.V.; Mayer, M.; Pisarev, A.A.; Roth, J.

    2009-01-01

    The ion-driven permeation (IDP) through 50 μm thick pure tungsten foils was measured in the temperature range of 823-923 K during irradiation by 200 eV/D + ion beam with a flux of 10 17 -10 18 D/m 2 s. Gas driven permeation (GDP) from the deuterium background gas was observed as well. Calculations using both the analytical formula for the diffusion limited regime (DLR) and the TMAP 7 code gave good agreement with the experimental data. Defects with a detrapping energy of (2.05 ± 0.15) eV were found to limit the permeation lag time in our experimental conditions.

  10. System and safety studies of accelerator driven transmutation systems

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, W.; Wallenius, J.; Tucek, K.; Eriksson, Marcus; Carlsson, Johan; Seltborg, P.; Cetnar, J. [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    2001-05-01

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the department has been focused on: a) ADS core design and development of advanced nuclear fuel optimised for high transmutation rates and good safety features; b) analysis of ADS-dynamics c) computer code and nuclear data development relevant for simulation and optimization of ADS; d) participation in ADS experiments including 1 MW spallation target manufacturing, subcritical experiments MUSE (CEA-Cadarache). Moreover, during the reporting period the EU-project 'IABAT', co-ordinated by the department has been finished and 4 other projects have been initiated in the frame of the 5th European Framework Programme. Most of the research topics reported in this paper are referred to appendices, which have been published in the open literature. The topics, which are not yet published, are described here in more details.

  11. System and safety studies of accelerator driven transmutation systems

    International Nuclear Information System (INIS)

    Gudowski, W.; Wallenius, J.; Tucek, K.; Eriksson, Marcus; Carlsson, Johan; Seltborg, P.; Cetnar, J.

    2001-05-01

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the department has been focused on: a) ADS core design and development of advanced nuclear fuel optimised for high transmutation rates and good safety features; b) analysis of ADS-dynamics c) computer code and nuclear data development relevant for simulation and optimization of ADS; d) participation in ADS experiments including 1 MW spallation target manufacturing, subcritical experiments MUSE (CEA-Cadarache). Moreover, during the reporting period the EU-project 'IABAT', co-ordinated by the department has been finished and 4 other projects have been initiated in the frame of the 5th European Framework Programme. Most of the research topics reported in this paper are referred to appendices, which have been published in the open literature. The topics, which are not yet published, are described here in more details

  12. Non-Boussinesq Dissolution-Driven Convection in Porous Media

    Science.gov (United States)

    Amooie, M. A.; Soltanian, M. R.; Moortgat, J.

    2017-12-01

    Geological carbon dioxide (CO2) sequestration in deep saline aquifers has been increasingly recognized as a feasible technology to stabilize the atmospheric carbon concentrations and subsequently mitigate the global warming. Solubility trapping is one of the most effective storage mechanisms, which is associated initially with diffusion-driven slow dissolution of gaseous CO2 into the aqueous phase, followed by density-driven convective mixing of CO2 throughout the aquifer. The convection includes both diffusion and fast advective transport of the dissolved CO2. We study the fluid dynamics of CO2 convection in the underlying single aqueous-phase region. Two modeling approaches are employed to define the system: (i) a constant-concentration condition for CO2 in aqueous phase at the top boundary, and (ii) a sufficiently low, constant injection-rate for CO2 from top boundary. The latter allows for thermodynamically consistent evolution of the CO2 composition and the aqueous phase density against the rate at which the dissolved CO2 convects. Here we accurately model the full nonlinear phase behavior of brine-CO2 mixture in a confined domain altered by dissolution and compressibility, while relaxing the common Boussinesq approximation. We discover new flow regimes and present quantitative scaling relations for global characters of spreading, mixing, and dissolution flux in two- and three-dimensional media for the both model types. We then revisit the universal Sherwood-Rayleigh scaling that is under debate for porous media convective flows. Our findings confirm the sublinear scaling for the constant-concentration case, while reconciling the classical linear scaling for the constant-injection model problem. The results provide a detailed perspective into how the available modeling strategies affect the prediction ability for the total amount of CO2 dissolved in the long term within saline aquifers of different permeabilities.

  13. Portable, Fiber-Based, Diffuse Reflection Spectroscopy (DRS) Systems for Estimating Tissue Optical Properties.

    Science.gov (United States)

    Vishwanath, Karthik; Chang, Kevin; Klein, Daniel; Deng, Yu Feng; Chang, Vivide; Phelps, Janelle E; Ramanujam, Nimmi

    2011-02-01

    Steady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with well-controlled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously well-characterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer.

  14. Characterization of adsorption uptake curves for both intraparticle diffusion and liquid film mass transfer controlling systems

    International Nuclear Information System (INIS)

    Sonetaka, Noriyoshi; Fan, Huan-Jung; Kobayashi, Seiji; Su, Yang-Chih; Furuya, Eiji

    2009-01-01

    In general, the adsorption uptake curve (AUC) can be easily determined in either intraparticle diffusion or liquid film mass transfer dominating systems. However, for both intraparticle diffusion and liquid film mass transfer controlling systems, the characterization of AUC is much more complicated, for example, when relatively small adsorbent particles are employed. In addition, there is no analytical solution available for both intraparticle diffusion and liquid film mass transfer controlling systems. Therefore, this paper is trying to characterize AUC for both intraparticle diffusion and liquid film mass transfer controlling adsorption systems using the shallow bed reactor technique. Typical parameters influencing AUC include liquid film mass transfer coefficient (k F ), effective intraparticle diffusivity (D S ), influent concentration (c 0 ) and equilibrium parameters (such as Freundlich isotherm constants k and 1/n). These parameters were investigated in this research and the simulated results indicated that the ratio of k F /D S and Freundlich constant 1/n had impact on AUC. Biot number (Bi) was used to replace the ratio of k F /D S in this study. Bi represents the ratio of the rate of transport across the liquid layer to the rate of intraparticle diffusion. Furthermore, Bi is much more significant than that of 1/n for AUC. Therefore, AUC can be characterized by Bi. In addition, the obtained Bi could be used to determine D S and k F simultaneously. Both parameters (D S and k F ) are important for designing and operating fixed bed reactors.

  15. Critical behavior in reaction-diffusion systems exhibiting absorbing phase transition

    CERN Document Server

    Ódor, G

    2003-01-01

    Phase transitions of reaction-diffusion systems with site occupation restriction and with particle creation that requires n>1 parents and where explicit diffusion of single particles (A) exists are reviewed. Arguments based on mean-field approximation and simulations are given which support novel kind of non-equilibrium criticality. These are in contradiction with the implications of a suggested phenomenological, multiplicative noise Langevin equation approach and with some of recent numerical analysis. Simulation results for the one and two dimensional binary spreading 2A -> 4A, 4A -> 2A model display a new type of mean-field criticality characterized by alpha=1/3 and beta=1/2 critical exponents suggested in cond-mat/0210615.

  16. Effect of Ion Streaming on Diffusion of Dust Grains in Dissipative System

    Science.gov (United States)

    Begum, M.; Das, N.

    2018-01-01

    The presence of strong electric fields in the sheath region of laboratory complex plasma induces an ion drift and perturbs the field around dust grains. The downstream focusing of ions leads to the formation of oscillatory kind of attractive wake potential which superimpose with the normal Debye-Hückel (DH) potential. The structural properties of complex plasma and diffusion coefficient of dust grains in the presence of such a wake potential have been investigated using Langevin dynamics simulation in the subsonic regime of ion flow. The study reveals that the diffusion of dust grains is strongly affected by the ion flow, so that the diffusion changes its character in the wake potential to the DH potential dominant regimes. The dependence of the diffusion coefficient on the parameters, such as the neutral pressure, dust grain size, ion flow velocity, and Coulomb coupling parameter, have been calculated for the subsonic regime by using the Green-Kubo expression, which is based on the integrated velocity autocorrelation function. It is found that the diffusion and the structural property of the system is intimately connected with the interaction potential and significantly get affected in the presence of ion flow in the subsonic regime.

  17. The Trouble with Diffusion

    Directory of Open Access Journals (Sweden)

    R.T. DeHoff

    2002-09-01

    Full Text Available The phenomenological formalism, which yields Fick's Laws for diffusion in single phase multicomponent systems, is widely accepted as the basis for the mathematical description of diffusion. This paper focuses on problems associated with this formalism. This mode of description of the process is cumbersome, defining as it does matrices of interdiffusion coefficients (the central material properties that require a large experimental investment for their evaluation in three component systems, and, indeed cannot be evaluated for systems with more than three components. It is also argued that the physical meaning of the numerical values of these properties with respect to the atom motions in the system remains unknown. The attempt to understand the physical content of the diffusion coefficients in the phenomenological formalism has been the central fundamental problem in the theory of diffusion in crystalline alloys. The observation by Kirkendall that the crystal lattice moves during diffusion led Darken to develop the concept of intrinsic diffusion, i.e., atom motion relative to the crystal lattice. Darken and his successors sought to relate the diffusion coefficients computed for intrinsic fluxes to those obtained from the motion of radioactive tracers in chemically homogeneous samples which directly report the jump frequencies of the atoms as a function of composition and temperature. This theoretical connection between tracer, intrinsic and interdiffusion behavior would provide the basis for understanding the physical content of interdiffusion coefficients. Definitive tests of the resulting theoretical connection have been carried out for a number of binary systems for which all three kinds of observations are available. In a number of systems predictions of intrinsic coefficients from tracer data do not agree with measured values although predictions of interdiffusion coefficients appear to give reasonable agreement. Thus, the complete

  18. The Development of a Renewable-Energy-Driven Reverse Osmosis System for Water Desalination and Aquaculture Production

    Institute of Scientific and Technical Information of China (English)

    Clark C K Liu

    2013-01-01

    Water and energy are closely linked natural resources-the transportation, treatment, and distribution of water depends on low-cost energy;while power generation requires large volumes of water. Seawater desalination is a mature technology for increasing freshwater supply, but it is essentially a trade of energy for freshwater and is not a viable solution for regions where both water and energy are in short supply. This paper discusses the development and application of a renewable-energy-driven reverse osmosis (RO) system for water desalination and the treatment and reuse of aquaculture wastewater. The system consists of (1) a wind-driven pumping subsystem, (2) a pressure-driven RO membrane desalination subsystem, and (3) a solar-driven feedback control module. The results of the pilot experiments indicated that the system, operated under wind speeds of 3 m s-1 or higher, can be used for brackish water desalination by reducing the salinity of feedwater with total dissolved solids (TDS) of over 3 000 mg L-1 to product water or permeate with a TDS of 200 mg L-1 or less. Results of the pilot experiments also indicated that the system can remove up to 97%of the nitrogenous wastes from the fish pond effluent and can recover and reuse up to 56%of the freshwater supply for fish pond operation.

  19. System and safety studies of accelerator driven transmutation systems. Annual report 1998

    International Nuclear Information System (INIS)

    Wallenius, J.; Gudowski, W.; Carlsson, Johan; Eriksson, Marcus; Tucek, K.

    1998-12-01

    This annual report describes the accelerator-driven transmutation project conducted at the Department of Nuclear and Reactor Physics at the Royal Institute of Technology. The main results are: development of the simulation tools for accelerator-driven transmutation calculations including an integrated Monte-Carlo burnup module and improvements of neutron energy fission yield simulations, processing of the evacuated nuclear data files including preparation of the temperature dependent neutron cross-sections, development of nuclear data for a medium energy range for some isotopes, development of the models and codes for radiation damage simulations, system studies for the spent fuel transmuter, based on heavy metal coolant and advanced nuclear fuel, contribution to the spallation target design being manufactured in IPPE, Obninsk, and accelerator reliability studies. Moreover a lot of efforts were put to further develop existing international collaboration with the most active research groups in the world together with educational activities in Sweden including a number of meetings and workshops and a graduate course in transmutation. This project has been conducted in close collaboration with the EU-project 'Impact of the accelerator based technologies on nuclear fission safety' - IABAT and in bilateral cooperation with different foreign research groups

  20. System and safety studies of accelerator driven transmutation systems. Annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Wallenius, J.; Gudowski, W.; Carlsson, Johan; Eriksson, Marcus; Tucek, K. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    1998-12-01

    This annual report describes the accelerator-driven transmutation project conducted at the Department of Nuclear and Reactor Physics at the Royal Institute of Technology. The main results are: development of the simulation tools for accelerator-driven transmutation calculations including an integrated Monte-Carlo burnup module and improvements of neutron energy fission yield simulations, processing of the evacuated nuclear data files including preparation of the temperature dependent neutron cross-sections, development of nuclear data for a medium energy range for some isotopes, development of the models and codes for radiation damage simulations, system studies for the spent fuel transmuter, based on heavy metal coolant and advanced nuclear fuel, contribution to the spallation target design being manufactured in IPPE, Obninsk, and accelerator reliability studies. Moreover a lot of efforts were put to further develop existing international collaboration with the most active research groups in the world together with educational activities in Sweden including a number of meetings and workshops and a graduate course in transmutation. This project has been conducted in close collaboration with the EU-project `Impact of the accelerator based technologies on nuclear fission safety` - IABAT and in bilateral cooperation with different foreign research groups 31 refs, 23 figs

  1. Distributed order reaction-diffusion systems associated with Caputo derivatives

    Science.gov (United States)

    Saxena, R. K.; Mathai, A. M.; Haubold, H. J.

    2014-08-01

    This paper deals with the investigation of the solution of an unified fractional reaction-diffusion equation of distributed order associated with the Caputo derivatives as the time-derivative and Riesz-Feller fractional derivative as the space-derivative. The solution is derived by the application of the joint Laplace and Fourier transforms in compact and closed form in terms of the H-function. The results derived are of general nature and include the results investigated earlier by other authors, notably by Mainardi et al. ["The fundamental solution of the space-time fractional diffusion equation," Fractional Calculus Appl. Anal. 4, 153-202 (2001); Mainardi et al. "Fox H-functions in fractional diffusion," J. Comput. Appl. Math. 178, 321-331 (2005)] for the fundamental solution of the space-time fractional equation, including Haubold et al. ["Solutions of reaction-diffusion equations in terms of the H-function," Bull. Astron. Soc. India 35, 681-689 (2007)] and Saxena et al. ["Fractional reaction-diffusion equations," Astrophys. Space Sci. 305, 289-296 (2006a)] for fractional reaction-diffusion equations. The advantage of using the Riesz-Feller derivative lies in the fact that the solution of the fractional reaction-diffusion equation, containing this derivative, includes the fundamental solution for space-time fractional diffusion, which itself is a generalization of fractional diffusion, space-time fraction diffusion, and time-fractional diffusion, see Schneider and Wyss ["Fractional diffusion and wave equations," J. Math. Phys. 30, 134-144 (1989)]. These specialized types of diffusion can be interpreted as spatial probability density functions evolving in time and are expressible in terms of the H-function in compact forms. The convergence conditions for the double series occurring in the solutions are investigated. It is interesting to observe that the double series comes out to be a special case of the Srivastava-Daoust hypergeometric function of two variables

  2. Theory of resistivity-gradient-driven turbulence

    International Nuclear Information System (INIS)

    Garcia, L.; Carreras, B.A.; Diamond, P.H.; Callen, J.D.

    1984-10-01

    A theory of the nonlinear evolution and saturation of resistivity-driven turbulence, which evolves from linear rippling instabilities, is presented. The nonlinear saturation mechanism is identified both analytically and numerically. Saturation occurs when the turbulent diffusion of the resistivity is large enough so that dissipation due to parallel electron thermal conduction balances the nonlinearly modified resistivity gradient driving term. The levels of potential, resistivity, and density fluctuations at saturation are calculated. A combination of computational modeling and analytic treatment is used in this investigation

  3. Reaction diffusion in chromium-zircaloy-2 system

    International Nuclear Information System (INIS)

    Xiang Wenxin; Ying Shihao

    2001-01-01

    Reaction diffusion in the chromium-zircaloy-2 diffusion couples is investigated in the temperature range of 1023 - 1123 K. Scanning electron microscope (SEM) and energy dispersive spectrum (EDS) were used to measure the thickness of the reaction layer and to determine the Zr, Fe and Cr concentration penetrate profile in reaction layer, respectively. The growth kinetics of reaction layer has been studied and the results show that the growth of intermetallic compound is controlled by the process of volume diffusion as the layer growth approximately obeys the parabolic law. Interdiffusion coefficients were calculated using Boltzmann-Matano-Heumann model. Calculated interdiffusion coefficients were compared with those obtained on the condition that Cr dissolves in Zr and merely forms dilute solid solution. The comparison indicates that Cr diffuses in dilute solid solution is five orders of magnitude faster than in Zr(Fe, Cr) 2 intermetallic compound

  4. Uncertainty assessment for accelerator-driven systems

    International Nuclear Information System (INIS)

    Finck, P. J.; Gomes, I.; Micklich, B.; Palmiotti, G.

    1999-01-01

    The concept of a subcritical system driven by an external source of neutrons provided by an accelerator ADS (Accelerator Driver System) has been recently revived and is becoming more popular in the world technical community with active programs in Europe, Russia, Japan, and the U.S. A general consensus has been reached in adopting for the subcritical component a fast spectrum liquid metal cooled configuration. Both a lead-bismuth eutectic, sodium and gas are being considered as a coolant; each has advantages and disadvantages. The major expected advantage is that subcriticality avoids reactivity induced transients. The potentially large subcriticality margin also should allow for the introduction of very significant quantities of waste products (minor Actinides and Fission Products) which negatively impact the safety characteristics of standard cores. In the U.S. these arguments are the basis for the development of the Accelerator Transmutation of Waste (ATW), which has significant potential in reducing nuclear waste levels. Up to now, neutronic calculations have not attached uncertainties on the values of the main nuclear integral parameters that characterize the system. Many of these parameters (e.g., degree of subcriticality) are crucial to demonstrate the validity and feasibility of this concept. In this paper we will consider uncertainties related to nuclear data only. The present knowledge of the cross sections of many isotopes that are not usually utilized in existing reactors (like Bi, Pb-207, Pb-208, and also Minor Actinides and Fission Products) suggests that uncertainties in the integral parameters will be significantly larger than for conventional reactor systems, and this raises concerns on the neutronic performance of those systems

  5. A system for the obtention and analysis of diffuse reflection spectra from biological tissue

    International Nuclear Information System (INIS)

    La Cadena, A. de; La Rosa, J. de; Stolik, S.

    2012-01-01

    The diffuse reflection spectroscopy is a technique with is possible to study biological tissue. In the field of the biomedical applications is useful for diagnostic purposes, since is possible to analyze biological tissue in a non invasive way. also, can be used with therapeutical purposes, for example in photodynamic therapy or laser surgery because with this technique it can be determined the biological effects produced by these treatments. In this paper is shown the development of a system to obtain and analyze diffuse reflection spectra of biological tissues, using a LED as a light source, that emits light between 400-700nm. The system has an interface for the regulation of the emittance of the LED. For diffuse reflectance spectra analysis, we use an HR4000CG-UV-NIR spectrometer. (Author)

  6. Grazing management, resilience and the dynamics of a fire driven rangeland system

    NARCIS (Netherlands)

    Anderies, J.M.; Janssen, M.A.; Walker, B.H.

    2002-01-01

    We developed a stylized mathematical model to explore the effects of physical, ecological, and economic factors on the resilience of a managed fire-driven rangeland system. Depending on grazing pressure, the model exhibits one of three distinct configurations: a fire-dominated, grazing-dominated, or

  7. Monte Carlo Analysis of the Accelerator-Driven System at Kyoto University Research Reactor Institute

    Directory of Open Access Journals (Sweden)

    Wonkyeong Kim

    2016-04-01

    Full Text Available An accelerator-driven system consists of a subcritical reactor and a controllable external neutron source. The reactor in an accelerator-driven system can sustain fission reactions in a subcritical state using an external neutron source, which is an intrinsic safety feature of the system. The system can provide efficient transmutations of nuclear wastes such as minor actinides and long-lived fission products and generate electricity. Recently at Kyoto University Research Reactor Institute (KURRI; Kyoto, Japan, a series of reactor physics experiments was conducted with the Kyoto University Critical Assembly and a Cockcroft–Walton type accelerator, which generates the external neutron source by deuterium–tritium reactions. In this paper, neutronic analyses of a series of experiments have been re-estimated by using the latest Monte Carlo code and nuclear data libraries. This feasibility study is presented through the comparison of Monte Carlo simulation results with measurements.

  8. Monte Carlo analysis of the accelerator-driven system at Kyoto University Research Reactor Institute

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Kyeong; Lee, Deok Jung [Nuclear Engineering Division, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Lee, Hyun Chul [VHTR Technology Development Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Pyeon, Cheol Ho [Nuclear Engineering Science Division, Kyoto University Research Reactor Institute, Osaka (Japan); Shin, Ho Cheol [Core and Fuel Analysis Group, Korea Hydro and Nuclear Power Central Research Institute, Daejeon (Korea, Republic of)

    2016-04-15

    An accelerator-driven system consists of a subcritical reactor and a controllable external neutron source. The reactor in an accelerator-driven system can sustain fission reactions in a subcritical state using an external neutron source, which is an intrinsic safety feature of the system. The system can provide efficient transmutations of nuclear wastes such as minor actinides and long-lived fission products and generate electricity. Recently at Kyoto University Research Reactor Institute (KURRI; Kyoto, Japan), a series of reactor physics experiments was conducted with the Kyoto University Critical Assembly and a Cockcroft-Walton type accelerator, which generates the external neutron source by deuterium-tritium reactions. In this paper, neutronic analyses of a series of experiments have been re-estimated by using the latest Monte Carlo code and nuclear data libraries. This feasibility study is presented through the comparison of Monte Carlo simulation results with measurements.

  9. Investigating the interplay between mechanisms of anomalous diffusion via fractional Brownian walks on a comb-like structure

    International Nuclear Information System (INIS)

    Ribeiro, Haroldo V; Alves, Luiz G A; Zola, Rafael S; Lenzi, Ervin K; Tateishi, Angel A

    2014-01-01

    The comb model is a simplified description for anomalous diffusion under geometric constraints. It represents particles spreading out in a two-dimensional space where the motions in the x-direction are allowed only when the y coordinate of the particle is zero. Here, we propose an extension for the comb model via Langevin-like equations driven by fractional Gaussian noises (long-range correlated). By carrying out computer simulations, we show that the correlations in the y-direction affect the diffusive behavior in the x-direction in a non-trivial fashion, resulting in a quite rich diffusive scenario characterized by usual, superdiffusive or subdiffusive scaling of second moment in the x-direction. We further show that the long-range correlations affect the probability distribution of the particle positions in the x-direction, making their tails longer when noise in the y-direction is persistent and shorter for anti-persistent noise. Our model thus combines and allows the study/analysis of the interplay between different mechanisms of anomalous diffusion (geometric constraints and long-range correlations) and may find direct applications for describing diffusion in complex systems such as living cells. (paper)

  10. Solar driven air conditioning and refrigeration systems corresponding to various heating source temperatures

    International Nuclear Information System (INIS)

    Wang, R.Z.; Xu, Z.Y.; Pan, Q.W.; Du, S.; Xia, Z.Z.

    2016-01-01

    Highlights: • Modular silica gel–water adsorption chiller was designed and tested. • Single/double effect LiBr–water absorption chiller was operated and tested. • 1.n effect LiBr–water absorption chiller was proposed, designed and tested. • CaCl_2/AC–ammonia adsorption refrigerator was introduced and tested. • NH_3–H_2O absorption ice maker with better internal heat recovery was introduced. - Abstract: Solar driven air conditioning systems can cope with solar collectors working in a wide range of temperatures. Sorption systems, including absorption and adsorption refrigeration systems, are among the best choices for solar cooling. Five systems including modular silica gel–water adsorption chiller, single/double effect LiBr–water absorption chiller, 1.n effect LiBr–water absorption chiller, CaCl_2/AC (activated carbon)–ammonia adsorption refrigerator, and the water–ammonia absorption ice maker with better internal heat recovery were presented. The above five sorption chillers/refrigerators work under various driven temperatures and fulfill different refrigeration demands. The thermodynamic design and system development of the systems were shown. All these systems have improvements in comparison with existing systems and may offer good options for high efficient solar cooling in the near future.

  11. Systemic diffuse large B-cell lymphoma masquerading as neovascular glaucoma.

    Science.gov (United States)

    Bawankar, Pritam; Das, Dipankar; Bhattacharjee, Harsha; Tayab, Shahinur; Deori, Nilutparna; Paulbuddhe, Vivek; Dhar, Shriya; Deka, Apurba

    2018-02-01

    We describe a case of spontaneous hyphema associated with anterior uveitis presents in a 69-year old female as the prominent sign of the intraocular spread of systemic diffuse large B-cell lymphoma (DLBCL). She had a history of diabetes and initially misdiagnosed as neovascular glaucoma. Clinical history of systemic lymphoma, characteristic findings on B-scan ultrasonography and magnetic resonance imaging scan, and identification of atypical lymphoid cells in aqueous sample established the diagnosis of intraocular metastasis of systemic DLBCL. Therefore, this report highlights that life-threatening malignant systemic lymphoma may masquerade as anterior segment ocular inflammation or neovascular glaucoma.

  12. Present status and issues for accelerator driven transmutation system

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    2003-01-01

    Proper treatment of high-level nuclear wastes (HLW) that are produced in operation of nuclear power plants is one of the most important problems for further utilization of nuclear energy. The purpose of the accelerator driven nuclear waste transmutation system (ADS) is to transmute these nuclei to stable or short-lived nuclei by various radiation-induced nuclear reactions. When ADS for HLW can be realized, burden to deep geological disposal can be considerably reduced. In the paper, present status and issues for ADS will be discussed. (author)

  13. Walking the Torque: Proposed Work Plan for Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Electric motor-driven system is the largest single energy end use accounting for more than 40% of global electricity consumption. This paper sets out an ambitious but achievable target with the global work plan to improve the energy efficiency of electric motor-driven system by 10% to 15% based on the finding of working paper ''Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems (Waide et al., 2011)''. If governments commit to the proposed work plan immediately and maintain resourcing levels, this could be achieved by 2030 and it would be equivalent to reducing total global electricity use by around 5%. The proposed work plan of this paper is to align regulatory settings within a globally applicable scheme. The IEA believes this target can only be achieved through global co-operation leading to aligned national policy settings that countries can unlock the economies of scale that will result from using more energy efficient EMDS.

  14. CARMEN-SYSTEM, Programs System for Thermal Neutron Diffusion and Burnup with Feedback

    International Nuclear Information System (INIS)

    Ahnert, Carol; Aragones, Jose M.

    1983-01-01

    1 - Description of problem or function: CARMEN is a system of programs developed for the neutronic calculation of PWR cycles. It includes the whole chain of analysis from cell calculations to core calculations with burnup. The core calculations are based on diffusion theory with cross sections depending on the relevant space-dependent feedback effects which are present at each moment along the cycles. The diffusion calculations are in one, two or three dimensions and in two energy groups. The feedback effects which are treated locally are: burnup, water density, power density and fission products. In order to study in detail these parameters the core should be divided into as many zones as different cross section sets are expected to be required in order to reproduce reality correctly. A relevant difference in any feedback parameter between zones produces different cross section sets for the corresponding zones. CARMEN is also capable to perform the following calculations: - Multiplication factor by burnup step with fixed boron concentration - Buckling and control rod insertion - Buckling search by burnup step - Boron search by burnup step - Control rod insertion search by burnup step. 2 - Method of solution: The cell code (LEOPARD-TRACA) generates the fuel assembly cross sections versus burnup. This is the basic library to be used in the CARMEN code proper. With a planar distribution guess for power density, water density and fluxes, the macroscopic cross sections by zone are calculated by CARMEN, and then a diffusion calculation is done in the whole geometry. With the distribution of power density, heat accumulated in the coolant and the thermal and fast fluxes determined in the diffusion calculation, CARMEN calculates the values of the most relevant parameters that influence the macroscopic cross sections by zone: burnup, water density, effective fuel temperature and fission product concentrations. If these parameters by zone are different from the reference

  15. An energy management system for a directly-driven electric scooter

    International Nuclear Information System (INIS)

    Yang, Yee-Pien; Liu, Jieng-Jang; Hu, Tsung-Hsien

    2011-01-01

    An energy management system with an electronic gearshift and regenerative braking is presented to improve the gross efficiency and driving range of an electric scooter, driven directly by a four-phase axial-flux DC brushless wheel motor. The integration of stator windings, batteries, ultracapacitors, and a digital controller constitutes an energy management system, which features smooth electronic gear shifting and regenerative braking. The gross efficiency of the experimental scooter is improved in the drivable range by 20% with respect to that without regenerative braking. The battery-to-wheel efficiency was also above 70% for both low- and high-speed gears.

  16. An energy management system for a directly-driven electric scooter

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yee-Pien, E-mail: ypyang@ntu.edu.t [Department of Mechanical Engineering, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei, Taiwan (China); Liu, Jieng-Jang, E-mail: jjliu@ntu.edu.t [Department of Mechanical Engineering, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei, Taiwan (China); Hu, Tsung-Hsien, E-mail: elvishu@artc.org.t [Department of Mechanical Engineering, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei, Taiwan (China)

    2011-01-15

    An energy management system with an electronic gearshift and regenerative braking is presented to improve the gross efficiency and driving range of an electric scooter, driven directly by a four-phase axial-flux DC brushless wheel motor. The integration of stator windings, batteries, ultracapacitors, and a digital controller constitutes an energy management system, which features smooth electronic gear shifting and regenerative braking. The gross efficiency of the experimental scooter is improved in the drivable range by 20% with respect to that without regenerative braking. The battery-to-wheel efficiency was also above 70% for both low- and high-speed gears.

  17. An energy management system for a directly-driven electric scooter

    Energy Technology Data Exchange (ETDEWEB)

    Yee-Pien Yang; Jieng-Jang Liu; Tsung-Hsien Hu [Department of Mechanical Engineering, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei (China)

    2011-01-15

    An energy management system with an electronic gearshift and regenerative braking is presented to improve the gross efficiency and driving range of an electric scooter, driven directly by a four-phase axial-flux DC brushless wheel motor. The integration of stator windings, batteries, ultracapacitors, and a digital controller constitutes an energy management system, which features smooth electronic gear shifting and regenerative braking. The gross efficiency of the experimental scooter is improved in the drivable range by 20% with respect to that without regenerative braking. The battery-to-wheel efficiency was also above 70% for both low- and high-speed gears. (author)

  18. Conditional symmetries for systems of PDEs: new definitions and their application for reaction-diffusion systems

    International Nuclear Information System (INIS)

    Cherniha, Roman

    2010-01-01

    New definitions of Q-conditional symmetry for systems of PDEs are presented, which generalize the standard notation of non-classical (conditional) symmetry. It is shown that different types of Q-conditional symmetry of a system generate a hierarchy of conditional symmetry operators. A class of two-component nonlinear reaction-diffusion systems is examined to demonstrate the applicability of the definitions proposed and it is shown when different definitions of Q-conditional symmetry lead to the same operators.

  19. Hybrid vehicle powertrain system with power take-off driven vehicle accessory

    Science.gov (United States)

    Beaty, Kevin D.; Bockelmann, Thomas R.; Zou, Zhanijang; Hope, Mark E.; Kang, Xiaosong; Carpenter, Jeffrey L.

    2006-09-12

    A hybrid vehicle powertrain system includes a first prime mover, a first prime mover driven power transmission mechanism having a power take-off adapted to drive a vehicle accessory, and a second prime mover. The second prime mover is operable to drive the power transmission mechanism alone or in combination with the first prime mover to provide power to the power take-off through the power transmission mechanism. The invention further includes methods for operating a hybrid vehicle powertrain system.

  20. Autonomous Soil Assessment System: A Data-Driven Approach to Planetary Mobility Hazard Detection

    Science.gov (United States)

    Raimalwala, K.; Faragalli, M.; Reid, E.

    2018-04-01

    The Autonomous Soil Assessment System predicts mobility hazards for rovers. Its development and performance are presented, with focus on its data-driven models, machine learning algorithms, and real-time sensor data fusion for predictive analytics.