WorldWideScience

Sample records for dragon wave energy

  1. Wave Dragon Wave Energy Converters Used as Coastal Protection

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke; Kofoed, Jens Peter

    2011-01-01

    This paper deals with wave energy converters used to reduce the wave height along shorelines. For this study the Wave Dragon wave energy converter is chosen. The wave height reduction from a single device has been evaluated from physical model tests in scale 1:51.8 of the 260 x 150 m, 24 kW/m model...... Spain, to evaluate the potential for reducing wave heights close the shore by means of Wave Dragons....

  2. Hydraulic Response of the Wave Energy Converter Wave Dragon in Nissum Bredning

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    This report deals with the hydraulic performance of the wave energy converter Wave Dragon, Nissum Bredning prototype.......This report deals with the hydraulic performance of the wave energy converter Wave Dragon, Nissum Bredning prototype....

  3. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Friis-Madsen, Erik

    2006-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57!27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world’s first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. In the period May 2003 to January 2005 an extensive...

  4. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter Bak; Friis-Madsen, Erik

    2004-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57 x 27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world's first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. During the last months, extensive testing has started...

  5. Testing, Analysis and Control of Wave Dragon, Wave Energy Converter

    DEFF Research Database (Denmark)

    Tedd, James

    of the incident waves upon a wave device allows the possibility of accurately tuning the power-take off mechanism (the hydro-turbines for the Wave Dragon) to capture more energy. A digital filter method for performing this prediction in real-time with minimal computational effort is presented. Construction...... of digital filters is well known within signal processing, but their use for this application in Wave Energy is new. The filter must be designed carefully as the frequency components of waves travel at different speeds. Research presented in this thesis has advanced the development of the Wave Dragon device...

  6. Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, H. C.

    1998-01-01

    This paper concerns with the development of the wave energy converter (WEC) Wave Dragon. This WEC is based on the overtopping principle. An overview of the performed research done concerning the Wave Dragon over the past years is given, and the results of one of the more comprehensive studies, co...

  7. Survivability Mode and Extreme Loads on the Mooring Lines of the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter

    This report is a product of the cooperation agreement between Wave Dragon and Aalborg University regarding phase 2 of the development of the Wave Dragon Wave Energy Converter. The research is carried out by testing the 1:51.8 scale model of the Wave Dragon, aiming at the assessment of the surviva......This report is a product of the cooperation agreement between Wave Dragon and Aalborg University regarding phase 2 of the development of the Wave Dragon Wave Energy Converter. The research is carried out by testing the 1:51.8 scale model of the Wave Dragon, aiming at the assessment...... of the department of Civil Engineering at Aalborg University. The outcome of the research will be used as input for future research work aimed at the design of the mooring system and the certification of the structural design for the full scale Wave Dragon demonstrator....

  8. Modelling of the Overtopping Flow on the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Pecher, Arthur; Kofoed, Jens Peter

    2010-01-01

    The Wave Dragon is a floating slack-moored Wave Energy Converter of the overtopping type, which is facing now the last phase of development before the commercial exploitation: the deployment of a full-scale demonstrator. In this phase a modelling tool allowing for accurate predictions of the perf......The Wave Dragon is a floating slack-moored Wave Energy Converter of the overtopping type, which is facing now the last phase of development before the commercial exploitation: the deployment of a full-scale demonstrator. In this phase a modelling tool allowing for accurate predictions...

  9. Specification of Instrumentation of Multi MW Wave Dragon Offshore Wave Energy Converter

    DEFF Research Database (Denmark)

    Gilling, Lasse; Kofoed, Jens Peter

    Wave Dragon is a wave energy converter of the overtopping type and is described e.g. in Tedd et. al. (2006). The device has been thoroughly tested on a 1:51.8 scale model in wave laboratories and a 1:4.5 scale model deployed in Nissum Bredning, a large inland waterway in Denmark. Based on the exp......Wave Dragon is a wave energy converter of the overtopping type and is described e.g. in Tedd et. al. (2006). The device has been thoroughly tested on a 1:51.8 scale model in wave laboratories and a 1:4.5 scale model deployed in Nissum Bredning, a large inland waterway in Denmark. Based...

  10. Experimental Modeling of the Overtopping Flow on the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, Erik

    2011-01-01

    The Wave Dragon Wave Energy Converter is currently facing a precommercial phase. At this stage of development a reliable overtopping model is highly required, in order to predict the performance of the device at possible deployment locations. A model formulation derived for an overtopping device...... with general geometry has been used so far. The paper presents an updated formulation drawn through the tank testing of a scaled model the Wave Dragon. The sensitivity analysis of the main features influencing the overtopping flow led to an updated model formulation which can be specifically suited...... for the Wave Dragon....

  11. Investigation of Wave Transmission from a Floating Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke

    2012-01-01

    This paper focuses on the calibration of the MIKE21BW model against the measured wave height reduction behind a 24 kW/m Wave Dragon (WD) wave energy converter. A numerical model is used to determine the wave transmission through the floating WD in varying wave conditions. The transmission obtained...

  12. Investigation of Wave Height Reduction behind the Wave Dragon Wave Energy Converters and Application in Santander, Spain

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Quvang Harck; Andersen, Thomas Lykke

    This paper deals with a case study on the wave height reduction behind floating Wave Dragon wave energy converters in Santander Bay, Spain. The study is performed using the MIKE21 Boussinesq model from DHI. The Wave Dragon transmission characteristics in the numerical wave propagation model...... are based on previously performed physical model tests in scale 1:51. Typical winter storm conditions are considered in the case study together with different stiffness in the mooring system of the floating device. From the study it is found that if multiple Wave Dragons are positioned in a farm the wave...

  13. Measurements of Overtopping Flow Time Series on the Wave Dragon, Wave Energy Converter

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter

    2009-01-01

    A study of overtopping flow series on the Wave Dragon prototype, a low crested device designed to maximise flow, in a real sea, is presented. This study aims to fill the gap in the literature on time series of flow overtopping low crested structures. By comparing to a simulated flow the character......A study of overtopping flow series on the Wave Dragon prototype, a low crested device designed to maximise flow, in a real sea, is presented. This study aims to fill the gap in the literature on time series of flow overtopping low crested structures. By comparing to a simulated flow...... the characteristics of the overtopping flow are discussed and the simulation algorithm is tested. Measured data is shown from a storm build up in October 2006, from theWave Dragon prototype situated in an inland sea in Northern Denmark. This wave energy converter extracts energy from the waves, by funnelling them...

  14. The Wave Dragon

    DEFF Research Database (Denmark)

    Sørensen, H. C.; Hansen, R.; Friis-Madsen, E.

    2000-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type, utilizing a patented wave reflector design to focus the waves towards a ramp, and the overtopping is used for electricity production through a set of Kaplan/propeller hydro turbines. During the last 2 years, excessive...... design an testing has been performed on a scale 1:50 model of the Wave Dragon, and on a scale 1:3:5 model turbine. Thus survivability, overtopping, hydraulic response, turbine performance and feasibility have been verified....

  15. Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Knapp, W.

    2006-01-01

    Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during this ext......Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during...... this extended period. The prototype is highly instrumented. The overtopping characteristic and the power produced are presented here. This has enabled comparison between the prototype and earlier results from both laboratory model and computer simulation. This gives the optimal operating point and the expected...... power of the device. The project development team has gained much soft experience from working in the harsh offshore environment. In particular the effect of marine growth in the draft tubes of the turbines has been investigated. The control of the device has been a focus for development as is operates...

  16. Wave Dragon Buoyancy Regulation Study

    DEFF Research Database (Denmark)

    Jakobsen, Jens; Kofoed, Jens Peter

    Wave Dragon is a wave energy converter, which was deployed offshore at Nissum Bredning in Denmark in 2003. The experience gained from operating Wave Dragon during 2003 and 2004 has shown that the buoyancy regulation system can be improved in a number of ways. This study describes the current...

  17. Experimental Modelling of the Overtopping Flow on the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter

    The Wave Dragon is a floating slack-moored Wave Energy Converter (WEC) of the overtopping type. Oncoming waves are focused by two wing reflectors towards the ramp of the device, surge-up and overtop into a reservoir placed at a higher level than the surface of the sea. The energy production takes...

  18. Impact of Wave Dragon on Wave Climate

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Tedd, James; Kramer, Morten

    This report is an advisory paper for use in determining the wave dragon effects on hydrography, by considering the effect on the wave climate in the region of a wave dragon. This is to be used in the impact assessment for the Wave Dragon pre-commercial demonstrator.......This report is an advisory paper for use in determining the wave dragon effects on hydrography, by considering the effect on the wave climate in the region of a wave dragon. This is to be used in the impact assessment for the Wave Dragon pre-commercial demonstrator....

  19. Wave Dragon MW

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    Wave Dragon is a wave energy converter of the overtopping type. The device has been thoroughly tested on a 1:51.8 scale model in wave laboratories and a 1:4.5 scale model deployed in Nissum Bredning, a large inland waterway in Denmark. Based on the experience gained a full scale, multi MW prototype...

  20. Overtopping Measurements on the Wave Dragon Nissum Bredning Prototype

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter; Rasmussen, Michael R.

    2004-01-01

    The paper describes the methods used to estimate (calculated from some indirect measurements) the overtopping of the wave energy converter Wave Dragon placed in a real sea environment. The wave energy converter in quistion is the 237-tonne heavy Wave Dragon Nissum Bredning Prototype. Comparisons...

  1. Advanced Control Techniques for WEC Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Jasinski, M.

    2007-01-01

    This paper presents the ongoing work on control of the Wave Dragon wave energy converter. Research is being conducted in and between several centers across Europe. This is building upon the knowledge gained in the prototype project, and will enable much better performance of the future deployment...... of the full scale Wave Dragon....

  2. Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Friis-Madsen, Erik

    2008-01-01

    Since March 2003 a prototype of Wave Dragon has been tested in an inland sea in Denmark. This has been a great success with all subsystems tested and improved through working in an offshore environment. The project has proved the Wave Dragon device and has enabled the next stage, a production sized...

  3. Evaluation of Hydraulic Response of the Wave Dragon

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter

    The present study investigates the hydraulic response of the wave energy converter Wave Dragon. This is done by peforming model tests in a wave tank in the Hydraulics & Coastal Engineering Laboratory at Aalborg University. In the model tests a floating scale model (length scale 1:50) of the Wave...... Dragon is subjected to irregular, long crested irregular and short crested sea conditions corresponding to typical situations under which the Wave Dragon will produce power. Furthermore two situations corresponding to extreme storm conditions are tested. The objective of the study is to determine...... the wave induced forces in the moorings and in the junction between the reflectors and the reservoir part, and motions of the Wave Dragon situated in different sea conditions....

  4. Experimental Update of the Overtopping Model Used for the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, Erik

    2013-01-01

    An overtopping model specifically suited for Wave Dragon is needed in order to improve the reliability of its performance estimates. The model shall be comprehensive of all relevant physical processes that affect overtopping and flexible to adapt to any local conditions and device configuration....... An experimental investigation is carried out to update an existing formulation suited for 2D draft-limited, low-crested structures, in order to include the effects on the overtopping flow of the wave steepness, the 3D geometry of Wave Dragon, the wing reflectors, the device motions and the non-rigid connection...... of which can be measured in real-time. Instead of using new fitting coefficients, this approach allows a broader applicability of the model beyond the Wave Dragon case, to any overtopping WEC or structure within the range of tested conditions. Predictions reliability of overtopping over Wave Dragon...

  5. 3 Years Experience with Energy Production on the Nissum Bredning Wave Dragon Prototype

    DEFF Research Database (Denmark)

    Frigaard, Peter; Tedd, James; Kofoed, Jens Peter

    2006-01-01

    Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during this ext......Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during...... this extended period. The prototype is highly instrumented. The overtopping characteristic and the power produced are presented here. This has enabled comparison between the prototype and earlier results from both laboratory model and computer simulation. This gives the optimal operating point and the expected...... power of the device. The project development team has gained much soft experience from working in the harsh offshore environment. In particular the effect of marine growth in the draft tubes of the turbines has been investigated. The control of the device has been a focus for development as is operates...

  6. Numerical Simulation of Wake Effects in the Lee of a Farm of Wave Dragon Wave Energy Converters

    DEFF Research Database (Denmark)

    Beels, C.; Troch, P.; De Visch, K.

    2009-01-01

    . In this paper wake effects in the lee of a single Wave Dragon WEC and multiple Wave Dragon WECs are studied in a time-dependent mild-slope equation model. The Wave Dragon WEC is a floating offshore converter of the overtopping type. The water volume of overtopped waves is first captured in a basin above mean...

  7. Experimental Update of the Overtopping Model Used for the Wave Dragon Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Erik Friis-Madsen

    2013-04-01

    Full Text Available An overtopping model specifically suited for Wave Dragon is needed in order to improve the reliability of its performance estimates. The model shall be comprehensive of all relevant physical processes that affect overtopping and flexible to adapt to any local conditions and device configuration. An experimental investigation is carried out to update an existing formulation suited for 2D draft-limited, low-crested structures, in order to include the effects on the overtopping flow of the wave steepness, the 3D geometry of Wave Dragon, the wing reflectors, the device motions and the non-rigid connection between platform and reflectors. The study is carried out in four phases, each of them specifically targeted at quantifying one of these effects through a sensitivity analysis and at modeling it through custom-made parameters. These are depending on features of the wave or the device configuration, all of which can be measured in real-time. Instead of using new fitting coefficients, this approach allows a broader applicability of the model beyond the Wave Dragon case, to any overtopping WEC or structure within the range of tested conditions. Predictions reliability of overtopping over Wave Dragon increased, as the updated model allows improved accuracy and precision respect to the former version.

  8. Comparison of Mooring Loads in Survivability Mode on the Wave Dragon Wave Energy Converter Obtained by a Numerical Model and Experimental Data

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Muliawan, Made Jaya; Gao, Zhen

    2012-01-01

    The Wave Dragon Wave Energy Converter is ready to be up-scaled to commercial size. The design and feasibility analysis of a 1.5 MW pre-commercial unit to be deployed at the DanWEC test center in Hanstholm, Denmark, is currently ongoing. With regard to the mooring system, the design has to be carr......The Wave Dragon Wave Energy Converter is ready to be up-scaled to commercial size. The design and feasibility analysis of a 1.5 MW pre-commercial unit to be deployed at the DanWEC test center in Hanstholm, Denmark, is currently ongoing. With regard to the mooring system, the design has...... to be carried out numerically, through coupled analyses of alternative solutions. The present study deals with the preliminary hydrodynamic characterization of Wave Dragon needed in order to calibrate the numerical model to be used for the mooring design. A hydrodynamic analysis of the small scale model...

  9. Wave Induced Stresses Measured at the Wave Dragon Nissum Bredning Prototype

    DEFF Research Database (Denmark)

    Corona, L.; Kofoed, Jens Peter

    2006-01-01

    The paper describes the wave induced loading on the overtopping based wave energy converter Wave Dragon. Focus is put on the junction between the main body and the reflector, also called the "shoulder part", where large cross sectional forces and bending moments acts. There are two main objectives...... for this paper, first to verify the FEM results obtained by Niras, Danish society in charge of the finite element modelling and structural design, and then to make a first experimental fatigue analysis of a particular part of the Wave Dragon. This last part shall be considered as an exercise for the further work...

  10. Power Production Experience from Wave Dragon Prototype Testing in Nissum Bredning

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter

    The first Wave Dragon prototype power production testing started May 2003 and ended temporarily primo 2005. In the mentioned period Wave Dragon was situated in a corner of Nissum Bredning with relative little amount of wave energy. Main purpose of the tests was demonstration of survivability...

  11. Model Testing of Hydraulic Damping of the Reflector Joint on Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter

    Further development of the Wave Dragon wave energy converter in preparation for full-scale demonstration in the North Sea, PHASE A. FU4305, A4305 & ENS j.nr. 7903-030......Further development of the Wave Dragon wave energy converter in preparation for full-scale demonstration in the North Sea, PHASE A. FU4305, A4305 & ENS j.nr. 7903-030...

  12. Preliminary Results from Second Phase Sea Testing of the Wave Dragon Prototype Wave Energy Converter

    DEFF Research Database (Denmark)

    Soerensen, Hans Chr.; Tedd, James; Friis-Madsen, Erik

    2006-01-01

    In March 2006 the prototype Wave Dragon has been redeployed to a more energetic site in Nissum Bredning an inland sea in Western Denmark. This has followed a period of renovation of many aspects of the device which have resulted in 20% higher energy output. This paper describes the preliminary...

  13. Description of the Power Take-off System on board the Wave Dragon Prototype

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Knapp, Wilfried

    2005-01-01

    The paper describes the power take-off system of the overtopping based wave energy converter Wave Dragon (WD). Focus is put on the hydro turbine arrangement used for the extraction of the potential energy in the water obtained by wave overtopping of the ramp into the reservoir.......The paper describes the power take-off system of the overtopping based wave energy converter Wave Dragon (WD). Focus is put on the hydro turbine arrangement used for the extraction of the potential energy in the water obtained by wave overtopping of the ramp into the reservoir....

  14. Design of the Wave Dragon Mooring System

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano

    with experimental data, derived from tank tests of the 2nd generation scaled model of the device. In phase 2 further tank testing has been carried out on a novel 3rd generation scaled model to assess the design loads in the mooring system and the extreme response of the device in surge, heave and pitch to extreme...... storm conditions typical of the DanWEC location. The most desirable mooring configuration has also been better defined in terms of horizontal compliance. In phase 3 results from phase 1 shall be used to setup a numerical model for time-domain analysis of the composite system Wave Dragon + moorings......This report is part of the project “Wave Dragon 1.5 MW North Sea Demonstrator”, funded by the Danish Energy Agency under the EUDP program (J.no. 64010-0405). In phase 1 of the project the hydrodynamic characterization of Wave Dragon was carried out through numerical analysis with a model calibrated...

  15. Hydraulic Model Tests on Modified Wave Dragon

    DEFF Research Database (Denmark)

    Hald, Tue; Lynggaard, Jakob

    A floating model of the Wave Dragon (WD) was built in autumn 1998 by the Danish Maritime Institute in scale 1:50, see Sørensen and Friis-Madsen (1999) for reference. This model was subjected to a series of model tests and subsequent modifications at Aalborg University and in the following...... are found in Hald and Lynggaard (2001). Model tests and reconstruction are carried out during the phase 3 project: ”Wave Dragon. Reconstruction of an existing model in scale 1:50 and sequentiel tests of changes to the model geometry and mass distribution parameters” sponsored by the Danish Energy Agency...

  16. Development of Wave Dragon from Scale 1:50 to Prototype

    DEFF Research Database (Denmark)

    Soerensen, H. C.; Friis-Madsen, E.; Panhauser, W.

    2003-01-01

    The Wave Dragon is a 4 to 11 MW offshore wave energy converter of the overtopping type. It basically consists of two wave reflectors focusing the waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power....... In the period from 1998 to 2001 extensive testing on a scale 1:50 model was carried out. During the last month, testing has started on a prototype of the Wave Dragon in Nissum Bredning, Denmark (wave climate in scale 1:4.5 of the North Sea). The prototype has been grid connected in June 2003 as the world...

  17. Performance Assessment of the Wave Dragon Wave Energy Converter Based on the EquiMar Methodology

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Chozas, Julia Fernandez; Pecher, Arthur

    2011-01-01

    At the present pre-commercial phase of the wave energy sector, device developers are called to provide reliable estimates on power performance and production at possible deployment locations. The EU EquiMar project has proposed a novel approach, where the performance assessment is based mainly...... on experimental data deriving from sea trials rather than solely on numerical predictions. The study applies this methodology to evaluate the performance of Wave Dragon at two locations in the North Sea, based on the data acquired during the sea trials of a 1:4.5 scale prototype. Indications about power...

  18. Wave Overtopping Characteristics of the Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter

    Simulation work has been used extensively with the Wave dragon and other overtopping devices to analyse the power production performance of them and to optimise the structural design and the control strategy. A time domain approach to this is well documented in Jakobsen & Frigaard 1999. Using...... measurements taken from the Wave Dragon Nissum Bredning prototype, some of the previous assumptions have been slightly modified and improved upon, so that the simulation method better represents the reality of what is occurring....

  19. Renovation of the Wave Dragon Nissum Bredning Prototype

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Friis-Madsen, Erik

    2006-01-01

    This paper presents developments of the Wave Dragon, a large offshore wave energy converter. A prototype has been tested in a real sea environment for over 20 months. During 2005 the plant has been in harbor for a major overhaul of several of its components. The motivation for the upgrades...

  20. Wave Dragon

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    På foranledning af Löwenmark F.R.I, er der udført numeriske beregninger af Wave Dragons (herefter WD) armes effektivitet for forskellige geometriske udformninger. 5 geometriske modeller, hvor WD's arme er forkortet/forlænget er undersøgt for 3 forskellige drejninger af armene. I alt er 15...

  1. Data Obtained from Prototype Wave Dragon in Nissum Bredning

    DEFF Research Database (Denmark)

    Tedd, James William; Curie, Marie; Kofoed, Jens Peter

    This report is a product of the Project: Sea Testing and Optimisation of Power Production on a Scale 1:4.5 Test Rig of the Offshore Wave Energy Converter Wave Dragon. This report aims to provide access for the project partners to the raw data obtained from the testing period in Nissum Bredning...

  2. Modelling and Testing of Wave Dragon Wave Energy Converter Towards Full Scale Deployment

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano

    -commercial stage in which it has proven difficult to secure the necessary funding for the deployment of a full-scale demonstrator unit. The work presented aims at easing this process, by increasing public and scientific knowledge of the device, as well as by showing the latest progress in its development. Research....... This is mainly due to the development of an updated overtopping model specifically suited to Wave Dragon, which allows greater quality to predictions of the primary energy absorption of the device compared to previous versions. At the same time an equitable approach has been described and used in the performance......, the research has also provided a deeper insight into the physics of the overtopping process by individually assessing the influence of related device configuration and wave features, which goes beyond the present application and may be used for other overtopping WECs as well. Comprehensive analysis...

  3. Extreme Loads on the Mooring Lines and Survivability Mode for the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, E.

    2011-01-01

    Dragon aims at optimizing the power production by adapting the floating level to the incoming waves and by activating the hydro-turbines and regulating their working speed. In extreme conditions though, the control strategy could be changed in order to reduce the forces in the mooring system, lowering...

  4. Worlds Largest Wave Energy Project 2007 in Wales

    DEFF Research Database (Denmark)

    Christensen, Lars; Friis-Madsen, Erik; Kofoed, Jens Peter

    2006-01-01

    This paper introduces world largest wave energy project being developed in Wales and based on one of the leading wave energy technologies. The background for the development of wave energy, the total resource ands its distribution around the world is described. In contrast to wind energy turbines...... Dragon has to be scaled in accordance with the wave climate at the deployment site, which makes the Welch demonstrator device the worlds largest WEC so far with a total width of 300 meters. The project budget, the construction methods and the deployment site are also given....... a large number of fundamentally different technologies are utilised to harvest wave energy. The Wave Dragon belongs to the wave overtopping class of converters and the paper describes the fundamentals and the technical solutions used in this wave energy converter. An offshore floating WEC like the Wave...

  5. Experimental Overtopping Investigation for the Wave Dragon

    DEFF Research Database (Denmark)

    Borgarino, Bruno; Kofoed, Jens Peter; Tedd, James

    The present report displays the results from overtopping tests carried on the 1:51.8 Wave Dragon model in September 2007. This tests have been carried on by Bruno Borgarino, James Tedd and Jens Peter Kofoed in the wave tank facilities of Aalborg University. The objective was to provide an updated...

  6. The environmental impact of a Wave Dragon array operating in the Black Sea.

    Science.gov (United States)

    Diaconu, Sorin; Rusu, Eugen

    2013-01-01

    The present work describes a study related to the influence on the shoreline dynamics of a wave farm consisting of Wave Dragon devices operating in the western side of the Black Sea. Based on historical data analysis of the wave climate, the most relevant environmental conditions that could occur were defined, and for these cases, simulations with SWAN spectral phase averaged wave model were performed. Two situations were considered for the most representative patterns: model simulations without any wave energy converter and simulations considering a wave farm consisting of six Wave Dragon devices. Comparisons of the wave model outputs have been carried out in both geographical and spectral spaces. The results show that although a significant influence appears near the wave farm, this gradually decreases to the coast line level. In order to evaluate the influence of the wave farm on the longshore currents, a nearshore circulation modeling system was used. In relative terms, the longshore current velocities appear to be more sensitive to the presence of the wave farm than the significant wave height. Finally, the possible impact on the marine flora and fauna specific to the target area was also considered and discussed.

  7. The Environmental Impact of a Wave Dragon Array Operating in the Black Sea

    Science.gov (United States)

    Rusu, Eugen

    2013-01-01

    The present work describes a study related to the influence on the shoreline dynamics of a wave farm consisting of Wave Dragon devices operating in the western side of the Black Sea. Based on historical data analysis of the wave climate, the most relevant environmental conditions that could occur were defined, and for these cases, simulations with SWAN spectral phase averaged wave model were performed. Two situations were considered for the most representative patterns: model simulations without any wave energy converter and simulations considering a wave farm consisting of six Wave Dragon devices. Comparisons of the wave model outputs have been carried out in both geographical and spectral spaces. The results show that although a significant influence appears near the wave farm, this gradually decreases to the coast line level. In order to evaluate the influence of the wave farm on the longshore currents, a nearshore circulation modeling system was used. In relative terms, the longshore current velocities appear to be more sensitive to the presence of the wave farm than the significant wave height. Finally, the possible impact on the marine flora and fauna specific to the target area was also considered and discussed. PMID:23844401

  8. The Environmental Impact of a Wave Dragon Array Operating in the Black Sea

    Directory of Open Access Journals (Sweden)

    Sorin Diaconu

    2013-01-01

    Full Text Available The present work describes a study related to the influence on the shoreline dynamics of a wave farm consisting of Wave Dragon devices operating in the western side of the Black Sea. Based on historical data analysis of the wave climate, the most relevant environmental conditions that could occur were defined, and for these cases, simulations with SWAN spectral phase averaged wave model were performed. Two situations were considered for the most representative patterns: model simulations without any wave energy converter and simulations considering a wave farm consisting of six Wave Dragon devices. Comparisons of the wave model outputs have been carried out in both geographical and spectral spaces. The results show that although a significant influence appears near the wave farm, this gradually decreases to the coast line level. In order to evaluate the influence of the wave farm on the longshore currents, a nearshore circulation modeling system was used. In relative terms, the longshore current velocities appear to be more sensitive to the presence of the wave farm than the significant wave height. Finally, the possible impact on the marine flora and fauna specific to the target area was also considered and discussed.

  9. Development of the Wave Energy Converter -Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, Hans Christian

    2000-01-01

    2Over the years wave energy has gradually been brought into focus, as it has become clear that the fossil energy resources are limited, and cause large environmental problems, e.g. CO2 pollution. On this background a number of different wave energy converters have been proposed. In Denmark the go...

  10. Model Testing of Forces in the Reflector Joint and Mooring Forces on Wave Dragon

    DEFF Research Database (Denmark)

    Gilling, Lasse; Kofoed, Jens Peter; Tedd, James

    This report aims to present the results of a test series analysing the forces in the redesigned reflector joint and the forces in the main mooring link. The resluts presented are intended to be used by WD project partners, for the design and construction of the joint on the prototype Wave Dragon...... at Nissum Bredning and for future North Sea scale Wave Dragon. Lengths, forces and other dimentions presented are scaled to the North sea Wave Dragon unless otherwise specified....

  11. Turbine Control Strategy using Wave Prediction to Optimise Power Take Off of Overtopping Wave Energy Converters

    OpenAIRE

    Tedd, James; Knapp, Wilfried; Frigaard, Peter; Kofoed, Jens Peter

    2005-01-01

    This paper presents the control strategy used on Wave Dragon overtopping wave energy converter. The nature of overtopping requires that for optimum performance the water level in the reservoir must be controlled by controlling the turbine outflows. A history of the simulations performed is included. The concept of including an element of prediction, based on wave records a short distance in front of the Wave Dragon, is introduced. Initial simulations indicate a possibility to increase product...

  12. Influence of Buoyancy Control Performance on Power Production by the Wave Dragon Nissum Bredning Prototype

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Tedd, James; Friis-Madsen, E.

    2007-01-01

    This paper reports on the real sea performance of the buoyancy control system of Wave Dragon, a floating wave energy converter using the overtopping principle. The device operates with the full independent control system which has been tested during three years of operation. The impact of the buo...... of the buoyancy control system performance on the power production is noted. This provides motivation and a target for improved control algorithms....

  13. Development of the Wave Energy Converter

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, Hans Christian

    2000-01-01

    The development of the wave energy converter Wave Dragon (WD) is presented. The WD is based on the overtopping principle. Initially a description of the WD is given. Then the development over time in terms of the various research and development projects working with the concept is described. Thi...

  14. Comparison of Mooring Loads in Survivability Mode on the Wave Dragon Wave Energy Converter Obtained by a Numerical Model and Experimental Data

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Muliawan, Made Jaya; Gao, Zhen

    2012-01-01

    The Wave Dragon Wave Energy Converter is ready to be up-scaled to commercial size. The design and feasibility analysis of a 1.5 MW pre-commercial unit to be deployed at the DanWEC test center in Hanstholm, Denmark, is currently ongoing. With regard to the mooring system, the design has...... in the frequency domain is performed by the software HydroD, which uses WAMIT as core software. The quadratic damping term, accounting for the viscous effect, is determined through an iterative procedure aimed at matching numerical predictions on the mooring tension, derived through time domain coupled analysis......, with experimental results derived from tank tests of a small scale model. Due to the complex geometry of the device, a sensitivity analysis is performed to discuss the influence of the mean position on the quality of the numerical predictions. Good correspondence is achieved between the experimental and numerical...

  15. Sea testing and optimisation of power production on a scale 1:4.5 test rig of the offshore wave energy converter wave dragon. Summary of final technical report

    Energy Technology Data Exchange (ETDEWEB)

    2006-06-15

    The 4-11 MW Wave Dragon is a slack moored device that can be deployed in large parks wherever a sufficient wave climate and a water depth of more than 20 m is found--typically this is the case in the North Sea and in the Atlantic, offering significant economic and environmental benefits for the EU. The primary objective of the project was to establish the scientific knowledge base needed for deploying a full-scale prototype of the overtopping wave energy converter Wave Dragon. This has been obtained through long-term field-testing on a test rig with all systems installed. The scale 1:4.5 prototype has an installed power of 20 kW corresponding to 4 MW in full-scale with full-turbine deployment and is grid connected. The scale 1:4.5 prototype has been designed based on the conclusions from a previous EU Craft project. The basic test rig construction is provided through a project sponsored by the Danish Energy Authority. The test site is in protected waters in Nissum Bredning, Denmark, where the wave climate resembles North Sea conditions (scale 1:4.5) which in accordance with model law resembles a power scale of 1:200. The test results after more than 20,000 hours of operation cover: Long-term field testing of turbine operation, control strategy testing and optimisation, power monitoring and evaluation, stress and strain measurements and analysis, and mooring and cable systems analysis. The model tools developed in the previous EU Craft project have been validated and slightly modified based on the measured data. A Life Cycle Analysis and Finite Element Modelling have been performed. A report on market analysis, economic risk assessment and job creation potential has also been carried out. The project has established the necessary scientific and technical knowledge base for engaging in the establishment of a full-scale prototype in exposed waters. This includes the existence of a well-established design basis and documentation of technical viability through long

  16. Turbine Control Strategy using Wave Prediction to Optimise Power Take Off of Overtopping Wave Energy Converters

    DEFF Research Database (Denmark)

    Tedd, James; Knapp, Wilfried; Frigaard, Peter

    2005-01-01

    This paper presents the control strategy used on Wave Dragon overtopping wave energy converter. The nature of overtopping requires that for optimum performance the water level in the reservoir must be controlled by controlling the turbine outflows. A history of the simulations performed is included...

  17. Modeling the Buoyancy System of a Wave Energy Power Plant

    DEFF Research Database (Denmark)

    Pedersen, Tom S.; Nielsen, Kirsten M.

    2009-01-01

    A nonlinear dynamic model of the buoyancy system in a wave energy power plant is presented. The plant ("Wave Dragon") is a floating device using the potential energy in overtopping waves to produce power. A water reservoir is placed on top of the WD, and hydro turbines lead the water to the sea...... producing electrical power. Through air chambers it is possible to control the level of the WD. It is important to control the level in order to maximize the power production in proportion to the wave height, here the amount of overtopping water and the amount of potential energy is conflicting...

  18. Recent Developments of Wave Energy Utilization in Denmark

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Kramer, Morten

    2006-01-01

    by a more thorough description of three ongoing projects. These are Wave Dragon, Wave Star and Seawave Slot-cone Generator. Common for these projects are that they are being, or will soon be, tested in real sea and have benefited from the Danish Wave Energy Program. The work by the department......This paper aims at giving an overview of the developments researchers at the Department of Civil Engineering, Aalborg University, Denmark (DCE), have been involved in within the field of wave energy utilization in Denmark over the past decade. At first a general introduction is given followed...... on these projects involves substantial laboratory testing, numerical simulations and real sea prototype testing....

  19. Application of the Time-Dependent Mild-Slope Equations for the Simulation of Wake Effects in the Lee of a Farm of Wave Dragon Wave Energy Converters

    DEFF Research Database (Denmark)

    Beels, Charlotte; Troch, Peter; Visch, Kenneth De

    2010-01-01

    the wake effect is decreasing with increasing directional spreading. The wake in the lee of a farm of five Wave Dragon WECs, installed in a staggered grid (3 WECs in the first row and 2 WECs in the second row), is calculated for three in-between distances of respectively D, 2D and 3D, with D the distance...

  20. Short term wave forecasting, using digital filters, for improved control of Wave Energy Converters

    DEFF Research Database (Denmark)

    Tedd, James; Frigaard, Peter

    2007-01-01

    This paper presents a Digital Filter method for real time prediction of waves incident upon a Wave Energy device. The method transforms waves measured at a point ahead of the device, to expected waves incident on the device. The relationship between these incident waves and power capture is derived...... experimentally. Results are shown form measurements taken on the Wave Dragon prototype device, a floating overtopping device situated in Northern Denmark. In this case the method is able to accurately predict the surface elevation at the device 11.2 seconds before the measurement is made. This is sufficient...... to allow advanced control systems to be developed using this knowledge to significantly improve power capture....

  1. Short term wave forecasting, using digital filters, for improved control of Wave Energy Converters

    Energy Technology Data Exchange (ETDEWEB)

    Tedd, J.; Frigaard, P. [Department of Civil Engineering, Aalborg University, Aalborg (Denmark)

    2007-07-01

    This paper presents a Digital Filter method for real time prediction of waves incident upon a Wave Energy device. The method transforms waves measured at a point ahead of the device, to expected waves incident on the device. The relationship between these incident waves and power capture is derived experimentally. Results are shown form measurements taken on the Wave Dragon prototype device, a floating overtopping device situated in Northern Denmark. In this case the method is able to accurately predict the surface elevation at the device 11.2 seconds before the measurement is made. This is sufficient to allow advanced control systems to be developed using this knowledge to significantly improve power capture.

  2. New layout of time resolved beam energy spectrum measurement for dragon-I

    International Nuclear Information System (INIS)

    Liao Shuqing; Zhang Kaizhi; Shi Jinshui

    2010-01-01

    A new layout of time resolved beam energy spectrum measurement is proposed for Dragon-I by a new method named RBS (rotating beams in solenoids). The basic theory of RBS and the new layout are presented and the measuring error is also discussed. The derived time resolved beam energy spectrum is discrete and is determined by measuring the beam's rotating angle and expanding width through a group of solenoids at the export of Dragon-I. (authors)

  3. Slow waves, sharp waves, ripples, and REM in sleeping dragons.

    Science.gov (United States)

    Shein-Idelson, Mark; Ondracek, Janie M; Liaw, Hua-Peng; Reiter, Sam; Laurent, Gilles

    2016-04-29

    Sleep has been described in animals ranging from worms to humans. Yet the electrophysiological characteristics of brain sleep, such as slow-wave (SW) and rapid eye movement (REM) activities, are thought to be restricted to mammals and birds. Recording from the brain of a lizard, the Australian dragon Pogona vitticeps, we identified SW and REM sleep patterns, thus pushing back the probable evolution of these dynamics at least to the emergence of amniotes. The SW and REM sleep patterns that we observed in lizards oscillated continuously for 6 to 10 hours with a period of ~80 seconds. The networks controlling SW-REM antagonism in amniotes may thus originate from a common, ancient oscillator circuit. Lizard SW dynamics closely resemble those observed in rodent hippocampal CA1, yet they originate from a brain area, the dorsal ventricular ridge, that has no obvious hodological similarity with the mammalian hippocampus. Copyright © 2016, American Association for the Advancement of Science.

  4. A preliminary layout and PIC simulations of the time resolved beam energy spectrum measurement for DRAGON-I

    International Nuclear Information System (INIS)

    Liao Shuqing; Zhang Kaizhi; Shi Jingshui

    2010-01-01

    The time resolved beam energy spectrum for DRAGON-I can be measured with a new method which is named RBS (Rotating Beam in Solenoid). The beam energy spectrum is determined by measuring the beam rotation angle and its expansion width at the exit of DRAGON-I. The rotation beam is shaped by a slit at the exit of DRAGON-I, then rotated in the magnetic field of the solenoids and the resulted beamlet is measured by the Cherenkov screen. The beam motion in the solenoids is simulated by PARMELA and the relationships between the beam rotation angle's expansion width and the beam energy spread, emittance are discussed. The measurement error is also discussed in this paper. (authors)

  5. Experimental Study Related to the Mooring Design for the 1.5 MW Wave Dragon WEC Demonstrator at DanWEC

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, Erik

    2013-01-01

    The paper presents the results of an experimental study identifying the response of a 1.5 MW Wave Dragon to extreme conditions typical of the DanWEC test center. The best strategies allowing for a reduction in the extreme mooring tension have also been investigated, showing that this is possible...

  6. Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data.

    Science.gov (United States)

    Espindola, Rafael Luz; Araújo, Alex Maurício

    2017-01-01

    This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon) different wave energy converters (WEC) over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area.

  7. Further analysis of the zero-energy experiment on the Dragon reactor

    International Nuclear Information System (INIS)

    Woloch, F.; Neuberger, W.

    1978-01-01

    The analysis of the Zero-Energy Experiments performed on the Dragon reactor, a high-temperature reactor of the Organization for Economic Cooperation and Development, has been continued. The first analysis established the main route of calculations within the WIMS-E scheme and was reported elsewhere. This Note presents further calculations showing the merits of a refinement in the number of neutron energy groups, of the use of different condensation spectra, and of transport calculations

  8. Evaluation of the Wave Energy Conversion Efficiency in Various Coastal Environments

    Directory of Open Access Journals (Sweden)

    Eugen Rusu

    2014-06-01

    Full Text Available The main objective of the present work was to assess and compare the wave power resources in various offshore and nearshore areas. From this perspective, three different groups of coastal environments were considered: the western Iberian nearshore, islands and an enclosed environment with sea waves, respectively. Some of the most representative existent wave converters were evaluated in the analysis and a second objective was to compare their performances at the considered locations, and in this way to determine which is better suited for potential commercial exploitation. In order to estimate the electric power production expected in a certain location, the bivariate distributions of the occurrences corresponding to the sea states, defined by the significant wave height and the energy period, were constructed in each coastal area. The wave data were provided by hindcast studies performed with numerical wave models or based on measurements. The transformation efficiency of the wave energy into electricity is evaluated via the load factor and also through the capture width, defined as the ratio between the electric power estimated to be produced by each specific wave energy converters (WEC and the expected wave power corresponding to the location considered. Finally, by evaluating these two different indicators, comparisons of the performances of three WEC types (Aqua Buoy, Pelamis and Wave Dragon in the three different groups of coastal environments considered have been also carried out. The work provides valuable information related to the effectiveness of various technologies for the wave energy extraction that would operate in different coastal environments.

  9. Direct conversion of fusion energy into the electric one in the 'Dragon' magnetic confinement system

    International Nuclear Information System (INIS)

    Glagolev, V.M.; Timofeev, A.V.

    1993-01-01

    It is shown that recuperator in which the thermal energy of particles is transformed into electric oue under drift in crossed fields is naturally coupled with dragontype magnetic confinement system, so the recuperation process can be initiated in the dragon magnetic field. A number of questions occuring under analysis of recuperator-dragon system is considered, including the dynamics of particle transfer to the recuperator, the share of particles entering the recuperator, the effect of rotational transform and the recuperation efficiency

  10. Using Paraffin with -10 deg C to 10 deg C Melting Point for Payload Thermal Energy Storage in SpaceX Dragon Trunk

    Science.gov (United States)

    Choi, Michael K.

    2013-01-01

    A concept of using paraffin wax phase change material (PCM) with a melting point between -10 deg C and 10 deg C for payload thermal energy storage in a Space Exploration Technologies (SpaceX) Dragon trunk is presented. It overcomes the problem of limited heater power available to a payload with significant radiators when the Dragon is berthed to the International Space Station (ISS). It stores adequate thermal energy to keep a payload warm without power for 6 hours during the transfer from the Dragon to an ExPRESS logistics carrier (ELC) on the ISS.

  11. Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data

    Science.gov (United States)

    Araújo, Alex Maurício

    2017-01-01

    This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon) different wave energy converters (WEC) over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area. PMID:28817731

  12. Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data.

    Directory of Open Access Journals (Sweden)

    Rafael Luz Espindola

    Full Text Available This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon different wave energy converters (WEC over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area.

  13. A WIMS E analysis of zero energy experiments performed on the Dragon reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lancefield, M. J.; Broadhouse, B.; Woloch, F.

    1974-10-15

    UKAEA methods embodied in the WINS-E modular scheme of codes are described in their application to the analysis of zero energy experiments performed on the DRAGON reactor. Measured reactivity and reaction rate distributions are compared with the predictions of the analysis.

  14. Nuclear astrophysics at DRAGON

    International Nuclear Information System (INIS)

    Hager, U.

    2014-01-01

    The DRAGON recoil separator is located at the ISAC facility at TRIUMF, Vancouver. It is designed to measure radiative alpha and proton capture reactions of astrophysical importance. Over the last years, the DRAGON collaboration has measured several reactions using both radioactive and high-intensity stable beams. For example, the 160(a, g) cross section was recently measured. The reaction plays a role in steady-state helium burning in massive stars, where it follows the 12C(a, g) reaction. At astrophysically relevant energies, the reaction proceeds exclusively via direct capture, resulting in a low rate. In this measurement, the unique capabilities of DRAGON enabled determination not only of the total reaction rates, but also of decay branching ratios. In addition, results from other recent measurements will be presented

  15. Dragons as Amulets, Dragons as Talismans, Dragons as Counselors.

    Science.gov (United States)

    Stevenson, Robert G.

    1994-01-01

    Notes that, in diverse historical and cultural settings, dragons have served as protective amulets/powerful talismans to protect/enhance powers of those who possess them. Explores use of such personal symbols in dealing with personal adversity and suggests methods in which dragon symbol can be used to promote discussion of feelings, problems, and…

  16. Calculation of the Wave Conditions in Nissum Bredning

    DEFF Research Database (Denmark)

    Svendsen, Rasmus; Frigaard, Peter

    For the purpose of determining the optimal position in Nissum Bredning for placement of wave dragon, the wave energy flux in Nissum Bredning has been calculated. It has not been posible to retrieve satisfactory measured wavedata for Nissum Bredning, therefor the calculations are based on the SPM...

  17. Development of Wave Energy Devices: The Danish Case / The Dragon of Nissum Bredning

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    2009-01-01

    The paper presents the Danish case of development of wave energy devices and outlines the established best practice. A brief overview of international standardization efforts is given and the Danish involvement in this described. The developed Danish best practice, which is being carried over to ...

  18. Hadron Dragons strike again

    CERN Multimedia

    2009-01-01

    The CERN Dragon Boat team – the Hadron Dragons – achieved a fantastic result at the "Paddle for Cancer" Dragon Boat Festival at Lac de Joux on 6 September. CERN Hadron Dragons heading for the start line.Under blue skies and on a clear lake, the Hadron Dragons won 2nd place in a hard-fought final, following top times in the previous heats. In a close and dramatic race – neck-and-neck until the final 50 metres – the local Lac-de-Joux team managed to inch ahead at the last moment. The Hadron Dragons were delighted to take part in this festival. No one would turn down a day out in such a friendly and fun atmosphere, but the Dragons were also giving their support to cancer awareness and fund-raising in association with ESCA (English-Speaking Cancer Association of Geneva). Riding on their great success in recent competitions, the Hadron Dragons plan to enter the last Dragon Boat festival of 2009 in Annecy on 17-18 October. This will coincide with t...

  19. Scripting DRAGON

    International Nuclear Information System (INIS)

    Hebert, A.

    2002-01-01

    The paper describes an user-oriented framework specifically designed to facilitate the use of legacy Fortran codes similar to Dragon. The basic idea is to use a bytecode interpreted language as a glue to link all the components required by the end user. This scripting approach is illustrated with Dragon, where we have replaced the control language CLE-2000 with a bytecode interpreted language, without having to modify Dragon. We have shown how Python or Java can be used to link the Dragon modules together and to construct an object-oriented user interface. Python or Java can also be used to construct execution procedures, calculation schemes and graphical user interfaces. Java was finally selected as the most interesting choice. This approach can be used with other legacy Fortran codes, as soon as their input/output data structures are Dragon-compatible. The only modification required on Fortran code is the replacement of some common blocks by associative tables, already available with the LCM application programming interface. (author)

  20. CFD study of the overtopping discharge of the Wave Dragon wave energy converter

    DEFF Research Database (Denmark)

    Eskilsson, K.; Palm, J.; Kofoed, Jens Peter

    2015-01-01

    incompressible Euler/Navier-Stokes solver in the OpenFOAM® framework. We present simulations of: (i) a complete sea state for different crest heights, and (ii) regular waves for different wave conditions and crest heights. The simulations compare reasonably well with the experimental data, albeit the irregular...

  1. The feasibility study of Dragon Ⅰ using for temperature measurement of resonance neutron

    International Nuclear Information System (INIS)

    Xiang Yanjun; Ma Jingfang; Ai Jie; Fan Ruifeng

    2010-01-01

    The temperature measurement using neutron resonance spectrum can be used for temperature measurement of shock wave, but the high intensity pulsed neutron source is needed. This paper calculates the neutron transmission spectrum through resonance sample (contained 182 W), which produced by the current electron beam of Dragon Ⅰ impacting uranium target. The 4.155 eV and 21.06 eV resonance drop of 182 W can be seen from the transmission spectrum. Then, according to the experiment condition of Los Alamos, the neutron resonance spectrum of Dragon Ⅰ have been computed. Dragon Ⅰ can be used for temperature measurement using neutron spectrum, comparing this simulated result and the experiment result of Los Alamos. (authors)

  2. Energy supply technologies. Hydro, ocean, wave and tidal

    Energy Technology Data Exchange (ETDEWEB)

    Fenhann, J.; Larsen, Hans [Risoe National Lab. - DTU (Denmark)

    2007-11-15

    stored wind energy, and could therefore form an interesting partnership with wind energy. Waves normally persist for six to eight hours after the wind drops, potentially allowing wave power to smooth out some of the variability inherent in wind power. Wave power could in the long term make an important contribution to the world's energy demand, if it can be developed to the point where it is technically and economically feasible. A potential 2,000 TWh/year, or 10 % of global electricity consumption, has been estimated, with predicted electricity costs of 0.08 Euro kWh. Denmark has been active in developing wave power technology such as Wave Dragon and Wave Star. These demonstration projects are excellent starting points for the further development of this promising technology. (BA)

  3. Life cycle assessment of the wave energy converter: Wave Dragon

    DEFF Research Database (Denmark)

    Hans Chr., Sørensen; Stefan, Naef; Stefan, Anderberg

    Any power production technology should be able to demonstrate that it's able to comply with current and future environmental regulation and that it demonstrates a considerable surplus in the energy balance being a part of the entire power system. This means that the energy used throughout all the...

  4. Plaster-Wrap Dragons

    Science.gov (United States)

    Vance, Shelly

    2012-01-01

    In this article, the author describes how her students constructed a three-dimensional sculpture of a dragon using plaster wrap and other materials. The dragons were formed from modest means--using only a toilet-paper tube, newsprint, tape and wire.

  5. Dragon bridge - the world largest dragon-shaped (ARCH steel bridge as element of smart city

    Directory of Open Access Journals (Sweden)

    Chinh Luong Minh

    2016-01-01

    Full Text Available Dragon Bridge - The world’s largest dragon-shaped steel bridge, with an installation cost of $85 million USD, features 6 lanes for two separate directions, 666 meters of undulating steel in the shape of a dragon in the Ly Dynasty, the symbol of prosperity in Vietnamese culture. This unique and beautifully lit bridge, which also breathes fire and sprays water. It’s the purposeful integration of the lighting hardware articulates the dragon’s form, and the fire-breathing dragon head. This project transcends the notion of monumental bridge with dynamic colour-changing lighting, creating an iconic sculpture in the skyline that is both reverent and whimsical. The signature feature of the bridge was the massive undulating support structure resembling a dragon flying over the river. The dragon is prominent in Vietnamese culture as a symbol of power and nobility. Dragon Bridge stands out as a model of innovation. It has received worldwide attention in the design community and from the global media for its unique arch support system. Dragon Bridge serves as an example of how aesthetic quality of a design can serve cultural, economic and functional purposes. The article presents design solutions of the object and the evaluation of the technical condition before putting the facility into service.

  6. SpaceX Dragon Air Circulation System

    Science.gov (United States)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  7. Physics experiment on the Dragon reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, C.

    1974-10-15

    The paper describes a set of DRAGON experiments planned to measure burn-up effects in DRAGON irradiated fuel. Irradiated fuel elements from DRAGON are to be subjected to reactivity measurements in the HECTOR experimental reactor to infer the residual U235 content followed by isotopic analyses at CEA laboratories in 1975. Fast neutron damage to DRAGON graphite is compared to fast neutron dose measurements using Ni58 (n,p) Co58 activation wires in both DRAGON and the DIDO MTR. Gamma scanning of irradiated fuel elements are used to compare axial power profiles to those derived from two-dimensional and three-dimensional calculations of the DRAGON reactor.

  8. The Dragon reactor experiment

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The concept on which the Dragon Reactor Experiment was based was evolved at the Atomic Energy Research Establishment at Harwell in 1956, and in February of that year a High Temperature Gas- cooled Reactor Project Group was set up to study the feasibility of a helium-cooled reactor with a graphite or beryllium moderator, and with the emphasis on the thorium fuel cycle [af

  9. Red Dragon drill missions to Mars

    Science.gov (United States)

    Heldmann, Jennifer L.; Stoker, Carol R.; Gonzales, Andrew; McKay, Christopher P.; Davila, Alfonso; Glass, Brian J.; Lemke, Larry L.; Paulsen, Gale; Willson, David; Zacny, Kris

    2017-12-01

    We present the concept of using a variant of a Space Exploration Technologies Corporation (SpaceX) Dragon space capsule as a low-cost, large-capacity, near-term, Mars lander (dubbed ;Red Dragon;) for scientific and human precursor missions. SpaceX initially designed the Dragon capsule for flight near Earth, and Dragon has successfully flown many times to low-Earth orbit (LEO) and successfully returned the Dragon spacecraft to Earth. Here we present capsule hardware modifications that are required to enable flight to Mars and operations on the martian surface. We discuss the use of the Dragon system to support NASA Discovery class missions to Mars and focus in particular on Dragon's applications for drilling missions. We find that a Red Dragon platform is well suited for missions capable of drilling deeper on Mars (at least 2 m) than has been accomplished to date due to its ability to land in a powered controlled mode, accommodate a long drill string, and provide payload space for sample processing and analysis. We show that a Red Dragon drill lander could conduct surface missions at three possible targets including the ice-cemented ground at the Phoenix landing site (68 °N), the subsurface ice discovered near the Viking 2 (49 °N) site by fresh impact craters, and the dark sedimentary subsurface material at the Curiosity site (4.5 °S).

  10. A Wims E analysis of the zero energy experiments of Dragon prior to charge IV - Part 3: Prelmininary investigations into the control rod representation and related problems

    Energy Technology Data Exchange (ETDEWEB)

    Dubofsky, W; Woloch, F

    1973-09-28

    In the collaboration between UKAEA and Dragon for Zero Energy Experiment Evaluation, Dragon is to undertake all investigations needed for the representation of specific features of the Dragon Reactor experiment which are not necessarily characteristic of the large HTR system. One quite obvious uniqueness of Dragon is the location of the control rods situated in the radial reflector, only a few thermal mean free paths away from the core reflector boundary. In the first onslaught it is our intention to use the already available WIMS modules as much as possible and to identify difficulties in doing so. Finally it will be profitable to consider if the control rod representation found as a result of the whole exercise lends itself for the routine calculations of Dragon. In this paper Section 2 describes the geometrical difficulties to be overcome. Section 3 presents the results of calculations so far available. Section 4 gives the layout of further calculations planned and Section 5 presents the conclusions.

  11. The racing dragon

    CERN Multimedia

    2009-01-01

    Dating back nearly 2000 years, the ancient Chinese tradition of Dragon Boat Racing was originally a celebration that fell on the 5th day of the 5th lunar month as a gesture to please the Gods and bring forth necessary rains to cultivate the lands. Now the CERN Canoe and Kayak Club, too, participates in this tradition, though not so much to please the Gods on the ritualistic date, but to bring forth giant smiles on the faces of members. Dragon Boat Racing has been rising steadily in popularity in Europe since the mid nineties and with the great potential to host and promote Dragon Boat Racing in the Geneva area, the CERN Canoe and Kayak Club, has taken the initiative to bring the sport to the region. Some members of the Club traveled to Dole in June to participate in the Festival Dragon Boat 2009. Under perfect sunny conditions, the team triumphed in their first ever tournament, cruising to a convincing first place overall finish. T...

  12. Dragon Drone UAV System

    Science.gov (United States)

    2003-09-02

    TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Dragon Drone UAV System 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 A E R O S Y S T E M S BAI’s Dragon Drone ...the hundreds. BAI’s Dragon Drone system is the result of combining new ideas and emerging technologies with the in-depth knowl- edge gained from real

  13. Chinese New Year Dragons.

    Science.gov (United States)

    Balgemann, Linda

    2000-01-01

    Presents an art project, used in a culturally diverse curriculum, in which second grade students create Chinese New Year dragons. Describes the process of creating the dragons, from the two-week construction of the head to the accordion-folded bodies. (CMK)

  14. Injuries in Competitive Dragon Boating.

    Science.gov (United States)

    Mukherjee, Swarup; Leong, Hin Fong; Chen, Simin; Foo, Yong Xiang Wayne; Pek, Hong Kiat

    2014-11-01

    Dragon boating is a fast-growing team water sport and involves forceful repetitive motions that predispose athletes to overuse injuries. Despite the rising popularity of the sport, there is a lack of studies on injury epidemiology in dragon boating. To investigate the injury epidemiology in competitive dragon boating athletes. Descriptive epidemiological study. A total of 95 dragon boaters (49 males, 46 females) representing their respective universities took part in this study. Data were collected retrospectively using a reliable and valid self-report questionnaire. The study period was from August 2012 to July 2013. A total of 104 musculoskeletal injuries were reported (3.82 injuries/1000 athlete-exposures), 99% of which occurred during training. The most commonly injured regions were the lower back (22.1%), shoulder (21.1%), and wrist (17.3%). The majority of injuries were due to overuse (56.3%), and incomplete muscle-tendon strain was the most prevalent type of injury (50.5%). The time loss from injuries varied. In addition, a significant majority of the dragon boating athletes incurred nonmusculoskeletal injuries, with abrasions (90.5%), blisters (78.9%), and sunburns (72.6%) being the most common. Competitive dragon boating has a moderately high injury incidence, and there seems to be a direct relationship between exposure time and injury rate. A majority of the injuries are overuse in nature, and the body parts most actively involved in paddling movement are at higher risk of injuries. The high incidence of nonmusculoskeletal injuries in dragon boaters suggested that these injuries are likely outcomes of participation in the sport.

  15. How not to train your dragon: a case of a Komodo dragon bite.

    Science.gov (United States)

    Borek, Heather A; Charlton, Nathan P

    2015-06-01

    Komodo dragons (Varanus komodoensis) are the world's largest lizards, known for killing prey that exceed their body mass. Reports of bites to humans in the popular press suggest high degrees of morbidity and mortality. Reports in the medical literature are lacking. We describe the case of a zookeeper who was bitten by a Komodo dragon, with a resultant mallet finger. We further discuss the various potential mechanisms of Komodo dragon lethality, including sepsis and venom deposition theories that are useful in guiding management. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  16. DRAGON, Reactor Cell Calculation System with Burnup

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: DRAGON is a collection of models to simulate the neutronic behavior of a unit cell or a fuel assembly in a nuclear reactor. It includes all of the functions that characterize a lattice cell code, namely: interpolation of microscopic cross sections supplied by means of standard libraries; resonance self-shielding calculations in multidimensional geometries; multigroup and multidimensional neutron flux calculations which can take into account neutron leakage; transport-transport or transport-diffusion equivalence calculations as well as editing of condensed and homogenized nuclear properties for reactor calculations; and finally isotopic depletion calculations. The user must supply cross sections. DRAGON can access directly standard microscopic cross-section libraries in the following formats: DRAGON, MATXS (TRANSX-CTR), WIMSD4, WIMS-AECL, and APOLLO. It has the capability of exchanging macroscopic and microscopic cross-section libraries with a code such as PSR-0206/TRANSX-CTR or PSR-0317/TRANSX-2 by the use of the GOXS and ISOTXS format files. Macroscopic cross sections can also be read in DRAGON via the input data stream. 2 - Method of solution: DRAGON contains a multigroup iterator conceived to control a number of different algorithms for the solution of the neutron transport equation. Each of these algorithms is presented in the form of a one-group solution procedure where the contributions from other energy groups are included in a source term. The current version, DRAGON 9 71124 (Release 3.02), which was released in January 1998, contains three such algorithms. The JPM option solves the integral transport equation using the interface current method applied to homogeneous blocks; the SYBIL option solves the integral transport equation using the collision probability method for simple one-dimensional (1-D) or two-dimensional (2-D) geometries and the interface current method for 2-D Cartesian or hexagonal assemblies; and the

  17. Efficient Wave Energy Amplification with Wave Reflectors

    DEFF Research Database (Denmark)

    Kramer, Morten Mejlhede; Frigaard, Peter Bak

    2002-01-01

    Wave Energy Converters (WEC's) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased to approximately 130......-140%. In the paper a procedure for calculating the efficiency and optimizing the geometry of wave reflectors are described, this by use of a 3D boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benifit...... for different geometries of the wave reflectors and optimal geometrical design parameters are specified. On this basis inventors of WEC's can evaluate whether a specific WEC possible could benefit from wave reflectors....

  18. Bitten by a Dragon.

    Science.gov (United States)

    Ducey, Stephen D; Cooper, Jeffrey S; Wadman, Michael C

    2016-06-01

    Komodo dragons (Varanus komodoensis) are large lizards known to take down prey even larger than themselves. They rarely attack humans. A 38-year-old woman was bitten by a Komodo dragon on her hand while cleaning its enclosure. She was transiently hypotensive. The wounds were extensively cleaned, and she was started on prophylactic antibiotics. Her wounds healed without any infectious sequelae. Komodo dragon bites are historically thought to be highly infectious and venomous. Based on a literature review, neither of these are likely true. As in any bite, initial stabilization followed by wound management are the main components to therapy. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  19. Aerobic salivary bacteria in wild and captive Komodo dragons.

    Science.gov (United States)

    Montgomery, Joel M; Gillespie, Don; Sastrawan, Putra; Fredeking, Terry M; Stewart, George L

    2002-07-01

    During the months of November 1996, August 1997, and March 1998, saliva and plasma samples were collected for isolation of aerobic bacteria from 26 wild and 13 captive Komodo dragons (Varanus komodoensis). Twenty-eight Gram-negative and 29 Gram-positive species of bacteria were isolated from the saliva of the 39 Komodo dragons. A greater number of wild than captive dragons were positive for both Gram-negative and Gram-positive bacteria. The average number of bacterial species within the saliva of wild dragons was 46% greater than for captive dragons. While Escherichia coli was the most common bacterium isolated from the saliva of wild dragons, this species was not present in captive dragons. The most common bacteria isolated from the saliva of captive dragons were Staphylococcus capitis and Staphylococcus capitis and Staphylococcus caseolyticus, neither of which were found in wild dragons. High mortality was seen among mice injected with saliva from wild dragons and the only bacterium isolated from the blood of dying mice was Pasteurella multocida. A competitive inhibition enzyme-linked immunosorbent assay revealed the presence of anti-Pasteurella antibody in the plasma of Komodo dragons. Four species of bacteria isolated from dragon saliva showed resistance to one or more of 16 antimicrobics tested. The wide variety of bacteria demonstrated in the saliva of the Komodo dragon in this study, at least one species of which was highly lethal in mice and 54 species of which are known pathogens, support the observation that wounds inflicted by this animal are often associated with sepsis and subsequent bacteremia in prey animals.

  20. Raytracing, chopper, and guideline for double-headed Dragon monochromators (invited)

    International Nuclear Information System (INIS)

    Chen, C.T.

    1992-01-01

    The raytracing of the double-headed Dragon, a recently proposed monochromator for producing two simultaneous left and right circularly polarized soft x-ray beams, is presented. The energy resolution and wavelength of these two beams are confirmed to be identical, and the high performance of the original Dragon is found to be preserved in the double-headed configuration. A compact ultra-high vacuum compatible chopper for rapid alternation between left and right helicities is presented, and a guideline for collecting circularly polarized light from bending magnet sources is given

  1. Comparison and Sensitivity Investigations of a CALM and SALM Type Mooring System for Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Arthur Pecher

    2014-02-01

    Full Text Available A quasi-static analysis and sensitivity investigation of two different mooring configurations—a single anchor leg mooring (SALM and a three-legged catenary anchor leg system (CALM—is presented. The analysis aims to indicate what can be expected in terms of requirements for the mooring system size and stiffness. The two mooring systems were designed for the same reference load case, corresponding to a horizontal design load at the wave energy converter (WEC of 2000 kN and a water depth of 30 m. This reference scenario seems to be representative for large WECs operating in intermediate water depths, such as Weptos, Wave Dragon and many others, including reasonable design safety factors. Around this reference scenario, the main influential parameters were modified in order to investigate their impact on the specifications of the mooring system, e.g. the water depth, the horizontal design load, and a mooring design parameter.

  2. Impacts of wave energy conversion devices on local wave climate: observations and modelling from the Perth Wave Energy Project

    Science.gov (United States)

    Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy

    2016-04-01

    As demonstrated by the Australian Wave Energy Atlas (AWavEA), the southern and western margins of the country possess considerable wave energy resources. The Australia Government has made notable investments in pre-commercial wave energy developments in these areas, however little is known about how this technology may impact local wave climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ wave measurement devices have been deployed surrounding the 3 wave energy converters of the Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of wave energy converters will be discussed. The intended project outcomes are to establish zones of impact defined in terms of changes in local wave energy spectra and to initiate best practice guidelines for the establishment of wave energy conversion sites.

  3. Nuclear astrophysics at ISAC with DRAGON: Initial studies

    International Nuclear Information System (INIS)

    Olin, Art; Bishop, Shawn; D'Auria, John M.; Lamey, Michael; Liu, Wenjie; Wrede, Chris; Buchmann, Lothar; Chen, Alan; Hunter, Don; Laird, Alison M.; Ottewell, Dave; Rogers, Joel; Chatterjee, Mohan L.; Engel, Sabine; Strieder, Frank; Gigliotti, Dario; Hussein, Ahmed; Greife, Uwe; Jewett, Cybele; Hutcheon, Dave

    2002-01-01

    The new DRAGON recoil separator facility, designed and built to measure directly the rates of radiative proton and alpha capture reactions important for nuclear astrophysics, is now in operation at the TRIUMF-ISAC radioactive beams facility in Vancouver, Canada. Experiments have been conducted for the first time on the 21Na(p,γ)22Mg reaction. The evolution of nova explosions, and particularly their 22Na abundance, depends sensitively on this reaction rate. The radioactive 21Na beam with an intensity of up to 5 x 108 /s was directed onto a windowless hydrogen gas target (3.8 x 1018 H atoms/cm2). Prompt reaction gamma rays were detected using a BGO array and separated reaction products detected using a silicon strip detector at the end of the 20.8 m recoil mass separator. Yield measurements recording simultaneously singles and coincident signals were performed by scanning in energy over the known resonance reported previously in 22Mg at Ecm = 212 keV, and in addition, over a strong resonance observed at Ecm ≅822 keV. Known resonances in the 21Ne(p,γ)22Na, 20Ne(p,γ)21Na, and 24Mg(p,γ)25Al reactions have been used to calibrate the DRAGON. Studies are in progress to further define the performance of the DRAGON facility. Status of the data analysis and results from system performance studies will be presented along with a brief description of the new ISAC and DRAGON facilities

  4. Sea Dragon

    National Research Council Canada - National Science Library

    1997-01-01

    .... In preparation for these changes, the Navy is exploring new command and control relationships, and the Marine Corps established Sea Dragon to experiment with emerging technologies, operational...

  5. Rudi Stamm'ler contributions and Dragon - 041

    International Nuclear Information System (INIS)

    Roy, R.; Marleau, G.; Hebert, A.

    2010-01-01

    The lattice code DRAGON has been in constant development over the last 25 years. During this period, the DRAGON development team has often been directly influenced by the excellent work of Rudi Stamm'ler. First, his book on reactor physics has inspired a large number of programming and calculation techniques that were implemented in DRAGON. Then, the work of Rudi and his collaborators on the lattice code HELIOS, has also prompted a friendly competition that lead us to continuously improve our code in such a way that it could match the performance achieved by HELIOS. This paper provides a description of some characteristics or technologies implemented in DRAGON that were influenced by the work of Rudi Stamm'ler. It also describes a Candu simulation exercise where the capabilities of the HELIOS and DRAGON codes were combined. (authors)

  6. Reflectors to Focus Wave Energy

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    2005-01-01

    Wave Energy Converters (WEC’s) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased by approximately 30......-50%. Clearly longer wave reflectors will focus more wave energy than shorter wave reflectors. Thus the draw back is the increased wave forces for the longer wave reflectors. In the paper a procedure for calculating the energy efficiency and the wave forces on the reflectors are described, this by use of a 3D...... boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benefit for different wave reflector geometries and optimal geometrical design parameters are specified. On this basis inventors of WEC’s can...

  7. Introducing wave energy into the renewable energy marketplace

    International Nuclear Information System (INIS)

    Petroncini, S.; Yemm, R.W.

    2001-01-01

    The energy sector in Europe is going through a dynamic evolution that sees the introduction and development of renewable energy and the re-emergence of a wave energy industry. Although wave energy is currently not economically competitive with mature technologies such as wind energy, the wave energy world-wide resource of 2 TW has a potential contribution in the electricity market of 2000TWh/year. Denmark, Ireland, Portugal, Norway and the UK have been analysed in terms of wave energy resources, renewable energy market structure and political and economic support for the introduction of wave energy into the marketplace. The results have been used together with Ocean Power Delivery Ltd to develop an initial market survey for the wave energy converter Pelamis. (au)

  8. The Dragon Project origins, achievements and legacies

    International Nuclear Information System (INIS)

    Price, M.S.T.

    2012-01-01

    The lineage of the Dragon Project can be traced back to 1955 when the United Kingdom launched a nuclear power programme which involved the construction of large graphite moderated reactors fuelled with natural uranium and cooled by carbon dioxide. Not long afterwards the European Nuclear Energy Agency (ENEA) of the then newly formed Organisation for European Economic Cooperation (OEEC), in the spirit of the time, sought to encourage the construction of nuclear power stations and the development of joint nuclear undertakings. The United Kingdom Atomic Energy Research Establishment (AERE) had, since 1949, been studying possible long term improvements in energy conversion efficiency resulting from higher coolant gas temperatures and the use of ceramic materials. A 1955 paper on gas-cooled reactors using the U-233/thorium cycle attracted interest and this progressed to the definition of an initial programme. The high temperature work led to a proposal for a 20 MW(Th) Reactor Experiment and one important consequence of the ENEA/OEEC initiative was the setting up in April 1959 of the international Dragon Project Agreement. Initial experiments at Harwell in 1957 had involved the coating of small spheroidal particles of uranium carbide or oxide with pyrolytic carbon which were then bonded with carbonaceous material. But experiments demonstrated that fission products such as caesium, strontium or barium could diffuse through such coatings. This led in 1961 to the modification of the coated particle design by the addition of an intermediate layer of silicon or zirconium carbide. The small size of the particles necessitated a statistical approach to quality during manufacture and effort was concentrated on the minimisation of the broken or defective particle fraction. The subsequent operation of the Dragon Reactor for over 10 years confirmed the benign nature of a HTR. It also proved that fuel bodies made with coated particles were capable of maintaining a high degree of

  9. The verification of DRAGON: progress and lessons learned

    International Nuclear Information System (INIS)

    Marleau, G.

    2002-01-01

    The general requirements for the verification of the legacy code DRAGON are somewhat different from those used for new codes. For example, the absence of a design manual for DRAGON makes it difficult to confirm that the each part of the code performs as required since these requirements are not explicitly spelled out for most of the DRAGON modules. In fact, this conformance of the code can only be assessed, in most cases, by making sure that the contents of the DRAGON data structures, which correspond to the output generated by a module of the code, contains the adequate information. It is also possible in some cases to use the self-verification options in DRAGON to perform additional verification or to evaluate, using an independent software, the performance of specific functions in the code. Here, we will describe the global verification process that was considered in order to bring DRAGON to an industry standard tool-set (IST) status. We will also discuss some of the lessons we learned in performing this verification and present some of the modification to DRAGON that were implemented as a consequence of this verification. (author)

  10. SpaceX's Dragon America's next generation spacecraft

    CERN Document Server

    Seedhouse, Erik

    2016-01-01

    This book describes Dragon V2, a futuristic vehicle that not only provides a means for NASA to transport its astronauts to the orbiting outpost but also advances SpaceX’s core objective of reusability. A direct descendant of Dragon, Dragon V2 can be retrieved, refurbished and re-launched. It is a spacecraft with the potential to completely revolutionize the economics of an industry where equipment costing hundreds of millions of dollars is routinely discarded after a single use. It was presented by SpaceX CEO Elon Musk in May 2014 as the spaceship that will carry NASA astronauts to the International Space Station as soon as 2016 SpaceX’s Dragon – America’s Next Generation Spacecraft describes the extraordinary feats of engineering and human achievement that have placed this revolutionary spacecraft at the forefront of the launch industry and positioned it as the precursor for ultimately transporting humans to Mars. It describes the design and development of Dragon, provides mission highlights of the f...

  11. DRAGON analysis of MOX fueled VVER cell benchmarks

    International Nuclear Information System (INIS)

    Marleau, G.; Foissac, F.

    2002-01-01

    The computational unit-cell benchmarks problems for LEU and MOX fueled VVER-1000 ('water-water energetic reactor') have been analyzed using the code DRAGON with ENDF/B-V and ENDF/B-VI based WIMS-AECL cross section libraries. The results obtained were compared with those generated using the SAS2H module of the SCALE-4.3 computational code system and with the code HELIOS. Good agreements between DRAGON and HELIOS were obtained when the ENDF/B-VI based library was considered while the ENDF/B-V DRAGON results were generally closer to those obtained using SAS2H. This study was useful for the verification of the DRAGON code and confirms that HELIOS and DRAGON have a similar behavior when compatible cross sections library are used. (author)

  12. Intraerythrocytic iridovirus in central bearded dragons (Pogona vitticeps).

    Science.gov (United States)

    Grosset, Claire; Wellehan, James F X; Owens, Sean D; McGraw, Sabrina; Gaffney, Patricia M; Foley, Janet; Childress, April L; Yun, Susan; Malm, Kirsten; Groff, Joseph M; Paul-Murphy, Joanne; Weber, E Scott

    2014-05-01

    Three adult central bearded dragons (Pogona vitticeps) originating from a commercial breeding facility presented with clinical signs, including anorexia, dehydration, white multifocal lesions on the dorsal aspect of the tongue, blepharospasm, and weight loss. In 1 of 3 lizards, a marked regenerative anemia was noted, and all 3 bearded dragons had erythrocytic intracytoplasmic inclusion bodies. Nine bearded dragons housed in contact also had identical, but fewer intraerythrocytic inclusions. Inclusion bodies examined by electron microscopy had particles consistent with iridoviruses. Attempts to culture the virus were unsuccessful; however, amplification and sequencing of regions of the viral DNA polymerase by polymerase chain reaction confirmed the presence of an iridovirus. One of the bearded dragons died, while the 2 others showing clinical signs were euthanized. The remaining 9 infected bearded dragons of the teaching colony were also euthanized. Postmortem examination revealed a moderate, multifocal, lymphoplasmacytic or mononuclear adenitis of the tongue in the 3 bearded dragons, and a lymphohistiocytic hepatitis with bacterial granulomas in 2 lizards. © 2014 The Author(s).

  13. The Wave Energy Sector

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    2017-01-01

    This Handbook for Ocean Wave Energy aims at providing a guide into the field of ocean wave energy utilization. The handbook offers a concise yet comprehensive overview of the main aspects and disciplines involved in the development of wave energy converters (WECs). The idea for the book has been...... shaped by the development, research, and teaching that we have carried out at the Wave Energy Research Group at Aalborg University over the past decades. It is our belief and experience that it would be useful writing and compiling such a handbook in order to enhance the understanding of the sector...

  14. Assessing wave energy effects on biodiversity: the wave hub experience.

    Science.gov (United States)

    Witt, M J; Sheehan, E V; Bearhop, S; Broderick, A C; Conley, D C; Cotterell, S P; Crow, E; Grecian, W J; Halsband, C; Hodgson, D J; Hosegood, P; Inger, R; Miller, P I; Sims, D W; Thompson, R C; Vanstaen, K; Votier, S C; Attrill, M J; Godley, B J

    2012-01-28

    Marine renewable energy installations harnessing energy from wind, wave and tidal resources are likely to become a large part of the future energy mix worldwide. The potential to gather energy from waves has recently seen increasing interest, with pilot developments in several nations. Although technology to harness wave energy lags behind that of wind and tidal generation, it has the potential to contribute significantly to energy production. As wave energy technology matures and becomes more widespread, it is likely to result in further transformation of our coastal seas. Such changes are accompanied by uncertainty regarding their impacts on biodiversity. To date, impacts have not been assessed, as wave energy converters have yet to be fully developed. Therefore, there is a pressing need to build a framework of understanding regarding the potential impacts of these technologies, underpinned by methodologies that are transferable and scalable across sites to facilitate formal meta-analysis. We first review the potential positive and negative effects of wave energy generation, and then, with specific reference to our work at the Wave Hub (a wave energy test site in southwest England, UK), we set out the methodological approaches needed to assess possible effects of wave energy on biodiversity. We highlight the need for national and international research clusters to accelerate the implementation of wave energy, within a coherent understanding of potential effects-both positive and negative.

  15. Dragon (RGMb) induces oxaliplatin resistance in colon cancer cells.

    Science.gov (United States)

    Shi, Ying; Huang, Xiao-Xiao; Chen, Guo-Bin; Wang, Ying; Zhi, Qiang; Liu, Yuan-Sheng; Wu, Xiao-Ling; Wang, Li-Fen; Yang, Bing; Xiao, Chuan-Xing; Xing, Hui-Qin; Ren, Jian-Lin; Xia, Yin; Guleng, Bayasi

    2016-07-26

    Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer mortality. Chemotherapy resistance remains a major challenge for treating advanced CRC. Therefore, the identification of targets that induce drug resistance is a priority for the development of novel agents to overcome resistance. Dragon (also known as RGMb) is a member of the repulsive guidance molecule (RGM) family. We previously showed that Dragon expression increases with CRC progression in human patients. In the present study, we found that Dragon inhibited apoptosis and increased viability of CMT93 and HCT116 cells in the presence of oxaliplatin. Dragon induced resistance of xenograft tumor to oxaliplatinin treatment in mice. Mechanistically, Dragon inhibited oxaliplatin-induced JNK and p38 MAPK activation, and caspase-3 and PARP cleavages. Our results indicate that Dragon may be a novel target that induces drug resistance in CRC.

  16. Coherent Wave Measurement Buoy Arrays to Support Wave Energy Extraction

    Science.gov (United States)

    Spada, F.; Chang, G.; Jones, C.; Janssen, T. T.; Barney, P.; Roberts, J.

    2016-02-01

    Wave energy is the most abundant form of hydrokinetic energy in the United States and wave energy converters (WECs) are being developed to extract the maximum possible power from the prevailing wave climate. However, maximum wave energy capture is currently limited by the narrow banded frequency response of WECs as well as extended protective shutdown requirements during periods of large waves. These limitations must be overcome in order to maximize energy extraction, thus significantly decreasing the cost of wave energy and making it a viable energy source. Techno-economic studies of several WEC devices have shown significant potential to improve wave energy capture efficiency through operational control strategies that incorporate real-time information about local surface wave motions. Integral Consulting Inc., with ARPA-E support, is partnering with Sandia National Laboratories and Spoondrift LLC to develop a coherent array of wave-measuring devices to relay and enable the prediction of wave-resolved surface dynamics at a WEC location ahead of real time. This capability will provide necessary information to optimize power production of WECs through control strategies, thereby allowing for a single WEC design to perform more effectively across a wide range of wave environments. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000514.

  17. Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Petersen, Anne-Louise S.

    2004-01-01

    Udvikling og produktion af vindmøller har været en af de største danske erhvervssucceser gennem de sidste 10 år. Nu er det næste danske bud på en vedvarende energikilde under udvikling havets bølger skal fanges, og deres energi skal tappes....

  18. Report on Damage in Storm 05.01.08

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Friis-Madsen, Erik; Christensen, Lars

    The report describes a number of observations at the energy converter Wave Dragon, Nissum Bredning, during the storm on January 8th 2005.......The report describes a number of observations at the energy converter Wave Dragon, Nissum Bredning, during the storm on January 8th 2005....

  19. Handbook of Ocean Wave Energy

    DEFF Research Database (Denmark)

    This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment...... in the wave energy sector. •Offers a practice-oriented reference guide to the field of ocean wave energy •Presents an overview as well as a deeper insight into wave energy converters •Covers both the economic and engineering aspects related to ocean wave energy conversion...... of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners...

  20. Handbook of Ocean Wave Energy

    DEFF Research Database (Denmark)

    This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment...... of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners...... in the wave energy sector. •Offers a practice-oriented reference guide to the field of ocean wave energy •Presents an overview as well as a deeper insight into wave energy converters •Covers both the economic and engineering aspects related to ocean wave energy conversion...

  1. A proposed wave farm on the Galician coast

    International Nuclear Information System (INIS)

    Veigas, M.; López, M.; Romillo, P.; Carballo, R.; Castro, A.; Iglesias, G.

    2015-01-01

    Highlights: • The productions of four wave energy converters are estimated and compared. • The electric production of single units and 12 MW power plants are considered. • Three study sites at different water depths in the northwest of Spain are studied. • The occupation of the wave plant is considered to determine the best technology. • The Wave Dragon resulted the technology with the highest production. - Abstract: This work is focused on the analysis of the wave resource and its exploitation by means of a proposed 12 MW wave plant in Northwestern Spain. For this purpose, a total of four current technologies of wave conversion are analysed at three different sites located at different water depths, which correspond to one of the European areas with the greatest wave energy resource and where its electric production is still underdeveloped. To carry out the research, the wave data recorded at an offshore buoy near the area and the power matrices of the four selected wave energy technologies are used. The offshore wave conditions—representing 95% of the total energy of an average year—are propagated through spectral numerical modelling towards the coast. On the basis of the results, two of the four selected technologies forming the 12 MW power plants and one of the three considered points emerge as the ones allowing the greatest energy production and, at the same time, having a minimum area of occupation which, in turn, is crucial to reducing the visual impact. Finally, this research discusses the energy supply capacity of the proposed plants to satisfy the energy consumption required by nearby communities

  2. A validation of DRAGON based on lattice experiments

    International Nuclear Information System (INIS)

    Marleau, G.

    1996-01-01

    Here we address the validation of DRAGON using the Chalk River Laboratory experimental database which has already been used for the validation of other codes. Because of the large variety of information for different fuel and moderator types compiled on this database, the most basic modules of DRAGON are thoroughly tested. The general behaviour observed with DRAGON is very good. Its main weakness is seen in the self-shielding ,calculation where the correction applied to the inner fuel pin seems to be overevaluated with respect to the outer fuel pins. One question which is left open this paper concerns the need for inserting end-regions in the DRAGON cells when the heterogeneous B, leakage model is used. (author)

  3. Dragon-I Linear Induction Electron Accelerator

    International Nuclear Information System (INIS)

    Ding Bonan; Deng Jianjun; Wang Huacen; Cheng Nian'an; Dai Guangsen; Zhang Linwen; Liu Chengjun; Zhang Wenwei; Li Jin; Zhang Kaizhi

    2005-01-01

    Dragon-I is a linear induction electron accelerator. This facility consists of a 3.6 MeV injector, 38 meter beam transport line and 16 MeV induction accelerator powered by high voltage generators, including 8 Marx generators and 48 Blumlein lines. This paper describes the physics design, development and experimental results of Dragon-I. The key technology is analyzed in the accelerator development, and the design requirements and operation of the major subsystems are presented. The experimental results show Dragon-I generates an 18-20 MeV, 2.5 kA, 70 ns electron beam. The X-ray spot size is about 1.2 mm and dose level about 0.103 C/kg at 1 meter. (authors)

  4. Outliers and Extremes: Dragon-Kings or Dragon-Fools?

    Science.gov (United States)

    Schertzer, D. J.; Tchiguirinskaia, I.; Lovejoy, S.

    2012-12-01

    Geophysics seems full of monsters like Victor Hugo's Court of Miracles and monstrous extremes have been statistically considered as outliers with respect to more normal events. However, a characteristic magnitude separating abnormal events from normal ones would be at odd with the generic scaling behaviour of nonlinear systems, contrary to "fat tailed" probability distributions and self-organized criticality. More precisely, it can be shown [1] how the apparent monsters could be mere manifestations of a singular measure mishandled as a regular measure. Monstrous fluctuations are the rule, not outliers and they are more frequent than usually thought up to the point that (theoretical) statistical moments can easily be infinite. The empirical estimates of the latter are erratic and diverge with sample size. The corresponding physics is that intense small scale events cannot be smoothed out by upscaling. However, based on a few examples, it has also been argued [2] that one should consider "genuine" outliers of fat tailed distributions so monstrous that they can be called "dragon-kings". We critically analyse these arguments, e.g. finite sample size and statistical estimates of the largest events, multifractal phase transition vs. more classical phase transition. We emphasize the fact that dragon-kings are not needed in order that the largest events become predictable. This is rather reminiscent of the Feast of Fools picturesquely described by Victor Hugo. [1] D. Schertzer, I. Tchiguirinskaia, S. Lovejoy et P. Hubert (2010): No monsters, no miracles: in nonlinear sciences hydrology is not an outlier! Hydrological Sciences Journal, 55 (6) 965 - 979. [2] D. Sornette (2009): Dragon-Kings, Black Swans and the Prediction of Crises. International Journal of Terraspace Science and Engineering 1(3), 1-17.

  5. Physiological and physical characteristics of elite dragon boat paddlers.

    Science.gov (United States)

    Ho, Sarah R; Smith, Richard M; Chapman, Philip G; Sinclair, Peter J; Funato, Kazuo

    2013-01-01

    The objectives of this study were to profile the physiological and physical characteristics of elite dragon boat paddlers, to identify characteristics that predict race performance and to quantify the metabolic energy contributions to simulated 200-m and 500-m dragon boat racing. Eleven, national level, male, Japanese dragon boat paddlers completed a battery of tests on a paddling ergometer including an incremental maximal aerobic capacity test, a 2-minute maximal accumulated oxygen deficit (MAOD) test, and simulated 200-m and 500-m races. A physiological and physical profile of subjects was compiled. Results showed that 200-m race performance correlated with flexed arm girth and excess postexercise oxygen consumption (EPOC) measured in the 30 minutes after the MAOD test, whereas 500-m race performance correlated with body fat percentage, relaxed and flexed arm girth, MAOD, EPOC, and peak power during the MAOD test. Stepwise multiple regression revealed that flexed arm girth was the most powerful predictor of 200-m and 500-m race performance, followed by EPOC with the combination of these 2 factors able to explain 74% and 68% of the variance in 200-m and 500-m race performance, respectively. Aerobic energy contributions for 200-m (50 seconds) and 500-m (1 minute 50 seconds) races were (mean (95% confidence intervals)) 52.1% (range, 47.4-56.8%) and 67.5% (range, 60.1-77.8%), respectively. In conclusion, coaches should develop training programs targeted at developing upper-body musculature and increasing anaerobic capacity because these factors are the strongest predictors of 200-m and 500-m race performance. Given the substantial aerobic energy contributions even for a 200-m race event, coaches should aim to increase the maximal aerobic capacity of the paddler in preparation for both 200-m and 500-m events.

  6. Characterization of dragon fruit (Hylocereus spp.) components with valorization potential

    OpenAIRE

    Liaotrakoon, Wijitra

    2013-01-01

    Dragon fruit (Hylocereus spp.), also known as pitaya or pitahaya, is increasingly gaining interest in many countries, including Thailand which is a country with a climate ideal for breeding different varieties of tropical and subtropical fruits in general, and dragon fruit more specifically. The benefits of dragon fruit for human health can be explained by its essential nutrients such as vitamins, minerals, complex carbohydrates, dietary fibres and antioxidants. Dragon fruit is also an essent...

  7. Dragon enhances BMP signaling and increases transepithelial resistance in kidney epithelial cells.

    Science.gov (United States)

    Xia, Yin; Babitt, Jodie L; Bouley, Richard; Zhang, Ying; Da Silva, Nicolas; Chen, Shanzhuo; Zhuang, Zhenjie; Samad, Tarek A; Brenner, Gary J; Anderson, Jennifer L; Hong, Charles C; Schneyer, Alan L; Brown, Dennis; Lin, Herbert Y

    2010-04-01

    The neuronal adhesion protein Dragon acts as a bone morphogenetic protein (BMP) coreceptor that enhances BMP signaling. Given the importance of BMP signaling in nephrogenesis and its putative role in the response to injury in the adult kidney, we studied the localization and function of Dragon in the kidney. We observed that Dragon localized predominantly to the apical surfaces of tubular epithelial cells in the thick ascending limbs, distal convoluted tubules, and collecting ducts of mice. Dragon expression was weak in the proximal tubules and glomeruli. In mouse inner medullary collecting duct (mIMCD3) cells, Dragon generated BMP signals in a ligand-dependent manner, and BMP4 is the predominant endogenous ligand for the Dragon coreceptor. In mIMCD3 cells, BMP4 normally signaled through BMPRII, but Dragon enhanced its signaling through the BMP type II receptor ActRIIA. Dragon and BMP4 increased transepithelial resistance (TER) through the Smad1/5/8 pathway. In epithelial cells isolated from the proximal tubule and intercalated cells of collecting ducts, we observed coexpression of ActRIIA, Dragon, and BMP4 but not BMPRII. Taken together, these results suggest that Dragon may enhance BMP signaling in renal tubular epithelial cells and maintain normal renal physiology.

  8. Dragon-Kings, Black-Swans and Prediction (Invited)

    Science.gov (United States)

    Sornette, D.

    2010-12-01

    Extreme fluctuations or events are often associated with power law statistics. Indeed, it is a popular belief that "wild randomness'' is deeply associated with distributions with power law tails characterized by small exponents. In other words, power law tails are often seen as the epitome of extreme events (the "Black Swan'' story). Here, we document in very different systems that there is life beyond power law tails: power laws can be superseded by "dragon-kings'', monster events that occur beyond (or changing) the power law tail. Dragon-kings reveal hidden mechanisms that are only transiently active and that amplify the normal fluctuations (often described by the power laws of the normal regime). The goal of this lecture is to catalyze the interest of the community of geophysicists across all fields of geosciences so that the "invisible gorilla" fallacy may be avoided. Our own research illustrates that new statistics or representation of data are often necessary to identify dragon-kings, with strategies guided by the underlying mechanisms. Paradoxically, the monsters may be ignored or hidden by the use of inappropriate analysis or statistical tools that amount to cut a mamooth in small pieces, so as to lead to the incorrect belief that only mice exist. In order to stimulate further research, we will document and discuss the dragon-king phenomenon on the statistics of financial losses, economic geography, hydrodynamic turbulence, mechanical ruptures, avalanches in complex heterogeneous media, earthquakes, and epileptic seizures. The special status of dragon-kings open a new research program on their predictability, based on the fact that they belong to a different class of their own and express specific mechanisms amplifying the normal dynamics via positive feedbacks. We will present evidence of these claims for the predictions of material rupture, financial crashes and epileptic seizures. As a bonus, a few remarks will be offered at the end on how the dragon

  9. Wave energy : from demonstration to commercialization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The Wave Energy Centre is a non-profit organization dedicated to the development and marketing of ocean wave energy devices through technical and strategic support to companies and research and development institutions. WEC provides access to researchers to associated test infrastructures for testing and demonstration of wave energy structures. This presentation described the current status of wave energy. Public policies that support wave energy were also highlighted. Wave energy technology is currently in the demonstration phase, with several pilot plants and prototypes in service around the world. The first 2 offshore shoreline ocean wave current pilot plants were constructed in 2000. This presentation identified the 12 near or offshore pilot plants that were in operation by 2007. The pilot plants represent 5 basic different concepts with many different designs. The world's first commercial park was launched in 2007 in Portugal. The Pelamis wave farm uses three Pelamis P-750 machines with a capacity of 2.25 megawatts. figs.

  10. Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays

    OpenAIRE

    O'Boyle, Louise; Elsäßer, Björn; Whittaker, Trevor

    2017-01-01

    Wave energy converters (WECs) inherently extract energy from incident waves. For wave energy to become a significant power provider in the future, large farms of WECs will be required. This scale of energy extraction will increase the potential for changes in the local wave field and coastal environment. Assessment of these effects is necessary to inform decisions on the layout of wave farms for optimum power output and minimum environmental impact, as well as on potential site selection. An ...

  11. Black swans and dragon kings: A unified model

    Science.gov (United States)

    Eliazar, Iddo

    2017-09-01

    The term “black swan” is a metaphor for outlier events whose statistics are characterized by Pareto's Law and by Zipf's Law; namely, statistics governed by power-law tails. The term “dragon king” is a metaphor for a singular outlier event which, in comparison with all other outlier events, is in a league of its own. As an illustrative example consider the wealth of a family that is sampled at random from a medieval society: the nobility constitutes the black-swan category, and the royal family constitutes the dragon-king category. In this paper we present and analyze a dynamical model that generates, universally and jointly, black swans and dragon kings. According to this model, growing from the microscopic scale to the macroscopic scale, black swans and dragon kings emerge together and invariantly with respect to initial conditions.

  12. Dragon (repulsive guidance molecule b) inhibits IL-6 expression in macrophages.

    Science.gov (United States)

    Xia, Yin; Cortez-Retamozo, Virna; Niederkofler, Vera; Salie, Rishard; Chen, Shanzhuo; Samad, Tarek A; Hong, Charles C; Arber, Silvia; Vyas, Jatin M; Weissleder, Ralph; Pittet, Mikael J; Lin, Herbert Y

    2011-02-01

    Repulsive guidance molecule (RGM) family members RGMa, RGMb/Dragon, and RGMc/hemojuvelin were found recently to act as bone morphogenetic protein (BMP) coreceptors that enhance BMP signaling activity. Although our previous studies have shown that hemojuvelin regulates hepcidin expression and iron metabolism through the BMP pathway, the role of the BMP signaling mediated by Dragon remains largely unknown. We have shown previously that Dragon is expressed in neural cells, germ cells, and renal epithelial cells. In this study, we demonstrate that Dragon is highly expressed in macrophages. Studies with RAW264.7 and J774 macrophage cell lines reveal that Dragon negatively regulates IL-6 expression in a BMP ligand-dependent manner via the p38 MAPK and Erk1/2 pathways but not the Smad1/5/8 pathway. We also generated Dragon knockout mice and found that IL-6 is upregulated in macrophages and dendritic cells derived from whole lung tissue of these mice compared with that in respective cells derived from wild-type littermates. These results indicate that Dragon is an important negative regulator of IL-6 expression in immune cells and that Dragon-deficient mice may be a useful model for studying immune and inflammatory disorders.

  13. Experiments on the WavePiston, Wave Energy Converter

    DEFF Research Database (Denmark)

    Angelelli, E.; Zanuttigh, B.; Kofoed, Jens Peter

    2011-01-01

    This paper analyses the performance of a new Wave Energy Converter (WEC) of the Oscillating Water Column type (OWC), named WavePiston. This near-shore floating device is composed of plates (i.e. energy collectors) sliding around a cylinder, that is placed perpendicular to the shore. Tests...... in the wave basin at Aalborg University allowed to investigate power production in the North Sea typical wave climate, with varying design parameters such as plate dimensions and their mutual distance. The power produced per meter by each collector is about the 5% of the available wave power. Experimental...... results and survivability considerations suggest that the WavePiston would be particularly suited for installations in milder seas. An example application is therefore presented in the Mediterranean Sea, off-shore the island of Sicily. In this case, each collector harvests the 10% of the available wave...

  14. Wave energy: a Pacific perspective.

    Science.gov (United States)

    Paasch, Robert; Ruehl, Kelley; Hovland, Justin; Meicke, Stephen

    2012-01-28

    This paper illustrates the status of wave energy development in Pacific rim countries by characterizing the available resource and introducing the region's current and potential future leaders in wave energy converter development. It also describes the existing licensing and permitting process as well as potential environmental concerns. Capabilities of Pacific Ocean testing facilities are described in addition to the region's vision of the future of wave energy.

  15. Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays

    Directory of Open Access Journals (Sweden)

    Louise O’Boyle

    2017-01-01

    Full Text Available Wave energy converters (WECs inherently extract energy from incident waves. For wave energy to become a significant power provider in the future, large farms of WECs will be required. This scale of energy extraction will increase the potential for changes in the local wave field and coastal environment. Assessment of these effects is necessary to inform decisions on the layout of wave farms for optimum power output and minimum environmental impact, as well as on potential site selection. An experimental campaign to map, at high resolution, the wave field variation around arrays of 5 oscillating water column WECs and a methodology for extracting scattered and radiated waves is presented. The results highlight the importance of accounting for the full extent of the WEC behavior when assessing impacts on the wave field. The effect of radiated waves on the wave field is not immediately apparent when considering changes to the entire wave spectrum, nor when observing changes in wave climate due to scattered and radiated waves superimposed together. The results show that radiated waves may account for up to 50% of the effects on wave climate in the near field in particular operating conditions.

  16. Standalone visualization tool for three-dimensional DRAGON geometrical models

    International Nuclear Information System (INIS)

    Lukomski, A.; McIntee, B.; Moule, D.; Nichita, E.

    2008-01-01

    DRAGON is a neutron transport and depletion code able to solve one-, two- and three-dimensional problems. To date DRAGON provides two visualization modules, able to represent respectively two- and three-dimensional geometries. The two-dimensional visualization module generates a postscript file, while the three dimensional visualization module generates a MATLAB M-file with instructions for drawing the tracks in the DRAGON TRACKING data structure, which implicitly provide a representation of the geometry. The current work introduces a new, standalone, tool based on the open-source Visualization Toolkit (VTK) software package which allows the visualization of three-dimensional geometrical models by reading the DRAGON GEOMETRY data structure and generating an axonometric image which can be manipulated interactively by the user. (author)

  17. Gastric neuroendocrine carcinomas in bearded dragons (Pogona vitticeps).

    Science.gov (United States)

    Ritter, J M; Garner, M M; Chilton, J A; Jacobson, E R; Kiupel, M

    2009-11-01

    This article describes a newly recognized highly malignant neoplastic entity in young bearded dragons (Pogona vitticeps), gastric neuroendocrine carcinomas, which readily metastasize. Ten bearded dragons with histories of anorexia (8), vomiting (3), hyperglycemia (2), and anemia (3) were included in this study. All animals had neoplastic masses in their stomach, with metastasis to the liver. Microscopically, 6 of these neuroendocrine carcinomas were well-differentiated and 4 were poorly differentiated. For further characterization, immunohistochemistry for protein gene product 9.5, neuron-specific enolase, endorphin, chromogranins A and B, synaptophysin, somatostatin, insulin, glucagon, gastrin, pancreatic polypeptide, and vasoactive intestinal peptide was performed on 5 animals. Because only immunolabeling for somatostatin was consistently observed in all neoplasms, a diagnosis of somatostatinoma was made for these 5 bearded dragons. Some neoplasms also exhibited multihormonal expression. Electron microscopy performed on 1 tumor confirmed the presence of neuroendocrine granules within neoplastic cells. Gastric neuroendocrine carcinomas, and specifically somatostatinomas, have not been previously reported in bearded dragons, or other reptiles, and may be underdiagnosed due to inconsistent, ambiguous clinical signs. In humans, pancreatic somatostatinomas are associated with a syndrome of hypersomatostatinemia, which includes hyperglycemia, weight loss, and anemia, as observed in some of these bearded dragons. Somatostatinomas in humans are commonly associated with neurofibromatosis type 1 (Von Recklinghausen's disease), caused by a mutation in the tumor suppressor gene NF1, which results in decreased expression of neurofibromin. In all 5 animals examined, neoplasms exhibited decreased neurofibromin expression compared with control tissues, suggesting that decreased functional neurofibromin may play a role in the pathogenesis of somatostatinomas in bearded dragons.

  18. Wave energy input into the Ekman layer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper is concerned with the wave energy input into the Ekman layer, based on 3 observational facts that surface waves could significantly affect the profile of the Ekman layer. Under the assumption of constant vertical diffusivity, the analytical form of wave energy input into the Ekman layer is derived. Analysis of the energy balance shows that the energy input to the Ekman layer through the wind stress and the interaction of the Stokes-drift with planetary vorticity can be divided into two kinds. One is the wind energy input, and the other is the wave energy input which is dependent on wind speed, wave characteristics and the wind direction relative to the wave direction. Estimates of wave energy input show that wave energy input can be up to 10% in high-latitude and high-wind speed areas and higher than 20% in the Antarctic Circumpolar Current, compared with the wind energy input into the classical Ekman layer. Results of this paper are of significance to the study of wave-induced large scale effects.

  19. DRAGONS - A Micrometeoroid and Orbital Debris Impact Sensor

    Science.gov (United States)

    Liou, J. -C.; Corsaro, R.; Giovane, F.; Anderson, C.; Sadilek, A.; Burchell, M.; Hamilton, J.

    2015-01-01

    The Debris Resistive/Acoustic Grid Orbital Navy-NASA Sensor (DRAGONS) is intended to be a large area impact sensor for in situ measurements of micrometeoroids and orbital debris (MMOD) in the millimeter or smaller size regime. These MMOD particles are too small to be detected by ground-based radars and optical telescopes, but are still large enough to be a serious safety concern for human space activities and robotic missions in the low Earth orbit (LEO) region. The nominal detection area of a DRAGONS unit is 1 m2, consisting of several independently operated panels. The approach of the DRAGONS design is to combine different particle impact detection principles to maximize information that can be extracted from detected events. After more than 10 years of concept and technology development, a 1 m2 DRAGONS system has been selected for deployment on the International Space Station (ISS) in August 2016. The project team achieved a major milestone when the Preliminary Design Review (PDR) was completed in May 2015. Once deployed on the ISS, this multi-year mission will provide a unique opportunity to demonstrate the MMOD detection capability of the DRAGONS technologies and to collect data to better define the small MMOD environment at the ISS altitude.

  20. SSG Wave Energy Converter

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Vicinanza, Diego; Frigaard, Peter

    2008-01-01

    The SSG (Sea Slot-cone Generator) is a wave energy converter of the overtopping type. The structure consists of a number of reservoirs one on the top of each others above the mean water level, in which the water of incoming waves is stored temporary. In each reservoir, expressively designed low...... head hydroturbines are converting the potential energy of the stored water into power. A key to success for the SSG will be the low cost of the structure and its robustness. The construction of the pilot plant is scheduled and this paper aims to describe the concept of the SSG wave energy converter...

  1. DRAGON 3.05D, Reactor Cell Calculation System with Burnup

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: The computer code DRAGON contains a collection of models that can simulate the neutron behavior of a unit cell or a fuel assembly in a nuclear reactor. It includes all of the functions that characterize a lattice cell code, namely: the interpolation of microscopic cross sections supplied by means of standard libraries; resonance self-shielding calculations in multidimensional geometries; multigroup and multidimensional neutron flux calculations that can take into account neutron leakage; transport-transport or transport-diffusion equivalence calculations as well as editing of condensed and homogenized nuclear properties for reactor calculations; and finally isotopic depletion calculations. 2 - Methods: The code DRAGON contains a multigroup flux solver conceived that can use a various algorithms to solve the neutron transport equation for the spatial and angular distribution of the flux. Each of these algorithms is presented in the form of a one-group solution procedure where the contributions from other energy groups are considered as sources. The current release of DRAGON contains five such algorithms. The JPM option that solves the integral transport equation using the J+- method, (interface current method applied to homogeneous blocks); the SYBIL option that solves the integral transport equation using the collision probability method for simple one dimensional (1-D) or two dimensional (2-D) geometries and the interface current method for 2-D Cartesian or hexagonal assemblies; the EXCELL/NXT option to solve the integral transport equation using the collision probability method for more general 2-D geometries and for three dimensional (3-D) assemblies; the MOCC option to solve the transport equation using the method of cyclic characteristics in 2-D Cartesian, and finally the MCU option to solve the transport equation using the method of characteristics (non cyclic) for 3-D Cartesian geometries. The execution of DRAGON is

  2. Cycloidal Wave Energy Converter

    Energy Technology Data Exchange (ETDEWEB)

    Stefan G. Siegel, Ph.D.

    2012-11-30

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will

  3. Mars Sample Return Landed with Red Dragon

    Science.gov (United States)

    Stoker, Carol R.; Lemke, Lawrence G.

    2013-01-01

    A Mars Sample Return (MSR) mission is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. However, an affordable program to carry this out has not been defined. This paper describes a study that examined use of emerging commercial capabilities to land the sample return elements, with the goal of reducing mission cost. A team at NASA Ames examined the feasibility of the following scenario for MSR: A Falcon Heavy launcher injects a SpaceX Dragon crew capsule and trunk onto a Trans Mars Injection trajectory. The capsule is modified to carry all the hardware needed to return samples collected on Mars including a Mars Ascent Vehicle (MAV), an Earth Return Vehicle (ERV) and Sample Collection and Storage hardware. The Dragon descends to land on the surface of Mars using SuperSonic Retro Propulsion (SSRP) as described by Braun and Manning [IEEEAC paper 0076, 2005]. Samples are acquired and deliverd to the MAV by a prelanded asset, possibly the proposed 2020 rover. After samples are obtained and stored in the ERV, the MAV launches the sample-containing ERV from the surface of Mars. We examined cases where the ERV is delivered to either low Mars orbit (LMO), C3 = 0 (Mars escape), or an intermediate energy state. The ERV then provides the rest of the energy (delta V) required to perform trans-Earth injection (TEI), cruise, and insertion into a Moon-trailing Earth Orbit (MTEO). A later mission, possibly a crewed Dragon launched by a Falcon Heavy (not part of the current study) retrieves the sample container, packages the sample, and performs a controlled Earth re-entry to prevent Mars materials from accidentally contaminating Earth. The key analysis methods used in the study employed a set of parametric mass estimating relationships (MERs) and standard aerospace analysis software codes modified for the MAV class of launch vehicle to determine the range of performance parameters that produced converged

  4. Wave energy

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, T.J.T. (Queen' s Univ., Belfast, Northern Ireland (UK)); White, P.R.S. (Lanchester Polytechnic, Coventry (UK)); Baker, A.C.J. (Binnie and Partners, London (UK))

    1988-10-01

    An informal discussion on various wave energy converters is reported. These included a prototype oscillating water column (OWC) device being built on the Isle of Islay in Scotland; the SEA Clam; a tapering channel device (Tapchan) raising incoming waves into a lagoon on a Norwegian island and an OWC device on the same island. The Norwegian devices are delivering electricity at about 5.5p/KWh and 4p/KWh respectively with possibilities for reduction to 2.5-3p/KWh and 3p/KWh under favourable circumstances. The discussion ranged over comparisons with progress in wind power, engineering aspects, differences between inshore and offshore devices, tidal range and energy storage. (UK).

  5. Tunnel effect wave energy detection

    Science.gov (United States)

    Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)

    1995-01-01

    Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.

  6. Parthenogenesis in Komodo dragons.

    Science.gov (United States)

    Watts, Phillip C; Buley, Kevin R; Sanderson, Stephanie; Boardman, Wayne; Ciofi, Claudio; Gibson, Richard

    2006-12-21

    Parthenogenesis, the production of offspring without fertilization by a male, is rare in vertebrate species, which usually reproduce after fusion of male and female gametes. Here we use genetic fingerprinting to identify parthenogenetic offspring produced by two female Komodo dragons (Varanus komodoensis) that had been kept at separate institutions and isolated from males; one of these females subsequently produced additional offspring sexually. This reproductive plasticity indicates that female Komodo dragons may switch between asexual and sexual reproduction, depending on the availability of a mate--a finding that has implications for the breeding of this threatened species in captivity. Most zoos keep only females, with males being moved between zoos for mating, but perhaps they should be kept together to avoid triggering parthenogenesis and thereby decreasing genetic diversity.

  7. A Wims E analysis of the zero energy experiments of Dragon prior to charge IV - Part 1: General description of the method

    Energy Technology Data Exchange (ETDEWEB)

    Lancefield, M J

    1973-09-15

    This paper describes the proposed analysis scheme for the ZEX cores of DC4/1: the analysis was started in April and the progress to date is given in Reference 1. This analysis is a joint UKAEA/DRAGON exercise, funded by the DRAGON project.

  8. Ocean wave energy conversion

    CERN Document Server

    McCormick, Michael E

    2007-01-01

    This volume will prove of vital interest to those studying the use of renewable resources. Scientists, engineers, and inventors will find it a valuable review of ocean wave mechanics as well as an introduction to wave energy conversion. It presents physical and mathematical descriptions of the nine generic wave energy conversion techniques, along with their uses and performance characteristics.Author Michael E. McCormick is the Corbin A. McNeill Professor of Naval Engineering at the U.S. Naval Academy. In addition to his timely and significant coverage of possible environmental effects associa

  9. Wave Induced Loads on the LEANCON Wave Energy Converter

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter; Beserra, Eliab Ricarte

    This report is a product of the co-operation agreement between Aalborg University and LEANCON (by Kurt Due Rasmussen) on the evaluation and development of the LEANCON wave energy converter (WEC). The work reported here has focused on evaluation of the wave induced loads on the device, based...... in the laboratory, all under the supervision of the personnel of the Wave Energy Research Group at Department of Civil Engineering, Aalborg University....

  10. Enhancing Wave Energy Competitiveness through Co-Located Wind and Wave Energy Farms. A Review on the Shadow Effect

    Directory of Open Access Journals (Sweden)

    Sharay Astariz

    2015-07-01

    Full Text Available Wave energy is one of the most promising alternatives to fossil fuels due to the enormous available resource; however, its development may be slowed as it is often regarded as uneconomical. The largest cost reductions are expected to be obtained through economies of scale and technological progress. In this sense, the incorporation of wave energy systems into offshore wind energy farms is an opportunity to foster the development of wave energy. The synergies between both renewables can be realised through these co-located energy farms and, thus, some challenges of offshore wind energy can be met. Among them, this paper focuses on the longer non-operational periods of offshore wind turbines—relative to their onshore counterparts—typically caused by delays in maintenance due to the harsh marine conditions. Co-located wave energy converters would act as a barrier extracting energy from the waves and resulting in a shielding effect over the wind farm. On this basis, the aim of this paper is to analyse wave energy economics in a holistic way, as well as the synergies between wave and offshore wind energy, focusing on the shadow effect and the associated increase in the accessibility to the wind turbines.

  11. Problems of application of wave energy

    International Nuclear Information System (INIS)

    D'yakov, A.F.; Morozkina, M.V.

    1993-01-01

    Technical solutions of using the energy both sea waves and lake ones are analyzed. Mathematical description of wave processes and phenomena as well as techniques of selection and conversion of the wave energy are given. Wave energy electromechanical converters are considered. Great attention is paid to linear generators of electromechanical converters eddy currents in massive sections of these generators and features of their calculation. Techniques for optimization of the linear generator parameters are shown. 60 refs

  12. The Crest Wing Wave Energy Device

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    to generate power. Model tests have been performed using scale models (length scale 1:30), provided by WaveEnergyFyn, in regular and irregular wave states that can be found in Assessment of Wave Energy Devices. Best Practice as used in Denmark (Frigaard et al., 2008). The tests were carried out at Dept....... of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The displacement and force applied to a power take off system, provided by WaveEnergyFyn, were measured and used to calculate mechanical power available to the power take off....

  13. Gravitational Waves and Dark Energy

    Directory of Open Access Journals (Sweden)

    Peter L. Biermann

    2014-12-01

    Full Text Available The idea that dark energy is gravitational waves may explain its strength and its time-evolution. A possible concept is that dark energy is the ensemble of coherent bursts (solitons of gravitational waves originally produced when the first generation of super-massive black holes was formed. These solitons get their initial energy as well as keep up their energy density throughout the evolution of the universe by stimulating emission from a background, a process which we model by working out this energy transfer in a Boltzmann equation approach. New Planck data suggest that dark energy has increased in strength over cosmic time, supporting the concept here. The transit of these gravitational wave solitons may be detectable. Key tests include pulsar timing, clock jitter and the radio background.

  14. Ocean Wave Energy: Underwater Substation System for Wave Energy Converters

    International Nuclear Information System (INIS)

    Rahm, Magnus

    2010-01-01

    This thesis deals with a system for operation of directly driven offshore wave energy converters. The work that has been carried out includes laboratory testing of a permanent magnet linear generator, wave energy converter mechanical design and offshore testing, and finally design, implementation, and offshore testing of an underwater collector substation. Long-term testing of a single point absorber, which was installed in March 2006, has been performed in real ocean waves in linear and in non-linear damping mode. The two different damping modes were realized by, first, a resistive load, and second, a rectifier with voltage smoothing capacitors and a resistive load in the DC-link. The loads are placed on land about 2 km east of the Lysekil wave energy research site, where the offshore experiments have been conducted. In the spring of 2009, another two wave energy converter prototypes were installed. Records of array operation were taken with two and three devices in the array. With two units, non-linear damping was used, and with three units, linear damping was employed. The point absorbers in the array are connected to the underwater substation, which is based on a 3 m3 pressure vessel standing on the seabed. In the substation, rectification of the frequency and amplitude modulated voltages from the linear generators is made. The DC voltage is smoothened by capacitors and inverted to 50 Hz electrical frequency, transformed and finally transmitted to the on-shore measuring station. Results show that the absorption is heavily dependent on the damping. It has also been shown that by increasing the damping, the standard deviation of electrical power can be reduced. The standard deviation of electrical power is reduced by array operation compared to single unit operation. Ongoing and future work include the construction and installation of a second underwater substation, which will connect the first substation and seven new WECs

  15. Computer simulation of variform fuel assemblies using Dragon code

    International Nuclear Information System (INIS)

    Ju Haitao; Wu Hongchun; Yao Dong

    2005-01-01

    The DRAGON is a cell code that developed for the CANDU reactor by the Ecole Polytechnique de Montreal of CANADA. Although, the DRAGON is mainly used to simulate the CANDU super-cell fuel assembly, it has an ability to simulate other geometries of the fuel assembly. However, only NEACRP benchmark problem of the BWR lattice cell was analyzed until now except for the CANDU reactor. We also need to develop the code to simulate the variform fuel assemblies, especially, for design of the advanced reactor. We validated that the cell code DRAGON is useful for simulating various kinds of the fuel assembly by analyzing the rod-shape fuel assembly of the PWR and the MTR plate-shape fuel assembly. Some other kinds of geometry of geometry were computed. Computational results show that the DRAGON is able to analyze variform fuel assembly problems and the precision is high. (authors)

  16. New computational methods used in the lattice code DRAGON

    International Nuclear Information System (INIS)

    Marleau, G.; Hebert, A.; Roy, R.

    1992-01-01

    The lattice code DRAGON is used to perform transport calculations inside cells and assemblies for multidimensional geometry using the collision probability method, including the interface current and J ± techniques. Typical geometries that can be treated using this code include CANDU 2-dimensional clusters, CANDU 3-dimensional assemblies, pressurized water reactor (PWR) rectangular and hexagonal assemblies. It contains a self-shielding module for the treatment of microscopic cross section libraries and a depletion module for burnup calculations. DRAGON was written in a modular form in such a way as to accept easily new collision probability options and make them readily available to all the modules that require collision probability matrices like the self-shielding module, the flux solution module and the homogenization module. In this paper the authors present an overview of DRAGON and discuss some of the methods that were implemented in DRAGON in order to improve on its performance

  17. Developing a Hybrid Solar/Wind Powered Drip Irrigation System for Dragon Fruit Yield

    Science.gov (United States)

    Widiastuti, I.; Wijayanto, D. S.

    2017-03-01

    Irrigation operations take a large amount of water and energy which impact to total costs of crop production. Development of an efficient irrigation supplying precise amount of water and conserving the use of energy can have benefits not only by reducing the operating costs but also by enhancing the farmland productivity. This article presents an irrigation method that promotes sustainable use of water and energy appropriate for a developing tropical country. It proposes a drip irrigation system supported by a combined solar-wind electric power generation system for efficient use of water in dragon fruit cultivation. The electric power generated is used to drive a water pump filling a storage tank for irrigating a 3000 m2 dragon fruit yield in Nguntoronadi, Wonogiri, Indonesia. In designing the irrigation system, the plant’s water requirement was identified based on the value of reference evapotranspiration of the area. A cost/benefit analysis was performed to evaluate the economic feasibility of the proposed scheme. The installation of this solar and wind drip irrigation helps provide sufficient quantity of water to each plant using renewable energy sources which reduce dependence on fossil fuel.

  18. Benefits of up-wave measurements in linear short-term wave forecasting for wave energy applications

    OpenAIRE

    Paparella, Francesco; Monk, Kieran; Winands, Victor; Lopes, Miguel; Conley, Daniel; Ringwood, John

    2014-01-01

    The real-time control of wave energy converters requires the prediction of the wave elevation at the location of the device in order to maximize the power extracted from the waves. One possibility is to predict the future wave elevation by combining its past history with the spatial information coming from a sensor which measures the free surface elevation upwave of the wave energy converter. As an application example, the paper focuses on the prediction of the wave eleva...

  19. Blood values in wild and captive Komodo dragons (Varanus komodoensis).

    Science.gov (United States)

    Gillespie, Don; Frye, Frederic L.; Stockham, Steven L.; Fredeking, Terry

    2000-01-01

    The Komodo dragon (Varanus komodoensis) is the largest living lizard and occupies a range smaller than that of any other large carnivore in the world. Samples from 33 free-ranging animals at five localities in Komodo National Park, Indonesia were evaluated to assess underlying health problems. To build a comparative database, samples from 44 Komodo dragons in both Indonesian and U.S. zoos were also analyzed. Tests performed included complete blood counts, clinical chemistry profiles, vitamin A, D(3), and E analyses, mineral levels, and screening for chlorinated pesticides or other toxins in wild specimens. Blood samples from wild dragons were positive for hemogregarines, whereas captive specimens were all negative. Total white blood cell counts were consistently higher in captive Komodo dragons than in wild specimens. Reference intervals were established for some chemistry analytes, and values obtained from different groups were compared. Vitamin A and E ranges were established. Vitamin D(3) levels were significantly different in Komodo dragons kept in captive, indoor exhibits versus those with daily ultraviolet-B exposure, whether captive or wild specimens. Corrective measures such as ultraviolet-permeable skylights, direct sunlight exposure, and self-ballasted mercury vapor ultraviolet lamps increased vitamin D(3) concentrations in four dragons to levels comparable with wild specimens. Toxicology results were negative except for background-level chlorinated pesticide residues. The results indicate no notable medical, nutritional, or toxic problems in the wild Komodo dragon population. Problems in captive specimens may relate to, and can be corrected by, husbandry measures such as regular ultraviolet-B exposure. Zoo Biol 19:495-509, 2000. Copyright 2000 Wiley-Liss, Inc.

  20. Identification Content of the Red Dragon Fruit Extract Skin Using Fourier Transform Infrared (FTIR and Phytochemistry

    Directory of Open Access Journals (Sweden)

    Muhammad Ilham Noor

    2016-08-01

    Full Text Available Corrosion is a decline in the quality of the metal due to electrochemical reaction between the metal by a corrosive medium. One effort to reduce the rate of corrosion is by adding inhibitors. Organic inhibitors that can be used include antioxidants and vitamin C. To determine both the content of the test method is used Fourier Transform Infrared (FTIR and phytochemicals. FTIR is a method to measure used to determine the group and the type of bonding of a compound based on the value of the wave number of a plant. Phytochemical screening is a test of the qualitative secondary metabolites biologically active compounds found in plants. In this study used a sample of red dragon fruit. The results of the analysis provide information regarding the types of biologically active compounds and levels of the active compound contained in the red dragon fruit.

  1. A Wims E analysis of the zero energy experiments of Dragon prior to charge IV - Part 2: Progress with single element calculations

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, A J; Dubofsky, W; Lancefield, M J; Woloch, F

    1973-09-15

    An earlier paper gave a broad outline of the proposed method of analysing the DRAGON experiments. This paper describes the progress made in collecting and processing the data and in performing the single element calculations. Thus Section 2 covers the data, Section 3 gives a general picture of the whole reactor and Sections 4 to 7 describe the element calculations. Finally, Section 8 contains some results from the element calculations and Section 9 summarises an investigation performed prior to the start of the analysis. It bears emphasising that the data collection was a very time consuming operation due mainly to the diversity of the DRAGON elements and due also to the fact that DRAGON, as an irradiation facility, is not a clean experimental core with the result that data requires careful evaluation and is often difficult to obtain. For similar reasons the element calculations represent a much longer task than in most reactors in which only a small number of element types are present. In DRAGON separate data is supplied for each of the 37 elements.

  2. Commissioning and operation of DRAGON

    International Nuclear Information System (INIS)

    Engel, Sabine

    2003-01-01

    The new DRAGON (Detector of Recoils And Gammas Of Nuclear reactions) facility, located at the TRIUMF-ISAC radioactive beams laboratory in Vancouver, Canada, has initiated its experimental program. Recently DRAGON was used for initial studies of the 21 Na(p,γ) 22 Mg reaction. This facility was designed to measure absolutely the rates of radiative proton and alpha capture reactions of astrophysical interest to a precision of ±20%, using inverse kinematics. To fully understand the optics and operational parameters of the facility along with the transmission particularly of the reaction recoils, systematic studies of various configurations are in progress using stable beams along with measurements of well-known resonance reactions. The status of these commissioning studies is presented

  3. Wave Resource Characterization at US Wave Energy Converter (WEC) Test Sites

    Science.gov (United States)

    Dallman, A.; Neary, V. S.

    2016-02-01

    The US Department of Energy's (DOE) Marine and Hydrokinetic energy (MHK) Program is supporting a diverse research and development portfolio intended to accelerate commercialization of the marine renewable industry by improving technology performance, reducing market barriers, and lowering the cost of energy. Wave resource characterization at potential and existing wave energy converter (WEC) test sites and deployment locations contributes to this DOE goal by providing a catalogue of wave energy resource characteristics, met-ocean data, and site infrastructure information, developed utilizing a consistent methodology. The purpose of the catalogue is to enable the comparison of resource characteristics among sites to facilitate the selection of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives. It also provides inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and operations and maintenance. The first edition included three sites: the Pacific Marine Energy Center (PMEC) North Energy Test Site (NETS) offshore of Newport, Oregon, the Kaneohe Bay Naval Wave Energy Test Site (WETS) offshore of Oahu, HI, and a potential site offshore of Humboldt Bay, CA (Eureka, CA). The second edition was recently finished, which includes five additional sites: the Jennette's Pier Wave Energy Converter Test Site in North Carolina, the US Army Corps of Engineers (USACE) Field Research Facility (FRF), the PMEC Lake Washington site, the proposed PMEC South Energy Test Site (SETS), and the proposed CalWave Central Coast WEC Test Site. The operational sea states are included according to the IEC Technical Specification on wave energy resource assessment and characterization, with additional information on extreme sea states, weather windows, and representative spectra. The methodology and a summary of results will be discussed.

  4. Performance Evaluation of Wave Energy Converters

    DEFF Research Database (Denmark)

    Pecher, Arthur

    Ocean waves provide a sustainable, power-dense, predictable and widely available source of energy that could provide about 10 % of worlds energy needs. While research into waveenergy has been undertaken for decades, a significant increase in related activities has been seen in the recent years......, with more than 150 concepts currently being developed worldwide. Wave energy conversion concepts can be of many kinds, as the energy in the waves can be absorbed in many different ways. However, each concept is expected to require a thorough development process, involving different phases and prototypes....... Guidelines for the development of wave energy converters recommend the use of different prototypes, having different sizes, which have to perform tank tests or sea trials. Thisimplicates the need of different testing environment, which shifts from being controllable to uncontrollable with the development...

  5. Size-Related Differences in the Thermoregulatory Habits of Free-Ranging Komodo Dragons

    Directory of Open Access Journals (Sweden)

    Henry J. Harlow

    2010-01-01

    Full Text Available Thermoregulatory processes were compared among three-size groups of free-ranging Komodo dragons (Varanus komodoensis comprising small (5–20 kg, medium (20–40 gm and large (40–70 kg lizards. While all size groups maintained a similar preferred body temperature of ≈35∘C, they achieved this end point differently. Small dragons appeared to engage in sun shuttling behavior more vigorously than large dragons as represented by their greater frequency of daily ambient temperature and light intensity changes as well as a greater activity and overall exposure to the sun. Large dragons were more sedentary and sun shuttled less. Further, they appear to rely to a greater extent on microhabitat selection and employed mouth gaping evaporative cooling to maintain their preferred operational temperature and prevent overheating. A potential ecological consequence of size-specific thermoregulatory habits for dragons is separation of foraging areas. In part, differences in thermoregulation could contribute to inducing shifts in predatory strategies from active foraging in small dragons to more sedentary sit-and-wait ambush predators in adults.

  6. Energy conversion of orbital motions in gravitational waves: Simulation and test of the Seaspoon wave energy converter

    International Nuclear Information System (INIS)

    Di Fresco, L.; Traverso, A.

    2014-01-01

    Highlights: • We investigate an innovative wave energy converter. • We study a robust technology derived from wind power sector. • We increased the performance of a drag type rotor exploiting the motion of ocean waves and a simple flat plate component. • We proved the working principle with a numerical model first and with experimental test in wave flume later. • We aim to obtain a robust large energy harvester able to operate in mild energy sea and with an extended operating range. - Abstract: The conversion of ocean wave power into sustainable electrical power represents a major opportunity to Nations endowed with such a kind of resource. At the present time the most of the technological innovations aiming at converting such resources are at early stage of development, with only a handful of devices close to be at the commercial demonstration stage. The Seaspoon device, thought as a large energy harvester, catches the kinetic energy of ocean waves with promising conversion efficiency, and robust technology, according to specific “wave-motion climate”. University of Genoa aims to develop a prototype to be deployed in medium average energy content seas (i.e. Mediterranean or Eastern Asia seas). This paper presents the first simulation and experimental results carried out on a reduced scale proof-of-concept model tested in the laboratory wave flume

  7. Dragon Boat Festival.

    Science.gov (United States)

    Lew, Gordon

    This is one of a series of elementary readers written in Cantonese and English and designed to familiarize children with the traditional major Chinese festivals celebrated by the Chinese in America. This booklet describes the celebration of the Dragon Boat Festival, which marks the beginning of summer. A brief background to the festival is…

  8. Decommissioning of the Dragon High Temperature Reactor (HTR) Located at the Former United Kingdom Atomic Energy Authority (UKAEA) Research Site at Winfrith - 13180

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Anthony A. [Research Sites Restoration Ltd, Winfrith, Dorset (United Kingdom)

    2013-07-01

    The Dragon Reactor was constructed at the United Kingdom Atomic Energy Research Establishment at Winfrith in Dorset through the late 1950's and into the early 1960's. It was a High Temperature Gas Cooled Reactor (HTR) with helium gas coolant and graphite moderation. It operated as a fuel testing and demonstration reactor at up to 20 MW (Thermal) from 1964 until 1975, when international funding for this project was terminated. The fuel was removed from the core in 1976 and the reactor was put into Safestore. To meet the UK's Nuclear Decommissioning Authority (NDA) objective to 'drive hazard reduction' [1] it is necessary to decommission and remediate all the Research Sites Restoration Ltd (RSRL) facilities. This includes the Dragon Reactor where the activated core, pressure vessel and control rods and the contaminated primary circuit (including a {sup 90}Sr source) still remain. It is essential to remove these hazards at the appropriate time and return the area occupied by the reactor to a safe condition. (author)

  9. Pigment identification and antioxidant properties of red dragon fruit ...

    African Journals Online (AJOL)

    In the antioxidant properties determination, there were 86.10 mg of total polyphenolic compound in 0.50 g of dried dragon fruit extract using the total polyphenol assay which expresses gallic acid as equivalent. The reducing power assay further confirmed the antioxidant activity present in dragon fruit where the reducing ...

  10. Thermoregulatory behavior and orientation preference in bearded dragons.

    Science.gov (United States)

    Black, Ian R G; Tattersall, Glenn J

    2017-10-01

    The regulation of body temperature is a critical function for animals. Although reliant on ambient temperature as a heat source, reptiles, and especially lizards, make use of multiple voluntary and involuntary behaviors to thermoregulate, including postural changes in body orientation, either toward or away from solar sources of heat. This thermal orientation may also result from a thermoregulatory drive to maintain precise control over cranial temperatures or a rostrally-driven sensory bias. The purpose of this work was to examine thermal orientation behavior in adult and neonatal bearded dragons (Pogona vitticeps), to ascertain its prevalence across different life stages within a laboratory situation and its interaction with behavioral thermoregulation. Both adult and neonatal bearded dragons were placed in a thermal gradient and allowed to voluntarily select temperatures for up to 8h to observe the presence and development of a thermoregulatory orientation preference. Both adult and neonatal dragons displayed a non-random orientation, preferring to face toward a heat source while achieving mean thermal preferences of ~ 33-34°C. Specifically, adult dragons were more likely to face a heat source when at cooler ambient temperatures and less likely at warmer temperatures, suggesting that orientation behavior counter-balances local selected temperatures but contributes to their thermoregulatory response. Neonates were also more likely to select cooler temperatures when facing a heat source, but required more experience before this orientation behavior emerged. Combined, these results demonstrate the importance of orientation to behavioral thermoregulation in multiple life stages of bearded dragons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Handbook of ocean wave energy

    CERN Document Server

    Kofoed, Jens

    2017-01-01

    This book is open access under a CC BY-NC 2.5 license. This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners in the wave energy sector.

  12. Design Specifications for the Hanstholm WEPTOS Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Larsen, Tommy

    2012-01-01

    The WEPTOS wave energy converter (WEC) is a novel device that combines an established and efficient wave energy absorbing mechanism with a smart structure, which can regulate the amount of incoming wave energy and reduce loads in extreme wave conditions. This adjustable A-shaped slack-moored and ......The WEPTOS wave energy converter (WEC) is a novel device that combines an established and efficient wave energy absorbing mechanism with a smart structure, which can regulate the amount of incoming wave energy and reduce loads in extreme wave conditions. This adjustable A-shaped slack...

  13. Verification of DRAGON: the NXT tracking module

    International Nuclear Information System (INIS)

    Zkiek, A.; Marleau, G.

    2007-01-01

    The version of DRAGON-IST that has been verified for the calculation of the incremental cross sections associated with CANDU reactivity devices is version 3.04Bb that was released in 2001. Since then, various improvements were implemented in the code including the NXT: module that can track assemblies of clusters in 2-D and 3-D geometries. Here we will discuss the verification plan for the NXT: module of DRAGON, illustrate the verification procedure we selected and present our verification results. (author)

  14. Wave-current interactions at the FloWave Ocean Energy Research Facility

    Science.gov (United States)

    Noble, Donald; Davey, Thomas; Steynor, Jeffrey; Bruce, Tom; Smith, Helen; Kaklis, Panagiotis

    2015-04-01

    Physical scale model testing is an important part of the marine renewable energy development process, allowing the study of forces and device behaviour in a controlled environment prior to deployment at sea. FloWave is a new state-of-the-art ocean energy research facility, designed to provide large scale physical modelling services to the tidal and wave sector. It has the unique ability to provide complex multi-directional waves that can be combined with currents from any direction in the 25m diameter circular tank. The facility is optimised for waves around 2s period and 0.4m height, and is capable of generating currents upwards of 1.6m/s. This offers the ability to model metocean conditions suitable for most renewable energy devices at a typical scale of between 1:10 and 1:40. The test section is 2m deep, which can be classed as intermediate-depth for most waves of interest, thus the full dispersion equation must be solved as the asymptotic simplifications do not apply. The interaction between waves and currents has been studied in the tank. This has involved producing in the tank sets of regular waves, focussed wave groups, and random sea spectra including multi-directional sea states. These waves have been both inline-with and opposing the current, as well as investigating waves at arbitrary angles to the current. Changes in wave height and wavelength have been measured, and compared with theoretical results. Using theoretical wave-current interaction models, methods have been explored to "correct" the wave height in the central test area of the tank when combined with a steady current. This allows the wave height with current to be set equal to that without a current. Thus permitting, for example, direct comparison of device motion response between tests with and without current. Alternatively, this would also permit a specific wave height and current combination to be produced in the tank, reproducing recorded conditions at a particular site of interest. The

  15. Energy dissipation through wind-generated breaking waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuwen; CAO Ruixue; XIE Lingling

    2012-01-01

    Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.

  16. Wave Energy Potential in the Latvian EEZ

    Science.gov (United States)

    Beriņš, J.; Beriņš, J.; Kalnačs, J.; Kalnačs, A.

    2016-06-01

    The present article deals with one of the alternative forms of energy - sea wave energy potential in the Latvian Exclusice Economic Zone (EEZ). Results have been achieved using a new method - VEVPP. Calculations have been performed using the data on wave parameters over the past five years (2010-2014). We have also considered wave energy potential in the Gulf of Riga. The conclusions have been drawn on the recommended methodology for the sea wave potential and power calculations for wave-power plant pre-design stage.

  17. Commissioning and operation of DRAGON

    CERN Document Server

    Engel, S

    2003-01-01

    The new DRAGON (Detector of Recoils And Gammas Of Nuclear reactions) facility, located at the TRIUMF-ISAC radioactive beams laboratory in Vancouver, Canada, has initiated its experimental program. Recently DRAGON was used for initial studies of the sup 2 sup 1 Na(p,gamma) sup 2 sup 2 Mg reaction. This facility was designed to measure absolutely the rates of radiative proton and alpha capture reactions of astrophysical interest to a precision of +-20%, using inverse kinematics. To fully understand the optics and operational parameters of the facility along with the transmission particularly of the reaction recoils, systematic studies of various configurations are in progress using stable beams along with measurements of well-known resonance reactions. The status of these commissioning studies is presented.

  18. A wave model test bed study for wave energy resource characterization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Neary, Vincent S.; Wang, Taiping; Gunawan, Budi; Dallman, Annie R.; Wu, Wei-Cheng

    2017-12-01

    This paper presents a test bed study conducted to evaluate best practices in wave modeling to characterize energy resources. The model test bed off the central Oregon Coast was selected because of the high wave energy and available measured data at the site. Two third-generation spectral wave models, SWAN and WWIII, were evaluated. A four-level nested-grid approach—from global to test bed scale—was employed. Model skills were assessed using a set of model performance metrics based on comparing six simulated wave resource parameters to observations from a wave buoy inside the test bed. Both WWIII and SWAN performed well at the test bed site and exhibited similar modeling skills. The ST4 package with WWIII, which represents better physics for wave growth and dissipation, out-performed ST2 physics and improved wave power density and significant wave height predictions. However, ST4 physics tended to overpredict the wave energy period. The newly developed ST6 physics did not improve the overall model skill for predicting the six wave resource parameters. Sensitivity analysis using different wave frequencies and direction resolutions indicated the model results were not sensitive to spectral resolutions at the test bed site, likely due to the absence of complex bathymetric and geometric features.

  19. Wave energy potential in Galicia (NW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, G.; Lopez, M.; Carballo, R.; Castro, A. [University of Santiago de Compostela, Hydraulic Engineering, E.P.S., Campus Universitario s/n, 27002 Lugo (Spain); Fraguela, J.A. [University of A Coruna, E.P.S., Campus de Esteiro s/n, Ferrol (Spain); Frigaard, P. [University of Aalborg, Sohngaardsholmsvej 57, DK 9000 (Denmark)

    2009-11-15

    Wave power presents significant advantages with regard to other CO{sub 2}-free energy sources, among which the predictability, high load factor and low visual and environmental impact stand out. Galicia, facing the Atlantic on the north-western corner of the Iberian Peninsula, is subjected to a very harsh wave climate; in this work its potential for energy production is assessed based on three-hourly data from a third generation ocean wave model (WAM) covering the period 1996-2005. Taking into account the results of this assessment along with other relevant considerations such as the location of ports, navigation routes, and fishing and aquaculture zones, an area is selected for wave energy exploitation. The transformation of the offshore wave field as it propagates into this area is computed by means of a nearshore wave model (SWAN) in order to select the optimum locations for a wave farm. Two zones emerge as those with the highest potential for wave energy exploitation. The large modifications in the available wave power resulting from relatively small changes of position are made apparent in the process. (author)

  20. Dragon.

    Directory of Open Access Journals (Sweden)

    Horacio Ortiz

    2006-06-01

    Full Text Available L’ouvrage d’Howard Becker, The Tricks of the Trade , finit sur une parabole, que l’auteur nous indique comme étant une métaphore sur la notion d’illumination. Cette métaphore est ce qui se rapproche le plus, selon Becker, du fait d’avoir, jusqu’à l’os, une manière de penser qui est celle des sciences sociales. La métaphore sur l’illumination particulière des sciences sociales compare les chercheuses en sciences sociales à des dragons océaniques. Pour celles 1 qui ...

  1. The Dragon project and high temperature reactor (HTR position)

    International Nuclear Information System (INIS)

    Shepherd, L.

    1981-01-01

    After introduction describing the initiation of HTR work at AERE and in West Germany and the USA, the subject is discussed in detail under the headings: the Dragon Reactor Experiment (design and objectives); fuel elements and graphite (description of cooperative research programmes; development of coated fuel particles); helium technology; other Dragon activities. (U.K.)

  2. IRPhE-DRAGON-DPR, OECD High Temperature Reactor Dragon Project, Primary Documents

    International Nuclear Information System (INIS)

    2004-01-01

    Description: The DRAGON Reactor Experiment (DRE): The first demonstration High temperature gas reactor (HTGR) was built in the 1960's. Thirteen OECD countries began a project in 1959 to build an experimental reactor known as Dragon at Winfrith in the UK. The reactor - which operated successfully between 1966 and 1975 - had a thermal output of 20 MW and achieved a gas outlet temperature of 750 deg. C. The High Temperature Reactor concept, if it justified its expectations, was seen as having its place as an advanced thermal reactor between the current thermal reactor types such as the PWR, BWR, and AGR and the sodium cooled fast breeder reactor. It was expected that the HTR would offer better thermal efficiency, better uranium utilisation, either with low enriched uranium fuel or high enriched uranium thorium fuel, better inherent safety and lower unit power costs. In the event all these potential advantages were demonstrated to be in principle achievable. This view is still shared today. In fact Very High Temperature Reactors is one of the concepts retained for Generation IV. Projects on constructing Modular Pebble Bed Reactors are under way. Here all available Dragon Project Reports (DPR) - approximately 1000 - are collected in electronic form. An index points to the reports (PDF format); each table in the report is accessible in EXCEL format with the aim of facilitating access to the data. These reports describe the design, experiments and modelling carried out over a period of 17 years. 2 - Related or auxiliary information: IRPHE-HTR-ARCH-01, Archive of HTR Primary Documents NEA-1728/01. 3 - Software requirements: Acrobat Reader, Microsoft Word, HTML Browser required

  3. Single-wave-number representation of nonlinear energy spectrum in elastic-wave turbulence of the Föppl-von Kármán equation: energy decomposition analysis and energy budget.

    Science.gov (United States)

    Yokoyama, Naoto; Takaoka, Masanori

    2014-12-01

    A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode a(k) and its companion mode a(-k) is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.

  4. Enhancing Wave Energy Competitiveness through Co-Located Wind and Wave Energy Farms. A Review on the Shadow Effect

    OpenAIRE

    Sharay Astariz; Gregorio Iglesias

    2015-01-01

    Wave energy is one of the most promising alternatives to fossil fuels due to the enormous available resource; however, its development may be slowed as it is often regarded as uneconomical. The largest cost reductions are expected to be obtained through economies of scale and technological progress. In this sense, the incorporation of wave energy systems into offshore wind energy farms is an opportunity to foster the development of wave energy. The synergies between both renewables can be rea...

  5. Teaching on ocean-wave-energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Falnes, J. [Norges teknisk-naturvitskaplege univ., Inst. for fysikk, Trondheim (Norway)

    2001-07-01

    Ocean-wave energy utilisation has for 27 years been a university research subject, in which the author has been active from the first year. In this paper he presents some information related to his teaching on the subject during many of these years. This includes teaching on the pre-university level and, in particular, development of the wave-energy module for an educational CD-ROM on sustainable technology and renewable energy. Education of the general public is very important. On the other hand teaching of doctor students and other wave-energy researchers is also a subject of the paper. (au)

  6. Victorian Dragons: The Reluctant Brood.

    Science.gov (United States)

    Berman, Ruth

    1984-01-01

    Relates why nineteenth century fantasy writers shied away from the use of dragons in their stories and rejoices over the return and happy transformation of this mythical beast in children's literature. (HOD)

  7. Probabilistic Design of Wave Energy Devices

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Kofoed, Jens Peter; Ferreira, C.B.

    2011-01-01

    Wave energy has a large potential for contributing significantly to production of renewable energy. However, the wave energy sector is still not able to deliver cost competitive and reliable solutions. But the sector has already demonstrated several proofs of concepts. The design of wave energy...... devices is a new and expanding technical area where there is no tradition for probabilistic design—in fact very little full scale devices has been build to date, so it can be said that no design tradition really exists in this area. For this reason it is considered to be of great importance to develop...... and advocate for a probabilistic design approach, as it is assumed (in other areas this has been demonstrated) that this leads to more economical designs compared to designs based on deterministic methods. In the present paper a general framework for probabilistic design and reliability analysis of wave energy...

  8. Experimental Study on the WavePiston Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Angelelli, E.

    This report presents the results of an experimental study of the power performance of the WavePiston wave energy converter. It focuses mainly on evaluating the power generating capabilities of the device and the effect of the following issues: Scaling ratios PTO loading Wave height and wave period...... dependency Oblique incoming waves Distance between plates During the study, the model supplied by the client, WavePiston, has been rigorously tested as all the anticipated tests have been done thoroughly and during all tests, good quality data has been obtained from all the sensors....

  9. Short-Term Wave Forecasting for Real-Time Control of Wave Energy Converters

    OpenAIRE

    Fusco, Francesco; Ringwood, John

    2010-01-01

    Real-time control of wave energy converters requires knowledge of future incident wave elevation in order to approach optimal efficiency of wave energy extraction. We present an approach where the wave elevation is treated as a time series and it is predicted only from its past history. A comparison of a range of forecasting methodologies on real wave observations from two different locations shows how the relatively simple linear autoregressive model, which implicitly models the cyclical beh...

  10. Clustering of cycloidal wave energy converters

    Science.gov (United States)

    Siegel, Stefan G.

    2016-03-29

    A wave energy conversion system uses a pair of wave energy converters (WECs) on respective active mountings on a floating platform, so that the separation of the WECs from each other or from a central WEC can be actively adjusted according to the wavelength of incident waves. The adjustable separation facilitates operation of the system to cancel reactive forces, which may be generated during wave energy conversion. Modules on which such pairs of WECs are mounted can be assembled with one or more central WECs to form large clusters in which reactive forces and torques can be made to cancel. WECs of different sizes can be employed to facilitate cancelation of reactive forces and torques.

  11. Here be no dragons

    International Nuclear Information System (INIS)

    1987-01-01

    ''Here be dragons'' is the phase used by ancient map makers to indicate areas about which they knew nothing or which they suspected contained unknown dangers. The aim of this booklet, ''Here be no dragons'', is to dispel the myths, misconceptions and misinformation about nuclear power. The South of Scotland Electricity Board explains why nuclear power is important to Scotland economically and deals in a non-technical way with many of the safety issues raised by the presence and operation of nuclear reactors. The environmental issues are also presented simply, with an explanation of the average annual radiation dose to the population of the UK, and a comparison of the radiation doses from the Chernobyl accident, compared to variations in background doses. The risks from nuclear accidents and the risk of death from accidents in industries in the UK compared with the risk from cancers potentially produced among radiation workers, are compared. (U.K.)

  12. Energy in one-dimensional linear waves

    International Nuclear Information System (INIS)

    Repetto, C E; Roatta, A; Welti, R J

    2011-01-01

    This work is based on propagation phenomena that conform to the classical wave equation. General expressions of power, the energy conservation equation in continuous media and densities of the kinetic and potential energies are presented. As an example, we study the waves in a string and focused attention on the case of standing waves. The treatment is applicable to introductory science textbooks. (letters and comment)

  13. Controller for a wave energy converter

    Science.gov (United States)

    Wilson, David G.; Bull, Diana L.; Robinett, III, Rush D.

    2015-09-22

    A wave energy converter (WEC) is described, the WEC including a power take off (PTO) that converts relative motion of bodies of the WEC into electrical energy. A controller controls operation of the PTO, causing the PTO to act as a motor to widen a wave frequency spectrum that is usable to generate electrical energy.

  14. Performance Evaluation of Wave Energy Converters

    DEFF Research Database (Denmark)

    Pecher, Arthur

    . Guidelines for the development of wave energy converters recommend the use of different prototypes, having different sizes, which have to perform tank tests or sea trials. This implicates the need of different testing environment, which shifts from being controllable to uncontrollable with the development......, with more than 150 concepts currently being developed worldwide. Wave energy conversion concepts can be of many kinds, as the energy in the waves can be absorbed in many different ways. However, each concept is expected to require a thorough development process, involving different phases and prototypes...

  15. Use of the 'DRAGON' program for the calculation of reactivity devices; Utilizacion del programa DRAGON para el calculo de mecanismos de reactividad

    Energy Technology Data Exchange (ETDEWEB)

    Mollerach, Ricardo; Fink, Jose [Nucleoelectrica Argentina SA (NASA), Buenos Aires (Argentina)

    2003-07-01

    DRAGON is a computer program developed at the Ecole Polytechnique of the University of Montreal and adopted by AECL for the transport calculations associated to reactivity devices. This report presents aspects of the implementation in NASA of the DRAGON program. Some cases of interest were evaluated. Comparisons with results of known programs as WIMS D5, and with experiments were done. a) Embalse (CANDU 6) cell without burnup and leakage. Calculations of macroscopic cross sections with WIMS and DRAGON show very good agreement with smaller differences in the thermal constants. b) Embalse fresh cell with different leakage options. c) Embalse cell with leakage and burnup. A comparison of k-infinity and k-effective with WIMS and DRAGON as a function of burnup shows that the differences ((D-W)/D) for fresh fuel are -0.17% roughly constant up to about 2500 MWd/tU, and then decrease to -0.06 % for 8500 MWd/tU. Experiments made in 1977 in ZED-2 critical facility, reported in [3], were used as a benchmark for the cell and supercell DRAGON calculations. Calculated fluxes were compared with experimental values and the agreement is so good. d) ZED-2 cell calculation. The measured buckling was used as geometric buckling. This case can be considered an experimental verification. The calculated reactivity with DRAGON is about 2 mk, and can be considered satisfactory. WIMS k-effective value is about one mk higher. e) Supercell calculations for ZED-2 vertical and horizontal tube and rod adjuster using 2D and 3D models were done. Comparisons between measured and calculated fluxes in the vicinity of the adjuster rods. Incremental cross sections for these adjusters were calculated using different options. f) ZED-2 reactor calculations with PUMA reveal a good concordance with critical heights measured in experiments. The report describes also particular features of the code and recommendations regarding its use that may be useful for new users. (author)

  16. Dragon (repulsive guidance molecule b, RGMb) is a novel gene that promotes colorectal cancer growth.

    Science.gov (United States)

    Shi, Ying; Chen, Guo-Bin; Huang, Xiao-Xiao; Xiao, Chuan-Xing; Wang, Huan-Huan; Li, Ye-Sen; Zhang, Jin-Fang; Li, Shao; Xia, Yin; Ren, Jian-Lin; Guleng, Bayasi

    2015-08-21

    Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer death. However, the molecular mechanisms underlying CRC initiation, growth and metastasis are poorly understood. Dragon (RGMb), a member of the repulsive guidance molecule (RGM) family, has been recently identified as a co-receptor for bone morphogenetic protein (BMP) signaling, but the role of Dragon in CRC development is undefined. Here, we show that Dragon expression was increased in colon cancer tissues compared to control tissues in CAC mouse model and in human patients. Dragon promoted proliferation of CT26.WT and CMT93 colon cancer cells and accelerated tumor growth in the xenograft mouse model. Dragon's action on colon cancer development was mediated via the BMP4-Smad1/5/8 and Erk1/2 pathways. Therefore, our results have revealed that Dragon is a novel gene that promotes CRC growth through the BMP pathway. Dragon may be exploited as a potential therapeutic target for CRC treatment.

  17. Validation of DRAGON side-step method for Bruce-A restart Phase-B physics tests

    International Nuclear Information System (INIS)

    Shen, W.; Ngo-Trong, C.; Davis, R.S.

    2004-01-01

    The DRAGON side-step method, developed at AECL, has a number of advantages over the all-DRAGON method that was used before. It is now the qualified method for reactivity-device calculations. Although the side-step-method-generated incremental cross sections have been validated against those previously calculated with the all-DRAGON method, it is highly desirable to validate the side-step method against device-worth measurements in power reactors directly. In this paper, the DRAGON side-step method was validated by comparison with the device-calibration measurements made in Bruce-A NGS Unit 4 restart Phase-B commissioning in 2003. The validation exercise showed excellent results, with the DRAGON code overestimating the measured ZCR worth by ∼5%. A sensitivity study was also performed in this paper to assess the effect of various DRAGON modelling techniques on the incremental cross sections. The assessment shows that the refinement of meshes in 3-D and the use of the side-step method are two major reasons contributing to the improved agreement between the calculated ZCR worths and the measurements. Use of different DRAGON versions, DRAGON libraries, local-parameter core conditions, and weighting techniques for the homogenization of tube clusters inside the ZCR have a very small effect on the ZCR incremental thermal absorption cross section and ZCR reactivity worth. (author)

  18. Electromagnetic wave energy converter

    Science.gov (United States)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  19. Study of the potential of wave energy in Malaysia

    Science.gov (United States)

    Tan, Wan Ching; Chan, Keng Wai; Ooi, Heivin

    2017-07-01

    Renewable energy is generally defined as energy harnessed from resources which are naturally replenished. It is an alternative to the current conventional energy sources such as natural gas, oil and coal, which are nonrenewable. Besides being nonrenewable, the harnessing of these resources generally produce by-products which could be potentially harmful to the environment. On the contrary, the generation from renewable energy does not pose environmental degradation. Some examples of renewable energy sources are sunlight, wind, tides, waves and geothermal heat. Wave energy is considered as one of the most promising marine renewable resources and is becoming commercially viable quicker than other renewable technologies at an astonishing growth rate. This paper illustrates the working principle of wave energy converter (WEC) and the availability of wave energy in Malaysia oceans. A good understanding of the behaviour of ocean waves is important for designing an efficient WEC as the characteristics of the waves in shallow and deep water are different. Consequently, wave energy converters are categorized into three categories on shore, near shore and offshore. Therefore, the objectives of this study is ought to be carried out by focusing on the formation of waves and wave characteristics in shallow as well as in deep water. The potential sites for implementation of wave energy harvesting technology in Malaysia and the wave energy available in the respective area were analysed. The potential of wave energy in Malaysia were tabulated and presented with theoretical data. The interaction between motion of waves and heave buoys for optimum phase condition by using the mass and diameter as the variables were investigated.

  20. Levelized Cost of Energy of the Weptos wave energy converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter

    This report presents the cost of energy calculations of a wave energy array of 90 MW, consisting of 25 x 3.6 MW Weptos wave energy converters. The calculation has been made in analogy with a publically available document presented by the UK government, covering the case of a similar size wind...

  1. OECD high temperature reactor project Dragon

    International Nuclear Information System (INIS)

    1975-01-01

    Information is presented concerning the Dragon reactor support studies and fuel irradiation programs, HTGR and fuel graphite studies, primary circuit materials, reactor safety evaluation, and administration

  2. Predictability of Wave Energy and Electricity Markets

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez

    2012-01-01

    The articlw addresses an important challenge ahead the integration of the electricity generated by wave energy conversion technologies into the electric grid. Particularly, it looks into the role of wave energy within the day-ahead electricity market. For that the predictability of the theoretical...... power outputs of three wave energy technologies in the Danish North Sea are examined. The simultaneous and co-located forecast and buoy-measured wave parameters at Hanstholm, Denmark, during a non-consecutive autumn and winter 3-month period form the basis of the investigation. The objective...

  3. Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy.

    Science.gov (United States)

    Artemyev, A V; Agapitov, O V; Mourenas, D; Krasnoselskikh, V V; Mozer, F S

    2015-05-15

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave-particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity.

  4. Multicriteria analysis to evaluate wave energy converters based on their environmental impact: an Italian case study

    Science.gov (United States)

    Azzellino, Arianna; Contestabile, Pasquale; Lanfredi, Caterina; Vicinanza, Diego

    2010-05-01

    The exploitation of renewable energy resources is fast becoming a key objective in many countries. Countries with coastlines have particularly valuable renewable energy resources in the form of tides, currents, waves and offshore wind. Due to the visual impact of siting large numbers of energy generating devices (eg. wind turbines) in terrestrial landscapes, considerable attention is now being directed towards coastal waters. Due to their environmental sensitivity, the selection of the most adequate location for these systems is a critical factor. Multi-criteria analysis allows to consider a wide variety of key characteristics (e.g. water depth, distance to shore, distance to the electric grid in land, geology, environmental impact) that may be converted into a numerical index of suitability for different WEC devices to different locations. So identifying the best alternative between an offshore or a onshore device may be specifically treated as a multicriteria problem. Special enphasisi should be given in the multicriteria analysis to the environmental impact issues. The wave energy prospective in the Italian seas is relatively low if compared to the other European countries faced to the ocean. Based on the wave climate, the Alghero site, (NW Sardinia, Italy) is one of the most interesting sites for the wave energy perspective (about 10 kW/m). Alghero site is characterized by a high level of marine biodiversity. In 2002 the area northern to Alghero harbour (Capo Caccia-Isola Piana) was established a Marine Protected Area (MPA). It could be discussed for this site how to choose between the onshore/offshore WEC alternative. An offshore device like Wave Dragon (http://www.wavedragon.net/) installed at -65m depth (width=300m and length=170 m) may approximately produce about 3.6 GWh/y with a total cost of about 9,000,000 €. On the other hand, an onshore device like SSG (http://waveenergy.no/), employed as crown wall for a vertical breakwater to enlarge the present

  5. Ultrasonographic anatomy of bearded dragons (Pogona vitticeps).

    Science.gov (United States)

    Bucy, Daniel S; Guzman, David Sanchez-Migallon; Zwingenberger, Allison L

    2015-04-15

    To determine which organs can be reliably visualized ultrasonographically in bearded dragons (Pogona vitticeps), describe their normal ultrasonographic appearance, and describe an ultrasonographic technique for use with this species. Cross-sectional study. 14 healthy bearded dragons (6 females and 8 males). Bearded dragons were manually restrained in dorsal and sternal recumbency, and coelomic organs were evaluated by use of linear 7- to 15-MHz and microconvex 5- to 8-MHz transducers. Visibility, size, echogenicity, and ultrasound transducer position were assessed for each organ. Coelomic ultrasonography with both microconvex and linear ultrasound transducers allowed for visualization of the heart, pleural surface of the lungs, liver, caudal vena cava, aorta, ventral abdominal vein, gallbladder, fat bodies, gastric fundus, cecum, colon, cloaca, kidneys, and testes or ovaries in all animals. The pylorus was visualized in 12 of 14 animals. The small intestinal loops were visualized in 12 of 14 animals with the linear transducer, but could not be reliably identified with the microconvex transducer. The hemipenes were visualized in 7 of 8 males. The adrenal glands and spleen were not identified in any animal. Anechoic free coelomic fluid was present in 11 of 14 animals. Heart width, heart length, ventricular wall thickness, gastric fundus wall thickness, and height of the caudal poles of the kidneys were positively associated with body weight. Testis width was negatively associated with body weight in males. Results indicated coelomic ultrasonography is a potentially valuable imaging modality for assessment of most organs in bearded dragons and can be performed in unsedated animals.

  6. Implementation of dragon-I database system based on B/S model

    International Nuclear Information System (INIS)

    Jiang Wei; Lai Qinggui; Chen Nan; Gao Feng

    2010-01-01

    B/S architecture is utilized in the database system of 'Dragon-I'. The dynamic web software is designed with the technology of ASP. NET, and the web software are divided into three main tiers: user interface tier, business logic tier and access tier. The data of accelerator status and the data generated in experiment processes are managed with SQL Server DBMS, and the database is accessed based on the technology of ADO. NET. The status of facility, control parameters and testing waves are queried by the experiment number and experiment time. The demand of storage, management, browse, query and offline analysis are implemented entirely in this database system based on B/S architecture. (authors)

  7. Catching the Right Wave: Evaluating Wave Energy Resources and Potential Compatibility with Existing Marine and Coastal Uses

    Science.gov (United States)

    Kim, Choong-Ki; Toft, Jodie E.; Papenfus, Michael; Verutes, Gregory; Guerry, Anne D.; Ruckelshaus, Marry H.; Arkema, Katie K.; Guannel, Gregory; Wood, Spencer A.; Bernhardt, Joanna R.; Tallis, Heather; Plummer, Mark L.; Halpern, Benjamin S.; Pinsky, Malin L.; Beck, Michael W.; Chan, Francis; Chan, Kai M. A.; Levin, Phil S.; Polasky, Stephen

    2012-01-01

    Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses. PMID:23144824

  8. Catching the right wave: evaluating wave energy resources and potential compatibility with existing marine and coastal uses.

    Science.gov (United States)

    Kim, Choong-Ki; Toft, Jodie E; Papenfus, Michael; Verutes, Gregory; Guerry, Anne D; Ruckelshaus, Marry H; Arkema, Katie K; Guannel, Gregory; Wood, Spencer A; Bernhardt, Joanna R; Tallis, Heather; Plummer, Mark L; Halpern, Benjamin S; Pinsky, Malin L; Beck, Michael W; Chan, Francis; Chan, Kai M A; Levin, Phil S; Polasky, Stephen

    2012-01-01

    Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses.

  9. Statistical investigation of expected wave energy and its reliability

    International Nuclear Information System (INIS)

    Ozger, M.; Altunkaynak, A.; Sen, Z.

    2004-01-01

    The statistical behavior of wave energy at a single site is derived by considering simultaneous variations in the period and wave height. In this paper, the general wave power formulation is derived by using the theory of perturbation. This method leads to a general formulation of the wave power expectation and other statistical parameter expressions, such as standard deviation and coefficient of variation. The statistical parameters, namely the mean value and variance of wave energy, are found in terms of the simple statistical parameters of period, significant wave height and zero up-crossing period. The elegance of these parameters is that they are distribution free. These parameters provide a means for defining the wave energy distribution function by employing the Chebyschev's inequality. Subsequently, an approximate probability distribution function of the wave energy is also derived for assessment of risk and reliability associated with wave energy. Necessary simple charts are given for risk and reliability assessments. Two procedures are presented for such assessments in wave energy calculations and the applications of these procedures are provided for wave energy potential assessment in the regions of the Pacific Ocean off the west coast of U.S. (author)

  10. Statistical investigation of expected wave energy and its reliability

    International Nuclear Information System (INIS)

    Oezger, Mehmet; Altunkaynak, Abduesselam; Sen, Zekai

    2004-01-01

    The statistical behavior of wave energy at a single site is derived by considering simultaneous variations in the period and wave height. In this paper, the general wave power formulation is derived by using the theory of perturbation. This method leads to a general formulation of the wave power expectation and other statistical parameter expressions, such as standard deviation and coefficient of variation. The statistical parameters, namely the mean value and variance of wave energy, are found in terms of the simple statistical parameters of period, significant wave height and zero up-crossing period. The elegance of these parameters is that they are distribution free. These parameters provide a means for defining the wave energy distribution function by employing the Chebyschev's inequality. Subsequently, an approximate probability distribution function of the wave energy is also derived for assessment of risk and reliability associated with wave energy. Necessary simple charts are given for risk and reliability assessments. Two procedures are presented for such assessments in wave energy calculations and the applications of these procedures are provided for wave energy potential assessment in the regions of the Pacific Ocean off the west coast of U.S

  11. Stick balancing, falls and Dragon-Kings

    Science.gov (United States)

    Cabrera, J. L.; Milton, J. G.

    2012-05-01

    The extent to which the occurrence of falls, the dominant feature of human attempts to balance a stick at their fingertip, can be predicted is examined in the context of the "Dragon-King" hypothesis. For skilled stick balancers, fluctuations in the controlled variable, namely the vertical displacement angle θ, exhibit power law behaviors. When stick balancing is made less stable by either decreasing the length of the stick or by requiring the subject to balance the stick on the surface of a table tennis racket, systematic departures from the power law behaviors are observed in the range of large θ. This observation raises the possibility that the presence of departures from the power law in the large length scale region, possibly Dragon-Kings, may identify situations in which the occurrence of a fall is more imminent. However, whether or not Dragon-Kings are observed, there is a Weibull-type survival function for stick falling. The possibility that increased risk of falling can, at least to some extent, be predicted from fluctuations in the controlled variable before the event occurs has important implications for the development of preventative strategies for the management of phenomena ranging from earthquakes to epileptic seizures to falls in the elderly.

  12. Achievements of the Dragon Project

    International Nuclear Information System (INIS)

    Rennie, C.A.

    1978-01-01

    The Dragon High Temperature Reactor (HTR) Project began 1 April 1959 under OECD auspices. Extensions in time and budget allowed the project to continue 17 years at a total cost of nearly 100 million dollars under efficient and flexible international management. The reactor design evolved from purged elements and continuously decontaminated helium coolant in a highly contaminated circuit with double containment, to coated particle fuel elements that kept the coolant activity low and permitted easy maintenance. Some difficulties arose from corrosion of heat exchangers and stainless steel pipes and from dimensional changes in the reflector graphite. These problems were easily solved. Some ten years of experimental operation were very successful and demonstrated the soundness of the concept. The Dragon reactor proved to be a very useful test bed for a number of different HTR of different HTR fuel element concepts. (author)

  13. Fluctuation and thermal energy balance for drift-wave turbulence

    International Nuclear Information System (INIS)

    Kim, Chang-Bae; Horton, W.

    1990-05-01

    Energy conservation for the drift-wave system is shown to be separated into the wave-energy power balance equation and an ambient thermal-energy transport equation containing the anomalous transport fluxes produced by the fluctuations. The wave energy equation relates the wave energy density and wave energy flux to the anomalous transport flux and the dissipation of the fluctuations. The thermal balance equation determines the evolution of the temperature profiles from the divergence of the anomalous heat flux, the collisional heating and cooling mechanisms and the toroidal pumping effect. 16 refs., 1 tab

  14. Fluctuation and thermal energy balance for drift-wave turbulence

    International Nuclear Information System (INIS)

    Changbae Kim; Horton, W.

    1991-01-01

    Energy conservation for the drift-wave system is shown to be separated into the wave-energy power balance equation and an ambient thermal-energy transport equation containing the anomalous transport fluxes produced by the fluctuations. The wave energy equation relates the wave energy density and wave energy flux to the anomalous transport flux and the dissipation of the fluctuations. The thermal balance equation determines the evolution of the temperature profiles from the divergence of the anomalous heat flux, the collisional heating and cooling mechanisms and the toroidal pumping effect. (author)

  15. Waves energy comes to surface

    International Nuclear Information System (INIS)

    Guezel, J.Ch.

    2006-01-01

    The wave- or thalasso-energy, potentially as promising as wind energy, have started to develop in Europe. Great Britain has already a good experience in this domain but France shows also ambitions in this beginning industry with several projects in progress. This article makes an overview of the existing tide-, current- and wave-powered generators: tide mills, underwater hydro-turbines, immersed linear generators, air-compression systems, buoy systems, etc. (J.S.)

  16. Characteristics of Frozen Yoghurt Enriched with Red Dragon Fruit Skin Extracts (Hylocereus polyrhizus)

    Science.gov (United States)

    Analianasari; Apriyani, M.

    2018-01-01

    The composition of the dragon fruit skin with fruit has a weight of 30-35% of the fruit weight and has not been widely utilized. Previous studies have suggested that red dragon fruit skin extracts with water solvent contain 1.1 mg / 100 ml anthocyanin. The content of anthocyanin can function lower cholesterol content in blood, besides red dragon fruit skin contains fiber about 46,7% which is very good for health. This study aims to determine the chemical characteristics of frozen yogurt red dragon skin fruit to antioxidant levels, fiber content, pH, Total acid content and frozen yogurt melting time. The design of the research was Randomized Complete Design (RAL) of 1 factor, which was treated as red dragon skin fruit extract, consisting of 4 treatment levels: 0%, 25%, 35%, and 45%. The results showed that the addition of red dragon fruit extract increased antioxidant levels ranging from 4.00 to 12.25%, crude fiber content ranged from 1.037 to 1.625%, total acid ranged from 0.73 to 1.14%, and decreased the pH value of 5, 48 - 4.39 and has a melting time of frozen yogurt 17.20 - 22.88 minutes.

  17. Experimental Study of the Weptos Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Larsen, Tommy

    2012-01-01

    This paper presents the power performance results of the experimental study of the WEPTOS wave energy converter (WEC). This novel device combines an established and efficient wave energy absorbing mechanism with an adjustable structure that can regulate the amount of incoming wave energy and reduce...... loads in extreme wave conditions. This A-shaped floating structure absorbs the energy in the waves through a multitude of rotors, the shape of which is based on the renowned Salter’s Duck. These rotors pivot around a common axle, one for each leg of the structure, to which the rotors transfer...... the absorbed wave energy and which is connected to a common power take off system (one for each leg). The study investigates the performance of the device in a large range of wave states and estimates the performance in terms of mechanical power available to the power take off system of the WEPTOS WEC for two...

  18. Near-Shore Floating Wave Energy Converters

    DEFF Research Database (Denmark)

    Ruol, Piero; Zanuttigh, Barbara; Martinelli, Luca

    2011-01-01

    and transmission characteristics are approximated to functions of wave height, period and obliquity. Their order of magnitude are 20% and 80%, respectively. It is imagined that an array of DEXA is deployed in front of Marina di Ravenna beach (IT), a highly touristic site of the Adriatic Coast. Based on the CERC......Aim of this note is to analyse the possible application of a Wave Energy Converter (WEC) as a combined tool to protect the coast and harvest energy. Physical model tests are used to evaluate wave transmission past a near-shore floating WEC of the wave activated body type, named DEXA. Efficiency...

  19. Preliminary Analysis of a Submerged Wave Energy Device

    Science.gov (United States)

    Wagner, J. R.; Wagner, J. J.; Hayatdavoodi, M.; Ertekin, R. C.

    2016-02-01

    Preliminary analysis of a submerged wave energy harvesting device is presented. The device is composed of a thin, horizontally submerged plate that is restricted to heave oscillations under the influence of surface waves. The submerged plate is oscillating, and it can be attached to a fixed rotor, or a piston, to harvest the wave energy. A fully submerged wave energy converter is preferred over a surface energy convertor due to its durability and less visual and physical distractions it presents. In this study, the device is subject to nonlinear shallow-water waves. Wave loads on the submerged oscillating plate are obtained via the Level I Green-Naghdi equations. The unsteady motion of the plate is obtained by solving the nonlinear equations of motion. The results are obtained for a range of waves with varying heights and periods. The amplitude and period of plate oscillations are analyzed as functions of the wave parameters and plate width. Particular attention is given to the selection of the site of desired wave field. Initial estimation on the amount of energy extraction from the device, located near shore at a given site, is provided.

  20. Ocean floor mounting of wave energy converters

    Science.gov (United States)

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  1. Progress and Achievements at the Mid Term of the Dragon 3 Programme

    Science.gov (United States)

    Desnos, Yves-Louis; Li, Zengyuan; Zmuda, Andy; Gao, Zhihai

    2014-11-01

    The Dragon Programme is a joint undertaking between ESA and the Ministry of Science and Technology (MOST) of China and the National Remote Sensing Center of China (NRSCC). Its purpose is to encourage increased exploitation of ESA and Chinese space resources within China as well as stimulate increased scientific cooperation in the field of Earth Observation (EO) science and applications between China and Europe. Since 2004, this pioneering programme has become a model for scientific and technological cooperation between China and Europe. By successfully encouraging joint research using ESA, Third Party Missions and Chinese EO data across a range of thematic areas, Dragon continues to deliver outstanding scientific results. The programme has successfully completed two phases, Dragon 1 from 2004 to 2008, Dragon 2 from 2008 to 2012. The third phase of Dragon was started in 2012 and will be completed in 2016. The Dragon 3 project teams are led by leading EO scientists and young scientists are also engaged on the projects. Advanced training in land, ocean and atmospheric applications is a feature of the programme and a course on land and one course on ocean applications have been successfully held in 2012 and 2013 in China. Here-in provided is an overview of the results, reporting and training activities at the mid-term stage of the programme.

  2. Dragon (repulsive guidance molecule RGMb) inhibits E-cadherin expression and induces apoptosis in renal tubular epithelial cells.

    Science.gov (United States)

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y; Xia, Yin

    2013-11-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45-66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo.

  3. Practical performances of MPC for wave energy converters

    DEFF Research Database (Denmark)

    Ferri, Francesco; Tetu, Amelie; Hals, J.

    2016-01-01

    Maximising the efficiency of Wave Energy Converter (WEC) is one of the important tasks toward the exploitation of the wave energy resource. Along with a proper design of the device, an important way to achieve better energy performances is to improve the wave-body interaction by applying an appro...

  4. Assessment of wave energy resources in Hawaii

    International Nuclear Information System (INIS)

    Stopa, Justin E.; Cheung, Kwok Fai; Chen, Yi-Leng

    2011-01-01

    Hawaii is subject to direct approach of swells from distant storms as well as seas generated by trade winds passing through the islands. The archipelago creates a localized weather system that modifies the wave energy resources from the far field. We implement a nested computational grid along the major Hawaiian Islands in the global WaveWatch3 (WW3) model and utilize the Weather Research and Forecast (WRF) model to provide high-resolution mesoscale wind forcing over the Hawaii region. Two hindcast case studies representative of the year-round conditions provide a quantitative assessment of the regional wind and wave patterns as well as the wave energy resources along the Hawaiian Island chain. These events of approximately two weeks each have a range of wind speeds, ground swells, and wind waves for validation of the model system with satellite and buoy measurements. The results demonstrate the wave energy potential in Hawaii waters. While the episodic swell events have enormous power reaching 60 kW/m, the wind waves, augmented by the local weather, provide a consistent energy resource of 15-25 kW/m throughout the year. (author)

  5. Image processing to optimize wave energy converters

    Science.gov (United States)

    Bailey, Kyle Marc-Anthony

    The world is turning to renewable energies as a means of ensuring the planet's future and well-being. There have been a few attempts in the past to utilize wave power as a means of generating electricity through the use of Wave Energy Converters (WEC), but only recently are they becoming a focal point in the renewable energy field. Over the past few years there has been a global drive to advance the efficiency of WEC. Placing a mechanical device either onshore or offshore that captures the energy within ocean surface waves to drive a mechanical device is how wave power is produced. This paper seeks to provide a novel and innovative way to estimate ocean wave frequency through the use of image processing. This will be achieved by applying a complex modulated lapped orthogonal transform filter bank to satellite images of ocean waves. The complex modulated lapped orthogonal transform filterbank provides an equal subband decomposition of the Nyquist bounded discrete time Fourier Transform spectrum. The maximum energy of the 2D complex modulated lapped transform subband is used to determine the horizontal and vertical frequency, which subsequently can be used to determine the wave frequency in the direction of the WEC by a simple trigonometric scaling. The robustness of the proposed method is provided by the applications to simulated and real satellite images where the frequency is known.

  6. Red Dragon: Low-cost Access to the Surface of Mars using Commercial Capabilities

    Science.gov (United States)

    Karcz, John; Davis, S. M.; Aftosmis, M. J.; Allen, G. A.; Bakhtian, N. M.; Dyakonov, A. A.; Edquist, K. T.; Glass, B. J.; Gonzales, A. A.; Heldmann, J. L.; hide

    2012-01-01

    We will discuss the feasibility of using a minimally-modified variant of a SpaceX Dragon capsule as a low-cost, large-capacity, near-term, Mars lander for scientific and human-precursor missions. We have been evaluating such a Red Dragon platform as an option for a Discovery Program mission concept. A Red Dragon lander has the potential to be low cost primarily because it would be derived from a routinely-flying spacecraft. Dragon is being developed to ferry cargo and crew to and from the International Space Station (ISS). The cargo variant is currently undergoing test flights, which will be followed by standard ISS cargo missions and, eventually, crewed flights. The human variant, unlike other Earth-return vehicles, appears to also have most of the capabilities necessary to land on Mars. In particular, it has a set of high-thrust, throttleable, storable bi-propellant Super- Draco engines integrated directly into the capsule which are intended for launch abort and powered landings on Earth. These thrusters suggest the possibility of a parachute-free, fully-propulsive deceleration at Mars from supersonic speeds to the surface. Concepts for large, human-relevant landers (see, e.g., [1]) also often employ supersonic retro-propulsion; Red Dragon's entry, descent, and landing approach would scale to those landers. Further, SpaceX's Falcon Heavy launch vehicle, currently under development and expected to have its first flight in 2013, will be capable of sending Dragon on a trajectory to Mars. We will discuss our motivation for exploring a Red Dragon lander, the primary technical questions which determine its feasibility, and the current results of our analysis. In particular, we will examine entry, descent, and landing (EDL) in detail. We will describe the modifications to Dragon necessary for interplanetary cruise, EDL, and operations on the Martian surface.

  7. Cosmic-ray propagation with DRAGON2: I. numerical solver and astrophysical ingredients

    Energy Technology Data Exchange (ETDEWEB)

    Evoli, Carmelo [Gran Sasso Science Institute, viale Francesco Crispi 7, 67100 L' Aquila (AQ) (Italy); Gaggero, Daniele [GRAPPA Institute, University of Amsterdam, Science Park 904, 1090 GL Amsterdam (Netherlands); Vittino, Andrea [Physik-Department T30d, Technische Universität München, James-Franck-Straße 1, D-85748 Garching (Germany); Bernardo, Giuseppe Di [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, 85740 Garching bei München (Germany); Mauro, Mattia Di [W.W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Ligorini, Arianna [Instytut Fizyki J\\cadrowej—PAN, ul. Radzikowskiego 152, 31-342 Kraków (Poland); Ullio, Piero [Scuola Internazionale di Studi Superiori Avanzati, via Bonomea 265, 34136 Trieste (Italy); Grasso, Dario, E-mail: carmelo.evoli@gssi.infn.it, E-mail: d.gaggero@uva.nl, E-mail: andrea.vittino@tum.de, E-mail: bernardo@mpa-garching.mpg.de, E-mail: mdimauro@slac.stanford.edu, E-mail: arianna.ligorini@ifj.edu.pl, E-mail: piero.ullio@sissa.it, E-mail: dario.grasso@pi.infn.it [INFN and Dipartimento di Fisica ' ' E. Fermi' ' , Pisa University, Largo B. Pontecorvo 3, I-56127 Pisa (Italy)

    2017-02-01

    We present version 2 of the DRAGON code designed for computing realistic predictions of the CR densities in the Galaxy. The code numerically solves the interstellar CR transport equation (including inhomogeneous and anisotropic diffusion, either in space and momentum, advective transport and energy losses), under realistic conditions. The new version includes an updated numerical solver and several models for the astrophysical ingredients involved in the transport equation. Improvements in the accuracy of the numerical solution are proved against analytical solutions and in reference diffusion scenarios. The novel features implemented in the code allow to simulate the diverse scenarios proposed to reproduce the most recent measurements of local and diffuse CR fluxes, going beyond the limitations of the homogeneous galactic transport paradigm. To this end, several applications using DRAGON2 are presented as well. This new version facilitates the users to include their own physical models by means of a modular C++ structure.

  8. DRAGON, a GPI-anchored membrane protein, inhibits BMP signaling in C2C12 myoblasts.

    Science.gov (United States)

    Kanomata, Kazuhiro; Kokabu, Shoichiro; Nojima, Junya; Fukuda, Toru; Katagiri, Takenobu

    2009-06-01

    Bone morphogenetic proteins (BMPs) induce osteoblastic differentiation of myoblasts via binding to cell surface receptors. Repulsive guidance molecules (RGMs) have been identified as BMP co-receptors. We report here that DRAGON/RGMb, a member of the RGM family, suppressed BMP signaling in C2C12 myoblasts via a novel mechanism. All RGMs were expressed in C2C12 cells that were differentiated into myocytes and osteoblastic cells, but RGMc was not detected in immature cells. In C2C12 cells, only DRAGON suppressed ALP and Id1 promoter activities induced by BMP-4 or by constitutively activated BMP type I receptors. This inhibition by DRAGON was dependent on the secretory form of the von Willbrand factor type D domain. DRAGON even suppressed BMP signaling induced by constitutively activated Smad1. Over-expression of neogenin did not alter the inhibitory capacity of DRAGON. Taken together, these findings indicate that DRAGON may be an inhibitor of BMP signaling in C2C12 myoblasts. We also suggest that a novel molecule(s) expressed on the cell membrane may mediate the signal transduction of DRAGON in order to suppress BMP signaling in C2C12 myoblasts.

  9. Dragon (Repulsive Guidance Molecule RGMb) Inhibits E-cadherin Expression and Induces Apoptosis in Renal Tubular Epithelial Cells*

    Science.gov (United States)

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y.; Xia, Yin

    2013-01-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45–66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo. PMID:24052264

  10. Experimental Research of a New Wave Energy Conversion Device

    Science.gov (United States)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Chen, Gewei

    2018-01-01

    With the increasing tension of contemporary social energy, the development and utilization of renewable energy has become an important development direction. As an important part of renewable energy, wave energy has the characteristics of green environmental protection and abundant reserves, attracting more investment and research. For small marine equipment energy supply problem, this paper puts forward a micro wave energy conversion device as the basic of heaving motion of waves in the ocean. This paper designed a new type of power output device can solve the micro wave energy conversion problem.

  11. 77 FR 23125 - Special Local Regulation; Tuscaloosa Dragon Boat Race; Black Warrior River; Tuscaloosa, AL

    Science.gov (United States)

    2012-04-18

    ... commercially transited river system poses significant safety hazards to both the Dragon Boat racers and the...-AA08 Special Local Regulation; Tuscaloosa Dragon Boat Race; Black Warrior River; Tuscaloosa, AL AGENCY... crews, vessels, and persons on navigable waters during the Jr. League of Tuscaloosa Dragon Boat Races...

  12. 78 FR 57063 - Special Local Regulations; Jacksonville Dragon Boat Festival; St. Johns River; Jacksonville, FL

    Science.gov (United States)

    2013-09-17

    ... 1625-AA08 Special Local Regulations; Jacksonville Dragon Boat Festival; St. Johns River; Jacksonville... Jacksonville Dragon Boat Festival, a series of paddle boat races. The event is scheduled to take place on... States during the Jacksonville Dragon Boat Festival. C. Discussion of the Final Rule On Saturday...

  13. On the difference between DRAGON and WIMS-AECL calculations of the coolant void reactivity

    International Nuclear Information System (INIS)

    Altiparmakov, D.; Roubtsov, D.; Irish, J.D.

    2009-01-01

    A difference in the shape of the burnup dependence of the coolant void reactivity (CVR) has been observed between DRAGON and WIMS-AECL calculations. This paper discusses the root cause of the difference and assesses the impact on burnup and full-core reactor calculations. A Fortran procedure has been developed to run WIMS-AECL as necessary in order to mimic DRAGON burnup calculations with leakage effects included. The comparison of standard WIMS-AECL results and simulated DRAGON results demonstrated that the difference is due to different definitions of CVR. If the same CVR definition is used, then the results of both WIMS-AECL and DRAGON analyses are essentially indistinguishable. The discrepancies in the fuel composition and cell-averaged two-group cross sections that are due to differences in WIMS-AECL and DRAGON leakage treatments are insignificant. (author)

  14. Dragons' Den: promoting healthcare research and innovation.

    Science.gov (United States)

    Mazhindu, Deborah; Gregory, Siobhan

    2015-07-01

    The changing health and social care landscape, and, in particular, the financial challenges affecting the NHS, can present difficulties for staff looking for funding to support innovation and new ways of working. One method of competitive tendering that is becoming more accepted as a way of allocating funds, encouraging staff engagement and developing innovation for research is a format based the BBC television series, Dragons' Den. This article describes how Hounslow and Richmond Community Healthcare NHS Trust, London, has developed a 'Dragons' Den initiative' of annual competitive research funding allocation to ensure that some of the most dynamic practice in the trust is captured.

  15. Resonant Wave Energy Converters: Concept development

    International Nuclear Information System (INIS)

    Arena, Felice; Barbaro, Giuseppe; Fiamma, Vincenzo; Laface, Valentina; Malara, Giovanni; Romolo, Alessandra; Strati, Federica Mara

    2015-01-01

    The Resonant Wave Energy Converter (REWEC) is a device for converting sea wave energy to electrical energy. It belongs to the family of Oscillating Water Columns and is composed by an absorbing chamber connected to the open sea via a vertical duct. The paper gives a holistic view on the concept development of the device, starting from its implementation in the context of submerged breakwaters to the recently developed vertical breakwaters. [it

  16. Wave Dissipation on Low- to Super-Energy Coral Reefs

    Science.gov (United States)

    Harris, D. L.

    2016-02-01

    Coral reefs are valuable, complex and bio-diverse ecosystems and are also known to be one of the most effective barriers to swell events in coastal environments. Previous research has found coral reefs to be remarkably efficient in removing most of the wave energy during the initial breaking and transformation on the reef flats. The rate of dissipation is so rapid that coral reefs have been referred to as rougher than any known coastal barrier. The dissipation of wave energy across reef flats is crucial in maintaining the relatively low-energy conditions in the back reef and lagoonal environments providing vital protection to adjacent beach or coastal regions from cyclone and storm events. A shift in the regulation of wave energy by reef flats could have catastrophic consequences ecologically, socially, and economically. This study examined the dissipation of wave energy during two swell events in Tahiti and Moorea, French Polyesia. Field sites were chosen in varying degrees of exposure and geomorphology from low-energy protected sites (Tiahura, Moorea) to super-energy sites (Teahupo'o, Tahiti). Waves were measured during two moderate to large swell events in cross reef transects using short-term high-resolution pressure transducers. Wave conditions were found to be similar in all back reef locations despite the very different wave exposure at each reef site. However, wave conditions on the reef flats were different and mirrored the variation in wave exposure with depth over the reef flat the primary regulator of reef flat wave height. These results indicate that coral reef flats evolve morphodynamically with the wave climate, which creates coral reef geomorphologies capable of dissipating wave energy that results in similar back reef wave conditions regardless of the offshore wave climate.

  17. Hydraulic Evaluation of the Crest Wing Wave Energy Converter

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    This report presents the results of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC). The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave to generate power. Model tests have been performed using a scale...... model (length scale 1:30), provided by WaveEnergyFyn, in regular and irregular wave states that can be found in Assessment of Wave Energy Devices. Best Practice as used in Denmark (Frigaard et al., 2008). The tests were carried out at Dept. of Civil Engineering, Aalborg (Frigaard et al., 2008......). The tests were carried out at Dept. of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The displacement and force applied to a power take off system, provided by WaveEnergyFyn, were measured and used to calculate total power take off....

  18. Preliminary HECTOR analysis by Dragon

    Energy Technology Data Exchange (ETDEWEB)

    Presser, W; Woloch, F

    1972-06-02

    From the different cores measured in HECTOR, only ACH 4/B-B was selected for the Dragon analysis, since it presented the largest amount of uniform fuel loading in the central test region and is therefore nearest to an infinite lattice. Preliminary results are discussed.

  19. Sensitivity of wave energy to climate change

    OpenAIRE

    Harrison, Gareth; Wallace, Robin

    2005-01-01

    Wave energy will have a key role in meeting renewable energy targets en route to a low carbon economy. However, in common with other renewables, it may be sensitive to changes in climate resulting from rising carbon emissions. Changes in wind patterns are widely anticipated and this will ultimately alter wave regimes. Indeed, evidence indicates that wave heights have been changing over the last 40 years, although there is no proven link to global warming. Changes in the wave climate will impa...

  20. Physical measurements of breaking wave impact on a floating wave energy converter

    Science.gov (United States)

    Hann, Martyn R.; Greaves, Deborah M.; Raby, Alison

    2013-04-01

    Marine energy converter must both efficiently extract energy in small to moderate seas and also successfully survive storms and potential collisions. Extreme loads on devices are therefore an important consideration in their design process. X-MED is a SuperGen UKCMER project and is a collaboration between the Universities of Manchester, Edinburgh and Plymouth and the Scottish Association for Marine Sciences. Its objective is to extend the knowledge of extreme loads due to waves, currents, flotsam and mammal impacts. Plymouth Universities contribution to the X-MED project involves measuring the loading and response of a taut moored floating body due to steep and breaking wave impacts, in both long crested and directional sea states. These measurements are then to be reproduced in STAR-CCM+, a commercial volume of fluid CFD solver, so as to develop techniques to predict the wave loading on wave energy converters. The measurements presented here were conducted in Plymouth Universities newly opened COAST laboratories 35m long, 15.5m wide and 3m deep ocean basin. A 0.5m diameter taut moored hemispherical buoy was used to represent a floating wave energy device or support structure. The changes in the buoys 6 degree of freedom motion and mooring loads are presented due to focused breaking wave impacts, with the breaking point of the wave changed relative to the buoy.

  1. The Indian wave energy programme- an overview

    International Nuclear Information System (INIS)

    Ravindran, M.; Jayashankar, V.; Jalihal, P.; Pathak, A.G.

    1997-01-01

    The Indian wave energy plant at Vizhinjam, Kerala has demonstrated that energy from a random source such as waves can be harnessed as electrical energy and exported via the local grid. This plant is based on the oscillating water column (OWC) principle. The research on wave energy in India has achieved a commendable status within a decade. A caisson was constructed in December 1990 at Vizhinjam and two generations of power modules have been tested as of today. The physical processes in the energy conversion are understood to a much greater extent, leading to a threefold increase in absolute power from the plant. Efforts are on to make the technology cost-effective

  2. Life-history and spatial determinants of somatic growth dynamics in Komodo dragon populations.

    Science.gov (United States)

    Laver, Rebecca J; Purwandana, Deni; Ariefiandy, Achmad; Imansyah, Jeri; Forsyth, David; Ciofi, Claudio; Jessop, Tim S

    2012-01-01

    Somatic growth patterns represent a major component of organismal fitness and may vary among sexes and populations due to genetic and environmental processes leading to profound differences in life-history and demography. This study considered the ontogenic, sex-specific and spatial dynamics of somatic growth patterns in ten populations of the world's largest lizard the Komodo dragon (Varanus komodoensis). The growth of 400 individual Komodo dragons was measured in a capture-mark-recapture study at ten sites on four islands in eastern Indonesia, from 2002 to 2010. Generalized Additive Mixed Models (GAMMs) and information-theoretic methods were used to examine how growth rates varied with size, age and sex, and across and within islands in relation to site-specific prey availability, lizard population density and inbreeding coefficients. Growth trajectories differed significantly with size and between sexes, indicating different energy allocation tactics and overall costs associated with reproduction. This leads to disparities in maximum body sizes and longevity. Spatial variation in growth was strongly supported by a curvilinear density-dependent growth model with highest growth rates occurring at intermediate population densities. Sex-specific trade-offs in growth underpin key differences in Komodo dragon life-history including evidence for high costs of reproduction in females. Further, inverse density-dependent growth may have profound effects on individual and population level processes that influence the demography of this species.

  3. Life-history and spatial determinants of somatic growth dynamics in Komodo dragon populations.

    Directory of Open Access Journals (Sweden)

    Rebecca J Laver

    Full Text Available Somatic growth patterns represent a major component of organismal fitness and may vary among sexes and populations due to genetic and environmental processes leading to profound differences in life-history and demography. This study considered the ontogenic, sex-specific and spatial dynamics of somatic growth patterns in ten populations of the world's largest lizard the Komodo dragon (Varanus komodoensis. The growth of 400 individual Komodo dragons was measured in a capture-mark-recapture study at ten sites on four islands in eastern Indonesia, from 2002 to 2010. Generalized Additive Mixed Models (GAMMs and information-theoretic methods were used to examine how growth rates varied with size, age and sex, and across and within islands in relation to site-specific prey availability, lizard population density and inbreeding coefficients. Growth trajectories differed significantly with size and between sexes, indicating different energy allocation tactics and overall costs associated with reproduction. This leads to disparities in maximum body sizes and longevity. Spatial variation in growth was strongly supported by a curvilinear density-dependent growth model with highest growth rates occurring at intermediate population densities. Sex-specific trade-offs in growth underpin key differences in Komodo dragon life-history including evidence for high costs of reproduction in females. Further, inverse density-dependent growth may have profound effects on individual and population level processes that influence the demography of this species.

  4. Life-History and Spatial Determinants of Somatic Growth Dynamics in Komodo Dragon Populations

    Science.gov (United States)

    Laver, Rebecca J.; Purwandana, Deni; Ariefiandy, Achmad; Imansyah, Jeri; Forsyth, David; Ciofi, Claudio; Jessop, Tim S.

    2012-01-01

    Somatic growth patterns represent a major component of organismal fitness and may vary among sexes and populations due to genetic and environmental processes leading to profound differences in life-history and demography. This study considered the ontogenic, sex-specific and spatial dynamics of somatic growth patterns in ten populations of the world’s largest lizard the Komodo dragon (Varanus komodoensis). The growth of 400 individual Komodo dragons was measured in a capture-mark-recapture study at ten sites on four islands in eastern Indonesia, from 2002 to 2010. Generalized Additive Mixed Models (GAMMs) and information-theoretic methods were used to examine how growth rates varied with size, age and sex, and across and within islands in relation to site-specific prey availability, lizard population density and inbreeding coefficients. Growth trajectories differed significantly with size and between sexes, indicating different energy allocation tactics and overall costs associated with reproduction. This leads to disparities in maximum body sizes and longevity. Spatial variation in growth was strongly supported by a curvilinear density-dependent growth model with highest growth rates occurring at intermediate population densities. Sex-specific trade-offs in growth underpin key differences in Komodo dragon life-history including evidence for high costs of reproduction in females. Further, inverse density-dependent growth may have profound effects on individual and population level processes that influence the demography of this species. PMID:23028983

  5. When the dragon wore the crown putting starlight back into myth

    CERN Document Server

    Cerow, Don

    2013-01-01

    When our ancestors gazed upon the skies thousands of years ago they looked up into the center of Creation and saw a mighty Dragon, a great celestial serpent with wings circling ceaselessly above them, night after night, century after century. When the Dragon Wore the Crown is a ground breaking book that covers a period of over six thousand years, focusing on what astrologers would call the Ages of Gemini, Taurus and Aries and taking us through the period of classical astronomy with the Greeks and Romans (approx. 7000 BC-200 AD).When the Dragon Wore the Crown opens and closes with the Chinese m

  6. 33 CFR 100.903 - Harborfest Dragon Boat Race; South Haven, MI.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Harborfest Dragon Boat Race; South Haven, MI. 100.903 Section 100.903 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Dragon Boat Race; South Haven, MI. (a) Regulated Area. A regulated area is established to include all...

  7. Energy Capture Optimization for an Adaptive Wave Energy Converter

    NARCIS (Netherlands)

    Barradas Berglind, Jose de Jesus; Meijer, Harmen; van Rooij, Marijn; Clemente Pinol, Silvia; Galvan Garcia, Bruno; Prins, Wouter; Vakis, Antonis I.; Jayawardhana, Bayu

    2016-01-01

    Wave energy has great potential as a renewable energy source, and can therefore contribute significantly to the proportion of renewable energy in the global energy mix. This is especially important since energy mixes with high renewable penetration have become a worldwide priority. One solution to

  8. JEM-EUSO Design for Accommodation on the SpaceX Dragon Spacecraft

    Science.gov (United States)

    Christl, Mark

    2013-01-01

    The JEM-EUSO mission has been planned for launch on JAXA's H2 Launch Vehicle. Recently, the SpaceX Dragon spacecraft has emerged as an alternative payload carrier for JEM-EUSO. This paper will discuss a concept for the re-design of JEM-EUSO so that it can be launched on Dragon.

  9. Wave energy resource assessment and review of the technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wan Nik, W.B.: Sulaiman, O.O. [Maritime Technology Department, Universiti Malaysia Terengganu, 21030, Kuala Terengganu (Malaysia); Rosliza, R. [TATI University College, Teluk Kalong, 24000 Kemaman, Terengganu, (Malaysia); Prawoto, Y. [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM, Skudai, Johor (Malaysia); Muzathik, A.M. [Institute of Technology, University of Moratuwa (Sri Lanka)

    2011-07-01

    Increase in human population has increased the demand for more energy. Technical improvement in transport and electrical appliances gives a lot of facilities to our life nowadays. Still we need to generate or convert this energy. Energy generation based on conventional technologies is always accompanied by environmental pollution. It gives overheating and greenhouse effects that later result in biosphere degradation. Nowadays sea wave energy is being increasingly regarded in many countries as a major and promising resource. It is renewable and environmentally friendly. In this paper wave parameters related to wave energy is analyzed. Then the paper describes the development of many different types of wave-energy converters. Several topics are addressed; the characterization of the wave energy resource, range of devices and how such devices can be organized into classes.

  10. Wave energy budget analysis in the Earth’s radiation belts uncovers a missing energy

    Science.gov (United States)

    Artemyev, A.V.; Agapitov, O.V.; Mourenas, D.; Krasnoselskikh, V.V.; Mozer, F.S.

    2015-01-01

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth’s magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth’s magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave–particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth’s radiation belts, controlled by solar activity. PMID:25975615

  11. Fundamental formulae for wave-energy conversion.

    Science.gov (United States)

    Falnes, Johannes; Kurniawan, Adi

    2015-03-01

    The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units-i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)-may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the 'added-mass' matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called 'fundamental theorem for wave power'. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies.

  12. Progress and Achievements at the Mid Term Stage of the Dragon 3 Programme

    Science.gov (United States)

    Desnos, Yves-Louis; Li, Zengyuan; Zmuda, Andy; Gao, Zhihai

    2014-11-01

    The Dragon Programme is a joint undertaking between ESA and the Ministry of Science and Technology (MOST) of China and the National Remote Sensing Center of China (NRSCC). Its purpose is to encourage increased exploitation of ESA and Chinese space resources within China as well as stimulate increased scientific cooperation in the field of Earth Observation (EO) science and applications between China and Europe. Since 2004, this pioneering programme has become a model for scientific and technological cooperation between China and Europe. By successfully encouraging joint research using ESA, Third Party Missions and Chinese EO data across a range of thematic areas, Dragon continues to deliver outstanding scientific results. The programme has successfully completed two phases, Dragon 1 from 2004 to 2008, Dragon 2 from 2008 to 2012. The third phase of Dragon was started in 2012 and will be completed in 2016. The Dragon 3 project teams are led by leading EO scientists and young scientists are also engaged on the projects. Advanced training in land, ocean and atmospheric applications is a feature of the programme and a course on land and one course on ocean applications have been successfully held in 2012 and 2013 in China. Here-in provided is an overview of the results, reporting and training activities at the mid-term stage of the programme.

  13. Direct Drive Wave Energy Buoy

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth [Columbia Power Technologies, Inc., Charlottesville, VA (United States); Lamb, Bradford [Columbia Power Technologies, Inc., Charlottesville, VA (United States); Prudell, Joseph [Columbia Power Technologies, Inc., Charlottesville, VA (United States); Hammagren, Erik [Columbia Power Technologies, Inc., Charlottesville, VA (United States); Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc., Charlottesville, VA (United States)

    2016-08-22

    This Project aims to satisfy objectives of the DOE’s Water Power Program by completing a system detailed design (SDD) and other important activities in the first phase of a utility-scale grid-connected ocean wave energy demonstration. In early 2012, Columbia Power (CPwr) had determined that further cost and performance optimization was necessary in order to commercialize its StingRAY wave energy converter (WEC). CPwr’s progress toward commercialization, and the requisite technology development path, were focused on transitioning toward a commercial-scale demonstration. This path required significant investment to be successful, and the justification for this investment required improved annual energy production (AEP) and lower capital costs. Engineering solutions were developed to address these technical and cost challenges, incorporated into a proposal to the US Department of Energy (DOE), and then adapted to form the technical content and statement of project objectives of the resulting Project (DE-EE0005930). Through Project cost-sharing and technical collaboration between DOE and CPwr, and technical collaboration with Oregon State University (OSU), National Renewable Energy Lab (NREL) and other Project partners, we have demonstrated experimentally that these conceptual improvements have merit and made significant progress towards a certified WEC system design at a selected and contracted deployment site at the Wave Energy Test Site (WETS) at the Marine Corps Base in Oahu, HI (MCBH).

  14. Wave energy absorption by ducks

    OpenAIRE

    Kurniawan, Adi

    2017-01-01

    We study the absorption of wave energy by a single and multiple cam-shaped bodies referred to as ducks. Numerical models are developed under the assumptions of linear theory. We consider wave absorption by a single duck as well as by two lines of ducks meeting at an angle.

  15. Wave energy absorption by ducks

    DEFF Research Database (Denmark)

    Kurniawan, Adi

    2018-01-01

    We study the absorption of wave energy by a single and multiple cam-shaped bodies referred to as ducks. Numerical models are developed under the assumptions of linear theory. We consider wave absorption by a single duck as well as by two lines of ducks meeting at an angle....

  16. A brief outline of the proposed data/physics calculation scheme proposed for Dragon

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, C.

    1974-10-15

    The paper describes the data handling system COSMOS, that was in current use at the Dounreay Prototype Fast Reactor (PFR), to provide a template for data handling for the Dragon Project wherein the Physics and Engineering Modules would be centered instead around the WIMS-E suite of codes which are more applicable to the HTR. The tailoring of COSMOS to Dragon needs and the adaption of UKAEA and existing Dragon codes to operate on the data interface would require considerable modification.

  17. Air Turbines for Wave Energy Conversion

    Directory of Open Access Journals (Sweden)

    Manabu Takao

    2012-01-01

    Full Text Available This paper describes the present status of the art on air turbines, which could be used for wave energy conversion. The air turbines included in the paper are as follows: Wells type turbines, impulse turbines, radial turbines, cross-flow turbine, and Savonius turbine. The overall performances of the turbines under irregular wave conditions, which typically occur in the sea, have been compared by numerical simulation and sea trial. As a result, under irregular wave conditions it is found that the running and starting characteristics of the impulse type turbines could be superior to those of the Wells turbine. Moreover, as the current challenge on turbine technology, the authors explain a twin-impulse turbine topology for wave energy conversion.

  18. An innovative approach for energy generation from waves

    Energy Technology Data Exchange (ETDEWEB)

    Al-Habaibeh, A. [Advanced Design and Manufacturing Engineering Centre, School of Architecture, Design and the Built Environment, Nottingham Trent University (United Kingdom); Su, D. [School of Architecture, Design and the Built Environment, Nottingham Trent University (United Kingdom); McCague, J. [Technical Director, Ocean Navitas Ltd., Lincolnshire (United Kingdom); Knight, A. [Marketing and Communications Manager, Ocean Navitas Ltd., Lincolnshire (United Kingdom)

    2010-08-15

    Sustainable energy generation is becoming increasingly important due to the expected limitations in current energy resources and to reduce pollution. Wave energy generation has seen significant development in recent years. This paper describes an innovative system for generating energy from wave power. A complete description of the system is presented including the general concept, configurations, mechanical design, electrical system, simulation techniques and expected power output of the system. The results from the hydraulic linear wave simulator, using a real wave profiles captured at a location in the UK using an ultrasound system, it was seen that a {+-}0.8 m wave at 10 s time period, produced a conditioned power output of approximately 22 kW at optimum load conditions for the tested 3-phase 44 kW permanent magnet generator type STK500. The results indicate that this new technology could provide an efficient and low cost method of generating electricity from waves. (author)

  19. An innovative approach for energy generation from waves

    International Nuclear Information System (INIS)

    Al-Habaibeh, A.; Su, D.; McCague, J.; Knight, A.

    2010-01-01

    Sustainable energy generation is becoming increasingly important due to the expected limitations in current energy resources and to reduce pollution. Wave energy generation has seen significant development in recent years. This paper describes an innovative system for generating energy from wave power. A complete description of the system is presented including the general concept, configurations, mechanical design, electrical system, simulation techniques and expected power output of the system. The results from the hydraulic linear wave simulator, using a real wave profiles captured at a location in the UK using an ultrasound system, it was seen that a ±0.8 m wave at 10 s time period, produced a conditioned power output of approximately 22 kW at optimum load conditions for the tested 3-phase 44 kW permanent magnet generator type STK500. The results indicate that this new technology could provide an efficient and low cost method of generating electricity from waves.

  20. Experimental Study on the Langlee Wave Energy Converter

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter

    This report concerns the experimental study of the 1:20 scale model of the Langlee Wave Energy Converter (WEC) carried out at Aalborg University’s wave basin during the summer of 2010.......This report concerns the experimental study of the 1:20 scale model of the Langlee Wave Energy Converter (WEC) carried out at Aalborg University’s wave basin during the summer of 2010....

  1. Power Generation Using Mechanical Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Srinivasan Chandrasekaran

    2012-03-01

    Full Text Available Ocean wave energy plays a significant role in meeting the growing demand of electric power. Economic, environmental, and technical advantages of wave energy set it apart from other renewable energy resources. Present study describes a newly proposed Mechanical Wave Energy Converter (MEWC that is employed to harness heave motion of floating buoy to generate power. Focus is on the conceptual development of the device, illustrating details of component level analysis. Employed methodology has many advantages such as i simple and easy fabrication; ii easy to control the operations during rough weather; and iii low failure rate during normal sea conditions. Experimental investigations carried out on the scaled model of MWEC show better performance and its capability to generate power at higher efficiency in regular wave fields. Design Failure Mode and Effect Analysis (FMEA shows rare failure rates for all components except the floating buoy.

  2. Research on new BPM used to 'Dragon I'

    International Nuclear Information System (INIS)

    Xu Tiezheng; Xie Yutong; Gao Feng; Dai Wenhua; Gu Zhanjun; Wang Liming; Wang Huacen; Li Jing

    2006-01-01

    The principle of beam position monitoring of button was introduced briefly. It was compared with beam bugs in principle. Based on the result in simulation experiment, a new structure of button was design, and some mistakes in the primary design were corrected. In the really beam experiment of 'Dragon I', the beam waveform and position were monitored. Compared the position curve between button and beam bugs that indicated the data that got from button is credible. In the experiment, the button has an accuracy of 0.5 mm, which is adequate for beam position measurement of 'Dragon I'. (authors)

  3. Adenoviral infection in a collection of juvenile inland bearded dragons (Pogona vitticeps).

    Science.gov (United States)

    Doneley, R J T; Buckle, K N; Hulse, L

    2014-01-01

    Juvenile inland bearded dragons (Pogona vitticeps) from a breeding collection in south-east Queensland were presented at age 6-10 weeks with neurological signs, poor growth and occasional deaths. Histopathological examination revealed that six of eight lizards had multifocal non-suppurative hepatitis associated with 5-10 μm diameter, smudgy, basophilic, hyaline intranuclear inclusion bodies that marginated the nuclear chromatin. These histological lesions were considered consistent with adenoviral hepatitis. Infection with adenovirus was confirmed positive in one of the eight dragons by PCR for adenoviral DNA. DNA was extracted from formalin-fixed paraffin-embedded pooled tissues of the juvenile inland bearded dragons and tested using a nested-PCR protocol with primers specific for identification of adenovirus. Sequencing of the one PCR-positive dragon showed 95% nucleotide sequence alignment with agamid atadenovirus 1. Further investigation involved testing the breeding population, including the parents of the affected juveniles. Blood and cloacal samples were collected from the adult population, DNA was extracted and tested by PCR for adenovirus. There was a high percentage of positive results from the samples collected from the breeding population. This is the first reported group outbreak of adenoviral disease in bearded dragons in Australia. © 2014 Australian Veterinary Association.

  4. Reliability Study of Energy Harvesting from Sea Waves by Piezoelectric Patches Consideraing Random JONSWAP Wave Theory

    Directory of Open Access Journals (Sweden)

    M. Ettefagh

    2018-03-01

    Full Text Available One of the new methods for powering low-power electronic devices employed in the sea, is using of mechanical energies of sea waves. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electrical energy. The advantage of this method is based on not implementing the battery charging system. Although, many studies have been done about energy harvesting from sea waves, energy harvesting with considering random JONWSAP wave theory is not fully studied up to now. The random JONSWAP wave model is a more realistic approximation of sea waves in comparison of Airy wave model. Therefore, in this paper a vertical beam with the piezoelectric patches, which is fixed to the seabed, is considered as energy harvester system. The energy harvesting system is simulated by MATLAB software, and then the vibration response of the beam and consequently the generated power is obtained considering the JONWSAP wave theory. In addition, the reliability of the system and the effect of piezoelectric patches uncertainties on the generated power are studied by statistical method. Furthermore, the failure possibility of harvester based on violation criteria is investigated.  

  5. Dragons in English: The Great Change of the Late Nineteenth Century

    Science.gov (United States)

    Cheetham, Dominic

    2014-01-01

    The impetus for the incredible variety found in the modern literary dragon is commonly seen to stem from the creative genius of either E. Nesbit or Kenneth Grahame. However, examination of dragon stories in the late nineteenth century shows that several different authors, on both sides of the Atlantic, were producing similar stories at about the…

  6. ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Goossens, M.; Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Soler, R. [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: tom.vandoorsselaere@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom)

    2013-05-10

    Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

  7. Coordinated Control of Wave Energy Converters Subject to Motion Constraints

    Directory of Open Access Journals (Sweden)

    Liguo Wang

    2016-06-01

    Full Text Available In this paper, a generic coordinated control method for wave energy converters is proposed, and the constraints on motion amplitudes and the hydrodynamic interaction between converters are considered. The objective of the control problem is to maximize the energy converted from ocean waves, and this is achieved by coordinating the power take-off (PTO damping of each wave energy converter in the frequency domain in each sea state. In a case study, a wave energy farm consisting of four converters based on the concept developed by Uppsala University is studied. In the solution, motion constraints, including constraints on the amplitudes of displacement and velocity, are included. Twelve months of sea states, based on measured wave data at the Lysekil test site on the Swedish west coast, are used in the simulation to evaluate the performance of the wave energy farm using the new method. Results from the new coordinated control method and traditional control method are compared, indicating that the coordinated control of wave energy converters is an effective way to improve the energy production of wave energy farm in harmonic waves.

  8. Wave-Particle Energy Exchange Directly Observed in a Kinetic Alfven-Branch Wave

    Science.gov (United States)

    Gershman, Daniel J.; F-Vinas, Adolfo; Dorelli, John C.; Boardsen, Scott A. (Inventor); Avanov, Levon A.; Bellan, Paul M.; Schwartz, Steven J.; Lavraud, Benoit; Coffey, Victoria N.; Chandler, Michael O.; hide

    2017-01-01

    Alfven waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres, and astrophysical systems, but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASAs Magnetospheric Multiscale (MMS) mission, we utilize Earths magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfven wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via non-linear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.

  9. Prospects and applicability of wave energy for South Africa

    Science.gov (United States)

    Lavidas, George; Venugopal, Vengatesan

    2018-03-01

    Renewable energy offers significant opportunities for electricity diversification. South Africa belongs to the group of developing nations and encompasses a lot of potential for renewable energy developments. Currently, the majority of its electricity production originates from fossil fuels; however, incorporation of clean coal technologies will aid in reaching the assigned targets. This study offers a long-term wave power quantification analysis with a numerical wave model. The investigation includes long-term resource assessment in the region, variability, seasonal and monthly wave energy content. Locations with high-energy content but low variability pose an opportunity that can contribute in the alleviation of energy poverty. Application of wave converters depends on the combination of complex terms. The study presents resource levels and the joint distributions, which indicate suitability for converter selection. Depending on the region of interest, these characteristics change. Thus, this resource assessment adds knowledge on wave power and optimal consideration for wave energy applicability.

  10. Numerical study on design for wave energy generation of a floater for energy absorption

    International Nuclear Information System (INIS)

    Li, Kui Ming; Parthasarathy, Nanjundan; Choi, Yoon Hwan; Lee, Yeon Won

    2012-01-01

    In order to design a wave energy generating system of a floater type, a 6 DOF motion technique was applied to the three Dimensional CFD analysis on a floating body and the behavior was interpreted according to the nature of the incoming waves. Waves in a tank model were generated using a single floater comparing with that of a Pelamis wave energy converter. In this paper, we focus on four variables, namely the wave height, angular velocity, diameter and length of the floater. The process was carried out in three stages and it was found that there are energy absorption differences in different parameters of wave height, length and the diameter of a floater during simulation, thus leading for the necessity of an optimal design for wave energy generation

  11. Experimental Study on the Langlee Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Weisz, A.

    This report presents the results of an experimental study of the wave energy converting abilities of the Langlee wave energy converter (WEC). It focused mainly on evaluating the power generating capabilities of the device, including investigations of the following issues: Scaling ratiosPTO loadingWave...... height and wave period dependencyOblique incoming waves and directional spreading of waves (3D waves)Damping platesMooring forces and fixed structure setupPitch, surge and heave motion During the study the model supplied by the client (Langlee Wave Power AS) has been heavily instrumented - up to 23...... different instruments was deployed to measure and record data. Tests were performed at scales of 1:30 and 1:20 based on the realized reference wave states....

  12. Dragon Lake, Siberia

    Science.gov (United States)

    2002-01-01

    Nicknamed 'Dragon Lake,' this body of water is formed by the Bratskove Reservoir, built along the Angara river in southern Siberia, near the city of Bratsk. This image was acquired in winter, when the lake is frozen. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on December 19, 1999. This is a natural color composite image made using blue, green, and red wavelengths. Image provided by the USGS EROS Data Center Satellite Systems Branch

  13. Parametric pendulum based wave energy converter

    Science.gov (United States)

    Yurchenko, Daniil; Alevras, Panagiotis

    2018-01-01

    The paper investigates the dynamics of a novel wave energy converter based on the parametrically excited pendulum. The herein developed concept of the parametric pendulum allows reducing the influence of the gravity force thereby significantly improving the device performance at a regular sea state, which could not be achieved in the earlier proposed original point-absorber design. The suggested design of a wave energy converter achieves a dominant rotational motion without any additional mechanisms, like a gearbox, or any active control involvement. Presented numerical results of deterministic and stochastic modeling clearly reflect the advantage of the proposed design. A set of experimental results confirms the numerical findings and validates the new design of a parametric pendulum based wave energy converter. Power harvesting potential of the novel device is also presented.

  14. [The popular interpretation of strokes in ancient Galicia: the dragon myth].

    Science.gov (United States)

    Pías-Peleteiro, Juan M; Blanco, Miguel; Arias, Manuel; Castillo, José

    2011-05-01

    The high prevalence and mortality of stroke has consequently brought about a wide presence of this pathology in the Galician pre-scientific folk medicine. A new interpretation of stroke, linked to the local tradition around the figure of Saint James the Apostle, is presented in this paper: stroke is considered to be the result of the evil influence of a dragon. In the Codex Calixtinus, a xii century manuscript containing various materials around the figure of Saint James, a dragon is also mentioned as an obstacle for the translation of the apostolic body. The third book of Codex Calixtinus containing the narration of the translation of the dead body of James the Greater from Palestine to its likely current location in Santiago de Compostela (Galicia, Spain), also holds the major written record of the dragon of the Pico Sacro mountain. The pagan symbol of the dragon has remained in the orally-transmitted Galician folk medicine as a direct cause for neurological diseases such as stroke. For the first time, in our knowledge, the symbol of a dragon as the magical explanation for cerebral vascular disease has been described. Moreover, this mythical explanation, found only in the Galician folk medicine, is strongly linked to the legend of the translation of James the Apostle to Galicia. Such a link supports the originality of the narration in the Codex Calixtinus as opposed to other versions of the apostolic translation which can be found in other manuscripts.

  15. Implementation of the equivalence theory inside the computational chain DRAGON/DONJON-NDF

    International Nuclear Information System (INIS)

    Dufour, P.

    2005-01-01

    The work accomplished in the scope of this master project consists in introducing the equivalence theory inside the computational schema DRAGON/DONJON-NDF. This theory takes into account the possible discontinuity of the homogeneous flux at the surfaces inside problems that involve an homogenisation procedure. To do it, the theory include new factors called discontinuity factors. These factors give, in theory, more exact solutions. Because we use the cell code DRAGON to generate all our homogeneous parameters we also used DRAGON to compute the heterogeneous surface fluxes which are essential to obtain the discontinuity factors. The project has been divided into two parts. The first part consists in computing the heterogeneous surface fluxes with the cell code DRAGON. For the second part of the project we have performed reactor computations using the code DONJON-NDF (over CANDU-6 geometry) with discontinuity factors and we have compared the results thus obtained with those computed without discontinuity factors.

  16. Further optimization studies of experimental dynamic responses measured on the HTGC Dragon reactor

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1968-04-01

    This report considers some measurements made of the dynamics of the HTGC Dragon reactor and the optimization of a mathematical model which represents the reactor, by altering the parameters until a least squares fit between the experimental responses and the mathematical model is obtained. The experimental information was processed in various ways. The experimental response to an impulse, step or periodic sine wave change in reactivity was processed as an impulse, step or periodic sine wave response respectively and compared with a similar response from the model. In other studies the result of a binary cross correlation experiment (effectively an impulse response input) was processed as a frequency response and this experimental frequency response was compared with the frequency response from the mathematical model. It was possible therefore to compare the optimum values of parameters, obtained for different forms of perturbing signal and for different methods of processing and to relate the optima obtained to the problem of parameter estimation. (author)

  17. Integrated analysis of energy transfers in elastic-wave turbulence.

    Science.gov (United States)

    Yokoyama, Naoto; Takaoka, Masanori

    2017-08-01

    In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.

  18. Underwater noise from a wave energy converter

    DEFF Research Database (Denmark)

    Tougaard, Jakob

    A recent addition to the anthropogenic sources of underwater noise is offshore wave energy converters. Underwater noise was recorded from the Wavestar wave energy converter located at Hastholm, Denmark (57°7.73´N, 8°37.23´E). The Wavestar is a full-scale test and demonstration converter...... in full operation and start and stop of the converter. Median broad band (10 Hz – 20 kHz) sound pressure level (Leq) was 123 dB re. 1 Pa, irrespective of status of the wave energy converter (stopped, running or starting/stopping). The most pronounced peak in the third-octave spectrum was in the 160 Hz...... significant noise above ambient could be detected above the 250 Hz band. The absolute increase in noise above ambient was very small. L50 third-octave levels in the four bands with the converter running were thus only 1-2 dB above ambient L50 levels. The noise recorded 25 m from the wave energy converter...

  19. MULTIHORMONAL ISLET CELL CARCINOMAS IN THREE KOMODO DRAGONS (VARANUS KOMODOENSIS).

    Science.gov (United States)

    Eustace, Ronan; Garner, Michael M; Cook, Kimberly; Miller, Christine; Kiupel, Matti

    2017-03-01

      Multihormonal pancreatic islet cell carcinomas were found in one female and two male captive geriatric Komodo dragons (Varanus komodoensis). Gross changes in the pancreas were visible in two of the cases. Clinical signs noted in the Komodo dragons were lethargy, weakness, and anorexia. Histologically, the tumors were comprised of nests and cords of well-differentiated neoplastic islet cells with scant amounts of eosinophilic cytoplasm and round, euchromatic nuclei, with rare mitoses. Infiltration by the islet cell tumor into the surrounding acinar tissue was observed in all cases, but no metastatic foci were seen. Multihormone expression was observed in all tumors, which labeled strongly positive for glucagon and somatostatin and focally positive for polypeptide. Pancreatic islet cell neoplasms should be considered in the differential diagnosis for geriatric Komodo dragons presenting with weakness, lethargy, and poor appetite.

  20. Validation of DRAGON4/DONJON4 simulation methodology for a typical MNSR by calculating reactivity feedback coefficient and neutron flux

    Science.gov (United States)

    Al Zain, Jamal; El Hajjaji, O.; El Bardouni, T.; Boukhal, H.; Jaï, Otman

    2018-06-01

    The MNSR is a pool type research reactor, which is difficult to model because of the importance of neutron leakage. The aim of this study is to evaluate a 2-D transport model for the reactor compatible with the latest release of the DRAGON code and 3-D diffusion of the DONJON code. DRAGON code is then used to generate the group macroscopic cross sections needed for full core diffusion calculations. The diffusion DONJON code, is then used to compute the effective multiplication factor (keff), the feedback reactivity coefficients and neutron flux which account for variation in fuel and moderator temperatures as well as the void coefficient have been calculated using the DRAGON and DONJON codes for the MNSR research reactor. The cross sections of all the reactor components at different temperatures were generated using the DRAGON code. These group constants were used then in the DONJON code to calculate the multiplication factor and the neutron spectrum at different water and fuel temperatures using 69 energy groups. Only one parameter was changed where all other parameters were kept constant. Finally, Good agreements between the calculated and measured have been obtained for every of the feedback reactivity coefficients and neutron flux.

  1. Buoy and Generator Interaction with Ocean Waves: Studies of a Wave Energy Conversion System

    Energy Technology Data Exchange (ETDEWEB)

    Lindroth, Simon

    2011-07-01

    On March 13th, 2006, the Div. of Electricity at Uppsala Univ. deployed its first wave energy converter, L1, in the ocean southwest of Lysekil. L1 consisted of a buoy at the surface, connected through a line to a linear generator on the seabed. Since the deployment, continuous investigations of how L1 works in the waves have been conducted, and several additional wave energy converters have been deployed. This thesis is based on ten publications, which focus on different aspects of the interaction between wave, buoy, and generator. In order to evaluate different measurement systems, the motion of the buoy was measured optically and using accelerometers, and compared to measurements of the motion of the movable part of the generator - the translator. These measurements were found to correlate well. Simulations of buoy and translator motion were found to match the measured values. The variation of performance of L1 with changing water levels, wave heights, and spectral shapes was also investigated. Performance is here defined as the ratio of absorbed power to incoming power. It was found that the performance decreases for large wave heights. This is in accordance with the theoretical predictions, since the area for which the stator and the translator overlap decreases for large translator motions. Shifting water levels were predicted to have the same effect, but this could not be seen as clearly. The width of the wave energy spectrum has been proposed by some as a factor that also affects the performance of a wave energy converter, for a set wave height and period. Therefore the relation between performance and several different parameters for spectral width was investigated. It was found that some of the parameters were in fact correlated to performance, but that the correlation was not very strong. As a background on ocean measurements in wave energy, a thorough literature review was conducted. It turns out that the Lysekil project is one of quite few projects that

  2. The Draukie's Tale: Origin Myth for Wave Energy

    DEFF Research Database (Denmark)

    Watts, Laura

    2017-01-01

    Poem based on ethnographic research with people and places around the European Marine Energy Centre, the world's longest running test site for wave and tide energy, Orkney islands, Scotland.......Poem based on ethnographic research with people and places around the European Marine Energy Centre, the world's longest running test site for wave and tide energy, Orkney islands, Scotland....

  3. Studies on equilibrium fuel management schemes on the Dragon HTR core design

    Energy Technology Data Exchange (ETDEWEB)

    Daub, J; Pedersen, J

    1971-02-03

    The Dragon Project has recently started investigations on fuel management in HTR's with the assumed Dragon design. The study covers the results of investigations into a number of equilibrium fuel management schemes with the 1-dimensional FLATTER code and calculations of the corresponding total power generating costs with the programme TECO.

  4. Wave energy transmission apparatus for high-temperature environments

    Science.gov (United States)

    Buckley, John D. (Inventor); Edwards, William C. (Inventor); Kelliher, Warren C. (Inventor); Carlberg, Ingrid A. (Inventor)

    2010-01-01

    A wave energy transmission apparatus has a conduit made from a refractory oxide. A transparent, refractory ceramic window is coupled to the conduit. Wave energy passing through the window enters the conduit.

  5. Cerebral xanthomatosis in three green water dragons (Physignathus cocincinus).

    Science.gov (United States)

    Kummrow, Maya S; Berkvens, Charlene N; Paré, Jean A; Smith, Dale A

    2010-03-01

    Cerebral xanthomatosis was diagnosed in three female green water dragons (Physignathus cocincinus), all of which presented with progressive neurologic signs. No antemortem evidence for xanthomatosis was identified, but on postmortem examination cholesterol granulomas, composed of cholesterol clefts surrounded by macrophages and multinucleated giant cells, were found in the forebrain of each animal and were associated with significant displacement and pressure on the adjacent brain. Although the cause of xanthomatosis in these animals is unknown, nutrition and trauma may be involved in the pathogenesis of this condition. Cerebrum, cholesterol, green water dragon, Physignathus cocincinus, xanthoma.

  6. Advanced computational simulations of water waves interacting with wave energy converters

    Science.gov (United States)

    Pathak, Ashish; Freniere, Cole; Raessi, Mehdi

    2017-03-01

    Wave energy converter (WEC) devices harness the renewable ocean wave energy and convert it into useful forms of energy, e.g. mechanical or electrical. This paper presents an advanced 3D computational framework to study the interaction between water waves and WEC devices. The computational tool solves the full Navier-Stokes equations and considers all important effects impacting the device performance. To enable large-scale simulations in fast turnaround times, the computational solver was developed in an MPI parallel framework. A fast multigrid preconditioned solver is introduced to solve the computationally expensive pressure Poisson equation. The computational solver was applied to two surface-piercing WEC geometries: bottom-hinged cylinder and flap. Their numerically simulated response was validated against experimental data. Additional simulations were conducted to investigate the applicability of Froude scaling in predicting full-scale WEC response from the model experiments.

  7. Towards a more plausible dragon

    Science.gov (United States)

    Efthimiou, Costas

    2014-08-01

    Wizards, mermaids, dragons and aliens. Walking, running, flying and space travel. A hi-tech elevator, a computer, a propulsion engine and a black hole. What do all of these things have in common? This might seem like a really hard brainteaser but the answer is simple: they all obey the fundamental laws of our universe.

  8. A comparison of UVb compact lamps in enabling cutaneous vitamin D synthesis in growing bearded dragons.

    Science.gov (United States)

    Diehl, J J E; Baines, F M; Heijboer, A C; van Leeuwen, J P; Kik, M; Hendriks, W H; Oonincx, D G A B

    2018-02-01

    The effect of exposure to different UVb compact lamps on the vitamin D status of growing bearded dragons (Pogona vitticeps) was studied. Forty-two newly hatched bearded dragons (dragons to provide a reference level. Only one treatment resulted in elevated levels of 25(OH)D 3 compared to the control group (41.0 ± 12.85 vs. 2.0 ± 0.0 nmol/L). All UVb-exposed groups had low 25(OH)D 3 plasma levels compared to earlier studies on captive bearded dragons as well as in comparison with the free-living adult bearded dragons (409 ± 56 nmol/L). Spectral analysis indicated that all treatment lamps emitted UVb wavelengths effective for some cutaneous vitamin D synthesis. None of these lamps, under this regime, appeared to have provided a sufficient UVb dose to enable synthesis of plasma 25(OH)D 3 levels similar to those of free-living bearded dragons in their native habitat. © 2017 The Authors. Journal of Animal Physiology and Animal Nutrition Published by Blackwell Verlag GmbH.

  9. Proposed electromagnetic wave energy converter

    Science.gov (United States)

    Bailey, R. L.

    1973-01-01

    Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.

  10. Antibacterial activities of serum from the Komodo Dragon (Varanus komodoensis)

    OpenAIRE

    Mark Merchant; Danyell Henry; Rodolfo Falconi; Bekky Muscher; Judith Bryja

    2013-01-01

    Komodo dragons (Varanus komodoensis) are able to feed on large prey items by injecting a dose of toxic bacteria with their bite that, over time, kills the prey by systemic infection. Dragons also suffer bites from other members of their own species during territorial disputes and feeding frenzies. However, they do not suffer the same fate as their prey, suggesting that they have developed a strong immunity to bacterial infections. This study was undertaken to determine the antibacterial activ...

  11. Hanstholm phase 2B. Offshore wave energy test 1994 - 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The wave power converter consists of a float 2.5 meter in diameter, connected by a rope to a seabed-mounted piston pump, installed on 25 meter deep water 2,5 km offshore Hanstholm, Denmark. The converter is designed to absorb an average maximum power of 1 kW. Measured data in real sea conditions are compared to results based on computer simulations and previous tank testing. Losses caused by rope elasticity and hysteresis, friction in the pump and back flow through the valves are assessed. The economic perspectives of a large wave power plant are presented, based on a revised prototype incorporating the results and experience gained during the test period. The wave energy conversion test `Hanstholm phase 2B` has showed, that it it technically possible to exploit the offshore wave energy resource. This source of energy could become attractive for commercial enterprise. The wave power converter demonstrated a reliable performance over a period of nine months. It produced energy under all wave conditions and survived storm waves of 9,6 m. A 300 MW wave power plant in the Danish part of the North sea is estimated to produce electricity at a cost between 2,1 - 2,4 DKK/kWh. The electrical transmission to shore contribute to approximately 20% of the cost. New data predict a potential of 23 kW per meter wave front. The energy plan Energy 21 proposed by the Danish Department of Energy, includes a scenario incorporating wave energy in the energy system year 2030. A strategy for the development of wave energy, has been proposed as part of the project OWEC-1 supported by the European Joule R and D programme. A proposal for future Danish initiatives to develop second generation point absorber systems is outlined. (ARW) 29 refs.

  12. 76 FR 61340 - Notice of Decision To Authorize the Importation of Dragon Fruit From Thailand Into the...

    Science.gov (United States)

    2011-10-04

    ... Inspection Service [Docket No. APHIS-2011-0047] Notice of Decision To Authorize the Importation of Dragon... importation into the continental United States of dragon fruit (multiple genera and species) from Thailand... weeds via the importation of dragon fruit from Thailand. DATES: Effective Date: October 4, 2011. FOR...

  13. The Oral and Skin Microbiomes of Captive Komodo Dragons Are Significantly Shared with Their Habitat

    OpenAIRE

    Embriette R. Hyde; Jose A. Navas-Molina; Se Jin Song; Jordan G. Kueneman; Gail Ackermann; Cesar Cardona; Gregory Humphrey; Don Boyer; Tom Weaver; Joseph R. Mendelson; Valerie J. McKenzie; Jack A. Gilbert; Rob Knight; Ashley Shade

    2016-01-01

    ABSTRACT Examining the way in which animals, including those in captivity, interact with their environment is extremely important for studying ecological processes and developing sophisticated animal husbandry. Here we use the Komodo dragon (Varanus komodoensis) to quantify the degree of sharing of salivary, skin, and fecal microbiota with their environment in captivity. Both species richness and microbial community composition of most surfaces in the Komodo dragon?s environment are similar t...

  14. Use of the 'DRAGON' program for the calculation of reactivity devices

    International Nuclear Information System (INIS)

    Mollerach, Ricardo; Fink, Jose

    2003-01-01

    DRAGON is a computer program developed at the Ecole Polytechnique of the University of Montreal and adopted by AECL for the transport calculations associated to reactivity devices. This report presents aspects of the implementation in NASA of the DRAGON program. Some cases of interest were evaluated. Comparisons with results of known programs as WIMS D5, and with experiments were done. a) Embalse (CANDU 6) cell without burnup and leakage. Calculations of macroscopic cross sections with WIMS and DRAGON show very good agreement with smaller differences in the thermal constants. b) Embalse fresh cell with different leakage options. c) Embalse cell with leakage and burnup. A comparison of k-infinity and k-effective with WIMS and DRAGON as a function of burnup shows that the differences ((D-W)/D) for fresh fuel are -0.17% roughly constant up to about 2500 MWd/tU, and then decrease to -0.06 % for 8500 MWd/tU. Experiments made in 1977 in ZED-2 critical facility, reported in [3], were used as a benchmark for the cell and supercell DRAGON calculations. Calculated fluxes were compared with experimental values and the agreement is so good. d) ZED-2 cell calculation. The measured buckling was used as geometric buckling. This case can be considered an experimental verification. The calculated reactivity with DRAGON is about 2 mk, and can be considered satisfactory. WIMS k-effective value is about one mk higher. e) Supercell calculations for ZED-2 vertical and horizontal tube and rod adjuster using 2D and 3D models were done. Comparisons between measured and calculated fluxes in the vicinity of the adjuster rods. Incremental cross sections for these adjusters were calculated using different options. f) ZED-2 reactor calculations with PUMA reveal a good concordance with critical heights measured in experiments. The report describes also particular features of the code and recommendations regarding its use that may be useful for new users. (author)

  15. Dungeons & Dragons: The gamers are revolting! [symposium

    Directory of Open Access Journals (Sweden)

    Rebecca Bryant

    2009-03-01

    Full Text Available The negative response by players to corporate changes to the rule systems governing Dungeons & Dragons suggests that tabletop RPGs have more in common with fan fiction than with computer games.

  16. ASTRAL, DRAGON and SEDAN scores predict stroke outcome more accurately than physicians.

    Science.gov (United States)

    Ntaios, G; Gioulekas, F; Papavasileiou, V; Strbian, D; Michel, P

    2016-11-01

    ASTRAL, SEDAN and DRAGON scores are three well-validated scores for stroke outcome prediction. Whether these scores predict stroke outcome more accurately compared with physicians interested in stroke was investigated. Physicians interested in stroke were invited to an online anonymous survey to provide outcome estimates in randomly allocated structured scenarios of recent real-life stroke patients. Their estimates were compared to scores' predictions in the same scenarios. An estimate was considered accurate if it was within 95% confidence intervals of actual outcome. In all, 244 participants from 32 different countries responded assessing 720 real scenarios and 2636 outcomes. The majority of physicians' estimates were inaccurate (1422/2636, 53.9%). 400 (56.8%) of physicians' estimates about the percentage probability of 3-month modified Rankin score (mRS) > 2 were accurate compared with 609 (86.5%) of ASTRAL score estimates (P DRAGON score estimates (P DRAGON score estimates (P DRAGON and SEDAN scores predict outcome of acute ischaemic stroke patients with higher accuracy compared to physicians interested in stroke. © 2016 EAN.

  17. Ecological allometries and niche use dynamics across Komodo dragon ontogeny

    Science.gov (United States)

    Purwandana, Deni; Ariefiandy, Achmad; Imansyah, M. Jeri; Seno, Aganto; Ciofi, Claudio; Letnic, Mike; Jessop, Tim S.

    2016-04-01

    Ontogenetic allometries in ecological habits and niche use are key responses by which individuals maximize lifetime fitness. Moreover, such allometries have significant implications for how individuals influence population and community dynamics. Here, we examined how body size variation in Komodo dragons ( Varanus komodoensis) influenced ecological allometries in their: (1) prey size preference, (2) daily movement rates, (3) home range area, and (4) subsequent niche use across ontogeny. With increased body mass, Komodo dragons increased prey size with a dramatic switch from small (≤10 kg) to large prey (≥50 kg) in lizards heavier than 20 kg. Rates of foraging movement were described by a non-linear concave down response with lizard increasing hourly movement rates up until ˜20 kg body mass before decreasing daily movement suggesting reduced foraging effort in larger lizards. In contrast, home range area exhibited a sigmoid response with increased body mass. Intrapopulation ecological niche use and overlap were also strongly structured by body size. Thus, ontogenetic allometries suggest Komodo dragon's transition from a highly active foraging mode exploiting small prey through to a less active sit and wait feeding strategy focused on killing large ungulates. Further, our results suggest that as body size increases across ontogeny, the Komodo dragon exhibited marked ontogenetic niche shifts that enabled it to function as an entire vertebrate predator guild by exploiting prey across multiple trophic levels.

  18. Conversion of the energy of a high-current REB into electromagnetic wave energy

    International Nuclear Information System (INIS)

    Kurilko, V.I.; Kharchenko, I.F.

    2000-01-01

    Results are presented from a theoretical investigation and quantitative analysis of the physical processes that govern the efficiency of a coaxial device aimed at converting the energy of a relativistic electron beam into the energy of a TEM wave (a wave in a circular cylindrical coaxial waveguide). The key diffractional problem is solved exactly using a simplified theoretical model, which makes it possible to understand the mechanisms for the formation of a TEM wave and determine how the beam parameters and the design parameters of the converter affect the relative fractions of the kinetic energy of a relativistic electron beam and the energy of its own magnetic and electric fields that are transferred into the energy of the TEM wave field. The results obtained are analyzed quantitatively, and prospects for further theoretical and experimental research in this area are outlined

  19. Low energy consumption vortex wave flow membrane bioreactor.

    Science.gov (United States)

    Wang, Zhiqiang; Dong, Weilong; Hu, Xiaohong; Sun, Tianyu; Wang, Tao; Sun, Youshan

    2017-11-01

    In order to reduce the energy consumption and membrane fouling of the conventional membrane bioreactor (MBR), a kind of low energy consumption vortex wave flow MBR was exploited based on the combination of biofilm process and membrane filtration process, as well as the vortex wave flow technique. The experimental results showed that the vortex wave flow state in the membrane module could be formed when the Reynolds number (Re) of liquid was adjusted between 450 and 1,050, and the membrane flux declined more slowly in the vortex wave flow state than those in the laminar flow state and turbulent flow state. The MBR system was used to treat domestic wastewater under the condition of vortex wave flow state for 30 days. The results showed that the removal efficiency for CODcr and NH 3 -N was 82% and 98% respectively, and the permeate quality met the requirement of 'Water quality standard for urban miscellaneous water consumption (GB/T 18920-2002)'. Analysis of the energy consumption of the MBR showed that the average energy consumption was 1.90 ± 0.55 kWh/m 3 (permeate), which was only two thirds of conventional MBR energy consumption.

  20. Stakeholder requirements for commercially successful wave energy converter farms

    Energy Technology Data Exchange (ETDEWEB)

    Babarit, Aurélien; Bull, Diana; Dykes, Katherine; Malins, Robert; Nielsen, Kim; Costello, Ronan; Roberts, Jesse; Bittencourt Ferreira, Claudio; Kennedy, Ben; Weber, Jochem

    2017-12-01

    In this study, systems engineering techniques are applied to wave energy to identify and specify stakeholders' requirements for a commercially successful wave energy farm. The focus is on the continental scale utility market. Lifecycle stages and stakeholders are identified. Stakeholders' needs across the whole lifecycle of the wave energy farm are analyzed. A list of 33 stakeholder requirements are identified and specified. This list of requirements should serve as components of a technology performance level metric that could be used by investors and funding agencies to make informed decisions when allocating resources. It is hoped that the technology performance level metric will accelerate wave energy conversion technology convergence.

  1. Wave energy potential in Galicia (NW Spain)

    DEFF Research Database (Denmark)

    Iglesias, Gregorio; López, Mario; Carballo, Rodrigo

    2009-01-01

    Wave power presents significant advantages with regard to other CO2-free energy sources, among which the predictability, high load factor and low visual and environmental impact stand out. Galicia, facing the Atlantic on the north-western corner of the Iberian Peninsula, is subjected to a very...... harsh wave climate; in this work its potential for energy production is assessed based on three-hourly data from a third generation ocean wave model (WAM) covering the period 1996 - 2005. Taking into account the results of this assessment along with other relevant considerations such as the location...

  2. Preliminary Load Estimations for DEXA Wave Energy Device - Hanstholm, Denmark

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    by DEXA Wave Energy ApS, in regular and irregular wave states, as described in Assessment of Wave Energy Devices. Best Practice as used in Denmark (Frigaard et al., 2008). The length scale of the model was 1:20 compared to a full scale device suitable fro the Danish part of the North Sea, according...... to DEXA Wave Energy ApS. The tests were carried out at Dept. of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The displacement and force applied to a power take off system, provided by DEXA Wave Energy ApS, were measured and used for calculation of power available...... to the power take-off....

  3. Design guidelines of triboelectric nanogenerator for water wave energy harvesters

    KAUST Repository

    Ahmed, Abdelsalam

    2017-04-11

    Ocean waves are one of the cleanest and most abundant energy sources on earth, and wave energy has the potential for future power generation. Triboelectric nanogenerator (TENG) technology has recently been proposed as a promising technology to harvest wave energy. In this paper, a theoretical study is performed on a duck-shaped TENG wave harvester recently introduced in our work. To enhance the design of the duck-shaped TENG wave harvester, the mechanical and electrical characteristics of the harvester\\'s overall structure, as well as its inner configuration, are analyzed, respectively, under different wave conditions, to optimize parameters such as duck radius and mass. Furthermore, a comprehensive hybrid 3D model is introduced to quantify the performance of the TENG wave harvester. Finally, the influence of different TENG parameters is validated by comparing the performance of several existing TENG wave harvesters. This study can be applied as a guideline for enhancing the performance of TENG wave energy harvesters.

  4. Design guidelines of triboelectric nanogenerator for water wave energy harvesters

    KAUST Repository

    Ahmed, Abdelsalam; Hassan, Islam; Jiang, Tao; Youssef, Khalid; Liu, Lian; Hedaya, Mohammad; Yazid, Taher Abu; Zu, Jean; Wang, Zhong Lin

    2017-01-01

    Ocean waves are one of the cleanest and most abundant energy sources on earth, and wave energy has the potential for future power generation. Triboelectric nanogenerator (TENG) technology has recently been proposed as a promising technology to harvest wave energy. In this paper, a theoretical study is performed on a duck-shaped TENG wave harvester recently introduced in our work. To enhance the design of the duck-shaped TENG wave harvester, the mechanical and electrical characteristics of the harvester's overall structure, as well as its inner configuration, are analyzed, respectively, under different wave conditions, to optimize parameters such as duck radius and mass. Furthermore, a comprehensive hybrid 3D model is introduced to quantify the performance of the TENG wave harvester. Finally, the influence of different TENG parameters is validated by comparing the performance of several existing TENG wave harvesters. This study can be applied as a guideline for enhancing the performance of TENG wave energy harvesters.

  5. Design guidelines of triboelectric nanogenerator for water wave energy harvesters.

    Science.gov (United States)

    Ahmed, Abdelsalam; Hassan, Islam; Jiang, Tao; Youssef, Khalid; Liu, Lian; Hedaya, Mohammad; Yazid, Taher Abu; Zu, Jean; Wang, Zhong Lin

    2017-05-05

    Ocean waves are one of the cleanest and most abundant energy sources on earth, and wave energy has the potential for future power generation. Triboelectric nanogenerator (TENG) technology has recently been proposed as a promising technology to harvest wave energy. In this paper, a theoretical study is performed on a duck-shaped TENG wave harvester recently introduced in our work. To enhance the design of the duck-shaped TENG wave harvester, the mechanical and electrical characteristics of the harvester's overall structure, as well as its inner configuration, are analyzed, respectively, under different wave conditions, to optimize parameters such as duck radius and mass. Furthermore, a comprehensive hybrid 3D model is introduced to quantify the performance of the TENG wave harvester. Finally, the influence of different TENG parameters is validated by comparing the performance of several existing TENG wave harvesters. This study can be applied as a guideline for enhancing the performance of TENG wave energy harvesters.

  6. Weeping dragon, a unique ornamenal citrus

    Science.gov (United States)

    ‘Weeping Dragon’ is a new ornamental citrus cultivar developed by intercrossing of two unusual and unique citrus types, Poncirus trifoliata cultivated variety (cv.) Flying Dragon, and Citrus sinensis cv. ‘Cipo’. This new hybrid cultivar combines strongly contorted and weeping growth traits in a smal...

  7. Quantifying the Benefits of Combining Offshore Wind and Wave Energy

    Science.gov (United States)

    Stoutenburg, E.; Jacobson, M. Z.

    2009-12-01

    For many locations the offshore wind resource and the wave energy resource are collocated, which suggests a natural synergy if both technologies are combined into one offshore marine renewable energy plant. Initial meteorological assessments of the western coast of the United States suggest only a weak correlation in power levels of wind and wave energy at any given hour associated with the large ocean basin wave dynamics and storm systems of the North Pacific. This finding indicates that combining the two power sources could reduce the variability in electric power output from a combined wind and wave offshore plant. A combined plant is modeled with offshore wind turbines and Pelamis wave energy converters with wind and wave data from meteorological buoys operated by the US National Buoy Data Center off the coast of California, Oregon, and Washington. This study will present results of quantifying the benefits of combining wind and wave energy for the electrical power system to facilitate increased renewable energy penetration to support reductions in greenhouse gas emissions, and air and water pollution associated with conventional fossil fuel power plants.

  8. IMPORTANCE OF MANGROVE TO REDUCE THE TSUNAMI WAVE ENERGY

    Directory of Open Access Journals (Sweden)

    Anastasia Neni Candra Purnamasari

    2017-09-01

    Full Text Available Mangrove has a very important role to reduce the tsunami wave energy. It is shown that the coastal areas have no vegetation or in this case will have an impact Mangrove forests greater damage due to tsunami waves than the coastal areas of vegetation. The purpose of the Term Paper is proved the importance of Mangrove to reduce the tsunami wave energy by comparing the various methods that have been observed in some case studies on the impact of the tsunami that occurred in several Asian countries in 2004 and case studies on ocean waves on the Gulf coast of south Florida. Based on the research results that could dampen Mangrove Tsunami wave energy. Tsunami wave energy can be reduced by several factors, namely mangrove species, tree size, vast mangrove forest, nature tree structure, and the size limit Mangrove forest (as far as how much of the ocean to the surface.

  9. Verification of the cross-section and depletion chain processing module of DRAGON 3.06

    International Nuclear Information System (INIS)

    Chambon, R.; Marleau, G.; Zkiek, A.

    2008-01-01

    In this paper we present a verification of the module of the lattice code DRAGON 3.06 used for processing microscopic cross-section libraries, including their associated depletion chain. This verification is performed by reprogramming the capabilities of DRAGON in another language (MATLAB) and testing them on different problems typical of the CANDU reactor. The verification procedure consists in first programming MATLAB m-files to read the different cross section libraries in ASCII format and to compute the reference cross-sections and depletion chains. The same information is also recovered from the output files of DRAGON (using different m-files) and the resulting cross sections and depletion chain are compared with the reference library, the differences being evaluated and tabulated. The results show that the cross-section calculations and the depletion chains are correctly processed in version 3.06 of DRAGON. (author)

  10. Second generation wave energy device - the clam concept

    Energy Technology Data Exchange (ETDEWEB)

    Bellamy, N.W.

    1981-01-01

    A device concept is presented which has arisen from a system approach adopted by a research group with considerable experience in the discipline of wave energy. The Clam, which can be classified as a spine-based pneumatic terminator, is deemed to be a second generation wave energy device in that it tries to utilize system components already identified as attractive, while at the same time avoiding known problem areas. A working model of this wave power device at an engineering scale is discussed for trials in real waves. 3 refs.

  11. Simulations of the neutronic REP behaviour using the codes DRAGON/DONJON

    International Nuclear Information System (INIS)

    Le Mer, J.

    2007-01-01

    Neutron flux calculation is necessary to understand how a nuclear reactor works. This flux is derived from the transport equation on the whole core. Because of its really complex structure and the angular dependence of the transport equation, it is impossible to compute the flux directly and several neutronic calculation codes must be used to solve the equation for different discretizations which require different modelisations. This chain of successive models, known as a calculation scheme, compute the neutron flux of a reactor from its geometry, its isotopic compositions and a cross-section library. Pressurised light Water Reactor (PWR) are the most common nuclear reactor used today. It is necessary for each neutronic code to be validated for this type of reactor. The goal of this work is to create a complete calculation scheme which can be applied to the evolution of the core of a pressurised light water nuclear reactor using the lattice code DRAGON and the reactor code DONJON. Each step of this scheme will be validated by comparisons with other codes or with experimental results. The unit cell calculation will be computed for a benchmark submitted by R. Mosteller. The assembly calculations will be used to compare the results given by DRAGON, APOLLO2 and MCNP for an assembly used by EDF for code testing. The core calculations will show that the codes DRAGON and DONJON can produce accurate macroscopic results for a real core. Those studies will be used to show the effects of many factors on the flux distribution including the cross section library, the number of energy groups, spatial discretization of the unit cell, the tracking model, the self-shielding of the resonant isotopes or the burnup steps. (author)

  12. 33 CFR 100.1302 - Special Local Regulation, Annual Dragon Boat Races, Portland, Oregon.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Special Local Regulation, Annual Dragon Boat Races, Portland, Oregon. 100.1302 Section 100.1302 Navigation and Navigable Waters COAST... § 100.1302 Special Local Regulation, Annual Dragon Boat Races, Portland, Oregon. (a) Regulated area. All...

  13. Feasibility of a Dragon-Derived Mars Lander for Scientific and Human-Precursor Missions

    Science.gov (United States)

    Karcz, John S.; Davis, Sanford S.; Allen, Gary A.; Glass, Brian J.; Gonzales, Andrew; Heldmann, Jennifer Lynne; Lemke, Lawrence G.; McKay, Chris; Stoker, Carol R.; Wooster, Paul Douglass; hide

    2013-01-01

    A minimally-modified SpaceX Dragon capsule launched on a Falcon Heavy rocket presents the possibility of a new low-cost, high-capacity Mars lander for robotic missions. We have been evaluating such a "Red Dragon" platform as an option for the Icebreaker Discovery Program mission concept. Dragon is currently in service ferrying cargo to and from the International Space Station, and a crew transport version is in development. The upcoming version, unlike other Earth-return vehicles, exhibits most of the capabilities necessary to land on Mars. In particular, it has a set of high-thrust, throttleable, storable bi-propellant "SuperDraco" engines integrated directly into the capsule that are intended for launch abort and powered landings on Earth. These thrusters provide the possibility of a parachute-free, fully-propulsive deceleration at Mars from supersonic speeds to the surface, a descent approach which would also scale well to larger future human landers. We will discuss the motivations for exploring a Red Dragon lander, the current results of our analysis of its feasibility and capabilities, and the implications of the platform for the Icebreaker mission concept. In particular, we will examine entry, descent, and landing (EDL) in detail. We will also describe the modifications to Dragon necessary for interplanetary cruise, EDL, and operations on the Martian surface. Our analysis to date indicates that a Red Dragon lander is feasible and that it would be capable of delivering more than 1000 kg of payload to sites at elevations three kilometers below the Mars Orbiter Laser Altimeter (MOLA) reference, which includes sites throughout most of the northern plains and Hellas.

  14. Power from the seas - Wave energy has a big future

    International Nuclear Information System (INIS)

    Schenler, W.

    2008-01-01

    This article takes a look at how the energy of the oceans' waves can become an important source of energy. The generation of the energy contained in waves as an indirect form of solar energy is described. The energy potential offered is quoted as being high in the Atlantic near England and Scotland. The article goes on the discuss the technical potential of this form of renewable energy and provides a map showing this. Financial aspects and economic potentials are discussed. Effects on the environment are also discussed. The on-shore and off-shore technologies that can be used to capture wave energy are described and discussed, as is the combination of power production from wind and waves

  15. Further development of the SEA-Clam wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Bellamy, N.W.; Peatfield, A.M.

    1984-04-01

    The final design of the SEA-Clam as a unit for a large 2 GW scheme has been described. This is the leading wave energy device arising out of the UK National Wave Energy Program and is seen as having the greatest potential for further development particularly for smaller scale applications. The small scale market for wave energy is examined and the design and cost parameters evaluated for the 250 kW to 1000 kW range of SEA-Clam units. Building a demonstration prototype rated at 650 kW and producing an annual average output of 250 kW is identified as the next step towards the commercial exploitation of wave energy.

  16. Dragon Boat Festival (Dyun Ngh Jit).

    Science.gov (United States)

    Wu, Julia; Quan, Ella Y.

    This bilingual-bicultural reader in Cantonese and English is intended for elementary school children in a bilingual education setting. Pen-and-ink drawings illustrate the story of the traditional dragon boat festival. Each page of the text is written in Chinese characters, Romanized form, and in English. (NCR)

  17. Development of DRAGON electron cyclotron resonance ion source at Institute of Modern Physics

    International Nuclear Information System (INIS)

    Lu, W.; Lin, S. H.; Xie, D. Z.; Zhang, X. Z.; Sha, S.; Zhang, W. H.; Cao, Y.; Guo, J. W.; Fang, X.; Guo, X. H.; Li, X. X.; Ma, H. Y.; Wu, Q.; Zhao, H. Y.; Ma, B. H.; Wang, H.; Zhu, Y. H.; Feng, Y. C.; Li, J. Y.; Li, J. Q.

    2012-01-01

    A new room temperature electron cyclotron resonance (ECR) ion source, DRAGON, is under construction at IMP. DRAGON is designed to operate at microwaves of frequencies of 14.5-18 GHz. Its axial solenoid coils are cooled with evaporative medium to provide an axial magnetic mirror field of 2.5 T at the injection and 1.4 T at the extraction, respectively. In comparison to other conventional room temperature ECR ion sources, DRAGON has so far the largest bore plasma chamber of inner diameter of 126 mm with maximum radial fields of 1.4-1.5 T produced by a non-Halbach permanent sextupole magnet.

  18. History of a Journal: the Case of Dragon Magazine (U.S. Edition

    Directory of Open Access Journals (Sweden)

    Héctor Sevillano Pareja

    2012-06-01

    Full Text Available This work study and analyze the history and development of a journal, from its birth, on paper, until its transformation into electronic version. For this analysis we have focused in Dragon Magazine, which was the most important magazine of role playing games (or RPGs published until now, especially with regard to the first commercial RPG, Dungeons & Dragons.

  19. Marine Hydrokinetic Energy Site Identification and Ranking Methodology Part I: Wave Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kilcher, Levi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thresher, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-10-01

    Marine hydrokinetic energy is a promising and growing piece of the renewable energy sector that offers high predictability and additional energy sources for a diversified energy economy. This report investigates the market opportunities for wave energy along the U.S. coastlines. It is part one of a two-part investigation into the United State's two largest marine hydrokinetic resources (wave and tidal). Wave energy technology is still an emerging form of renewable energy for which large-scale, grid-connected project costs are currently poorly defined. Ideally, device designers would like to know the resource conditions at economical project sites so they can optimize device designs. On the other hand, project developers need detailed device cost data to identify sites where projects are economical. That is, device design and siting are, to some extent, a coupled problem. This work describes a methodology for identifying likely deployment locations based on a set of criteria that wave energy experts in industry, academia, and national laboratories agree are likely to be important factors for all technology types. This work groups the data for the six criteria into 'locales' that are defined as the smaller of either the local transmission grid or a state boundary. The former applies to U.S. islands (e.g., Hawaii, American Samoa) and rural villages (e.g., in Alaska); the latter applies to states in the contiguous United States. These data are then scored from 0 to 10 according to scoring functions that were developed with input from wave energy industry and academic experts. The scores are aggregated using a simple product method that includes a weighting factor for each criterion. This work presents two weighting scenarios: a long-term scenario that does not include energy price (weighted zero) and a near term scenario that includes energy price. The aggregated scores are then used to produce ranked lists of likely deployment locales. In both scenarios

  20. Short-Term Wave Forecasting with AR models in Real-Time Optimal Control of Wave Energy Converters

    OpenAIRE

    Fusco, Francesco; Ringwood, John

    2010-01-01

    Time domain control of wave energy converters requires knowledge of future incident wave elevation in order to approach conditions for optimal energy extraction. Autoregressive models revealed to be a promising approach to the prediction of future values of the wave elevation only from its past history. Results on real wave observations from different ocean locations show that AR models allow to achieve very good predictions for more than one wave period in the future if ...

  1. Designing and Testing Composite Energy Storage Systems for Regulating the Outputs of Linear Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Zanxiang Nie

    2017-01-01

    Full Text Available Linear wave energy converters generate intrinsically intermittent power with variable frequency and amplitude. A composite energy storage system consisting of batteries and super capacitors has been developed and controlled by buck-boost converters. The purpose of the composite energy storage system is to handle the fluctuations and intermittent characteristics of the renewable source, and hence provide a steady output power. Linear wave energy converters working in conjunction with a system composed of various energy storage devices, is considered as a microsystem, which can function in a stand-alone or a grid connected mode. Simulation results have shown that by applying a boost H-bridge and a composite energy storage system more power could be extracted from linear wave energy converters. Simulation results have shown that the super capacitors charge and discharge often to handle the frequent power fluctuations, and the batteries charge and discharge slowly for handling the intermittent power of wave energy converters. Hardware systems have been constructed to control the linear wave energy converter and the composite energy storage system. The performance of the composite energy storage system has been verified in experiments by using electronics-based wave energy emulators.

  2. 33 CFR 100.909 - Chinatown Chamber of Commerce Dragon Boat Race; Chicago, IL.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Chinatown Chamber of Commerce Dragon Boat Race; Chicago, IL. 100.909 Section 100.909 Navigation and Navigable Waters COAST GUARD... Chinatown Chamber of Commerce Dragon Boat Race; Chicago, IL. (a) Regulated Area. All waters of the South...

  3. The energy density of a Landau damped plasma wave

    NARCIS (Netherlands)

    Best, R. W. B.

    1999-01-01

    In this paper some theories about the energy of a Landau damped plasma wave are discussed and new initial conditions are proposed. Analysis of a wave packet, rather than an infinite wave, gives a clear picture of the energy transport from field to particles. Initial conditions are found which excite

  4. Key features of wave energy.

    Science.gov (United States)

    Rainey, R C T

    2012-01-28

    For a weak point source or dipole, or a small body operating as either, we show that the power from a wave energy converter (WEC) is the product of the particle velocity in the waves, and the wave force (suitably defined). There is a thus a strong analogy with a wind or tidal turbine, where the power is the product of the fluid velocity through the turbine, and the force on it. As a first approximation, the cost of a structure is controlled by the force it has to carry, which governs its strength, and the distance it has to be carried, which governs its size. Thus, WECs are at a disadvantage compared with wind and tidal turbines because the fluid velocities are lower, and hence the forces are higher. On the other hand, the distances involved are lower. As with turbines, the implication is also that a WEC must make the most of its force-carrying ability-ideally, to carry its maximum force all the time, the '100% sweating WEC'. It must be able to limit the wave force on it in larger waves, ultimately becoming near-transparent to them in the survival condition-just like a turbine in extreme conditions, which can stop and feather its blades. A turbine of any force rating can achieve its maximum force in low wind speeds, if its diameter is sufficiently large. This is not possible with a simple monopole or dipole WEC, however, because of the 'nλ/2π' capture width limits. To achieve reasonable 'sweating' in typical wave climates, the force is limited to about 1 MN for a monopole device, or 2 MN for a dipole. The conclusion is that the future of wave energy is in devices that are not simple monopoles or dipoles, but multi-body devices or other shapes equivalent to arrays.

  5. Wave energy and its possibilities in the Danish power supplies

    International Nuclear Information System (INIS)

    Traeholt Madsen, N.; Lorenzen, S.; Haunstrup Christensen, T.

    1997-06-01

    Mathematical theory of wave forces (wave height, spectrua, energy distribution and effect) is summarized. An attempt to estimate the Danish wave power potential on the basis of previous investigations og wave effect in various regions is presented. A brief review of wave energy applications and research constitutes basis for two scenarios of wave power adjustment into the 'Green society'. Power quality, environment, economics and supply reliability are estimated. (EG) 42 refs

  6. Assessment of wave energy potential along the south coast of Java Island

    Science.gov (United States)

    Song, Qingyang; Mayerle, Roberto

    2018-04-01

    The south coast of Java Island has a great potential for wave energy. A long-term analysis of a 10-year wave dataset obtained from the ERA-Interim database is performed for preliminary wave energy assessment in this area, and it was seen that the annual median power is expected to exceed 20kW/m along the coast. A coastal wave model with an unstructured grid was run to reveal the wave conditions and to assess the wave energy potential along the coast in detail. The effect of swells and local wind on the wave conditions is investigated. Annual median wave power, water depth and distance from the coast are selected as criteria for the identification of suitable locations for wave energy conversion. Two zones within the study area emerge to be suitable for wave energy extraction. Swells from the southwest turned out to be the major source of wave energy and highest monthly median wave power reached about 33kW/m.

  7. The DRAGON aerosol research facility to study aerosol behaviour for reactor safety applications

    International Nuclear Information System (INIS)

    Suckow, Detlef; Guentay, Salih

    2008-01-01

    During a severe accident in a nuclear power plant fission products are expected to be released in form of aerosol particles and droplets. To study the behaviour of safety relevant reactor components under aerosol loads and prototypical severe accident conditions the multi-purpose aerosol generation facility DRAGON is used since 1994 for several projects. DRAGON can generate aerosol particles by the evaporation-condensation technique using a plasma torch system, fluidized bed and atomization of particles suspended in a liquid. Soluble, hygroscopic aerosol (i.e. CsOH) and insoluble aerosol particles (i.e. SnO 2 , TiO 2 ) or mixtures of them can be used. DRAGON uses state-of-the-art thermal-hydraulic, data acquisition and aerosol measurement techniques and is mainly composed of a mixing chamber, the plasma torch system, a steam generator, nitrogen gas and compressed air delivery systems, several aerosol delivery piping, gas heaters and several auxiliary systems to provide vacuum, coolant and off-gas treatment. The facility can be operated at system pressure of 5 bars, temperatures of 300 deg. C, flow rates of non-condensable gas of 900 kg/h and steam of 270 kg/h, respectively. A test section under investigation is attached to DRAGON. The paper summarizes and demonstrates with the help of two project examples the capabilities of DRAGON for reactor safety studies. (authors)

  8. Wave Tank Testing and Model Validation of an Autonomous Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Bret Bosma

    2015-08-01

    Full Text Available A key component in bringing ocean wave energy converters from concept to commercialization is the building and testing of scaled prototypes to provide model validation. A one quarter scale prototype of an autonomous two body heaving point absorber was modeled, built, and tested for this work. Wave tank testing results are compared with two hydrodynamic and system models—implemented in both ANSYS AQWA and MATLAB/Simulink—and show model validation over certain regions of operation. This work will serve as a guide for future developers of wave energy converter devices, providing insight in taking their design from concept to prototype stage.

  9. Nonlinear Passive Control of a Wave Energy Converter Subject to Constraints in Irregular Waves

    Directory of Open Access Journals (Sweden)

    Liguo Wang

    2015-06-01

    Full Text Available This paper investigates a passive control method of a point absorbing wave energy converter by considering the displacement and velocity constraints under irregular waves in the time domain. A linear generator is used as a power take-off unit, and the equivalent damping force is optimized to improve the power production of the wave energy converter. The results from nonlinear and linear passive control methods are compared, and indicate that the nonlinear passive control method leads to the excitation force in phase with the velocity of the converter that can significantly improve the energy production of the converter.

  10. Analysis of the first- and second-generation Raving Dragon Novelty Bath Salts containing methylone and pentedrone.

    Science.gov (United States)

    Poklis, Justin L; Wolf, Carl E; ElJordi, Omar I; Liu, Kai; Zhang, Shijun; Poklis, Alphonse

    2015-01-01

    In recent years, a large number of designer drugs sold as "Bath Salts" have appeared on the market. In July of 2011, Raving Dragon Novelty Bath Salts was obtained over the Internet. This product became unavailable in October of that year coinciding with the DEA issuing a temporarily schedule of mephedrone, methylone, and MDPV. Four months later in February of 2012, a new product was released from the same company under the new name Raving Dragon Voodoo Dust. The contents of both products were identified using spectroscopy methods: nuclear magnetic resonance, infrared, UV-visible, tandem mass spectrometry, and high-resolution time-of-flight mass spectrometry. It was determined that Raving Dragon Novelty Bath Salts contained methylone. The replacement product Raving Dragon Voodoo Dust contained the unscheduled drug pentedrone. The Raving Dragon brand of products illustrates the rapid change of ingredients in these products to circumvent laws restricting availability, distribution, and use. © 2014 American Academy of Forensic Sciences.

  11. Energy from the waves

    CERN Document Server

    Ross, D

    2012-01-01

    Revised and substantially expanded to include the latest developments in the field, the second edition of this popular book provides a concise, non-technical account of the historical background and current research and development in the field of wave energy and its planned utilisation. It explains in simple terms the technology involved and describes the new inventions, devices and discoveries which led wave energy to be regarded as a significant future source of alternative power. The author recounts the major events leading up to today's development; the roles played by the principal characters involved, inventors, engineers and politicians and the inevitable struggle which all pioneers must face. The book concludes by discussing the environmental implications, the political conflicts and the problems which lie ahead. Also included, is a useful glossary of terms and a selected bibliography of important technical reports and further sources of information.

  12. Dissipation of Wave Energy by Cohesive Sediments

    National Research Council Canada - National Science Library

    Kaihatu, James M; Sheremet, Alexandru

    2004-01-01

    Wave energy dissipation by bottom muds is studied. A dissipation mechanism which contains explicit expressions of wavenumber modification due to a viscous bottom fluid is incorporated into a nonlinear wave shoaling model...

  13. Ecological allometries and niche use dynamics across Komodo dragon ontogeny.

    Science.gov (United States)

    Purwandana, Deni; Ariefiandy, Achmad; Imansyah, M Jeri; Seno, Aganto; Ciofi, Claudio; Letnic, Mike; Jessop, Tim S

    2016-04-01

    Ontogenetic allometries in ecological habits and niche use are key responses by which individuals maximize lifetime fitness. Moreover, such allometries have significant implications for how individuals influence population and community dynamics. Here, we examined how body size variation in Komodo dragons (Varanus komodoensis) influenced ecological allometries in their: (1) prey size preference, (2) daily movement rates, (3) home range area, and (4) subsequent niche use across ontogeny. With increased body mass, Komodo dragons increased prey size with a dramatic switch from small (≤10 kg) to large prey (≥50 kg) in lizards heavier than 20 kg. Rates of foraging movement were described by a non-linear concave down response with lizard increasing hourly movement rates up until ∼20 kg body mass before decreasing daily movement suggesting reduced foraging effort in larger lizards. In contrast, home range area exhibited a sigmoid response with increased body mass. Intrapopulation ecological niche use and overlap were also strongly structured by body size. Thus, ontogenetic allometries suggest Komodo dragon's transition from a highly active foraging mode exploiting small prey through to a less active sit and wait feeding strategy focused on killing large ungulates. Further, our results suggest that as body size increases across ontogeny, the Komodo dragon exhibited marked ontogenetic niche shifts that enabled it to function as an entire vertebrate predator guild by exploiting prey across multiple trophic levels.

  14. Analytical and computational modelling for wave energy systems: the example of oscillating wave surge converters

    Science.gov (United States)

    Dias, Frédéric; Renzi, Emiliano; Gallagher, Sarah; Sarkar, Dripta; Wei, Yanji; Abadie, Thomas; Cummins, Cathal; Rafiee, Ashkan

    2017-08-01

    The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main concerns relevant to the practical use of wave energy converters are sustainability, survivability, and maintainability. Of course, it is also necessary to maximize the capture per unit area of the structure as well as to minimize the cost. In this review, we consider some of the questions related to the topics of sustainability, survivability, and maintenance access, with respect to sea conditions, for generic wave energy converters with an emphasis on the oscillating wave surge converter. New analytical models that have been developed are a topic of particular discussion. It is also shown how existing numerical models have been pushed to their limits to provide answers to open questions relating to the operation and characteristics of wave energy converters.

  15. Analytical and computational modelling for wave energy systems: the example of oscillating wave surge converters.

    Science.gov (United States)

    Dias, Frédéric; Renzi, Emiliano; Gallagher, Sarah; Sarkar, Dripta; Wei, Yanji; Abadie, Thomas; Cummins, Cathal; Rafiee, Ashkan

    2017-01-01

    The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main concerns relevant to the practical use of wave energy converters are sustainability, survivability, and maintainability. Of course, it is also necessary to maximize the capture per unit area of the structure as well as to minimize the cost. In this review, we consider some of the questions related to the topics of sustainability, survivability, and maintenance access, with respect to sea conditions, for generic wave energy converters with an emphasis on the oscillating wave surge converter. New analytical models that have been developed are a topic of particular discussion. It is also shown how existing numerical models have been pushed to their limits to provide answers to open questions relating to the operation and characteristics of wave energy converters.

  16. DRAGONS-A Micrometeoroid and Orbital Debris Impact Sensor on the ISS

    Science.gov (United States)

    Liou, J.-C.; Hamilton, J.; Liolios, S.; Anderson, C.; Sadilek, A.; Corsaro, R.; Giovane, F.; Burchell, M.

    2015-01-01

    The Debris Resistive/Acoustic Grid Orbital Navy-NASA Sensor (DRAGONS) is intended to be a large area impact sensor for in situ measurements of micrometeoroids and orbital debris (MMOD) in the sub-millimeter to millimeter size regime in the near Earth space environment. These MMOD particles are too small to be detected by ground-based radars and optical telescopes, but still large enough to be a serious threat to human space activities and robotic missions in the low Earth orbit (LEO) region. The nominal detection area of DRAGONS is 1 sq m, consisting of four 0.5 m × 0.5 m independent panels, but the dimensions of the panels can easily be modified to accommodate different payload constraints. The approach of the DRAGONS design is to combine three particle impact detection concepts to maximize information that can be extracted from each detected impact. The first is a resistive grid consisting of 75-micrometer-wide resistive lines, coated in parallel and separated by 75 micrometer gaps on a 25-micrometer thin film. When a particle a few hundred micrometers or larger strikes the grid, it would penetrate the film and sever some resistive lines. The size of the damage area can be estimated from the increased resistance. The second concept is based on polyvinylidene fluoride (PVDF) acoustic impact sensors. Multiple PVDF sensors are attached to the thin film to provide the impact timing information. From the different signal arrival times at different acoustic sensors, the impact location can be calculated via triangulation algorithms. The third concept employs a dual-layer film system where a second 25-micrometer film is placed 15 cm behind the resistive-grid film. Multiple PVDF acoustic sensors are also attached to the second film. The combination of impact timing and location information from the two films allows for direct measurements of the impact direction and speed. The DRAGONS technology development has been funded by several NASA organizations since 2002, first

  17. DRAGON score predicts functional outcomes in acute ischemic stroke patients receiving both intravenous tissue plasminogen activator and endovascular therapy.

    Science.gov (United States)

    Wang, Arthur; Pednekar, Noorie; Lehrer, Rachel; Todo, Akira; Sahni, Ramandeep; Marks, Stephen; Stiefel, Michael F

    2017-01-01

    The DRAGON score, which includes clinical and computed tomographic (CT) scan parameters, predicts functional outcomes in ischemic stroke patients treated with intravenous tissue plasminogen activator (IV tPA). We assessed the utility of the DRAGON score in predicting functional outcome in stroke patients receiving both IV tPA and endovascular therapy. A retrospective chart review of patients treated at our institution from February 2009 to October 2015 was conducted. All patients with computed tomography angiography (CTA) proven large vessel occlusions (LVO) who underwent intravenous thrombolysis and endovascular therapy were included. Baseline DRAGON scores and modified Rankin Score (mRS) at the time of hospital discharge was calculated. Good outcome was defined as mRS ≤3. Fifty-eight patients with LVO of the anterior circulation were studied. The mean DRAGON score of patients on admission was 5.3 (range, 3-8). All patients received IV tPA and endovascular therapy. Multivariate analysis demonstrated that DRAGON scores ≥7 was associated with higher mRS ( P DRAGON scores ≤6. Patients with DRAGON scores of 7 and 8 on admission had a mortality rate of 3.8% and 40%, respectively. The DRAGON score can help predict better functional outcomes in ischemic stroke patients receiving both IV tPA and endovascular therapy. This data supports the use of the DRAGON score in selecting patients who could potentially benefit from more invasive therapies such as endovascular treatment. Larger prospective studies are warranted to further validate these results.

  18. Wave Energy Resource along the Coast of Santa Catarina (Brazil

    Directory of Open Access Journals (Sweden)

    Pasquale Contestabile

    2015-12-01

    Full Text Available Brazil has one of the largest electricity markets in South America, which needs to add 6000 MW of capacity every year in order to satisfy growing the demand from an increasing and more prosperous population. Apart from biomass, no other renewable energy sources, besides hydroelectricity, play a relevant role in the energy mix. The potential for wind and wave energy is very large. Brazil's Santa Catarina state government is starting a clean energy program in the state, which is expected to bring more than 1 GW of capacity. Assessment of wave energy resources is needed along the coastline. This work studied the potential wave energy along the north-central coasts of Santa Catarina, in Southern Brazil, by analysis of the hindcast data from the European Centre for Medium-Range Weather Forecasts (ECMWF. The annual offshore wave power was found to be equal to 15.25 kW/m, the bulk of which is provided by southeastern waves. The nearshore energetic patterns were studied by means of a numerical coastal propagation model (Mike21 SW. The mean wave power of 20 m isobaths is 11.43 kW/m. Supplementary considerations are drawn on realistic perspectives for wave energy converters installations.

  19. Energy flow characteristics of vector X-Waves

    KAUST Repository

    Salem, Mohamed; Bagci, Hakan

    2011-01-01

    The vector form of X-Waves is obtained as a superposition of transverse electric and transverse magnetic polarized field components. It is shown that the signs of all components of the Poynting vector can be locally changed using carefully chosen complex amplitudes of the transverse electric and transverse magnetic polarization components. Negative energy flux density in the longitudinal direction can be observed in a bounded region around the centroid; in this region the local behavior of the wave field is similar to that of wave field with negative energy flow. This peculiar energy flux phenomenon is of essential importance for electromagnetic and optical traps and tweezers, where the location and momenta of microand nanoparticles are manipulated by changing the Poynting vector, and in detection of invisibility cloaks. © 2011 Optical Society of America.

  20. Dragones, serpientes y cocodrilos infernales en la comedia de santos

    OpenAIRE

    Gonzalez Fernandez , Luis

    2009-01-01

    International audience; Se examinan en este artículo algunos casos en los que aparecen dragones, serpientes y cocodrilos vinculados al personaje teatral del demonio en la comedia de santos. El corpus es mayormente calderoniano.; Parcours retraçant dans la comedia de santos (pièces hagiographiques) la présence de monstres tels que les dragons, les serpents et les crocodiles là où il y a une relation spécifique avec le diable. Le corpus examiné porte essentiellement sur les oeuvres de Pedro Cal...

  1. Quasi-static analysis of wave loadings on spine-based wave energy devices

    Energy Technology Data Exchange (ETDEWEB)

    Lockett, F.P.; Peatfield, A.M.; West, M.J.

    1980-02-01

    A report is given on the Wave Energy Research Programme at Lanchester Polytechnic. Results are presented for both theoretical and experimental scale models for wave loadings on circular and rectangular spines of various lengths. The results are in good agreement over the operational wave range for the 1/50 scale model and for the more limited data on the 1/10 scale model.

  2. Measurement of intraocular pressure in healthy unanesthetized inland bearded dragons (Pogona vitticeps).

    Science.gov (United States)

    Schuster, Eva J; Strueve, Julia; Fehr, Michael J; Mathes, Karina A

    2015-06-01

    To evaluate the use of rebound and applanation tonometry for the measurement of intraocular pressure (IOP) and to assess diurnal variations in and the effect of topical anesthesia on the IOP of healthy inland bearded dragons (Pogona vitticeps). 56 bearded dragons from 4 months to 11 years old. For each animal following an initial ophthalmic examination, 3 IOP measurements were obtained on each eye between 9 AM and 10 AM, 1 PM and 2 PM, and 5 PM and 7 PM by use of rebound and applanation tonometry. An additional measurement was obtained by rebound tonometry for each eye in the evening following the application of a topical anesthetic to evaluate changes in the tolerance of the animals to the tonometer. Descriptive data were generated, and the effects of sex, time of day, and topical anesthesia on IOP were evaluated. Bearded dragons did not tolerate applanation tonometry even following topical anesthesia. Median daily IOP as determined by rebound tonometry was 6.16 mm Hg (95% confidence interval, 5.61 to 6.44 mm Hg). The IOP did not differ significantly between the right and left eyes. The IOP was highest in the morning, which indicated that the IOP in this species undergoes diurnal variations. Topical anesthesia did not significantly affect IOP, but it did improve the compliance for all subjects. Results indicated that rebound tonometry, but not applanation tonometry, was appropriate for measurement of IOP in bearded dragons. These findings provided preliminary guidelines for IOP measurement and ophthalmic evaluation in bearded dragons.

  3. Analgesic efficacy of butorphanol and morphine in bearded dragons and corn snakes.

    Science.gov (United States)

    Sladky, Kurt K; Kinney, Matthew E; Johnson, Stephen M

    2008-07-15

    To test the hypothesis that administration of butorphanol or morphine induces antinociception in bearded dragons and corn snakes. Prospective crossover study. 12 juvenile and adult bearded dragons and 13 corn snakes. Infrared heat stimuli were applied to the plantar surface of bearded dragon hind limbs or the ventral surface of corn snake tails. Thermal withdrawal latencies (TWDLs) were measured before (baseline) and after SC administration of physiologic saline (0.9% NaCl) solution (equivalent volume to opioid volumes), butorphanol tartrate (2 or 20 mg/kg [0.91 or 9.1 mg/lb]), or morphine sulfate (1, 5, 10, 20, or 40 mg/kg [0.45, 2.27, 4.5, 9.1, or 18.2 mg/lb]). For bearded dragons, butorphanol (2 or 20 mg/kg) did not alter hind limb TWDLs at 2 to 24 hours after administration. However, at 8 hours after administration, morphine (10 and 20 mg/kg) significantly increased hind limb TWDLs from baseline values (mean +/- SEM maximum increase, 2.7+/-0.4 seconds and 2.8+/-0.9 seconds, respectively). For corn snakes, butorphanol (20 mg/kg) significantly increased tail TWDLs at 8 hours after administration (maximum increase from baseline value, 3.0+/-0.8 seconds); the low dose had no effect. Morphine injections did not increase tail TWDLs at 2 to 24 hours after administration. Compared with doses used in most mammalian species, high doses of morphine (but not butorphanol) induced analgesia in bearded dragons, whereas high doses of butorphanol (but not morphine) induced analgesia in corn snakes.

  4. What can wave energy learn from offshore oil and gas?

    Science.gov (United States)

    Jefferys, E R

    2012-01-28

    This title may appear rather presumptuous in the light of the progress made by the leading wave energy devices. However, there may still be some useful lessons to be learnt from current 'offshore' practice, and there are certainly some awful warnings from the past. Wave energy devices and the marine structures used in oil and gas exploration as well as production share a common environment and both are subject to wave, wind and current loads, which may be evaluated with well-validated, albeit imperfect, tools. Both types of structure can be designed, analysed and fabricated using similar tools and technologies. They fulfil very different missions and are subject to different economic and performance requirements; hence 'offshore' design tools must be used appropriately in wave energy project and system design, and 'offshore' cost data should be adapted for 'wave' applications. This article reviews the similarities and differences between the fields and highlights the differing economic environments; offshore structures are typically a small to moderate component of field development cost, while wave power devices will dominate overall system cost. The typical 'offshore' design process is summarized and issues such as reliability-based design and design of not normally manned structures are addressed. Lessons learned from poor design in the past are discussed to highlight areas where care is needed, and wave energy-specific design areas are reviewed. Opportunities for innovation and optimization in wave energy project and device design are discussed; wave energy projects must ultimately compete on a level playing field with other routes to low CO₂ energy and/or energy efficiency. This article is a personal viewpoint and not an expression of a ConocoPhillips position.

  5. Wave energy transfer in elastic half-spaces with soft interlayers.

    Science.gov (United States)

    Glushkov, Evgeny; Glushkova, Natalia; Fomenko, Sergey

    2015-04-01

    The paper deals with guided waves generated by a surface load in a coated elastic half-space. The analysis is based on the explicit integral and asymptotic expressions derived in terms of Green's matrix and given loads for both laminate and functionally graded substrates. To perform the energy analysis, explicit expressions for the time-averaged amount of energy transferred in the time-harmonic wave field by every excited guided or body wave through horizontal planes and lateral cylindrical surfaces have been also derived. The study is focused on the peculiarities of wave energy transmission in substrates with soft interlayers that serve as internal channels for the excited guided waves. The notable features of the source energy partitioning in such media are the domination of a single emerging mode in each consecutive frequency subrange and the appearance of reverse energy fluxes at certain frequencies. These effects as well as modal and spatial distribution of the wave energy coming from the source into the substructure are numerically analyzed and discussed.

  6. An Appraisal of the DEXA Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter

    This report has been requested by VækstFonden and aims at giving an overview of the experimental tests and a general appraisal of the DEXA wave energy converter (WEC). The reported results and findings were obtained during previously performed experimental tests by the Wave Energy Research Group...

  7. Wave Energy Potential in the North-West of Sardinia (Italy)

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Contestabile, P.; Ferrante, V.

    2013-01-01

    Sardinia (Italy) is the second largest island in the Mediterranean Sea and its economy is penalized by high costs of electricity, which is double compared to the continental Italian regions, and triple compared to the EU average. In this research, the wave energy potential of the north......, a Wave Energy Converter with maximum efficiency in the ranges of significant wave heights between 3.5 and 4.5 m (energy periods 9.5-11 s) and 4-6 m (energy periods 9.5-11.5 s) respectively should be selected. In order to find a concrete solution to the problem of harvesting wave energy in this area......, the characterization of waves providing energy is considered along with additional considerations, such as installation and operational costs, institutional factors, environmental sensitivity and interferences with others human activities. On the basis of the information available and the identified circumstances...

  8. The quest for the understanding of Religious Studies: Seeing dragons

    Directory of Open Access Journals (Sweden)

    Jaco Beyers

    2016-03-01

    Full Text Available Religious Studies is concerned with studying religion or the absence thereof. The concept of religion has been discussed, disliked and dissected over centuries. Some have predicted the disappearance of religion, others have predicted the changing of location from the public to the private sphere and some even the re-emergence of religion. In trying to determine the place and relations of Religious Studies an understanding of what religion entails is necessary. It is clear that Religious Studies consists of a multiform subject field and a variety of disciplines with a multiplicity of issues, interests and topics together with a wide variety of approaches and methods. Some scholars have described religion as a �saturated phenomenon� trying to indicate how the diversity of elements described as religious came to shroud the true subject matter. All these hindrances on the road to comprehending religion are like dragons preventing one from completing a (holy! quest. This article does not want to provide new answers to an old debate. In this sense this article is not an attempt at slaying the dragons but identifying them. Three issues (dragons are discussed. How religion, the object of Religious Studies, should be viewed? What methods are employed by Religious Studies and the relatedness of Religious Studies to Theology? In the end the article wants to provide direction on how Religious Studies, as academic discipline, can collaborate with research in Theology.Intradisciplinary and/or interdisciplinary implications: This article discusses the development of the subject of Religious Studies by providing a historic overview of sociological influences on the development. In this sense this article is not an attempt at slaying the dragons but identifying them. Three issues (dragons are discussed: how religion, the object of Religious Studies, should be viewed; what methods are employed by Religious Studies and the relatedness of Religious Studies to

  9. Compressive myelopathy of the cervical spine in Komodo dragons (Varanus komodoensis).

    Science.gov (United States)

    Zimmerman, Dawn M; Douglass, Michael; Sutherland-Smith, Meg; Aguilar, Roberto; Schaftenaar, Willem; Shores, Andy

    2009-03-01

    Cervical subluxation and compressive myelopathy appears to be a cause of morbidity and mortality in captive Komodo dragons (Varanus komodoensis). Four cases of cervical subluxation resulting in nerve root compression or spinal cord compression were identified. Three were presumptively induced by trauma, and one had an unknown inciting cause. Two dragons exhibited signs of chronic instability. Cervical vertebrae affected included C1-C4. Clinical signs on presentation included ataxia, ambulatory paraparesis or tetraparesis to tetraplegia, depression to stupor, cervical scoliosis, and anorexia. Antemortem diagnosis of compression was only confirmed with magnetic resonance imaging or computed tomography. Treatment ranged from supportive care to attempted surgical decompression. All dragons died or were euthanatized, at 4 days to 12 mo postpresentation. Studies to define normal vertebral anatomy in the species are necessary to determine whether the pathology is linked to cervical malformation, resulting in ligament laxity, subsequent instability, and subluxation.

  10. First Description of the Karyotype and Sex Chromosomes in the Komodo Dragon (Varanus komodoensis).

    Science.gov (United States)

    Johnson Pokorná, Martina; Altmanová, Marie; Rovatsos, Michail; Velenský, Petr; Vodička, Roman; Rehák, Ivan; Kratochvíl, Lukáš

    2016-01-01

    The Komodo dragon (Varanus komodoensis) is the largest lizard in the world. Surprisingly, it has not yet been cytogenetically examined. Here, we present the very first description of its karyotype and sex chromosomes. The karyotype consists of 2n = 40 chromosomes, 16 macrochromosomes and 24 microchromosomes. Although the chromosome number is constant for all species of monitor lizards (family Varanidae) with the currently reported karyotype, variability in the morphology of the macrochromosomes has been previously documented within the group. We uncovered highly differentiated ZZ/ZW sex microchromosomes with a heterochromatic W chromosome in the Komodo dragon. Sex chromosomes have so far only been described in a few species of varanids including V. varius, the sister species to Komodo dragon, whose W chromosome is notably larger than that of the Komodo dragon. Accumulations of several microsatellite sequences in the W chromosome have recently been detected in 3 species of monitor lizards; however, these accumulations are absent from the W chromosome of the Komodo dragon. In conclusion, although varanids are rather conservative in karyotypes, their W chromosomes exhibit substantial variability at the sequence level, adding further evidence that degenerated sex chromosomes may represent the most dynamic genome part. © 2016 S. Karger AG, Basel.

  11. On the Origin of the Dragon Image on the Plate from Shilovka Burial Mound

    Directory of Open Access Journals (Sweden)

    Liphanov Nicolay А.

    2017-07-01

    Full Text Available The author of the article analyzes an unique image of two opposed dragons engraved on a bone plate discovered in 1992 at barrow No.1 of Shilovka burial mound located on the right bank of the Volga river in Ulyanovsk Oblast (the excavations were conducted by R.S. Bagautdinov. The burial mound is related to the cattle breeding population of late 7th century. The article considers different hypotheses concerning the origin of these dragon images in the artistic traditions of various regions: China (A.V. Komar, D.G. Savinov, B. Totev, Pelevina, Central Asia (V.G. Kotov, V.E. Flyorova, India (N.A. Fonyakova. According to the author, this image has no apparent iconographic parallels in the traditions of these regions. Such analogues are found in the art of the Mediterranean where the ancient images of various mythological creatures exist alongside the image of the sea dragon “ketos” which later became part of the Christian tradition. The appearance of this monster in the images of the first half – middle of the 1st millennium A.D. is practically identical to the dragons from Shilovka burial mound. According to the author, certain impact on the formation of the considered dragon image was made by Iranian art.

  12. Direct Drive Wave Energy Buoy

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J. [Columbia Power Technologies, Inc.; Zhang, Zhe [Columbia Power Technologies, Inc.

    2013-07-29

    The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

  13. Communicating Wave Energy: An Active Learning Experience for Students

    Science.gov (United States)

    Huynh, Trongnghia; Hou, Gene; Wang, Jin

    2016-01-01

    We have conducted an education project to communicate the wave energy concept to high school students. A virtual reality system that combines both hardware and software is developed in this project to simulate the buoy-wave interaction. This first-of-its-kind wave energy unit is portable and physics-based, allowing students to conduct a number of…

  14. Numerical Forecasting Experiment of the Wave Energy Resource in the China Sea

    Directory of Open Access Journals (Sweden)

    Chong Wei Zheng

    2016-01-01

    Full Text Available The short-term forecasting of wave energy is important to provide guidance for the electric power operation and power transmission system and to enhance the efficiency of energy capture and conversion. This study produced a numerical forecasting experiment of the China Sea wave energy using WAVEWATCH-III (WW3, the latest version 4.18 wave model driven by T213 (WW3-T213 and T639 (WW3-T639 wind data separately. Then the WW3-T213 and WW3-T639 were verified and compared to build a short-term wave energy forecasting structure suited for the China Sea. Considering the value of wave power density (WPD, “wave energy rose,” daily and weekly total storage and effective storage of wave energy, this study also designed a series of short-term wave energy forecasting productions. Results show that both the WW3-T213 and WW3-T639 exhibit a good skill on the numerical forecasting of the China Sea WPD, while the result of WW3-T639 is much better. Judging from WPD and daily and weekly total storage and effective storage of wave energy, great wave energy caused by cold airs was found. As there are relatively frequent cold airs in winter, early spring, and later autumn in the China Sea and the surrounding waters, abundant wave energy ensues.

  15. Further Development of SNL‐Swan, a Validated Wave Energy Converter

    OpenAIRE

    Porter, Aaron; Ruehl, Kelley; Chartrand, Chris

    2014-01-01

    Commercialization of wave energy will lead to the necessary deployment of Wave Energy Converters (WECs) in arrays, or wave farms. In order for projects in the United States to be approved, regulatory agencies must perform an Environmental Assessment proving little to no environmental impact. However, little is known about the environmental impacts of such wave farms. As a result, the environmental impacts of wave farms are largely determined by numerical wave models capable of modeling large ...

  16. Experiments with the Dragon Machine

    International Nuclear Information System (INIS)

    Malenfant, R.E.

    2005-01-01

    The basic characteristics of a self-sustaining chain reaction were demonstrated with the Chicago Pile in 1943, but it was not until early 1945 that sufficient enriched material became available to experimentally verify fast-neutron cross-sections and the kinetic characteristics of a nuclear chain reaction sustained with prompt neutrons alone. However, the demands of wartime and the rapid decline in effort following the cessation of hostilities often resulted in the failure to fully document the experiments or in the loss of documentation as personnel returned to civilian pursuits. When documented, the results were often highly classified. Even when eventually declassified, the data were often not approved for public release until years later.2 Even after declassification and approval for public release, the records are sometimes difficult to find. Through a fortuitous discovery, a set of handwritten notes by ''ORF July 1945'' entitled ''Dragon - Research with a Pulsed Fission Reactor'' was found by William L. Myers in an old storage safe at Pajarito Site of the Los Alamos National Laboratory3. Of course, ORF was identified as Otto R. Frisch. The document was attached to a page in a nondescript spiral bound notebook labeled ''494 Book'' that bore the signatures of Louis Slotin and P. Morrison. The notes also reference an ''Idea LS'' that can only be Louis Slotin. The discovery of the notes led to a search of Laboratory Archives, the negative files of the photo lab, and the Report Library for additional details of the experiments with the Dragon machine that were conducted between January and July 1945. The assembly machine and the experiments were carefully conceived and skillfully executed. The analyses--without the crutch of computers--display real insight into the characteristics of the nuclear chain reaction. The information presented here provides what is believed to be a complete collection of the original documentation of the observations made with the Dragon

  17. Analysis of neutronics benchmarks for the utilization of mixed oxide fuel in light water reactor using DRAGON code

    International Nuclear Information System (INIS)

    Nithyadevi, Rajan; Thilagam, L.; Karthikeyan, R.; Pal, Usha

    2016-01-01

    Highlights: • Use of advanced computational code – DRAGON-5 using advanced self shielding model USS. • Testing the capability of DRAGON-5 code for the analysis of light water reactor system. • Wide variety of fuels LEU, MOX and spent fuel have been analyzed. • Parameters such as k ∞ , one, few and multi-group macroscopic cross-sections and fluxes were calculated. • Suitability of deterministic methodology employed in DRAGON-5 code is demonstrated for LWR. - Abstract: Advances in reactor physics have led to the development of new computational technologies and upgraded cross-section libraries so as to produce an accurate approximation to the true solution for the problem. Thus it is necessary to revisit the benchmark problems with the advanced computational code system and upgraded cross-section libraries to see how far they are in agreement with the earlier reported values. Present study is one such analysis with the DRAGON code employing advanced self shielding models like USS and 172 energy group ‘JEFF3.1’ cross-section library in DRAGLIB format. Although DRAGON code has already demonstrated its capability for heavy water moderator systems, it is now tested for light water reactor (LWR) and fast reactor systems. As a part of validation of DRAGON for LWR, a VVER computational benchmark titled “Neutronics Benchmarks for the Utilization of Mixed-Oxide Fuel-Volume 3” submitted by the Russian Federation has been taken up. Presently, pincell and assembly calculations are carried out considering variation in fuel temperature (both fresh and spent), moderator temperatures and boron content in the moderator. Various parameters such as infinite neutron multiplication (k ∞ ) factor, one group integrated flux, few group homogenized cross-sections (absorption, nu-fission) and reaction rates (absorption, nu-fission) of individual isotopic nuclides are calculated for different reactor states. Comparisons of results are made with the reported Monte Carlo

  18. Dermatomycosis in three central bearded dragons (Pogona vitticeps) associated with Nannizziopsis chlamydospora.

    Science.gov (United States)

    Schmidt-Ukaj, Silvana; Loncaric, Igor; Spergser, Joachim; Richter, Barbara; Hochleithner, Manfred

    2016-05-01

    Chronic dermatomycosis was identified in 3 central bearded dragons (Pogona vitticeps), held as companion animals by the same owner. Clinical signs of dermatomycosis included subcutaneous masses as well as crusty, erosive, and ulcerative skin lesions. The facial region was affected in 2 of the 3 cases. Masses were surgically excised, and histology confirmed necrotizing and granulomatous inflammatory processes associated with fungal hyphae. Two of the bearded dragons were euthanized because of their deteriorating condition. In both cases, postmortem histology confirmed systemic fungal infections despite treatment of 1 animal with itraconazole. In the third bearded dragon, therapy with voriconazole at 10 mg/kg was initially effective, but mycotic lesions reappeared 15 months later. Nannizziopsis chlamydospora was identified by PCR and subsequent DNA sequencing in 2 of these cases. © 2016 The Author(s).

  19. Dragon boat racing and health-related quality of life of breast cancer survivors: a mixed methods evaluation.

    Science.gov (United States)

    Ray, Heather A; Verhoef, Marja J

    2013-08-05

    Breast cancer survivors who participate in physical activity (PA) are reported to experience improved health-related quality of life (HRQOL). However, the quantitative research exploring the relationship between the team-based activity of dragon boat racing and the HRQOL of breast cancer survivors is limited. Given the rising number of breast cancer survivors, and their growing attraction to dragon boating, further exploration of the influence of this activity on HRQOL is warranted. This study is designed to: 1) quantitatively assess whether and how breast cancer survivors' participation in a season of dragon boat racing is related to HRQOL and 2) qualitatively explore the survivors' lived experience of dragon boating and how and why this experience is perceived to influence HRQOL. A mixed methods sequential explanatory design was used with the purpose of complementing quantitative findings with qualitative data. Quantitative data measuring HRQOL were collected at baseline and post-season (N=100); semi-structured qualitative interviews were used to elicit a personal account of the dragon boat experience (N=15). Statistically significant improvements were shown for HRQOL, physical, functional, emotional and spiritual well-being, breast cancer-specific concerns and cancer-related fatigue. A trend towards significance was shown for social/family well-being. Qualitative data elaborated on the quantitative findings, greatly enhancing the understanding of how and why dragon boat racing influences HRQOL. The use of a mixed methods design effectively captured the complex yet positive influence of dragon boating on survivor HRQOL. These findings contribute to a growing body of literature supporting the value of dragon boat racing as a viable PA intervention for enhancing survivor HRQOL.

  20. The role of red dragon fruit peel (Hylocereus polyrhizus) to improvement blood lipid levels of hyperlipidaemia male mice

    Science.gov (United States)

    Hernawati; Setiawan, N. A.; Shintawati, R.; Priyandoko, D.

    2018-05-01

    The purpose of this research was to know the role of red dragon fruit peel powder to total cholesterol, triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and weight in the male hyperlipidaemic Balb-C mice (Mus musculus). This study used a completely randomized design (CRD) and four replicates for each dose treatments. Samples were 24 male mice that divided into six groups i.e. positive and negative controls, doses of 50; 100; 150 and 200 mg/kgBW/days red dragon fruit peel powder. Before being given treatment, mice were given feed containing high fat for 20 days until experiencing conditions hyperlipidaemia. The red dragon fruit peel powder was given at oral with used gavage for 30 days. Blood samples were taken from the tail on vena caudalis. Blood lipid samples were analysed at enzymatic with BIOLABO kits. The results of this study indicate that after administration of red dragon fruit peel powder total cholesterol levels, triglycerides and LDL-c decreased, along with increasing doses of red dragon fruit peel powder for 30 days. Furthermore showed that dragon fruit powder can increase HDL-c levels. The conclusion of this research was The red dragon fruit peel powder can improve blood lipid level of male Balb-c mice hyperlipidaemia.

  1. On Mooring Solutions for Large Wave Energy Converters

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Kofoed, Jens Peter; Ferri, Francesco

    2017-01-01

    The present paper describes the work carried out in the project ’Mooring Solutions for Large Wave Energy Converters’, which is a Danish research project carried out in a period of three years from September 2014, with the aim of reducing cost of the moorings for four wave energy converters...

  2. Wave energy for the 21st century: status and prospects

    International Nuclear Information System (INIS)

    Thorpe, Tom

    2000-01-01

    This article reviews the current technical and commercial status of wave energy, and discusses the design of near shore devices such as the 2MW OSPREY, and offshore devices including the McCabe wave pump, the Ocean Power Technology Wave Energy Converter, the Archimedes Wave Swing, the Pelamis, and wave energy schemes under development by other commercial firms. The predicted generating costs, the potential market, environmental impacts, and institution factors such as planning and consent, grid connection,and safety in design and operation are considered. The operating principles of an oscillating water column, and some promising offshore devices are illustrated

  3. Experimental investigation on the hydrodynamic performance of a wave energy converter

    Science.gov (United States)

    Zheng, Xiong-bo; Ma, Yong; Zhang, Liang; Jiang, Jin; Liu, Heng-xu

    2017-06-01

    Wave energy is an important type of marine renewable energy. A wave energy converter (WEC) moored with two floating bodies was developed in the present study. To analyze the dynamic performance of the WEC, an experimental device was designed and tested in a tank. The experiment focused on the factors which impact the motion and energy conversion performance of the WEC. Dynamic performance was evaluated by the relative displacements and velocities of the oscillator and carrier which served as the floating bodies of WEC. Four factors were tested, i.e. wave height, wave period, power take-off (PTO) damping, and mass ratio ( R M) of the oscillator and carrier. Experimental results show that these factors greatly affect the energy conversion performance, especially when the wave period matches R M and PTO damping. According to the results, we conclude that: (a) the maximization of the relative displacements and velocities leads to the maximization of the energy conversion efficiency; (b) the larger the wave height, the higher the energy conversion efficiency will be; (c) the relationships of energy conversion efficiency with wave period, PTO damping, and R M are nonlinear, but the maximum efficiency is obtained when these three factors are optimally matched. Experimental results demonstrated that the energy conversion efficiency reached the peak at 28.62% when the wave height was 120 mm, wave period was 1.0 s, R M was 0.21, and the PTO damping was corresponding to the resistance of 100 Ω.

  4. Marine Waves Energy: A spatio-temporal DSS-WebGIS to support the wave-energy potential assessment in the Mediterranean Sea

    International Nuclear Information System (INIS)

    Pollino, Maurizio; La Porta, Luigi; Caiaffa, Emanuela

    2015-01-01

    GIS technologies are able to provide a useful tool for estimating the energy resource from the sea waves, assessing whether this energy flux is exploitable and evaluating the social and environmental impacts in deep water and/or in the seaboard. The DDS-WebGIS 'Energy Waves' represents a tool for displaying and sharing geo spatial data and maps, as well as a valuable support for new installations planning, forecasting system and existing infrastructure management. [it

  5. Wave Energy, Lever Operated Pivoting Float LOPF Study

    DEFF Research Database (Denmark)

    Margheritini, Lucia

    The fully instrumented Resen Waves Lever Operated Pivoting Float LOPF wave energy buoy model has gone through the first stage of testing in regular waves in scale 1:25 of the North Sea wave conditions, in the 3D deep wave basin at the Hydraulic and Coastal Engineering Laboratory of Aalborg...... University in Denmark. The model size was 60cm W x 90cm L x 21cm H. The 60 cm width pointed towards the wave front. The LOPF buoy is characterized by a simple mechanical design with few moving parts and direct electrical output and it is taut moored to the sea bed, so all forces are referenced to the seabed...... for maximum energy output in regular as well as irregular waves. During storms the buoy pivots and streamlines itself to minimize loads on the mooring line. A conservative estimate shows that a full scale system for North Sea conditions has a float size width of 15 m that will, with 60% generator efficiency...

  6. Wave propagation of spectral energy content in a granular chain

    NARCIS (Netherlands)

    Shrivastava, Rohit Kumar; Luding, Stefan

    2017-01-01

    A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like

  7. 78 FR 42733 - Safety Zone; Cleveland Dragon Boat Festival and Head of the Cuyahoga, Cuyahoga River, Cleveland, OH

    Science.gov (United States)

    2013-07-17

    ...-AA00 Safety Zone; Cleveland Dragon Boat Festival and Head of the Cuyahoga, Cuyahoga River, Cleveland... intended to restrict vessels from a portion of the Cuyahoga River during the Dragon Boat Festival and Head... over a decade and the Dragon Boat Festival for the last 7 years. In response to past years' events, the...

  8. Dominant wave frequency and amplitude estimation for adaptive control of wave energy converters

    OpenAIRE

    Nguyen , Hoai-Nam; Tona , Paolino; Sabiron , Guillaume

    2017-01-01

    International audience; Adaptive control is of great interest for wave energy converters (WEC) due to the inherent time-varying nature of sea conditions. Robust and accurate estimation algorithms are required to improve the knowledge of the current sea state on a wave-to-wave basis in order to ensure power harvesting as close as possible to optimal behavior. In this paper, we present a simple but innovative approach for estimating the wave force dominant frequency and wave force dominant ampl...

  9. Simulation of breaking waves using the high-order spectral method with laboratory experiments: wave-breaking energy dissipation

    Science.gov (United States)

    Seiffert, Betsy R.; Ducrozet, Guillaume

    2018-01-01

    We examine the implementation of a wave-breaking mechanism into a nonlinear potential flow solver. The success of the mechanism will be studied by implementing it into the numerical model HOS-NWT, which is a computationally efficient, open source code that solves for the free surface in a numerical wave tank using the high-order spectral (HOS) method. Once the breaking mechanism is validated, it can be implemented into other nonlinear potential flow models. To solve for wave-breaking, first a wave-breaking onset parameter is identified, and then a method for computing wave-breaking associated energy loss is determined. Wave-breaking onset is calculated using a breaking criteria introduced by Barthelemy et al. (J Fluid Mech https://arxiv.org/pdf/1508.06002.pdf, submitted) and validated with the experiments of Saket et al. (J Fluid Mech 811:642-658, 2017). Wave-breaking energy dissipation is calculated by adding a viscous diffusion term computed using an eddy viscosity parameter introduced by Tian et al. (Phys Fluids 20(6): 066,604, 2008, Phys Fluids 24(3), 2012), which is estimated based on the pre-breaking wave geometry. A set of two-dimensional experiments is conducted to validate the implemented wave breaking mechanism at a large scale. Breaking waves are generated by using traditional methods of evolution of focused waves and modulational instability, as well as irregular breaking waves with a range of primary frequencies, providing a wide range of breaking conditions to validate the solver. Furthermore, adjustments are made to the method of application and coefficient of the viscous diffusion term with negligible difference, supporting the robustness of the eddy viscosity parameter. The model is able to accurately predict surface elevation and corresponding frequency/amplitude spectrum, as well as energy dissipation when compared with the experimental measurements. This suggests the model is capable of calculating wave-breaking onset and energy dissipation

  10. A double sided silicon strip detector as a DRAGON end detector

    CERN Document Server

    Wrede, C; Rogers, J G; D'Auria, J M

    2003-01-01

    The new DRAGON facility (detector of recoils and gammas of nuclear reactions), located at the TRlUMF-ISAC Radioactive Beams facility in Vancouver, Canada is now operational. This facility is used to study radiative proton capture reactions in inverse kinematics (heavy ion beam onto a light gaseous target) with both stable beams and radioactive beams of mass A=13-26 in the energy range 0.15-1.5 MeV/u. A double sided silicon strip detector (DSSSD) has been used to detect recoil ions. Tests have been performed to determine the performance of this DSSSD.

  11. A Case Study in Byzantine Dragon-Slaying: Digenes and the Serpent

    Directory of Open Access Journals (Sweden)

    Christopher Livanos

    2011-03-01

    Full Text Available The Byzantine epic Digenes Akrites has similarities with ancient and medieval Iranian traditions that, in consideration of the epic’s Eastern settings, suggest Iranian influences. Digenes resembles dragon-slaying heroes of other Indo-European traditions. He also resembles the Irish hero Cú Chulainn in that he is not psychologically fit to live in the midst of the community that depends on his protection. Freudian readings of Digenes’ encounters with the dragon and the Amazon Maximou are proposed.

  12. Optimized Latching Control of Floating Point Absorber Wave Energy Converter

    Science.gov (United States)

    Gadodia, Chaitanya; Shandilya, Shubham; Bansal, Hari Om

    2018-03-01

    There is an increasing demand for energy in today’s world. Currently main energy resources are fossil fuels, which will eventually drain out, also the emissions produced from them contribute to global warming. For a sustainable future, these fossil fuels should be replaced with renewable and green energy sources. Sea waves are a gigantic and undiscovered vitality asset. The potential for extricating energy from waves is extensive. To trap this energy, wave energy converters (WEC) are needed. There is a need for increasing the energy output and decreasing the cost requirement of these existing WECs. This paper presents a method which uses prediction as a part of the control scheme to increase the energy efficiency of the floating-point absorber WECs. Kalman Filter is used for estimation, coupled with latching control in regular as well as irregular sea waves. Modelling and Simulation results for the same are also included.

  13. CANDU reactor core simulations using fully coupled DRAGON and DONJON calculations

    International Nuclear Information System (INIS)

    Varin, E.; Marleau, G.

    2006-01-01

    The operating CANDU-6 reactors are refueled on-power to compensate for the reactivity loss due to fuel burnup. In order to predict the core behavior, fuel bundle burnups and local parameter information need to be tracked. The history-based approach has been developed to follow local parameter as well as history effect in CANDU reactors. The finite reactor diffusion code DONJON and the lattice code DRAGON have been coupled to perform reactor follow-up calculations using a history-based approach. A coupled methodology that manages the transfer of information between standard DONJON and DRAGON data structures has been developed. Push-through refueling can be taken into account directly in cell calculations. Using actual on-site information, an isotopic core content database has been generated with coupled DONJON and DRAGON calculations. Moreover calculations have been performed for different local parameters. Results are compared with those obtained using standard cross section generation approaches

  14. Transformation of Elastic Wave Energy to the Energy of Motion of Bodies

    Science.gov (United States)

    Vesnitskiĭ, A. I.; Lisenkova, E. E.

    2002-01-01

    The motion of a body along an elastic guide under the effect of an incident wave is considered. An equation describing the longitudinal motion of a body along an arbitrary guide is derived from the laws governing the energy and momentum variations for the case when the incident wave generates a single reflected wave. The equations that describe the motion of a body along a string and along a beam corresponding to the Bernoulli-Euler model are considered as examples. The process of the body acceleration along a beam of the aforementioned type is investigated. For the subcritical velocities, the law governing the motion of the body and the ratio of the kinetic energy variation to the energy supplied to the body are determined.

  15. Maximum gravitational-wave energy emissible in magnetar flares

    Science.gov (United States)

    Corsi, Alessandra; Owen, Benjamin J.

    2011-05-01

    Recent searches of gravitational-wave data raise the question of what maximum gravitational-wave energies could be emitted during gamma-ray flares of highly magnetized neutron stars (magnetars). The highest energies (˜1049erg) predicted so far come from a model [K. Ioka, Mon. Not. R. Astron. Soc.MNRAA40035-8711 327, 639 (2001), http://adsabs.harvard.edu/abs/2001MNRAS.327..639I] in which the internal magnetic field of a magnetar experiences a global reconfiguration, changing the hydromagnetic equilibrium structure of the star and tapping the gravitational potential energy without changing the magnetic potential energy. The largest energies in this model assume very special conditions, including a large change in moment of inertia (which was observed in at most one flare), a very high internal magnetic field, and a very soft equation of state. Here we show that energies of 1048-1049erg are possible under more generic conditions by tapping the magnetic energy, and we note that similar energies may also be available through cracking of exotic solid cores. Current observational limits on gravitational waves from magnetar fundamental modes are just reaching these energies and will beat them in the era of advanced interferometers.

  16. Maximum gravitational-wave energy emissible in magnetar flares

    International Nuclear Information System (INIS)

    Corsi, Alessandra; Owen, Benjamin J.

    2011-01-01

    Recent searches of gravitational-wave data raise the question of what maximum gravitational-wave energies could be emitted during gamma-ray flares of highly magnetized neutron stars (magnetars). The highest energies (∼10 49 erg) predicted so far come from a model [K. Ioka, Mon. Not. R. Astron. Soc. 327, 639 (2001), http://adsabs.harvard.edu/abs/2001MNRAS.327..639I] in which the internal magnetic field of a magnetar experiences a global reconfiguration, changing the hydromagnetic equilibrium structure of the star and tapping the gravitational potential energy without changing the magnetic potential energy. The largest energies in this model assume very special conditions, including a large change in moment of inertia (which was observed in at most one flare), a very high internal magnetic field, and a very soft equation of state. Here we show that energies of 10 48 -10 49 erg are possible under more generic conditions by tapping the magnetic energy, and we note that similar energies may also be available through cracking of exotic solid cores. Current observational limits on gravitational waves from magnetar fundamental modes are just reaching these energies and will beat them in the era of advanced interferometers.

  17. Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave.

    Science.gov (United States)

    Gershman, Daniel J; F-Viñas, Adolfo; Dorelli, John C; Boardsen, Scott A; Avanov, Levon A; Bellan, Paul M; Schwartz, Steven J; Lavraud, Benoit; Coffey, Victoria N; Chandler, Michael O; Saito, Yoshifumi; Paterson, William R; Fuselier, Stephen A; Ergun, Robert E; Strangeway, Robert J; Russell, Christopher T; Giles, Barbara L; Pollock, Craig J; Torbert, Roy B; Burch, James L

    2017-03-31

    Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA's Magnetospheric Multiscale (MMS) mission, we utilize Earth's magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.

  18. A Detailed Assessment of the Wave Energy Resource at the Atlantic Marine Energy Test Site

    Directory of Open Access Journals (Sweden)

    Reduan Atan

    2016-11-01

    Full Text Available Wave characteristic assessments of wave energy test sites provide a greater understanding of prevailing wave conditions and are therefore extremely important to both wave energy test site operators and clients as they can inform wave energy converter design, optimisation, deployment, operation and maintenance. This research presents an assessment of the wave resource at the Atlantic Marine Energy Test Site (AMETS on the west coast of Ireland based on 12-years of modelled data from January 2004 to December 2015. The primary aim is to provide an assessment of annual and seasonal wave characteristics and resource variability at the two deployment berths which comprise the site. A nested model has been developed using Simulating WAves Nearshore (SWAN to replicate wave propagations from regional to local scale with a 0.05° resolution model covering the northeast Atlantic and a 0.0027° resolution model covering AMETS. The coarse and fine models have been extensively validated against available measured data within Irish waters. 12-year model outputs from the high resolution model were analysed to determine mean and maximum conditions and operational, high and extreme event conditions for significant wave height, energy period and power. Annual and seasonal analyses are presented. The 12-year annual mean P were 68 kW/m at Berth A (BA and 57 kW/m at Berth B (BB. The resource shows strong seasonal and annual variations and the winter mean power levels were found to be strongly correlated with the North Atlantic Oscillation (NAO.

  19. AN INVESTIGATION OF WAVE ENERGY POTENTIAL IN WESTERN BLACK SEA REGION

    Directory of Open Access Journals (Sweden)

    İlyas UYGUR

    2006-01-01

    Full Text Available The main energy sources which are natural, clean, environmentally friendly, and renewable are wind power, solar energy, biomass energy, hydro energy, and wave energy. The wave energy has no cost except for the first investment and maintenance. There is also no cost for input energy. Besides these, it has no pollution effect on the environment, it is cheap and there is a huge potential all around the world. Wave energy is a good opportunity to solve the energy problem for Turkey which is surrounded by seas. Concerning all these facts, it has been conducted some studies which included five years of observation in the Western Black Sea Region (Akçakoca. The wave energy potential has also been calculated. From this sutdy results, it can be concluded that the wave energy potential of this region is inefficient. It is believed that by the improvement of the new energy converter devices in future, this low potential can be used more efficiently and as a result this study might be used as a basis for the future researches.

  20. A DRAGON-MCNP comparison of void reactivity calculations

    Energy Technology Data Exchange (ETDEWEB)

    Marleau, G [Ecole Polytechnique, Montreal, PQ (Canada). Inst. de Genie Nucleaire; Milgram, M S [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    The determination of the reactivity coefficients associated with coolant voiding in a CANDU reactor is a subject which has attracted a large amount of interest in the last few years both from the theoretical and experimental point of view. One expects that deterministic codes such as DRAGON and WIMS-AECL or the MCNP4 Monte Carlo code should be able to adequately simulate the cell behaviour upon coolant voiding. However, the absence of an experimental database at equilibrium and discharge burnups has not permitted the full validation of any of these lattice codes, although a partial validation through comparison of two different computer codes has been considered. Here we present a comparison between DRAGON and MCNP4 of the void reactivity evaluation for fresh fuel. (author). 16 refs., 5 tabs.

  1. A DRAGON-MCNP comparison of void reactivity calculations

    International Nuclear Information System (INIS)

    Marleau, G.

    1995-01-01

    The determination of the reactivity coefficients associated with coolant voiding in a CANDU reactor is a subject which has attracted a large amount of interest in the last few years both from the theoretical and experimental point of view. One expects that deterministic codes such as DRAGON and WIMS-AECL or the MCNP4 Monte Carlo code should be able to adequately simulate the cell behaviour upon coolant voiding. However, the absence of an experimental database at equilibrium and discharge burnups has not permitted the full validation of any of these lattice codes, although a partial validation through comparison of two different computer codes has been considered. Here we present a comparison between DRAGON and MCNP4 of the void reactivity evaluation for fresh fuel. (author). 16 refs., 5 tabs

  2. The Dragon Bone Collectors

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Finding of a dinosaur fossil skeleton sparks excitement among paleontologists and locals in a poor Henan village Avillager’s accidental discovery four years ago has made known to the world a rich mine of dinosaur fossils in Ruyang County,central China’s Henan Province.At the same time,the fate of the small village has been changed. Li Chui,a farmer in Shaping Village, thought he had found bones of a"dragon"when he dug up stones for his new house on an April morning in 2005.

  3. Feasibility study of the Dragon reactor for HTGR fuel testing

    International Nuclear Information System (INIS)

    Wallroth, C.F.

    1975-01-01

    The Organization of European Community Development (OECD) Dragon high-temperature reactor project has performed HTGR fuel and fuel element testing for about 10 years. To date, a total of about 250 fuel elements have been irradiated and the test program continues. The feasibility of using this test facility for HTGR fuel testing, giving special consideration to U. S. needs, is evaluated. A detailed description for design, preparation, and data acquisition of a test experiment is given together with all possible options on supporting work, which could be carried out by the experienced Dragon project staff. 11 references. (U.S.)

  4. Wave energy converter effects on wave propagation: A sensitivity study in Monterey Bay, CA

    Science.gov (United States)

    Chang, G.; Jones, C. A.; Roberts, J.; Magalen, J.; Ruehl, K.; Chartrand, C.

    2014-12-01

    The development of renewable offshore energy in the United States is growing rapidly and wave energy is one of the largest resources currently being evaluated. The deployment of wave energy converter (WEC) arrays required to harness this resource could feasibly number in the hundreds of individual devices. The WEC arrays have the potential to alter nearshore wave propagation and circulation patterns and ecosystem processes. As the industry progresses from pilot- to commercial-scale it is important to understand and quantify the effects of WECs on the natural nearshore processes that support a local, healthy ecosystem. To help accelerate the realization of commercial-scale wave power, predictive modeling tools have been developed and utilized to evaluate the likelihood of environmental impact. At present, direct measurements of the effects of different types of WEC arrays on nearshore wave propagation are not available; therefore wave model simulations provide the groundwork for investigations of the sensitivity of model results to prescribed WEC characteristics over a range of anticipated wave conditions. The present study incorporates a modified version of an industry standard wave modeling tool, SWAN (Simulating WAves Nearshore), to simulate wave propagation through a hypothetical WEC array deployment site on the California coast. The modified SWAN, referred to as SNL-SWAN, incorporates device-specific WEC power take-off characteristics to more accurately evaluate a WEC device's effects on wave propagation. The primary objectives were to investigate the effects of a range of WEC devices and device and array characteristics (e.g., device spacing, number of WECs in an array) on nearshore wave propagation using SNL-SWAN model simulations. Results showed that significant wave height was most sensitive to variations in WEC device type and size and the number of WEC devices in an array. Locations in the lee centerline of the arrays in each modeled scenario showed the

  5. Dragon-I injector based on the induction voltage adder technique

    Directory of Open Access Journals (Sweden)

    Zhang Kaizhi

    2006-08-01

    Full Text Available The Dragon-I injector based on the induction voltage adder technique is introduced. Twelve ferrite loaded induction cells are connected in a series through central conducting stalks to achieve a pulsed voltage higher than 3.5 MV across the diode. Electrons are extracted from the velvet emitter and guided through the anode pipe by the magnets placed inside the cathode and anode shrouds. Measurements at the exit of injector show that, with an electric field of 200  kV/cm near the velvet surface and suitable magnetic field distribution, an electron beam up to 2.8 kA can be obtained with a normalized emittance of 1040π   mm mrad, and energy spread of 2.1% (3σ around the central energy of 3.5 MeV.

  6. The Wave Energy Device

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter; Tedd, James William

    2006-01-01

    's first offshore wave energy converter. During this period an extensive measuring program has established the background for optimal design of the structure and regulation of the power take off system. Planning for full scale deployment of a 7 MW unit within the next 2 years is in progress. The prototype...

  7. Energy Relations for Plane Waves Reflected from Moving Media

    DEFF Research Database (Denmark)

    Daly, P.; Gruenberg, Harry

    1967-01-01

    When a plane wave is obliquely incident from vacuum on a semi-infinite moving medium, the energy flow carried by the incident wave, is in general, not carried away by the reflected and transmitted waves. This is only the case when the medium velocity is parallel to its vacuum interface. Otherwise...... there is a net inflow or outflow of electromagnetic energy, which can be accounted for by the change of stored energy in the system, and the work done by the mechanical forces acting on the medium. A detailed energy balance is drawn up for two different media moving normal to their vacuum interfaces: (a...

  8. Dragon exploratory system on Hepatitis C Virus (DESHCV)

    KAUST Repository

    Kwofie, Samuel K.; Radovanovic, Aleksandar; Sundararajan, Vijayaraghava Seshadri; Maqungo, Monique; Christoffels, Alan G.; Bajic, Vladimir B.

    2011-01-01

    text-mining is a useful approach for analyzing the increasing corpus of published scientific literature on HCV. We report here the first comprehensive HCV customized biomedical text-mining based online web resource, dragon exploratory system

  9. Resonant wave energy harvester based on dielectric elastomer generator

    Science.gov (United States)

    Moretti, Giacomo; Pietro Rosati Papini, Gastone; Righi, Michele; Forehand, David; Ingram, David; Vertechy, Rocco; Fontana, Marco

    2018-03-01

    Dielectric elastomer generators (DEGs) are a class of capacitive solid-state devices that employ highly stretchable dielectrics and conductors to convert mechanical energy into high-voltage direct-current electricity. Their promising performance in terms of convertible energy and power density has been mostly proven in quasi-static experimental tests with prescribed deformation. However, the assessment of their ability in harvesting energy from a dynamic oscillating source of mechanical energy is crucial to demonstrate their effectiveness in practical applications. This paper reports a first demonstration of a DEG system that is able to convert the oscillating energy carried by water waves into electricity. A DEG prototype is built using a commercial polyacrylate film (VHB 4905 by 3M) and an experimental campaign is conducted in a wave-flume facility, i.e. an artificial basin that makes it possible to generate programmed small-scale waves at different frequencies and amplitudes. In resonant conditions, the designed system demonstrates the delivery of a maximum of 0.87 W of electrical power output and 0.64 J energy generated per cycle, with corresponding densities per unit mass of dielectric elastomer of 197 W kg-1 and 145 J kg-1. Additionally, a notable maximum fraction of 18% of the input wave energy is converted into electricity. The presented results provide a promising demonstration of the operation and effectiveness of ocean wave energy converters based on elastic capacitive generators.

  10. Numerical Modeling of a Wave Energy Point Absorber

    DEFF Research Database (Denmark)

    Hernandez, Lorenzo Banos; Frigaard, Peter; Kirkegaard, Poul Henning

    2009-01-01

    The present study deals with numerical modelling of the Wave Star Energy WSE device. Hereby, linear potential theory is applied via a BEM code on the wave hydrodynamics exciting the floaters. Time and frequency domain solutions of the floater response are determined for regular and irregular seas....... Furthermore, these results are used to estimate the power and the energy absorbed by a single oscillating floater. Finally, a latching control strategy is analysed in open-loop configuration for energy maximization....

  11. Silicone-Based Triboelectric Nanogenerator for Water Wave Energy Harvesting.

    Science.gov (United States)

    Xiao, Tian Xiao; Jiang, Tao; Zhu, Jian Xiong; Liang, Xi; Xu, Liang; Shao, Jia Jia; Zhang, Chun Lei; Wang, Jie; Wang, Zhong Lin

    2018-01-31

    Triboelectric nanogenerator (TENG) has been proven to be efficient for harvesting water wave energy, which is one of the most promising renewable energy sources. In this work, a TENG with a silicone rubber/carbon black composite electrode was designed for converting the water wave energy into electricity. The silicone-based electrode with a soft texture provides a better contact with the dielectric film. Furthermore, a spring structure is introduced to transform low-frequency water wave motions into high-frequency vibrations. They together improve the output performance and efficiency of TENG. The output performances of TENGs are further enhanced by optimizing the triboelectric material pair and tribo-surface area. A spring-assisted TENG device with the segmented silicone rubber-based electrode structure was sealed into a waterproof box, which delivers a maximum power density of 2.40 W m -3 , as triggered by the water waves. The present work provides a new strategy for fabricating high-performance TENG devices by coupling flexible electrodes and spring structure for harvesting water wave energy.

  12. Frequency and wavenumber selective excitation of spin waves through coherent energy transfer from elastic waves

    OpenAIRE

    Hashimoto, Yusuke; Bossini, Davide; Johansen, Tom H.; Saitoh, Eiji; Kirilyuk, Andrei; Rasing, Theo

    2017-01-01

    Using spin-wave tomography (SWaT), we have investigated the excitation and the propagation dynamics of optically-excited magnetoelastic waves, i.e. hybridized modes of spin waves and elastic waves, in a garnet film. By using time-resolved SWaT, we reveal the excitation dynamics of magnetoelastic waves through coherent-energy transfer between optically-excited pure-elastic waves and spin waves via magnetoelastic coupling. This process realizes frequency and wavenumber selective excitation of s...

  13. O herói na forma e no conteúdo: análise textual do Mangá Dragon Ball e Dragon Ball Z.

    OpenAIRE

    Silva, André Luiz Souza da

    2006-01-01

    A presente dissertação, intitulada O herói na forma e no conteúdo: análise textual do mangá Dragon Ball e Dragon Ball Z, objetiva averiguar os aspectos narrativos que compõem o mangá ao longo dessa série, verificando o papel do herói e a sua relação com os demais personagens. Para isso, a investigação analisa os aspectos plásticos do herói no contexto da economia narrativa geral dos quadrinhos. O objetivo é ponderar e realçar certos aspectos de ordem morfológica e das ações narrativas entre o...

  14. Enhancement of particle-wave energy exchange by resonance sweeping

    International Nuclear Information System (INIS)

    Berk, H.L.; Breizman, B.N.

    1995-10-01

    It is shown that as the resonance condition of the particle-wave interaction is varied adiabatically, that the particles trapped in the wave will form phase space holes or clumps that can enhance the particle-wave energy exchange. This mechanism can cause much larger saturation levels of instabilities, and even allow the free energy associated with instability, to be tapped in a system that is linearly stable due to background dissipation

  15. Interaction of two walkers: wave-mediated energy and force.

    Science.gov (United States)

    Borghesi, Christian; Moukhtar, Julien; Labousse, Matthieu; Eddi, Antonin; Fort, Emmanuel; Couder, Yves

    2014-12-01

    A bouncing droplet, self-propelled by its interaction with the waves it generates, forms a classical wave-particle association called a "walker." Previous works have demonstrated that the dynamics of a single walker is driven by its global surface wave field that retains information on its past trajectory. Here we investigate the energy stored in this wave field for two coupled walkers and how it conveys an interaction between them. For this purpose, we characterize experimentally the "promenade modes" where two walkers are bound and propagate together. Their possible binding distances take discrete values, and the velocity of the pair depends on their mutual binding. The mean parallel motion can be either rectilinear or oscillating. The experimental results are recovered analytically with a simple theoretical framework. A relation between the kinetic energy of the droplets and the total energy of the standing waves is established.

  16. Analysis of the impacts of Wave Energy Converter arrays on the nearshore wave climate in the Pacific Northwest

    Science.gov (United States)

    O'Dea, A.; Haller, M. C.

    2013-12-01

    As concerns over the use of fossil fuels increase, more and more effort is being put into the search for renewable and reliable sources of energy. Developments in ocean technologies have made the extraction of wave energy a promising alternative. Commercial exploitation of wave energy would require the deployment of arrays of Wave Energy Converters (WECs) that include several to hundreds of individual devices. Interactions between WECs and ocean waves result in both near-field and far-field changes in the incident wave field, including a significant decrease in wave height and a redirection of waves in the lee of the array, referred to as the wave shadow. Nearshore wave height and direction are directly related to the wave radiation stresses that drive longshore currents, rip currents and nearshore sediment transport, which suggests that significant far-field changes in the wave field due to WEC arrays could have an impact on littoral processes. The goal of this study is to investigate the changes in nearshore wave conditions and radiation stress forcing as a result of an offshore array of point-absorber type WECs using a nested SWAN model, and to determine how array size, configuration, spacing and distance from shore influence these changes. The two sites of interest are the Northwest National Marine Renewable Energy Center (NNMREC) test sites off the coast of Newport Oregon, the North Energy Test Site (NETS) and the South Energy Test Site (SETS). NETS and SETS are permitted wave energy test sites located approximately 4 km and 10 km offshore, respectively. Twenty array configurations are simulated, including 5, 10, 25, 50 and 100 devices in two and three staggered rows in both closely spaced (three times the WEC diameter) and widely spaced (ten times the WEC diameter) arrays. Daily offshore wave spectra are obtained from a regional WAVEWATCH III hindcast for 2011, which are then propagated across the continental shelf using SWAN. Arrays are represented in SWAN

  17. Comparison of Wims-Aecl / Dragon / RFSP and MCNP results with Zed-2 measurements for control device worth and reactor kinetics - 037

    International Nuclear Information System (INIS)

    Pencer, J.; Choy Wong, F.; Bromley, B.P.; Atfield, J.; Zeller, M.

    2010-01-01

    This paper summarizes comparisons between MCNP5 and WIMS-AECL / DRAGON / RFSP calculations and experimental results obtained from the Zero Energy Deuterium (ZED-2) critical facility at AECL Chalk River Laboratories. MCNP5 and WIMS-AECL / DRAGON / RFSP were used to calculate reactivity worths for two reactivity devices, a mechanical zone controller (MZC) and shut-off rod (SOR) in a lattice similar to that of the ACR-1000 R . WIMS-AECL / DRAGON / RFSP was also used to obtain kinetics parameters for a transient based on a rod drop of a ZED-2 standby absorber rod (SAR). ZED-2 experiments were performed using 43-element ACR Low Enriched Uranium (ACR-LEU) fuel bundles with H 2 O- or air-cooled fuel bundles arranged in a 24-cm pitch square lattice. Calculations with MCNP5 gave biases in device worths that were within 0.2 mk of measured values, while WIMS-AECL / DRAGON / RFSP gave values that were within 0.3 mk of measured values. Transient analyses using the CERBERUS module within RFSP yielded a total delayed neutron fraction (β) that was within 4% of the value derived by point kinetics analysis of experimental data. The corresponding delayed photo-neutron fraction (β photo-neutron ) from CERBERUS was within 5% of that derived by point kinetics. This study has helped quantify the agreement between calculation and measurement for codes that are used in the safety analysis of the ACR-1000 reactor. Results demonstrate good agreement in code predictions. (authors)

  18. Selection of Design Power of Wave Energy Converters Based on Wave Basin Experiments

    DEFF Research Database (Denmark)

    Martinelli, L.; Zanuttigh, B.; Kofoed, Jens Peter

    2011-01-01

    of the measured efficiency; description of the energy production by means of a function of the design capacity; application of a simple formula for cost benefit analysis. The analyses here proposed are based on the experimental results of 3D tests on two floating wave energy devices, named LEANCON and DEXA......Aim of this paper is to develop a method for selecting the optimal power generation capacity for which a wave energy converter (WEC) should be rated. This method is suitable for the earliest stages of development, when several studies are missing, including design of the Power Take Off (PTO) system...

  19. Analysis of Energy Overshoot of High Frequency Waves with Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    WEN Fan

    2000-01-01

    A study is made on the overshoot phenomena in wind-generated waves. The surface displace ments of time-growing waves are measured at four fetches in a wind wave channel. The evolution of high frequency waves is displayed with wavelet transform. The results are compared with Sutherland's. It is found that high frequency wave components experience much stronger energy overshoot in the evolution.The energy of high frequency waves decreases greatly after overshoot

  20. Are Wave and Tidal Energy Plants New Green Technologies?

    Science.gov (United States)

    Douziech, Mélanie; Hellweg, Stefanie; Verones, Francesca

    2016-07-19

    Wave and tidal energy plants are upcoming, potentially green technologies. This study aims at quantifying their various potential environmental impacts. Three tidal stream devices, one tidal range plant and one wave energy harnessing device are analyzed over their entire life cycles, using the ReCiPe 2008 methodology at midpoint level. The impacts of the tidal range plant were on average 1.6 times higher than the ones of hydro-power plants (without considering natural land transformation). A similar ratio was found when comparing the results of the three tidal stream devices to offshore wind power plants (without considering water depletion). The wave energy harnessing device had on average 3.5 times higher impacts than offshore wind power. On the contrary, the considered plants have on average 8 (wave energy) to 20 (tidal stream), or even 115 times (tidal range) lower impact than electricity generated from coal power. Further, testing the sensitivity of the results highlighted the advantage of long lifetimes and small material requirements. Overall, this study supports the potential of wave and tidal energy plants as alternative green technologies. However, potential unknown effects, such as the impact of turbulence or noise on marine ecosystems, should be further explored in future research.

  1. An array effect of wave energy farm buoys

    Directory of Open Access Journals (Sweden)

    Hyuck-Min Kweon

    2012-12-01

    Full Text Available An ocean buoy energy farm is considered for Green energy generation and delivery to small towns along the Korean coast. The present studypresents that the floating buoy-type energy farm appears to be sufficiently feasible fortrapping more energy compared to afixed cylinder duck array. It is also seen from the numerical resultsthat the resonated waves between spaced buoys are further trapped by floating buoy motion. Our numerical study is analyzed by a plane-wave approximation, in which evanescent mode effects are included in a modified mild-slope equation based on the scattering characteristics for a single buoy.

  2. Nuclear astrophysics with DRAGON at ISAC

    International Nuclear Information System (INIS)

    D'Auria, J.M.

    2003-01-01

    A new facility, DRAGON, designed specifically to measure radiative proton and alpha capture reaction rates using short-lived, radioactive beams is almost installed at the new ISAC accelerated radioactive beam facility. A description of the planned experimental program, status of the installation (as of July 2001), results from commissioning studies, and the planned schedule are provided in this report. (orig.)

  3. Double system wave energy converter for the breaker zone

    International Nuclear Information System (INIS)

    Malavasi, Stefano; Negri; Marco

    2015-01-01

    In this paper a particular type of wave energy converter, namely EDS (Energy Double System) is presented. It is a two-body point absorber composed by a heaving float and a surging paddle, mounted on the same structure and aligned along the wave propagation direction. The system is designed for working in the breaker zone, where waves close to breaking can generate a considerable surging force on the paddle. A scale EDS model has been built and tested in the wave flume of the Hydraulics Laboratory of the 'Politecnico' of Milan. The power absorbed by the system, varying its configuration, position and wave, has been measured, and interesting efficiencies have been found.

  4. Design Specifications for the Hanstholm WEPTOS Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Tommy Larsen

    2012-04-01

    Full Text Available The WEPTOS wave energy converter (WEC is a novel device that combines an established and efficient wave energy absorbing mechanism with a smart structure, which can regulate the amount of incoming wave energy and reduce loads in extreme wave conditions. This adjustable A-shaped slack-moored and floating structure absorbs the energy of the waves through a multitude of rotors. The shape of the rotors is based on the renowned Salter’s Duck. On each leg, the rotors pivot around a common axle, through which the rotors transfer the absorbed power to a common power take off system. The study investigates the required capacity of the power take off (PTO system and the structural forces on a WEPTOS WEC prototype, intended for installation at Hanstholm (Denmark, based on large scale experimental tests using a highly realistic laboratory model of the complete device. The results hereof includes the rotational speed and transmitted torque (and hereby power to the PTO system using different PTO control strategies, the impact of fluctuations of the available mechanical power and the effect of limiting the PTO capacity on the annual energy production. Acquisition of structural forces includes mooring forces and structural bending moments in both production and extreme wave conditions, illustrating that the regulation of the angle in the A shape ensures that extreme forces on the structure can be kept in the same order of magnitude as in production conditions.

  5. Building a wave energy policy focusing on innovation, manufacturing and deployment

    International Nuclear Information System (INIS)

    Dalton, G.; Gallachoir, B.P.O.

    2010-01-01

    The Irish Government has set a goal to make Ireland a world leader for research, development and deployment of ocean energy technologies. Ireland has a wave energy resource of 21 TWh and an ambition is to achieve at least 500 MW installed generating capacity from ocean energy by 2020. This paper investigates what is required to move from ambition to delivery. A successful wave energy strategy will require focused policies that will stimulate innovation to develop the technologies, manufacturing to produce the devices and deployment to build the required wave power plants. The paper draws on the successful policies in Ireland that have stimulated each of these dimensions, albeit for different sectors. From 2004 to 2008, successful policies in (ICT and biotech) innovation led to an increase in Ireland's Innovation Index score from 0.48 to 0.53. The policy focus on (food and pharmaceuticals) manufacturing in Ireland resulted in high levels of economic growth over the period 1998-2002, reaching >10% GDP growth levels per annum, and full employment. Successful wind energy policies deployment has accelerated rapidly since 2003 and reached 1.2 GW installed capacity in 2009 representing 15% of Ireland's total installed capacity. The paper draws on appropriate elements of these policies to build a successful wave energy policy for Ireland. It also draws on the successful policies adopted in Denmark for innovation, manufacturing and deployment of wind energy. The Danish wind turbine manufacturers hold a world market share of approximately 40%. The paper proposes establishing a wave energy strategy group to develop an action plan to deliver the 500 MW. It also proposes a novel extension of corporate tax specifically for wave energy companies, an initial 30% capital grant scheme for wave energy developers, a grid code for wave energy devices and fast tracking of planning decisions through an amended approach to strategic infrastructure. (author)

  6. On gravitational wave energy in Einstein gravitational theory

    International Nuclear Information System (INIS)

    Folomeshkin, V.N.; Vlasov, A.A.

    1978-01-01

    By the example of precise wave solutions for the Einstein equations it is shown that a standard commonly adopted formulation of energy-momentum problem with pseudotensors provides us either with a zero or sign-variable values for the energy of gravitational waves. It is shown that if in the Einstein gravitational theory a strict transition to the limits of weak fields is realised then the theory gives us an unambiguous zero result for weak gravitational waves. The well-known non-zero result arises due to incorrect transition to weak field approximation in the Einstein gravitation theory

  7. Energy-flux characterization of conical and space-time coupled wave packets

    International Nuclear Information System (INIS)

    Lotti, A.; Couairon, A.; Faccio, D.; Trapani, P. Di

    2010-01-01

    We introduce the concept of energy density flux as a characterization tool for the propagation of ultrashort laser pulses with spatiotemporal coupling. In contrast with calculations for the Poynting vector, those for energy density flux are derived in the local frame moving at the velocity of the envelope of the wave packet under examination and do not need knowledge of the magnetic field. We show that the energy flux defined from a paraxial propagation equation follows specific geometrical connections with the phase front of the optical wave packet, which demonstrates that the knowledge of the phase fronts amounts to the measurement of the energy flux. We perform a detailed numerical study of the energy density flux in the particular case of conical waves, with special attention paid to stationary-envelope conical waves (X or O waves). A full characterization of linear conical waves is given in terms of their energy flux. We extend the definition of this concept to the case of nonlinear propagation in Kerr media with nonlinear losses.

  8. Surface wave energy absorption by a partially submerged bio-inspired canopy.

    Science.gov (United States)

    Nové-Josserand, C; Castro Hebrero, F; Petit, L-M; Megill, W M; Godoy-Diana, R; Thiria, B

    2018-03-27

    Aquatic plants are known to protect coastlines and riverbeds from erosion by damping waves and fluid flow. These flexible structures absorb the fluid-borne energy of an incoming fluid by deforming mechanically. In this paper we focus on the mechanisms involved in these fluid-elasticity interactions, as an efficient energy harvesting system, using an experimental canopy model in a wave tank. We study an array of partially-submerged flexible structures that are subjected to the action of a surface wave field, investigating in particular the role of spacing between the elements of the array on the ability of our system to absorb energy from the flow. The energy absorption potential of the canopy model is examined using global wave height measurements for the wave field and local measurements of the elastic energy based on the kinematics of each element of the canopy. We study different canopy arrays and show in particular that flexibility improves wave damping by around 40%, for which half is potentially harvestable.

  9. Building a Pre-Competitive Knowledge Base to Support Australia's Wave Energy Industry

    Science.gov (United States)

    Hoeke, R. K.; Hemer, M. A.; Symonds, G.; Rosebrock, U.; Kenyon, R.; Zieger, S.; Durrant, T.; Contardo, S.; O'Grady, J.; Mcinnes, K. L.

    2016-02-01

    A pre-competitive, query-able and openly available spatio-temporal atlas of Australia's wind-wave energy resource and marine management uses is being delivered. To provide the best representation of wave energy resource information, accounting for both spatial and temporal characteristics of the resource, a 34+yr numerical hindcast of wave conditions in the Australian region has been developed. Considerable in situ and remotely sensed data have been collected to support calibration and validation of the hindcast, resulting in a high-quality characterisation of the available wave resource in the Australian domain. Planning for wave energy projects is also subject to other spatial constraints. Spatial information on alternative uses of the marine domain including, for example, fisheries and aquaculture, oil and gas, shipping, navigation and ports, marine parks and reserves, sub-sea cables and infrastructure, shipwrecks and sites of cultural significance, have been compiled to complement the spatial characterisation of resource and support spatial planning of future wave energy projects. Both resource and spatial constraint information are being disseminated via a state-of-the-art portal, designed to meet the needs of all industry stakeholders. Another aspect currently impeding the industry in Australia is the limited evidence-base of impacts of wave energy extraction on adjacent marine and coastal environments. To build this evidence base, a network of in situ wave measurement devices have been deployed surrounding the 3 wave energy converters of Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to calibrate and validate numerical simulations of the project site. Early stage results will be presented.

  10. Internal wave energy radiated from a turbulent mixed layer

    Energy Technology Data Exchange (ETDEWEB)

    Munroe, James R., E-mail: jmunroe@mun.ca [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John' s, Newfoundland A1B 3X7 (Canada); Sutherland, Bruce R., E-mail: bsuther@ualberta.ca [Departments of Physics and Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)

    2014-09-15

    We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%–3% of the turbulent kinetic energy density of the turbulent layer.

  11. Evaluation of the DRAGON code for VHTR design analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Taiwo, T. A.; Kim, T. K.; Nuclear Engineering Division

    2006-01-12

    This letter report summarizes three activities that were undertaken in FY 2005 to gather information on the DRAGON code and to perform limited evaluations of the code performance when used in the analysis of the Very High Temperature Reactor (VHTR) designs. These activities include: (1) Use of the code to model the fuel elements of the helium-cooled and liquid-salt-cooled VHTR designs. Results were compared to those from another deterministic lattice code (WIMS8) and a Monte Carlo code (MCNP). (2) The preliminary assessment of the nuclear data library currently used with the code and libraries that have been provided by the IAEA WIMS-D4 Library Update Project (WLUP). (3) DRAGON workshop held to discuss the code capabilities for modeling the VHTR.

  12. Evaluation of the DRAGON code for VHTR design analysis

    International Nuclear Information System (INIS)

    Taiwo, T. A.; Kim, T. K.; Nuclear Engineering Division

    2006-01-01

    This letter report summarizes three activities that were undertaken in FY 2005 to gather information on the DRAGON code and to perform limited evaluations of the code performance when used in the analysis of the Very High Temperature Reactor (VHTR) designs. These activities include: (1) Use of the code to model the fuel elements of the helium-cooled and liquid-salt-cooled VHTR designs. Results were compared to those from another deterministic lattice code (WIMS8) and a Monte Carlo code (MCNP). (2) The preliminary assessment of the nuclear data library currently used with the code and libraries that have been provided by the IAEA WIMS-D4 Library Update Project (WLUP). (3) DRAGON workshop held to discuss the code capabilities for modeling the VHTR

  13. Validation of a thermal threshold nociceptive model in bearded dragons (Pogona vitticeps).

    Science.gov (United States)

    Couture, Émilie L; Monteiro, Beatriz P; Aymen, Jessica; Troncy, Eric; Steagall, Paulo V

    2017-05-01

    To validate a thermal threshold (TT) nociceptive model in bearded dragons (Pogona vitticeps) and to document TT changes after administration of morphine. A two-part randomized, blinded, controlled, experimental study. Five adult bearded dragons (242-396 g). A TT device delivered a ramped nociceptive stimulus (0.6 °C second -1 ) to the medial thigh until a response (leg kick/escape behavior) was observed or maximum (cut-off) temperature of 62 °C was reached. In phase I, period 1, six TT readings were determined at 20 minute intervals for evaluation of repeatability. Two of these readings were randomly assigned to be sham to assess specificity of the behavioral response. The same experiment was repeated 2 weeks later (period 2) to test reproducibility. In phase II, animals were administered either intramuscular morphine (10 mg kg -1 ) or saline 0.9%. TTs (maximum 68 °C) were determined before and 2, 4, 8, 12 and 24 hours after treatment administration. Data were analyzed using one-way anova (temporal changes and repeatability) and paired t tests (reproducibility and treatment comparisons) using Bonferroni correction (p dragons. TT nociceptive testing detected morphine administration and may be suitable for studying opioid regimens in bearded dragons. Copyright © 2017 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.

  14. Infection with Devriesea agamarum and Chrysosporium guarroi in an inland bearded dragon (Pogona vitticeps).

    Science.gov (United States)

    Schmidt-Ukaj, Silvana; Loncaric, Igor; Klang, Andrea; Spergser, Joachim; Häbich, Annett-Carolin; Knotek, Zdenek

    2014-12-01

    Description of clinical, microbiological and histopathological findings in a case of deep dermatitis in an inland bearded dragon (Pogona vitticeps) caused by Devriesea agamarum and Chrysosporium guarroi. A 4-year-old male inland bearded dragon, weighing 497 g, was presented at the clinic because the animal was suffering from dysecdysis and chronic skin lesions. Large numbers of bacilli, cocci and hyphal elements were diagnosed during the microscopic examination of the wound exudate. Microbiological analysis of a skin specimen revealed a moderate growth of Enterococcus sp. and D. agamarum. The condition of the bearded dragon improved with combined therapy consisting of ceftiofur hydrochloride, voriconazole and meloxicam. However, 3 months later recrudescence was observed. This time, Clostridium sp. and Chrysosporium sp. were isolated in large numbers. The bearded dragon was euthanized. Histopathology confirmed a severe granulomatous dermatitis with associated fungal hyphae and a severe granulomatous hepatitis with intralesional hyphae. Chrysosporium guarroi was identified by PCR and sequencing in two organs (skin and liver). This is the first case of an infection with D. agamarum and C. guarroi in an inland bearded dragon (P. vitticeps). It emphasizes the importance of mycological cultures and specific treatment. Samples of suspected Chrysosporium sp. should be cultured at 30°C for 10-14 days. Early antifungal treatment is necessary to prevent systemic and potentially fatal infection with C. guarroi. © 2014 ESVD and ACVD.

  15. The influence of waves on the tidal kinetic energy resource at a tidal stream energy site

    International Nuclear Information System (INIS)

    Guillou, Nicolas; Chapalain, Georges; Neill, Simon P.

    2016-01-01

    Highlights: • We model the influence of waves on tidal kinetic energy in the Fromveur Strait. • Numerical results are compared with field data of waves and currents. • The introduction of waves improve predictions of tidal stream power during storm. • Mean spring tidal stream potential is reduced by 12% during extreme wave conditions. • Potential is reduced by 7.8% with waves forces and 5.3% with enhanced friction. - Abstract: Successful deployment of tidal energy converters relies on access to accurate and high resolution numerical assessments of available tidal stream power. However, since suitable tidal stream sites are located in relatively shallow waters of the continental shelf where tidal currents are enhanced, tidal energy converters may experience effects of wind-generated surface-gravity waves. Waves may thus influence tidal currents, and associated kinetic energy, through two non-linear processes: the interaction of wave and current bottom boundary layers, and the generation of wave-induced currents. Here, we develop a three-dimensional tidal circulation model coupled with a phase-averaged wave model to quantify the impact of the waves on the tidal kinetic energy resource of the Fromveur Strait (western Brittany) - a region that has been identified with strong potential for tidal array development. Numerical results are compared with in situ observations of wave parameters (significant wave height, peak period and mean wave direction) and current amplitude and direction 10 m above the seabed (the assumed technology hub height for this region). The introduction of waves is found to improve predictions of tidal stream power at 10 m above the seabed at the measurement site in the Strait, reducing kinetic energy by up to 9% during storm conditions. Synoptic effects of wave radiation stresses and enhanced bottom friction are more specifically identified at the scale of the Strait. Waves contribute to a slight increase in the spatial gradient of

  16. Power converter for raindrop energy harvesting application: Half-wave rectifier

    Science.gov (United States)

    Izrin, Izhab Muhammad; Dahari, Zuraini

    2017-10-01

    Harvesting raindrop energy by capturing vibration from impact of raindrop have been explored extensively. Basically, raindrop energy is generated by converting the kinetic energy of raindrop into electrical energy by using polyvinylidene fluoride (PVDF) piezoelectric. In this paper, a power converter using half-wave rectifier for raindrop harvesting energy application is designed and proposed to convert damping alternating current (AC) generated by PVDF into direct current (DC). This research presents parameter analysis of raindrop simulation used in the experiment and resistive load effect on half-wave rectifier converter. The experiment is conducted by using artificial raindrop from the height of 1.3 m to simulate the effect of different resistive load on the output of half-wave rectifier converter. The results of the 0.68 MΩ resistive load showed the best performance of the half-wave rectifier converter used in raindrop harvesting energy system, which generated 3.18 Vaverage. The peak instantaneous output generated from this experiment is 15.36 µW.

  17. Effectiveness of the Red Dragon Fruit (Hylocereus polyrhizus Peel Extract as the Colorant, Antioxidant, and Antimicrobial on Beef Sausage

    Directory of Open Access Journals (Sweden)

    Fitri M Manihuruk

    2017-04-01

    Full Text Available This study aimed to evaluate the effectiveness of red dragon fruit (Hylocereus polyrhizus peel extracts addition on beef sausages. Red dragon fruit peel extracts were obtained by maceration using solvent at pH 5. Phytochemical characteristics, total phenols, antioxidant, and antimicrobial activity of the peel extracts were observed. Antioxidant and antimicrobial activities of the extracts were associated with high phytochemical compounds and total phenols contained in the extracts. Red dragon fruit peel extracts with various percentages (0%, 20%, 30%, and 40% were added on beef sausages, and their physicochemical characteristics, nutrients, antioxidant activity, and microbiological profile were analyzed. The data were analyzed using analysis of variance and Duncan’s multiple range test. Results showed that the addition of red dragon fruit peel extracts significantly reduced texture values, but increased intensity of luminosity, intensity of red color, and intensity of yellow color (P<0.05 beef sausages. It could be concluded that red dragon fruit peel extract containing phytochemical compounds was effective as an antibacterial agent and natural antioxidant. The addition of red dragon fruit peel extracts was effective in increasing the antioxidant activity and decreasing TBARS values. The addition of red dragon fruit peel extract did not affect the reddish colorization of beef sausages, but it was capable of increasing the yellowish colorization on beef sausage.

  18. Probabilistic Forecasting of the Wave Energy Flux

    DEFF Research Database (Denmark)

    Pinson, Pierre; Reikard, G.; Bidlot, J.-R.

    2012-01-01

    Wave energy will certainly have a significant role to play in the deployment of renewable energy generation capacities. As with wind and solar, probabilistic forecasts of wave power over horizons of a few hours to a few days are required for power system operation as well as trading in electricit......% and 70% in terms of Continuous Rank Probability Score (CRPS), depending upon the test case and the lead time. It is finally shown that the log-Normal assumption can be seen as acceptable, even though it may be refined in the future....

  19. Research on a new wave energy absorption device

    Science.gov (United States)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Zhu, Yiming

    2018-01-01

    To reduce impact of global warming and the energy crisis problems caused by pollution of energy combustion, the research on renewable and clean energies becomes more and more important. This paper designed a new wave absorption device, and also gave an introduction on its mechanical structure. The flow tube model is analyzed, and presented the formulation of the proposed method. To verify the principle of wave absorbing device, an experiment was carried out in a laboratory environment, and the results of the experiment can be applied for optimizing the structure design of output power.

  20. Devriesea agamarum causes dermatitis in bearded dragons (Pogona vitticeps).

    Science.gov (United States)

    Hellebuyck, Tom; Martel, An; Chiers, Koen; Haesebrouck, Freddy; Pasmans, Frank

    2009-03-02

    Devriesea agamarum is frequently isolated from dermatitis in lizards, notably from cheilitis in spiny tailed lizards (genus Uromastyx). It was the aim of the present study to assess the role of this bacterium as a causative agent of dermatitis by fulfilling Koch's postulates. First, its association with diseased lizards was demonstrated. The bacterium was isolated from several, mainly desert dwelling squamate species showing symptoms of dermatitis and/or septicaemia. The affected lizards mainly belonged to the family of the Agamidae (genera Pogona, Uromastyx, Agama) and in one case to the Iguanidae (genus Crotaphytus). Secondly, the occurrence of D. agamarum in 66 clinically healthy bearded dragons, 21 clinically healthy Uromastyx species and 40 squamate eggshells was studied. The bacterium was isolated from the oral cavity of 10 bearded dragons but from none of the healthy Uromastyx species. Hence D. agamarum was found to be part of the oral microbiota in Pogona vitticeps. Finally, bearded dragons (P. vitticeps) were experimentally inoculated with D. agamarum by direct application of a bacterial suspension on intact and abraded skin. At the scarified skin of all inoculated lizards, dermatitis was induced from which D. agamarum was re-isolated. In conclusion, D. agamarum is a facultative pathogenic bacterium, able to cause dermatitis in agamid lizards when the integrity of the skin is breached.

  1. Assessment of Wave Energy in the South China Sea Based on GIS Technology

    Directory of Open Access Journals (Sweden)

    Gang Lin

    2017-01-01

    Full Text Available China is now the world’s largest user of coal and also has the highest greenhouse gas emissions associated with the mining and use of coal. Under today’s enormous pressures of the growing shortage of conventional energy sources and the need for emission reductions, the search for clean energy is the most effective strategy to address the energy crisis and global warming. This study utilized satellite remote sensing technology, geographic information system (GIS technology, and simulated wave data for the South China Sea. The characteristic features of the wave energy were obtained by analysis through the wave resource assessment formula and the results were stored in a GIS database. Software for the evaluation of wave energy in the South China Sea was written. The results should provide accurate, efficient references for wave energy researchers and decision-makers. Based on a 24-year WW3 model simulation wave data and GIS technology, this study presented the characteristic of the wave energy in the SCS; results demonstrated that the SCS has the feasibility and viability for wave energy farming.

  2. An oscillating wave energy converter with nonlinear snap-through Power-Take-Off systems in regular waves

    Science.gov (United States)

    Zhang, Xian-tao; Yang, Jian-min; Xiao, Long-fei

    2016-07-01

    Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.

  3. Transmission of wave energy in curved ducts

    Science.gov (United States)

    Rostafinski, W.

    1973-01-01

    A formation of wave energy flow was developed for motion in curved ducts. A parametric study over a range of frequencies determined the ability of circular bends to transmit energy for the case of perfectly rigid walls.

  4. Consignment of Very Low Level Waste (VLLW) from the Winfrith dragon reactor containment building

    International Nuclear Information System (INIS)

    Shuler, K.

    2008-01-01

    The United Kingdom Atomic Energy Authority (UKAEA), CH2M Hill and AMEC are implementing innovative technical approaches in the decommissioning of redundant nuclear plant. These approaches will form the basis of lessons learned and best practices to be applied to future decommissioning work across the United Kingdom. This paper highlights the approach used for categorizing waste from the Dragon Decommissioning Project as Very Low Level Waste (VLLW), a category typically used by hospitals and laboratories for small quantities of waste contaminated with radioisotopes. (authors)

  5. Life history and spatial determinants of somatic growth dynamics in Komodo dragon populations

    OpenAIRE

    Laver, Rj; Purwandana, D; Ariefiandy, A; Imansyah, J; Forsyth, D; Ciofi, C; Jessop, Ts

    2012-01-01

    Somatic growth patterns represent a major component of organismal fitness and may vary among sexes and populations due to genetic and environmental processes leading to profound differences in life-history and demography. This study considered the ontogenic, sex-specific and spatial dynamics of somatic growth patterns in ten populations of the world's largest lizard the Komodo dragon (Varanus komodoensis). The growth of 400 individual Komodo dragons was measured in a capture-mark-recapture st...

  6. Investigation and Optimisation of a Discrete Fluid Power PTO-system for Wave Energy Converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard

    Patents on ocean wave energy dates back to 1799, however no wave energy converter (WEC) concept have a commercialised device. The cost of energy produced with wave energy converters is very high compared to traditional energy sources. Even when compared to energy from wind turbines wave energy...... investigation show how the wave climate naturally influence the optimal system configuration yielding maximal energy output, and how one may choose the system configuration based on the installation site. The switching manifold is the control element of the secondary controlled force system. The force...... needs cost reductions. Hence, next to political will, the main obstacle for a commercial break through of wave energy technology is the high cost of energy. Initiatives to lower costs are made in areas of minimising structural costs and increasing the energy production per device. Wave Star A/S has...

  7. Background suppression by the DRAGON radiative capture facility at TRIUMF/ISAC

    International Nuclear Information System (INIS)

    Hutcheon, D.; Buchmann, L.; Chen, A.A.; D'Auria, J.M.; Davis, C.A.; Greife, U.; Hussein, A.; Ottewell, D.F.; Ouellet, C.V.; Parikh, A.; Parker, P.; Pearson, J.; Ruiz, C.; Ruprecht, G.; Trinczek, M.; Vockenhuber, C.

    2008-01-01

    The DRAGON facility at TRIUMF/ISAC detects reaction products following radiative capture of a hydrogen or helium target nucleus by an accelerated heavy ion. Capture reactions of interest in nuclear astrophysics may have reaction rates 10-14 orders of magnitude lower than the intensity of the incident beam: as well as efficiently transporting the heavy reaction product from the target to a suitable particle detector, the separator must provide most of the suppression of unreacted beam. We describe the features of beam background encountered in a range of proton- and alpha-capture experiments at the DRAGON facility.

  8. Electricity from wave and tide an introduction to marine energy

    CERN Document Server

    Lynn, Paul A

    2014-01-01

    This is a concise yet technically authoritative overview of modern marine energy devices with the goal of sustainable electricity generation. With 165 full-colour illustrations and photographs of devices at an advanced stage, the book provides inspiring case studies of today's most promising marine energy devices and developments, including full-scale grid-connected prototypes tested in sea conditions. It also covers the European Marine Energy Centre (EMEC) in Orkney, Scotland, where many of the devices are assessed. Topics discussed: global resources - drawing energy from the World's waves and tides history of wave and tidal stream systems theoretical background to modern developments conversion of marine energy into grid electricity modern wave energy converters and tidal stream energy converters. This book is aimed at a wide readership including professionals, policy makers and employees in the energy sector needing an introduction to marine energy. Its descriptive style and technical level will also appea...

  9. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation

    DEFF Research Database (Denmark)

    Wendt, Fabian F.; Yu, Yi-Hsiang; Nielsen, Kim

    2017-01-01

    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 ...

  10. Energy Properties of Ion Acoustic Waves in Stable and Unstable Plasmas

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla; Lynov, Jens-Peter

    1979-01-01

    Energy exchange between potential energy and ion kinetic energy in an ion acoustic wave is considered. In order to investigate the linear Landau damping or growth, the energy is calculated by use of first‐order quantities only so that nonlinear effects are not involved. It is found that for ion...... acoustic waves that are growing or damped in space the time average of the sum of the potential and the kinetic energy density is independent of position. Energy absorption spectra in particle velocity space are calculated; they are relatively broad and complicated functions. This shows that plasma ions...... of all velocities exchange energy with the wave....

  11. Wave propagation of spectral energy content in a granular chain

    Directory of Open Access Journals (Sweden)

    Shrivastava Rohit Kumar

    2017-01-01

    Full Text Available A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting or non-destructive testing of the internal structure of solids. The focus is on the total energy content of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain, which allows understanding the energy attenuation due to disorder since it isolates the longitudinal P-wave from shear or rotational modes. It is observed from the signal that stronger disorder leads to faster attenuation of the signal. An ordered granular chain exhibits ballistic propagation of energy whereas, a disordered granular chain exhibits more diffusive like propagation, which eventually becomes localized at long time periods. For obtaining mean-field macroscopic/continuum properties, ensemble averaging has been used, however, such an ensemble averaged spectral energy response does not resolve multiple scattering, leading to loss of information, indicating the need for a different framework for micro-macro averaging.

  12. Energy cascading in the beat-wave accelerator

    International Nuclear Information System (INIS)

    McKinstrie, C.J.; Batha, S.H.

    1987-01-01

    A review is given of energy cascading in the beat-wave accelerator. The properties of the electromagnetic cascade and the corresponding plasma-wave evolution are well understood within the framework of an approximate analytic model. Based on this model, idealized laser-plasma coupling efficiencies of the order of 10% do not seem unreasonable. 28 refs

  13. Oscillatory Energy Exchange Between Waves Coupled by a Dynamic Artificial Crystal

    OpenAIRE

    Karenowska, Alexy D.; Tiberkevich, Vasil S.; Chumak, Andrii V.; Serga, Alexander A.; Gregg, John F.; Slavin, Andrei N.; Hillebrands, Burkard

    2011-01-01

    We describe a general mechanism of controllable energy exchange between waves propagating in a dynamic artificial crystal. We show that if a spatial periodicity is temporarily imposed on the transmission properties of a wave-carrying medium whilst a wave is inside, this wave is coupled to a secondary counter-propagating wave and energy oscillates between the two. The oscillation frequency is determined by the width of the spectral band gap created by the periodicity and the frequency differen...

  14. Safety assessment for Dragon fuel element production

    International Nuclear Information System (INIS)

    Price, M.S.T.

    1963-11-01

    This report shall be the Safety Assessment covering the manufacture of the First Charge of Fuel and Fuel Elements for the Dragon Reactor Experiment. It is issued in two parts, of which Part I is descriptive and Part II gives the Hazards Analysis, the Operating Limitations, the Standing Orders and the Emergency Drill. (author)

  15. Efficacy of Dragon's blood cream on wound healing: A randomized, double-blind, placebo-controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Foroogh Namjoyan

    2016-01-01

    Full Text Available The blood-red sap of Dragon's blood has been used in folk medicine for fractures, wounds, inflammation, gastrointestinal disorders, rheumatism, blood circulation dysfunctions, and cancer. Existing in vitro and in vivo bioactivity of this herb on different mechanisms of healing shows strong potential of this sap in wound healing. This clinical trial study was designated to evaluate the wound healing effect of Dragon's blood on human wounds. Sixty patients, between the ages of 14–65 years, who were referred to remove their skin tag, were assigned to this double-blind, placebo-controlled, randomized clinical trial and received either Dragon's blood or a placebo cream. They were visited on the 3rd, 5th, 7th, 10th, 14th, and 20th day of the trial to check the process of healing and to measure the wound's surface. At the end of trial, there was a significant difference in the mean duration of wound healing between the two groups (p = 0.0001. The phenolic compounds and the alkaloid taspine, which exist in Dragon's-blood resin, are probably the main reasons for the wound healing property of this plant. Being natural accessible, safe, and affordable makes Dragon's blood cream, a good choice for addition to the wound healing armamentarium. Further studies on wounds with different causes and among larger populations are suggested to ensure the effectiveness and safety of Dragon's blood.

  16. Stochastic control applied to the ISWEC Wave Energy System

    International Nuclear Information System (INIS)

    Bracco, Giovanni; Casassa, Maria; Giorcelli, Ermanno; Mattiazzo, Giuliana; Passione, Biagio; Raffero, Mattia; Vissio, Giacomo; Martini, Michele

    2015-01-01

    ISWEC (Inertial Sea Wave Energy Converter) is a floating marine device able to harvest sea waves energy by the interaction between the pitching motion of a floater and a spinning flywheel which can drive an electric PTO. In the ISWEC the hull dynamics is governed and controlled by the gyroscopic torque. The optimal control logic results in tuning the floater dynamics to the incoming waves in order to maximize the power transfer from the waves to the floater. In this paper the control problems of the ISWEC are stated and a control scheme based on the sub-optimal stochastic control logic is presented. The control scheme here presented has been tested using real wave records acquired at the deployment location in Pantelleria Island, which is one of the most energetic sites of the Mediterranean Sea.

  17. Aiding Design of Wave Energy Converters via Computational Simulations

    Science.gov (United States)

    Jebeli Aqdam, Hejar; Ahmadi, Babak; Raessi, Mehdi; Tootkaboni, Mazdak

    2015-11-01

    With the increasing interest in renewable energy sources, wave energy converters will continue to gain attention as a viable alternative to current electricity production methods. It is therefore crucial to develop computational tools for the design and analysis of wave energy converters. A successful design requires balance between the design performance and cost. Here an analytical solution is used for the approximate analysis of interactions between a flap-type wave energy converter (WEC) and waves. The method is verified using other flow solvers and experimental test cases. Then the model is used in conjunction with a powerful heuristic optimization engine, Charged System Search (CSS) to explore the WEC design space. CSS is inspired by charged particles behavior. It searches the design space by considering candidate answers as charged particles and moving them based on the Coulomb's laws of electrostatics and Newton's laws of motion to find the global optimum. Finally the impacts of changes in different design parameters on the power takeout of the superior WEC designs are investigated. National Science Foundation, CBET-1236462.

  18. Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth E; Haller, Merrick C; Ozkan-Haller, H Tuba

    2013-01-26

    This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys' that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate

  19. Impact of Tidal Level Variations on Wave Energy Absorption at Wave Hub

    Directory of Open Access Journals (Sweden)

    Valeria Castellucci

    2016-10-01

    Full Text Available The energy absorption of the wave energy converters (WEC characterized by a limited stroke length —like the point absorbers developed at Uppsala University—depends on the sea level variation at the deployment site. In coastal areas characterized by high tidal ranges, the daily energy production of the generators is not optimal. The study presented in this paper quantifies the effects of the changing sea level at the Wave Hub test site, located at the south-west coast of England. This area is strongly affected by tides: the tidal height calculated as the difference between the Mean High Water Spring and the Mean Low Water Spring in 2014 was about 6.6 m. The results are obtained from a hydro-mechanic model that analyzes the behaviour of the point absorber at the Wave Hub, taking into account the sea state occurrence scatter diagram and the tidal time series at the site. It turns out that the impact of the tide decreases the energy absorption by 53%. For this reason, the need for a tidal compensation system to be included in the design of the WEC becomes compelling. The economic advantages are evaluated for different scenarios: the economic analysis proposed within the paper allows an educated guess to be made on the profits. The alternative of extending the stroke length of the WEC is investigated, and the gain in energy absorption is estimated.

  20. "Snow White" Coating Protects SpaceX Dragon's Trunk Against Rigors of Space

    Science.gov (United States)

    McMahan, Tracy

    2013-01-01

    He described it as "snow white." But NASA astronaut Don Pettit was not referring to the popular children's fairy tale. Rather, he was talking about the white coating of the Space Exploration Technologies Corp. (SpaceX) Dragon spacecraft that reflected from the International Space Station s light. As it approached the station for the first time in May 2012, the Dragon s trunk might have been described as the "fairest of them all," for its pristine coating, allowing Pettit to clearly see to maneuver the robotic arm to grab the Dragon for a successful nighttime berthing. This protective thermal control coating, developed by Alion Science and Technology Corp., based in McLean, Va., made its bright appearance again with the March 1 launch of SpaceX's second commercial resupply mission. Named Z-93C55, the coating was applied to the cargo portion of the Dragon to protect it from the rigors of space. "For decades, Alion has produced coatings to protect against the rigors of space," said Michael Kenny, senior chemist with Alion. "As space missions evolved, there was a growing need to dissipate electrical charges that build up on the exteriors of spacecraft, or there could be damage to the spacecraft s electronics. Alion's research led us to develop materials that would meet this goal while also providing thermal controls. The outcome of this research was Alion's proprietary Z-93C55 coating."

  1. Behavior of Salmonella spp. and natural microbiota on fresh-cut dragon fruits at different storage temperatures.

    Science.gov (United States)

    Sim, Hui Li; Hong, Yoon-Ki; Yoon, Won Byong; Yuk, Hyun-Gyun

    2013-01-01

    The aim of this study was to determine survival or growth of unadapted, acid-adapted and cold-stressed Salmonella spp., and natural microbiota on fresh-cut dragon fruits at different storage temperatures. Dragon fruits were sliced and spot inoculated with five-strain cocktail of Salmonella spp. at two inoculum levels (2.5 or 5.5 log CFU/g). Inoculated fruits were stored at 28°C for 48h and at 4°C and 12°C for 96 h. Salmonella population significantly increased by 2.4 to 3.0 log CFU/g at low inoculum level, whereas the numbers increased by 0.4 to 0.7 log CFU/g at the high inoculum level on fruits held at 28°C for 48h. Only unadapted and acid-adapted cells grew with 0.7 to 0.9log increase at the low inoculum level at 12°C for 96h. No significant growth was observed at both inoculum levels during storage at 4°C. Overall, acid, starved and cold adaptation of Salmonella spp. did not show significant difference in survival or growth on fresh-cut dragon fruits during storage compared to unadapted control cells. For natural microbiota on the fruit, mesophilic bacterial counts reached to 5-log CFU/g at 28 and 12°C by 9.9 and 52.9h. Similar with Salmonella spp. there was no growth of natural microbiota at 4°C. These results showed that Salmonella spp. could grow on fresh-cut dragon fruits under inappropriate storage conditions, indicating that fresh-cut dragon fruits could be a potential vehicle for salmonellosis. Thus, this study suggests that fresh-cut dragon fruits should be stored at 4°C to ensure the safety as well as to extend the shelf life of fresh-cut dragon fruits. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Wave-to-wire Modelling of Wave Energy Converters : Critical Assessment, Developments and Applicability for Economical Optimisation

    DEFF Research Database (Denmark)

    Ferri, Francesco

    The idea to use the motion of a wavy sea surface to produce electricity was investigate in the seventies, in a time when the earliest wave energy converters were conceived and developed. But nowadays still none of the patented devices reached a commercial stage. Wave energy is a large, mostly unt...

  3. Colloquium: Multimessenger astronomy with gravitational waves and high-energy neutrinos

    NARCIS (Netherlands)

    Ando, S.; Baret, B.; Bartos, I.; Bouhou, B.; Chassande-Mottin, E.; Corsi, A.; Di Palma, I.; Dietz, A.; Donzaud, C.; Eichler, D.; Finley, C.; Guetta, D.; Halzen, F.; Jones, G.; Kandhasamy, S.; Kotake, K.; Kouchner, A.; Mandic, V.; Márka, S.; Márka, Z.; Moscoso, L.; Papa, M.A.; Piran, T.; Pradier, T.; Romero, G.E.; Sutton, P.; Thrane, E.; van Elewyck, V.; Waxman, E.

    2013-01-01

    Many of the astrophysical sources and violent phenomena observed in our Universe are potential emitters of gravitational waves and high-energy cosmic radiation, including photons, hadrons, and presumably also neutrinos. Both gravitational waves (GW) and high-energy neutrinos (HEN) are cosmic

  4. The Oral and Skin Microbiomes of Captive Komodo Dragons Are Significantly Shared with Their Habitat.

    Science.gov (United States)

    Hyde, Embriette R; Navas-Molina, Jose A; Song, Se Jin; Kueneman, Jordan G; Ackermann, Gail; Cardona, Cesar; Humphrey, Gregory; Boyer, Don; Weaver, Tom; Mendelson, Joseph R; McKenzie, Valerie J; Gilbert, Jack A; Knight, Rob

    2016-01-01

    Examining the way in which animals, including those in captivity, interact with their environment is extremely important for studying ecological processes and developing sophisticated animal husbandry. Here we use the Komodo dragon ( Varanus komodoensis ) to quantify the degree of sharing of salivary, skin, and fecal microbiota with their environment in captivity. Both species richness and microbial community composition of most surfaces in the Komodo dragon's environment are similar to the Komodo dragon's salivary and skin microbiota but less similar to the stool-associated microbiota. We additionally compared host-environment microbiome sharing between captive Komodo dragons and their enclosures, humans and pets and their homes, and wild amphibians and their environments. We observed similar host-environment microbiome sharing patterns among humans and their pets and Komodo dragons, with high levels of human/pet- and Komodo dragon-associated microbes on home and enclosure surfaces. In contrast, only small amounts of amphibian-associated microbes were detected in the animals' environments. We suggest that the degree of sharing between the Komodo dragon microbiota and its enclosure surfaces has important implications for animal health. These animals evolved in the context of constant exposure to a complex environmental microbiota, which likely shaped their physiological development; in captivity, these animals will not receive significant exposure to microbes not already in their enclosure, with unknown consequences for their health. IMPORTANCE Animals, including humans, have evolved in the context of exposure to a variety of microbial organisms present in the environment. Only recently have humans, and some animals, begun to spend a significant amount of time in enclosed artificial environments, rather than in the more natural spaces in which most of evolution took place. The consequences of this radical change in lifestyle likely extend to the microbes residing

  5. Dynamic analysis of floating wave energy generation system with mooring system

    International Nuclear Information System (INIS)

    Choi, Gyu Seok; Sohn, Jeong Hyun

    2013-01-01

    In this study, dynamic behaviors of a wave energy generation system (WEGS) that converts wave energy into electric energy are analyzed using multibody dynamics techniques. Many studies have focused on reducing the effects of a mooring system on the motion of a WEGS. Several kinematic constraints and force elements are employed in the modeling stage. Three dimensional wave load equations are used to implement wave loads. The dynamic behaviors of a WEGS are analyzed under several wave conditions by using MSC/ADAMS, and the rotating speed of the generating shaft is investigated for predicting the electricity capacity. The dynamic behaviors of a WEGS with a mooring system are compared with those of a WEGS without a mooring system. Stability evaluation of a WEGS is carried out through simulation under extreme wave load

  6. Measurements of radiated elastic wave energy from dynamic tensile cracks

    Science.gov (United States)

    Boler, Frances M.

    1990-01-01

    The role of fracture-velocity, microstructure, and fracture-energy barriers in elastic wave radiation during a dynamic fracture was investigated in experiments in which dynamic tensile cracks of two fracture cofigurations of double cantilever beam geometry were propagating in glass samples. The first, referred to as primary fracture, consisted of fractures of intact glass specimens; the second configuration, referred to as secondary fracture, consisted of a refracture of primary fracture specimens which were rebonded with an intermittent pattern of adhesive to produce variations in fracture surface energy along the crack path. For primary fracture cases, measurable elastic waves were generated in 31 percent of the 16 fracture events observed; the condition for radiation of measurable waves appears to be a local abrupt change in the fracture path direction, such as occurs when the fracture intersects a surface flaw. For secondary fractures, 100 percent of events showed measurable elastic waves; in these fractures, the ratio of radiated elastic wave energy in the measured component to fracture surface energy was 10 times greater than for primary fracture.

  7. Wave energy, lever operated pivoting float LOPF study

    Energy Technology Data Exchange (ETDEWEB)

    Margheritini, L.

    2012-11-01

    The fully instrumented Resen Waves Lever Operated Pivoting Float LOPF wave energy buoy model has gone through the first stage of testing in regular waves in scale 1:25 of the North Sea wave conditions, in the 3D deep wave basin at the Hydraulic and Coastal Engineering Laboratory of Aalborg University in Denmark. The model size was 60cm W x 90cm L x 21cm H. The 60 cm width pointed towards the wave front. The LOPF buoy is characterized by a simple mechanical design with few moving parts and direct electrical output and it is taut moored to the sea bed, so all forces are referenced to the seabed for maximum energy output in regular as well as irregular waves. During storms the buoy pivots and streamlines itself to minimize loads on the mooring line. A conservative estimate shows that a full scale system for North Sea conditions has a float size width of 15 m that will, with 60% generator efficiency, produce 610 MWh/y (609.497 kWh/y) with an average power output of 69.6 kW, which requires a generator capacity of 700 kW. It is expected the generator efficiency can be increased to 90% in the future. More specific calculations (from EnergiNet) show that with one generator of 695 kW the expected power production is 585 MWh/y; with a generator of 250 kW and 100 kW, the expected power production is 481 MWh/y and 182 MWh/y respectively. In addition there are several areas for future improvements for increased power production. (Author)

  8. Effects of high dose coffee intake on aerobic power in dragon female athletes

    Directory of Open Access Journals (Sweden)

    Shabani Ramin

    2016-08-01

    Full Text Available Background : There are few studies that consider the effect of high doses of caffeine on aerobic power (VO2max. Also, to date, no study examined the effect of coffee intake on dragon boat paddler specifically on women. The purpose of this study was to investigate the effect of espresso coffee on improvement of aerobic power of dragon boat paddler. Material : Twenty women athletes of Guilan dragon bout team members of Malavan club of port city of Anzali (mean ±SD age, 23.60± 3.49 years; BMI,23.77±1.88kg/m2; body fat, 30.32±4.65% were recruited to this study, after they completed a primary test without consuming any coffee, they consumed 6mg/kg of coffee (espresso or decaffeinated and following that they completed two experimental trials. A randomized, double-blind, repeated-measures, design was employed whereby paddlers complete a 2000m paddling dragon boat ergo-meter. Results : Coffee could improve VO2max (Without coffee =74.40± QUOTE 4.99, Espresso coffee =90.10± QUOTE 6.19, Decaffeinated coffee =91.00± QUOTE 5.67, P≤ QUOTE 0.05. VO2max amount after exercise were significantly higher for both espresso coffee and decaffeinated coffee, when compared with without coffee condition. No significant differences were observed between espresso coffee and decaffeinated coffee (P≤ QUOTE 0.05. Conclusion : The present study shows that both high doses of caffeine (espresso coffee and decaffeinated coffee can enhance VO2max during aerobic exercise including 2000m dragon boat paddling. It seems that some compounds except caffeine in decaffeinated coffee can act improve VO2max. Further studies needed for considering the effect of high doses of coffee on endurance exercises. Also in other age ranges of women athletes and other sport athletes.

  9. A comparison of UVb compact lamps in enabling cutaneous vitamin D synthesis in growing bearded dragons

    NARCIS (Netherlands)

    Diehl, J.J.E.; Baines, F.M.; Heijboer, A.C.; Leeuwen, van J.P.; Kik, M.; Hendriks, W.H.; Oonincx, D.G.A.B.

    2018-01-01

    The effect of exposure to different UVb compact lamps on the vitamin D status of growing bearded dragons (Pogona vitticeps) was studied. Forty-two newly hatched bearded dragons (<24 h old) were allocated to six treatment groups (n = 7 per group). Five groups were exposed to different UVb

  10. A comparison of UVb compact lamps in enabling cutaneous vitamin D synthesis in growing bearded dragons

    NARCIS (Netherlands)

    Diehl, J J E; Baines, F M; Heijboer, A C; van Leeuwen, J P; Kik, M; Hendriks, W H; Oonincx, D G A B

    The effect of exposure to different UVb compact lamps on the vitamin D status of growing bearded dragons (Pogona vitticeps) was studied. Forty-two newly hatched bearded dragons (<24 h old) were allocated to six treatment groups (n = 7 per group). Five groups were exposed to different UVb compact

  11. Wave energy fluxes and multi-decadal shoreline changes

    DEFF Research Database (Denmark)

    Kabuth, Alina Kristin; Kroon, Aart

    2014-01-01

    Spatial patterns of multidecadal shoreline changes in two microtidal, low-energetic embayments of southern Zealand, Denmark, were investigated by using the directional distribution of wave energy fluxes. The sites include a barrier island system attached to moraine bluffs, and a recurved spit...... variability of directional distributions of wave energy fluxes furthermore outlined potential sediment sources and sinks for the evolution of the barrier island system and for the evolution of the recurved spit....... adjacent to a cliff coast. The barrier island system is characterized by cross-shore translation and by an alignment of the barrier alongshore alternating directions of barrier-spit progradation in a bidirectional wave field. The recurved spit adjacent to the cliff coast experienced shoreline rotation...

  12. Technological and Economic Aspects of Wave Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Rahul Basu

    2018-01-01

    Full Text Available The geographical regions contiguous to the Indian Ocean, Bay of Bengal and the Arabian Sea are prone to natural disasters and poor electric supply especially in rural and hard to reach coastal regions. Utilization of ocean resources for power generation such as tidal, thermal solar and wind for energy need to be incorporated in a broad framework for the region. Development of ocean-based energy systems can be integrated with early warning networks linked by satellite which can give a few hours to days warning to help mitigate the severity of natural disasters on human life. Ocean-based electricity extraction has; however, remained elusive for various reasons. Interest in these systems resumed after the oil crisis of the 1970’s, but was uncoordinated. Extraction of ocean energy from the kinetic energy of waves and ocean currents depends on various mechanical devices with variable efficiencies. Apart from the efficiency, one must match the output phase of the feeder waveforms with that of the electrical grid. Also, the wavelengths of the typical wave are of the order of a few meters, the interception of which requires large devices. The mechanical efficiency of the turbine extraction system is further limited by the flow momentum considerations. Some applications and their implementation are looked at, specifically with reference to the difficulties of implementation in the region, and other factors like economic efficiency (rate of returns in place of mechanical efficiency. Individual wave energy harvesters are thus bound to suffer from inefficiencies and it may be beneficial to use wave farm configurations from the point of view of the randomness of wave motion, the large wavelengths, and the added advantage of averaging fluctuations from large numbers of generators.

  13. Encephalitozoonosis in two inland bearded dragons (Pogona vitticeps).

    Science.gov (United States)

    Richter, B; Csokai, J; Graner, I; Eisenberg, T; Pantchev, N; Eskens, H U; Nedorost, N

    2013-02-01

    Microsporidiosis is reported rarely in reptiles. Sporadic multisystemic granulomatous disease of captive bearded dragons (Pogona vitticeps) has been associated with microsporidia showing Encephalitozoon-like morphology. Two such cases are described herein. Both animals displayed clinical signs suggestive of renal failure. Necropsy examination revealed granulomatous lesions in the liver and adrenal area in both animals, and in several other organs in one animal. The lesions were associated with intracellular protozoa consistent with microsporidia. Ultrastructural examination of the organisms revealed morphology similar to Encephalitozoon spp. Immunohistochemistry and chromogenic in-situ hybridization for Encephalitozoon cuniculi were positive in both animals. Nucleotide sequencing of the partial small subunit ribosomal RNA gene and the complete internal transcribed spacer (ITS) region revealed high similarity with published E. cuniculi sequences in both animals. However, the ITS region showed a GTTT-repeat pattern distinct from mammalian E. cuniculi strains. This may be a novel E. cuniculi strain associated with multisystemic granulomatous disease in bearded dragons. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Validation of DRAGON code in connection with WIMS-AECL/RFSP code system based on ENDF/B-VI library and two group model

    International Nuclear Information System (INIS)

    Hong, In Seob; Suk, Ho Chun; Kim, Soon Young; Jo, Chang Keun

    2002-06-01

    The major objective of this research is to validate the incremental cross section property of DRAGON code in connection with WIMS-AECL/DRAGON/RFSP code system with ENDF/B-VI library and full 2G calculation model. The direct comparison between the incremental cross section results calculated by DRAGON with ENDF/B-VI and ENDF/B-V and MULTICELL with ENDF/B-V indicate that there are not much differences between the incremental cross sections of DRAGON with ENDF/B-V and ENDF/B-VI, but there exists large discrepancies between the results of DRAGON and those of MULTICELL. In the analysis of the difference between calculated and measured reactivity worths of various types of control devices during Phase-B Post-Simulation of Wolsong Units 2, 3 and 4, WIMS-AECL/DRAGON/RFSP analysis well agrees with those of previous WIMS-AECL /MULTICELL/RFSP analysis within very small differences. From those results, we can conclude that DRAGON code can be used as a general purpose incremental cross section generation tool for not only the natural uranium fuel but also slightly enriched fuel such as RU or SEU, to cover the shortcomings of natural uranium based MULTICELL code

  15. Local full-wave energy and quasilinear analysis in nonuniform plasmas

    International Nuclear Information System (INIS)

    Smithe, D.N.

    1989-01-01

    The subject of local wave energy in plasmas is treated via quasilinear theory from the dual perspectives of the action-angle formalism and gyrokinetic analysis. An extension is presented to all orders in the gyroradius of the self-consistent wave-propagation/quasilinear-absorption problem using gyrokinetics. Questions of when and under what conditions local energy should be of definite sign are answered using the action-angle formalism. An important result is that the ''dielectric operators'' of the linearized wave equation and of the local energy are not the same, a fact which is obscured when the eikonal or WKB assumption is invoked. Even though the two dielectrics are very different in character, it is demonstrated that they are nevertheless related by a simple mathematical statement. This study was originally motivated by concern over the question of local energy for r.f.-heating of plasmas, where in certain instances, full-wave effects such as refraction, strong absorption, and mode conversion are of primary importance. Fundamentally, the r.f.-absorption must equate with the energy moment of the quasilinear term to achieve a correct energy balance. This fact governs the derivation (as opposed to postulation) of the local absorption. The troublesome ''kinetic flux'' may then be chosen (it is not unique) to satisfy a wave-energy balance relation with the Poynting flux and local absorption. It is shown that at least one such choice reduces asymptotically to the Stix form away from nonuniformities. (author)

  16. State estimation for wave energy converters

    Energy Technology Data Exchange (ETDEWEB)

    Bacelli, Giorgio; Coe, Ryan Geoffrey

    2017-04-01

    This report gives a brief discussion and examples on the topic of state estimation for wave energy converters (WECs). These methods are intended for use to enable real-time closed loop control of WECs.

  17. DRAGON and SERPENT 2-D modelling of the SLOWPOKE-2 reactor at Ecole Polytechnique Montreal

    International Nuclear Information System (INIS)

    Raouafi, H.; Marleau, G.

    2012-01-01

    DRAGON is a deterministic code that can be used to perform lattice cell calculations based on numerical solutions of neutron transport equation. DRAGON can also be used for full core 2-D and 3-D simulations in transport. One alternative to the use of such a deterministic code consist in following the history of neutrons in the core based on statistical Monte Carlo simulation with codes like MCNP and SERPENT. This second calculation approach has been used successfully for SLOWPOKE-2 simulation in the past. Here we present a comparison between DRAGON and SERPENT calculations for the SLOWPOKE-2 reactor. We also compare the flux distribution obtained using both codes for a copper sample placed inside a small irradiation site. (author)

  18. DRAGON FRUIT JUICE ADDITION IN PALM OIL-PUMPKIN EMULSION: PANELIST ACCEPTANCE AND ANTIOXIDANT CAPACITY

    Directory of Open Access Journals (Sweden)

    Anton Rahmadi*

    2017-12-01

    Full Text Available Addition of dragon juice to emulsion products formulated from olein fraction of red palm oil and pumpkin juice was conducted as an effort to improve the taste thus it can be accepted by consumers. This study aims to (1 observe the acceptance of 60 panelists aged 17-21 years on the parameters of taste, aroma, mouthfeel, color, flavor and aroma of each contributing components of dragon fruit, palm oil, and raspberry flavor with the addition of dragon fruit juice at level 0 (control, 25, 50, and 75% (v/v, and (2 observe the changes in chemical components i.e. vitamin C and total titrable acids, total carotenoid by spectrophotometry, and antioxidant activity by 2,2-diphenyl-1-picrylhdrazyl (DPPH reduction method. The best formula was the one containing 75% (v/v of red dragon juice in fresh condition with vitamin C content of 19.32±0.62 mg/100 mL, antioxidant activity of 354.25±0.77 ppm, hedonic color, taste, and viscosity between favorable and very favorable. After 2 weeks of storage at room temperature (28±2ºC, the vitamin C, total carotene, and antioxidant activity of the mixture decreased by 29.72, 15.44, and 46.59%, res-pectively.

  19. Transmission of wave energy through an offshore wind turbine farm

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Johnson, Martin; Sørensen, Ole Rene

    2013-01-01

    condition at infinity. From airborne and Satellite SAR (Synthetic Aperture Radar) a model has been derived for the change of the water surface friction C) inside and on the lee side of the offshore wind farm. The effects have been implemented in a spectral wind wave model,MIKE21 SW, and a parametric study......The transmission of wave energy passing an offshore wind farm is studied. Three effects that can change the wave field are analysed, which is the A) energy dissipation due to drag resistance, B) wave reflection/diffraction from structures, and C) the effect of a modified wind field inside...... and on the lee side of the wind farm. The drag dissipation, A), is quantified by a quadratic resistance law. The effect of B) is parameterised based on 1st order potential theory. A method to find the amount of reflected and transmitted wave energy is developed based on the panel method WAMIT™ and a radiation...

  20. Experimental investigation of rubble mound breakwaters for wave energy conversion

    DEFF Research Database (Denmark)

    Luppa, C.; Contestabile, P.; Cavallaro, L.

    2015-01-01

    The paper describes recent laboratory investigation on the breakwater integrated device named “OBREC” (Overtopping BReakwater for Energy Conversion). This technology recently appeared on the wave energy converter scene as an executive outcome of improving composite seawalls by including overtoppi......-by-wave measurement of couples of hydraulic head-flow rate acting on a virtual turbine inlet. Finally, the influence of draft length on overtopping discharge has been identified....... type wave energy converters [1]. Two complementary experimental campaigns were carried out, in 2012 and in 2014. Several geometries and wave conditions were examined. Preliminary comparison of hydraulic behaviour has been summarized, focusing on reflection analysis and overtopping flow rate....... Preliminary design formulae are presented to predict overtopping at the rear side of the structure and in to the front reservoir based on both datasets. Moreover, some important results have been presented on hydraulic behaviour of OBREC with saturated reservoir. Particularly attention is paid to wave...

  1. Dark Energy and Inflation from Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Leonid Marochnik

    2017-10-01

    Full Text Available In this seven-part paper, we show that gravitational waves (classical and quantum produce the accelerated de Sitter expansion at the start and at the end of the cosmological evolution of the Universe. In these periods, the Universe contains no matter fields but contains classical and quantum metric fluctuations, i.e., it is filled with classical and quantum gravitational waves. In such evolution of the Universe, dominated by gravitational waves, the de Sitter state is the exact solution to the self-consistent equations for classical and quantum gravitational waves and background geometry for the empty space-time with FLRW metric. In both classical and quantum cases, this solution is of the instanton origin since it is obtained in the Euclidean space of imaginary time with the subsequent analytic continuation to real time. The cosmological acceleration from gravitational waves provides a transparent physical explanation to the coincidence, threshold and “old cosmological constant” paradoxes of dark energy avoiding recourse to the anthropic principle. The cosmological acceleration from virtual gravitons at the start of the Universe evolution produces inflation, which is consistent with the observational data on CMB anisotropy. Section 1 is devoted to cosmological acceleration from classical gravitational waves. Section 2 is devoted to the theory of virtual gravitons in the Universe. Section 3 is devoted to cosmological acceleration from virtual gravitons. Section 4 discusses the consistency of the theory with observational data on dark energy and inflation. The discussion of mechanism of acceleration and cosmological scenario are contained in Sections 5 and 6. Appendix contains the theory of stochastic nonlinear gravitational waves of arbitrary wavelength and amplitude in an isotropic Universe.

  2. Isolation and identification of lactic acid bacteria from fermented red dragon fruit juices.

    Science.gov (United States)

    Ong, Yien Yien; Tan, Wen Siang; Rosfarizan, Mohamad; Chan, Eng Seng; Tey, Beng Ti

    2012-10-01

    Red dragon fruit or red pitaya is rich in potassium, fiber, and antioxidants. Its nutritional properties and unique flesh color have made it an attractive raw material of various types of food products and beverages including fermented beverages or enzyme drinks. In this study, phenotypic and genotypic methods were used to confirm the identity of lactic acid bacteria (LAB) appeared in fermented red dragon fruit (Hylocereus polyrhizus) beverages. A total of 21 isolates of LAB were isolated and characterized. They belonged to the genus of Enterococcus based on their biochemical characteristics. The isolates can be clustered into two groups by using the randomly amplified polymorphic DNA method. Nucleotide sequencing and restriction fragment length polymorphism of the 16S rRNA region suggested that they were either Enterococcus faecalis or Enterococcus durans. Current research revealed the use of biochemical analyses and molecular approaches to identify the microbial population particularly lactic acid bacteria from fermented red dragon fruit juices. © 2012 Institute of Food Technologists®

  3. Ocean Wave Energy Regimes of the Circumpolar Coastal Zones

    Science.gov (United States)

    Atkinson, D. E.

    2004-12-01

    Ocean wave activity is a major enviromental forcing agent of the ice-rich sediments that comprise large sections of the arctic coastal margins. While it is instructive to possess information about the wind regimes in these regions, direct application to geomorphological and engineering needs requires knowledge of the resultant wave-energy regimes. Wave energy information has been calculated at the regional scale using adjusted reanalysis model windfield data. Calculations at this scale are not designed to account for local-scale coastline/bathymetric irregularities and variability. Results will be presented for the circumpolar zones specified by the Arctic Coastal Dynamics Project.

  4. Optimal control of a wave energy converter

    NARCIS (Netherlands)

    Hendrikx, R.W.M.; Leth, J.; Andersen, P; Heemels, W.P.M.H.

    2017-01-01

    The optimal control strategy for a wave energy converter (WEC) with constraints on the control torque is investigated. The goal is to optimize the total energy delivered to the electricity grid. Using Pontryagin's maximum principle, the solution is found to be singular-bang. Using higher order

  5. Investigation on the possibility of extracting wave energy from the Texas coast

    Science.gov (United States)

    Haces-Fernandez, Francisco

    Due to the great and growing demand of energy consumption in the Texas Coast area, the generation of electricity from ocean waves is considered very important. The combination of the wave energy with offshore wind power is explored as a way to increase power output, obtain synergies, maximize the utilization of assigned marine zones and reduce variability. Previously literature has assessed the wave energy generation, combined with wind in different geographic locations such as California, Ireland and the Azores Island. In this research project, the electric power generation from ocean waves on the Texas Coast was investigated, assessing its potential from the meteorological data provided by five buoys from National Data Buoy Center of the National Oceanic and Atmospheric Administration, considering the Pelamis 750 kW Wave Energy Converter (WEC) and the Vesta V90 3 MW Wind Turbine. The power output from wave energy was calculated for the year 2006 using Matlab, and the results in several locations were considered acceptable in terms of total power output, but with a high temporal variability. To reduce its variability, wave energy was combined with wind energy, obtaining a significant reduction on the coefficient of variation on the power output. A Matlab based interface was created to calculate power output and its variability considering data from longer periods of time.

  6. Chinese Dragons in an American Science Unit

    Science.gov (United States)

    Lew, Lee Yuen; McLure, John W.

    2005-01-01

    Can art and science find a happy home in the same unit? We think the answer is yes, if the central problem interests the students and allows them to try out multiple abilities. The sixth-grade unit described in this article, which we called "The Dragon Project," grew mainly from two roots, a study of ancient China and a later probe into…

  7. Wave Energy Converter Annual Energy Production Uncertainty Using Simulations

    Directory of Open Access Journals (Sweden)

    Clayton E. Hiles

    2016-09-01

    Full Text Available Critical to evaluating the economic viability of a wave energy project is: (1 a robust estimate of the electricity production throughout the project lifetime and (2 an understanding of the uncertainty associated with said estimate. Standardization efforts have established mean annual energy production (MAEP as the metric for quantification of wave energy converter (WEC electricity production and the performance matrix approach as the appropriate method for calculation. General acceptance of a method for calculating the MAEP uncertainty has not yet been achieved. Several authors have proposed methods based on the standard engineering approach to error propagation, however, a lack of available WEC deployment data has restricted testing of these methods. In this work the magnitude and sensitivity of MAEP uncertainty is investigated. The analysis is driven by data from simulated deployments of 2 WECs of different operating principle at 4 different locations. A Monte Carlo simulation approach is proposed for calculating the variability of MAEP estimates and is used to explore the sensitivity of the calculation. The uncertainty of MAEP ranged from 2%–20% of the mean value. Of the contributing uncertainties studied, the variability in the wave climate was found responsible for most of the uncertainty in MAEP. Uncertainty in MAEP differs considerably between WEC types and between deployment locations and is sensitive to the length of the input data-sets. This implies that if a certain maximum level of uncertainty in MAEP is targeted, the minimum required lengths of the input data-sets will be different for every WEC-location combination.

  8. External validation of the ability of the DRAGON score to predict outcome after thrombolysis treatment.

    Science.gov (United States)

    Ovesen, C; Christensen, A; Nielsen, J K; Christensen, H

    2013-11-01

    Easy-to-perform and valid assessment scales for the effect of thrombolysis are essential in hyperacute stroke settings. Because of this we performed an external validation of the DRAGON scale proposed by Strbian et al. in a Danish cohort. All patients treated with intravenous recombinant plasminogen activator between 2009 and 2011 were included. Upon admission all patients underwent physical and neurological examination using the National Institutes of Health Stroke Scale along with non-contrast CT scans and CT angiography. Patients were followed up through the Outpatient Clinic and their modified Rankin Scale (mRS) was assessed after 3 months. Three hundred and three patients were included in the analysis. The DRAGON scale proved to have a good discriminative ability for predicting highly unfavourable outcome (mRS 5-6) (area under the curve-receiver operating characteristic [AUC-ROC]: 0.89; 95% confidence interval [CI] 0.81-0.96; pDRAGON scale provided good discriminative capability (AUC-ROC: 0.89; 95% CI 0.78-1.0; p=0.003) for highly unfavourable outcome. We confirmed the validity of the DRAGON scale in predicting outcome after thrombolysis treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Aquabuoy Wave Energy Converter

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Margheritini, Lucia; Frigaard, Peter

    The work reported here is part of the contract agreement between the Finavera Renewables Ocean Energy Ltd. and the Department of Civil Engineering Hydraulics and Coastal Engineering Laboratory to instrument a model in scale 1:10 to prototype of the AquaBuOY (AB) wave energy converter and to analyse...... its performances in real sea testing in Nissum Bredning, Denmark. This report is part of Fineveras contribution to ForskEl project no 6435 “AquaBuOY skala 1:10 forsøg I Nissum Bredning”....

  10. Magnetic Resonance Imaging-DRAGON score: 3-month outcome prediction after intravenous thrombolysis for anterior circulation stroke.

    Science.gov (United States)

    Turc, Guillaume; Apoil, Marion; Naggara, Olivier; Calvet, David; Lamy, Catherine; Tataru, Alina M; Méder, Jean-François; Mas, Jean-Louis; Baron, Jean-Claude; Oppenheim, Catherine; Touzé, Emmanuel

    2013-05-01

    The DRAGON score, which includes clinical and computed tomographic scan parameters, showed a high specificity to predict 3-month outcome in patients with acute ischemic stroke treated by intravenous tissue plasminogen activator. We adapted the score for patients undergoing MRI as the first-line diagnostic tool. We reviewed patients with consecutive anterior circulation ischemic stroke treated ≤ 4.5 hour by intravenous tissue plasminogen activator between 2003 and 2012 in our center, where MRI is systematically implemented as first-line diagnostic work-up. We derived the MRI-DRAGON score keeping all clinical parameters of computed tomography-DRAGON (age, initial National Institutes of Health Stroke Scale and glucose level, prestroke handicap, onset to treatment time), and considering the following radiological variables: proximal middle cerebral artery occlusion on MR angiography instead of hyperdense middle cerebral artery sign, and diffusion-weighted imaging Alberta Stroke Program Early Computed Tomography Score (DWI ASPECTS) ≤ 5 instead of early infarct signs on computed tomography. Poor 3-month outcome was defined as modified Rankin scale >2. We calculated c-statistics as a measure of predictive ability and performed an internal cross-validation. Two hundred twenty-eight patients were included. Poor outcome was observed in 98 (43%) patients and was significantly associated with all parameters of the MRI-DRAGON score in multivariate analysis, except for onset to treatment time (nonsignificant trend). The c-statistic was 0.83 (95% confidence interval, 0.78-0.88) for poor outcome prediction. All patients with a MRI-DRAGON score ≤ 2 (n=22) had a good outcome, whereas all patients with a score ≥ 8 (n=11) had a poor outcome. The MRI-DRAGON score is a simple tool to predict 3-month outcome in acute stroke patients screened by MRI then treated by intravenous tissue plasminogen activator and may help for therapeutic decision.

  11. Methodology for reliability, economic and environmental assessment of wave energy

    International Nuclear Information System (INIS)

    Thorpe, T.W.; Muirhead, S.

    1994-01-01

    As part of the Preliminary Actions in Wave Energy R and D for DG XII's Joule programme, methodologies were developed to facilitate assessment of the reliability, economics and environmental impact of wave energy. This paper outlines these methodologies, their limitations and areas requiring further R and D. (author)

  12. Cost Optimization of Mooring Solutions for Large Floating Wave Energy Converters

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Ferri, Francesco; Kofoed, Jens Peter

    2018-01-01

    The increasing desire for using renewable energy sources throughout the world has resulted in a considerable amount of research into and development of concepts for wave energy converters. By now, many different concepts exist, but still, the wave energy sector is not at a stage that is considere...

  13. Optimization of bottom-hinged flap-type wave energy converter for a specific wave rose

    Science.gov (United States)

    Behzad, Hamed; Panahi, Roozbeh

    2017-06-01

    In this paper, we conducted a numerical analysis on the bottom-hinged flap-type Wave Energy Convertor (WEC). The basic model, implemented through the study using ANSYS-AQWA, has been validated by a three-dimensional physical model of a pitching vertical cylinder. Then, a systematic parametric assessment has been performed on stiffness, damping, and WEC direction against an incoming wave rose, resulting in an optimized flap-type WEC for a specific spot in the Persian Gulf. Here, stiffness is tuned to have a near-resonance condition considering the wave rose, while damping is modified to capture the highest energy for each device direction. Moreover, such sets of specifications have been checked at different directions to present the best combination of stiffness, damping, and device heading. It has been shown that for a real condition, including different wave heights, periods, and directions, it is very important to implement the methodology introduced here to guarantee device performance.

  14. Design and commissioning of a timestamp-based data acquisition system for the DRAGON recoil mass separator

    International Nuclear Information System (INIS)

    Christian, G.; Fallis, J.; Hutcheon, D.; Olchanski, K.; Ruiz, C.; Akers, C.; Connolly, D.

    2014-01-01

    The DRAGON recoil mass separator at TRIUMF exists to study radiative proton and alpha capture reactions, which are important in a variety of astrophysical scenarios. DRAGON experiments require a data acquisition system that can be triggered on either reaction product (γ-ray or heavy ion), with the additional requirement of being able to promptly recognize coincidence events in an online environment. To this end, we have designed and implemented a new data acquisition system for DRAGON, which consists of two independently triggered readouts. Events from both systems are recorded with timestamps from a 20 MHz clock that are used to tag coincidences in the earliest possible stage of the data analysis. Here we report on the design, implementation, and commissioning of the new DRAGON data acquisition system, including the hardware, trigger logic, coincidence reconstruction algorithm, and live time considerations. We also discuss the results of an experiment commissioning the new system, which measured the strength of the E c.m. = 1113 keV resonance in the 20 Ne(p, γ) 21 Na radiative proton capture reaction. (orig.)

  15. Safety of operations in the manufacture of driver fuel for the first charge of the Dragon Reactor and modifications to the safety document for the Dragon Fuel Element Production Building

    International Nuclear Information System (INIS)

    Beutler, H.; Cross, J.; Flamm, J.

    1965-01-01

    The manufacture of the zirconium containing 'driver' fuel and fuel elements for the First Charge of the Dragon Reactor Experiment has been completed without incident. This is a report on the safety of operations in the Dragon Fuel Element Production Building during an approximately six month period when the 'driver' fuel was manufactured and 25 elements containing this fuel were assembled and exported to the Reactor Building. The opportunity is taken to bring the Safety Document up-to-date and to report on any significant operational failures of equipment. (author)

  16. Electrical Systems for Wave Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Bostroem, Cecilia

    2011-07-01

    Wave energy is a renewable energy source with a large potential to contribute to the world's electricity production. There exist several technologies on how to convert the energy in the ocean waves into electric energy. The wave energy converter (WEC) presented in this thesis is based on a linear synchronous generator. The generator is placed on the seabed and driven by a point absorbing buoy on the ocean surface. Instead of having one large unit, several smaller units are interconnected to increase the total installed power. To convert and interconnect the power from the generators, marine substations are used. The marine substations are placed on the seabed and convert the fluctuating AC from the generators into an AC suitable for grid connection. The work presented in the thesis focuses on the first steps in the electric energy conversion, converting the voltage out from the generators into DC, which have an impact on the WEC's ability to absorb and produce power. The purpose has been to investigate how the generator will operate when it is subjected to different load cases and to obtain guidelines on how future systems could be improved. Offshore experiments and simulations have been done on full scale generators connected to four different loads, i.e. one linear resistive load and three different non-linear loads representing different cases for grid connected WECs. The results show that the power can be controlled and optimized by choosing a suitable system for the WEC. It is not obvious which kind of system is the most preferable, since there are many different parameters that have an impact on the system performance, such as the size of the buoy, how the generator is designed, the number of WECs, the highest allowed complexity of the system, costs and so on. Therefore, the design of the electrical system should preferably be carried out in parallel with the design of the WEC in order to achieve an efficient system

  17. Wave Energy from the North Sea: Experiences from the Lysekil Research Site

    Science.gov (United States)

    Leijon, Mats; Boström, Cecilia; Danielsson, Oskar; Gustafsson, Stefan; Haikonen, Kalle; Langhamer, Olivia; Strömstedt, Erland; Stålberg, Magnus; Sundberg, Jan; Svensson, Olle; Tyrberg, Simon; Waters, Rafael

    2008-05-01

    This paper provides a status update on the development of the Swedish wave energy research area located close to Lysekil on the Swedish West coast. The Lysekil project is run by the Centre for Renewable Electric Energy Conversion at Uppsala University. The project was started in 2004 and currently has permission to run until the end of 2013. During this time period 10 grid-connected wave energy converters, 30 buoys for studies on environmental impact, and a surveillance tower for monitoring the interaction between waves and converters will be installed and studied. To date the research area holds one complete wave energy converter connected to a measuring station on shore via a sea cable, a Wave Rider™ buoy for wave measurements, 25 buoys for studies on environmental impact, and a surveillance tower. The wave energy converter is based on a linear synchronous generator which is placed on the sea bed and driven by a heaving point absorber at the ocean surface. The converter is directly driven, i.e. it has no gearbox or other mechanical or hydraulic conversion system. This results in a simple and robust mechanical system, but also in a somewhat more complicated electrical system.

  18. Spectral energy transfer of atmospheric gravity waves through sum and difference nonlinear interactions

    Energy Technology Data Exchange (ETDEWEB)

    Huang, K.M. [Wuhan Univ. (China). School of Electronic Information; Chinese Academey of Sciences, Hefei (China). Key Lab. of Geospace Environment; Embry Riddle Aeronautical Univ., Daytona Beach, FL (United States). Dept. of Physical Science; Ministry of Education, Wuhan (China). Key Lab. of Geospace Environment and Geodesy; State Observatory for Atmospheric Remote Sensing, Wuhan (China); Liu, A.Z.; Li, Z. [Embry Riddle Aeronautical Univ., Daytona Beach, FL (United States). Dept. of Physical Science; Zhang, S.D.; Yi, F. [Wuhan Univ. (China). School of Electronic Information; Ministry of Education, Wuhan (China). Key Lab. of Geospace Environment and Geodesy; State Observatory for Atmospheric Remote Sensing, Wuhan (China)

    2012-07-01

    Nonlinear interactions of gravity waves are studied with a two-dimensional, fully nonlinear model. The energy exchanges among resonant and near-resonant triads are examined in order to understand the spectral energy transfer through interactions. The results show that in both resonant and near-resonant interactions, the energy exchange between two high frequency waves is strong, but the energy transfer from large to small vertical scale waves is rather weak. This suggests that the energy cascade toward large vertical wavenumbers through nonlinear interaction is inefficient, which is different from the rapid turbulence cascade. Because of considerable energy exchange, nonlinear interactions can effectively spread high frequency spectrum, and play a significant role in limiting wave amplitude growth and transferring energy into higher altitudes. In resonant interaction, the interacting waves obey the resonant matching conditions, and resonant excitation is reversible, while near-resonant excitation is not so. Although near-resonant interaction shows the complexity of match relation, numerical experiments show an interesting result that when sum and difference near-resonant interactions occur between high and low frequency waves, the wave vectors tend to approximately match in horizontal direction, and the frequency of the excited waves is also close to the matching value. (orig.)

  19. Wave energy absorption by a floating air bag

    DEFF Research Database (Denmark)

    Kurniawan, Adi; Chaplin, John; Greaves, Deborah

    2017-01-01

    A floating air bag, ballasted in water, expands and contracts as it heaves under wave action. Connecting the bag to a secondary volume via a turbine transforms the bag into a device capable of generating useful energy from the waves. Small-scale measurements of the device reveal some interesting...

  20. Deterministic Modeling of the High Temperature Test Reactor with DRAGON-HEXPEDITE

    International Nuclear Information System (INIS)

    Ortensi, J.; Pope, M.A.; Ferrer, R.M.; Cogliati, J.J.; Bess, J.D.; Ougouag, A.M.

    2010-01-01

    The Idaho National Laboratory (INL) is tasked with the development of reactor physics analysis capability of the Next Generation Nuclear Power (NGNP) project. In order to examine the INL's current prismatic reactor analysis tools, the project is conducting a benchmark exercise based on modeling the High Temperature Test Reactor (HTTR). This exercise entails the development of a model for the initial criticality, a 19 fuel column thin annular core, and the fully loaded core critical condition with 30 fuel columns. Special emphasis is devoted to physical phenomena and artifacts in HTTR that are similar to phenomena and artifacts in the NGNP base design. The DRAGON code is used in this study since it offers significant ease and versatility in modeling prismatic designs. DRAGON can generate transport solutions via Collision Probability (CP), Method of Characteristics (MOC) and Discrete Ordinates (Sn). A fine group cross-section library based on the SHEM 281 energy structure is used in the DRAGON calculations. The results from this study show reasonable agreement in the calculation of the core multiplication factor with the MC methods, but a consistent bias of 2-3% with the experimental values is obtained. This systematic error has also been observed in other HTTR benchmark efforts and is well documented in the literature. The ENDF/B VII graphite and U235 cross sections appear to be the main source of the error. The isothermal temperature coefficients calculated with the fully loaded core configuration agree well with other benchmark participants but are 40% higher than the experimental values. This discrepancy with the measurement partially stems from the fact that during the experiments the control rods were adjusted to maintain criticality, whereas in the model, the rod positions were fixed. In addition, this work includes a brief study of a cross section generation approach that seeks to decouple the domain in order to account for neighbor effects. This spectral

  1. Wave energy potential: A forecasting system for the Mediterranean basin

    International Nuclear Information System (INIS)

    Carillo, Adriana; Sannino, Gianmaria; Lombardi, Emanuele

    2015-01-01

    ENEA is performing ocean wave modeling activities with the aim of both characterizing the Italian sea energy resource and providing the information necessary for the experimental at sea and operational phases of energy converters. Therefore a forecast system of sea waves and of the associated energy available has been developed and has been operatively running since June 2013. The forecasts are performed over the entire Mediterranean basin and, at a higher resolution, over ten sub-basins around the Italian coasts. The forecast system is here described along with the validation of the wave heights, performed by comparing them with the measurements from satellite sensors. [it

  2. Efficiency of a gyroscopic device for conversion of mechanical wave energy to electrical energy

    DEFF Research Database (Denmark)

    Carlsen, Martin; Darula, Radoslav; Gravesen, Jens

    2011-01-01

    We consider a recently proposed gyroscopic device for conversion of mechanical ocean wave energy to electrical energy. Two models of the device derived from standard engineering mechanics from the literature are analysed, and a model is derived from analytical mechanics considerations. From...... these models, estimates of the power production, eciency, forces and moments are made. We nd that it is possible to extract a signicant amount of energy from an ocean wave using the described device. Further studies are required for a full treatment of the device....

  3. Are dragon-king neuronal avalanches dungeons for self-organized brain activity?

    Science.gov (United States)

    de Arcangelis, L.

    2012-05-01

    Recent experiments have detected a novel form of spontaneous neuronal activity both in vitro and in vivo: neuronal avalanches. The statistical properties of this activity are typical of critical phenomena, with power laws characterizing the distributions of avalanche size and duration. A critical behaviour for the spontaneous brain activity has important consequences on stimulated activity and learning. Very interestingly, these statistical properties can be altered in significant ways in epilepsy and by pharmacological manipulations. In particular, there can be an increase in the number of large events anticipated by the power law, referred to herein as dragon-king avalanches. This behaviour, as verified by numerical models, can originate from a number of different mechanisms. For instance, it is observed experimentally that the emergence of a critical behaviour depends on the subtle balance between excitatory and inhibitory mechanisms acting in the system. Perturbing this balance, by increasing either synaptic excitation or the incidence of depolarized neuronal up-states causes frequent dragon-king avalanches. Conversely, an unbalanced GABAergic inhibition or long periods of low activity in the network give rise to sub-critical behaviour. Moreover, the existence of power laws, common to other stochastic processes, like earthquakes or solar flares, suggests that correlations are relevant in these phenomena. The dragon-king avalanches may then also be the expression of pathological correlations leading to frequent avalanches encompassing all neurons. We will review the statistics of neuronal avalanches in experimental systems. We then present numerical simulations of a neuronal network model introducing within the self-organized criticality framework ingredients from the physiology of real neurons, as the refractory period, synaptic plasticity and inhibitory synapses. The avalanche critical behaviour and the role of dragon-king avalanches will be discussed in

  4. Dispersion and energy conservation relations of surface waves in semi-infinite plasma

    International Nuclear Information System (INIS)

    Atanassov, V.

    1981-01-01

    The hydrodynamic theory of surface wave propagation in semi-infinite homogeneous isotropic plasma is considered. Explicit linear surface wave solutions are given for the electric and magnetic fields, charge and current densities. These solutions are used to obtain the well-known dispersion relations and, together with the general energy conservation equation, to find appropriate definitions for the energy and the energy flow densities of surface waves. These densities are associated with the dispersion relation and the group velocity by formulae similar to those for bulk waves in infinite plasmas. Both cases of high-frequency (HF) and low-frequency (LF) surface waves are considered. (author)

  5. Validation of Hydrodynamic Numerical Model of a Pitching Wave Energy Converter

    DEFF Research Database (Denmark)

    López, Maria del Pilar Heras; Thomas, Sarah; Kramer, Morten Mejlhede

    2017-01-01

    Validation of numerical model is essential in the development of new technologies. Commercial software and codes available simulating wave energy converters (WECs) have not been proved to work for all the available and upcoming technologies yet. The present paper presents the first stages...... of the validation process of a hydrodynamic numerical model for a pitching wave energy converter. The development of dry tests, wave flume and wave basin experiments are going to be explained, lessons learned shared and results presented....

  6. The Potential for Wave Energy in the North Sea

    DEFF Research Database (Denmark)

    Sørensen, H. C.; Chozas, Julia Fernandez

    2010-01-01

    The North Sea has not yet been regarded as prime area for wave energy development in Europe except in Denmark, Benelux and Germany. The reason is the relatively low intensity of waves (12-17kW/m) compared to the Atlantic with a wave climate of 24-48kW/m. Further on the design wave load is almost ...... is resulting in a prediction of a yearly production of 23TWh; the latter is estimating a yearly production of 77TWh. This equals to 6% of the electricity demand around the North Sea, where the annual electricity consumption is about 1,300TWh.......The North Sea has not yet been regarded as prime area for wave energy development in Europe except in Denmark, Benelux and Germany. The reason is the relatively low intensity of waves (12-17kW/m) compared to the Atlantic with a wave climate of 24-48kW/m. Further on the design wave load is almost...... as in the Atlantic and the distance to shore relatively long compared to sites with good wave climate like Ireland, Portugal, Spain and the west coast of UK. The increasing activities within offshore wind in the North Sea and the attempt to build a super grid connecting the wind sites with the major consumers around...

  7. Control of runaway electron energy using externally injected whistler waves

    Science.gov (United States)

    Guo, Zehua; McDevitt, Christopher J.; Tang, Xian-Zhu

    2018-03-01

    One way of mitigating runaway damage of the plasma-facing components in a tokamak fusion reactor is by limiting the runaway electron energy under a few MeV, while not necessarily reducing the runaway current appreciably. Here, we describe a physics mechanism by which such momentum space engineering of the runaway distribution can be facilitated by externally injected high-frequency electromagnetic waves such as whistler waves. The drastic impact that wave-induced scattering can have on the runaway energy distribution is fundamentally the result of its ability to control the runaway vortex in the momentum space. The runaway vortex, which is a local circulation of runaways in momentum space, is the outcome of the competition between Coulomb collisions, synchrotron radiation damping, and runaway acceleration by the parallel electric field. By introducing a wave that resonantly interacts with runaways in a particular range of energies which is mildly relativistic, the enhanced scattering would reshape the vortex by cutting off the part that is highly relativistic. The efficiency of resonant scattering accentuates the requirement that the wave amplitude can be small so the power requirement from external wave injection is practical for the mitigation scheme.

  8. Toward Best Practices for Public Acceptability in Wave Energy

    DEFF Research Database (Denmark)

    Stefanovichu, M. A.; Chozas, Julia Fernandez

    2010-01-01

    At this initial stage of development, opinion toward wave energy is mainly positive. Interviews with developers, presentations about wave energy at local community meetings, and the literature show that there are four main types of issues developers need to address when discussing their projects ...... Ocean illustrate that despite similarities in the types of issues developers typically address at each site, the way of approaching the issues and the priorities given vary....

  9. Energy in one-dimensional linear waves in a string

    International Nuclear Information System (INIS)

    Burko, Lior M

    2010-01-01

    We consider the energy density and energy transfer in small amplitude, one-dimensional waves on a string and find that the common expressions used in textbooks for the introductory physics with calculus course give wrong results for some cases, including standing waves. We discuss the origin of the problem, and how it can be corrected in a way appropriate for the introductory calculus-based physics course. (letters and comments)

  10. Here Be Dragons: voorgeschiedenis en ontstaan van Adventure Games

    NARCIS (Netherlands)

    Veugen, Connie

    2004-01-01

    The article traces the history of adventure games from the birth of the fantasy genre in William Morris' work and the origins of the Kriegspiel, through Tolkien's fantasy world and Dungeons and Dragons to the early text adventures and the first graphical adventures.

  11. The origins of dragon-kings and their occurrence in society

    Science.gov (United States)

    Malkov, Artemy; Zinkina, Julia; Korotayev, Andrey

    2012-11-01

    A society is a medium with a complex structure of one-to-one relations between people. Those could be relations between friends, wife-husband relationships, relations between business partners, and so on. At a certain level of analysis, a society can be regarded as a gigantic maze constituted of one-to-one relationships between people. From a physical standpoint it can be considered as a highly porous medium. Such media are widely known for their outstanding properties and effects like self-organized criticality, percolation, power-law distribution of network cluster sizes, etc. In these media supercritical events, referred to as dragon-kings, may occur in two cases: when increasing stress is applied to a system (self-organized criticality scenario) or when increasing conductivity of a system is observed (percolation scenario). In social applications the first scenario is typical for negative effects: crises, wars, revolutions, financial breakdowns, state collapses, etc. The second scenario is more typical for positive effects like emergence of cities, growth of firms, population blow-ups, economic miracles, technology diffusion, social network formation, etc. If both conditions (increasing stress and increasing conductivity) are observed together, then absolutely miraculous dragon-king effects can occur that involve most human society. Historical examples of this effect are the emergence of the Mongol Empire, world religions, World War II, and the explosive proliferation of global internet services. This article describes these two scenarios in detail beginning with an overview of historical dragon-king events and phenomena starting from the early human history till the last decades and concluding with an analysis of their possible near future consequences on our global society. Thus we demonstrate that in social systems dragon-king is not a random outlier unexplainable by power-law statistics, but a natural effect. It is a very large cluster in a porous

  12. Acceleration of low energy charged particles by gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Voyatzis, G. [University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece)]. E-mail: voyatzis@auth.gr; Vlahos, L. [University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece); Ichtiaroglou, S. [University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece); Papadopoulos, D. [University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece)

    2006-04-03

    The acceleration of charged particles in the presence of a magnetic field and gravitational waves is under consideration. It is shown that the weak gravitational waves can cause the acceleration of low energy particles under appropriate conditions. Such conditions may be satisfied close to the source of the gravitational waves if the magnetized plasma is in a turbulent state.

  13. Acceleration of low energy charged particles by gravitational waves

    International Nuclear Information System (INIS)

    Voyatzis, G.; Vlahos, L.; Ichtiaroglou, S.; Papadopoulos, D.

    2006-01-01

    The acceleration of charged particles in the presence of a magnetic field and gravitational waves is under consideration. It is shown that the weak gravitational waves can cause the acceleration of low energy particles under appropriate conditions. Such conditions may be satisfied close to the source of the gravitational waves if the magnetized plasma is in a turbulent state

  14. Key Aspects of Wave Energy

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Nørgaard, Jørgen Harck

    2012-01-01

    Diversification of renewable energy sources is fundamental to ensure sustainability. In this contest, wave energy can provide a substantial contribution as soon as the sector breaks into the market. In order to accelerate shift from a technology to a market focus and reduce technical and non...... versatility into account can improve their overall performance and the value of investments. The way installation of devices can be perceived also by local communities can also benefit from this prospective thus providing and additional tool to overcome the sector´s setbacks....

  15. Reliability-Based Structural Optimization of Wave Energy Converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kramer, Morten; Sørensen, John Dalsgaard

    2014-01-01

    More and more wave energy converter (WEC) concepts are reaching prototype level. Once the prototype level is reached, the next step in order to further decrease the levelized cost of energy (LCOE) is optimizing the overall system with a focus on structural and maintenance (inspection) costs......, as well as on the harvested power from the waves. The target of a fully-developed WEC technology is not maximizing its power output, but minimizing the resulting LCOE. This paper presents a methodology to optimize the structural design of WECs based on a reliability-based optimization problem...

  16. A high-resolution assessment of wind and wave energy potentials in the Red Sea

    KAUST Repository

    Langodan, Sabique

    2016-08-24

    This study presents an assessment of the potential for harvesting wind and wave energy from the Red Sea based on an 18-year high-resolution regional atmospheric reanalysis recently generated using the Advanced Weather Research Forecasting model. This model was initialized with ERA-Interim global data and the Red Sea reanalysis was generated using a cyclic three-dimensional variational approach assimilating available data in the region. The wave hindcast was generated using WAVEWATCH III on a 5 km resolution grid, forced by the Red Sea reanalysis surface winds. The wind and wave products were validated against data from buoys, scatterometers and altimeters. Our analysis suggests that the distribution of wind and wave energy in the Red Sea is inhomogeneous and is concentrated in specific areas, characterized by various meteorological conditions including weather fronts, mesoscale vortices, land and sea breezes and mountain jets. A detailed analysis of wind and wave energy variation was performed at three hotspots representing the northern, central and southern parts of the Red Sea. Although there are potential sites for harvesting wind energy from the Red Sea, there are no potential sites for harvesting wave energy because wave energy in the Red Sea is not strong enough for currently available wave energy converters. Wave energy should not be completely ignored, however, at least from the perspective of hybrid wind-wave projects. (C) 2016 Elsevier Ltd. All rights reserved.

  17. Perception of artificial conspecifics by bearded dragons (Pogona vitticeps).

    Science.gov (United States)

    Frohnwieser, Anna; Pike, Thomas W; Murray, John C; Wilkinson, Anna

    2018-01-09

    Artificial animals are increasingly used as conspecific stimuli in animal behavior research. However, researchers often have an incomplete understanding of how the species under study perceives conspecifics, and hence which features needed for a stimulus to be perceived appropriately. To investigate the features to which bearded dragons (Pogona vitticeps) attend, we measured their lateralized eye use when assessing a successive range of stimuli. These ranged through several stages of realism in artificial conspecifics, to see how features such as color, the presence of eyes, body shape and motion influence behavior. We found differences in lateralized eye use depending on the sex of the observing bearded dragon and the artificial conspecific, as well as the artificial conspecific's behavior. Therefore, this approach can inform the design of robotic animals that elicit biologically-meaningful responses in live animals. This article is protected by copyright. All rights reserved.

  18. The simulation of resonance photoneutron produced by dragon-I

    International Nuclear Information System (INIS)

    Xiang Yanjun; Ma Jingfang

    2010-01-01

    The temperature measurement using neutron resonance spectroscopy has many advantages such as non-immerging, inside measurement and local temperature distribution measurement, but the deficiency of high intensity pulsed neutron source limits it's application.In order to study the feasibility of Dragon-I as the pulsed neutron source of temperature measurement, the photoneutron characteristic had been simulated by MCNP5, the photoneutron yield is 1.34 x 10 11 per electron pulse, pulse width is 90ns. the yield is as high as 7.47 x 10 12 per electron pulse when 8cm thick U target had been used, which is only one magnitude lower than the yield of spallation source. the moderation of photoneutron had been simulated using some moderator, the results displayed Dragon-I can be a high intensity,narrow pulse neutron source, it's necessary to study further about it's application to temperature measurement using neutron resonance spectroscopy. (authors)

  19. Recent work on graphite corrosion in dragon HTR

    International Nuclear Information System (INIS)

    Wilkinson, V.J.; Parsons, P.D.; Lind, R.

    1976-01-01

    Recent studies are described of graphite corrosion in the Dragon reactor as a consequence of a programme of moisture additions to the helium coolant. The pattern of oxidation was significantly different from that expected from out-of-pile studies. Explanations are suggested in terms of flow and pore structure effects. (orig.) [de

  20. Vulnerable Cyborgs: Learning to Live with our Dragons.

    NARCIS (Netherlands)

    Coeckelbergh, Mark

    2011-01-01

    Transhumanist visions appear to aim at invulnerability. We are invited to fight the dragon of death and disease, to shed our old, human bodies, and to live on as invulnerable minds or cyborgs. This paper argues that even if we managed to enhance humans in one of these ways, we would remain highly