WorldWideScience

Sample records for downscaled climate change

  1. VALUE - Validating and Integrating Downscaling Methods for Climate Change Research

    Science.gov (United States)

    Maraun, Douglas; Widmann, Martin; Benestad, Rasmus; Kotlarski, Sven; Huth, Radan; Hertig, Elke; Wibig, Joanna; Gutierrez, Jose

    2013-04-01

    Our understanding of global climate change is mainly based on General Circulation Models (GCMs) with a relatively coarse resolution. Since climate change impacts are mainly experienced on regional scales, high-resolution climate change scenarios need to be derived from GCM simulations by downscaling. Several projects have been carried out over the last years to validate the performance of statistical and dynamical downscaling, yet several aspects have not been systematically addressed: variability on sub-daily, decadal and longer time-scales, extreme events, spatial variability and inter-variable relationships. Different downscaling approaches such as dynamical downscaling, statistical downscaling and bias correction approaches have not been systematically compared. Furthermore, collaboration between different communities, in particular regional climate modellers, statistical downscalers and statisticians has been limited. To address these gaps, the EU Cooperation in Science and Technology (COST) action VALUE (www.value-cost.eu) has been brought into life. VALUE is a research network with participants from currently 23 European countries running from 2012 to 2015. Its main aim is to systematically validate and develop downscaling methods for climate change research in order to improve regional climate change scenarios for use in climate impact studies. Inspired by the co-design idea of the international research initiative "future earth", stakeholders of climate change information have been involved in the definition of research questions to be addressed and are actively participating in the network. The key idea of VALUE is to identify the relevant weather and climate characteristics required as input for a wide range of impact models and to define an open framework to systematically validate these characteristics. Based on a range of benchmark data sets, in principle every downscaling method can be validated and compared with competing methods. The results of

  2. Downscaling the climate change for oceans around Australia

    Directory of Open Access Journals (Sweden)

    M. A. Chamberlain

    2012-09-01

    Full Text Available At present, global climate models used to project changes in climate poorly resolve mesoscale ocean features such as boundary currents and eddies. These missing features may be important to realistically project the marine impacts of climate change. Here we present a framework for dynamically downscaling coarse climate change projections utilising a near-global ocean model that resolves these features in the Australasian region, with coarser resolution elsewhere.

    A time-slice projection for a 2060s ocean was obtained by adding climate change anomalies to initial conditions and surface fluxes of a near-global eddy-resolving ocean model. Climate change anomalies are derived from the differences between present and projected climates from a coarse global climate model. These anomalies are added to observed fields, thereby reducing the effect of model bias from the climate model.

    The downscaling model used here is ocean-only and does not include the effects that changes in the ocean state will have on the atmosphere and air–sea fluxes. We use restoring of the sea surface temperature and salinity to approximate real-ocean feedback on heat flux and to keep the salinity stable. Extra experiments with different feedback parameterisations are run to test the sensitivity of the projection. Consistent spatial differences emerge in sea surface temperature, salinity, stratification and transport between the downscaled projections and those of the climate model. Also, the spatial differences become established rapidly (< 3 yr, indicating the importance of mesoscale resolution. However, the differences in the magnitude of the difference between experiments show that feedback of the ocean onto the air–sea fluxes is still important in determining the state of the ocean in these projections.

    Until such a time when it is feasible to regularly run a global climate model with eddy resolution, our framework for ocean climate change

  3. Statistically downscaled climate projections to support evaluating climate change risks for hydropower

    International Nuclear Information System (INIS)

    Brekke, L.

    2008-01-01

    This paper described a web-served public access archive of down-scaled climate projections developed as a tool for water managers of river and hydropower systems. The archive provided access to climate projection data at basin-relevant resolution and included an extensive compilation of down-scale climate projects designed to support risk-based adaptation planning. Downscaled translations of 112 contemporary climate projections produced using the World Climate Research Program's coupled model intercomparison project were also included. Datasets for the coupled model included temperature and precipitation, monthly time-steps, and geographic coverage for the United States and portions of Mexico and Canada. It was concluded that the archive will be used to develop risk-based studies on shifts in seasonal patterns, changes in mean annual runoff, and associated responses in water resources and hydroelectric power management. Case studies demonstrating reclamation applications of archive content and potential applications for hydroelectric power production impacts were included. tabs., figs

  4. Climate change effects on extreme flows of water supply area in Istanbul: utility of regional climate models and downscaling method.

    Science.gov (United States)

    Kara, Fatih; Yucel, Ismail

    2015-09-01

    This study investigates the climate change impact on the changes of mean and extreme flows under current and future climate conditions in the Omerli Basin of Istanbul, Turkey. The 15 regional climate model output from the EU-ENSEMBLES project and a downscaling method based on local implications from geophysical variables were used for the comparative analyses. Automated calibration algorithm is used to optimize the parameters of Hydrologiska Byråns Vattenbalansavdel-ning (HBV) model for the study catchment using observed daily temperature and precipitation. The calibrated HBV model was implemented to simulate daily flows using precipitation and temperature data from climate models with and without downscaling method for reference (1960-1990) and scenario (2071-2100) periods. Flood indices were derived from daily flows, and their changes throughout the four seasons and year were evaluated by comparing their values derived from simulations corresponding to the current and future climate. All climate models strongly underestimate precipitation while downscaling improves their underestimation feature particularly for extreme events. Depending on precipitation input from climate models with and without downscaling the HBV also significantly underestimates daily mean and extreme flows through all seasons. However, this underestimation feature is importantly improved for all seasons especially for spring and winter through the use of downscaled inputs. Changes in extreme flows from reference to future increased for the winter and spring and decreased for the fall and summer seasons. These changes were more significant with downscaling inputs. With respect to current time, higher flow magnitudes for given return periods will be experienced in the future and hence, in the planning of the Omerli reservoir, the effective storage and water use should be sustained.

  5. Downscaling CESM1 climate change projections for the MENA-CORDEX domain using WRF

    Science.gov (United States)

    Zittis, George; Hadjinicolaou, Panos; Lelieveld, Jos

    2017-04-01

    According to analysis of observations and global climate model projections, the broader Middle East, North Africa and Mediterranean region is found to be a climate change hotspot. Substantial changes in precipitation amounts and patterns and strong summer warming (including an intensification of heat extremes) is a likely future scenario for the region, but a recent uncertainty analysis indicated good model agreement for temperature but much less for precipitation. Although the horizontal resolution of global models has increased over the last years, it is still not adequate for impact and adaptation assessments of regional or national level and further downscaling of the climate information is required. The region is now studied within the CORDEX initiative (Coordinated Regional Climate Downscaling Experiment) with the establishment of a domain covering the Middle East - North Africa (MENA-CORDEX) region (http://mena-cordex.cyi.ac.cy/). In this study, we present the first climate change projections for the MENA produced by dynamically downscaling a bias-corrected output of the CESM1 global earth system model. For the downscaling, we use a climate configuration of the Weather, Research and Forecasting model (WRF). Our simulations use a standard CORDEX Phase I 50-km grid in three simulations, a historical (1950-2005) and two scenario runs (2006-2100) with the greenhouse gas forcing following the RCP 4.5 and 8.5. We evaluate precipitation, temperature and other surface meteorological variables from the historical using gridded and station observational datasets. Maps of projected changes are constructed for different periods in the future as differences of the two scenarios model output against the data from the historical run. The main spatial and temporal patterns of change are discussed, especially in the context of the United Nations Framework Convention on Climate Change agreement in Paris to limit the global average temperature increase to 1.5 degrees above pre

  6. Statistical Downscaling and Bias Correction of Climate Model Outputs for Climate Change Impact Assessment in the U.S. Northeast

    Science.gov (United States)

    Ahmed, Kazi Farzan; Wang, Guiling; Silander, John; Wilson, Adam M.; Allen, Jenica M.; Horton, Radley; Anyah, Richard

    2013-01-01

    Statistical downscaling can be used to efficiently downscale a large number of General Circulation Model (GCM) outputs to a fine temporal and spatial scale. To facilitate regional impact assessments, this study statistically downscales (to 1/8deg spatial resolution) and corrects the bias of daily maximum and minimum temperature and daily precipitation data from six GCMs and four Regional Climate Models (RCMs) for the northeast United States (US) using the Statistical Downscaling and Bias Correction (SDBC) approach. Based on these downscaled data from multiple models, five extreme indices were analyzed for the future climate to quantify future changes of climate extremes. For a subset of models and indices, results based on raw and bias corrected model outputs for the present-day climate were compared with observations, which demonstrated that bias correction is important not only for GCM outputs, but also for RCM outputs. For future climate, bias correction led to a higher level of agreements among the models in predicting the magnitude and capturing the spatial pattern of the extreme climate indices. We found that the incorporation of dynamical downscaling as an intermediate step does not lead to considerable differences in the results of statistical downscaling for the study domain.

  7. Which complexity of regional climate system models is essential for downscaling anthropogenic climate change in the Northwest European Shelf?

    Science.gov (United States)

    Mathis, Moritz; Elizalde, Alberto; Mikolajewicz, Uwe

    2018-04-01

    Climate change impact studies for the Northwest European Shelf (NWES) make use of various dynamical downscaling strategies in the experimental setup of regional ocean circulation models. Projected change signals from coupled and uncoupled downscalings with different domain sizes and forcing global and regional models show substantial uncertainty. In this paper, we investigate influences of the downscaling strategy on projected changes in the physical and biogeochemical conditions of the NWES. Our results indicate that uncertainties due to different downscaling strategies are similar to uncertainties due to the choice of the parent global model and the downscaling regional model. Downscaled change signals reveal to depend stronger on the downscaling strategy than on the model skills in simulating present-day conditions. Uncoupled downscalings of sea surface temperature (SST) changes are found to be tightly constrained by the atmospheric forcing. The incorporation of coupled air-sea interaction, by contrast, allows the regional model system to develop independently. Changes in salinity show a higher sensitivity to open lateral boundary conditions and river runoff than to coupled or uncoupled atmospheric forcings. Dependencies on the downscaling strategy for changes in SST, salinity, stratification and circulation collectively affect changes in nutrient import and biological primary production.

  8. Projection of Climate Change Based on Multi-Site Statistical Downscaling over Gilan area, Iran

    Directory of Open Access Journals (Sweden)

    Vesta Afzali

    2017-01-01

    Full Text Available Introduction: The phenomenon of climate change and its consequences is a familiar topic which is associated with natural disasters such as, flooding, hurricane, drought that cause water crisis and irreparable damages. Studying this phenomenon is a serious warning regarding the earth’s weather change for a long period of time. Materials and Methods: In order to understand and survey the impacts of climate change on water resources, Global Circulation Models, GCMs, are used; their main role is analyzing the current climate and projecting the future climate. Climate change scenarios developing from GCMs are the initial source of information to estimate plausible future climate. For transforming coarse resolution outputs of the GCMs into finer resolutions influenced by local variables, there is a need for reliable downscaling techniques in order to analyze climate changes in a region. The classical statistical methods run the model and generate the future climate just with considering the time variable. Multi-site daily rainfall and temperature time series are the primary inputs in most hydrological analyses such as rainfall-runoff modeling. Water resource management is directly influenced by the spatial and temporal variation of rainfall and temperature. Therefore, spatial-temporal modeling of daily rainfall or temperature including climate change effects is required for sustainable planning of water resources. Results and Discussion: For the first time, in this study by ASD model (Automated regression-based Statistical Downscaling tool developed by M. Hessami et al., multi-site downscaling of temperature and precipitation was done with CGCM3.1A2 outputs and two synoptic stations (Rasht and Bandar Anzali simultaneously by considering the correlations of multiple sites. The model can process conditionally on the occurrence of precipitation or unconditionally for temperature. Hence, the modeling of daily precipitation involves two steps: one step

  9. Evaluation of different downscaling techniques for hydrological climate-change impact studies at the catchment scale

    Energy Technology Data Exchange (ETDEWEB)

    Teutschbein, Claudia [Stockholm University, Department of Physical Geography and Quaternary Geology, Stockholm (Sweden); Wetterhall, Fredrik [King' s College London, Department of Geography, Strand, London (United Kingdom); Swedish Meteorological and Hydrological Institute, Norrkoeping (Sweden); Seibert, Jan [Stockholm University, Department of Physical Geography and Quaternary Geology, Stockholm (Sweden); Uppsala University, Department of Earth Sciences, Uppsala (Sweden); University of Zurich, Department of Geography, Zurich (Switzerland)

    2011-11-15

    Hydrological modeling for climate-change impact assessment implies using meteorological variables simulated by global climate models (GCMs). Due to mismatching scales, coarse-resolution GCM output cannot be used directly for hydrological impact studies but rather needs to be downscaled. In this study, we investigated the variability of seasonal streamflow and flood-peak projections caused by the use of three statistical approaches to downscale precipitation from two GCMs for a meso-scale catchment in southeastern Sweden: (1) an analog method (AM), (2) a multi-objective fuzzy-rule-based classification (MOFRBC) and (3) the Statistical DownScaling Model (SDSM). The obtained higher-resolution precipitation values were then used to simulate daily streamflow for a control period (1961-1990) and for two future emission scenarios (2071-2100) with the precipitation-streamflow model HBV. The choice of downscaled precipitation time series had a major impact on the streamflow simulations, which was directly related to the ability of the downscaling approaches to reproduce observed precipitation. Although SDSM was considered to be most suitable for downscaling precipitation in the studied river basin, we highlighted the importance of an ensemble approach. The climate and streamflow change signals indicated that the current flow regime with a snowmelt-driven spring flood in April will likely change to a flow regime that is rather dominated by large winter streamflows. Spring flood events are expected to decrease considerably and occur earlier, whereas autumn flood peaks are projected to increase slightly. The simulations demonstrated that projections of future streamflow regimes are highly variable and can even partly point towards different directions. (orig.)

  10. Analyzing the future climate change of Upper Blue Nile River basin using statistical downscaling techniques

    Science.gov (United States)

    Fenta Mekonnen, Dagnenet; Disse, Markus

    2018-04-01

    Climate change is becoming one of the most threatening issues for the world today in terms of its global context and its response to environmental and socioeconomic drivers. However, large uncertainties between different general circulation models (GCMs) and coarse spatial resolutions make it difficult to use the outputs of GCMs directly, especially for sustainable water management at regional scale, which introduces the need for downscaling techniques using a multimodel approach. This study aims (i) to evaluate the comparative performance of two widely used statistical downscaling techniques, namely the Long Ashton Research Station Weather Generator (LARS-WG) and the Statistical Downscaling Model (SDSM), and (ii) to downscale future climate scenarios of precipitation, maximum temperature (Tmax) and minimum temperature (Tmin) of the Upper Blue Nile River basin at finer spatial and temporal scales to suit further hydrological impact studies. The calibration and validation result illustrates that both downscaling techniques (LARS-WG and SDSM) have shown comparable and good ability to simulate the current local climate variables. Further quantitative and qualitative comparative performance evaluation was done by equally weighted and varying weights of statistical indexes for precipitation only. The evaluation result showed that SDSM using the canESM2 CMIP5 GCM was able to reproduce more accurate long-term mean monthly precipitation but LARS-WG performed best in capturing the extreme events and distribution of daily precipitation in the whole data range. Six selected multimodel CMIP3 GCMs, namely HadCM3, GFDL-CM2.1, ECHAM5-OM, CCSM3, MRI-CGCM2.3.2 and CSIRO-MK3 GCMs, were used for downscaling climate scenarios by the LARS-WG model. The result from the ensemble mean of the six GCM showed an increasing trend for precipitation, Tmax and Tmin. The relative change in precipitation ranged from 1.0 to 14.4 % while the change for mean annual Tmax may increase from 0.4 to 4.3

  11. A review of downscaling procedures - a contribution to the research on climate change impacts at city scale

    Science.gov (United States)

    Smid, Marek; Costa, Ana; Pebesma, Edzer; Granell, Carlos; Bhattacharya, Devanjan

    2016-04-01

    Human kind is currently predominantly urban based, and the majority of ever continuing population growth will take place in urban agglomerations. Urban systems are not only major drivers of climate change, but also the impact hot spots. Furthermore, climate change impacts are commonly managed at city scale. Therefore, assessing climate change impacts on urban systems is a very relevant subject of research. Climate and its impacts on all levels (local, meso and global scale) and also the inter-scale dependencies of those processes should be a subject to detail analysis. While global and regional projections of future climate are currently available, local-scale information is lacking. Hence, statistical downscaling methodologies represent a potentially efficient way to help to close this gap. In general, the methodological reviews of downscaling procedures cover the various methods according to their application (e.g. downscaling for the hydrological modelling). Some of the most recent and comprehensive studies, such as the ESSEM COST Action ES1102 (VALUE), use the concept of Perfect Prog and MOS. Other examples of classification schemes of downscaling techniques consider three main categories: linear methods, weather classifications and weather generators. Downscaling and climate modelling represent a multidisciplinary field, where researchers from various backgrounds intersect their efforts, resulting in specific terminology, which may be somewhat confusing. For instance, the Polynomial Regression (also called the Surface Trend Analysis) is a statistical technique. In the context of the spatial interpolation procedures, it is commonly classified as a deterministic technique, and kriging approaches are classified as stochastic. Furthermore, the terms "statistical" and "stochastic" (frequently used as names of sub-classes in downscaling methodological reviews) are not always considered as synonymous, even though both terms could be seen as identical since they are

  12. Analyzing the future climate change of Upper Blue Nile River basin using statistical downscaling techniques

    Directory of Open Access Journals (Sweden)

    D. Fenta Mekonnen

    2018-04-01

    Full Text Available Climate change is becoming one of the most threatening issues for the world today in terms of its global context and its response to environmental and socioeconomic drivers. However, large uncertainties between different general circulation models (GCMs and coarse spatial resolutions make it difficult to use the outputs of GCMs directly, especially for sustainable water management at regional scale, which introduces the need for downscaling techniques using a multimodel approach. This study aims (i to evaluate the comparative performance of two widely used statistical downscaling techniques, namely the Long Ashton Research Station Weather Generator (LARS-WG and the Statistical Downscaling Model (SDSM, and (ii to downscale future climate scenarios of precipitation, maximum temperature (Tmax and minimum temperature (Tmin of the Upper Blue Nile River basin at finer spatial and temporal scales to suit further hydrological impact studies. The calibration and validation result illustrates that both downscaling techniques (LARS-WG and SDSM have shown comparable and good ability to simulate the current local climate variables. Further quantitative and qualitative comparative performance evaluation was done by equally weighted and varying weights of statistical indexes for precipitation only. The evaluation result showed that SDSM using the canESM2 CMIP5 GCM was able to reproduce more accurate long-term mean monthly precipitation but LARS-WG performed best in capturing the extreme events and distribution of daily precipitation in the whole data range. Six selected multimodel CMIP3 GCMs, namely HadCM3, GFDL-CM2.1, ECHAM5-OM, CCSM3, MRI-CGCM2.3.2 and CSIRO-MK3 GCMs, were used for downscaling climate scenarios by the LARS-WG model. The result from the ensemble mean of the six GCM showed an increasing trend for precipitation, Tmax and Tmin. The relative change in precipitation ranged from 1.0 to 14.4 % while the change for mean annual Tmax may increase

  13. Comparison of two down-scaling methods for climate study and climate change on the mountain areas in France

    International Nuclear Information System (INIS)

    Piazza, Marie; Page, Christian; Sanchez-Gomez, Emilia; Terray, Laurent; Deque, Michel

    2013-01-01

    Mountain regions are highly vulnerable to climate change and are likely to be among the areas most impacted by global warming. But climate projections for the end of the 21. century are developed with general circulation models of climate, which do not present a sufficient horizontal resolution to accurately evaluate the impacts of warming on these regions. Several techniques are then used to perform a spatial down-scaling (on the order of 10 km). There are two categories of down-scaling methods: dynamical methods that require significant computational resources for the achievement of regional climate simulations at high resolution, and statistical methods that require few resources but an observation dataset over a long period and of good quality. In this study, climate simulations of the global atmospheric model ARPEGE projections over France are down-scaled according to a dynamical method, performed with the ALADIN-Climate regional model, and a statistical method performed with the software DSClim developed at CERFACS. The two down-scaling methods are presented and the results on the climate of the French mountains are evaluated for the current climate. Both methods give similar results for average snowfall. However extreme events of total precipitation (droughts, intense precipitation events) are largely underestimated by the statistical method. Then, the results of both methods are compared for two future climate projections, according to the greenhouse gas emissions scenario A1B of IPCC. The two methods agree on fewer frost days, a significant decrease in the amounts of solid precipitation and an average increase in the percentage of dry days of more than 10%. The results obtained on Corsica are more heterogeneous but they are questionable because the reduced spatial domain is probably not very relevant regarding statistical sampling. (authors)

  14. Using Statistical Downscaling to Quantify the GCM-Related Uncertainty in Regional Climate Change Scenarios: A Case Study of Swedish Precipitation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    There are a number of sources of uncertainty in regional climate change scenarios. When statistical downscaling is used to obtain regional climate change scenarios, the uncertainty may originate from the uncertainties in the global climate models used, the skill of the statistical model, and the forcing scenarios applied to the global climate model. The uncertainty associated with global climate models can be evaluated by examining the differences in the predictors and in the downscaled climate change scenarios based on a set of different global climate models. When standardized global climate model simulations such as the second phase of the Coupled Model Intercomparison Project (CMIP2) are used, the difference in the downscaled variables mainly reflects differences in the climate models and the natural variability in the simulated climates. It is proposed that the spread of the estimates can be taken as a measure of the uncertainty associated with global climate models. The proposed method is applied to the estimation of global-climate-model-related uncertainty in regional precipitation change scenarios in Sweden. Results from statistical downscaling based on 17 global climate models show that there is an overall increase in annual precipitation all over Sweden although a considerable spread of the changes in the precipitation exists. The general increase can be attributed to the increased large-scale precipitation and the enhanced westerly wind. The estimated uncertainty is nearly independent of region. However, there is a seasonal dependence. The estimates for winter show the highest level of confidence, while the estimates for summer show the least.

  15. Influences of Regional Climate Change on Air Quality Across the Continental U.S. Projected from Downscaling IPCC AR5 Simulations. Chapter 2

    Science.gov (United States)

    Nolte, Christopher; Otte, Tanya; Pinder, Robert; Bowden, J.; Herwehe, J.; Faluvegi, Gregory; Shindell, Drew

    2013-01-01

    Projecting climate change scenarios to local scales is important for understanding, mitigating, and adapting to the effects of climate change on society and the environment. Many of the global climate models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture regional-scale changes in temperatures and precipitation. We use a regional climate model (RCM) to dynamically downscale the GCM's large-scale signal to investigate the changes in regional and local extremes of temperature and precipitation that may result from a changing climate. In this paper, we show preliminary results from downscaling the NASA/GISS ModelE IPCC AR5 Representative Concentration Pathway (RCP) 6.0 scenario. We use the Weather Research and Forecasting (WRF) model as the RCM to downscale decadal time slices (1995-2005 and 2025-2035) and illustrate potential changes in regional climate for the continental U.S. that are projected by ModelE and WRF under RCP6.0. The regional climate change scenario is further processed using the Community Multiscale Air Quality modeling system to explore influences of regional climate change on air quality.

  16. The effects of climate downscaling technique and observational data set on modeled ecological responses

    Science.gov (United States)

    Afshin Pourmokhtarian; Charles T. Driscoll; John L. Campbell; Katharine Hayhoe; Anne M. K. Stoner

    2016-01-01

    Assessments of future climate change impacts on ecosystems typically rely on multiple climate model projections, but often utilize only one downscaling approach trained on one set of observations. Here, we explore the extent to which modeled biogeochemical responses to changing climate are affected by the selection of the climate downscaling method and training...

  17. Downscaling climate change scenarios for apple pest and disease modeling in Switzerland

    Czech Academy of Sciences Publication Activity Database

    Hirschi, M.; Stoeckli, S.; Dubrovský, Martin; Spirig, C.; Calanca, P.; Rotach, M. V.; Fischer, A. M.; Duffy, B.; Samietz, J.

    2012-01-01

    Roč. 3, č. 1 (2012), s. 33-47 ISSN 2190-4979 R&D Projects: GA AV ČR IAA300420806 Institutional research plan: CEZ:AV0Z30420517 Keywords : Climate change * downscaling * weather generator * pest and disease model ling * Switzerland Subject RIV: DG - Athmosphere Sciences, Meteorology http://www.earth-syst-dynam.net/3/33/2012/esd-3-33-2012.pdf

  18. Projecting future precipitation and temperature at sites with diverse climate through multiple statistical downscaling schemes

    Science.gov (United States)

    Vallam, P.; Qin, X. S.

    2017-10-01

    Anthropogenic-driven climate change would affect the global ecosystem and is becoming a world-wide concern. Numerous studies have been undertaken to determine the future trends of meteorological variables at different scales. Despite these studies, there remains significant uncertainty in the prediction of future climates. To examine the uncertainty arising from using different schemes to downscale the meteorological variables for the future horizons, projections from different statistical downscaling schemes were examined. These schemes included statistical downscaling method (SDSM), change factor incorporated with LARS-WG, and bias corrected disaggregation (BCD) method. Global circulation models (GCMs) based on CMIP3 (HadCM3) and CMIP5 (CanESM2) were utilized to perturb the changes in the future climate. Five study sites (i.e., Alice Springs, Edmonton, Frankfurt, Miami, and Singapore) with diverse climatic conditions were chosen for examining the spatial variability of applying various statistical downscaling schemes. The study results indicated that the regions experiencing heavy precipitation intensities were most likely to demonstrate the divergence between the predictions from various statistical downscaling methods. Also, the variance computed in projecting the weather extremes indicated the uncertainty derived from selection of downscaling tools and climate models. This study could help gain an improved understanding about the features of different downscaling approaches and the overall downscaling uncertainty.

  19. Downscaling climate model output for water resources impacts assessment (Invited)

    Science.gov (United States)

    Maurer, E. P.; Pierce, D. W.; Cayan, D. R.

    2013-12-01

    Water agencies in the U.S. and around the globe are beginning to wrap climate change projections into their planning procedures, recognizing that ongoing human-induced changes to hydrology can affect water management in significant ways. Future hydrology changes are derived using global climate model (GCM) projections, though their output is at a spatial scale that is too coarse to meet the needs of those concerned with local and regional impacts. Those investigating local impacts have employed a range of techniques for downscaling, the process of translating GCM output to a more locally-relevant spatial scale. Recent projects have produced libraries of publicly-available downscaled climate projections, enabling managers, researchers and others to focus on impacts studies, drawing from a shared pool of fine-scale climate data. Besides the obvious advantage to data users, who no longer need to develop expertise in downscaling prior to examining impacts, the use of the downscaled data by hundreds of people has allowed a crowdsourcing approach to examining the data. The wide variety of applications employed by different users has revealed characteristics not discovered during the initial data set production. This has led to a deeper look at the downscaling methods, including the assumptions and effect of bias correction of GCM output. Here new findings are presented related to the assumption of stationarity in the relationships between large- and fine-scale climate, as well as the impact of quantile mapping bias correction on precipitation trends. The validity of these assumptions can influence the interpretations of impacts studies using data derived using these standard statistical methods and help point the way to improved methods.

  20. GPCC - A weather generator-based statistical downscaling tool for site-specific assessment of climate change impacts

    Science.gov (United States)

    Resolution of climate model outputs are too coarse to be used as direct inputs to impact models for assessing climate change impacts on agricultural production, water resources, and eco-system services at local or site-specific scales. Statistical downscaling approaches are usually used to bridge th...

  1. Transferability in the future climate of a statistical downscaling method for precipitation in France

    Science.gov (United States)

    Dayon, G.; Boé, J.; Martin, E.

    2015-02-01

    A statistical downscaling approach for precipitation in France based on the analog method and its evaluation for different combinations of predictors is described, with focus on the transferability of the method to the future climate. First, the realism of downscaled present-day precipitation climatology and interannual variability for different combinations of predictors from four reanalyses is assessed. Satisfactory results are obtained, but elaborated predictors do not lead to major and consistent across-reanalyses improvements. The downscaling method is then evaluated on its capacity to capture precipitation trends in the last decades. As uncertainties in downscaled trends due to the choice of the reanalysis are large and observed trends are weak, this analysis does not lead to strong conclusions on the applicability of the method to a changing climate. The temporal transferability is then assessed thanks to a perfect model framework. The statistical downscaling relationship is built using present-day predictors and precipitation simulated by 12 regional climate models. The entire projections are then downscaled, and future downscaled and simulated precipitation changes are compared. A good temporal transferability is obtained only with a specific combination of predictors. Finally, the regional climate models are downscaled, thanks to the relationship built with reanalyses and observations, for the best combination of predictors. Results are similar to the changes simulated by the models, which reinforces our confidence in the realism of the models and of the downscaling method. Uncertainties in precipitation change due to reanalyses are found to be limited compared to those due to regional simulations.

  2. Analysis of the impact of climate change on groundwater related hydrological fluxes: a multi-model approach including different downscaling methods

    Directory of Open Access Journals (Sweden)

    S. Stoll

    2011-01-01

    Full Text Available Climate change related modifications in the spatio-temporal distribution of precipitation and evapotranspiration will have an impact on groundwater resources. This study presents a modelling approach exploiting the advantages of integrated hydrological modelling and a broad climate model basis. We applied the integrated MIKE SHE model on a perialpine, small catchment in northern Switzerland near Zurich. To examine the impact of climate change we forced the hydrological model with data from eight GCM-RCM combinations showing systematic biases which are corrected by three different statistical downscaling methods, not only for precipitation but also for the variables that govern potential evapotranspiration. The downscaling methods are evaluated in a split sample test and the sensitivity of the downscaling procedure on the hydrological fluxes is analyzed. The RCMs resulted in very different projections of potential evapotranspiration and, especially, precipitation. All three downscaling methods reduced the differences between the predictions of the RCMs and all corrected predictions showed no future groundwater stress which can be related to an expected increase in precipitation during winter. It turned out that especially the timing of the precipitation and thus recharge is very important for the future development of the groundwater levels. However, the simulation experiments revealed the weaknesses of the downscaling methods which directly influence the predicted hydrological fluxes, and thus also the predicted groundwater levels. The downscaling process is identified as an important source of uncertainty in hydrological impact studies, which has to be accounted for. Therefore it is strongly recommended to test different downscaling methods by using verification data before applying them to climate model data.

  3. Evaluating the Appropriateness of Downscaled Climate Information for Projecting Risks of Salmonella

    Science.gov (United States)

    Guentchev, Galina S.; Rood, Richard B.; Ammann, Caspar M.; Barsugli, Joseph J.; Ebi, Kristie; Berrocal, Veronica; O’Neill, Marie S.; Gronlund, Carina J.; Vigh, Jonathan L.; Koziol, Ben; Cinquini, Luca

    2016-01-01

    Foodborne diseases have large economic and societal impacts worldwide. To evaluate how the risks of foodborne diseases might change in response to climate change, credible and usable climate information tailored to the specific application question is needed. Global Climate Model (GCM) data generally need to, both, be downscaled to the scales of the application to be usable, and represent, well, the key characteristics that inflict health impacts. This study presents an evaluation of temperature-based heat indices for the Washington D.C. area derived from statistically downscaled GCM simulations for 1971–2000—a necessary step in establishing the credibility of these data. The indices approximate high weekly mean temperatures linked previously to occurrences of Salmonella infections. Due to bias-correction, included in the Asynchronous Regional Regression Model (ARRM) and the Bias Correction Constructed Analogs (BCCA) downscaling methods, the observed 30-year means of the heat indices were reproduced reasonably well. In April and May, however, some of the statistically downscaled data misrepresent the increase in the number of hot days towards the summer months. This study demonstrates the dependence of the outcomes to the selection of downscaled climate data and the potential for misinterpretation of future estimates of Salmonella infections. PMID:26938544

  4. Downscale climate change scenarios over the Western Himalayan region of India using multi-generation CMIP experiments

    Science.gov (United States)

    Das, Lalu; Meher, Jitendra K.; Akhter, Javed

    2017-04-01

    Assessing climate change information over the Western Himalayan Region (WHR) of India is crucial but challenging task due to its limited numbers of station data containing huge missing values. The issues of missing values of station data were replaced the Multiple Imputation Chained Equation (MICE) technique. Finally 22 numbers of rain gauge stations having continuous data during 1901-2005 and 16 numbers stations having continuous temperature data during 1969-2009 were considered as " reference stations for assessing rainfall and temperature trends in addition to evaluation of the GCMs available in the Coupled Model Intercomparison Project, Phase 3 (CMIP3) and phase 5 (CMIP5) over WRH. Station data indicates that the winter warming is higher and rapid (1.05oC) than other seasons and less warming in the post monsoon season in the last 41 years. Area averaged using 22 station data indicates that monsoon and winter rainfall has decreased by -5 mm and -320 mm during 1901-2000 while pre-monsoon and post monsoon showed an increasing trends of 21 mm and 13 mm respectively. Present study is constructed the downscaled climate change information at station locations (22 and 16 stations for rainfall and temperature respectively) over the WHR from the GCMs commonly available in the IPCC's different generations assessment reports namely 2nd, 3rd, 4th and 5th thereafter known as SAR, TAR, AR4 and AR5 respectively. Once the downscaled results are obtained for each generation model outputs, then a comparison of studies is carried out from the results of each generation. Finally an overall model improvement index (OMII) is developed using the downscaling results which is used to investigate the model improvement across generations as well as the improvement of downscaling results obtained from the empirical statistical downscaling (ESD) methods. In general, the results indicate that there is a gradual improvement of GCMs simulations as well as downscaling results across generation

  5. Evaluation of the applicability in the future climate of a statistical downscaling method in France

    Science.gov (United States)

    Dayon, G.; Boé, J.; Martin, E.

    2013-12-01

    The uncertainties in climate projections during the next decades generally remain large, with an important contribution of internal climate variability. To quantify and capture the impact of those uncertainties in impact projections, multi-model and multi-member approaches are essential. Statistical downscaling (SD) methods are computationally inexpensive allowing for large ensemble approaches. The main weakness of SD is that it relies on a stationarity hypothesis, namely that the statistical relation established in the present climate remains valid in the climate change context. In this study, the evaluation of SD methods developed for a future study of hydrological changes during the next decades over France is presented, focusing on precipitation. The SD methods are all based on the analogs method which is quite simple to set up and permits to easily test different combinations of predictors, the only changing parameter in the methods discussed in this presentation. The basic idea of the analogs method is that for a same large scale climatic state, the state of local variables will be identical. In a climate change context, the statistical relation established on past climate is assumed to remain valid in the future climate. In practice, this stationarity assumption is impossible to verify until the future climate is effectively observed. It is possible to evaluate the ability of SD methods to reproduce the interannual variability in the present climate, but this approach does not guarantee their validity in the future climate as the mechanisms that play in the interannual and climate change contexts may not be identical. Another common approach is to test whether a SD method is able to reproduce observed, as they may be partly caused by climate changes. The observed trends in precipitation are compared to those obtained by downscaling 4 different atmospheric reanalyses with analogs methods. The uncertainties in downscaled trends due to renalyses are very large

  6. Assessment of hi-resolution multi-ensemble statistical downscaling regional climate scenarios over Japan

    Science.gov (United States)

    Dairaku, K.

    2017-12-01

    The Asia-Pacific regions are increasingly threatened by large scale natural disasters. Growing concerns that loss and damages of natural disasters are projected to further exacerbate by climate change and socio-economic change. Climate information and services for risk assessments are of great concern. Fundamental regional climate information is indispensable for understanding changing climate and making decisions on when and how to act. To meet with the needs of stakeholders such as National/local governments, spatio-temporal comprehensive and consistent information is necessary and useful for decision making. Multi-model ensemble regional climate scenarios with 1km horizontal grid-spacing over Japan are developed by using CMIP5 37 GCMs (RCP8.5) and a statistical downscaling (Bias Corrected Spatial Disaggregation (BCSD)) to investigate uncertainty of projected change associated with structural differences of the GCMs for the periods of historical climate (1950-2005) and near future climate (2026-2050). Statistical downscaling regional climate scenarios show good performance for annual and seasonal averages for precipitation and temperature. The regional climate scenarios show systematic underestimate of extreme events such as hot days of over 35 Celsius and annual maximum daily precipitation because of the interpolation processes in the BCSD method. Each model projected different responses in near future climate because of structural differences. The most of CMIP5 37 models show qualitatively consistent increase of average and extreme temperature and precipitation. The added values of statistical/dynamical downscaling methods are also investigated for locally forced nonlinear phenomena, extreme events.

  7. Downscaling a Global Climate Model to Simulate Climate Change Impacts on U.S. Regional and Urban Air Quality

    Science.gov (United States)

    Trail, M.; Tsimpidi, A. P.; Liu, P.; Tsigaridis, K.; Hu, Y.; Nenes, A.; Russell, A. G.

    2013-01-01

    Climate change can exacerbate future regional air pollution events by making conditions more favorable to form high levels of ozone. In this study, we use spectral nudging with WRF to downscale NASA earth system GISS modelE2 results during the years 2006 to 2010 and 2048 to 2052 over the continental United States in order to compare the resulting meteorological fields from the air quality perspective during the four seasons of five-year historic and future climatological periods. GISS results are used as initial and boundary conditions by the WRF RCM to produce hourly meteorological fields. The downscaling technique and choice of physics parameterizations used are evaluated by comparing them with in situ observations. This study investigates changes of similar regional climate conditions down to a 12km by 12km resolution, as well as the effect of evolving climate conditions on the air quality at major U.S. cities. The high resolution simulations produce somewhat different results than the coarse resolution simulations in some regions. Also, through the analysis of the meteorological variables that most strongly influence air quality, we find consistent changes in regional climate that would enhance ozone levels in four regions of the U.S. during fall (Western U.S., Texas, Northeastern, and Southeastern U.S), one region during summer (Texas), and one region where changes potentially would lead to better air quality during spring (Northeast). We also find that daily peak temperatures tend to increase in most major cities in the U.S. which would increase the risk of health problems associated with heat stress. Future work will address a more comprehensive assessment of emissions and chemistry involved in the formation and removal of air pollutants.

  8. Rainfall Downscaling Conditional on Upper-air Atmospheric Predictors: Improved Assessment of Rainfall Statistics in a Changing Climate

    Science.gov (United States)

    Langousis, Andreas; Mamalakis, Antonis; Deidda, Roberto; Marrocu, Marino

    2015-04-01

    regional level. This is done for an intermediate-sized catchment in Italy, i.e. the Flumendosa catchment, using climate model rainfall and atmospheric data from the ENSEMBLES project (http://ensembleseu.metoffice.com). In doing so, we split the historical rainfall record of mean areal precipitation (MAP) in 15-year calibration and 45-year validation periods, and compare the historical rainfall statistics to those obtained from: a) Q-Q corrected climate model rainfall products, and b) synthetic rainfall series generated by the suggested downscaling scheme. To our knowledge, this is the first time that climate model rainfall and statistically downscaled precipitation are compared to catchment-averaged MAP at a daily resolution. The obtained results are promising, since the proposed downscaling scheme is more accurate and robust in reproducing a number of historical rainfall statistics, independent of the climate model used and the length of the calibration period. This is particularly the case for the yearly rainfall maxima, where direct statistical correction of climate model rainfall outputs shows increased sensitivity to the length of the calibration period and the climate model used. The robustness of the suggested downscaling scheme in modeling rainfall extremes at a daily resolution, is a notable feature that can effectively be used to assess hydrologic risk at a regional level under changing climatic conditions. Acknowledgments The research project is implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State. CRS4 highly acknowledges the contribution of the Sardinian regional authorities.

  9. Comparison of Explicitly Simulated and Downscaled Tropical Cyclone Activity in a High-Resolution Global Climate Model

    Directory of Open Access Journals (Sweden)

    Hirofumi Tomita

    2010-01-01

    Full Text Available The response of tropical cyclone activity to climate change is a matter of great inherent interest and practical importance. Most current global climate models are not, however, capable of adequately resolving tropical cyclones; this has led to the development of downscaling techniques designed to infer tropical cyclone activity from the large-scale fields produced by climate models. Here we compare the statistics of tropical cyclones simulated explicitly in a very high resolution (~14 km grid mesh global climate model to the results of one such downscaling technique driven by the same global model. This is done for a simulation of the current climate and also for a simulation of a climate warmed by the addition of carbon dioxide. The explicitly simulated and downscaled storms are similarly distributed in space, but the intensity distribution of the downscaled events has a somewhat longer high-intensity tail, owing to the higher resolution of the downscaling model. Both explicitly simulated and downscaled events show large increases in the frequency of events at the high-intensity ends of their respective intensity distributions, but the downscaled storms also show increases in low-intensity events, whereas the explicitly simulated weaker events decline in number. On the regional scale, there are large differences in the responses of the explicitly simulated and downscaled events to global warming. In particular, the power dissipation of downscaled events shows a 175% increase in the Atlantic, while the power dissipation of explicitly simulated events declines there.

  10. Downscaled and debiased climate simulations for North America from 21,000 years ago to 2100AD.

    Science.gov (United States)

    Lorenz, David J; Nieto-Lugilde, Diego; Blois, Jessica L; Fitzpatrick, Matthew C; Williams, John W

    2016-07-05

    Increasingly, ecological modellers are integrating paleodata with future projections to understand climate-driven biodiversity dynamics from the past through the current century. Climate simulations from earth system models are necessary to this effort, but must be debiased and downscaled before they can be used by ecological models. Downscaling methods and observational baselines vary among researchers, which produces confounding biases among downscaled climate simulations. We present unified datasets of debiased and downscaled climate simulations for North America from 21 ka BP to 2100AD, at 0.5° spatial resolution. Temporal resolution is decadal averages of monthly data until 1950AD, average climates for 1950-2005 AD, and monthly data from 2010 to 2100AD, with decadal averages also provided. This downscaling includes two transient paleoclimatic simulations and 12 climate models for the IPCC AR5 (CMIP5) historical (1850-2005), RCP4.5, and RCP8.5 21st-century scenarios. Climate variables include primary variables and derived bioclimatic variables. These datasets provide a common set of climate simulations suitable for seamlessly modelling the effects of past and future climate change on species distributions and diversity.

  11. Downscaling a global climate model to simulate climate change over the US and the implication on regional and urban air quality

    Directory of Open Access Journals (Sweden)

    M. Trail

    2013-09-01

    Full Text Available Climate change can exacerbate future regional air pollution events by making conditions more favorable to form high levels of ozone. In this study, we use spectral nudging with the Weather Research and Forecasting (WRF model to downscale NASA earth system GISS modelE2 results during the years 2006 to 2010 and 2048 to 2052 over the contiguous United States in order to compare the resulting meteorological fields from the air quality perspective during the four seasons of five-year historic and future climatological periods. GISS results are used as initial and boundary conditions by the WRF regional climate model (RCM to produce hourly meteorological fields. The downscaling technique and choice of physics parameterizations used are evaluated by comparing them with in situ observations. This study investigates changes of similar regional climate conditions down to a 12 km by 12 km resolution, as well as the effect of evolving climate conditions on the air quality at major US cities. The high-resolution simulations produce somewhat different results than the coarse-resolution simulations in some regions. Also, through the analysis of the meteorological variables that most strongly influence air quality, we find consistent changes in regional climate that would enhance ozone levels in four regions of the US during fall (western US, Texas, northeastern, and southeastern US, one region during summer (Texas, and one region where changes potentially would lead to better air quality during spring (Northeast. Changes in regional climate that would enhance ozone levels are increased temperatures and stagnation along with decreased precipitation and ventilation. We also find that daily peak temperatures tend to increase in most major cities in the US, which would increase the risk of health problems associated with heat stress. Future work will address a more comprehensive assessment of emissions and chemistry involved in the formation and removal of air

  12. Climate change assessment for Mediterranean agricultural areas by statistical downscaling

    Directory of Open Access Journals (Sweden)

    L. Palatella

    2010-07-01

    Full Text Available In this paper we produce projections of seasonal precipitation for four Mediterranean areas: Apulia region (Italy, Ebro river basin (Spain, Po valley (Italy and Antalya province (Turkey. We performed the statistical downscaling using Canonical Correlation Analysis (CCA in two versions: in one case Principal Component Analysis (PCA filter is applied only to predictor and in the other to both predictor and predictand. After performing a validation test, CCA after PCA filter on both predictor and predictand has been chosen. Sea level pressure (SLP is used as predictor. Downscaling has been carried out for the scenarios A2 and B2 on the basis of three GCM's: the CCCma-GCM2, the Csiro-MK2 and HadCM3. Three consecutive 30-year periods have been considered. For Summer precipitation in Apulia region we also use the 500 hPa temperature (T500 as predictor, obtaining comparable results. Results show different climate change signals in the four areas and confirm the need of an analysis that is capable of resolving internal differences within the Mediterranean region. The most robust signal is the reduction of Summer precipitation in the Ebro river basin. Other significative results are the increase of precipitation over Apulia in Summer, the reduction over the Po-valley in Spring and Autumn and the increase over the Antalya province in Summer and Autumn.

  13. Climate change effects on wildland fire risk in the Northeastern and Great Lakes states predicted by a downscaled multi-model ensemble

    NARCIS (Netherlands)

    Kerr, Gaige Hunter; DeGaetano, Arthur T.; Stoof, Cathelijne R.; Ward, Daniel

    2018-01-01

    This study is among the first to investigate wildland fire risk in the Northeastern and the Great Lakes states under a changing climate. We use a multi-model ensemble (MME) of regional climate models from the Coordinated Regional Downscaling Experiment (CORDEX) together with the Canadian Forest

  14. Downscaling of Short-Term Precipitation from Regional Climate Models for Sustainable Urban Planning

    Directory of Open Access Journals (Sweden)

    Holger Hoppe

    2012-05-01

    Full Text Available A framework for downscaling precipitation from RCM projections to the high resolutions in time and space required in the urban hydrological climate change impact assessment is outlined and demonstrated. The basic approach is that of Delta Change, developed for both continuous and event-based applications. In both cases, Delta Change Factors (DCFs are calculated which represent the expected future change of some key precipitation statistics. In the continuous case, short-term precipitation from climate projections are analysed in order to estimate DCFs associated with different percentiles in the frequency distribution of non-zero intensities. The DCFs may then be applied to an observed time series, producing a realisation of a future time series. The event-based case involves downscaling of Intensity-Duration-Frequency (IDF curves based on extreme value analysis of annual maxima using the Gumbel distribution. The resulting DCFs are expressed as a function of duration and frequency (i.e., return period and may be used to estimate future design storms. The applications are demonstrated in case studies focusing on the expected changes in short-term precipitation statistics until 2100 in the cities of Linz (Austria and Wuppertal (Germany. The downscaling framework is implemented in the climate service developed within the EU-project SUDPLAN.

  15. Using sea surface temperatures to improve performance of single dynamical downscaling model in flood simulation under climate change

    Science.gov (United States)

    Chao, Y.; Cheng, C. T.; Hsiao, Y. H.; Hsu, C. T.; Yeh, K. C.; Liu, P. L.

    2017-12-01

    There are 5.3 typhoons hit Taiwan per year on average in last decade. Typhoon Morakot in 2009, the most severe typhoon, causes huge damage in Taiwan, including 677 casualties and roughly NT 110 billion (3.3 billion USD) in economic loss. Some researches documented that typhoon frequency will decrease but increase in intensity in western North Pacific region. It is usually preferred to use high resolution dynamical model to get better projection of extreme events; because coarse resolution models cannot simulate intense extreme events. Under that consideration, dynamical downscaling climate data was chosen to describe typhoon satisfactorily, this research used the simulation data from AGCM of Meteorological Research Institute (MRI-AGCM). Considering dynamical downscaling methods consume massive computing power, and typhoon number is very limited in a single model simulation, using dynamical downscaling data could cause uncertainty in disaster risk assessment. In order to improve the problem, this research used four sea surfaces temperatures (SSTs) to increase the climate change scenarios under RCP 8.5. In this way, MRI-AGCMs project 191 extreme typhoons in Taiwan (when typhoon center touches 300 km sea area of Taiwan) in late 21th century. SOBEK, a two dimensions flood simulation model, was used to assess the flood risk under four SSTs climate change scenarios in Tainan, Taiwan. The results show the uncertainty of future flood risk assessment is significantly decreased in Tainan, Taiwan in late 21th century. Four SSTs could efficiently improve the problems of limited typhoon numbers in single model simulation.

  16. Creating Dynamically Downscaled Seasonal Climate Forecast and Climate Change Projection Information for the North American Monsoon Region Suitable for Decision Making Purposes

    Science.gov (United States)

    Castro, C. L.; Dominguez, F.; Chang, H.

    2010-12-01

    Current seasonal climate forecasts and climate change projections of the North American monsoon are based on the use of course-scale information from a general circulation model. The global models, however, have substantial difficulty in resolving the regional scale forcing mechanisms of precipitation. This is especially true during the period of the North American Monsoon in the warm season. Precipitation is driven primarily due to the diurnal cycle of convection, and this process cannot be resolve in coarse-resolution global models that have a relatively poor representation of terrain. Though statistical downscaling may offer a relatively expedient method to generate information more appropriate for the regional scale, and is already being used in the resource decision making processes in the Southwest U.S., its main drawback is that it cannot account for a non-stationary climate. Here we demonstrate the use of a regional climate model, specifically the Weather Research and Forecast (WRF) model, for dynamical downscaling of the North American Monsoon. To drive the WRF simulations, we use retrospective reforecasts from the Climate Forecast System (CFS) model, the operational model used at the U.S. National Center for Environmental Prediction, and three select “well performing” IPCC AR 4 models for the A2 emission scenario. Though relatively computationally expensive, the use of WRF as a regional climate model in this way adds substantial value in the representation of the North American Monsoon. In both cases, the regional climate model captures a fairly realistic and reasonable monsoon, where none exists in the driving global model, and captures the dominant modes of precipitation anomalies associated with ENSO and the Pacific Decadal Oscillation (PDO). Long-term precipitation variability and trends in these simulations is considered via the standardized precipitation index (SPI), a commonly used metric to characterize long-term drought. Dynamically

  17. The added value of dynamical downscaling in a climate change scenario simulation:A case study for European Alps and East Asia

    Science.gov (United States)

    Im, Eun-Soon; Coppola, Erika; Giorgi, Filippo

    2010-05-01

    Since anthropogenic climate change is a rather important factor for the future human life all over the planet and its effects are not globally uniform, climate information at regional or local scales become more and more important for an accurate assessment of the potential impact of climate change on societies and ecosystems. High resolution information with suitably fine-scale for resolving complex geographical features could be a critical factor for successful linkage between climate models and impact assessment studies. However, scale mismatch between them still remains major problem. One method for overcoming the resolution limitations of global climate models and for adding regional details to coarse-grid global projections is to use dynamical downscaling by means of a regional climate model. In this study, the ECHAM5/MPI-OM (1.875 degree) A1B scenario simulation has been dynamically downscaled by using two different approaches within the framework of RegCM3 modeling system. First, a mosaic-type parameterization of subgrid-scale topography and land use (Sub-BATS) is applied over the European Alpine region. The Sub-BATS system is composed of 15 km coarse-grid cell and 3 km sub-grid cell. Second, we developed the RegCM3 one-way double-nested system, with the mother domain encompassing the eastern regions of Asia at 60 km grid spacing and the nested domain covering the Korean Peninsula at 20 km grid spacing. By comparing the regional climate model output and the driving global model ECHAM5/MPI-OM output, it is possible to estimate the added value of physically-based dynamical downscaling when for example impact studies at hydrological scale are performed.

  18. Actor groups, related needs, and challenges at the climate downscaling interface

    Science.gov (United States)

    Rössler, Ole; Benestad, Rasmus; Diamando, Vlachogannis; Heike, Hübener; Kanamaru, Hideki; Pagé, Christian; Margarida Cardoso, Rita; Soares, Pedro; Maraun, Douglas; Kreienkamp, Frank; Christodoulides, Paul; Fischer, Andreas; Szabo, Peter

    2016-04-01

    At the climate downscaling interface, numerous downscaling techniques and different philosophies compete on being the best method in their specific terms. Thereby, it remains unclear to what extent and for which purpose these downscaling techniques are valid or even the most appropriate choice. A common validation framework that compares all the different available methods was missing so far. The initiative VALUE closes this gap with such a common validation framework. An essential part of a validation framework for downscaling techniques is the definition of appropriate validation measures. The selection of validation measures should consider the needs of the stakeholder: some might need a temporal or spatial average of a certain variable, others might need temporal or spatial distributions of some variables, still others might need extremes for the variables of interest or even inter-variable dependencies. Hence, a close interaction of climate data providers and climate data users is necessary. Thus, the challenge in formulating a common validation framework mirrors also the challenges between the climate data providers and the impact assessment community. This poster elaborates the issues and challenges at the downscaling interface as it is seen within the VALUE community. It suggests three different actor groups: one group consisting of the climate data providers, the other two groups being climate data users (impact modellers and societal users). Hence, the downscaling interface faces classical transdisciplinary challenges. We depict a graphical illustration of actors involved and their interactions. In addition, we identified four different types of issues that need to be considered: i.e. data based, knowledge based, communication based, and structural issues. They all may, individually or jointly, hinder an optimal exchange of data and information between the actor groups at the downscaling interface. Finally, some possible ways to tackle these issues are

  19. Implications of the methodological choices for hydrologic portrayals of climate change over the contiguous United States: Statistically downscaled forcing data and hydrologic models

    Science.gov (United States)

    Mizukami, Naoki; Clark, Martyn P.; Gutmann, Ethan D.; Mendoza, Pablo A.; Newman, Andrew J.; Nijssen, Bart; Livneh, Ben; Hay, Lauren E.; Arnold, Jeffrey R.; Brekke, Levi D.

    2016-01-01

    Continental-domain assessments of climate change impacts on water resources typically rely on statistically downscaled climate model outputs to force hydrologic models at a finer spatial resolution. This study examines the effects of four statistical downscaling methods [bias-corrected constructed analog (BCCA), bias-corrected spatial disaggregation applied at daily (BCSDd) and monthly scales (BCSDm), and asynchronous regression (AR)] on retrospective hydrologic simulations using three hydrologic models with their default parameters (the Community Land Model, version 4.0; the Variable Infiltration Capacity model, version 4.1.2; and the Precipitation–Runoff Modeling System, version 3.0.4) over the contiguous United States (CONUS). Biases of hydrologic simulations forced by statistically downscaled climate data relative to the simulation with observation-based gridded data are presented. Each statistical downscaling method produces different meteorological portrayals including precipitation amount, wet-day frequency, and the energy input (i.e., shortwave radiation), and their interplay affects estimations of precipitation partitioning between evapotranspiration and runoff, extreme runoff, and hydrologic states (i.e., snow and soil moisture). The analyses show that BCCA underestimates annual precipitation by as much as −250 mm, leading to unreasonable hydrologic portrayals over the CONUS for all models. Although the other three statistical downscaling methods produce a comparable precipitation bias ranging from −10 to 8 mm across the CONUS, BCSDd severely overestimates the wet-day fraction by up to 0.25, leading to different precipitation partitioning compared to the simulations with other downscaled data. Overall, the choice of downscaling method contributes to less spread in runoff estimates (by a factor of 1.5–3) than the choice of hydrologic model with use of the default parameters if BCCA is excluded.

  20. Projection of wave conditions in response to climate change: A community approach to global and regional wave downscaling

    Science.gov (United States)

    Erikson, Li H.; Hemer, M.; Lionello, Piero; Mendez, Fernando J.; Mori, Nobuhito; Semedo, Alvaro; Wang, Xiaolan; Wolf, Judith

    2015-01-01

    Future changes in wind-wave climate have broad implications for coastal geomorphology and management. General circulation models (GCM) are now routinely used for assessing climatological parameters, but generally do not provide parameterizations of ocean wind-waves. To fill this information gap, a growing number of studies use GCM outputs to independently downscale wave conditions to global and regional levels. To consolidate these efforts and provide a robust picture of projected changes, we present strategies from the community-derived multi-model ensemble of wave climate projections (COWCLIP) and an overview of regional contributions. Results and strategies from one contributing regional study concerning changes along the eastern North Pacific coast are presented.

  1. Evaluating climate change impacts on streamflow variability based on a multisite multivariate GCM downscaling method in the Jing River of China

    Science.gov (United States)

    Li, Zhi; Jin, Jiming

    2017-11-01

    Projected hydrological variability is important for future resource and hazard management of water supplies because changes in hydrological variability can cause more disasters than changes in the mean state. However, climate change scenarios downscaled from Earth System Models (ESMs) at single sites cannot meet the requirements of distributed hydrologic models for simulating hydrological variability. This study developed multisite multivariate climate change scenarios via three steps: (i) spatial downscaling of ESMs using a transfer function method, (ii) temporal downscaling of ESMs using a single-site weather generator, and (iii) reconstruction of spatiotemporal correlations using a distribution-free shuffle procedure. Multisite precipitation and temperature change scenarios for 2011-2040 were generated from five ESMs under four representative concentration pathways to project changes in streamflow variability using the Soil and Water Assessment Tool (SWAT) for the Jing River, China. The correlation reconstruction method performed realistically for intersite and intervariable correlation reproduction and hydrological modeling. The SWAT model was found to be well calibrated with monthly streamflow with a model efficiency coefficient of 0.78. It was projected that the annual mean precipitation would not change, while the mean maximum and minimum temperatures would increase significantly by 1.6 ± 0.3 and 1.3 ± 0.2 °C; the variance ratios of 2011-2040 to 1961-2005 were 1.15 ± 0.13 for precipitation, 1.15 ± 0.14 for mean maximum temperature, and 1.04 ± 0.10 for mean minimum temperature. A warmer climate was predicted for the flood season, while the dry season was projected to become wetter and warmer; the findings indicated that the intra-annual and interannual variations in the future climate would be greater than in the current climate. The total annual streamflow was found to change insignificantly but its variance ratios of 2011-2040 to 1961-2005 increased

  2. Accounting for downscaling and model uncertainty in fine-resolution seasonal climate projections over the Columbia River Basin

    Science.gov (United States)

    Ahmadalipour, Ali; Moradkhani, Hamid; Rana, Arun

    2018-01-01

    Climate change is expected to have severe impacts on natural systems as well as various socio-economic aspects of human life. This has urged scientific communities to improve the understanding of future climate and reduce the uncertainties associated with projections. In the present study, ten statistically downscaled CMIP5 GCMs at 1/16th deg. spatial resolution from two different downscaling procedures are utilized over the Columbia River Basin (CRB) to assess the changes in climate variables and characterize the associated uncertainties. Three climate variables, i.e. precipitation, maximum temperature, and minimum temperature, are studied for the historical period of 1970-2000 as well as future period of 2010-2099, simulated with representative concentration pathways of RCP4.5 and RCP8.5. Bayesian Model Averaging (BMA) is employed to reduce the model uncertainty and develop a probabilistic projection for each variable in each scenario. Historical comparison of long-term attributes of GCMs and observation suggests a more accurate representation for BMA than individual models. Furthermore, BMA projections are used to investigate future seasonal to annual changes of climate variables. Projections indicate significant increase in annual precipitation and temperature, with varied degree of change across different sub-basins of CRB. We then characterized uncertainty of future projections for each season over CRB. Results reveal that model uncertainty is the main source of uncertainty, among others. However, downscaling uncertainty considerably contributes to the total uncertainty of future projections, especially in summer. On the contrary, downscaling uncertainty appears to be higher than scenario uncertainty for precipitation.

  3. Evaluation of a weather generator-based method for statistically downscaling non-stationary climate scenarios for impact assessment at a point scale

    Science.gov (United States)

    The non-stationarity is a major concern for statistically downscaling climate change scenarios for impact assessment. This study is to evaluate whether a statistical downscaling method is fully applicable to generate daily precipitation under non-stationary conditions in a wide range of climatic zo...

  4. Uncertainty Assessment of the NASA Earth Exchange Global Daily Downscaled Climate Projections (NEX-GDDP) Dataset

    Science.gov (United States)

    Wang, Weile; Nemani, Ramakrishna R.; Michaelis, Andrew; Hashimoto, Hirofumi; Dungan, Jennifer L.; Thrasher, Bridget L.; Dixon, Keith W.

    2016-01-01

    The NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset is comprised of downscaled climate projections that are derived from 21 General Circulation Model (GCM) runs conducted under the Coupled Model Intercomparison Project Phase 5 (CMIP5) and across two of the four greenhouse gas emissions scenarios (RCP4.5 and RCP8.5). Each of the climate projections includes daily maximum temperature, minimum temperature, and precipitation for the periods from 1950 through 2100 and the spatial resolution is 0.25 degrees (approximately 25 km x 25 km). The GDDP dataset has received warm welcome from the science community in conducting studies of climate change impacts at local to regional scales, but a comprehensive evaluation of its uncertainties is still missing. In this study, we apply the Perfect Model Experiment framework (Dixon et al. 2016) to quantify the key sources of uncertainties from the observational baseline dataset, the downscaling algorithm, and some intrinsic assumptions (e.g., the stationary assumption) inherent to the statistical downscaling techniques. We developed a set of metrics to evaluate downscaling errors resulted from bias-correction ("quantile-mapping"), spatial disaggregation, as well as the temporal-spatial non-stationarity of climate variability. Our results highlight the spatial disaggregation (or interpolation) errors, which dominate the overall uncertainties of the GDDP dataset, especially over heterogeneous and complex terrains (e.g., mountains and coastal area). In comparison, the temporal errors in the GDDP dataset tend to be more constrained. Our results also indicate that the downscaled daily precipitation also has relatively larger uncertainties than the temperature fields, reflecting the rather stochastic nature of precipitation in space. Therefore, our results provide insights in improving statistical downscaling algorithms and products in the future.

  5. Rainfall Downscaling Conditional on Upper-air Variables: Assessing Rainfall Statistics in a Changing Climate

    Science.gov (United States)

    Langousis, Andreas; Deidda, Roberto; Marrocu, Marino; Kaleris, Vassilios

    2014-05-01

    Due to its intermittent and highly variable character, and the modeling parameterizations used, precipitation is one of the least well reproduced hydrologic variables by both Global Climate Models (GCMs) and Regional Climate Models (RCMs). This is especially the case at a regional level (where hydrologic risks are assessed) and at small temporal scales (e.g. daily) used to run hydrologic models. In an effort to remedy those shortcomings and assess the effect of climate change on rainfall statistics at hydrologically relevant scales, Langousis and Kaleris (2013) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables. The developed downscaling scheme was tested using atmospheric data from the ERA-Interim archive (http://www.ecmwf.int/research/era/do/get/index), and daily rainfall measurements from western Greece, and was proved capable of reproducing several statistical properties of actual rainfall records, at both annual and seasonal levels. This was done solely by conditioning rainfall simulation on a vector of atmospheric predictors, properly selected to reflect the relative influence of upper-air variables on ground-level rainfall statistics. In this study, we apply the developed framework for conditional rainfall simulation using atmospheric data from different GCM/RCM combinations. This is done using atmospheric data from the ENSEMBLES project (http://ensembleseu.metoffice.com), and daily rainfall measurements for an intermediate-sized catchment in Italy; i.e. the Flumendosa catchment. Since GCM/RCM products are suited to reproduce the local climatology in a statistical sense (i.e. in terms of relative frequencies), rather than ensuring a one-to-one temporal correspondence between observed and simulated fields (i.e. as is the case for ERA-interim reanalysis data), we proceed in three steps: a) we use statistical tools to establish a linkage between ERA-Interim upper-air atmospheric forecasts and

  6. A New High Resolution Climate Dataset for Climate Change Impacts Assessments in New England

    Science.gov (United States)

    Komurcu, M.; Huber, M.

    2016-12-01

    Assessing regional impacts of climate change (such as changes in extreme events, land surface hydrology, water resources, energy, ecosystems and economy) requires much higher resolution climate variables than those available from global model projections. While it is possible to run global models in higher resolution, the high computational cost associated with these simulations prevent their use in such manner. To alleviate this problem, dynamical downscaling offers a method to deliver higher resolution climate variables. As part of an NSF EPSCoR funded interdisciplinary effort to assess climate change impacts on New Hampshire ecosystems, hydrology and economy (the New Hampshire Ecosystems and Society project), we create a unique high-resolution climate dataset for New England. We dynamically downscale global model projections under a high impact emissions scenario using the Weather Research and Forecasting model (WRF) with three nested grids of 27, 9 and 3 km horizontal resolution with the highest resolution innermost grid focusing over New England. We prefer dynamical downscaling over other methods such as statistical downscaling because it employs physical equations to progressively simulate climate variables as atmospheric processes interact with surface processes, emissions, radiation, clouds, precipitation and other model components, hence eliminates fix relationships between variables. In addition to simulating mean changes in regional climate, dynamical downscaling also allows for the simulation of climate extremes that significantly alter climate change impacts. We simulate three time slices: 2006-2015, 2040-2060 and 2080-2100. This new high-resolution climate dataset (with more than 200 variables saved in hourly (six hourly) intervals for the highest resolution domain (outer two domains)) along with model input and restart files used in our WRF simulations will be publicly available for use to the broader scientific community to support in-depth climate

  7. Climatic change on the Gulf of Fonseca (Central America) using two-step statistical downscaling of CMIP5 model outputs

    Science.gov (United States)

    Ribalaygua, Jaime; Gaitán, Emma; Pórtoles, Javier; Monjo, Robert

    2018-05-01

    A two-step statistical downscaling method has been reviewed and adapted to simulate twenty-first-century climate projections for the Gulf of Fonseca (Central America, Pacific Coast) using Coupled Model Intercomparison Project (CMIP5) climate models. The downscaling methodology is adjusted after looking for good predictor fields for this area (where the geostrophic approximation fails and the real wind fields are the most applicable). The method's performance for daily precipitation and maximum and minimum temperature is analysed and revealed suitable results for all variables. For instance, the method is able to simulate the characteristic cycle of the wet season for this area, which includes a mid-summer drought between two peaks. Future projections show a gradual temperature increase throughout the twenty-first century and a change in the features of the wet season (the first peak and mid-summer rainfall being reduced relative to the second peak, earlier onset of the wet season and a broader second peak).

  8. Possible impacts of climate change on freezing rain in south-central Canada using downscaled future climate scenarios

    Directory of Open Access Journals (Sweden)

    C. S. Cheng

    2007-01-01

    Full Text Available Freezing rain is a major atmospheric hazard in mid-latitude nations of the globe. Among all Canadian hydrometeorological hazards, freezing rain is associated with the highest damage costs per event. Using synoptic weather typing to identify the occurrence of freezing rain events, this study estimates changes in future freezing rain events under future climate scenarios for south-central Canada. Synoptic weather typing consists of principal components analysis, an average linkage clustering procedure (i.e., a hierarchical agglomerative cluster method, and discriminant function analysis (a nonhierarchical method. Meteorological data used in the analysis included hourly surface observations from 15 selected weather stations and six atmospheric levels of six-hourly National Centers for Environmental Prediction (NCEP upper-air reanalysis weather variables for the winter months (November–April of 1958/59–2000/01. A statistical downscaling method was used to downscale four general circulation model (GCM scenarios to the selected weather stations. Using downscaled scenarios, discriminant function analysis was used to project the occurrence of future weather types. The within-type frequency of future freezing rain events is assumed to be directly proportional to the change in frequency of future freezing rain-related weather types The results showed that with warming temperatures in a future climate, percentage increases in the occurrence of freezing rain events in the north of the study area are likely to be greater than those in the south. By the 2050s, freezing rain events for the three colder months (December–February could increase by about 85% (95% confidence interval – CI: ±13%, 60% (95% CI: ±9%, and 40% (95% CI: ±6% in northern Ontario, eastern Ontario (including Montreal, Quebec, and southern Ontario, respectively. The increase by the 2080s could be even greater: about 135% (95% CI: ±20%, 95% (95% CI: ±13%, and 45% (95% CI: ±9

  9. Evaluating climate change impacts on streamflow variability based on a multisite multivariate GCM downscaling method in the Jing River of China

    Directory of Open Access Journals (Sweden)

    Z. Li

    2017-11-01

    Full Text Available Projected hydrological variability is important for future resource and hazard management of water supplies because changes in hydrological variability can cause more disasters than changes in the mean state. However, climate change scenarios downscaled from Earth System Models (ESMs at single sites cannot meet the requirements of distributed hydrologic models for simulating hydrological variability. This study developed multisite multivariate climate change scenarios via three steps: (i spatial downscaling of ESMs using a transfer function method, (ii temporal downscaling of ESMs using a single-site weather generator, and (iii reconstruction of spatiotemporal correlations using a distribution-free shuffle procedure. Multisite precipitation and temperature change scenarios for 2011–2040 were generated from five ESMs under four representative concentration pathways to project changes in streamflow variability using the Soil and Water Assessment Tool (SWAT for the Jing River, China. The correlation reconstruction method performed realistically for intersite and intervariable correlation reproduction and hydrological modeling. The SWAT model was found to be well calibrated with monthly streamflow with a model efficiency coefficient of 0.78. It was projected that the annual mean precipitation would not change, while the mean maximum and minimum temperatures would increase significantly by 1.6 ± 0.3 and 1.3 ± 0.2 °C; the variance ratios of 2011–2040 to 1961–2005 were 1.15 ± 0.13 for precipitation, 1.15 ± 0.14 for mean maximum temperature, and 1.04 ± 0.10 for mean minimum temperature. A warmer climate was predicted for the flood season, while the dry season was projected to become wetter and warmer; the findings indicated that the intra-annual and interannual variations in the future climate would be greater than in the current climate. The total annual streamflow was found to change insignificantly but its

  10. Evaluation of downscaled, gridded climate data for the conterminous United States

    Science.gov (United States)

    Robert J. Behnke,; Stephen J. Vavrus,; Andrew Allstadt,; Thomas P. Albright,; Thogmartin, Wayne E.; Volker C. Radeloff,

    2016-01-01

    Weather and climate affect many ecological processes, making spatially continuous yet fine-resolution weather data desirable for ecological research and predictions. Numerous downscaled weather data sets exist, but little attempt has been made to evaluate them systematically. Here we address this shortcoming by focusing on four major questions: (1) How accurate are downscaled, gridded climate data sets in terms of temperature and precipitation estimates?, (2) Are there significant regional differences in accuracy among data sets?, (3) How accurate are their mean values compared with extremes?, and (4) Does their accuracy depend on spatial resolution? We compared eight widely used downscaled data sets that provide gridded daily weather data for recent decades across the United States. We found considerable differences among data sets and between downscaled and weather station data. Temperature is represented more accurately than precipitation, and climate averages are more accurate than weather extremes. The data set exhibiting the best agreement with station data varies among ecoregions. Surprisingly, the accuracy of the data sets does not depend on spatial resolution. Although some inherent differences among data sets and weather station data are to be expected, our findings highlight how much different interpolation methods affect downscaled weather data, even for local comparisons with nearby weather stations located inside a grid cell. More broadly, our results highlight the need for careful consideration among different available data sets in terms of which variables they describe best, where they perform best, and their resolution, when selecting a downscaled weather data set for a given ecological application.

  11. Downscaling Climate Projections to a Mountainous Landscape: A Climate Impact Assessment for the U.S. Northern Rockies Crown of the Continent Ecosystem

    Science.gov (United States)

    Oyler, J.; Anderson, R.; Running, S. W.

    2010-12-01

    In topographically complex landscapes, there is often a mismatch in scale between global climate model projections and more local climate-forcing factors and related ecological/hydrological processes. To overcome this limitation, the objective of this study was to downscale climate projections to the rugged Crown of the Continent Ecosystem (CCE) within the U.S. Northern Rockies and assess future impacts on water balances, vegetation dynamics, and carbon fluxes. A 40-year (1970-2009) spatial historical climate dataset (800m resolution, daily timestep) was generated for the CCE and modified for terrain influences. Regional climate projections were downscaled by applying them to the fine-scale historical dataset using a modified delta downscaling method and stochastic weather generator. The downscaled projections were used to drive the Biome-BGC ecosystem model. Overall CCE impacts included decreases in April 1 snow water equivalent, less days with snow on the ground, increased vegetation water stress, and increased growing degree days. The relaxing of temperature constraints increased annual net primary productivity (NPP) throughout most of the CCE landscape. However, an increase in water stress seems to have limited the growth in NPP and, in some areas, NPP actually decreased. Thus, CCE vegetation productivity trends under increasing temperatures will likely be determined by local changes in hydrologic function. Given the greater uncertainty in precipitation projections, future work should concentrate on determining thresholds in water constraints that greatly modify the magnitude and direction of carbon accumulation within the CCE under a warming climate.

  12. Recent Regional Climate State and Change - Derived through Downscaling Homogeneous Large-scale Components of Re-analyses

    Science.gov (United States)

    Von Storch, H.; Klehmet, K.; Geyer, B.; Li, D.; Schubert-Frisius, M.; Tim, N.; Zorita, E.

    2015-12-01

    Global re-analyses suffer from inhomogeneities, as they process data from networks under development. However, the large-scale component of such re-analyses is mostly homogeneous; additional observational data add in most cases to a better description of regional details and less so on large-scale states. Therefore, the concept of downscaling may be applied to homogeneously complementing the large-scale state of the re-analyses with regional detail - wherever the condition of homogeneity of the large-scales is fulfilled. Technically this can be done by using a regional climate model, or a global climate model, which is constrained on the large scale by spectral nudging. This approach has been developed and tested for the region of Europe, and a skillful representation of regional risks - in particular marine risks - was identified. While the data density in Europe is considerably better than in most other regions of the world, even here insufficient spatial and temporal coverage is limiting risk assessments. Therefore, downscaled data-sets are frequently used by off-shore industries. We have run this system also in regions with reduced or absent data coverage, such as the Lena catchment in Siberia, in the Yellow Sea/Bo Hai region in East Asia, in Namibia and the adjacent Atlantic Ocean. Also a global (large scale constrained) simulation has been. It turns out that spatially detailed reconstruction of the state and change of climate in the three to six decades is doable for any region of the world.The different data sets are archived and may freely by used for scientific purposes. Of course, before application, a careful analysis of the quality for the intended application is needed, as sometimes unexpected changes in the quality of the description of large-scale driving states prevail.

  13. Application of physical scaling towards downscaling climate model precipitation data

    Science.gov (United States)

    Gaur, Abhishek; Simonovic, Slobodan P.

    2018-04-01

    Physical scaling (SP) method downscales climate model data to local or regional scales taking into consideration physical characteristics of the area under analysis. In this study, multiple SP method based models are tested for their effectiveness towards downscaling North American regional reanalysis (NARR) daily precipitation data. Model performance is compared with two state-of-the-art downscaling methods: statistical downscaling model (SDSM) and generalized linear modeling (GLM). The downscaled precipitation is evaluated with reference to recorded precipitation at 57 gauging stations located within the study region. The spatial and temporal robustness of the downscaling methods is evaluated using seven precipitation based indices. Results indicate that SP method-based models perform best in downscaling precipitation followed by GLM, followed by the SDSM model. Best performing models are thereafter used to downscale future precipitations made by three global circulation models (GCMs) following two emission scenarios: representative concentration pathway (RCP) 2.6 and RCP 8.5 over the twenty-first century. The downscaled future precipitation projections indicate an increase in mean and maximum precipitation intensity as well as a decrease in the total number of dry days. Further an increase in the frequency of short (1-day), moderately long (2-4 day), and long (more than 5-day) precipitation events is projected.

  14. Expected impacts of climate change on extreme climate events

    International Nuclear Information System (INIS)

    Planton, S.; Deque, M.; Chauvin, F.; Terray, L.

    2008-01-01

    An overview of the expected change of climate extremes during this century due to greenhouse gases and aerosol anthropogenic emissions is presented. The most commonly used methodologies rely on the dynamical or statistical down-scaling of climate projections, performed with coupled atmosphere-ocean general circulation models. Either of dynamical or of statistical type, down-scaling methods present strengths and weaknesses, but neither their validation on present climate conditions, nor their potential ability to project the impact of climate change on extreme event statistics allows one to give a specific advantage to one of the two types. The results synthesized in the last IPCC report and more recent studies underline a convergence for a very likely increase in heat wave episodes over land surfaces, linked to the mean warming and the increase in temperature variability. In addition, the number of days of frost should decrease and the growing season length should increase. The projected increase in heavy precipitation events appears also as very likely over most areas and also seems linked to a change in the shape of the precipitation intensity distribution. The global trends for drought duration are less consistent between models and down-scaling methodologies, due to their regional variability. The change of wind-related extremes is also regionally dependent, and associated to a poleward displacement of the mid-latitude storm tracks. The specific study of extreme events over France reveals the high sensitivity of some statistics of climate extremes at the decadal time scale as a consequence of regional climate internal variability. (authors)

  15. Key Findings from the U.S.-India Partnership for Climate Resilience Workshop on Development and Application of Downscaling Climate Projections

    Science.gov (United States)

    Kunkel, K.; Dissen, J.; Easterling, D. R.; Kulkarni, A.; Akhtar, F. H.; Hayhoe, K.; Stoner, A. M. K.; Swaminathan, R.; Thrasher, B. L.

    2017-12-01

    s part of the Department of State U.S.-India Partnership for Climate Resilience (PCR), scientists from NOAA NCEI, CICS-NC, Texas Tech University (TTU), Stanford University (SU), and the Indian Institute of Tropical Meteorology (IITM) held a workshop at IITM in Pune, India during 7-9 March 2017 on the development, techniques and applications of downscaled climate projections. Workshop participants from TTU, SU, and IITM presented state-of-the-art climate downscaling techniques using the ARRM method, NASA NEX climate products, CORDEX-South Asia and analysis tools for resilience planning and sustainable development. PCR collaborators in attendance included Indian practitioners, researchers and other NGO including the WRI Partnership for Resilience and Preparedness (PREP), The Energy and Resources Institute (TERI), and NIH. The scientific techniques were provided to workshop participants in a software package written in R by TTU scientists and several sessions were devoted to hands-on experience with the software package. The workshop further examined case studies on the use of downscaled climate data for decision making in a range of sectors, including human health, agriculture, and water resources management as well as to inform the development of the India State Action Plans. This talk will discuss key outcomes including information needs for downscaling climate projections, importance of QA/QC of the data, key findings from select case studies, and the importance of collaborations and partnerships to apply downscaling projections to help inform the development of the India State Action Plans.

  16. Long-range Prediction of climatic Change in the Eastern Seaboard of Thailand over the 21st Century using various Downscaling Approaches

    Science.gov (United States)

    Bejranonda, Werapol; Koch, Manfred; Koontanakulvong, Sucharit

    2010-05-01

    validated for years 2001-2006 at selected meteorological stations in the Khlong Yai basin, assuming the IPCC's A1B and A2 emission scenarios. The performance of the monthly climate prediction has been evaluated by comparison with observed data using the Nash-Sutcliffe model efficiency measure. Among the statistical/stochastical downscaling and the forecasting methods used, the climate prediction by the ARIMA model with ocean indices and CGCM predictor included as external regressors are the most reliable. Thus for the verification period 2001-2006 Nash-Sutcliffe coefficient of 0.84, 0.47 and 0.50 are obtained for the minimum and maximum temperatures and the rainfall, respectively, whereas the corresponding 1-year ahead predictions are 0.77, 0.43 and 0.48, respectively. The best external regressor for the prediction of the minimum temperatures in the basin is, surprisingly, the El Niño 1.2 SST anomaly time series; for the prediction of the maximum temperatures, the minimum surface air temperature predictor in CGCM3 (tasmin); and for the prediction of the rainfall, the 850hPa eastward-wind predictor in CGCM3 (p8_uas). Based on year 2000, the downscaling results show that the average minimum temperature will be higher by 0.4 to 5.9 ° C by year 2100, while the average maximum temperature will be rather stable, with only little change between -0.2 to +0.3° C. As for the rainfall at year 2100, a possible change from +0.2 to 12.0 mm/month is obtained. These climate prediction results mean that, although there will be more rainfall in the future, the much higher temperature will lead to more evapotranspiration, i.e. more agricultural water demand. Besides, the increasing rainfall will most likely lead to unexpected flood events in the future that will require precautionary planning at the watershed-scale. This will be further analyzed during the course of the ongoing study using the SWAT hydrological model mentioned above.

  17. Coupled downscaled climate models and ecophysiological metrics forecast habitat compression for an endangered estuarine fish

    Science.gov (United States)

    Brown, Larry R.; Komoroske, Lisa M; Wagner, R Wayne; Morgan-King, Tara; May, Jason T.; Connon, Richard E; Fangue, Nann A.

    2016-01-01

    Climate change is driving rapid changes in environmental conditions and affecting population and species’ persistence across spatial and temporal scales. Integrating climate change assessments into biological resource management, such as conserving endangered species, is a substantial challenge, partly due to a mismatch between global climate forecasts and local or regional conservation planning. Here, we demonstrate how outputs of global climate change models can be downscaled to the watershed scale, and then coupled with ecophysiological metrics to assess climate change effects on organisms of conservation concern. We employed models to estimate future water temperatures (2010–2099) under several climate change scenarios within the large heterogeneous San Francisco Estuary. We then assessed the warming effects on the endangered, endemic Delta Smelt, Hypomesus transpacificus, by integrating localized projected water temperatures with thermal sensitivity metrics (tolerance, spawning and maturation windows, and sublethal stress thresholds) across life stages. Lethal temperatures occurred under several scenarios, but sublethal effects resulting from chronic stressful temperatures were more common across the estuary (median >60 days above threshold for >50% locations by the end of the century). Behavioral avoidance of such stressful temperatures would make a large portion of the potential range of Delta Smelt unavailable during the summer and fall. Since Delta Smelt are not likely to migrate to other estuaries, these changes are likely to result in substantial habitat compression. Additionally, the Delta Smelt maturation window was shortened by 18–85 days, revealing cumulative effects of stressful summer and fall temperatures with early initiation of spring spawning that may negatively impact fitness. Our findings highlight the value of integrating sublethal thresholds, life history, and in situ thermal heterogeneity into global change impact assessments. As

  18. Coupled Downscaled Climate Models and Ecophysiological Metrics Forecast Habitat Compression for an Endangered Estuarine Fish.

    Directory of Open Access Journals (Sweden)

    Larry R Brown

    Full Text Available Climate change is driving rapid changes in environmental conditions and affecting population and species' persistence across spatial and temporal scales. Integrating climate change assessments into biological resource management, such as conserving endangered species, is a substantial challenge, partly due to a mismatch between global climate forecasts and local or regional conservation planning. Here, we demonstrate how outputs of global climate change models can be downscaled to the watershed scale, and then coupled with ecophysiological metrics to assess climate change effects on organisms of conservation concern. We employed models to estimate future water temperatures (2010-2099 under several climate change scenarios within the large heterogeneous San Francisco Estuary. We then assessed the warming effects on the endangered, endemic Delta Smelt, Hypomesus transpacificus, by integrating localized projected water temperatures with thermal sensitivity metrics (tolerance, spawning and maturation windows, and sublethal stress thresholds across life stages. Lethal temperatures occurred under several scenarios, but sublethal effects resulting from chronic stressful temperatures were more common across the estuary (median >60 days above threshold for >50% locations by the end of the century. Behavioral avoidance of such stressful temperatures would make a large portion of the potential range of Delta Smelt unavailable during the summer and fall. Since Delta Smelt are not likely to migrate to other estuaries, these changes are likely to result in substantial habitat compression. Additionally, the Delta Smelt maturation window was shortened by 18-85 days, revealing cumulative effects of stressful summer and fall temperatures with early initiation of spring spawning that may negatively impact fitness. Our findings highlight the value of integrating sublethal thresholds, life history, and in situ thermal heterogeneity into global change impact

  19. WCRP COordinated Regional Downscaling EXperiment (CORDEX: a diagnostic MIP for CMIP6

    Directory of Open Access Journals (Sweden)

    W. J. Gutowski Jr.

    2016-11-01

    Full Text Available The COordinated Regional Downscaling EXperiment (CORDEX is a diagnostic model intercomparison project (MIP in CMIP6. CORDEX builds on a foundation of previous downscaling intercomparison projects to provide a common framework for downscaling activities around the world. The CORDEX Regional Challenges provide a focus for downscaling research and a basis for making use of CMIP6 global climate model (GCM output to produce downscaled projected changes in regional climates and assess sources of uncertainties in the projections, all of which can potentially be distilled into climate change information for vulnerability, impacts and adaptation studies. CORDEX Flagship Pilot Studies advance regional downscaling by targeting one or more of the CORDEX Regional Challenges. A CORDEX-CORE framework is planned that will produce a baseline set of homogeneous high-resolution, downscaled projections for regions worldwide. In CMIP6, CORDEX coordinates with ScenarioMIP and is structured to allow cross comparisons with HighResMIP and interaction with the CMIP6 VIACS Advisory Board.

  20. Climate Change Impacts at Department of Defense

    Energy Technology Data Exchange (ETDEWEB)

    Kotamarthi, Rao [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Jiali [Argonne National Lab. (ANL), Argonne, IL (United States); Zoebel, Zach [Univ. of Illinois, Urbana, IL (United States); Wuebbles, Don [Univ. of Illinois, Urbana, IL (United States); Hayhoe, Katharine [Texas Tech Univ., Lubbock, TX (United States); Stein, Michael [Univ. of Chicago, IL (United States); Changnon, David [Northern Illinois Univ., DeKalb, IL (United States)

    2017-06-16

    This project is aimed at providing the U.S. Department of Defense (DoD) with a comprehensive analysis of the uncertainty associated with generating climate projections at the regional scale that can be used by stakeholders and decision makers to quantify and plan for the impacts of future climate change at specific locations. The merits and limitations of commonly used downscaling models, ranging from simple to complex, are compared, and their appropriateness for application at installation scales is evaluated. Downscaled climate projections are generated at selected DoD installations using dynamic and statistical methods with an emphasis on generating probability distributions of climate variables and their associated uncertainties. The sites selection and selection of variables and parameters for downscaling was based on a comprehensive understanding of the current and projected roles that weather and climate play in operating, maintaining, and planning DoD facilities and installations.

  1. Trend analysis of watershed-scale precipitation over Northern California by means of dynamically-downscaled CMIP5 future climate projections.

    Science.gov (United States)

    Ishida, K; Gorguner, M; Ercan, A; Trinh, T; Kavvas, M L

    2017-08-15

    The impacts of climate change on watershed-scale precipitation through the 21st century were investigated over eight study watersheds in Northern California based on dynamically downscaled CMIP5 future climate projections from three GCMs (CCSM4, HadGEM2-ES, and MIROC5) under the RCP4.5 and RCP8.5 future climate scenarios. After evaluating the modeling capability of the WRF model, the six future climate projections were dynamically downscaled by means of the WRF model over Northern California at 9km grid resolution and hourly temporal resolution during a 94-year period (2006-2100). The biases in the model simulations were corrected, and basin-average precipitation over the eight study watersheds was calculated from the dynamically downscaled precipitation data. Based on the dynamically downscaled basin-average precipitation, trends in annual depth and annual peaks of basin-average precipitation during the 21st century were analyzed over the eight study watersheds. The analyses in this study indicate that there may be differences between trends of annual depths and annual peaks of watershed-scale precipitation during the 21st century. Furthermore, trends in watershed-scale precipitation under future climate conditions may be different for different watersheds depending on their location and topography even if they are in the same region. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Statistical Downscaling Of Local Climate In The Alpine Region

    Science.gov (United States)

    Kaspar, Severin; Philipp, Andreas; Jacobeit, Jucundus

    2016-04-01

    The impact of climate change on the alpine region was disproportional strong in the past decades compared to the surrounding areas, which becomes manifest in a higher increase in surface air temperature. Beside the thermal changes also implications for the hydrological cycle may be expected, acting as a very important factor not only for the ecosystem but also for mankind, in the form of water security or considering economical aspects like winter tourism etc. Therefore, in climate impact studies, it is necessary to focus on variables with high influence on the hydrological cycle, for example temperature, precipitation, wind, humidity and radiation. The aim of this study is to build statistical downscaling models which are able to reproduce temperature and precipitation at the mountainous alpine weather stations Zugspitze and Sonnblick and to further project these models into the future to identify possible changes in the behavior of these climate variables and with that in the hydrological cycle. Beside facing a in general very complex terrain in this high elevated regions, we have the advantage of a more direct atmospheric influence on the meteorology of the exposed weather stations from the large scale circulation. Two nonlinear statistical methods are developed to model the station-data series on a daily basis: On the one hand a conditional classification approach was used and on the other hand a model based on artificial neural networks (ANNs) was built. The latter is in focus of this presentation. One of the important steps of developing a new model approach is to find a reliable predictor setup with e.g. informative predictor variables or adequate location and size of the spatial domain. The question is: Can we include synoptic background knowledge to identify an optimal domain for an ANN approach? The yet developed ANN setups and configurations show promising results in downscaling both, temperature (up to 80 % of explained variance) and precipitation (up

  3. Potential changes in the extreme climate conditions at the regional scale: from observed data to modelling approaches and towards probabilistic climate change information

    International Nuclear Information System (INIS)

    Gachon, P.; Radojevic, M.; Harding, A.; Saad, C.; Nguyen, V.T.V.

    2008-01-01

    The changes in the characteristics of extreme climate conditions are one of the most critical challenges for all ecosystems, human being and infrastructure, in the context of the on-going global climate change. However, extremes information needed for impacts studies cannot be obtained directly from coarse scale global climate models (GCMs), due mainly to their difficulties to incorporate regional scale feedbacks and processes responsible in part for the occurrence, intensity and duration of extreme events. Downscaling approaches, namely statistical and dynamical downscaling techniques (i.e. SD and RCM), have emerged as useful tools to develop high resolution climate change information, in particular for extremes, as those are theoretically more capable to take into account regional/local forcings and their feedbacks from large scale influences as they are driven with GCM synoptic variables. Nevertheless, in spite of the potential added values from downscaling methods (statistical and dynamical), a rigorous assessment of these methods are needed as inherent difficulties to simulate extremes are still present. In this paper, different series of RCM and SD simulations using three different GCMs are presented and evaluated with respect to observed values over the current period and over a river basin in southern Quebec, with future ensemble runs, i.e. centered over 2050s (i.e. 2041-2070 period using the SRES A2 emission scenario). Results suggest that the downscaling performance over the baseline period significantly varies between the two downscaling techniques and over various seasons with more regular reliable simulated values with SD technique for temperature than for RCM runs, while both approaches produced quite similar temperature changes in the future from median values with more divergence for extremes. For precipitation, less accurate information is obtained compared to observed data, and with more differences among models with higher uncertainties in the

  4. Probabilistic projections of 21st century climate change over Northern Eurasia

    Science.gov (United States)

    Monier, Erwan; Sokolov, Andrei; Schlosser, Adam; Scott, Jeffery; Gao, Xiang

    2013-12-01

    We present probabilistic projections of 21st century climate change over Northern Eurasia using the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an Earth system model of intermediate complexity with a two-dimensional zonal-mean atmosphere to a human activity model. Regional climate change is obtained by two downscaling methods: a dynamical downscaling, where the IGSM is linked to a three-dimensional atmospheric model, and a statistical downscaling, where a pattern scaling algorithm uses climate change patterns from 17 climate models. This framework allows for four major sources of uncertainty in future projections of regional climate change to be accounted for: emissions projections, climate system parameters (climate sensitivity, strength of aerosol forcing and ocean heat uptake rate), natural variability, and structural uncertainty. The results show that the choice of climate policy and the climate parameters are the largest drivers of uncertainty. We also find that different initial conditions lead to differences in patterns of change as large as when using different climate models. Finally, this analysis reveals the wide range of possible climate change over Northern Eurasia, emphasizing the need to consider these sources of uncertainty when modeling climate impacts over Northern Eurasia.

  5. Probabilistic projections of 21st century climate change over Northern Eurasia

    International Nuclear Information System (INIS)

    Monier, Erwan; Sokolov, Andrei; Schlosser, Adam; Scott, Jeffery; Gao, Xiang

    2013-01-01

    We present probabilistic projections of 21st century climate change over Northern Eurasia using the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an Earth system model of intermediate complexity with a two-dimensional zonal-mean atmosphere to a human activity model. Regional climate change is obtained by two downscaling methods: a dynamical downscaling, where the IGSM is linked to a three-dimensional atmospheric model, and a statistical downscaling, where a pattern scaling algorithm uses climate change patterns from 17 climate models. This framework allows for four major sources of uncertainty in future projections of regional climate change to be accounted for: emissions projections, climate system parameters (climate sensitivity, strength of aerosol forcing and ocean heat uptake rate), natural variability, and structural uncertainty. The results show that the choice of climate policy and the climate parameters are the largest drivers of uncertainty. We also find that different initial conditions lead to differences in patterns of change as large as when using different climate models. Finally, this analysis reveals the wide range of possible climate change over Northern Eurasia, emphasizing the need to consider these sources of uncertainty when modeling climate impacts over Northern Eurasia. (letter)

  6. Importance of Preserving Cross-correlation in developing Statistically Downscaled Climate Forcings and in estimating Land-surface Fluxes and States

    Science.gov (United States)

    Das Bhowmik, R.; Arumugam, S.

    2015-12-01

    Multivariate downscaling techniques exhibited superiority over univariate regression schemes in terms of preserving cross-correlations between multiple variables- precipitation and temperature - from GCMs. This study focuses on two aspects: (a) develop an analytical solutions on estimating biases in cross-correlations from univariate downscaling approaches and (b) quantify the uncertainty in land-surface states and fluxes due to biases in cross-correlations in downscaled climate forcings. Both these aspects are evaluated using climate forcings available from both historical climate simulations and CMIP5 hindcasts over the entire US. The analytical solution basically relates the univariate regression parameters, co-efficient of determination of regression and the co-variance ratio between GCM and downscaled values. The analytical solutions are compared with the downscaled univariate forcings by choosing the desired p-value (Type-1 error) in preserving the observed cross-correlation. . For quantifying the impacts of biases on cross-correlation on estimating streamflow and groundwater, we corrupt the downscaled climate forcings with different cross-correlation structure.

  7. Impacts of climate change on precipitation and discharge extremes through the use of statistical downscaling approaches in a Mediterranean basin.

    Science.gov (United States)

    Piras, Monica; Mascaro, Giuseppe; Deidda, Roberto; Vivoni, Enrique R

    2016-02-01

    Mediterranean region is characterized by high precipitation variability often enhanced by orography, with strong seasonality and large inter-annual fluctuations, and by high heterogeneity of terrain and land surface properties. As a consequence, catchments in this area are often prone to the occurrence of hydrometeorological extremes, including storms, floods and flash-floods. A number of climate studies focused in the Mediterranean region predict that extreme events will occur with higher intensity and frequency, thus requiring further analyses to assess their effect at the land surface, particularly in small- and medium-sized watersheds. In this study, climate and hydrologic simulations produced within the Climate Induced Changes on the Hydrology of Mediterranean Basins (CLIMB) EU FP7 research project were used to analyze how precipitation extremes propagate into discharge extremes in the Rio Mannu basin (472.5km(2)), located in Sardinia, Italy. The basin hydrologic response to climate forcings in a reference (1971-2000) and a future (2041-2070) period was simulated through the combined use of a set of global and regional climate models, statistical downscaling techniques, and a process based distributed hydrologic model. We analyzed and compared the distribution of annual maxima extracted from hourly and daily precipitation and peak discharge time series, simulated by the hydrologic model under climate forcing. For this aim, yearly maxima were fit by the Generalized Extreme Value (GEV) distribution using a regional approach. Next, we discussed commonality and contrasting behaviors of precipitation and discharge maxima distributions to better understand how hydrological transformations impact propagation of extremes. Finally, we show how rainfall statistical downscaling algorithms produce more reliable forcings for hydrological models than coarse climate model outputs. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A statistical-dynamical downscaling procedure for global climate simulations

    International Nuclear Information System (INIS)

    Frey-Buness, A.; Heimann, D.; Sausen, R.; Schumann, U.

    1994-01-01

    A statistical-dynamical downscaling procedure for global climate simulations is described. The procedure is based on the assumption that any regional climate is associated with a specific frequency distribution of classified large-scale weather situations. The frequency distributions are derived from multi-year episodes of low resolution global climate simulations. Highly resolved regional distributions of wind and temperature are calculated with a regional model for each class of large-scale weather situation. They are statistically evaluated by weighting them with the according climate-specific frequency. The procedure is exemplarily applied to the Alpine region for a global climate simulation of the present climate. (orig.)

  9. Comparison of Grid Nudging and Spectral Nudging Techniques for Dynamical Climate Downscaling within the WRF Model

    Science.gov (United States)

    Fan, X.; Chen, L.; Ma, Z.

    2010-12-01

    Climate downscaling has been an active research and application area in the past several decades focusing on regional climate studies. Dynamical downscaling, in addition to statistical methods, has been widely used in downscaling as the advanced modern numerical weather and regional climate models emerge. The utilization of numerical models enables that a full set of climate variables are generated in the process of downscaling, which are dynamically consistent due to the constraints of physical laws. While we are generating high resolution regional climate, the large scale climate patterns should be retained. To serve this purpose, nudging techniques, including grid analysis nudging and spectral nudging, have been used in different models. There are studies demonstrating the benefit and advantages of each nudging technique; however, the results are sensitive to many factors such as nudging coefficients and the amount of information to nudge to, and thus the conclusions are controversy. While in a companion work of developing approaches for quantitative assessment of the downscaled climate, in this study, the two nudging techniques are under extensive experiments in the Weather Research and Forecasting (WRF) model. Using the same model provides fair comparability. Applying the quantitative assessments provides objectiveness of comparison. Three types of downscaling experiments were performed for one month of choice. The first type is serving as a base whereas the large scale information is communicated through lateral boundary conditions only; the second is using the grid analysis nudging; and the third is using spectral nudging. Emphases are given to the experiments of different nudging coefficients and nudging to different variables in the grid analysis nudging; while in spectral nudging, we focus on testing the nudging coefficients, different wave numbers on different model levels to nudge.

  10. Climate change impacts in Zhuoshui watershed, Taiwan

    Science.gov (United States)

    Chao, Yi-Chiung; Liu, Pei-Ling; Cheng, Chao-Tzuen; Li, Hsin-Chi; Wu, Tingyeh; Chen, Wei-Bo; Shih, Hung-Ju

    2017-04-01

    There are 5.3 typhoons hit Taiwan per year on average in last decade. Typhoon Morakot in 2009, the most severe typhoon, causes huge damage in Taiwan, including 677 casualty and roughly NT 110 billion (3.3 billion USD) in economic loss. Some researches documented that typhoon frequency will decrease but increase in intensity in western North Pacific region. It is usually preferred to use high resolution dynamical model to get better projection of extreme events; because coarse resolution models cannot simulate intense extreme events. Under that consideration, dynamical downscaling climate data was chosen to describe typhoon satisfactorily. One of the aims for Taiwan Climate Change Projection and Information Platform (TCCIP) is to demonstrate the linkage between climate change data and watershed impact models. The purpose is to understand relative disasters induced by extreme rainfall (typhoons) under climate change in watersheds including landslides, debris flows, channel erosion and deposition, floods, and economic loss. The study applied dynamic downscaling approach to release climate change projected typhoon events under RCP 8.5, the worst-case scenario. The Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability (TRIGRS) and FLO-2D models, then, were used to simulate hillslope disaster impacts in the upstream of Zhuoshui River. CCHE1D model was used to elevate the sediment erosion or deposition in channel. FVCOM model was used to asses a flood impact in urban area in the downstream. Finally, whole potential loss associate with these typhoon events was evaluated by the Taiwan Typhoon Loss Assessment System (TLAS) under climate change scenario. Results showed that the total loss will increase roughly by NT 49.7 billion (1.6 billion USD) in future in Zhuoshui watershed in Taiwan. The results of this research could help to understand future impact; however model bias still exists. Because typhoon track is a critical factor to consider regional

  11. Downscaling GISS ModelE Boreal Summer Climate over Africa

    Science.gov (United States)

    Druyan, Leonard M.; Fulakeza, Matthew

    2015-01-01

    The study examines the perceived added value of downscaling atmosphere-ocean global climate model simulations over Africa and adjacent oceans by a nested regional climate model. NASA/Goddard Institute for Space Studies (GISS) coupled ModelE simulations for June- September 1998-2002 are used to form lateral boundary conditions for synchronous simulations by the GISS RM3 regional climate model. The ModelE computational grid spacing is 2deg latitude by 2.5deg longitude and the RM3 grid spacing is 0.44deg. ModelE precipitation climatology for June-September 1998-2002 is shown to be a good proxy for 30-year means so results based on the 5-year sample are presumed to be generally representative. Comparison with observational evidence shows several discrepancies in ModelE configuration of the boreal summer inter-tropical convergence zone (ITCZ). One glaring shortcoming is that ModelE simulations do not advance the West African rain band northward during the summer to represent monsoon precipitation onset over the Sahel. Results for 1998-2002 show that onset simulation is an important added value produced by downscaling with RM3. ModelE Eastern South Atlantic Ocean computed sea-surface temperatures (SST) are some 4 K warmer than reanalysis, contributing to large positive biases in overlying surface air temperatures (Tsfc). ModelE Tsfc are also too warm over most of Africa. RM3 downscaling somewhat mitigates the magnitude of Tsfc biases over the African continent, it eliminates the ModelE double ITCZ over the Atlantic and it produces more realistic orographic precipitation maxima. Parallel ModelE and RM3 simulations with observed SST forcing (in place of the predicted ocean) lower Tsfc errors but have mixed impacts on circulation and precipitation biases. Downscaling improvements of the meridional movement of the rain band over West Africa and the configuration of orographic precipitation maxima are realized irrespective of the SST biases.

  12. Validation of the Regional Climate Model ALARO with different dynamical downscaling approaches and different horizontal resolutions

    Science.gov (United States)

    Berckmans, Julie; Hamdi, Rafiq; De Troch, Rozemien; Giot, Olivier

    2015-04-01

    At the Royal Meteorological Institute of Belgium (RMI), climate simulations are performed with the regional climate model (RCM) ALARO, a version of the ALADIN model with improved physical parameterizations. In order to obtain high-resolution information of the regional climate, lateral bounary conditions (LBC) are prescribed from the global climate model (GCM) ARPEGE. Dynamical downscaling is commonly done in a continuous long-term simulation, with the initialisation of the model at the start and driven by the regularly updated LBCs of the GCM. Recently, more interest exists in the dynamical downscaling approach of frequent reinitializations of the climate simulations. For these experiments, the model is initialised daily and driven for 24 hours by the GCM. However, the surface is either initialised daily together with the atmosphere or free to evolve continuously. The surface scheme implemented in ALARO is SURFEX, which can be either run in coupled mode or in stand-alone mode. The regional climate is simulated on different domains, on a 20km horizontal resolution over Western-Europe and a 4km horizontal resolution over Belgium. Besides, SURFEX allows to perform a stand-alone or offline simulation on 1km horizontal resolution over Belgium. This research is in the framework of the project MASC: "Modelling and Assessing Surface Change Impacts on Belgian and Western European Climate", a 4-year project funded by the Belgian Federal Government. The overall aim of the project is to study the feedbacks between climate changes and land surface changes in order to improve regional climate model projections at the decennial scale over Belgium and Western Europe and thus to provide better climate projections and climate change evaluation tools to policy makers, stakeholders and the scientific community.

  13. Downscaling of the global climate model data for the mass balance calculation of mountain glaciers

    Directory of Open Access Journals (Sweden)

    P. A. Morozova

    2017-01-01

    Full Text Available In this paper, we consider a hybrid method of downscaling of the GCM‑generated meteorological fields to the characteristic spatial resolution which is usually used for modeling of a single mountain glacier mass balance. The main purpose of the study is to develop a reliable forecasting method to evaluate future state of moun‑ tain glaciation under changing climatic conditions. The method consists of two stages. In the first or dynamical stage, we use results of calculations of the regional numerical model HadRM3P for the Black Sea‑Caspian region with a spatial resolution of 25 km [22]. Initial conditions for the HadRM3P were provided by the GCM devel‑ oped in the Institute of Numerical Mathematics of RAS (INMCM4 [18]. Calculations were carried out for two time periods: the present climate (1971–2000 and climate in the late 21st century (2071–2100 according to the scenario of greenhouse gas emissions RCP 8.5. On the second stage of downscaling, further regionalization is achieved by projecting of RCM‑generated data to the high‑resolution (25 m digital altitude model in a domain enclosing a target glacier. Altitude gradients of the surface air temperature and precipitation were derived from the model data. Further on, both were corrected using data of observations. Incoming shortwave radiation was calculated in the mass balance model separately, taking into account characteristics of the slope, i.e. exposition and shading of each cell. Then, the method was tested for glaciers Marukh (Western Caucasus and Jankuat (Central Caucasus, both for the present‑day and for future climates. At the end of the 21st century, the air tem‑ perature rise predicted for the summer months was calculated to be about 5–6 °C, and the result for the winter to be minus 2–3 °C. Change in annual precipitation is not significant, less than 10%. Increase in the total short‑ wave radiation will be about 5%. These changes will result in the fact that

  14. Climate Change Impacts on Rainfall Extremes and Urban Drainage: a State-of-the-Art Review

    DEFF Research Database (Denmark)

    Willems, Patrick; Olsson, Jonas; Arnbjerg-Nielsen, Karsten

    2013-01-01

    climate change: influence of data limitation, instrumental or environmental changes, interannual variations and longer term climate oscillations on trend testing results. Analysis of long-term future trends due to anthropogenic climate change: by complementing empirical historical data with the results...... from physically-based climate models, dynamic downscaling to the urban scale by means of Limited Area Models (LAMs) including explicitly small-scale cloud processes; validation of RCM/GCM results for local conditions accounting for natural variability, limited length of the available time series......, difference in spatial scales, and influence of climate oscillations; statistical downscaling methods combined with bias correction; uncertainties associated with the climate forcing scenarios, the climate models, the initial states and the statistical downscaling step; uncertainties in the impact models (e...

  15. Uncertainties in extreme precipitation under climate change conditions

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia

    of adaptation strategies, but these changes are subject to uncertainties. The focus of this PhD thesis is the quantification of uncertainties in changes in extreme precipitation. It addresses two of the main sources of uncertainty in climate change impact studies: regional climate models (RCMs) and statistical...... downscaling methods (SDMs). RCMs provide information on climate change at the regional scale. SDMs are used to bias-correct and downscale the outputs of the RCMs to the local scale of interest in adaptation strategies. In the first part of the study, a multi-model ensemble of RCMs from the European ENSEMBLES...... project was used to quantify the uncertainty in RCM projections over Denmark. Three aspects of the RCMs relevant for the uncertainty quantification were first identified and investigated. These are: the interdependency of the RCMs; the performance in current climate; and the change in the performance...

  16. Assessing drought risk under climate change in the US Great Plains via evaporative demand from downscaled GCM projections

    Science.gov (United States)

    Dewes, C.; Rangwala, I.; Hobbins, M.; Barsugli, J. J.

    2016-12-01

    Drought conditions in the US Great Plains occur primarily in response to periods of low precipitation, but they can be exacerbated by enhanced evaporative demand (E0) during periods of elevated temperatures, radiation, advection, and/or decreased humidity. A number of studies project severe to unprecedented drought conditions for this region later in the 21st century. Yet, we have found that methodological choices in the estimation of E0 and the selection of global climate model (GCM) output account for large uncertainties in projections of drought risk. Furthermore, the coarse resolution of GCMs offers little usability for drought risk assessments applied to socio-ecological systems, and users of climate data for that purpose tend to prefer existing downscaled products. Here we derive a physically based estimation of E0 - the FAO56 Penman-Monteith reference evapotranspiration - using driving variables from the Multivariate Adaptive Constructed Analogs (MACA) dataset, which have a spatial resolution of approximately 4 km. We select downscaled outputs from five CMIP5 GCMs, whereby we aim to represent different scenarios for the future of the Great Plains region (e.g. warm/wet, hot/dry, etc.). While this downscaling methodology removes GCM bias relative to a gridded product for historical data (METDATA), we first examine the remaining bias relative to ground (point) estimates of E0. Next we assess whether the downscaled products preserve the variability of their parent GCMs, in both historical and future (RCP8.5) projections. We then use the E0 estimates to compute multi-scale time series of drought indices such as the Evaporative Demand Drought Index (EDDI) and the Standardized Precipitation-Evaporation Index (SPEI) over the Great Plains region. We also attribute variability and drought anomalies to each of the driving parameters, to tease out the influence of specific model biases and evaluate geographical nuances of E0 drivers. Aside from improved understanding of

  17. High-resolution downscaling for hydrological management

    Science.gov (United States)

    Ulbrich, Uwe; Rust, Henning; Meredith, Edmund; Kpogo-Nuwoklo, Komlan; Vagenas, Christos

    2017-04-01

    Hydrological modellers and water managers require high-resolution climate data to model regional hydrologies and how these may respond to future changes in the large-scale climate. The ability to successfully model such changes and, by extension, critical infrastructure planning is often impeded by a lack of suitable climate data. This typically takes the form of too-coarse data from climate models, which are not sufficiently detailed in either space or time to be able to support water management decisions and hydrological research. BINGO (Bringing INnovation in onGOing water management; ) aims to bridge the gap between the needs of hydrological modellers and planners, and the currently available range of climate data, with the overarching aim of providing adaptation strategies for climate change-related challenges. Producing the kilometre- and sub-daily-scale climate data needed by hydrologists through continuous simulations is generally computationally infeasible. To circumvent this hurdle, we adopt a two-pronged approach involving (1) selective dynamical downscaling and (2) conditional stochastic weather generators, with the former presented here. We take an event-based approach to downscaling in order to achieve the kilometre-scale input needed by hydrological modellers. Computational expenses are minimized by identifying extremal weather patterns for each BINGO research site in lower-resolution simulations and then only downscaling to the kilometre-scale (convection permitting) those events during which such patterns occur. Here we (1) outline the methodology behind the selection of the events, and (2) compare the modelled precipitation distribution and variability (preconditioned on the extremal weather patterns) with that found in observations.

  18. Temperature Changes In Poland In 21st Century – Results Of Global Simulation And Regional Downscaling

    Directory of Open Access Journals (Sweden)

    Pilarski Michał

    2015-09-01

    Full Text Available The main source of information about future climate changes are the results of numerical simulations performed in scientific institutions around the world. Present projections from global circulation models (GCMs are too coarse and are only usefulness for the world, hemisphere or continent spatial analysis. The low horizontal resolution of global models (100–200 km, does not allow to assess climate changes at regional or local scales. Therefore it is necessary to lead studies concerning how to detail the GCMs information. The problem of information transfer from the GCMs to higher spatial scale solve: dynamical and statistical downscaling. The dynamical downscaling method based on “nesting” global information in a regional models (RCMs, which solve the equations of motion and the thermodynamic laws in a small spatial scale (10–50 km. However, the statistical downscaling models (SDMs identify the relationship between large-scale variable (predictor and small-scale variable (predictand implementing linear regression. The main goal of the study was to compare the global model scenarios of thermal condition in Poland in XXI century with the more accurate statistical and dynamical regional models outcomes. Generally studies confirmed usefulness of statistical downscaling to detail information from GCMs. Basic results present that regional models captured local aspects of thermal conditions variability especially in coastal zone.

  19. Assessing the impacts of climate change on future precipitation trends based on downscaled cmip5 simulations data

    International Nuclear Information System (INIS)

    Mentgal, A.; Harijan, K.; Uqaili, M.A.

    2017-01-01

    This study investigates future changes in precipitation over the CRB (Columbia River Basin) in both wet (DJF) and dry (JJA) seasons under RCP85 GHG emission scenario. The simulations from four climate models which participated in CMIP5 (Coupled Model Intercomparison Project Phase-5) were downscaled using the BCSD (Bias Correction and Spatial Disaggregation) method. After downscaling, extreme value analysis and MME (Multi Model Ensemble) averaging is performed. This study focuses on computing 2, 5, 10 and 25 years return levels for both winter (DJF) and summer (JJA) seasons. The maximum winter precipitation values for 2, 5, 10 and 25 years return periods have been estimated to be about 112, 127, 148 and 171 mm/day respectively whereas the maximum summer precipitation values for 2, 5, 10 and 25 years return periods are observed to be about 56, 81, 96 and 126 mm/day respectively. The MME average outperformed the individual models in simulating the historical precipitation in both seasons. The MME results showed a consistent and significant increase in the extreme precipitation and decrease in mean precipitation in both future wet and dry seasons. Largest increase in precipitation occurs over the higher elevations of the Cascades Range, Coast Range and the Mountainous Range. (author)

  20. Designing ecological climate change impact assessments to reflect key climatic drivers.

    Science.gov (United States)

    Sofaer, Helen R; Barsugli, Joseph J; Jarnevich, Catherine S; Abatzoglou, John T; Talbert, Marian K; Miller, Brian W; Morisette, Jeffrey T

    2017-07-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive - such as means or extremes - can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the 'model space' approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling. © 2017 John Wiley & Sons Ltd.

  1. Climate change in high definition : scenarios for impacts and adaptation research : conference proceedings

    International Nuclear Information System (INIS)

    2007-01-01

    This conference provided a forum to review information and tools to conduct climate change impact and adaptation research and assessments. The research community, policy advisors and resource managers reviewed the latest advancements in global and regional climate modeling, climate scenarios, downscaling tools and application of scenarios for decision-making. The new Climate Change Scenarios Network (CCSN) website was also launched at this meeting, which also provided training in Environment Canada's new statistical downscaling tool developed in collaboration with the Institut National de la Recherche Scientifique, Eau, Terre et Environnement (INRS-ETE). New features of the CCSN were presented along with examples of how information from the network can be applied in specific cases, including assessments of impacts in areas such as human health and water resources. A training session on downscaling with the newly developed Automated Statistical Downscaling (ASD) tool was also provided. The conference featured 19 presentations, of which 3 have been catalogued separately for inclusion in this database. refs., tabs., figs

  2. A neural network approach to local downscaling of GCM output for assessing wind power implications of climate change

    International Nuclear Information System (INIS)

    Sailor, D.J.; Hu, T.; Li, X.; Rosen, J.N.

    2000-01-01

    A methodology is presented for downscaling General Circulation Model (GCM) output to predict surface wind speeds at scales of interest in the wind power industry under expected future climatic conditions. The approach involves a combination of Neural Network tools and traditional weather forecasting techniques. A Neural Network transfer function is developed to relate local wind speed observations to large scale GCM predictions of atmospheric properties under current climatic conditions. By assuming the invariability of this transfer function under conditions of doubled atmospheric carbon dioxide, the resulting transfer function is then applied to GCM output for a transient run of the National Center for Atmospheric Research coupled ocean-atmosphere GCM. This methodology is applied to three test sites in regions relevant to the wind power industry - one in Texas and two in California. Changes in daily mean wind speeds at each location are presented and discussed with respect to potential implications for wind power generation. (author)

  3. Assessing climate change impacts on water balance in the Mount

    Indian Academy of Sciences (India)

    A statistical downscaling known for producing station-scale climate information from GCM output was preferred to evaluate the impacts of climate change within the Mount Makiling forest watershed, Philippines. The lumped hydrologic BROOK90 model was utilized for the water balance assessment of climate change ...

  4. Hydrologic extremes - an intercomparison of multiple gridded statistical downscaling methods

    Science.gov (United States)

    Werner, Arelia T.; Cannon, Alex J.

    2016-04-01

    -scale spatial gradients, passed the greatest number of tests for hydrologic extremes. Non-stationarity in the observational/reanalysis data sets complicated the evaluation of downscaling performance. Comparing temporal homogeneity and trends in climate indices and hydrological model outputs calculated from downscaled reanalyses and gridded observations was useful for diagnosing the reliability of the various historical data sets. We recommend that such analyses be conducted before such data are used to construct future hydro-climatic change scenarios.

  5. Decadal Recruitment and Mortality of Ponderosa pine Predicted for the 21st Century Under five Downscaled Climate Change Scenarios

    Science.gov (United States)

    Ironside, K. E.; Cole, K. L.; Eischeid, J. K.; Garfin, G. M.; Shaw, J. D.; Cobb, N. S.

    2008-12-01

    Ponderosa pine (Pinus ponderosa var. scopulorum) is the dominant conifer in higher elevation regions of the southwestern United States. Because this species is so prominent, southwestern montane ecosystems will be significantly altered if this species is strongly affected by future climate changes. These changes could be highly challenging for land management agencies. In order to model the consequences of future climates, 20th Century recruitment events and mortality for ponderosa pine were characterized using measures of seasonal water balance (precipitation - potential evapotranspiration). These relationships, assuming they will remain unchanged, were then used to predict 21st Century changes in ponderosa pine occurrence in the southwest. Twenty-one AR4 IPCC General Circulation Model (GCM) A1B simulation results were ranked on their ability to simulate the later 20th Century (1950-2000 AD) precipitation seasonality, spatial patterns, and quantity in the western United States. Among the top ranked GCMs, five were selected for downscaling to a 4 km grid that represented a range in predictions in terms of changes in water balance. Predicted decadal changes in southwestern ponderosa pine for the 21st Century for these five climate change scenarios were calculated using a multiple quadratic logistic regression model. Similar models of other western tree species (Pinus edulis, Yucca brevifolia) predicted severe contractions, especially in the southern half of their ranges. However, the results for Ponderosa pine suggested future expansions throughout its range to both higher and lower elevations, as well as very significant expansions northward.

  6. Climate change beliefs and hazard mitigation behaviors: Homeowners and wildfire risk

    Science.gov (United States)

    Hannah Brenkert-Smith; James R. Meldrum; Patricia A. Champ

    2015-01-01

    Downscaled climate models provide projections of how climate change may exacerbate the local impacts of natural hazards. The extent to which people facing exacerbated hazard conditions understand or respond to climate-related changes to local hazards has been largely overlooked. In this article, we examine the relationships among climate change beliefs, environmental...

  7. Choice of baseline climate data impacts projected species' responses to climate change.

    Science.gov (United States)

    Baker, David J; Hartley, Andrew J; Butchart, Stuart H M; Willis, Stephen G

    2016-07-01

    Climate data created from historic climate observations are integral to most assessments of potential climate change impacts, and frequently comprise the baseline period used to infer species-climate relationships. They are often also central to downscaling coarse resolution climate simulations from General Circulation Models (GCMs) to project future climate scenarios at ecologically relevant spatial scales. Uncertainty in these baseline data can be large, particularly where weather observations are sparse and climate dynamics are complex (e.g. over mountainous or coastal regions). Yet, importantly, this uncertainty is almost universally overlooked when assessing potential responses of species to climate change. Here, we assessed the importance of historic baseline climate uncertainty for projections of species' responses to future climate change. We built species distribution models (SDMs) for 895 African bird species of conservation concern, using six different climate baselines. We projected these models to two future periods (2040-2069, 2070-2099), using downscaled climate projections, and calculated species turnover and changes in species-specific climate suitability. We found that the choice of baseline climate data constituted an important source of uncertainty in projections of both species turnover and species-specific climate suitability, often comparable with, or more important than, uncertainty arising from the choice of GCM. Importantly, the relative contribution of these factors to projection uncertainty varied spatially. Moreover, when projecting SDMs to sites of biodiversity importance (Important Bird and Biodiversity Areas), these uncertainties altered site-level impacts, which could affect conservation prioritization. Our results highlight that projections of species' responses to climate change are sensitive to uncertainty in the baseline climatology. We recommend that this should be considered routinely in such analyses. © 2016 John Wiley

  8. Demonstration of a geostatistical approach to physically consistent downscaling of climate modeling simulations

    KAUST Repository

    Jha, Sanjeev Kumar; Mariethoz, Gregoire; Evans, Jason P.; McCabe, Matthew

    2013-01-01

    A downscaling approach based on multiple-point geostatistics (MPS) is presented. The key concept underlying MPS is to sample spatial patterns from within training images, which can then be used in characterizing the relationship between different variables across multiple scales. The approach is used here to downscale climate variables including skin surface temperature (TSK), soil moisture (SMOIS), and latent heat flux (LH). The performance of the approach is assessed by applying it to data derived from a regional climate model of the Murray-Darling basin in southeast Australia, using model outputs at two spatial resolutions of 50 and 10 km. The data used in this study cover the period from 1985 to 2006, with 1985 to 2005 used for generating the training images that define the relationships of the variables across the different spatial scales. Subsequently, the spatial distributions for the variables in the year 2006 are determined at 10 km resolution using the 50 km resolution data as input. The MPS geostatistical downscaling approach reproduces the spatial distribution of TSK, SMOIS, and LH at 10 km resolution with the correct spatial patterns over different seasons, while providing uncertainty estimates through the use of multiple realizations. The technique has the potential to not only bridge issues of spatial resolution in regional and global climate model simulations but also in feature sharpening in remote sensing applications through image fusion, filling gaps in spatial data, evaluating downscaled variables with available remote sensing images, and aggregating/disaggregating hydrological and groundwater variables for catchment studies.

  9. Detailed Urban Heat Island Projections for Cities Worldwide: Dynamical Downscaling CMIP5 Global Climate Models

    Directory of Open Access Journals (Sweden)

    Dirk Lauwaet

    2015-06-01

    Full Text Available A new dynamical downscaling methodology to analyze the impact of global climate change on the local climate of cities worldwide is presented. The urban boundary layer climate model UrbClim is coupled to 11 global climate models contained in the Coupled Model Intercomparison Project 5 archive, conducting 20-year simulations for present (1986–2005 and future (2081–2100 climate conditions, considering the Representative Concentration Pathway 8.5 climate scenario. The evolution of the urban heat island of eight different cities, located on three continents, is quantified and assessed, with an unprecedented horizontal resolution of a few hundred meters. For all cities, urban and rural air temperatures are found to increase strongly, up to 7 °C. However, the urban heat island intensity in most cases increases only slightly, often even below the range of uncertainty. A potential explanation, focusing on the role of increased incoming longwave radiation, is put forth. Finally, an alternative method for generating urban climate projections is proposed, combining the ensemble temperature change statistics and the results of the present-day urban climate.

  10. Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings

    DEFF Research Database (Denmark)

    Willems, P.; Arnbjerg-Nielsen, Karsten; Olsson, J.

    2012-01-01

    Cities are becoming increasingly vulnerable to flooding because of rapid urbanization, installation of complex infrastructure, and changes in the precipitation patterns caused by anthropogenic climate change. The present paper provides a critical review of the current state-of-the-art methods...... for assessing the impacts of climate change on precipitation at the urban catchment scale. Downscaling of results from global circulation models or regional climate models to urban catchment scales are needed because these models are not able to describe accurately the rainfall process at suitable high temporal...... and spatial resolution for urban drainage studies. The downscaled rainfall results are however highly uncertain, depending on the models and downscaling methods considered. This uncertainty becomes more challenging for rainfall extremes since the properties of these extremes do not automatically reflect those...

  11. Impact of projected climate change on agricultural production in ...

    African Journals Online (AJOL)

    The climate change projections data from global climate models were downscaled using self-organising maps technique. Under the conventional practices, results show that during long rainy season (from March to May) there is yield decline of 13% for cultivar Situka, no change for cultivar Kito and increase of 10% and ...

  12. Mapping past, present, and future climatic suitability for invasive Aedes aegypti and Aedes albopictus in the United States: a process-based modeling approach using CMIP5 downscaled climate scenarios

    Science.gov (United States)

    Donnelly, M. A. P.; Marcantonio, M.; Melton, F. S.; Barker, C. M.

    2016-12-01

    The ongoing spread of the mosquitoes, Aedes aegypti and Aedes albopictus, in the continental United States leaves new areas at risk for local transmission of dengue, chikungunya, and Zika viruses. All three viruses have caused major disease outbreaks in the Americas with infected travelers returning regularly to the U.S. The expanding range of these mosquitoes raises questions about whether recent spread has been enabled by climate change or other anthropogenic influences. In this analysis, we used downscaled climate scenarios from the NASA Earth Exchange Global Daily Downscaled Projections (NEX GDDP) dataset to model Ae. aegypti and Ae. albopictus population growth rates across the United States. We used a stage-structured matrix population model to understand past and present climatic suitability for these vectors, and to project future suitability under CMIP5 climate change scenarios. Our results indicate that much of the southern U.S. is suitable for both Ae. aegypti and Ae. albopictus year-round. In addition, a large proportion of the U.S. is seasonally suitable for mosquito population growth, creating the potential for periodic incursions into new areas. Changes in climatic suitability in recent decades for Ae. aegypti and Ae. albopictus have occurred already in many regions of the U.S., and model projections of future climate suggest that climate change will continue to reshape the range of Ae. aegypti and Ae. albopictus in the U.S., and potentially the risk of the viruses they transmit.

  13. Mapping Past, Present, and Future Climatic Suitability for Invasive Aedes Aegypti and Aedes Albopictus in the United States: A Process-Based Modeling Approach Using CMIP5 Downscaled Climate Scenarios

    Science.gov (United States)

    Donnelly, Marisa Anne Pella; Marcantonio, Matteo; Melton, Forrest S.; Barker, Christopher M.

    2016-01-01

    The ongoing spread of the mosquitoes, Aedes aegypti and Aedes albopictus, in the continental United States leaves new areas at risk for local transmission of dengue, chikungunya, and Zika viruses. All three viruses have caused major disease outbreaks in the Americas with infected travelers returning regularly to the U.S. The expanding range of these mosquitoes raises questions about whether recent spread has been enabled by climate change or other anthropogenic influences. In this analysis, we used downscaled climate scenarios from the NASA Earth Exchange Global Daily Downscaled Projections (NEX GDDP) dataset to model Ae. aegypti and Ae. albopictus population growth rates across the United States. We used a stage-structured matrix population model to understand past and present climatic suitability for these vectors, and to project future suitability under CMIP5 climate change scenarios. Our results indicate that much of the southern U.S. is suitable for both Ae. aegypti and Ae. albopictus year-round. In addition, a large proportion of the U.S. is seasonally suitable for mosquito population growth, creating the potential for periodic incursions into new areas. Changes in climatic suitability in recent decades for Ae. aegypti and Ae. albopictus have occurred already in many regions of the U.S., and model projections of future climate suggest that climate change will continue to reshape the range of Ae. aegypti and Ae. albopictus in the U.S., and potentially the risk of the viruses they transmit.

  14. Climate change estimates of South American riverflow through statistical downscaling

    CSIR Research Space (South Africa)

    Landman, W

    2014-03-01

    Full Text Available projections are assimilated into a linear statistical model in order to produce an ensemble of downscaled riverflows in the La Plata Basin and in southern-central Chile. The statistical model uses atmospheric circulation fields (geopotential heights at the 200...

  15. Projected large flood event sensitivity to projection selection and temporal downscaling methodology

    Energy Technology Data Exchange (ETDEWEB)

    Raff, D. [U.S. Dept. of the Interior, Bureau of Reclamation, Denver, Colorado (United States)

    2008-07-01

    Large flood events, that influence regulatory guidelines as well as safety of dams decisions, are likely to be affected by climate change. This talk will evaluate the use of climate projections downscaled and run through a rainfall - runoff model and its influence on large flood events. The climate spatial downscaling is performed statistically and a re-sampling and scaling methodology is used to temporally downscale from monthly to daily signals. The signals are run through a National Weather Service operational rainfall-runoff model to produce 6-hour flows. The flows will be evaluated for changes in large events at look-ahead horizons from 2011 - 2040, 2041 - 2070, and 2071 - 2099. The sensitivity of results will be evaluated with respect to projection selection criteria and re-sampling and scaling criteria for the Boise River in Idaho near Lucky Peak Dam. (author)

  16. Projected large flood event sensitivity to projection selection and temporal downscaling methodology

    International Nuclear Information System (INIS)

    Raff, D.

    2008-01-01

    Large flood events, that influence regulatory guidelines as well as safety of dams decisions, are likely to be affected by climate change. This talk will evaluate the use of climate projections downscaled and run through a rainfall - runoff model and its influence on large flood events. The climate spatial downscaling is performed statistically and a re-sampling and scaling methodology is used to temporally downscale from monthly to daily signals. The signals are run through a National Weather Service operational rainfall-runoff model to produce 6-hour flows. The flows will be evaluated for changes in large events at look-ahead horizons from 2011 - 2040, 2041 - 2070, and 2071 - 2099. The sensitivity of results will be evaluated with respect to projection selection criteria and re-sampling and scaling criteria for the Boise River in Idaho near Lucky Peak Dam. (author)

  17. Expansion of the On-line Archive "Statistically Downscaled WCRP CMIP3 Climate Projections"

    Science.gov (United States)

    Brekke, L. D.; Pruitt, T.; Maurer, E. P.; Das, T.; Duffy, P.; White, K.

    2009-12-01

    Presentation highlights status and plans for a public-access archive of downscaled CMIP3 climate projections. Incorporating climate projection information into long-term evaluations of water and energy resources requires analysts to have access to projections at "basin-relevant" resolution. Such projections would ideally be bias-corrected to account for climate model tendencies to systematically simulate historical conditions different than observed. In 2007, the U.S. Bureau of Reclamation, Santa Clara University and Lawrence Livermore National Laboratory (LLNL) collaborated to develop an archive of 112 bias-corrected and spatially disaggregated (BCSD) CMIP3 temperature and precipitation projections. These projections were generated using 16 CMIP3 models to simulate three emissions pathways (A2, A1b, and B1) from one or more initializations (runs). Projections are specified on a monthly time step from 1950-2099 and at 0.125 degree spatial resolution within the North American Land Data Assimilation System domain (i.e. contiguous U.S., southern Canada and northern Mexico). Archive data are freely accessible at LLNL Green Data Oasis (url). Since being launched, the archive has served over 3500 data requests by nearly 500 users in support of a range of planning, research and educational activities. Archive developers continue to look for ways to improve the archive and respond to user needs. One request has been to serve the intermediate datasets generated during the BCSD procedure, helping users to interpret the relative influences of the bias-correction and spatial disaggregation on the transformed CMIP3 output. This request has been addressed with intermediate datasets now posted at the archive web-site. Another request relates closely to studying hydrologic and ecological impacts under climate change, where users are asking for projected diurnal temperature information (e.g., projected daily minimum and maximum temperature) and daily time step resolution. In

  18. Scalability of regional climate change in Europe for high-end scenarios

    DEFF Research Database (Denmark)

    Christensen, O. B.; Yang, S.; Boberg, F.

    2015-01-01

    With the help of a simulation using the global circulation model (GCM) EC-Earth, downscaled over Europe with the regional model DMI-HIRHAM5 at a 25 km grid point distance, we investigated regional climate change corresponding to 6°C of global warming to investigate whether regional climate change...... are close to the RCP8.5 emission scenario. We investigated the extent to which pattern scaling holds, i.e. the approximation that the amplitude of any climate change will be approximately proportional to the amount of global warming. We address this question through a comparison of climate change results...... from downscaling simulations over the same integration domain, but for different driving and regional models and scenarios, mostly from the EU ENSEMBLES project. For almost all quantities investigated, pattern scaling seemed to apply to the 6° simulation. This indicates that the single 6° simulation...

  19. Climatic change of summer temperature and precipitation in the Alpine region - a statistical-dynamical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Heimann, D.; Sept, V.

    1998-12-01

    Climatic changes in the Alpine region due to increasing greenhouse gas concentrations are assessed by using statistical-dynamical downscaling. The downscaling procedure is applied to two 30-year periods (1971-2000 and 2071-2100, summer months only) of the output of a transient coupled ocean/atmosphere climate scenario simulation. The downscaling results for the present-day climate are in sufficient agreement with observations. The estimated regional climate change during the next 100 years shows a general warming. The mean summer temperatures increase by about 3 to more than 5 Kelvin. The most intense climatic warming is predicted in the western parts of the Alps. The amount of summer precipitation decreases in most parts of central Europe by more than 20 percent. Only over the Adriatic area and parts of eastern central Europe an increase in precipitation is simulated. The results are compared with observed trends and results of regional climate change simulations of other authors. The observed trends and the majority of the simulated trends agree with our results. However, there are also climate change estimates which completely contradict with ours. (orig.) 29 refs.

  20. Simulating Climate Change in Ireland

    Science.gov (United States)

    Nolan, P.; Lynch, P.

    2012-04-01

    At the Meteorology & Climate Centre at University College Dublin, we are using the CLM-Community's COSMO-CLM Regional Climate Model (RCM) and the WRF RCM (developed at NCAR) to simulate the climate of Ireland at high spatial resolution. To address the issue of model uncertainty, a Multi-Model Ensemble (MME) approach is used. The ensemble method uses different RCMs, driven by several Global Climate Models (GCMs), to simulate climate change. Through the MME approach, the uncertainty in the RCM projections is quantified, enabling us to estimate the probability density function of predicted changes, and providing a measure of confidence in the predictions. The RCMs were validated by performing a 20-year simulation of the Irish climate (1981-2000), driven by ECMWF ERA-40 global re-analysis data, and comparing the output to observations. Results confirm that the output of the RCMs exhibit reasonable and realistic features as documented in the historical data record. Projections for the future Irish climate were generated by downscaling the Max Planck Institute's ECHAM5 GCM, the UK Met Office HadGEM2-ES GCM and the CGCM3.1 GCM from the Canadian Centre for Climate Modelling. Simulations were run for a reference period 1961-2000 and future period 2021-2060. The future climate was simulated using the A1B, A2, B1, RCP 4.5 & RCP 8.5 greenhouse gas emission scenarios. Results for the downscaled simulations show a substantial overall increase in precipitation and wind speed for the future winter months and a decrease during the summer months. The predicted annual change in temperature is approximately 1.1°C over Ireland. To date, all RCM projections are in general agreement, thus increasing our confidence in the robustness of the results.

  1. Statistical downscaling of CMIP5 outputs for projecting future changes in rainfall in the Onkaparinga catchment

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Md. Mamunur, E-mail: mdmamunur.rashid@mymail.unisa.edu.au [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095 (Australia); Beecham, Simon, E-mail: simon.beecham@unisa.edu.au [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095 (Australia); Chowdhury, Rezaul K., E-mail: rezaulkabir@uaeu.ac.ae [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095 (Australia); Department of Civil and Environmental Engineering, United Arab Emirates University, Al Ain, PO Box 15551 (United Arab Emirates)

    2015-10-15

    A generalized linear model was fitted to stochastically downscaled multi-site daily rainfall projections from CMIP5 General Circulation Models (GCMs) for the Onkaparinga catchment in South Australia to assess future changes to hydrologically relevant metrics. For this purpose three GCMs, two multi-model ensembles (one by averaging the predictors of GCMs and the other by regressing the predictors of GCMs against reanalysis datasets) and two scenarios (RCP4.5 and RCP8.5) were considered. The downscaling model was able to reasonably reproduce the observed historical rainfall statistics when the model was driven by NCEP reanalysis datasets. Significant bias was observed in the rainfall when downscaled from historical outputs of GCMs. Bias was corrected using the Frequency Adapted Quantile Mapping technique. Future changes in rainfall were computed from the bias corrected downscaled rainfall forced by GCM outputs for the period 2041–2060 and these were then compared to the base period 1961–2000. The results show that annual and seasonal rainfalls are likely to significantly decrease for all models and scenarios in the future. The number of dry days and maximum consecutive dry days will increase whereas the number of wet days and maximum consecutive wet days will decrease. Future changes of daily rainfall occurrence sequences combined with a reduction in rainfall amounts will lead to a drier catchment, thereby reducing the runoff potential. Because this is a catchment that is a significant source of Adelaide's water supply, irrigation water and water for maintaining environmental flows, an effective climate change adaptation strategy is needed in order to face future potential water shortages. - Highlights: • A generalized linear model was used for multi-site daily rainfall downscaling. • Rainfall was downscaled from CMIP5 GCM outputs. • Two multi-model ensemble approaches were used. • Bias was corrected using the Frequency Adapted Quantile Mapping

  2. Satellite-Enhanced Dynamical Downscaling of Extreme Events

    Science.gov (United States)

    Nunes, A.

    2015-12-01

    Severe weather events can be the triggers of environmental disasters in regions particularly susceptible to changes in hydrometeorological conditions. In that regard, the reconstruction of past extreme weather events can help in the assessment of vulnerability and risk mitigation actions. Using novel modeling approaches, dynamical downscaling of long-term integrations from global circulation models can be useful for risk analysis, providing more accurate climate information at regional scales. Originally developed at the National Centers for Environmental Prediction (NCEP), the Regional Spectral Model (RSM) is being used in the dynamical downscaling of global reanalysis, within the South American Hydroclimate Reconstruction Project. Here, RSM combines scale-selective bias correction with assimilation of satellite-based precipitation estimates to downscale extreme weather occurrences. Scale-selective bias correction is a method employed in the downscaling, similar to the spectral nudging technique, in which the downscaled solution develops in agreement with its coarse boundaries. Precipitation assimilation acts on modeled deep-convection, drives the land-surface variables, and therefore the hydrological cycle. During the downscaling of extreme events that took place in Brazil in recent years, RSM continuously assimilated NCEP Climate Prediction Center morphing technique precipitation rates. As a result, RSM performed better than its global (reanalysis) forcing, showing more consistent hydrometeorological fields compared with more sophisticated global reanalyses. Ultimately, RSM analyses might provide better-quality initial conditions for high-resolution numerical predictions in metropolitan areas, leading to more reliable short-term forecasting of severe local storms.

  3. TopoSCALE v.1.0: downscaling gridded climate data in complex terrain

    Science.gov (United States)

    Fiddes, J.; Gruber, S.

    2014-02-01

    Simulation of land surface processes is problematic in heterogeneous terrain due to the the high resolution required of model grids to capture strong lateral variability caused by, for example, topography, and the lack of accurate meteorological forcing data at the site or scale it is required. Gridded data products produced by atmospheric models can fill this gap, however, often not at an appropriate spatial resolution to drive land-surface simulations. In this study we describe a method that uses the well-resolved description of the atmospheric column provided by climate models, together with high-resolution digital elevation models (DEMs), to downscale coarse-grid climate variables to a fine-scale subgrid. The main aim of this approach is to provide high-resolution driving data for a land-surface model (LSM). The method makes use of an interpolation of pressure-level data according to topographic height of the subgrid. An elevation and topography correction is used to downscale short-wave radiation. Long-wave radiation is downscaled by deriving a cloud-component of all-sky emissivity at grid level and using downscaled temperature and relative humidity fields to describe variability with elevation. Precipitation is downscaled with a simple non-linear lapse and optionally disaggregated using a climatology approach. We test the method in comparison with unscaled grid-level data and a set of reference methods, against a large evaluation dataset (up to 210 stations per variable) in the Swiss Alps. We demonstrate that the method can be used to derive meteorological inputs in complex terrain, with most significant improvements (with respect to reference methods) seen in variables derived from pressure levels: air temperature, relative humidity, wind speed and incoming long-wave radiation. This method may be of use in improving inputs to numerical simulations in heterogeneous and/or remote terrain, especially when statistical methods are not possible, due to lack of

  4. Downscaled projections of Caribbean coral bleaching that can inform conservation planning.

    Science.gov (United States)

    van Hooidonk, Ruben; Maynard, Jeffrey Allen; Liu, Yanyun; Lee, Sang-Ki

    2015-09-01

    Projections of climate change impacts on coral reefs produced at the coarse resolution (~1°) of Global Climate Models (GCMs) have informed debate but have not helped target local management actions. Here, projections of the onset of annual coral bleaching conditions in the Caribbean under Representative Concentration Pathway (RCP) 8.5 are produced using an ensemble of 33 Coupled Model Intercomparison Project phase-5 models and via dynamical and statistical downscaling. A high-resolution (~11 km) regional ocean model (MOM4.1) is used for the dynamical downscaling. For statistical downscaling, sea surface temperature (SST) means and annual cycles in all the GCMs are replaced with observed data from the ~4-km NOAA Pathfinder SST dataset. Spatial patterns in all three projections are broadly similar; the average year for the onset of annual severe bleaching is 2040-2043 for all projections. However, downscaled projections show many locations where the onset of annual severe bleaching (ASB) varies 10 or more years within a single GCM grid cell. Managers in locations where this applies (e.g., Florida, Turks and Caicos, Puerto Rico, and the Dominican Republic, among others) can identify locations that represent relative albeit temporary refugia. Both downscaled projections are different for the Bahamas compared to the GCM projections. The dynamically downscaled projections suggest an earlier onset of ASB linked to projected changes in regional currents, a feature not resolved in GCMs. This result demonstrates the value of dynamical downscaling for this application and means statistically downscaled projections have to be interpreted with caution. However, aside from west of Andros Island, the projections for the two types of downscaling are mostly aligned; projected onset of ASB is within ±10 years for 72% of the reef locations. © 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  5. A Hybrid Framework to Bias Correct and Empirically Downscale Daily Temperature and Precipitation from Regional Climate Models

    Science.gov (United States)

    Tan, P.; Abraham, Z.; Winkler, J. A.; Perdinan, P.; Zhong, S. S.; Liszewska, M.

    2013-12-01

    Bias correction and statistical downscaling are widely used approaches for postprocessing climate simulations generated by global and/or regional climate models. The skills of these approaches are typically assessed in terms of their ability to reproduce historical climate conditions as well as the plausibility and consistency of the derived statistical indicators needed by end users. Current bias correction and downscaling approaches often do not adequately satisfy the two criteria of accurate prediction and unbiased estimation. To overcome this limitation, a hybrid regression framework was developed to both minimize prediction errors and preserve the distributional characteristics of climate observations. Specifically, the framework couples the loss functions of standard (linear or nonlinear) regression methods with a regularization term that penalizes for discrepancies between the predicted and observed distributions. The proposed framework can also be extended to generate physically-consistent outputs across multiple response variables, and to incorporate both reanalysis-driven and GCM-driven RCM outputs into a unified learning framework. The effectiveness of the framework is demonstrated using daily temperature and precipitation simulations from the North American Regional Climate Change Program (NARCCAP) . The accuracy of the framework is comparable to standard regression methods, but, unlike the standard regression methods, the proposed framework is able to preserve many of the distribution properties of the response variables, akin to bias correction approaches such as quantile mapping and bivariate geometric quantile mapping.

  6. A comparison of dynamical and statistical downscaling methods for regional wave climate projections along French coastlines.

    Science.gov (United States)

    Laugel, Amélie; Menendez, Melisa; Benoit, Michel; Mattarolo, Giovanni; Mendez, Fernando

    2013-04-01

    Wave climate forecasting is a major issue for numerous marine and coastal related activities, such as offshore industries, flooding risks assessment and wave energy resource evaluation, among others. Generally, there are two main ways to predict the impacts of the climate change on the wave climate at regional scale: the dynamical and the statistical downscaling of GCM (Global Climate Model). In this study, both methods have been applied on the French coast (Atlantic , English Channel and North Sea shoreline) under three climate change scenarios (A1B, A2, B1) simulated with the GCM ARPEGE-CLIMAT, from Météo-France (AR4, IPCC). The aim of the work is to characterise the wave climatology of the 21st century and compare the statistical and dynamical methods pointing out advantages and disadvantages of each approach. The statistical downscaling method proposed by the Environmental Hydraulics Institute of Cantabria (Spain) has been applied (Menendez et al., 2011). At a particular location, the sea-state climate (Predictand Y) is defined as a function, Y=f(X), of several atmospheric circulation patterns (Predictor X). Assuming these climate associations between predictor and predictand are stationary, the statistical approach has been used to project the future wave conditions with reference to the GCM. The statistical relations between predictor and predictand have been established over 31 years, from 1979 to 2009. The predictor is built as the 3-days-averaged squared sea level pressure gradient from the hourly CFSR database (Climate Forecast System Reanalysis, http://cfs.ncep.noaa.gov/cfsr/). The predictand has been extracted from the 31-years hindcast sea-state database ANEMOC-2 performed with the 3G spectral wave model TOMAWAC (Benoit et al., 1996), developed at EDF R&D LNHE and Saint-Venant Laboratory for Hydraulics and forced by the CFSR 10m wind field. Significant wave height, peak period and mean wave direction have been extracted with an hourly-resolution at

  7. Climate Change Impact Assessment of Hydro-Climate in Southern Peninsular Malaysia

    Science.gov (United States)

    Ercan, A.; Ishida, K.; Kavvas, M. L.; Chen, Z. R.; Jang, S.; Amin, M. Z. M.; Shaaban, A. J.

    2017-12-01

    Impacts of climate change on the hydroclimate of the coastal region in the south of Peninsular Malaysia in the 21st century was assessed by means of a regional climate model utilizing an ensemble of 15 different future climate realizations. Coarse resolution Global Climate Models' future projections covering four emission scenarios based on Coupled Model Intercomparison Project phase 3 (CMIP3) datasets were dynamically downscaled to 6 km resolution over the study area. The analyses were made in terms of rainfall, air temperature, evapotranporation, and soil water storage.

  8. The impact of climate change on hydro-electricity generation

    International Nuclear Information System (INIS)

    Musy, A.; Music, B.; Roy, R.

    2008-01-01

    Hydropower is the leading source of electrical production in many countries. It is a clean and renewable source and certainly will continue to play an important role in the future energy supply. However, the effects of climate change on this valuable resource remain questionable. In order to identify the potential initiatives that the hydropower industry may undertake, it is important to determine the current state of knowledge of the impacts of climate change on hydrological variables at regional and local scales. Usually, the following steps are taken. First, general circulation models (GCMs) are used to simulate future climate under assumed greenhouse gas emission scenarios. Then, different techniques (statistical downscaling/regional climate models) are applied to downscale the GCM outputs to the appropriate scales of hydrological models. Finally, hydrologic models are employed to simulate the effects of climate change at regional and local scales. Outputs from these models serve as inputs to water management models that give more details about hydropower production. In the present study, realized by OURANOS upon the request of CEATI, a critical review of the methods used to determine impact of climate change on water resources and hydropower generation is carried out. The major results from recent studies worldwide are reported and future scientific actions to better understand climate change impacts on the hydrological regime are identified. The study is expected to provide direction for the hydropower industry to mitigate the impacts of climate change. (author)

  9. Projected climate change futures for Southern Africa

    CSIR Research Space (South Africa)

    Tadross, M

    2017-10-01

    Full Text Available of the Council for Scientific and Industrial Research (CSIR) in South Africa. In these experiments, a variable-resolution atmospheric global circulation model, CCAM, was applied as a regional climate model (RCM) to simulate both present-day and future climate... climate projection Observed climate RCM Climate forcing Climate simulation Statistical downscaling Dynamical downscaling 22 | Second Edition There are four pathways – RCP2.6, RCP4.5, RCP6.0 and RCP8.5. RCP 2.6 describes a scenario of very low...

  10. Framework for Probabilistic Projections of Energy-Relevant Streamflow Indicators under Climate Change Scenarios for the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Wagener, Thorsten [Univ. of Bristol (United Kingdom); Mann, Michael [Pennsylvania State Univ., State College, PA (United States); Crane, Robert [Pennsylvania State Univ., State College, PA (United States)

    2014-04-29

    This project focuses on uncertainty in streamflow forecasting under climate change conditions. The objective is to develop easy to use methodologies that can be applied across a range of river basins to estimate changes in water availability for realistic projections of climate change. There are three major components to the project: Empirical downscaling of regional climate change projections from a range of Global Climate Models; Developing a methodology to use present day information on the climate controls on the parameterizations in streamflow models to adjust the parameterizations under future climate conditions (a trading-space-for-time approach); and Demonstrating a bottom-up approach to establishing streamflow vulnerabilities to climate change. The results reinforce the need for downscaling of climate data for regional applications, and further demonstrates the challenges of using raw GCM data to make local projections. In addition, it reinforces the need to make projections across a range of global climate models. The project demonstrates the potential for improving streamflow forecasts by using model parameters that are adjusted for future climate conditions, but suggests that even with improved streamflow models and reduced climate uncertainty through the use of downscaled data, there is still large uncertainty is the streamflow projections. The most useful output from the project is the bottom-up vulnerability driven approach to examining possible climate and land use change impacts on streamflow. Here, we demonstrate an inexpensive and easy to apply methodology that uses Classification and Regression Trees (CART) to define the climate and environmental parameters space that can produce vulnerabilities in the system, and then feeds in the downscaled projections to determine the probability top transitioning to a vulnerable sate. Vulnerabilities, in this case, are defined by the end user.

  11. Evaluation of cool season precipitation event characteristics over the Northeast US in a suite of downscaled climate model hindcasts

    Science.gov (United States)

    Loikith, Paul C.; Waliser, Duane E.; Kim, Jinwon; Ferraro, Robert

    2017-08-01

    Cool season precipitation event characteristics are evaluated across a suite of downscaled climate models over the northeastern US. Downscaled hindcast simulations are produced by dynamically downscaling the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA2) using the National Aeronautics and Space Administration (NASA)-Unified Weather Research and Forecasting (WRF) regional climate model (RCM) and the Goddard Earth Observing System Model, Version 5 (GEOS-5) global climate model. NU-WRF RCM simulations are produced at 24, 12, and 4-km horizontal resolutions using a range of spectral nudging schemes while the MERRA2 global downscaled run is provided at 12.5-km. All model runs are evaluated using four metrics designed to capture key features of precipitation events: event frequency, event intensity, even total, and event duration. Overall, the downscaling approaches result in a reasonable representation of many of the key features of precipitation events over the region, however considerable biases exist in the magnitude of each metric. Based on this evaluation there is no clear indication that higher resolution simulations result in more realistic results in general, however many small-scale features such as orographic enhancement of precipitation are only captured at higher resolutions suggesting some added value over coarser resolution. While the differences between simulations produced using nudging and no nudging are small, there is some improvement in model fidelity when nudging is introduced, especially at a cutoff wavelength of 600 km compared to 2000 km. Based on the results of this evaluation, dynamical regional downscaling using NU-WRF results in a more realistic representation of precipitation event climatology than the global downscaling of MERRA2 using GEOS-5.

  12. Quantifying the effects of climate change on water resources in Denmark

    DEFF Research Database (Denmark)

    Van Roosmalen, Lieke Petronella G; Sonnenborg, Torben O.; Christensen, Jens H.

    2007-01-01

    climatological output data from the regional climate model HIRHAM (Danish Meteorological Institute), which dynamically downscales the climate change signals from the coarser resolution global climate model HadAM3H (Hadley Centre), with the concentrations of greenhouse gases and aerosols based on the IPCC SRES A2...

  13. Integrated Assessment of Climate Change, Land-Use Changes, and Regional Carbon Dynamics in United States

    Science.gov (United States)

    Mu, J. E.; Sleeter, B. M.; Abatzoglou, J. T.

    2015-12-01

    The fact that climate change is likely to accelerate throughout this century means that climate-sensitive sectors such as agriculture will need to adapt increasingly to climate change. This fact also means that understanding the potential for agricultural adaptation, and how it could come about, is important for ongoing technology investments in the public and private sectors, for infrastructure investments, and for the various policies that address agriculture directly or indirectly. This paper is an interdisciplinary study by collaborating with climate scientist, agronomists, economists, and ecologists. We first use statistical models to estimate impacts of climate change on major crop yields (wheat, corn, soybeans, sorghum, and cotton) and predict changes in crop yields under future climate condition using downscaled climate projections from CMIP5. Then, we feed the predicted yield changes to a partial equilibrium economic model (FASOM-GHG) to evaluate economic and environmental outcomes including changes in land uses (i.e., cropland, pastureland, forest land, urban land and land for conservation) in United States. Finally, we use outputs from FASOM-GHG as inputs for the ST-SIM ecological model to simulate future carbon dynamics through changes in land use under future climate conditions and discuss the rate of adaptation through land-use changes. Findings in this paper have several merits compared to previous findings in the literature. First, we add economic components to the carbon calculation. It is important to include socio-economic conditions when calculating carbon emission and/or carbon sequestration because human activities are the major contribution to atmosphere GHG emissions. Second, we use the most recent downscaled climate projections from CMIP5 to capture uncertainties from climate model projections. Instead of using all GCMs, we select five GCMs to represent the ensemble. Third, we use a bottom-up approach because we start from micro-level data

  14. Sensitivity of streamflow to climate change in California

    Science.gov (United States)

    Grantham, T.; Carlisle, D.; Wolock, D.; McCabe, G. J.; Wieczorek, M.; Howard, J.

    2015-12-01

    Trends of decreasing snowpack and increasing risk of drought are looming challenges for California water resource management. Increasing vulnerability of the state's natural water supplies threatens California's social-economic vitality and the health of its freshwater ecosystems. Despite growing awareness of potential climate change impacts, robust management adaptation has been hindered by substantial uncertainty in future climate predictions for the region. Down-scaled global climate model (GCM) projections uniformly suggest future warming of the region, but projections are highly variable with respect to the direction and magnitude of change in regional precipitation. Here we examine the sensitivity of California surface water supplies to climate variation independently of GCMs. We use a statistical approach to construct predictive models of monthly streamflow based on historical climate and river basin features. We then propagate an ensemble of synthetic climate simulations through the models to assess potential streamflow responses to changes in temperature and precipitation in different months and regions of the state. We also consider the range of streamflow change predicted by bias-corrected downscaled GCMs. Our results indicate that the streamflow in the xeric and coastal mountain regions of California is more sensitive to changes in precipitation than temperature, whereas streamflow in the interior mountain region responds strongly to changes in both temperature and precipitation. Mean climate projections for 2025-2075 from GCM ensembles are highly variable, indicating streamflow changes of -50% to +150% relative to baseline (1980-2010) for most months and regions. By quantifying the sensitivity of streamflow to climate change, rather than attempting to predict future hydrologic conditions based on uncertain GCM projections, these results should be more informative to water managers seeking to assess, and potentially reduce, the vulnerability of surface

  15. SDSM-DC: A smarter approach to downscaling for decision-making? (Invited)

    Science.gov (United States)

    Wilby, R. L.; Dawson, C. W.

    2013-12-01

    General Circulation Model (GCM) output has been used for downscaling and impact assessments for at least 25 years. Downscaling methods raise awareness about risks posed by climate variability and change to human and natural systems. However, there are relatively few instances where these analyses have translated into actionable information for adaptation. One reason is that conventional ';top down' downscaling typically yields very large uncertainty bounds in projected impacts at regional and local scales. Consequently, there are growing calls to use downscaling tools in smarter ways that refocus attention on the decision problem rather than on the climate modelling per se. The talk begins with an overview of various application of the Statistical DownScaling Model (SDSM) over the last decade. This sample offers insights to downscaling practice in terms of regions and sectors of interest, modes of application and adaptation outcomes. The decision-centred rationale and functionality of the latest version of SDSM is then explained. This new downscaling tool does not require GCM input but enables the user to generate plausible daily weather scenarios that may be informed by climate model and/or palaeoenvironmental information. Importantly, the tool is intended for stress-testing adaptation options rather than for exhaustive analysis of uncertainty components. The approach is demonstrated by downscaling multi-basin, multi-elevation temperature and precipitation scenarios for the Upper Colorado River Basin. These scenarios are used alongside other narratives of future conditions that might potential affect the security of water supplies, and for evaluating steps that can be taken to manage these risks.

  16. Improve projections of changes in southern African summer rainfall through comprehensive multi-timescale empirical statistical downscaling

    Science.gov (United States)

    Dieppois, B.; Pohl, B.; Eden, J.; Crétat, J.; Rouault, M.; Keenlyside, N.; New, M. G.

    2017-12-01

    The water management community has hitherto neglected or underestimated many of the uncertainties in climate impact scenarios, in particular, uncertainties associated with decadal climate variability. Uncertainty in the state-of-the-art global climate models (GCMs) is time-scale-dependant, e.g. stronger at decadal than at interannual timescales, in response to the different parameterizations and to internal climate variability. In addition, non-stationarity in statistical downscaling is widely recognized as a key problem, in which time-scale dependency of predictors plays an important role. As with global climate modelling, therefore, the selection of downscaling methods must proceed with caution to avoid unintended consequences of over-correcting the noise in GCMs (e.g. interpreting internal climate variability as a model bias). GCM outputs from the Coupled Model Intercomparison Project 5 (CMIP5) have therefore first been selected based on their ability to reproduce southern African summer rainfall variability and their teleconnections with Pacific sea-surface temperature across the dominant timescales. In observations, southern African summer rainfall has recently been shown to exhibit significant periodicities at the interannual timescale (2-8 years), quasi-decadal (8-13 years) and inter-decadal (15-28 years) timescales, which can be interpret as the signature of ENSO, the IPO, and the PDO over the region. Most of CMIP5 GCMs underestimate southern African summer rainfall variability and their teleconnections with Pacific SSTs at these three timescales. In addition, according to a more in-depth analysis of historical and pi-control runs, this bias is might result from internal climate variability in some of the CMIP5 GCMs, suggesting potential for bias-corrected prediction based empirical statistical downscaling. A multi-timescale regression based downscaling procedure, which determines the predictors across the different timescales, has thus been used to

  17. Dynamical Downscaling of GCM Simulations: Toward the Improvement of Forecast Bias over California

    Energy Technology Data Exchange (ETDEWEB)

    Chin, H S

    2008-09-24

    The effects of climate change will mostly be felt on local to regional scales. However, global climate models (GCMs) are unable to produce reliable climate information on the scale needed to assess regional climate-change impacts and variability as a result of coarse grid resolution and inadequate model physics though their capability is improving. Therefore, dynamical and statistical downscaling (SD) methods have become popular methods for filling the gap between global and local-to-regional climate applications. Recent inter-comparison studies of these downscaling techniques show that both downscaling methods have similar skill in simulating the mean and variability of present climate conditions while they show significant differences for future climate conditions (Leung et al., 2003). One difficulty with the SD method is that it relies on predictor-predict and relationships, which may not hold in future climate conditions. In addition, it is now commonly accepted that the dynamical downscaling with the regional climate model (RCM) is more skillful at the resolving orographic climate effect than the driving coarser-grid GCM simulations. To assess the possible societal impacts of climate changes, many RCMs have been developed and used to provide a better projection of future regional-scale climates for guiding policies in economy, ecosystem, water supply, agriculture, human health, and air quality (Giorgi et al., 1994; Leung and Ghan, 1999; Leung et al., 2003; Liang et al., 2004; Kim, 2004; Duffy et al., 2006). Although many regional climate features, such as seasonal mean and extreme precipitation have been successfully captured in these RCMs, obvious biases of simulated precipitation remain, particularly the winter wet bias commonly seen in mountain regions of the Western United States. The importance of regional climate research over California is not only because California has the largest population in the nation, but California has one of the most

  18. Projections of the Ganges-Brahmaputra precipitation: downscaled from GCM predictors

    Science.gov (United States)

    Pervez, Md Shahriar; Henebry, Geoffrey M.

    2014-01-01

    Downscaling Global Climate Model (GCM) projections of future climate is critical for impact studies. Downscaling enables use of GCM experiments for regional scale impact studies by generating regionally specific forecasts connecting global scale predictions and regional scale dynamics. We employed the Statistical Downscaling Model (SDSM) to downscale 21st century precipitation for two data-sparse hydrologically challenging river basins in South Asia—the Ganges and the Brahmaputra. We used CGCM3.1 by Canadian Center for Climate Modeling and Analysis version 3.1 predictors in downscaling the precipitation. Downscaling was performed on the basis of established relationships between historical Global Summary of Day observed precipitation records from 43 stations and National Center for Environmental Prediction re-analysis large scale atmospheric predictors. Although the selection of predictors was challenging during the set-up of SDSM, they were found to be indicative of important physical forcings in the basins. The precipitation of both basins was largely influenced by geopotential height: the Ganges precipitation was modulated by the U component of the wind and specific humidity at 500 and 1000 h Pa pressure levels; whereas, the Brahmaputra precipitation was modulated by the V component of the wind at 850 and 1000 h Pa pressure levels. The evaluation of the SDSM performance indicated that model accuracy for reproducing precipitation at the monthly scale was acceptable, but at the daily scale the model inadequately simulated some daily extreme precipitation events. Therefore, while the downscaled precipitation may not be the suitable input to analyze future extreme flooding or drought events, it could be adequate for analysis of future freshwater availability. Analysis of the CGCM3.1 downscaled precipitation projection with respect to observed precipitation reveals that the precipitation regime in each basin may be significantly impacted by climate change

  19. Identification of robust statistical downscaling methods based on a comprehensive suite of performance metrics for South Korea

    Science.gov (United States)

    Eum, H. I.; Cannon, A. J.

    2015-12-01

    Climate models are a key provider to investigate impacts of projected future climate conditions on regional hydrologic systems. However, there is a considerable mismatch of spatial resolution between GCMs and regional applications, in particular a region characterized by complex terrain such as Korean peninsula. Therefore, a downscaling procedure is an essential to assess regional impacts of climate change. Numerous statistical downscaling methods have been used mainly due to the computational efficiency and simplicity. In this study, four statistical downscaling methods [Bias-Correction/Spatial Disaggregation (BCSD), Bias-Correction/Constructed Analogue (BCCA), Multivariate Adaptive Constructed Analogs (MACA), and Bias-Correction/Climate Imprint (BCCI)] are applied to downscale the latest Climate Forecast System Reanalysis data to stations for precipitation, maximum temperature, and minimum temperature over South Korea. By split sampling scheme, all methods are calibrated with observational station data for 19 years from 1973 to 1991 are and tested for the recent 19 years from 1992 to 2010. To assess skill of the downscaling methods, we construct a comprehensive suite of performance metrics that measure an ability of reproducing temporal correlation, distribution, spatial correlation, and extreme events. In addition, we employ Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to identify robust statistical downscaling methods based on the performance metrics for each season. The results show that downscaling skill is considerably affected by the skill of CFSR and all methods lead to large improvements in representing all performance metrics. According to seasonal performance metrics evaluated, when TOPSIS is applied, MACA is identified as the most reliable and robust method for all variables and seasons. Note that such result is derived from CFSR output which is recognized as near perfect climate data in climate studies. Therefore, the

  20. Statistical downscaling of daily precipitation over Llobregat river basin in Catalonia (Spain) using three downscaling methods.

    Science.gov (United States)

    Ballinas, R.; Versini, P.-A.; Sempere, D.; Escaler, I.

    2009-09-01

    environmental impact studies. Downscaling methods to assess the effect of large-scale circulations on local parameters have. Statistical downscaling methods are based on the view that regional climate can be conditioned by two factors: large-scale climatic state and regional/local features. Local climate information is derived by first developing a statistical model which relates large-scale variables or "predictors" for which GCMs are trustable to regional or local surface "predictands" for which models are less skilful. The main advantage of these methods is that they are computationally inexpensive, and can be applied to outputs from different GCM experiments. Three statistical downscaling methods are applied: Analogue method, Delta Change and Direct Forcing. These methods have been used to determine daily precipitation projections at rain gauge location to study the intensity, frequency and variability of storms in a context of climate change in the Llobregat River Basin in Catalonia, Spain. This work is part of the European project "Water Change" (included in the LIFE + Environment Policy and Governance program). It deals with Medium and long term water resources modelling as a tool for planning and global change adaptation. Two stakeholders involved in the project provided the historical time series: Catalan Water Agency (ACA) and the State Meteorological Agency (AEMET).

  1. Uncertainty in projected point precipitation extremes for hydrological impact analysis of climate change

    Science.gov (United States)

    Van Uytven, Els; Willems, Patrick

    2017-04-01

    Current trends in the hydro-meteorological variables indicate the potential impact of climate change on hydrological extremes. Therefore, they trigger an increased importance climate adaptation strategies in water management. The impact of climate change on hydro-meteorological and hydrological extremes is, however, highly uncertain. This is due to uncertainties introduced by the climate models, the internal variability inherent to the climate system, the greenhouse gas scenarios and the statistical downscaling methods. In view of the need to define sustainable climate adaptation strategies, there is a need to assess these uncertainties. This is commonly done by means of ensemble approaches. Because more and more climate models and statistical downscaling methods become available, there is a need to facilitate the climate impact and uncertainty analysis. A Climate Perturbation Tool has been developed for that purpose, which combines a set of statistical downscaling methods including weather typing, weather generator, transfer function and advanced perturbation based approaches. By use of an interactive interface, climate impact modelers can apply these statistical downscaling methods in a semi-automatic way to an ensemble of climate model runs. The tool is applicable to any region, but has been demonstrated so far to cases in Belgium, Suriname, Vietnam and Bangladesh. Time series representing future local-scale precipitation, temperature and potential evapotranspiration (PET) conditions were obtained, starting from time series of historical observations. Uncertainties on the future meteorological conditions are represented in two different ways: through an ensemble of time series, and a reduced set of synthetic scenarios. The both aim to span the full uncertainty range as assessed from the ensemble of climate model runs and downscaling methods. For Belgium, for instance, use was made of 100-year time series of 10-minutes precipitation observations and daily

  2. GLOBAL CLIMATE MODEL:A COMPREHENSIVE TOOL IN CLIMATE CHANGE IMPACT STUDIES

    Directory of Open Access Journals (Sweden)

    Dharmaveer Singh

    2015-01-01

    Full Text Available There is growing concern, how and to what extent future changes in climate will affect human society and natural environments. Continuous emissions of Green House Gasses (GHGs at or above current rates will cause further warming. This, in turn, may modify global climate system during 21st century that very likely would have larger impacts than those observed during 20th century. At present, Global Climate Models (GCMs are only the most reliable tools available for studying behaviour of the climate system. This paper presents a comprehensive review of GCMs including their development and applications in climate change impacts studies. Following a discussion of the limitations of GCMs at regional and local scales, different approaches of downscaling are discussed in detail.

  3. Uncertainties in downscaled relative humidity for a semi-arid region ...

    Indian Academy of Sciences (India)

    variables are extracted from the (1) National Centers for Environmental Prediction ... and (2) simulations of the third generation Canadian Coupled Global Climate ... Ef, MAE and P. Cumulative distribution functions were prepared from the ... Climate change; downscaling; hydroclimatology; relative humidity; multi-step linear ...

  4. Climate change implications for wind power resources in the Northwest United States

    International Nuclear Information System (INIS)

    Sailor, David J.; Smith, Michael; Hart, Melissa

    2008-01-01

    Using statistically downscaled output from four general circulation models (GCMs), we have investigated scenarios of climate change impacts on wind power generation potential in a five-state region within the Northwest United States (Idaho, Montana, Oregon, Washington, and Wyoming). All GCM simulations were extracted from the standardized set of runs created for the Intergovernmental Panel on Climate Change (IPCC). Analysis of model runs for the 20th century (20c3m) simulations revealed that the direct output of wind statistics from these models is of relatively poor quality compared with observations at airport weather stations within each state. When the GCM output was statistically downscaled, the resulting estimates of current climate wind statistics are substantially better. Furthermore, in looking at the GCM wind statistics for two IPCC future climate scenarios from the Special Report on Emissions Scenarios (SRES A1B and A2), there was significant disagreement in the direct model output from the four GCMs. When statistical downscaling was applied to the future climate simulations, a more coherent story unfolded related to the likely impact of climate change on the region's wind power resource. Specifically, the results suggest that summertime wind speeds in the Northwest may decrease by 5-10%, while wintertime wind speeds may decrease by relatively little, or possibly increase slightly. When these wind statistics are projected to typical turbine hub heights and nominal wind turbine power curves are applied, the impact of the climate change scenarios on wind power may be as high as a 40% reduction in summertime generation potential. (author)

  5. A multimodal wave spectrum-based approach for statistical downscaling of local wave climate

    Science.gov (United States)

    Hegermiller, Christie; Antolinez, Jose A A; Rueda, Ana C.; Camus, Paula; Perez, Jorge; Erikson, Li; Barnard, Patrick; Mendez, Fernando J.

    2017-01-01

    Characterization of wave climate by bulk wave parameters is insufficient for many coastal studies, including those focused on assessing coastal hazards and long-term wave climate influences on coastal evolution. This issue is particularly relevant for studies using statistical downscaling of atmospheric fields to local wave conditions, which are often multimodal in large ocean basins (e.g. the Pacific). Swell may be generated in vastly different wave generation regions, yielding complex wave spectra that are inadequately represented by a single set of bulk wave parameters. Furthermore, the relationship between atmospheric systems and local wave conditions is complicated by variations in arrival time of wave groups from different parts of the basin. Here, we address these two challenges by improving upon the spatiotemporal definition of the atmospheric predictor used in statistical downscaling of local wave climate. The improved methodology separates the local wave spectrum into “wave families,” defined by spectral peaks and discrete generation regions, and relates atmospheric conditions in distant regions of the ocean basin to local wave conditions by incorporating travel times computed from effective energy flux across the ocean basin. When applied to locations with multimodal wave spectra, including Southern California and Trujillo, Peru, the new methodology improves the ability of the statistical model to project significant wave height, peak period, and direction for each wave family, retaining more information from the full wave spectrum. This work is the base of statistical downscaling by weather types, which has recently been applied to coastal flooding and morphodynamic applications.

  6. Influence of climate change on flood magnitude and seasonality in the Arga River catchment in Spain

    Science.gov (United States)

    Garijo, Carlos; Mediero, Luis

    2018-04-01

    Climate change projections suggest that extremes, such as floods, will modify their behaviour in the future. Detailed catchment-scale studies are needed to implement the European Union Floods Directive and give recommendations for flood management and design of hydraulic infrastructure. In this study, a methodology to quantify changes in future flood magnitude and seasonality due to climate change at a catchment scale is proposed. Projections of 24 global climate models are used, with 10 being downscaled by the Spanish Meteorological Agency (Agencia Estatal de Meteorología, AEMET) and 14 from the EURO-CORDEX project, under two representative concentration pathways (RCPs) 4.5 and 8.5, from the Fifth Assessment Report provided by the Intergovernmental Panel on Climate Change. Downscaled climate models provided by the AEMET were corrected in terms of bias. The HBV rainfall-runoff model was selected to simulate the catchment hydrological behaviour. Simulations were analysed through both annual maximum and peaks-over-threshold (POT) series. The results show a decrease in the magnitude of extreme floods for the climate model projections downscaled by the AEMET. However, results for the climate model projections downscaled by EURO-CORDEX show differing trends, depending on the RCP. A small decrease in the flood magnitude was noticed for the RCP 4.5, while an increase was found for the RCP 8.5. Regarding the monthly seasonality analysis performed by using the POT series, a delay in the flood timing from late-autumn to late-winter is identified supporting the findings of recent studies performed with observed data in recent decades.

  7. Impact of climate change estimated through statistical downscaling on crop productivity and soil water balance in Southern Italy

    Science.gov (United States)

    Ventrella, D.; Giglio, L.; Charfeddine, M.; Palatella, L.; Pizzigalli, C.; Vitale, D.; Paradisi, P.; Miglietta, M. M.; Rana, G.

    2010-09-01

    The climatic change induced by the global warming is expected to modify the agricultural activity and consequently the other social and economical sectors. In this context, an efficient management of the water resources is considered very important for Italy and in particular for Southern areas characterized by a typical Mediterranean climate in order to improve the economical and environmental sustainability of the agricultural activity. Climate warming could have a substantial impact on some agronomical practices as the choice of the crops to be included in the rotations, the sowing time and the irrigation scheduling. For a particular zone, the impact of climatic change on agricultural activity will depend also on the continuum "soil-plant-climate" and this continuum has to be included in the analysis for forecasting purposes. The Project CLIMESCO is structured in four workpackages (WP): (1) Identification of homogeneous areas, (2) Climatic change, (3) Optimization of water resources and (4) Scenarios analysis. In this study we applied a statistical downscaling method, Canonical Correlation Analysis after Principal Component Analysis filtering, to two sub-regions of agricultural interest in Sicily and Apulia (respectively, Delia basin and Capitanata). We adopt, as large scale predictors, the sea level pressure from the the EMULATE project dataset and the 1000 hPa temperature obtained from the NCEP reanalyses, while the predictands are monthly time series of maximum and minimum temperature and precipitation. As the crop growth models need daily datasets, a stochastic weather generator (the LARS-WG model) has been applied for this purpose. LARS-WG needs a preliminary calibration with daily time series of meteorological fields, that are available in the framework of CLIMESCO project. Then, the statistical relationships have been applied to two climate change scenarios (SRES A2 and B2), provided by three different GCM's: the Hadley Centre Coupled Model version 3 (Had

  8. Multilayer perceptron neural network for downscaling rainfall in arid ...

    Indian Academy of Sciences (India)

    3Research Center for Climate Change, Ministry of Water Resources, Nanjing, ... system models (ESMs) are considered as the ... downscaling methods, regression models, which are ...... a decision support tool for the assessment of regional.

  9. Do downscaled general circulation models reliably simulate historical climatic conditions?

    Science.gov (United States)

    Bock, Andrew R.; Hay, Lauren E.; McCabe, Gregory J.; Markstrom, Steven L.; Atkinson, R. Dwight

    2018-01-01

    The accuracy of statistically downscaled (SD) general circulation model (GCM) simulations of monthly surface climate for historical conditions (1950–2005) was assessed for the conterminous United States (CONUS). The SD monthly precipitation (PPT) and temperature (TAVE) from 95 GCMs from phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) were used as inputs to a monthly water balance model (MWBM). Distributions of MWBM input (PPT and TAVE) and output [runoff (RUN)] variables derived from gridded station data (GSD) and historical SD climate were compared using the Kolmogorov–Smirnov (KS) test For all three variables considered, the KS test results showed that variables simulated using CMIP5 generally are more reliable than those derived from CMIP3, likely due to improvements in PPT simulations. At most locations across the CONUS, the largest differences between GSD and SD PPT and RUN occurred in the lowest part of the distributions (i.e., low-flow RUN and low-magnitude PPT). Results indicate that for the majority of the CONUS, there are downscaled GCMs that can reliably simulate historical climatic conditions. But, in some geographic locations, none of the SD GCMs replicated historical conditions for two of the three variables (PPT and RUN) based on the KS test, with a significance level of 0.05. In these locations, improved GCM simulations of PPT are needed to more reliably estimate components of the hydrologic cycle. Simple metrics and statistical tests, such as those described here, can provide an initial set of criteria to help simplify GCM selection.

  10. Physically-based global downscaling climate change projections for a full century

    International Nuclear Information System (INIS)

    Ghan, S J; Shippert, T

    2005-01-01

    A global atmosphere/land model with an embedded subgrid orography scheme is used to simulate the period 1977-2100 using ocean surface conditions and radiative constituent concentrations for a climate change scenario. Climate variables simulated for multiple elevation classes are mapping according to a high-resolution elevation dataset in ten regions with complex terrain. Analysis of changes in the simulated climate leads to the following conclusions. Changes in precipitation vary widely, with precipitation increasing more with increasing altitude in some region, decreasing more with altitude in others, and changing little in still others. In some regions the sign of the precipitation change depends on surface elevation. Changes in surface air temperature are rather uniform, with at most a two-fold difference between the largest and smallest changes within a region; in most cases the warming increases with altitude. Changes in snow water are highly dependent on altitude. Absolute changes usually increase with altitude, while relative changes decrease. In places where snow accumulates, an artificial upper bound on snow water limits the sensitivity of snow water to climate change considerably. The simulated impact of climate change on regional mean snow water varies widely, with little impact in regions in which the upper bound on snow water is the dominant snow water sink, moderate impact in regions with a mixture of seasonal and permanent snow, and profound impacts on regions with little permanent snow

  11. Statistical downscaling of the French Mediterranean climate: assessment for present and projection in an anthropogenic scenario

    Directory of Open Access Journals (Sweden)

    C. Lavaysse

    2012-03-01

    Full Text Available The Mediterranean basin is a particularly vulnerable region to climate change, featuring a sharply contrasted climate between the North and South and governed by a semi-enclosed sea with pronounced surrounding topography covering parts of the Europe, Africa and Asia regions. The physiographic specificities contribute to produce mesoscale atmospheric features that can evolve to high-impact weather systems such as heavy precipitation, wind storms, heat waves and droughts. The evolution of these meteorological extremes in the context of global warming is still an open question, partly because of the large uncertainty associated with existing estimates produced by global climate models (GCM with coarse horizontal resolution (~200 km. Downscaling climatic information at a local scale is, thus, needed to improve the climate extreme prediction and to provide relevant information for vulnerability and adaptation studies. In this study, we investigate wind, temperature and precipitation distributions for past recent climate and future scenarios at eight meteorological stations in the French Mediterranean region using one statistical downscaling model, referred as the "Cumulative Distribution Function transform" (CDF-t approach. A thorough analysis of the uncertainty associated with statistical downscaling and bi-linear interpolation of large-scale wind speed, temperature and rainfall from reanalyses (ERA-40 and three GCM historical simulations, has been conducted and quantified in terms of Kolmogorov-Smirnov scores. CDF-t produces a more accurate and reliable local wind speed, temperature and rainfall. Generally, wind speed, temperature and rainfall CDF obtained with CDF-t are significantly similar with the observed CDF, even though CDF-t performance may vary from one station to another due to the sensitivity of the driving large-scale fields or local impact. CDF-t has then been applied to climate simulations of the 21st century under B1 and A2 scenarios

  12. An Improved Dynamical Downscaling Method with GCM Bias Corrections and Its Validation with 30 Years of Climate Simulations

    KAUST Repository

    Xu, Zhongfeng

    2012-09-01

    An improved dynamical downscaling method (IDD) with general circulation model (GCM) bias corrections is developed and assessed over North America. A set of regional climate simulations is performed with the Weather Research and Forecasting Model (WRF) version 3.3 embedded in the National Center for Atmospheric Research\\'s (NCAR\\'s) Community Atmosphere Model (CAM). The GCM climatological means and the amplitudes of interannual variations are adjusted based on the National Centers for Environmental Prediction (NCEP)-NCAR global reanalysis products (NNRP) before using them to drive WRF. In this study, the WRF downscaling experiments are identical except the initial and lateral boundary conditions derived from the NNRP, original GCM output, and bias-corrected GCM output, respectively. The analysis finds that the IDD greatly improves the downscaled climate in both climatological means and extreme events relative to the traditional dynamical downscaling approach (TDD). The errors of downscaled climatological mean air temperature, geopotential height, wind vector, moisture, and precipitation are greatly reduced when the GCM bias corrections are applied. In the meantime, IDD also improves the downscaled extreme events characterized by the reduced errors in 2-yr return levels of surface air temperature and precipitation. In comparison with TDD, IDD is also able to produce a more realistic probability distribution in summer daily maximum temperature over the central U.S.-Canada region as well as in summer and winter daily precipitation over the middle and eastern United States. © 2012 American Meteorological Society.

  13. Impacts of climate change on wind energy resources in France: a regionalization study

    International Nuclear Information System (INIS)

    Najac, J.

    2008-11-01

    In this work, we study the impact of climate change on surface winds in France and draw conclusions concerning wind energy resources. Because of their coarse spatial resolution, climate models cannot properly reproduce the spatial variability of surface winds. Thus, 2 down-scaling methods are developed in order to regionalize an ensemble of climate scenarios: a statistical method based on weather typing and a statistic-dynamical method that resorts to high resolution mesoscale modelling. By 2050, significant but relatively small changes are depicted with, in particular, a decrease of the wind speed in the southern and an increase in the northern regions of France. The use of other down-scaling methods enables us to study several uncertainty sources: it appears that most of the uncertainty is due to the climate models. (author)

  14. Dynamical Downscaling of NASA/GISS ModelE: Continuous, Multi-Year WRF Simulations

    Science.gov (United States)

    Otte, T.; Bowden, J. H.; Nolte, C. G.; Otte, M. J.; Herwehe, J. A.; Faluvegi, G.; Shindell, D. T.

    2010-12-01

    The WRF Model is being used at the U.S. EPA for dynamical downscaling of the NASA/GISS ModelE fields to assess regional impacts of climate change in the United States. The WRF model has been successfully linked to the ModelE fields in their raw hybrid vertical coordinate, and continuous, multi-year WRF downscaling simulations have been performed. WRF will be used to downscale decadal time slices of ModelE for recent past, current, and future climate as the simulations being conducted for the IPCC Fifth Assessment Report become available. This presentation will focus on the sensitivity to interior nudging within the RCM. The use of interior nudging for downscaled regional climate simulations has been somewhat controversial over the past several years but has been recently attracting attention. Several recent studies that have used reanalysis (i.e., verifiable) fields as a proxy for GCM input have shown that interior nudging can be beneficial toward achieving the desired downscaled fields. In this study, the value of nudging will be shown using fields from ModelE that are downscaled using WRF. Several different methods of nudging are explored, and it will be shown that the method of nudging and the choices made with respect to how nudging is used in WRF are critical to balance the constraint of ModelE against the freedom of WRF to develop its own fields.

  15. Selecting downscaled climate projections for water resource impacts and adaptation

    Science.gov (United States)

    Vidal, Jean-Philippe; Hingray, Benoît

    2015-04-01

    Increasingly large ensembles of global and regional climate projections are being produced and delivered to the climate impact community. However, such an enormous amount of information can hardly been dealt with by some impact models due to computational constraints. Strategies for transparently selecting climate projections are therefore urgently needed for informing small-scale impact and adaptation studies and preventing potential pitfalls in interpreting ensemble results from impact models. This work proposes results from a selection approach implemented for an integrated water resource impact and adaptation study in the Durance river basin (Southern French Alps). A large ensemble of 3000 daily transient gridded climate projections was made available for this study. It was built from different runs of 4 ENSEMBLES Stream2 GCMs, statistically downscaled by 3 probabilistic methods based on the K-nearest neighbours resampling approach (Lafaysse et al., 2014). The selection approach considered here exemplifies one of the multiple possible approaches described in a framework for identifying tailored subsets of climate projections for impact and adaptation studies proposed by Vidal & Hingray (2014). It was chosen based on the specificities of both the study objectives and the characteristics of the projection dataset. This selection approach aims at propagating as far as possible the relative contributions of the four different sources of uncertainties considered, namely GCM structure, large-scale natural variability, structure of the downscaling method, and catchment-scale natural variability. Moreover, it took the form of a hierarchical structure to deal with the specific constraints of several types of impact models (hydrological models, irrigation demand models and reservoir management models). The implemented 3-layer selection approach is therefore mainly based on conditioned Latin Hypercube sampling (Christierson et al., 2012). The choice of conditioning

  16. Inter-comparison of statistical downscaling methods for projection of extreme flow indices across Europe

    DEFF Research Database (Denmark)

    Hundecha, Yeshewatesfa; Sunyer Pinya, Maria Antonia; Lawrence, Deborah

    2016-01-01

    The effect of methods of statistical downscaling of daily precipitation on changes in extreme flow indices under a plausible future climate change scenario was investigated in 11 catchments selected from 9 countries in different parts of Europe. The catchments vary from 67 to 6171km2 in size...... catchments to simulate daily runoff. A set of flood indices were derived from daily flows and their changes have been evaluated by comparing their values derived from simulations corresponding to the current and future climate. Most of the implemented downscaling methods project an increase in the extreme...... flow indices in most of the catchments. The catchments where the extremes are expected to increase have a rainfall-dominated flood regime. In these catchments, the downscaling methods also project an increase in the extreme precipitation in the seasons when the extreme flows occur. In catchments where...

  17. Climate Change and Food Security in Tanzania: Analysis of Current ...

    African Journals Online (AJOL)

    Food systems in Tanzania are highly vulnerable to climate change and variability due to poor adaptive capacity of ... available GCMs and downscaling techniques ... water for hydroelectric power generation ... for farm-level decision making.

  18. Climatic changes of extreme precipitation in Denmark from 1872 to 2100

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten; Gregersen, Ida Bülow; Sunyer Pinya, Maria Antonia

    of climate change impacts from anthropogenic effects can be established based on projections of daily precipitation. These estimates have then been further downscaled to enable urban pluvial inundation calculations using different statistical downscaling and extreme value analysis techniques. . From...... of precipitation extremes. The objective is to establish cities that are resilient to pluvial floods by means of a gradual upgrading of the drainage capacity in combination with a structured risk management approach. Using the regional climate model (RCM) data repositories from PRUDENCE and ENSEMBLES, estimates....... These results are important for the extrapolation to future events. Currently efforts are dedicated to constructing similar models based on outputs from climate models, but the models are complicated due to the fact that the correlation structure of high-resolution precipitation in the climate models deviates...

  19. Climate change effects on wildland fire risk in the Northeastern and Great Lakes states predicted by a downscaled multi-model ensemble

    Science.gov (United States)

    Kerr, Gaige Hunter; DeGaetano, Arthur T.; Stoof, Cathelijne R.; Ward, Daniel

    2018-01-01

    This study is among the first to investigate wildland fire risk in the Northeastern and the Great Lakes states under a changing climate. We use a multi-model ensemble (MME) of regional climate models from the Coordinated Regional Downscaling Experiment (CORDEX) together with the Canadian Forest Fire Weather Index System (CFFWIS) to understand changes in wildland fire risk through differences between historical simulations and future projections. Our results are relatively homogeneous across the focus region and indicate modest increases in the magnitude of fire weather indices (FWIs) during northern hemisphere summer. The most pronounced changes occur in the date of the initialization of CFFWIS and peak of the wildland fire season, which in the future are trending earlier in the year, and in the significant increases in the length of high-risk episodes, defined by the number of consecutive days with FWIs above the current 95th percentile. Further analyses show that these changes are most closely linked to expected changes in the focus region's temperature and precipitation. These findings relate to the current understanding of particulate matter vis-à-vis wildfires and have implications for human health and local and regional changes in radiative forcings. When considering current fire management strategies which could be challenged by increasing wildland fire risk, fire management agencies could adapt new strategies to improve awareness, prevention, and resilience to mitigate potential impacts to critical infrastructure and population.

  20. Multi-Site and Multi-Variables Statistical Downscaling Technique in the Monsoon Dominated Region of Pakistan

    Science.gov (United States)

    Khan, Firdos; Pilz, Jürgen

    2016-04-01

    South Asia is under the severe impacts of changing climate and global warming. The last two decades showed that climate change or global warming is happening and the first decade of 21st century is considered as the warmest decade over Pakistan ever in history where temperature reached 53 0C in 2010. Consequently, the spatio-temporal distribution and intensity of precipitation is badly effected and causes floods, cyclones and hurricanes in the region which further have impacts on agriculture, water, health etc. To cope with the situation, it is important to conduct impact assessment studies and take adaptation and mitigation remedies. For impact assessment studies, we need climate variables at higher resolution. Downscaling techniques are used to produce climate variables at higher resolution; these techniques are broadly divided into two types, statistical downscaling and dynamical downscaling. The target location of this study is the monsoon dominated region of Pakistan. One reason for choosing this area is because the contribution of monsoon rains in this area is more than 80 % of the total rainfall. This study evaluates a statistical downscaling technique which can be then used for downscaling climatic variables. Two statistical techniques i.e. quantile regression and copula modeling are combined in order to produce realistic results for climate variables in the area under-study. To reduce the dimension of input data and deal with multicollinearity problems, empirical orthogonal functions will be used. Advantages of this new method are: (1) it is more robust to outliers as compared to ordinary least squares estimates and other estimation methods based on central tendency and dispersion measures; (2) it preserves the dependence among variables and among sites and (3) it can be used to combine different types of distributions. This is important in our case because we are dealing with climatic variables having different distributions over different meteorological

  1. Statistical downscaling of sea-surface wind over the Peru-Chile upwelling region: diagnosing the impact of climate change from the IPSL-CM4 model

    Energy Technology Data Exchange (ETDEWEB)

    Goubanova, K. [CNES/CNRS/IRD/UPS, Laboratoire d' Etudes en Geophysique et Oceanographie Spatiale, Toulouse (France); Instituto del Mar del Peru, Callao (Peru); Echevin, V.; Terray, P. [IPSL/UPMC/IRD, Laboratoire d' Oceanographie et de Climatologie, Experimentation et Approches Numeriques, Paris (France); Dewitte, B. [CNES/CNRS/IRD/UPS, Laboratoire d' Etudes en Geophysique et Oceanographie Spatiale, Toulouse (France); Instituto del Mar del Peru, Callao (Peru); Instituto Geofisico del Peru, Lima (Peru); Codron, F. [UPMC/CNRS, Laboratoire de Meteorologie Dynamique, Paris (France); Takahashi, K. [Instituto Geofisico del Peru, Lima (Peru); Vrac, M. [IPSL/CNRS/CEA/UVSQ, Laboratoire des Sciences du Climat et de l' Environnement, Gif-sur-Yvette (France)

    2011-04-15

    The key aspect of the ocean circulation off Peru-Chile is the wind-driven upwelling of deep, cold, nutrient-rich waters that promote a rich marine ecosystem. It has been suggested that global warming may be associated with an intensification of upwelling-favorable winds. However, the lack of high-resolution long-term observations has been a limitation for a quantitative analysis of this process. In this study, we use a statistical downscaling method to assess the regional impact of climate change on the sea-surface wind over the Peru-Chile upwelling region as simulated by the global coupled general circulation model IPSL-CM4. Taking advantage of the high-resolution QuikSCAT wind product and of the NCEP reanalysis data, a statistical model based on multiple linear regressions is built for the daily mean meridional and zonal wind at 10 m for the period 2000-2008. The large-scale 10 m wind components and sea level pressure are used as regional circulation predictors. The skill of the downscaling method is assessed by comparing with the surface wind derived from the ERS satellite measurements, with in situ wind observations collected by ICOADS and through cross-validation. It is then applied to the outputs of the IPSL-CM4 model over stabilized periods of the pre-industrial, 2 x CO{sub 2} and 4 x CO{sub 2} IPCC climate scenarios. The results indicate that surface along-shore winds off central Chile (off central Peru) experience a significant intensification (weakening) during Austral winter (summer) in warmer climates. This is associated with a general decrease in intra-seasonal variability. (orig.)

  2. Dynamically-downscaled projections of changes in temperature extremes over China

    Science.gov (United States)

    Guo, Junhong; Huang, Guohe; Wang, Xiuquan; Li, Yongping; Lin, Qianguo

    2018-02-01

    In this study, likely changes in extreme temperatures (including 16 indices) over China in response to global warming throughout the twenty-first century are investigated through the PRECIS regional climate modeling system. The PRECIS experiment is conducted at a spatial resolution of 25 km and is driven by a perturbed-physics ensemble to reflect spatial variations and model uncertainties. Simulations of present climate (1961-1990) are compared with observations to validate the model performance in reproducing historical climate over China. Results indicate that the PRECIS demonstrates reasonable skills in reproducing the spatial patterns of observed extreme temperatures over the most regions of China, especially in the east. Nevertheless, the PRECIS shows a relatively poor performance in simulating the spatial patterns of extreme temperatures in the western mountainous regions, where its driving GCM exhibits more uncertainties due to lack of insufficient observations and results in more errors in climate downscaling. Future spatio-temporal changes of extreme temperature indices are then analyzed for three successive periods (i.e., 2020s, 2050s and 2080s). The projected changes in extreme temperatures by PRECIS are well consistent with the results of the major global climate models in both spatial and temporal patterns. Furthermore, the PRECIS demonstrates a distinct superiority in providing more detailed spatial information of extreme indices. In general, all extreme indices show similar changes in spatial pattern: large changes are projected in the north while small changes are projected in the south. In contrast, the temporal patterns for all indices vary differently over future periods: the warm indices, such as SU, TR, WSDI, TX90p, TN90p and GSL are likely to increase, while the cold indices, such as ID, FD, CSDI, TX10p and TN10p, are likely to decrease with time in response to global warming. Nevertheless, the magnitudes of changes in all indices tend to

  3. Climate change impacts on wind energy resources in northern Europe

    International Nuclear Information System (INIS)

    Pryor, S.C.; Barthelmie, R.J.; Kjellstroem, E.

    2005-01-01

    Energy is a fundamental human need. Heat, light and transport for individuals combined with the needs of industry have created a demand for energy which for the last 100-200 years has been met largely through consumption of fossil fuels leading to altered atmospheric composition and modification of the global climate. These effects will be realised on local scales affecting not just temperature and precipitation but also wind, radiation and other parameters. Annual mean wind speeds and wind energy density over northern Europe were significantly higher at the end of twentieth century than during the middle portion of that century, with the majority of the change being focused on the winter season. To address questions regarding possible future wind climates we employ dynamical and empirical downscaling techniques that seek to take coarse resolution output from General Circulation Models (GCM), run to provide scenarios of future climate, and develop higher resolution regional wind climates. Analyses of the wind climate during the historical record indicate that both the dynamical approach and the empirical approach are capable of generating accurate, robust and quantitative assessments of the wind climate and energy density in northern Europe, and hence that they may be of great utility to those seeking financing for, or risk management of, wind farms in the face of climate uncertainty. The synthesis of application of these downscaling tools to climate projections for northern Europe is that there is no evidence of major changes in the wind energy resource. However, more research is required to quantify the uncertainties in developing these projections and to reduce those uncertainties. Further work should also be conducted to assess the validity of these downscaling approaches in other geographical locations. (BA)

  4. Uncertainty in simulating wheat yields under climate change

    DEFF Research Database (Denmark)

    Asseng, A; Ewert, F; Rosenzweig, C

    2013-01-01

    of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models...... than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi...

  5. Modelling the effects of climate change on streamflow in a sub-basin of the lower Churchill River

    International Nuclear Information System (INIS)

    Pryse-Phillips, Amy; Snelgrove, Ken

    2010-01-01

    Climate change is likely to affect extreme flows as well as average flows. This is an important consideration for hydroelectric power producers. This paper presented the development of an approach to assess the impact of climate changes on seasonal and average annual river flows. The main goal was to investigate how climate change will affect the hydroelectric potential of the Lower Churchill Project using different combinations of emissions scenarios, climate model output and downscaling techniques. The setup and calibration of the numerical hydrological model, WATFLOOD, were performed as preliminary work for the Pinus River basin selected as study basin. Downscaled climate data from the North America change assessment program for both current and future climate periods were analysed. The calibrated model was used to simulate the current and future period streamflow scenarios. The results showed a 13 percent increase in mean annual flows concentrated in the winter and spring seasons.

  6. Modelling the effects of climate change on streamflow in a sub-basin of the lower Churchill River

    Energy Technology Data Exchange (ETDEWEB)

    Pryse-Phillips, Amy [Hatch Ltd., St John' s, (Canada); Snelgrove, Ken [Memorial University of Newfoundland, St John' s, (Canada)

    2010-07-01

    Climate change is likely to affect extreme flows as well as average flows. This is an important consideration for hydroelectric power producers. This paper presented the development of an approach to assess the impact of climate changes on seasonal and average annual river flows. The main goal was to investigate how climate change will affect the hydroelectric potential of the Lower Churchill Project using different combinations of emissions scenarios, climate model output and downscaling techniques. The setup and calibration of the numerical hydrological model, WATFLOOD, were performed as preliminary work for the Pinus River basin selected as study basin. Downscaled climate data from the North America change assessment program for both current and future climate periods were analysed. The calibrated model was used to simulate the current and future period streamflow scenarios. The results showed a 13 percent increase in mean annual flows concentrated in the winter and spring seasons.

  7. Projected change in East Asian summer monsoon by dynamic downscaling: Moisture budget analysis

    Science.gov (United States)

    Jung, Chun-Yong; Shin, Ho-Jeong; Jang, Chan Joo; Kim, Hyung-Jin

    2015-02-01

    The summer monsoon considerably affects water resource and natural hazards including flood and drought in East Asia, one of the world's most densely populated area. In this study, we investigate future changes in summer precipitation over East Asia induced by global warming through dynamical downscaling with the Weather Research and Forecast model. We have selected a global model from the Coupled Model Intercomparison Project Phase 5 based on an objective evaluation for East Asian summer monsoon and applied its climate change under Representative Concentration Pathway 4.5 scenario to a pseudo global warming method. Unlike the previous studies that focused on a qualitative description of projected precipitation changes over East Asia, this study tried to identify the physical causes of the precipitation changes by analyzing a local moisture budget. Projected changes in precipitation over the eastern foothills area of Tibetan Plateau including Sichuan Basin and Yangtze River displayed a contrasting pattern: a decrease in its northern area and an increase in its southern area. A local moisture budget analysis indicated the precipitation increase over the southern area can be mainly attributed to an increase in horizontal wind convergence and surface evaporation. On the other hand, the precipitation decrease over the northern area can be largely explained by horizontal advection of dry air from the northern continent and by divergent wind flow. Regional changes in future precipitation in East Asia are likely to be attributed to different mechanisms which can be better resolved by regional dynamical downscaling.

  8. Modelling Snowmelt Runoff under Climate Change Scenarios in an Ungauged Mountainous Watershed, Northwest China

    Directory of Open Access Journals (Sweden)

    Yonggang Ma

    2013-01-01

    Full Text Available An integrated modeling system has been developed for analyzing the impact of climate change on snowmelt runoff in Kaidu Watershed, Northwest China. The system couples Hadley Centre Coupled Model version 3 (HadCM3 outputs with Snowmelt Runoff Model (SRM. The SRM was verified against observed discharge for outlet hydrological station of the watershed during the period from April to September in 2001 and generally performed well for Nash-Sutcliffe coefficient (EF and water balance coefficient (RE. The EF is approximately over 0.8, and the water balance error is lower than ± 10%, indicating reasonable prediction accuracy. The Statistical Downscaling Model (SDSM was used to downscale coarse outputs of HadCM3, and then the downscaled future climate data were used as inputs of the SRM. Four scenarios were considered for analyzing the climate change impact on snowmelt flow in the Kaidu Watershed. And the results indicated that watershed hydrology would alter under different climate change scenarios. The stream flow in spring is likely to increase with the increased mean temperature; the discharge and peck flow in summer decrease with the decreased precipitation under Scenarios 1 and 2. Moreover, the consideration of the change in cryosphere area would intensify the variability of stream flow under Scenarios 3 and 4. The modeling results provide useful decision support for water resources management.

  9. Application of multi-scale wavelet entropy and multi-resolution Volterra models for climatic downscaling

    Science.gov (United States)

    Sehgal, V.; Lakhanpal, A.; Maheswaran, R.; Khosa, R.; Sridhar, Venkataramana

    2018-01-01

    This study proposes a wavelet-based multi-resolution modeling approach for statistical downscaling of GCM variables to mean monthly precipitation for five locations at Krishna Basin, India. Climatic dataset from NCEP is used for training the proposed models (Jan.'69 to Dec.'94) and are applied to corresponding CanCM4 GCM variables to simulate precipitation for the validation (Jan.'95-Dec.'05) and forecast (Jan.'06-Dec.'35) periods. The observed precipitation data is obtained from the India Meteorological Department (IMD) gridded precipitation product at 0.25 degree spatial resolution. This paper proposes a novel Multi-Scale Wavelet Entropy (MWE) based approach for clustering climatic variables into suitable clusters using k-means methodology. Principal Component Analysis (PCA) is used to obtain the representative Principal Components (PC) explaining 90-95% variance for each cluster. A multi-resolution non-linear approach combining Discrete Wavelet Transform (DWT) and Second Order Volterra (SoV) is used to model the representative PCs to obtain the downscaled precipitation for each downscaling location (W-P-SoV model). The results establish that wavelet-based multi-resolution SoV models perform significantly better compared to the traditional Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN) based frameworks. It is observed that the proposed MWE-based clustering and subsequent PCA, helps reduce the dimensionality of the input climatic variables, while capturing more variability compared to stand-alone k-means (no MWE). The proposed models perform better in estimating the number of precipitation events during the non-monsoon periods whereas the models with clustering without MWE over-estimate the rainfall during the dry season.

  10. Regional climate projections for the MENA-CORDEX domain: analysis of projected temperature and precipitation changes

    Science.gov (United States)

    Hänsler, Andreas; Weber, Torsten; Eggert, Bastian; Saeed, Fahad; Jacob, Daniela

    2014-05-01

    Within the CORDEX initiative a multi-model suite of regionalized climate change information will be made available for several regions of the world. The German Climate Service Center (CSC) is taking part in this initiative by applying the regional climate model REMO to downscale global climate projections of different coupled general circulation models (GCMs) for several CORDEX domains. Also for the MENA-CORDEX domain, a set of regional climate change projections has been established at the CSC by downscaling CMIP5 projections of the Max-Planck-Institute Earth System Model (MPI-ESM) for the scenarios RCP4.5 and RCP8.5 with the regional model REMO for the time period from 1950 to 2100 to a horizontal resolution of 0.44 degree. In this study we investigate projected changes in future climate conditions over the domain towards the end of the 21st century. Focus in the analysis is given to projected changes in the temperature and rainfall characteristics and their differences for the two scenarios will be highlighted.

  11. Regional reanalysis without local data: Exploiting the downscaling paradigm

    Science.gov (United States)

    von Storch, Hans; Feser, Frauke; Geyer, Beate; Klehmet, Katharina; Li, Delei; Rockel, Burkhardt; Schubert-Frisius, Martina; Tim, Nele; Zorita, Eduardo

    2017-08-01

    This paper demonstrates two important aspects of regional dynamical downscaling of multidecadal atmospheric reanalysis. First, that in this way skillful regional descriptions of multidecadal climate variability may be constructed in regions with little or no local data. Second, that the concept of large-scale constraining allows global downscaling, so that global reanalyses may be completed by additions of consistent detail in all regions of the world. Global reanalyses suffer from inhomogeneities. However, their large-scale componenst are mostly homogeneous; Therefore, the concept of downscaling may be applied to homogeneously complement the large-scale state of the reanalyses with regional detail—wherever the condition of homogeneity of the description of large scales is fulfilled. Technically, this can be done by dynamical downscaling using a regional or global climate model, which's large scales are constrained by spectral nudging. This approach has been developed and tested for the region of Europe, and a skillful representation of regional weather risks—in particular marine risks—was identified. We have run this system in regions with reduced or absent local data coverage, such as Central Siberia, the Bohai and Yellow Sea, Southwestern Africa, and the South Atlantic. Also, a global simulation was computed, which adds regional features to prescribed global dynamics. Our cases demonstrate that spatially detailed reconstructions of the climate state and its change in the recent three to six decades add useful supplementary information to existing observational data for midlatitude and subtropical regions of the world.

  12. Mitigating the Effects of Climate Change on the Water Resources of the Columbia River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Payne, J.T.; Wood, A.W.; Hamlet, A.F.; Palmer, R.N.; Lettenmaier, D.P. [Department of Civil Engineering, 164 Wilcox Hall, P.O. Box 352700, University of Washington, Seattle, WA 98195-2700 (United States)

    2004-07-01

    The potential effects of climate change on the hydrology and water resources of the Columbia River Basin (CRB) were evaluated using simulations from the U.S. Department of Energy and National Center for Atmospheric Research Parallel Climate Model (DOE/NCAR PCM). This study focuses on three climate projections for the 21st century based on a 'business as usual' (BAU) global emissions scenario, evaluated with respect to a control climate scenario based on static 1995 emissions. Time-varying monthly PCM temperature and precipitation changes were statistically downscaled and temporally disaggregated to produce daily forcings that drove a macro-scale hydrologic simulation model of the Columbia River basin at 1/4-degree spatial resolution. For comparison with the direct statistical downscaling approach, a dynamical downscaling approach using a regional climate model (RCM) was also used to derive hydrologic model forcings for 20-year subsets from the PCM control climate (1995-2015) scenario and from the three BAU climate (2040-2060) projections. The statistically downscaled PCM scenario results were assessed for three analysis periods (denoted Periods 1-3: 2010-2039, 2040-2069, 2070-2098) in which changes in annual average temperature were +0.5, +1.3 and +2.1C, respectively, while critical winter season precipitation changes were -3, +5 and +1 percent. For RCM, the predicted temperature change for the 2040-2060 period was +1.2C and the average winter precipitation change was -3 percent, relative to the RCM control climate. Due to the modest changes in winter precipitation, temperature changes dominated the simulated hydrologic effects by reducing winter snow accumulation, thus shifting summer streamflow to the winter. The hydrologic changes caused increased competition for reservoir storage between firm hydropower and instream flow targets developed pursuant to the Endangered Species Act listing of Columbia River salmonids. We examined several alternative

  13. Examining the Performance of Statistical Downscaling Methods: Toward Matching Applications to Data Products

    Science.gov (United States)

    Dixon, K. W.; Lanzante, J. R.; Adams-Smith, D.

    2017-12-01

    Several challenges exist when seeking to use future climate model projections in a climate impacts study. A not uncommon approach is to utilize climate projection data sets derived from more than one future emissions scenario and from multiple global climate models (GCMs). The range of future climate responses represented in the set is sometimes taken to be indicative of levels of uncertainty in the projections. Yet, GCM outputs are deemed to be unsuitable for direct use in many climate impacts applications. GCM grids typically are viewed as being too coarse. Additionally, regional or local-scale biases in a GCM's simulation of the contemporary climate that may not be problematic from a global climate modeling perspective may be unacceptably large for a climate impacts application. Statistical downscaling (SD) of climate projections - a type of post-processing that uses observations to inform the refinement of GCM projections - is often used in an attempt to account for GCM biases and to provide additional spatial detail. "What downscaled climate projection is the best one to use" is a frequently asked question, but one that is not always easy to answer, as it can be dependent on stakeholder needs and expectations. Here we present results from a perfect model experimental design illustrating how SD method performance can vary not only by SD method, but how performance can also vary by location, season, climate variable of interest, amount of projected climate change, SD configuration choices, and whether one is interested in central tendencies or the tails of the distribution. Awareness of these factors can be helpful when seeking to determine the suitability of downscaled climate projections for specific climate impacts applications. It also points to the potential value of considering more than one SD data product in a study, so as to acknowledge uncertainties associated with the strengths and weaknesses of different downscaling methods.

  14. Identification of reliable gridded reference data for statistical downscaling methods in Alberta

    Science.gov (United States)

    Eum, H. I.; Gupta, A.

    2017-12-01

    Climate models provide essential information to assess impacts of climate change at regional and global scales. However, statistical downscaling methods have been applied to prepare climate model data for various applications such as hydrologic and ecologic modelling at a watershed scale. As the reliability and (spatial and temporal) resolution of statistically downscaled climate data mainly depend on a reference data, identifying the most reliable reference data is crucial for statistical downscaling. A growing number of gridded climate products are available for key climate variables which are main input data to regional modelling systems. However, inconsistencies in these climate products, for example, different combinations of climate variables, varying data domains and data lengths and data accuracy varying with physiographic characteristics of the landscape, have caused significant challenges in selecting the most suitable reference climate data for various environmental studies and modelling. Employing various observation-based daily gridded climate products available in public domain, i.e. thin plate spline regression products (ANUSPLIN and TPS), inverse distance method (Alberta Townships), and numerical climate model (North American Regional Reanalysis) and an optimum interpolation technique (Canadian Precipitation Analysis), this study evaluates the accuracy of the climate products at each grid point by comparing with the Adjusted and Homogenized Canadian Climate Data (AHCCD) observations for precipitation, minimum and maximum temperature over the province of Alberta. Based on the performance of climate products at AHCCD stations, we ranked the reliability of these publically available climate products corresponding to the elevations of stations discretized into several classes. According to the rank of climate products for each elevation class, we identified the most reliable climate products based on the elevation of target points. A web-based system

  15. Precipitation Dynamical Downscaling Over the Great Plains

    Science.gov (United States)

    Hu, Xiao-Ming; Xue, Ming; McPherson, Renee A.; Martin, Elinor; Rosendahl, Derek H.; Qiao, Lei

    2018-02-01

    Detailed, regional climate projections, particularly for precipitation, are critical for many applications. Accurate precipitation downscaling in the United States Great Plains remains a great challenge for most Regional Climate Models, particularly for warm months. Most previous dynamic downscaling simulations significantly underestimate warm-season precipitation in the region. This study aims to achieve a better precipitation downscaling in the Great Plains with the Weather Research and Forecast (WRF) model. To this end, WRF simulations with different physics schemes and nudging strategies are first conducted for a representative warm season. Results show that different cumulus schemes lead to more pronounced difference in simulated precipitation than other tested physics schemes. Simply choosing different physics schemes is not enough to alleviate the dry bias over the southern Great Plains, which is related to an anticyclonic circulation anomaly over the central and western parts of continental U.S. in the simulations. Spectral nudging emerges as an effective solution for alleviating the precipitation bias. Spectral nudging ensures that large and synoptic-scale circulations are faithfully reproduced while still allowing WRF to develop small-scale dynamics, thus effectively suppressing the large-scale circulation anomaly in the downscaling. As a result, a better precipitation downscaling is achieved. With the carefully validated configurations, WRF downscaling is conducted for 1980-2015. The downscaling captures well the spatial distribution of monthly climatology precipitation and the monthly/yearly variability, showing improvement over at least two previously published precipitation downscaling studies. With the improved precipitation downscaling, a better hydrological simulation over the trans-state Oologah watershed is also achieved.

  16. The Polar WRF Downscaled Historical and Projected Twenty-First Century Climate for the Coast and Foothills of Arctic Alaska

    Directory of Open Access Journals (Sweden)

    Lei Cai

    2018-01-01

    Full Text Available Climate change is most pronounced in the northern high latitude region. Yet, climate observations are unable to fully capture regional-scale dynamics due to the sparse weather station coverage, which limits our ability to make reliable climate-based assessments. A set of simulated data products was therefore developed for the North Slope of Alaska through a dynamical downscaling approach. The polar-optimized Weather Research and Forecast (Polar WRF model was forced by three sources: The ERA-interim reanalysis data (for 1979–2014, the Community Earth System Model 1.0 (CESM1.0 historical simulation (for 1950–2005, and the CESM1.0 projected (for 2006–2100 simulations in two Representative Concentration Pathways (RCP4.5 and RCP8.5 scenarios. Climatic variables were produced in a 10-km grid spacing and a 3-h interval. The ERA-interim forced WRF (ERA-WRF proves the value of dynamical downscaling, which yields more realistic topographical-induced precipitation and air temperature, as well as corrects underestimations in observed precipitation. In summary, dry and cold biases to the north of the Brooks Range are presented in ERA-WRF, while CESM forced WRF (CESM-WRF holds wet and warm biases in its historical period. A linear scaling method allowed for an adjustment of the biases, while keeping the majority of the variability and extreme values of modeled precipitation and air temperature. CESM-WRF under RCP 4.5 scenario projects smaller increase in precipitation and air temperature than observed in the historical CESM-WRF product, while the CESM-WRF under RCP 8.5 scenario shows larger changes. The fine spatial and temporal resolution, long temporal coverage, and multi-scenario projections jointly make the dataset appropriate to address a myriad of physical and biological changes occurring on the North Slope of Alaska.

  17. The polar WRF downscaled historical and projected 21st century climate for the coast and foothills of Arctic Alaska

    Science.gov (United States)

    Cai, Lei; Alexeev, Vladimir A.; Arp, Christopher D.; Jones, Benjamin M.; Liljedahl, Anna K.; Gädeke, Anne

    2018-01-01

    Climate change is most pronounced in the northern high latitude region. Yet, climate observations are unable to fully capture regional-scale dynamics due to the sparse weather station coverage, which limits our ability to make reliable climate-based assessments. A set of simulated data products was therefore developed for the North Slope of Alaska through a dynamical downscaling approach. The polar-optimized Weather Research & Forecast (Polar WRF) model was forced by three sources: The ERA-interim reanalysis data (for 1979-2014), the Community Earth System Model 1.0 (CESM1.0) historical simulation (for 1950-2005), and the CESM1.0 projected (for 2006-2100) simulations in two Representative Concentration Pathways (RCP4.5 and RCP8.5) scenarios. Climatic variables were produced in a 10-km grid spacing and a 3-hour interval. The ERA-interim forced WRF (ERA-WRF) proves the value of dynamical downscaling, which yields more realistic topographical-induced precipitation and air temperature, as well as corrects underestimations in observed precipitation. In summary, dry and cold biases to the north of the Brooks Range are presented in ERA-WRF, while CESM forced WRF (CESM-WRF) holds wet and warm biases in its historical period. A linear scaling method allowed for an adjustment of the biases, while keeping the majority of the variability and extreme values of modeled precipitation and air temperature. CESM-WRF under RCP 4.5 scenario projects smaller increase in precipitation and air temperature than observed in the historical CESM-WRF product, while the CESM-WRF under RCP8.5 scenario shows larger changes. The fine spatial and temporal resolution, long temporal coverage, and multi-scenario projections jointly make the dataset appropriate to address a myriad of physical and biological changes occurring on the North Slope of Alaska.

  18. Statistical and dynamical downscaling assessments of precipitation extremes in the Mediterranean area

    Energy Technology Data Exchange (ETDEWEB)

    Hertig, Elke; Seubert, Stefanie; Jacobeit, Jucundus [Augsburg Univ. (Germany). Inst. of Geography; Paxian, Andreas; Vogt, Gernot; Paeth, Heiko [Wuerzburg Univ. (Germany). Inst. of Geography and Geology

    2012-02-15

    Extreme precipitation events in the Mediterranean area have been defined by different percentile-based indices of extreme precipitation for autumn and winter: the number of events exceeding the 95{sup th} percentile of daily precipitation, percentage, total amount, and mean daily intensity of precipitation from these events. Results from statistical downscaling applying canonical correlation analysis as well as from dynamical downscaling using the regional climate model REMO are mapped for the 1961-1990 baseline period as well as for the magnitude of change for the future time slice 2021-2050 in relation to the former period. Direct output of the coupled global circulation model ECHAM5 is used as an additional source of information. A qualitative comparison of the two different downscaling techniques indicates that under the present climate both the dynamical and the statistical techniques have skill to reproduce extreme precipitation in the Mediterranean area. A good representation of the frequency of extreme precipitation events arises from the statistical downscaling approach, whereas the intensity of such events is adequately modelled by the dynamical downscaling. Concerning the change of extreme precipitation in the Mediterranean area until the mid-21{sup st} century, it is projected that the frequency of extreme precipitation events will decrease in most parts of the Mediterranean area in autumn and winter. The change of the mean intensity of such events shows a rather heterogeneous pattern with intensity increases in winter most likely at topographical elevations exposed to the West, where the uplift of humid air profits by the increase of atmospheric moisture under climate change conditions. For the precipitation total from events exceeding the 95{sup th} percentile of daily precipitation, widespread decreases are indicated in autumn, whereas in winter increases occur over the western part of the Iberian Peninsula and southern France, and reductions over

  19. Micro climate Simulation in new Town `Hashtgerd' using downscaled climate data

    Science.gov (United States)

    Sodoudi, S.

    2010-12-01

    One of the objectives of climatological part of project Young Cities ‘Developing Energy-Efficient Urban Fabric in the Tehran-Karaj Region’ is to simulate the micro climate (with 1m resolution) in 35ha of new town Hashtgerd, which is located 65 km far from mega city Tehran. The Project aims are developing, implementing and evaluating building and planning schemes and technologies which allow to plan and build sustainable, energy-efficient and climate sensible form mass housing settlements in arid and semi-arid regions (energy-efficient fabric). Climate sensitive form also means designing and planning for climate change and its related effects for Hashtgerd New Town. By configuration of buildings and open spaces according to solar radiation, wind and vegetation, climate sensitive urban form can create outdoor thermal comfort. To simulate the climate on small spatial scales, the micro climate model Envi-met has been used to simulate the micro climate in 35 ha. The Eulerian model ENVI-met is a micro-scale climate model which gives information about the influence of architecture and buildings as well as vegetation and green area on the micro climate up to 1 m resolution. Envi-met has been run with information from topography, downscaled climate data with neuro-fuzzy method, meteorological measurements, building height and different vegetation variants (low and high number of trees) The first results were compared with each other and show In semi-arid climates the protection from solar radiation is of major importance. This can be achieved by implementation of vegetation and geometry of buildings. Due to the geographical location and related sun’s orbit the degree of shading in this area is rather low. Technical construction such awnings have to be implemented. A second important factor is wind. The design follows the idea to block the prevailing winds from west and northwest as well as the hot and dusty winds in summer time from the southeast but at the same time

  20. The Added Value to Global Model Projections of Climate Change by Dynamical Downscaling: A Case Study over the Continental U.S. using the GISS-ModelE2 and WRF Models

    Science.gov (United States)

    Racherla, P. N.; Shindell, D. T.; Faluvegi, G. S.

    2012-01-01

    Dynamical downscaling is being increasingly used for climate change studies, wherein the climates simulated by a coupled atmosphere-ocean general circulation model (AOGCM) for a historical and a future (projected) decade are used to drive a regional climate model (RCM) over a specific area. While previous studies have demonstrated that RCMs can add value to AOGCM-simulated climatologies over different world regions, it is unclear as to whether or not this translates to a better reproduction of the observed climate change therein. We address this issue over the continental U.S. using the GISS-ModelE2 and WRF models, a state-of-the-science AOGCM and RCM, respectively. As configured here, the RCM does not effect holistic improvement in the seasonally and regionally averaged surface air temperature or precipitation for the individual historical decades. Insofar as the climate change between the two decades is concerned, the RCM does improve upon the AOGCM when nudged in the domain proper, but only modestly so. Further, the analysis indicates that there is not a strong relationship between skill in capturing climatological means and skill in capturing climate change. Though additional research would be needed to demonstrate the robustness of this finding in AOGCM/RCM models generally, the evidence indicates that, for climate change studies, the most important factor is the skill of the driving global model itself, suggesting that highest priority should be given to improving the long-range climate skill of AOGCMs.

  1. Impact of Climate Change Effects on Contamination of Cereal Grains with Deoxynivalenol

    DEFF Research Database (Denmark)

    van der Fels-Klerx, H J; van Asselt, E D; Madsen, M S

    2013-01-01

    Climate change is expected to aggravate feed and food safety problems of crops; however, quantitative estimates are scarce. This study aimed to estimate impacts of climate change effects on deoxynivalenol contamination of wheat and maize grown in the Netherlands by 2040. Quantitative modelling...... the impacts of climate change effects on food safety, and of considering both direct and indirect effects when assessing climate change impacts on crops and related food safety hazards....... two different global and regional climate model combinations were used. A weather generator was applied for downscaling climate data to local conditions. Crop phenology models and prediction models for DON contamination used, each for winter wheat and grain maize. Results showed that flowering...

  2. Evaluation of the climate change impact on wind resources in Taiwan Strait

    International Nuclear Information System (INIS)

    Chang, Tsang-Jung; Chen, Chun-Lung; Tu, Yi-Long; Yeh, Hung-Te; Wu, Yu-Ting

    2015-01-01

    Highlights: • We propose a new statistical downscaling framework to evaluate the climate change impact on wind resources in Taiwan Strait. • The statistical model relates Weibull distribution parameters to output of a GCM model and regression coefficients. • Validation of the simulated wind speed distribution presents an acceptable agreement with meteorological data. • Three chosen GCMs show the same tendency that the eastern half of Taiwan Strait stores higher wind resources. - Abstract: A new statistical downscaling framework is proposed to evaluate the climate change impact on wind resources in Taiwan Strait. In this framework, a two-parameter Weibull distribution function is used to estimate the wind energy density distribution in the strait. An empirically statistical downscaling model that relates the Weibull parameters to output of a General Circulation Model (GCM) and regression coefficients is adopted. The regression coefficients are calculated using wind speed results obtained from a past climate (1981–2000) simulation reconstructed by a Weather Research and Forecasting (WRF) model. These WRF-reconstructed wind speed results are validated with data collected at a weather station on an islet inside the strait. The comparison shows that the probability distributions of the monthly wind speeds obtained from WRF-reconstructed and measured wind speed data are in acceptable agreement, with small discrepancies of 10.3% and 7.9% for the shape and scale parameters of the Weibull distribution, respectively. The statistical downscaling framework with output from three chosen GCMs (i.e., ECHAM5, CM2.1 and CGCM2.3.2) is applied to evaluate the wind energy density distribution in Taiwan Strait for three future climate periods of 2011–2040, 2041–2070, and 2071–2100. The results show that the wind energy density distributions in the future climate periods are higher in the eastern half of Taiwan Strait, but reduce slightly by 3% compared with that in the

  3. Climate change impacts on rainfall extremes and urban drainage: state-of-the-art review

    Science.gov (United States)

    Willems, Patrick; Olsson, Jonas; Arnbjerg-Nielsen, Karsten; Beecham, Simon; Pathirana, Assela; Bülow Gregersen, Ida; Madsen, Henrik; Nguyen, Van-Thanh-Van

    2013-04-01

    Under the umbrella of the IWA/IAHR Joint Committee on Urban Drainage, the International Working Group on Urban Rainfall (IGUR) has reviewed existing methodologies for the analysis of long-term historical and future trends in urban rainfall extremes and their effects on urban drainage systems, due to anthropogenic climate change. Current practises have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend/impact results. The review considers the following aspects: Analysis of long-term historical trends due to anthropogenic climate change: influence of data limitation, instrumental or environmental changes, interannual variations and longer term climate oscillations on trend testing results. Analysis of long-term future trends due to anthropogenic climate change: by complementing empirical historical data with the results from physically-based climate models, dynamic downscaling to the urban scale by means of Limited Area Models (LAMs) including explicitly small-scale cloud processes; validation of RCM/GCM results for local conditions accounting for natural variability, limited length of the available time series, difference in spatial scales, and influence of climate oscillations; statistical downscaling methods combined with bias correction; uncertainties associated with the climate forcing scenarios, the climate models, the initial states and the statistical downscaling step; uncertainties in the impact models (e.g. runoff peak flows, flood or surcharge frequencies, and CSO frequencies and volumes), including the impacts of more extreme conditions than considered during impact model calibration and validation. Implications for urban drainage infrastructure design and management: upgrading of the urban drainage system as part of a program of routine and scheduled replacement and renewal of aging infrastructure; how to account for the uncertainties; flexible and sustainable solutions

  4. A Projection of the Effects of the Climate Change Induced by Increased CO2 on Extreme Hydrologic Events in the Western U.S

    International Nuclear Information System (INIS)

    Kim, Jinwon

    2005-01-01

    The effects of increased atmospheric CO2 on the frequency of extreme hydrologic events in the Western United States (WUS) for the 10-yr period of 2040-2049 are examined using dynamically downscaled regional climate change signals. For assessing the changes in the occurrence of hydrologic extremes, downscaled climate change signals in daily precipitation and runoff that are likely to indicate the occurrence of extreme events are examined. Downscaled climate change signals in the selected indicators suggest that the global warming induced by increased CO2 is likely to increase extreme hydrologic events in the WUS. The indicators for heavy precipitation events show largest increases in the mountainous regions of the northern California Coastal Range and the Sierra Nevada. Increased cold season precipitation and increased rainfall-portion of precipitation at the expense of snowfall in the projected warmer climate result in large increases in high runoff events in the Sierra Nevada river basins that are already prone to cold season flooding in todays climate. The projected changes in the hydrologic characteristics in the WUS are mainly associated with higher freezing levels in the warmer climate and increases in the cold season water vapor influx from the Pacific Ocean

  5. The impact of climate change on tourism in Germany, the UK and Ireland: a simulation study

    NARCIS (Netherlands)

    Hamilton, Jacqueline; Tol, Richard

    2007-01-01

    We downscale the results of a global tourism simulation model at a national resolution to a regional resolution. We use this to investigate the impact of climate change on the regions of Germany, Ireland and the UK. Because of climate change, tourists from all three countries would spend more

  6. A survey of statistical downscaling techniques

    Energy Technology Data Exchange (ETDEWEB)

    Zorita, E.; Storch, H. von [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    1997-12-31

    The derivation of regional information from integrations of coarse-resolution General Circulation Models (GCM) is generally referred to as downscaling. The most relevant statistical downscaling techniques are described here and some particular examples are worked out in detail. They are classified into three main groups: linear methods, classification methods and deterministic non-linear methods. Their performance in a particular example, winter rainfall in the Iberian peninsula, is compared to a simple downscaling analog method. It is found that the analog method performs equally well than the more complicated methods. Downscaling analysis can be also used as a tool to validate regional performance of global climate models by analyzing the covariability of the simulated large-scale climate and the regional climates. (orig.) [Deutsch] Die Ableitung regionaler Information aus Integrationen grob aufgeloester Klimamodelle wird als `Regionalisierung` bezeichnet. Dieser Beitrag beschreibt die wichtigsten statistischen Regionalisierungsverfahren und gibt darueberhinaus einige detaillierte Beispiele. Regionalisierungsverfahren lassen sich in drei Hauptgruppen klassifizieren: lineare Verfahren, Klassifikationsverfahren und nicht-lineare deterministische Verfahren. Diese Methoden werden auf den Niederschlag auf der iberischen Halbinsel angewandt und mit den Ergebnissen eines einfachen Analog-Modells verglichen. Es wird festgestellt, dass die Ergebnisse der komplizierteren Verfahren im wesentlichen auch mit der Analog-Methode erzielt werden koennen. Eine weitere Anwendung der Regionalisierungsmethoden besteht in der Validierung globaler Klimamodelle, indem die simulierte und die beobachtete Kovariabilitaet zwischen dem grosskaligen und dem regionalen Klima miteinander verglichen wird. (orig.)

  7. A survey of statistical downscaling techniques

    Energy Technology Data Exchange (ETDEWEB)

    Zorita, E; Storch, H von [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    1998-12-31

    The derivation of regional information from integrations of coarse-resolution General Circulation Models (GCM) is generally referred to as downscaling. The most relevant statistical downscaling techniques are described here and some particular examples are worked out in detail. They are classified into three main groups: linear methods, classification methods and deterministic non-linear methods. Their performance in a particular example, winter rainfall in the Iberian peninsula, is compared to a simple downscaling analog method. It is found that the analog method performs equally well than the more complicated methods. Downscaling analysis can be also used as a tool to validate regional performance of global climate models by analyzing the covariability of the simulated large-scale climate and the regional climates. (orig.) [Deutsch] Die Ableitung regionaler Information aus Integrationen grob aufgeloester Klimamodelle wird als `Regionalisierung` bezeichnet. Dieser Beitrag beschreibt die wichtigsten statistischen Regionalisierungsverfahren und gibt darueberhinaus einige detaillierte Beispiele. Regionalisierungsverfahren lassen sich in drei Hauptgruppen klassifizieren: lineare Verfahren, Klassifikationsverfahren und nicht-lineare deterministische Verfahren. Diese Methoden werden auf den Niederschlag auf der iberischen Halbinsel angewandt und mit den Ergebnissen eines einfachen Analog-Modells verglichen. Es wird festgestellt, dass die Ergebnisse der komplizierteren Verfahren im wesentlichen auch mit der Analog-Methode erzielt werden koennen. Eine weitere Anwendung der Regionalisierungsmethoden besteht in der Validierung globaler Klimamodelle, indem die simulierte und die beobachtete Kovariabilitaet zwischen dem grosskaligen und dem regionalen Klima miteinander verglichen wird. (orig.)

  8. Hydrologic impacts of climate change on the Nile River basin: Implications of the 2007 IPCC climate scenarios

    NARCIS (Netherlands)

    Beyene, T.; Lettenmaier, D.P.; Kabat, P.

    2010-01-01

    We assess the potential impacts of climate change on the hydrology and water resources of the Nile River basin using a macroscale hydrology model. Model inputs are bias corrected and spatially downscaled 21st Century simulations from 11 General Circulation Models (GCMs) and two global emissions

  9. Downscaled climate change projections over northeastern South Africa: Implications for streamflow

    CSIR Research Space (South Africa)

    Mkhwanazi, M

    2015-09-01

    Full Text Available health, agriculture and biodiversity. A comprehensive assessment and understanding of the long-term impacts of climate change on water resources is therefore vital. This information, if applied in planning processes and decision making can... of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B...

  10. Assessment of climate change impact on water resources in the Pungwe river basin

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Lotta; Samuelsson, Patrick; Kjellstroem, Erik (Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden)), e-mail: lotta.andersson@smhi.se

    2011-01-15

    The Rossby Centre Regional Climate Model (RCA3) and the hydrological model HBV were linked to assess climate change impacts on water resources in the Pungwe basin until 2050. RCA3 was capable of simulating the most important aspects of the climate for a control period at the regional scale. At the subbasin scale, additional scaling was needed. Three climate change experiments using ECHAM4-A2, B2 and CCSM3-B2 as input to RCA3 were carried out. According to the simulations annual rainfall in 2050 would be reduced by approximately 10% with increasing interannual variability of rainfall and dry season river flow and later onset of the rainy season. The ECHAM4-A2 driven experiment did also indicate a slight increase of high flows. If the results indeed reflect the future, they will worsen the already critical situation for water resources, regarding both floods and droughts. Uncertainties, however in the downscaled scenarios make it difficult to prioritize adaptation options. This calls for inclusion of more climate change experiments, in an ensemble of climate scenarios possibly by using a combination of dynamical and statistical downscaling of general circulation models, as well as extending the simulations to 2100 to further ensure robustness of the signal

  11. Uncertainty in Simulating Wheat Yields Under Climate Change

    Science.gov (United States)

    Asseng, S.; Ewert, F.; Rosenzweig, Cynthia; Jones, J. W.; Hatfield, J. W.; Ruane, A. C.; Boote, K. J.; Thornburn, P. J.; Rotter, R. P.; Cammarano, D.; hide

    2013-01-01

    Projections of climate change impacts on crop yields are inherently uncertain1. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate2. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models1,3 are difficult4. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.

  12. Precipitation projections under GCMs perspective and Turkish Water Foundation (TWF) statistical downscaling model procedures

    Science.gov (United States)

    Dabanlı, İsmail; Şen, Zekai

    2018-04-01

    The statistical climate downscaling model by the Turkish Water Foundation (TWF) is further developed and applied to a set of monthly precipitation records. The model is structured by two phases as spatial (regional) and temporal downscaling of global circulation model (GCM) scenarios. The TWF model takes into consideration the regional dependence function (RDF) for spatial structure and Markov whitening process (MWP) for temporal characteristics of the records to set projections. The impact of climate change on monthly precipitations is studied by downscaling Intergovernmental Panel on Climate Change-Special Report on Emission Scenarios (IPCC-SRES) A2 and B2 emission scenarios from Max Plank Institute (EH40PYC) and Hadley Center (HadCM3). The main purposes are to explain the TWF statistical climate downscaling model procedures and to expose the validation tests, which are rewarded in same specifications as "very good" for all stations except one (Suhut) station in the Akarcay basin that is in the west central part of Turkey. Eventhough, the validation score is just a bit lower at the Suhut station, the results are "satisfactory." It is, therefore, possible to say that the TWF model has reasonably acceptable skill for highly accurate estimation regarding standard deviation ratio (SDR), Nash-Sutcliffe efficiency (NSE), and percent bias (PBIAS) criteria. Based on the validated model, precipitation predictions are generated from 2011 to 2100 by using 30-year reference observation period (1981-2010). Precipitation arithmetic average and standard deviation have less than 5% error for EH40PYC and HadCM3 SRES (A2 and B2) scenarios.

  13. Applying downscaled Global Climate Model data to a groundwater model of the Suwannee River Basin, Florida, USA

    Science.gov (United States)

    Swain, Eric D.; Davis, J. Hal

    2016-01-01

    The application of Global Climate Model (GCM) output to a hydrologic model allows for comparisons between simulated recent and future conditions and provides insight into the dynamics of hydrology as it may be affected by climate change. A previously developed numerical model of the Suwannee River Basin, Florida, USA, was modified and calibrated to represent transient conditions. A simulation of recent conditions was developed for the 372-month period 1970-2000 and was compared with a simulation of future conditions for a similar-length period 2039-2069, which uses downscaled GCM data. The MODFLOW groundwater-simulation code was used in both of these simulations, and two different MODFLOW boundary condition “packages” (River and Streamflow-Routing Packages) were used to represent interactions between surface-water and groundwater features.

  14. The increased atmospheric greenhouse effect and regional climate change

    Energy Technology Data Exchange (ETDEWEB)

    Groenaas, S. [Bergen Univ. (Norway)

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. The main information for predicting future climate changes comes from integrating coupled climate models of the atmosphere, ocean and cryosphere. Regional climate change may be studied from the global integrations, however, resolution is coarse because of insufficient computer power. Attempts are being made to get more regional details out of the global integrations by ``downscaling`` the latter. This can be done in two ways. Firstly, limited area models with high resolution are applied, driven by the global results as boundary values. Secondly, statistical relationships have been found between observed meteorological parameters, like temperature and precipitation, and analyzed large scale gridded fields. The derived relations are then used on similar data from climate runs to give local interpretations. A review is given of literature on recent observations of climate variations and on predicted regional climate change. 18 refs., 4 figs.

  15. Climate change: challenges and opportunities for global health.

    Science.gov (United States)

    Patz, Jonathan A; Frumkin, Howard; Holloway, Tracey; Vimont, Daniel J; Haines, Andrew

    2014-10-15

    Health is inextricably linked to climate change. It is important for clinicians to understand this relationship in order to discuss associated health risks with their patients and to inform public policy. To provide new US-based temperature projections from downscaled climate modeling and to review recent studies on health risks related to climate change and the cobenefits of efforts to mitigate greenhouse gas emissions. We searched PubMed and Google Scholar from 2009 to 2014 for articles related to climate change and health, focused on governmental reports, predictive models, and empirical epidemiological studies. Of the more than 250 abstracts reviewed, 56 articles were selected. In addition, we analyzed climate data averaged over 13 climate models and based future projections on downscaled probability distributions of the daily maximum temperature for 2046-2065. We also compared maximum daily 8-hour average ozone with air temperature data taken from the National Oceanic and Atmospheric Administration, National Climate Data Center. By 2050, many US cities may experience more frequent extreme heat days. For example, New York and Milwaukee may have 3 times their current average number of days hotter than 32°C (90°F). High temperatures are also strongly associated with ozone exceedance days, for example, in Chicago, Illinois. The adverse health aspects related to climate change may include heat-related disorders, such as heat stress and economic consequences of reduced work capacity; respiratory disorders, including those exacerbated by air pollution and aeroallergens, such as asthma; infectious diseases, including vectorborne diseases and waterborne diseases, such as childhood gastrointestinal diseases; food insecurity, including reduced crop yields and an increase in plant diseases; and mental health disorders, such as posttraumatic stress disorder and depression, that are associated with natural disasters. Substantial health and economic cobenefits could be

  16. Statistical downscaling of regional climate scenarios for the French Alps : Impacts on snow cover

    Science.gov (United States)

    Rousselot, M.; Durand, Y.; Giraud, G.; Mérindol, L.; Déqué, M.; Sanchez, E.; Pagé, C.; Hasan, A.

    2010-12-01

    Mountain areas are particularly vulnerable to climate change. Owing to the complexity of mountain terrain, climate research at scales relevant for impacts studies and decisive for stakeholders is challenging. A possible way to bridge the gap between these fine scales and those of the general circulation models (GCMs) consists of combining high-resolution simulations of Regional Climate Models (RCMs) to statistical downscaling methods. The present work is based on such an approach. It aims at investigating the impacts of climate change on snow cover in the French Alps for the periods 2021-2050 and 2071-2100 under several IPCC hypotheses. An analogue method based on high resolution atmospheric fields from various RCMs and climate reanalyses is used to simulate local climate scenarios. These scenarios, which provide meteorological parameters relevant for snowpack evolution, subsequently feed the CROCUS snow model. In these simulations, various sources of uncertainties are thus considered (several greenhouse gases emission scenarios and RCMs). Results are obtained for different regions of the French Alps at various altitudes. For all scenarios, temperature increase is relatively uniform over the Alps. This regional warming is larger than that generally modeled at the global scale (IPCC, 2007), and particularly strong in summer. Annual precipitation amounts seem to decrease, mainly as a result of decreasing precipitation trends in summer and fall. As a result of these climatic evolutions, there is a general decrease of the mean winter snow depth and seasonal snow duration for all massifs. Winter snow depths are particularly reduced in the Northern Alps. However, the impact on seasonal snow duration is more significant in the Southern and Extreme Southern Alps, since these regions are already characterized by small winter snow depths at low elevations. Reference : IPCC (2007a). Climate change 2007 : The physical science basis. Contribution of working group I to the

  17. Locally Downscaled and Spatially Customizable Climate Data for Historical and Future Periods for North America.

    Science.gov (United States)

    Wang, Tongli; Hamann, Andreas; Spittlehouse, Dave; Carroll, Carlos

    2016-01-01

    Large volumes of gridded climate data have become available in recent years including interpolated historical data from weather stations and future predictions from general circulation models. These datasets, however, are at various spatial resolutions that need to be converted to scales meaningful for applications such as climate change risk and impact assessments or sample-based ecological research. Extracting climate data for specific locations from large datasets is not a trivial task and typically requires advanced GIS and data management skills. In this study, we developed a software package, ClimateNA, that facilitates this task and provides a user-friendly interface suitable for resource managers and decision makers as well as scientists. The software locally downscales historical and future monthly climate data layers into scale-free point estimates of climate values for the entire North American continent. The software also calculates a large number of biologically relevant climate variables that are usually derived from daily weather data. ClimateNA covers 1) 104 years of historical data (1901-2014) in monthly, annual, decadal and 30-year time steps; 2) three paleoclimatic periods (Last Glacial Maximum, Mid Holocene and Last Millennium); 3) three future periods (2020s, 2050s and 2080s); and 4) annual time-series of model projections for 2011-2100. Multiple general circulation models (GCMs) were included for both paleo and future periods, and two representative concentration pathways (RCP4.5 and 8.5) were chosen for future climate data.

  18. Climate Downscaling over Nordeste, Brazil, Using the NCEP RSM97.

    Science.gov (United States)

    Sun, Liqiang; Ferran Moncunill, David; Li, Huilan; Divino Moura, Antonio; de Assis de Souza Filho, Francisco

    2005-02-01

    The NCEP Regional Spectral Model (RSM), with horizontal resolution of 60 km, was used to downscale the ECHAM4.5 AGCM (T42) simulations forced with observed SSTs over northeast Brazil. An ensemble of 10 runs for the period January-June 1971-2000 was used in this study. The RSM can resolve the spatial patterns of observed seasonal precipitation and capture the interannual variability of observed seasonal precipitation as well. The AGCM bias in displacement of the Atlantic ITCZ is partially corrected in the RSM. The RSM probability distribution function of seasonal precipitation anomalies is in better agreement with observations than that of the driving AGCM. Good potential prediction skills are demonstrated by the RSM in predicting the interannual variability of regional seasonal precipitation. The RSM can also capture the interannual variability of observed precipitation at intraseasonal time scales, such as precipitation intensity distribution and dry spells. A drought index and a flooding index were adopted to indicate the severity of drought and flooding conditions, and their interannual variability was reproduced by the RSM. The overall RSM performance in the downscaled climate of the ECHAM4.5 AGCM is satisfactory over Nordeste. The primary deficiency is a systematic dry bias for precipitation simulation.

  19. CMIP5-downscaled projections for the NW European Shelf Seas: initial results and insights into uncertainties

    Science.gov (United States)

    Tinker, Jonathan; Palmer, Matthew; Lowe, Jason; Howard, Tom

    2017-04-01

    The North Sea, and wider Northwest European Shelf seas (NWS) are economically, environmentally, and culturally important for a number of European countries. They are protected by European legislation, often with specific reference to the potential impacts of climate change. Coastal climate change projections are an important source of information for effective management of European Shelf Seas. For example, potential changes in the marine environment are a key component of the climate change risk assessments (CCRAs) carried out under the UK Climate Change Act We use the NEMO shelf seas model combined with CMIP5 climate model and EURO-CORDEX regional atmospheric model data to generate new simulations of the NWS. Building on previous work using a climate model perturbed physics ensemble and the POLCOMS, this new model setup is used to provide first indication of the uncertainties associated with: (i) the driving climate model; (ii) the atmospheric downscaling model (iii) the shelf seas downscaling model; (iv) the choice of climate change scenario. Our analysis considers a range of physical marine impacts and the drivers of coastal variability and change, including sea level and the propagation of open ocean signals onto the shelf. The simulations are being carried out as part of the UK Climate Projections 2018 (UKCP18) and will feed into the following UK CCRA.

  20. Risk assessments of regional climate change over Europe: generation of probabilistic ensemble and uncertainty assessment for EURO-CODEX

    Science.gov (United States)

    Yuan, J.; Kopp, R. E.

    2017-12-01

    Quantitative risk analysis of regional climate change is crucial for risk management and impact assessment of climate change. Two major challenges to assessing the risks of climate change are: CMIP5 model runs, which drive EURO-CODEX downscaling runs, do not cover the full range of uncertainty of future projections; Climate models may underestimate the probability of tail risks (i.e. extreme events). To overcome the difficulties, this study offers a viable avenue, where a set of probabilistic climate ensemble is generated using the Surrogate/Model Mixed Ensemble (SMME) method. The probabilistic ensembles for temperature and precipitation are used to assess the range of uncertainty covered by five bias-corrected simulations from the high-resolution (0.11º) EURO-CODEX database, which are selected by the PESETA (The Projection of Economic impacts of climate change in Sectors of the European Union based on bottom-up Analysis) III project. Results show that the distribution of SMME ensemble is notably wider than both distribution of raw ensemble of GCMs and the spread of the five EURO-CORDEX in RCP8.5. Tail risks are well presented by the SMME ensemble. Both SMME ensemble and EURO-CORDEX projections are aggregated to administrative level, and are integrated into impact functions of PESETA III to assess climate risks in Europe. To further evaluate the uncertainties introduced by the downscaling process, we compare the 5 runs from EURO-CORDEX with runs from the corresponding GCMs. Time series of regional mean, spatial patterns, and climate indices are examined for the future climate (2080-2099) deviating from the present climate (1981-2010). The downscaling processes do not appear to be trend-preserving, e.g. the increase in regional mean temperature from EURO-CORDEX is slower than that from the corresponding GCM. The spatial pattern comparison reveals that the differences between each pair of GCM and EURO-CORDEX are small in winter. In summer, the temperatures of EURO

  1. Implications of climate change on landslide hazard in Central Italy.

    Science.gov (United States)

    Alvioli, Massimiliano; Melillo, Massimo; Guzzetti, Fausto; Rossi, Mauro; Palazzi, Elisa; von Hardenberg, Jost; Brunetti, Maria Teresa; Peruccacci, Silvia

    2018-07-15

    The relation between climate change and its potential effects on the stability of slopes remains an open issue. For rainfall induced landslides, the point consists in determining the effects of the projected changes in the duration and amounts of rainfall that can initiate slope failures. We investigated the relationship between fine-scale climate projections obtained by downscaling and the expected modifications in landslide occurrence in Central Italy. We used rainfall measurements taken by 56 rain gauges in the 9-year period 2003-2011, and the RainFARM technique to generate downscaled synthetic rainfall fields from regional climate model projections for the 14-year calibration period 2002-2015, and for the 40-year projection period 2010-2049. Using a specific algorithm, we extracted a number of rainfall events, i.e. rainfall periods separated by dry periods of no or negligible amount of rain, from the measured and the synthetic rainfall series. Then, we used the selected rainfall events to forcethe Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Model TRIGRS v. 2.1. We analyzed the results in terms of variations (or lack of variations) in the rainfall thresholds for the possible initiation of landslides, in the probability distribution of landslide size (area), and in landslide hazard. Results showed that the downscaled rainfall fields obtained by RainFARM can be used to single out rainfall events, and to force the slope stability model. Results further showed that while the rainfall thresholds for landslide occurrence are expected to change in future scenarios, the probability distribution of landslide areas are not. We infer that landslide hazard in the study area is expected to change in response to the projected variations in the rainfall conditions. We expect our results to contribute to regional investigations of the expected impact of projected climate variations on slope stability conditions and on landslide hazards. Copyright

  2. An Improved Dynamical Downscaling Method with GCM Bias Corrections and Its Validation with 30 Years of Climate Simulations

    KAUST Repository

    Xu, Zhongfeng; Yang, Zong-Liang

    2012-01-01

    An improved dynamical downscaling method (IDD) with general circulation model (GCM) bias corrections is developed and assessed over North America. A set of regional climate simulations is performed with the Weather Research and Forecasting Model

  3. A synthesis of regional climate change simulations - A Scandinavian perspective

    DEFF Research Database (Denmark)

    Christensen, J. H.; Räinsänen, J.; Iversen, T.

    2001-01-01

    Four downscaling experiments of regional climate change for the Nordic countries have been conducted with three different regional climate models (RCMs). A short synthesis of the outcome of the suite of experiments is presented as an ensemble, reflecting the different driving atmosphere-ocean...... general circulation model (AOGCM) conditions, RCM model resolution and domain size, and choice of emission scenarios. This allows the sources of uncertainties in the projections to be assessed. At the same time analysis of the climate change signal for temperature and precipitation over the period 1990......-2050 reveals strong similarities. In particular, all experiments in the suite simulate changes in the precipitation distribution towards a higher frequency of heavy precipitation....

  4. Downscaling climate change scenarios for apple pest and disease modeling in Switzerland

    Science.gov (United States)

    Hirschi, M.; Stoeckli, S.; Dubrovsky, M.; Spirig, C.; Calanca, P.; Rotach, M. W.; Fischer, A. M.; Duffy, B.; Samietz, J.

    2012-02-01

    As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously non-affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology, depending on actual weather conditions, and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980-2009 and 2045-2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella) and fire blight (Erwinia amylovora) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045-2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1

  5. Modeling future flows of the Volta River system: Impacts of climate change and socio-economic changes.

    Science.gov (United States)

    Jin, Li; Whitehead, Paul G; Appeaning Addo, Kwasi; Amisigo, Barnabas; Macadam, Ian; Janes, Tamara; Crossman, Jill; Nicholls, Robert J; McCartney, Matthew; Rodda, Harvey J E

    2018-05-14

    As the scientific consensus concerning global climate change has increased in recent decades, research on potential impacts of climate change on water resources has been given high importance. However in Sub-Saharan Africa, few studies have fully evaluated the potential implications of climate change to their water resource systems. The Volta River is one of the major rivers in Africa covering six riparian countries (mainly Ghana and Burkina Faso). It is a principal water source for approximately 24 million people in the region. The catchment is primarily agricultural providing food supplies to rural areas, demonstrating the classic water, food, energy nexus. In this study an Integrated Catchment Model (INCA) was applied to the whole Volta River system to simulate flow in the rivers and at the outlet of the artificial Lake Volta. High-resolution climate scenarios downscaled from three different Global Climate Models (CNRM-CM5, HadGEM2-ES and CanESM2), have been used to drive the INCA model and to assess changes in flow by 2050s and 2090s under the high climate forcing scenario RCP8.5. Results show that peak flows during the monsoon months could increase into the future. The duration of high flow could become longer compared to the recent condition. In addition, we considered three different socio-economic scenarios. As an example, under the combined impact from climate change from downscaling CNRM-CM5 and medium+ (high economic growth) socio-economic changes, the extreme high flows (Q5) of the Black Volta River are projected to increase 11% and 36% at 2050s and 2090s, respectively. Lake Volta outflow would increase +1% and +5% at 2050s and 2090s, respectively, under the same scenario. The effects of changing socio-economic conditions on flow are minor compared to the climate change impact. These results will provide valuable information assisting future water resource development and adaptive strategies in the Volta Basin. Copyright © 2018 Elsevier B.V. All rights

  6. Bioclim Deliverable D6a: regional climatic characteristics for the European sites at specific times: the dynamical down-scaling

    International Nuclear Information System (INIS)

    2003-01-01

    The overall aim of BIOCLIM is to assess the possible long-term impacts due to climate change on the safety of radioactive waste repositories in deep formations. This aim is addressed through the following specific objectives: - Development of practical and innovative strategies for representing sequential climatic changes to the geosphere-biosphere system for existing sites over central Europe, addressing the timescale of one million years, which is relevant to the geological disposal of radioactive waste. - Exploration and evaluation of the potential effects of climate change on the nature of the biosphere systems used to assess the environmental impact. - Dissemination of information on the new methodologies and the results obtained from the project among the international waste management community for use in performance assessments of potential or planned radioactive waste repositories. The BIOCLIM project is designed to advance the state-of-the-art of biosphere modelling for use in Performance Assessments. Therefore, two strategies are developed for representing sequential climatic changes to geosphere-biosphere systems. The hierarchical strategy successively uses a hierarchy of climate models. These models vary from simple 2-D models, which simulate interactions between a few aspects of the Earth system at a rough surface resolution, through General Circulation Model (GCM) and vegetation model, which simulate in great detail the dynamics and physics of the atmosphere, ocean and biosphere, to regional models, which focus on the European regions and sites of interest. Moreover, rule-based and statistical down-scaling procedures are also considered. Comparisons are provided in terms of climate and vegetation cover at the selected times and for the study regions. The integrated strategy consists of using integrated climate models, representing all the physical mechanisms important for long-term continuous climate variations, to simulate the climate evolution over

  7. Future Climate Change Impact Assessment of River Flows at Two Watersheds of Peninsular Malaysia

    Science.gov (United States)

    Ercan, A.; Ishida, K.; Kavvas, M. L.; Chen, Z. R.; Jang, S.; Amin, M. Z. M.; Shaaban, A. J.

    2016-12-01

    Impacts of climate change on the river flows under future climate change conditions were assessed over Muda and Dungun watersheds of Peninsular Malaysia by means of a coupled regional climate model and a physically-based hydrology model utilizing an ensemble of 15 different future climate realizations. Coarse resolution GCMs' future projections covering a wide range of emission scenarios were dynamically downscaled to 6 km resolution over the study area. Hydrologic simulations of the two selected watersheds were carried out at hillslope-scale and at hourly increments.

  8. Bioclim Deliverable D8b: development of the physical/statistical down-scaling methodology and application to climate model Climber for BIOCLIM Work-package 3

    International Nuclear Information System (INIS)

    2003-01-01

    The overall aim of BIOCLIM is to assess the possible long term impacts due to climate change on the safety of radioactive waste repositories in deep formations. The main aim of this deliverable is to provide time series of climatic variables at the high resolution as needed by performance assessment (PA) of radioactive waste repositories, on the basis of coarse output from the CLIMBER-GREMLINS climate model. The climatological variables studied here are long-term (monthly) mean temperature and precipitation, as these are the main variables of interest for performance assessment. CLIMBER-GREMLINS is an earth-system model of intermediate complexity (EMIC), designed for long climate simulations (glacial cycles). Thus, this model has a coarse resolution (about 50 degrees in longitude) and other limitations which are sketched in this report. For the purpose of performance assessment, the climatological variables are required at scales pertinent for the knowledge of the conditions at the depository site. In this work, the final resolution is that of the best available global gridded present-day climatology, which is 1/6 degree in both longitude and latitude. To obtain climate-change information at this high resolution on the basis of the climate model outputs, a 2-step down-scaling method is designed. First, physical considerations are used to define variables which are expected to have links which climatological values; secondly a statistical model is used to find the links between these variables and the high-resolution climatology of temperature and precipitation. Thus the method is termed as 'physical/statistical': it involves physically based assumptions to compute predictors from model variables and then relies on statistics to find empirical links between these predictors and the climatology. The simple connection of coarse model results to regional values can not be done on a purely empirical way because the model does not provide enough information - it is both

  9. Future Temperatures and Precipitations in the Arid Northern-Central Chile: A Multi-Model Downscaling Approach

    Science.gov (United States)

    Souvignet, M.; Heinrich, J.

    2010-03-01

    Downscaling of global climate outputs is necessary to transfer projections of potential climate change scenarios to local levels. This is of special interest to dry mountainous areas, which are particularly vulnerable to climate change due to risks of reduced freshwater availability. These areas play a key role for hydrology since they usually receive the highest local precipitation rates stored in form of snow and glaciers. In the central-northern Chile (Norte Chico, 26-33ºS), where agriculture still serves as a backbone of the economy as well as ensures the well being of people, the knowledge of water resources availability is essential. The region is characterised by a semiarid climate with a mean annual precipitation inferior to 100mm. Moreover, the local climate is also highly influenced by the ENSO phenomenon, which accounts for the strong inter-annual variability in precipitation patterns. Although historical and spatially extensive precipitation data in the headwaters of the basins in this region are not readily available, records at coastal stations show worrisome trends. For instance, the average precipitation in La Serena, the most important city located in the Coquimbo Region, has decreased dramatically in the past 100 years. The 30-year monthly average has decreased from 170 mm in the early 20th century to values less than 80 mm nowadays. Climate Change is expected to strengthen this pattern in the region, and therefore strongly influence local hydrological patterns. The objectives of this study are i) to develop climate change scenarios (2046-2099) for the Norte Chico using multi-model predictions in terms of temperatures and precipitations, and ii) to compare the efficiency of two downscaling techniques in arid mountainous regions. In addition, this study aims at iii) providing decision makers with sound analysis of potential impact of Climate Change on streamflow in the region. For the present study, future local climate scenarios were developed

  10. Downscaling climate change scenarios for apple pest and disease modeling in Switzerland

    Directory of Open Access Journals (Sweden)

    M. Hirschi

    2012-02-01

    Full Text Available As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously non-affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology, depending on actual weather conditions, and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980–2009 and 2045–2074 time periods climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella and fire blight (Erwinia amylovora are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045–2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern

  11. Downscaling biogeochemistry in the Benguela eastern boundary current

    Science.gov (United States)

    Machu, E.; Goubanova, K.; Le Vu, B.; Gutknecht, E.; Garçon, V.

    2015-06-01

    Dynamical downscaling is developed to better predict the regional impact of global changes in the framework of scenarios. As an intermediary step towards this objective we used the Regional Ocean Modeling System (ROMS) to downscale a low resolution coupled atmosphere-ocean global circulation model (AOGCM; IPSL-CM4) for simulating the recent-past dynamics and biogeochemistry of the Benguela eastern boundary current. Both physical and biogeochemical improvements are discussed over the present climate scenario (1980-1999) under the light of downscaling. Despite biases introduced through boundary conditions (atmospheric and oceanic), the physical and biogeochemical processes in the Benguela Upwelling System (BUS) have been improved by the ROMS model, relative to the IPSL-CM4 simulation. Nevertheless, using coarse-resolution AOGCM daily atmospheric forcing interpolated on ROMS grids resulted in a shifted SST seasonality in the southern BUS, a deterioration of the northern Benguela region and a very shallow mixed layer depth over the whole regional domain. We then investigated the effect of wind downscaling on ROMS solution. Together with a finer resolution of dynamical processes and of bathymetric features (continental shelf and Walvis Ridge), wind downscaling allowed correction of the seasonality, the mixed layer depth, and provided a better circulation over the domain and substantial modifications of subsurface biogeochemical properties. It has also changed the structure of the lower trophic levels by shifting large offshore areas from autotrophic to heterotrophic regimes with potential important consequences on ecosystem functioning. The regional downscaling also improved the phytoplankton distribution and the southward extension of low oxygen waters in the Northern Benguela. It allowed simulating low oxygen events in the northern BUS and highlighted a potential upscaling effect related to the nitrogen irrigation from the productive BUS towards the tropical

  12. Impact of Future Climate Change on Wheat Production: A Simulated Case for China’s Wheat System

    OpenAIRE

    Dengpan Xiao; Huizi Bai; De Li Liu

    2018-01-01

    With regard to global climate change due to increasing concentration in greenhouse gases, particularly carbon dioxide (CO2), it is important to examine its potential impact on crop development and production. We used statistically-downscaled climate data from 28 Global Climate Models (GCMs) and the Agricultural Production Systems sIMulator (APSIM)–Wheat model to simulate the impact of future climate change on wheat production. Two future scenarios (RCP4.5 and RCP8.5) were used for atmos...

  13. An Observation-base investigation of nudging in WRF for downscaling surface climate information to 12-km Grid Spacing

    Science.gov (United States)

    Previous research has demonstrated the ability to use the Weather Research and Forecast (WRF) model and contemporary dynamical downscaling methods to refine global climate modeling results to a horizontal resolution of 36 km. Environmental managers and urban planners have expre...

  14. How Does a Regional Climate Model Modify the Projected Climate Change Signal of the Driving GCM: A Study over Different CORDEX Regions Using REMO

    Directory of Open Access Journals (Sweden)

    Claas Teichmann

    2013-06-01

    Full Text Available Global and regional climate model simulations are frequently used for regional climate change assessments and in climate impact modeling studies. To reflect the inherent and methodological uncertainties in climate modeling, the assessment of regional climate change requires ensemble simulations from different global and regional climate model combinations. To interpret the spread of simulated results, it is useful to understand how the climate change signal is modified in the GCM-RCM modelmodelgeneral circulation model-regional climate model (GCM-RCM chain. This kind of information can also be useful for impact modelers; for the process of experiment design and when interpreting model results. In this study, we investigate how the simulated historical and future climate of the Max-Planck-Institute earth system model (MPI-ESM is modified by dynamic downscaling with the regional model REMO in different world regions. The historical climate simulations for 1950–2005 are driven by observed anthropogenic forcing. The climate projections are driven by projected anthropogenic forcing according to different Representative Concentration Pathways (RCPs. The global simulations are downscaled with REMO over the Coordinated Regional Climate Downscaling Experiment (CORDEX domains Africa, Europe, South America and West Asia from 2006–2100. This unique set of simulations allows for climate type specific analysis across multiple world regions and for multi-scenarios. We used a classification of climate types by Köppen-Trewartha to define evaluation regions with certain climate conditions. A systematic comparison of near-surface temperature and precipitation simulated by the regional and the global model is done. In general, the historical time period is well represented by the GCM and the RCM. Some different biases occur in the RCM compared to the GCM as in the Amazon Basin, northern Africa and the West Asian domain. Both models project similar warming

  15. Application of statistical downscaling technique for the production of wine grapes (Vitis vinifera L.) in Spain

    Science.gov (United States)

    Gaitán Fernández, E.; García Moreno, R.; Pino Otín, M. R.; Ribalaygua Batalla, J.

    2012-04-01

    Climate and soil are two of the most important limiting factors for agricultural production. Nowadays climate change has been documented in many geographical locations affecting different cropping systems. The General Circulation Models (GCM) has become important tools to simulate the more relevant aspects of the climate expected for the XXI century in the frame of climatic change. These models are able to reproduce the general features of the atmospheric dynamic but their low resolution (about 200 Km) avoids a proper simulation of lower scale meteorological effects. Downscaling techniques allow overcoming this problem by adapting the model outcomes to local scale. In this context, FIC (Fundación para la Investigación del Clima) has developed a statistical downscaling technique based on a two step analogue methods. This methodology has been broadly tested on national and international environments leading to excellent results on future climate models. In a collaboration project, this statistical downscaling technique was applied to predict future scenarios for the grape growing systems in Spain. The application of such model is very important to predict expected climate for the different growing crops, mainly for grape, where the success of different varieties are highly related to climate and soil. The model allowed the implementation of agricultural conservation practices in the crop production, detecting highly sensible areas to negative impacts produced by any modification of climate in the different regions, mainly those protected with protected designation of origin, and the definition of new production areas with optimal edaphoclimatic conditions for the different varieties.

  16. Potential impact of climate change on air pollution-related human health effects.

    Science.gov (United States)

    Tagaris, Efthimios; Liao, Kuo-Jen; Delucia, Anthony J; Deck, Leland; Amar, Praveen; Russell, Armistead G

    2009-07-01

    The potential health impact of ambient ozone and PM2.5 concentrations modulated by climate change over the United States is investigated using combined atmospheric and health modeling. Regional air quality modeling for 2001 and 2050 was conducted using CMAQ Modeling System with meteorology from the GISS Global Climate Model, downscaled regionally using MM5,keeping boundary conditions of air pollutants, emission sources, population, activity levels, and pollution controls constant. BenMap was employed to estimate the air pollution health outcomes at the county, state, and national level for 2050 caused by the effect of meteorology on future ozone and PM2.5 concentrations. The changes in calculated annual mean PM2.5 concentrations show a relatively modest change with positive and negative responses (increasing PM2.5 levels across the northeastern U.S.) although average ozone levels slightly decrease across the northern sections of the U.S., and increase across the southern tier. Results suggest that climate change driven air quality-related health effects will be adversely affected in more then 2/3 of the continental U.S. Changes in health effects induced by PM2.5 dominate compared to those caused by ozone. PM2.5-induced premature mortality is about 15 times higher then that due to ozone. Nationally the analysis suggests approximately 4000 additional annual premature deaths due to climate change impacts on PM2.5 vs 300 due to climate change-induced ozone changes. However, the impacts vary spatially. Increased premature mortality due to elevated ozone concentrations will be offset by lower mortality from reductions in PM2.5 in 11 states. Uncertainties related to different emissions projections used to simulate future climate, and the uncertainties forecasting the meteorology, are large although there are potentially important unaddressed uncertainties (e.g., downscaling, speciation, interaction, exposure, and concentration-response function of the human health studies).

  17. Spatial and Temporal Responses of Soil Erosion to Climate Change Impacts in a Transnational Watershed in Southeast Asia

    OpenAIRE

    Pham Quy Giang; Le Thi Giang; Kosuke Toshiki

    2017-01-01

    It has been widely predicted that Southeast Asia is among the regions facing the most severe climate change impacts. Despite this forecast, little research has been published on the potential impacts of climate change on soil erosion in this region. This study focused on the impact of climate change on spatial and temporal patterns of soil erosion in the Laos–Vietnam transnational Upper Ca River Watershed. The Soil and Water Assessment Tool (SWAT) coupled with downscaled global climate models...

  18. Impact of Climate Change on Natural Snow Reliability, Snowmaking Capacities, and Wind Conditions of Ski Resorts in Northeast Turkey: A Dynamical Downscaling Approach

    Directory of Open Access Journals (Sweden)

    Osman Cenk Demiroglu

    2016-04-01

    Full Text Available Many ski resorts worldwide are going through deteriorating snow cover conditions due to anthropogenic warming trends. As the natural and the artificially supported, i.e., technical, snow reliability of ski resorts diminish, the industry approaches a deadlock. For this reason, impact assessment studies have become vital for understanding vulnerability of ski tourism. This study considers three resorts at one of the rapidly emerging ski destinations, Northeast Turkey, for snow reliability analyses. Initially one global circulation model is dynamically downscaled by using the regional climate model RegCM4.4 for 1971–2000 and 2021–2050 periods along the RCP4.5 greenhouse gas concentration pathway. Next, the projected climate outputs are converted into indicators of natural snow reliability, snowmaking capacity, and wind conditions. The results show an overall decline in the frequencies of naturally snow reliable days and snowmaking capacities between the two periods. Despite the decrease, only the lower altitudes of one ski resort would face the risk of losing natural snow reliability and snowmaking could still compensate for forming the base layer before the critical New Year’s week. On the other hand, adverse high wind conditions improve as to reduce the number of lift closure days at all resorts. Overall, this particular region seems to be relatively resilient against climate change.

  19. Assessing climate change impacts on water resources in remote mountain regions

    Science.gov (United States)

    Buytaert, Wouter; De Bièvre, Bert

    2013-04-01

    From a water resources perspective, remote mountain regions are often considered as a basket case. They are often regions where poverty is often interlocked with multiple threats to water supply, data scarcity, and high uncertainties. In these environments, it is paramount to generate locally relevant knowledge about water resources and how they impact local livelihoods. This is often problematic. Existing environmental data collection tends to be geographically biased towards more densely populated regions, and prioritized towards strategic economic activities. Data may also be locked behind institutional and technological barriers. These issues create a "knowledge trap" for data-poor regions, which is especially acute in remote and hard-to-reach mountain regions. We present lessons learned from a decade of water resources research in remote mountain regions of the Andes, Africa and South Asia. We review the entire tool chain of assessing climate change impacts on water resources, including the interrogation and downscaling of global circulation models, translating climate variables in water availability and access, and assessing local vulnerability. In global circulation models, mountain regions often stand out as regions of high uncertainties and lack of agreement of future trends. This is partly a technical artifact because of the different resolution and representation of mountain topography, but it also highlights fundamental uncertainties in climate impacts on mountain climate. This problem also affects downscaling efforts, because regional climate models should be run in very high spatial resolution to resolve local gradients, which is computationally very expensive. At the same time statistical downscaling methods may fail to find significant relations between local climate properties and synoptic processes. Further uncertainties are introduced when downscaled climate variables such as precipitation and temperature are to be translated in hydrologically

  20. Costa Rica Rainfall in Future Climate Change Scenarios

    Science.gov (United States)

    Castillo Rodriguez, R. A., Sr.; Amador, J. A.; Duran-Quesada, A. M.

    2017-12-01

    Studies of intraseasonal and annual cycles of meteorological variables, using projections of climate change, are nowadays extremely important to improve regional socio-economic planning for countries. This is particularly true in Costa Rica, as Central America has been identified as a climate change hot spot. Today many of the economic activities in the region, especially those related to agriculture, tourism and hydroelectric power generation are linked to the seasonal cycle of precipitation. Changes in rainfall (mm/day) and in the diurnal temperature range (°C) for the periods 1950-2005 and 2006-2100 were investigated using the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) constructed using the CMIP5 (Coupled Model Intercomparison Project version 5) data. Differences between the multi-model ensembles of the two prospective scenarios (RCP 4.5 and RCP 8.5) and the retrospective baseline scenario were computed. This study highlights Costa Rica as an inflexion point of the climate change in the region and also suggests future drying conditions.

  1. Application of SDSM and LARS-WG for simulating and downscaling of rainfall and temperature

    Science.gov (United States)

    Hassan, Zulkarnain; Shamsudin, Supiah; Harun, Sobri

    2014-04-01

    Climate change is believed to have significant impacts on the water basin and region, such as in a runoff and hydrological system. However, impact studies on the water basin and region are difficult, since general circulation models (GCMs), which are widely used to simulate future climate scenarios, do not provide reliable hours of daily series rainfall and temperature for hydrological modeling. There is a technique named as "downscaling techniques", which can derive reliable hour of daily series rainfall and temperature due to climate scenarios from the GCMs output. In this study, statistical downscaling models are used to generate the possible future values of local meteorological variables such as rainfall and temperature in the selected stations in Peninsular of Malaysia. The models are: (1) statistical downscaling model (SDSM) that utilized the regression models and stochastic weather generators and (2) Long Ashton research station weather generator (LARS-WG) that only utilized the stochastic weather generators. The LARS-WG and SDSM models obviously are feasible methods to be used as tools in quantifying effects of climate change condition in a local scale. SDSM yields a better performance compared to LARS-WG, except SDSM is slightly underestimated for the wet and dry spell lengths. Although both models do not provide identical results, the time series generated by both methods indicate a general increasing trend in the mean daily temperature values. Meanwhile, the trend of the daily rainfall is not similar to each other, with SDSM giving a relatively higher change of annual rainfall compared to LARS-WG.

  2. A regional climate model for northern Europe: model description and results from the downscaling of two GCM control simulations

    Science.gov (United States)

    Rummukainen, M.; Räisänen, J.; Bringfelt, B.; Ullerstig, A.; Omstedt, A.; Willén, U.; Hansson, U.; Jones, C.

    This work presents a regional climate model, the Rossby Centre regional Atmospheric model (RCA1), recently developed from the High Resolution Limited Area Model (HIRLAM). The changes in the HIRLAM parametrizations, necessary for climate-length integrations, are described. A regional Baltic Sea ocean model and a modeling system for the Nordic inland lake systems have been coupled with RCA1. The coupled system has been used to downscale 10-year time slices from two different general circulation model (GCM) simulations to provide high-resolution regional interpretation of large-scale modeling. A selection of the results from the control runs, i.e. the present-day climate simulations, are presented: large-scale free atmospheric fields, the surface temperature and precipitation results and results for the on-line simulated regional ocean and lake surface climates. The regional model modifies the surface climate description compared to the GCM simulations, but it is also substantially affected by the biases in the GCM simulations. The regional model also improves the representation of the regional ocean and the inland lakes, compared to the GCM results.

  3. A regional climate model for northern Europe: model description and results from the downscaling of two GCM control simulations

    Energy Technology Data Exchange (ETDEWEB)

    Rummukainen, M.; Raeisaenen, J.; Bringfelt, B.; Ullerstig, A.; Omstedt, A.; Willen, U.; Hansson, U.; Jones, C. [Rossby Centre, Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden)

    2001-03-01

    This work presents a regional climate model, the Rossby Centre regional Atmospheric model (RCA1), recently developed from the High Resolution Limited Area Model (HIRLAM). The changes in the HIRLAM parametrizations, necessary for climate-length integrations, are described. A regional Baltic Sea ocean model and a modeling system for the Nordic inland lake systems have been coupled with RCA1. The coupled system has been used to downscale 10-year time slices from two different general circulation model (GCM) simulations to provide high-resolution regional interpretation of large-scale modeling. A selection of the results from the control runs, i.e. the present-day climate simulations, are presented: large-scale free atmospheric fields, the surface temperature and precipitation results and results for the on-line simulated regional ocean and lake surface climates. The regional model modifies the surface climate description compared to the GCM simulations, but it is also substantially affected by the biases in the GCM simulations. The regional model also improves the representation of the regional ocean and the inland lakes, compared to the GCM results. (orig.)

  4. Projection of spatial and temporal changes of rainfall in Sarawak of Borneo Island using statistical downscaling of CMIP5 models

    Science.gov (United States)

    Sa'adi, Zulfaqar; Shahid, Shamsuddin; Chung, Eun-Sung; Ismail, Tarmizi bin

    2017-11-01

    This study assesses the possible changes in rainfall patterns of Sarawak in Borneo Island due to climate change through statistical downscaling of General Circulation Models (GCM) projections. Available in-situ observed rainfall data were used to downscale the future rainfall from ensembles of 20 GCMs of Coupled Model Intercomparison Project phase 5 (CMIP5) for four Representative Concentration Pathways (RCP) scenarios, namely, RCP2.6, RCP4.5, RCP6.0 and RCP8.5. Model Output Statistics (MOS) based downscaling models were developed using two data mining approaches known as Random Forest (RF) and Support Vector Machine (SVM). The SVM was found to downscale all GCMs with normalized mean square error (NMSE) of 48.2-75.2 and skill score (SS) of 0.94-0.98 during validation. The results show that the future projection of the annual rainfalls is increasing and decreasing on the region-based and catchment-based basis due to the influence of the monsoon season affecting the coast of Sarawak. The ensemble mean of GCMs projections reveals the increased and decreased mean of annual precipitations at 33 stations with the rate of 0.1% to 19.6% and one station with the rate of - 7.9% to - 3.1%, respectively under all RCP scenarios. The remaining 15 stations showed inconsistency neither increasing nor decreasing at the rate of - 5.6% to 5.2%, but mainly showing a trend of decreasing rainfall during the first period (2010-2039) followed by increasing rainfall for the period of 2070-2099.

  5. Climate change and potato production in contrasting South African agro-ecosystems 1. Effects on land and water use efficiencies

    CSIR Research Space (South Africa)

    Haverkort, AJ

    2013-03-01

    Full Text Available Explorations of the impact of climate change on potential potato yields were obtained by downscaling the projections of six different coupled climate models to high spatial resolution over southern Africa. The simulations of daily maximum...

  6. Non-linear statistical downscaling of present and LGM precipitation and temperatures over Europe

    Directory of Open Access Journals (Sweden)

    M. Vrac

    2007-12-01

    Full Text Available Local-scale climate information is increasingly needed for the study of past, present and future climate changes. In this study we develop a non-linear statistical downscaling method to generate local temperatures and precipitation values from large-scale variables of a Earth System Model of Intermediate Complexity (here CLIMBER. Our statistical downscaling scheme is based on the concept of Generalized Additive Models (GAMs, capturing non-linearities via non-parametric techniques. Our GAMs are calibrated on the present Western Europe climate. For this region, annual GAMs (i.e. models based on 12 monthly values per location are fitted by combining two types of large-scale explanatory variables: geographical (e.g. topographical information and physical (i.e. entirely simulated by the CLIMBER model.

    To evaluate the adequacy of the non-linear transfer functions fitted on the present Western European climate, they are applied to different spatial and temporal large-scale conditions. Local projections for present North America and Northern Europe climates are obtained and compared to local observations. This partially addresses the issue of spatial robustness of our transfer functions by answering the question "does our statistical model remain valid when applied to large-scale climate conditions from a region different from the one used for calibration?". To asses their temporal performances, local projections for the Last Glacial Maximum period are derived and compared to local reconstructions and General Circulation Model outputs.

    Our downscaling methodology performs adequately for the Western Europe climate. Concerning the spatial and temporal evaluations, it does not behave as well for Northern America and Northern Europe climates because the calibration domain may be too different from the targeted regions. The physical explanatory variables alone are not capable of downscaling realistic values. However, the inclusion of

  7. Downscaled Climate Change Projections for the Southern Colorado Plateau: Variability and Implications for Vegetation Changes

    Science.gov (United States)

    Garfin, G. M.; Eischeid, J. K.; Cole, K. L.; Ironside, K.; Cobb, N. S.

    2008-12-01

    Recent and rapid forest mortality in western North America and associated changes in fire frequency and area burned are among the chief concerns of ecosystem managers. These examples of climate change surprises demonstrate nonlinear and threshold ecosystem responses to increased temperatures and severe drought. A consistent management request from climate change adaptation workshops held during the last four years in the southwest U.S. is for region-specific estimates of climate and vegetation change, in order to provide guidance for management of federal and state forest, range, and riparian preserves and land holdings. Partly in response to these concerns, and partly in the interest of improving knowledge of potential ecosystem changes and their relationships with observed changes and changes demonstrated in the paleoecological record, we developed a set of integrated climate and ecosystem analyses. We selected five of twenty-two GCMs from the PCMDI archive of IPCC AR4 model runs, based on their approximations of observed critical seasonality for vegetation in the Southern Colorado Plateau (domain: 35°- 38°N, 114°-107°W), centered on the Four Corners states. We used three key seasons in our analysis, winter (November-March), pre-monsoon (May-June), and monsoon (July- September). Projections of monthly and seasonal temperature and precipitation from our five-model ensemble indicate steadily increasing temperatures in our region of interest during the twenty-first century. By 2050, the ensemble projects increases of 3.0°C during May and June, months critical for drought stress and tree mortality, and 4.5-5.0°C by 2090. Projected temperature changes for months during the heart of winter (December and January) are on the order of 2.5°C by 2050 and 3.0°C by 2090; such changes are likely to affect snow hydrology in middle to low elevations in the Southern Colorado Plateau. Summer temperature increases are on the order of 2.5°C (2050) and 4.0°C (2090). The

  8. Comparison among different downscaling approaches in building water scarcity scenarios in an Alpine basin.

    Science.gov (United States)

    Guyennon, Nicolas; Romano, Emanuele; Mariani, Davide; Bruna Petrangeli, Anna; Portoghese, Ivan

    2014-05-01

    Various downscaling techniques have been developed to bridge the scale gap between global climate models (GCMs) and finer scales required to assess hydrological impacts of climate change. Although statistical downscaling (SD) has been traditionally seen as an alternative to dynamical downscaling (DD), recent works on statistical downscaling have aimed to combine the benefits of these two approaches. The overall objective of this study is to assess whether a DD processing performed before the SD is able to provide more reliable climate forcing for crop water demand models. The case study presented here focuses on the Maggiore Lake (Alpine region), with a watershed of approximately 4750 km2 and whose waters are mainly used for irrigation purposes in the Lombardia and Piemonte regions. The fifth-generation ECHAM model from the Max-Planck-Institute for Meteorology was adopted as GCM. The DD was carried out with the Protheus system (ENEA), while the SD was performed through a monthly quantile-quantile correction of the precipitation data collected in the period 1950-2012 by the 19 rainfall gauges located in the watershed area (some of them operating not continuously during the study period). The relationship between the precipitation regime and the inflow to the reservoir is obtained through a simple multilinear regression model, validated using both precipitation data and inflow measurements to the lake in the period 1996-2012 then, the same relation has been applied to the control (20c) and scenario (a1b) simulations downscaled by means of the different downscaling approaches (DD, SD and combined DD-SD). The resulting forcing has been used as input to a daily water balance model taking into account the inflow to the lake, the demand for irrigation and the reservoir management policies. The impact of the different downscaling approaches on the water budget scenarios has been evaluated in terms of occurrence, duration and intensity of water scarcity periods.

  9. Formulating and testing a method for perturbing precipitation time series to reflect anticipated climatic changes

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Georgiadis, Stylianos; Gregersen, Ida Bülow

    2017-01-01

    Urban water infrastructure has very long planning horizons, and planning is thus very dependent on reliable estimates of the impacts of climate change. Many urban water systems are designed using time series with a high temporal resolution. To assess the impact of climate change on these systems......, similarly high-resolution precipitation time series for future climate are necessary. Climate models cannot at their current resolutions provide these time series at the relevant scales. Known methods for stochastic downscaling of climate change to urban hydrological scales have known shortcomings...... in constructing realistic climate-changed precipitation time series at the sub-hourly scale. In the present study we present a deterministic methodology to perturb historical precipitation time series at the minute scale to reflect non-linear expectations to climate change. The methodology shows good skill...

  10. Wave climate change, coastline response and hazard prediction in New South Wales, Australia

    International Nuclear Information System (INIS)

    Goodwin, Ian D.; Verdon, Danielle; Cowell, Peter

    2007-01-01

    Full text: Full text: Considerable research effort has been directed towards understanding and the gross prediction of shoreline response to sea level rise (eg. Cowell ef a/. 2003a, b). In contrast, synoptic prediction of changes in the planform configuration of shorelines in response to changes in wind and wave climates over many decades has been limited by the lack of geohistorical data on shoreline alignment evolution and long time series of wave climate. This paper presents new data sets on monthly mean wave direction variability based on: a. Waverider buoy data; b. a reconstruction of monthly mid-shelf wave direction, 1877 to 2002 AD from historical MSLP data (Goodwin 2005); and c. a multi-decadal reconstruction of wave direction, in association with the Interdecadal Pacific Oscillation and the Southern Annular Mode of climate variability, covering the past millennium. A model of coastline response to the wave climate variability is presented for northern and central New South Wales (NSW) for decadal to multi-decadal time scales, and is based on instrumental and geohistorical data. The sensitivity of the coastline position and alignment, and beach state to mean and extreme wave climate changes is demonstrated (e.g. Goodwin et al. 2006). State changes in geometric shoreline alignment rotation, sand volume (progradation/recession) for NSW and mean wave direction, are shown to be in agreement with the low-frequency change in Pacific-wide climate. Synoptic typing of climate patterns using Self Organised Mapping methods is used to downscale CSIRO GCM output for this century. The synoptic types are correlated to instrumental wave climate data and coastal behaviour. The shifts in downscaled synoptic types for 2030 and 2070 AD are then used as the basis for predicting mean wave climate changes, coastal behaviour and hazards along the NSW coastline. The associated coastal hazards relate to the definition of coastal land loss through rising sea levels and shoreline

  11. Hydrological response to climate change for Gilgel Abay River, in the Lake Tana Basin -Upper Blue Nile Basin of Ethiopia.

    Science.gov (United States)

    Dile, Yihun Taddele; Berndtsson, Ronny; Setegn, Shimelis G

    2013-01-01

    Climate change is likely to have severe effects on water availability in Ethiopia. The aim of the present study was to assess the impact of climate change on the Gilgel Abay River, Upper Blue Nile Basin. The Statistical Downscaling Tool (SDSM) was used to downscale the HadCM3 (Hadley centre Climate Model 3) Global Circulation Model (GCM) scenario data into finer scale resolution. The Soil and Water Assessment Tool (SWAT) was set up, calibrated, and validated. SDSM downscaled climate outputs were used as an input to the SWAT model. The climate projection analysis was done by dividing the period 2010-2100 into three time windows with each 30 years of data. The period 1990-2001 was taken as the baseline period against which comparison was made. Results showed that annual mean precipitation may decrease in the first 30-year period but increase in the following two 30-year periods. The decrease in mean monthly precipitation may be as much as about -30% during 2010-2040 but the increase may be more than +30% in 2070-2100. The impact of climate change may cause a decrease in mean monthly flow volume between -40% to -50% during 2010-2040 but may increase by more than the double during 2070-2100. Climate change appears to have negligible effect on low flow conditions of the river. Seasonal mean flow volume, however, may increase by more than the double and +30% to +40% for the Belg (small rainy season) and Kiremit (main rainy season) periods, respectively. Overall, it appears that climate change will result in an annual increase in flow volume for the Gilgel Abay River. The increase in flow is likely to have considerable importance for local small scale irrigation activities. Moreover, it will help harnessing a significant amount of water for ongoing dam projects in the Gilgel Abay River Basin.

  12. Hydrological response to climate change for Gilgel Abay River, in the Lake Tana Basin -Upper Blue Nile Basin of Ethiopia.

    Directory of Open Access Journals (Sweden)

    Yihun Taddele Dile

    Full Text Available Climate change is likely to have severe effects on water availability in Ethiopia. The aim of the present study was to assess the impact of climate change on the Gilgel Abay River, Upper Blue Nile Basin. The Statistical Downscaling Tool (SDSM was used to downscale the HadCM3 (Hadley centre Climate Model 3 Global Circulation Model (GCM scenario data into finer scale resolution. The Soil and Water Assessment Tool (SWAT was set up, calibrated, and validated. SDSM downscaled climate outputs were used as an input to the SWAT model. The climate projection analysis was done by dividing the period 2010-2100 into three time windows with each 30 years of data. The period 1990-2001 was taken as the baseline period against which comparison was made. Results showed that annual mean precipitation may decrease in the first 30-year period but increase in the following two 30-year periods. The decrease in mean monthly precipitation may be as much as about -30% during 2010-2040 but the increase may be more than +30% in 2070-2100. The impact of climate change may cause a decrease in mean monthly flow volume between -40% to -50% during 2010-2040 but may increase by more than the double during 2070-2100. Climate change appears to have negligible effect on low flow conditions of the river. Seasonal mean flow volume, however, may increase by more than the double and +30% to +40% for the Belg (small rainy season and Kiremit (main rainy season periods, respectively. Overall, it appears that climate change will result in an annual increase in flow volume for the Gilgel Abay River. The increase in flow is likely to have considerable importance for local small scale irrigation activities. Moreover, it will help harnessing a significant amount of water for ongoing dam projects in the Gilgel Abay River Basin.

  13. Projections of rising heat stress over the western Maritime Continent from dynamically downscaled climate simulations

    Science.gov (United States)

    Im, Eun-Soon; Kang, Suchul; Eltahir, Elfatih A. B.

    2018-06-01

    This study assesses the future changes in heat stress in response to different emission scenarios over the western Maritime Continent. To better resolve the region-specific changes and to enhance the performance in simulating extreme events, the MIT Regional Climate Model with a 12-km horizontal resolution is used for the dynamical downscaling of three carefully selected CMIP5 global projections forced by two Representative Concentration Pathway (RCP4.5 and RCP8.5) scenarios. Daily maximum wet-bulb temperature (TWmax), which includes the effect of humidity, is examined to describe heat stress as regulated by future changes in temperature and humidity. An ensemble of projections reveals robust pattern in which a large increase in temperature is accompanied by a reduction in relative humidity but a significant increase in wet-bulb temperature. This increase in TWmax is relatively smaller over flat and coastal regions than that over mountainous region. However, the flat and coastal regions characterized by warm and humid present-day climate will be at risk even under modest increase in TWmax. The regional extent exposed to higher TWmax and the number of days on which TWmax exceeds its threshold value are projected to be much higher in RCP8.5 scenario than those in RCP4.5 scenario, thus highlighting the importance of controlling greenhouse gas emissions to reduce the adverse impacts on human health and heat-related mortality.

  14. Impact of climate change on heavy precipitation events of the Mediterranean basin

    International Nuclear Information System (INIS)

    Ricard, D.; Beaulant, A.L.; Deque, M.; Ducrocq, V.; Joly, A.; Joly, B.; Martin, E.; Nuissier, O.; Quintana Segui, P.; Ribes, A.; Sevault, F.; Somot, S.; Boe, J.

    2009-01-01

    A second topic covered by the CYPRIM project aims to characterize the evolution of heavy precipitation events in Mediterranean in the context of climate change. To this end, a continuous climate simulation from 1960 to 2099 has been run using a regional ocean-atmosphere coupled model under IPCC A2 emission scenario. Various techniques of down-scaling, down to the very fine 2 km scale, and methods to highlight synoptic environments favourable to heavy rain, have been used to estimate the impact of climate change on precipitation and hydrology over South-East France, both for the whole autumn season and the heavy rain events. (authors)

  15. Dynamically downscaled climate simulations over North America: Methods, evaluation, and supporting documentation for users

    Science.gov (United States)

    Hostetler, S.W.; Alder, J.R.; Allan, A.M.

    2011-01-01

    We have completed an array of high-resolution simulations of present and future climate over Western North America (WNA) and Eastern North America (ENA) by dynamically downscaling global climate simulations using a regional climate model, RegCM3. The simulations are intended to provide long time series of internally consistent surface and atmospheric variables for use in climate-related research. In addition to providing high-resolution weather and climate data for the past, present, and future, we have developed an integrated data flow and methodology for processing, summarizing, viewing, and delivering the climate datasets to a wide range of potential users. Our simulations were run over 50- and 15-kilometer model grids in an attempt to capture more of the climatic detail associated with processes such as topographic forcing than can be captured by general circulation models (GCMs). The simulations were run using output from four GCMs. All simulations span the present (for example, 1968-1999), common periods of the future (2040-2069), and two simulations continuously cover 2010-2099. The trace gas concentrations in our simulations were the same as those of the GCMs: the IPCC 20th century time series for 1968-1999 and the A2 time series for simulations of the future. We demonstrate that RegCM3 is capable of producing present day annual and seasonal climatologies of air temperature and precipitation that are in good agreement with observations. Important features of the high-resolution climatology of temperature, precipitation, snow water equivalent (SWE), and soil moisture are consistently reproduced in all model runs over WNA and ENA. The simulations provide a potential range of future climate change for selected decades and display common patterns of the direction and magnitude of changes. As expected, there are some model to model differences that limit interpretability and give rise to uncertainties. Here, we provide background information about the GCMs and

  16. Climate Change Impacts at Department of Defense Installations

    Science.gov (United States)

    2017-06-16

    Most stakeholders were not comfortable addressing issues related to 8 FIGURE 2 (a) Model Domain Used for the WRF Model Dynamic Downscaling...and NARCCAP-WRFG at 50 km and (b) between PRISM and WRF at 12 km during all months in 1980–2004 (The student t-test result at the 0.005 [and lower...Alavez, A., T. Cavazos, and C. Turrent, 2014: Land–sea thermal contrast and intensity of the North American Monsoon under climate change conditions

  17. Optimal Operation of Hydropower Reservoirs under Climate Change: The Case of Tekeze Reservoir, Eastern Nile

    Directory of Open Access Journals (Sweden)

    Fikru Fentaw Abera

    2018-03-01

    Full Text Available Optimal operation of reservoirs is very essential for water resource planning and management, but it is very challenging and complicated when dealing with climate change impacts. The objective of this paper was to assess existing and future hydropower operation at the Tekeze reservoir in the face of climate change. In this study, a calibrated and validated Soil and Water Assessment Tool (SWAT was used to model runoff inflow into the Tekeze hydropower reservoir under present and future climate scenarios. Inflow to the reservoir was simulated using hydro-climatic data from an ensemble of downscaled climate data based on the Coordinated Regional climate Downscaling Experiment over African domain (CORDEX-Africa with Coupled Intercomparison Project Phase 5 (CMIP5 simulations under Representative Concentration Pathway (RCP4.5 and RCP8.5 climate scenarios. Observed and projected inflows to Tekeze hydropower reservoir were used as input to the US Army Corps of Engineer’s Reservoir Evaluation System Perspective Reservoir Model (HEC-ResPRM, a reservoir operation model, to optimize hydropower reservoir release, storage and pool level. Results indicated that climate change has a clear impact on reservoir inflow and showed increase in annual and monthly inflow into the reservoir except in dry months from May to June under RCP4.5 and RCP8.5 climate scenarios. HEC-ResPRM optimal operation results showed an increase in Tekeze reservoir power storage potential up to 25% and 30% under RCP4.5 and RCP8.5 climate scenarios, respectively. This implies that Tekeze hydropower production will be affected by climate change. This analysis can be used by water resources planners and mangers to develop reservoir operation techniques considering climate change impact to increase power production.

  18. Climate change impact on soil erosion in the Mandakini River Basin, North India

    Science.gov (United States)

    Khare, Deepak; Mondal, Arun; Kundu, Sananda; Mishra, Prabhash Kumar

    2017-09-01

    Correct estimation of soil loss at catchment level helps the land and water resources planners to identify priority areas for soil conservation measures. Soil erosion is one of the major hazards affected by the climate change, particularly the increasing intensity of rainfall resulted in increasing erosion, apart from other factors like landuse change. Changes in climate have an adverse effect with increasing rainfall. It has caused increasing concern for modeling the future rainfall and projecting future soil erosion. In the present study, future rainfall has been generated with the downscaling of GCM (Global Circulation Model) data of Mandakini river basin, a hilly catchment in the state of Uttarakhand, India, to obtain future impact on soil erosion within the basin. The USLE is an erosion prediction model designed to predict the long-term average annual soil loss from specific field slopes in specified landuse and management systems (i.e., crops, rangeland, and recreational areas) using remote sensing and GIS technologies. Future soil erosion has shown increasing trend due to increasing rainfall which has been generated from the statistical-based downscaling method.

  19. Adapting California’s ecosystems to a changing climate

    Science.gov (United States)

    Elizabeth Chornesky,; David Ackerly,; Paul Beier,; Frank Davis,; Flint, Lorraine E.; Lawler, Joshua J.; Moyle, Peter B.; Moritz, Max A.; Scoonover, Mary; Byrd, Kristin B.; Alvarez, Pelayo; Heller, Nicole E.; Micheli, Elisabeth; Weiss, Stuart

    2017-01-01

    Significant efforts are underway to translate improved understanding of how climate change is altering ecosystems into practical actions for sustaining ecosystem functions and benefits. We explore this transition in California, where adaptation and mitigation are advancing relatively rapidly, through four case studies that span large spatial domains and encompass diverse ecological systems, institutions, ownerships, and policies. The case studies demonstrate the context specificity of societal efforts to adapt ecosystems to climate change and involve applications of diverse scientific tools (e.g., scenario analyses, downscaled climate projections, ecological and connectivity models) tailored to specific planning and management situations (alternative energy siting, wetland management, rangeland management, open space planning). They illustrate how existing institutional and policy frameworks provide numerous opportunities to advance adaptation related to ecosystems and suggest that progress is likely to be greatest when scientific knowledge is integrated into collective planning and when supportive policies and financing enable action.

  20. Evaluation of water productivity under climate change in irrigated areas of the arid Northwest China using an assemble statistical downscaling method and an agro-hydrological model

    Science.gov (United States)

    Liu, Liu; Guo, Zezhong; Huang, Guanhua

    2018-06-01

    The Heihe River Basin (HRB) is the second largest inland river basin, located in the arid region of Northwest China with a serious water shortage. Evaluation of water productivity will provide scientific implications for agricultural water-saving in irrigated areas of the arid region under climate change. Based on observed meteorological data, 23 GCMs outputs and the ERA-40 reanalysis data, an assemble statistical downscaling model was developed to generate climate change scenarios under RCP2.6, RCP4.5, RCP8.5 respectively, which were then used to drive the SWAP-EPIC model to simulate crop growth in the irrigated areas of the middle HRB for the future period from 2018 to 2047. Crop yield showed an increasing trend, while crop water consumption decreased gradually in Gaotai and Ganzhou irrigated areas. The water productivity in future 30 years showed an increasing trend in both Gaotai and Ganzhou areas, with the most significant increase under RCP4.5 scenario, which were both larger than 2 kg m-3. Compared with that of the period from 2012 to 2015, the water productivity during 2018-2047 under three RCP scenarios increased by 9.2, 14.3 and 11.8 % in the Gaotai area, and 15.4, 21.6, 19.9 % in the Ganzhou area, respectively.

  1. An effective drift correction for dynamical downscaling of decadal global climate predictions

    Science.gov (United States)

    Paeth, Heiko; Li, Jingmin; Pollinger, Felix; Müller, Wolfgang A.; Pohlmann, Holger; Feldmann, Hendrik; Panitz, Hans-Jürgen

    2018-04-01

    Initialized decadal climate predictions with coupled climate models are often marked by substantial climate drifts that emanate from a mismatch between the climatology of the coupled model system and the data set used for initialization. While such drifts may be easily removed from the prediction system when analyzing individual variables, a major problem prevails for multivariate issues and, especially, when the output of the global prediction system shall be used for dynamical downscaling. In this study, we present a statistical approach to remove climate drifts in a multivariate context and demonstrate the effect of this drift correction on regional climate model simulations over the Euro-Atlantic sector. The statistical approach is based on an empirical orthogonal function (EOF) analysis adapted to a very large data matrix. The climate drift emerges as a dramatic cooling trend in North Atlantic sea surface temperatures (SSTs) and is captured by the leading EOF of the multivariate output from the global prediction system, accounting for 7.7% of total variability. The SST cooling pattern also imposes drifts in various atmospheric variables and levels. The removal of the first EOF effectuates the drift correction while retaining other components of intra-annual, inter-annual and decadal variability. In the regional climate model, the multivariate drift correction of the input data removes the cooling trends in most western European land regions and systematically reduces the discrepancy between the output of the regional climate model and observational data. In contrast, removing the drift only in the SST field from the global model has hardly any positive effect on the regional climate model.

  2. Statistical downscaling of precipitation using long short-term memory recurrent neural networks

    Science.gov (United States)

    Misra, Saptarshi; Sarkar, Sudeshna; Mitra, Pabitra

    2017-11-01

    Hydrological impacts of global climate change on regional scale are generally assessed by downscaling large-scale climatic variables, simulated by General Circulation Models (GCMs), to regional, small-scale hydrometeorological variables like precipitation, temperature, etc. In this study, we propose a new statistical downscaling model based on Recurrent Neural Network with Long Short-Term Memory which captures the spatio-temporal dependencies in local rainfall. The previous studies have used several other methods such as linear regression, quantile regression, kernel regression, beta regression, and artificial neural networks. Deep neural networks and recurrent neural networks have been shown to be highly promising in modeling complex and highly non-linear relationships between input and output variables in different domains and hence we investigated their performance in the task of statistical downscaling. We have tested this model on two datasets—one on precipitation in Mahanadi basin in India and the second on precipitation in Campbell River basin in Canada. Our autoencoder coupled long short-term memory recurrent neural network model performs the best compared to other existing methods on both the datasets with respect to temporal cross-correlation, mean squared error, and capturing the extremes.

  3. Downscaling NASA Climatological Data to Produce Detailed Climate Zone Maps

    Science.gov (United States)

    Chandler, William S.; Hoell, James M.; Westberg, David J.; Whitlock, Charles H.; Zhang, Taiping; Stackhouse, P. W.

    2011-01-01

    The design of energy efficient sustainable buildings is heavily dependent on accurate long-term and near real-time local weather data. To varying degrees the current meteorological networks over the globe have been used to provide these data albeit often from sites far removed from the desired location. The national need is for access to weather and solar resource data accurate enough to use to develop preliminary building designs within a short proposal time limit, usually within 60 days. The NASA Prediction Of Worldwide Energy Resource (POWER) project was established by NASA to provide industry friendly access to globally distributed solar and meteorological data. As a result, the POWER web site (power.larc.nasa.gov) now provides global information on many renewable energy parameters and several buildings-related items but at a relatively coarse resolution. This paper describes a method of downscaling NASA atmospheric assimilation model results to higher resolution and maps those parameters to produce building climate zone maps using estimates of temperature and precipitation. The distribution of climate zones for North America with an emphasis on the Pacific Northwest for just one year shows very good correspondence to the currently defined distribution. The method has the potential to provide a consistent procedure for deriving climate zone information on a global basis that can be assessed for variability and updated more regularly.

  4. Possible impacts of climate change on heavy rainfall-related flooding risks in Ontario, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.S.; Li, G.; Li, Q; Auld, H. [Meteorological Service of Canada Branch, Environment Canada, Toronto, Ontario (Canada)

    2008-07-01

    The overarching purpose of this study is to project changes in occurrence frequency of future heavy rainfall and high-flow events under downscaled climate change scenarios for four selected river watersheds (Grand, Humber, Thames, Rideau Rivers) in Ontario, Canada. This study comprises of three major parts: (1) historical simulation modeling to verify the events, (2) statistical downscaling to provide station-scale climate change scenarios, and (3) estimates of changes in frequency and magnitude of future events in 21st century. To achieve these goals, in addition to synoptic weather typing, the modeling conceptualizations in meteorology/hydrology and various regression techniques were applied. Furthermore, a formal model result verification process has been built into the entire modeling exercise. The results of the verification, based on historical observations of the outcome variables predicted by the models, showed very good agreement. This talk will introduce this research project and outline the modeling exercise and result verification process. The major findings on future estimates from the study will be summarized in the presentation as well. The results show that under downscaled climate change scenarios, frequency of the future heavy rainfall and high-/low-flow events for four selected river basins in Ontario could increase in the future. One of the major conclusions from the studies is that the procedures used in the study have the potential to be incorporated into municipal/community emergency response plans, thus providing them with real-time forecasting information to minimize the risks. The implementation of the significant increases in future heavy rainfall-related flooding risks should be taken into consideration when revising engineering infrastructure design standards (including infrastructure maintenance and new construction) and developing adaptation strategies and policies. (author)

  5. Possible impacts of climate change on heavy rainfall-related flooding risks in Ontario, Canada

    International Nuclear Information System (INIS)

    Cheng, C.S.; Li, G.; Li, Q; Auld, H.

    2008-01-01

    The overarching purpose of this study is to project changes in occurrence frequency of future heavy rainfall and high-flow events under downscaled climate change scenarios for four selected river watersheds (Grand, Humber, Thames, Rideau Rivers) in Ontario, Canada. This study comprises of three major parts: (1) historical simulation modeling to verify the events, (2) statistical downscaling to provide station-scale climate change scenarios, and (3) estimates of changes in frequency and magnitude of future events in 21st century. To achieve these goals, in addition to synoptic weather typing, the modeling conceptualizations in meteorology/hydrology and various regression techniques were applied. Furthermore, a formal model result verification process has been built into the entire modeling exercise. The results of the verification, based on historical observations of the outcome variables predicted by the models, showed very good agreement. This talk will introduce this research project and outline the modeling exercise and result verification process. The major findings on future estimates from the study will be summarized in the presentation as well. The results show that under downscaled climate change scenarios, frequency of the future heavy rainfall and high-/low-flow events for four selected river basins in Ontario could increase in the future. One of the major conclusions from the studies is that the procedures used in the study have the potential to be incorporated into municipal/community emergency response plans, thus providing them with real-time forecasting information to minimize the risks. The implementation of the significant increases in future heavy rainfall-related flooding risks should be taken into consideration when revising engineering infrastructure design standards (including infrastructure maintenance and new construction) and developing adaptation strategies and policies. (author)

  6. Downscaling Climate Science to the Classroom: Diverse Opportunities for Teaching Climate Science in Diverse Ways to Diverse Undergraduate Populations

    Science.gov (United States)

    Jones, R. M.; Gill, T. E.; Quesada, D.; Hedquist, B. C.

    2015-12-01

    Climate literacy and climate education are important topics in current socio-political debate. Despite numerous scientific findings supporting global climate changes and accelerated greenhouse warming, there is a social inertia resisting and slowing the rate at which many of our students understand and absorb these facts. A variety of reasons, including: socio-economic interests, political and ideological biases, misinformation from mass media, inappropriate preparation of science teachers, and lack of numancy have created serious challenges for public awareness of such an important issue. Different agencies and organizations (NASA, NOAA, EPA, AGU, APS, AMS and others) have created training programs for educators, not involved directly in climatology research, in order to learn climate science in a consistent way and then communicate it to the public and students. Different approaches on how to deliver such information to undergraduate students in diverse environments is discussed based on the author's experiences working in different minority-serving institutions across the nation and who have attended AMS Weather and Climate Studies training workshops, MSI-REACH, and the School of Ice. Different parameters are included in the analysis: demographics of students, size of the institutions, geographical locations, target audience, programs students are enrolled in, conceptual units covered, and availability of climate-related courses in the curricula. Additionally, the feasibility of incorporating a laboratory and quantitative analysis is analyzed. As a result of these comparisons it seems that downscaling of climate education experiences do not always work as expected in every institution regardless of the student body demographics. Different geographical areas, student body characteristics and type of institution determine the approach to be adopted as well as the feasibility to introduce different components for weather and climate studies. Some ideas are shared

  7. Differences between downscaling with spectral and grid nudging using WRF

    Directory of Open Access Journals (Sweden)

    P. Liu

    2012-04-01

    Full Text Available Dynamical downscaling has been extensively used to study regional climate forced by large-scale global climate models. During the downscaling process, however, the simulation of regional climate models (RCMs tends to drift away from the driving fields. Developing a solution that addresses this issue, by retaining the large scale features (from the large-scale fields and the small-scale features (from the RCMs has led to the development of "nudging" techniques. Here, we examine the performance of two nudging techniques, grid and spectral nudging, in the downscaling of NCEP/NCAR data with the Weather Research and Forecasting (WRF Model. The simulations are compared against the results with North America Regional Reanalysis (NARR data set at different scales of interest using the concept of similarity. We show that with the appropriate choice of wave numbers, spectral nudging outperforms grid nudging in the capacity of balancing the performance of simulation at the large and small scales.

  8. The climate4impact platform: Providing, tailoring and facilitating climate model data access

    Science.gov (United States)

    Pagé, Christian; Pagani, Andrea; Plieger, Maarten; Som de Cerff, Wim; Mihajlovski, Andrej; de Vreede, Ernst; Spinuso, Alessandro; Hutjes, Ronald; de Jong, Fokke; Bärring, Lars; Vega, Manuel; Cofiño, Antonio; d'Anca, Alessandro; Fiore, Sandro; Kolax, Michael

    2017-04-01

    One of the main objectives of climate4impact is to provide standardized web services and tools that are reusable in other portals. These services include web processing services, web coverage services and web mapping services (WPS, WCS and WMS). Tailored portals can be targeted to specific communities and/or countries/regions while making use of those services. Easier access to climate data is very important for the climate change impact communities. To fulfill this objective, the climate4impact (http://climate4impact.eu/) web portal and services has been developed, targeting climate change impact modellers, impact and adaptation consultants, as well as other experts using climate change data. It provides to users harmonized access to climate model data through tailored services. It features static and dynamic documentation, Use Cases and best practice examples, an advanced search interface, an integrated authentication and authorization system with the Earth System Grid Federation (ESGF), a visualization interface with ADAGUC web mapping tools. In the latest version, statistical downscaling services, provided by the Santander Meteorology Group Downscaling Portal, were integrated. An innovative interface to integrate statistical downscaling services will be released in the upcoming version. The latter will be a big step in bridging the gap between climate scientists and the climate change impact communities. The climate4impact portal builds on the infrastructure of an international distributed database that has been set to disseminate the results from the global climate model results of the Coupled Model Intercomparison project Phase 5 (CMIP5). This database, the ESGF, is an international collaboration that develops, deploys and maintains software infrastructure for the management, dissemination, and analysis of climate model data. The European FP7 project IS-ENES, Infrastructure for the European Network for Earth System modelling, supports the European

  9. Regional Climate Change and Development of Public Health Decision Aids

    Science.gov (United States)

    Hegedus, A. M.; Darmenova, K.; Grant, F.; Kiley, H.; Higgins, G. J.; Apling, D.

    2011-12-01

    According to the World Heath Organization (WHO) climate change is a significant and emerging threat to public health, and changes the way we must look at protecting vulnerable populations. Worldwide, the occurrence of some diseases and other threats to human health depend predominantly on local climate patterns. Rising average temperatures, in combination with changing rainfall patterns and humidity levels, alter the lifecycle and regional distribution of certain disease-carrying vectors, such as mosquitoes, ticks and rodents. In addition, higher surface temperatures will bring heat waves and heat stress to urban regions worldwide and will likely increase heat-related health risks. A growing body of scientific evidence also suggests an increase in extreme weather events such as floods, droughts and hurricanes that can be destructive to human health and well-being. Therefore, climate adaptation and health decision aids are urgently needed by city planners and health officials to determine high risk areas, evaluate vulnerable populations and develop public health infrastructure and surveillance systems. To address current deficiencies in local planning and decision making with respect to regional climate change and its effect on human health, our research is focused on performing a dynamical downscaling with the Weather Research and Forecasting (WRF) model to develop decision aids that translate the regional climate data into actionable information for users. WRF model is initialized with the Max Planck Institute European Center/Hamburg Model version 5 (ECHAM5) General Circulation Model simulations forced with the Special Report on Emissions (SRES) A1B emissions scenario. Our methodology involves development of climatological indices of extreme weather, quantifying the risk of occurrence of water/rodent/vector-borne diseases as well as developing various heat stress related decision aids. Our results indicate that the downscale simulations provide the necessary

  10. Flow regime alterations under changing climate in two river basins: Implications for freshwater ecosystems

    Science.gov (United States)

    Gibson, C.A.; Meyer, J.L.; Poff, N.L.; Hay, L.E.; Georgakakos, A.

    2005-01-01

    We examined impacts of future climate scenarios on flow regimes and how predicted changes might affect river ecosystems. We examined two case studies: Cle Elum River, Washington, and Chattahoochee-Apalachicola River Basin, Georgia and Florida. These rivers had available downscaled global circulation model (GCM) data and allowed us to analyse the effects of future climate scenarios on rivers with (1) different hydrographs, (2) high future water demands, and (3) a river-floodplain system. We compared observed flow regimes to those predicted under future climate scenarios to describe the extent and type of changes predicted to occur. Daily stream flow under future climate scenarios was created by either statistically downscaling GCMs (Cle Elum) or creating a regression model between climatological parameters predicted from GCMs and stream flow (Chattahoochee-Apalachicola). Flow regimes were examined for changes from current conditions with respect to ecologically relevant features including the magnitude and timing of minimum and maximum flows. The Cle Elum's hydrograph under future climate scenarios showed a dramatic shift in the timing of peak flows and lower low flow of a longer duration. These changes could mean higher summer water temperatures, lower summer dissolved oxygen, and reduced survival of larval fishes. The Chattahoochee-Apalachicola basin is heavily impacted by dams and water withdrawals for human consumption; therefore, we made comparisons between pre-large dam conditions, current conditions, current conditions with future demand, and future climate scenarios with future demand to separate climate change effects and other anthropogenic impacts. Dam construction, future climate, and future demand decreased the flow variability of the river. In addition, minimum flows were lower under future climate scenarios. These changes could decrease the connectivity of the channel and the floodplain, decrease habitat availability, and potentially lower the ability

  11. Bioclim Deliverable D6b: application of statistical down-scaling within the BIOCLIM hierarchical strategy: methods, data requirements and underlying assumptions

    International Nuclear Information System (INIS)

    2004-01-01

    The overall aim of BIOCLIM is to assess the possible long term impacts due to climate change on the safety of radioactive waste repositories in deep formations. The coarse spatial scale of the Earth-system Models of Intermediate Complexity (EMICs) used in BIOCLIM compared with the BIOCLIM study regions and the needs of performance assessment creates a need for down-scaling. Most of the developmental work on down-scaling methodologies undertaken by the international research community has focused on down-scaling from the general circulation model (GCM) scale (with a typical spatial resolution of 400 km by 400 km over Europe in the current generation of models) using dynamical down-scaling (i.e., regional climate models (RCMs), which typically have a spatial resolution of 50 km by 50 km for models whose domain covers the European region) or statistical methods (which can provide information at the point or station scale) in order to construct scenarios of anthropogenic climate change up to 2100. Dynamical down-scaling (with the MAR RCM) is used in BIOCLIM WP2 to down-scale from the GCM (i.e., IPSL C M4 D ) scale. In the original BIOCLIM description of work, it was proposed that UEA would apply statistical down-scaling to IPSL C M4 D output in WP2 as part of the hierarchical strategy. Statistical down-scaling requires the identification of statistical relationships between the observed large-scale and regional/local climate, which are then applied to large-scale GCM output, on the assumption that these relationships remain valid in the future (the assumption of stationarity). Thus it was proposed that UEA would investigate the extent to which it is possible to apply relationships between the present-day large-scale and regional/local climate to the relatively extreme conditions of the BIOCLIM WP2 snapshot simulations. Potential statistical down-scaling methodologies were identified from previous work performed at UEA. Appropriate station data from the case

  12. Climate change impacts on the Lehman-Baker Creek drainage in the Great Basin National Park

    Science.gov (United States)

    Volk, J. M.

    2013-12-01

    Global climate models (GCMs) forced by increased CO2 emissions forecast anomalously dry and warm trends over the southwestern U.S. for the 21st century. The effect of warmer conditions may result in decreased surface water resources within the Great Basin physiographic region critical for ecology, irrigation and municipal water supply. Here we use downscaled GCM output from the A2 and B1 greenhouse gas emission scenarios to force a Precipitation-Runoff Modeling System (PRMS) watershed model developed for the Lehman and Baker Creeks Drainage (LBCD) in the Great Basin National Park, NV for a century long time period. The goal is to quantify the effects of rising temperature to the water budget in the LBCD at monthly and annual timescales. Dynamically downscaled GCM projections are attained from the NSF EPSCoR Nevada Infrastructure for Climate Change Science, Education, and Outreach project and statistically downscaled output is retrieved from the "U.S. Bias Corrected and Downscaled WCRP CMIP3 Climate Projections". Historical daily climate and streamflow data have been collected simultaneously for periods extending 20 years or longer. Mann-Kendal trend test results showed a statistically significant (α= 0.05) long-term rising trend from 1895 to 2012 in annual and monthly average temperatures for the study area. A grid-based, PRMS watershed model of the LBCD has been created within ArcGIS 10, and physical parameters have been estimated at a spatial resolution of 100m. Simulation results will be available soon. Snow cover is expected to decrease and peak runoff to occur earlier in the spring, resulting in increased runoff, decreased infiltration/recharge, decreased baseflows, and decreased evapo-transpiration.

  13. Addressing socioeconomic and political challenges posed by climate change

    Science.gov (United States)

    Fernando, Harindra Joseph; Klaic, Zvjezdana Bencetic

    2011-08-01

    NATO Advanced Research Workshop: Climate Change, Human Health and National Security; Dubrovnik, Croatia, 28-30 April 2011; Climate change has been identified as one of the most serious threats to humanity. It not only causes sea level rise, drought, crop failure, vector-borne diseases, extreme events, degradation of water and air quality, heat waves, and other phenomena, but it is also a threat multiplier wherein concatenation of multiple events may lead to frequent human catastrophes and intranational and international conflicts. In particular, urban areas may bear the brunt of climate change because of the amplification of climate effects that cascade down from global to urban scales, but current modeling and downscaling capabilities are unable to predict these effects with confidence. These were the main conclusions of a NATO Advanced Research Workshop (ARW) sponsored by the NATO Science for Peace and Security program. Thirty-two invitees from 17 counties, including leading modelers; natural, political, and social scientists; engineers; politicians; military experts; urban planners; industry analysts; epidemiologists; and health care professionals, parsed the topic on a common platform.

  14. The impact of climate change on hydro-electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Musy, A.; Music, B.; Roy, R. [Ouranos, Montreal, PQ (Canada)

    2008-07-01

    Hydroelectricity is a clean and renewable energy source for many countries, and is expected to play an important role in future energy supplies. However, the impact of climatic change on hydroelectricity resources is not yet understood. This study provided a critical review of current methods used to determine the potential impacts of climatic change on hydroelectric power production. General circulation models (GCMs) are used to predict future climate conditions under various greenhouse gas (GHG) emissions scenarios. Statistical techniques are then used to down-scale GCM outputs to the appropriate scales needed for hydrological models, which are then used to simulate the effects of climatic change at regional and local scales. Outputs from the models are then used to develop water management models for hydroelectric power production. Observed linear trends in annual precipitation during the twentieth century were provided. The theoretical advantages and disadvantages of various modelling techniques were reviewed. Risk assessment strategies for Hydro-Quebec were also outlined and results of the study will be used to guide research programs for the hydroelectric power industry. refs., tabs., figs.

  15. The impact of climate change on hydro-electricity generation

    International Nuclear Information System (INIS)

    Musy, A.; Music, B.; Roy, R.

    2008-01-01

    Hydroelectricity is a clean and renewable energy source for many countries, and is expected to play an important role in future energy supplies. However, the impact of climatic change on hydroelectricity resources is not yet understood. This study provided a critical review of current methods used to determine the potential impacts of climatic change on hydroelectric power production. General circulation models (GCMs) are used to predict future climate conditions under various greenhouse gas (GHG) emissions scenarios. Statistical techniques are then used to down-scale GCM outputs to the appropriate scales needed for hydrological models, which are then used to simulate the effects of climatic change at regional and local scales. Outputs from the models are then used to develop water management models for hydroelectric power production. Observed linear trends in annual precipitation during the twentieth century were provided. The theoretical advantages and disadvantages of various modelling techniques were reviewed. Risk assessment strategies for Hydro-Quebec were also outlined and results of the study will be used to guide research programs for the hydroelectric power industry. refs., tabs., figs

  16. Hydrological response to dynamical downscaling of climate model outputs: A case study for western and eastern snowmelt-dominated Canada catchments

    OpenAIRE

    Magali Troin; Daniel Caya; Juan Alberto Velázquez; François Brissette

    2015-01-01

    Study region: An analysis of hydrological response to a dynamically downscaled multi-member multi-model global climate model (GCM) ensemble of simulations based on the Canadian Regional Climate Model (CRCM) is presented for three snowmelt-dominated basins in Canada. The basins are situated in the western mountainous (British Columbia) and eastern level (Quebec) regions in Canada, providing comprehensive experiments to validate the CRCM over various topographic features. Study focus: The ev...

  17. Means and extremes: building variability into community-level climate change experiments.

    Science.gov (United States)

    Thompson, Ross M; Beardall, John; Beringer, Jason; Grace, Mike; Sardina, Paula

    2013-06-01

    Experimental studies assessing climatic effects on ecological communities have typically applied static warming treatments. Although these studies have been informative, they have usually failed to incorporate either current or predicted future, patterns of variability. Future climates are likely to include extreme events which have greater impacts on ecological systems than changes in means alone. Here, we review the studies which have used experiments to assess impacts of temperature on marine, freshwater and terrestrial communities, and classify them into a set of 'generations' based on how they incorporate variability. The majority of studies have failed to incorporate extreme events. In terrestrial ecosystems in particular, experimental treatments have reduced temperature variability, when most climate models predict increased variability. Marine studies have tended to not concentrate on changes in variability, likely in part because the thermal mass of oceans will moderate variation. In freshwaters, climate change experiments have a much shorter history than in the other ecosystems, and have tended to take a relatively simple approach. We propose a new 'generation' of climate change experiments using down-scaled climate models which incorporate predicted changes in climatic variability, and describe a process for generating data which can be applied as experimental climate change treatments. © 2013 John Wiley & Sons Ltd/CNRS.

  18. Statistical downscaling and future scenario generation of temperatures for Pakistan Region

    Science.gov (United States)

    Kazmi, Dildar Hussain; Li, Jianping; Rasul, Ghulam; Tong, Jiang; Ali, Gohar; Cheema, Sohail Babar; Liu, Luliu; Gemmer, Marco; Fischer, Thomas

    2015-04-01

    Finer climate change information on spatial scale is required for impact studies than that presently provided by global or regional climate models. It is especially true for regions like South Asia with complex topography, coastal or island locations, and the areas of highly heterogeneous land-cover. To deal with the situation, an inexpensive method (statistical downscaling) has been adopted. Statistical DownScaling Model (SDSM) employed for downscaling of daily minimum and maximum temperature data of 44 national stations for base time (1961-1990) and then the future scenarios generated up to 2099. Observed as well as Predictors (product of National Oceanic and Atmospheric Administration) data were calibrated and tested on individual/multiple basis through linear regression. Future scenario was generated based on HadCM3 daily data for A2 and B2 story lines. The downscaled data has been tested, and it has shown a relatively strong relationship with the observed in comparison to ECHAM5 data. Generally, the southern half of the country is considered vulnerable in terms of increasing temperatures, but the results of this study projects that in future, the northern belt in particular would have a possible threat of increasing tendency in air temperature. Especially, the northern areas (hosting the third largest ice reserves after the Polar Regions), an important feeding source for Indus River, are projected to be vulnerable in terms of increasing temperatures. Consequently, not only the hydro-agricultural sector but also the environmental conditions in the area may be at risk, in future.

  19. Probabilistic precipitation and temperature downscaling of the Twentieth Century Reanalysis over France

    Science.gov (United States)

    Caillouet, Laurie; Vidal, Jean-Philippe; Sauquet, Eric; Graff, Benjamin

    2016-03-01

    a quantitative precipitation forecast context, the stepwise subselection method allows for potential season shifts and SST trends and is therefore better suited for climate reconstructions and climate change studies. The probabilistic downscaling of 20CR over the period 1871-2012 with the SANDHY probabilistic downscaling method combined with the stepwise subselection thus constitutes a perfect framework for assessing the recent observed meteorological events but also future events projected by climate change impact studies and putting them in a historical perspective.

  20. The method of producing climate change datasets impacts the resulting policy guidance and chance of mal-adaptation

    Directory of Open Access Journals (Sweden)

    Marie Ekström

    2016-12-01

    Full Text Available Impact, adaptation and vulnerability (IAV research underpin strategies for adaptation to climate change and help to conceptualise what life may look like in decades to come. Research draws on information from global climate models (GCMs though typically post-processed into a secondary product with finer resolution through methods of downscaling. Through worked examples set in an Australian context we assess the influence of GCM sub-setting, geographic area sub-setting and downscaling method on the regional change signal. Examples demonstrate that choices impact on the final results differently depending on factors such as application needs, range of uncertainty of the projected variable, amplitude of natural variability, and size of study region. For heat extremes, the choice of emissions scenario is of prime importance, but for a given scenario the method of preparing data can affect the magnitude of the projection by a factor of two or more, strongly affecting the indicated adaptation decision. For catchment level runoff projections, the choice of emission scenario is less dominant. Rather the method of selecting and producing application-ready datasets is crucial as demonstrated by results with opposing sign of change, raising the real possibility of mal-adaptive decisions. This work illustrates the potential pitfalls of GCM sub-sampling or the use of a single downscaled product when conducting IAV research. Using the broad range of change from all available model sources, whilst making the application more complex, avoids the larger problem of over-confidence in climate projections and lessens the chance of mal-adaptation.

  1. Adaptation of thermal power plants: The (ir)relevance of climate (change) information

    International Nuclear Information System (INIS)

    Bogmans, Christian W.J.; Dijkema, Gerard P.J.; Vliet, Michelle T.H. van

    2017-01-01

    When does climate change information lead to adaptation? We analyze thermal power plant adaptation by means of investing in water-saving (cooling) technology to prevent a decrease in plant efficiency and load reduction. A comprehensive power plant investment model, forced with downscaled climate and hydrological projections, is then numerically solved to analyze the adaptation decisions of a selection of real power plants. We find that operators that base their decisions on current climatic conditions are likely to make identical choices and perform just as well as operators that are fully ‘informed’ about climate change. Where electricity supply is mainly generated by thermal power plants, heat waves, droughts and low river flow may impact electricity supply for decades to come. - Highlights: • We analyze adaptation to climate change by thermal power plants. • A numerical investment model is applied to a coal plant and a nuclear power plant. • The numerical analysis is based on climate and hydrological projections. • Climate change information has a relatively small effect on a power plant's NPV. • Uncertainty and no-regret benefits lower the value of climate change information.

  2. Bioclim deliverable D8a: development of the rule-based down-scaling methodology for BIOCLIM Work-package 3

    International Nuclear Information System (INIS)

    2003-01-01

    The BIOCLIM project on modelling sequential Biosphere systems under Climate change for radioactive waste disposal is part of the EURATOM fifth European framework programme. The project was launched in October 2000 for a three-year period. The project aims at providing a scientific basis and practical methodology for assessing the possible long term impacts on the safety of radioactive waste repositories in deep formations due to climate and environmental change. Five work packages (WP) have been identified to fulfill the project objectives. One of the tasks of BIOCLIM WP3 was to develop a rule-based approach for down-scaling from the MoBidiC model of intermediate complexity in order to provide consistent estimates of monthly temperature and precipitation for the specific regions of interest to BIOCLIM (Central Spain, Central England and Northeast France, together with Germany and the Czech Republic). A statistical down-scaling methodology has been developed by Philippe Marbaix of CEA/LSCE for use with the second climate model of intermediate complexity used in BIOCLIM - CLIMBER-GREMLINS. The rule-based methodology assigns climate states or classes to a point on the time continuum of a region according to a combination of simple threshold values which can be determined from the coarse scale climate model. Once climate states or classes have been defined, monthly temperature and precipitation climatologies are constructed using analogue stations identified from a data base of present-day climate observations. The most appropriate climate classification for BIOCLIM purposes is the Koeppen/Trewartha scheme. This scheme has the advantage of being empirical, but only requires monthly averages of temperature and precipitation as input variables. Section 2 of this deliverable (D8a) outline how each of the eight methodological steps have been undertaken for each of the three main BIOCLIM study regions (Central England, Northeast France and Central Spain) using Mo

  3. Revealing, Reducing, and Representing Uncertainties in New Hydrologic Projections for Climate-changed Futures

    Science.gov (United States)

    Arnold, Jeffrey; Clark, Martyn; Gutmann, Ethan; Wood, Andy; Nijssen, Bart; Rasmussen, Roy

    2016-04-01

    The United States Army Corps of Engineers (USACE) has had primary responsibility for multi-purpose water resource operations on most of the major river systems in the U.S. for more than 200 years. In that time, the USACE projects and programs making up those operations have proved mostly robust against the range of natural climate variability encountered over their operating life spans. However, in some watersheds and for some variables, climate change now is known to be shifting the hydroclimatic baseline around which that natural variability occurs and changing the range of that variability as well. This makes historical stationarity an inappropriate basis for assessing continued project operations under climate-changed futures. That means new hydroclimatic projections are required at multiple scales to inform decisions about specific threats and impacts, and for possible adaptation responses to limit water-resource vulnerabilities and enhance operational resilience. However, projections of possible future hydroclimatologies have myriad complex uncertainties that require explicit guidance for interpreting and using them to inform those decisions about climate vulnerabilities and resilience. Moreover, many of these uncertainties overlap and interact. Recent work, for example, has shown the importance of assessing the uncertainties from multiple sources including: global model structure [Meehl et al., 2005; Knutti and Sedlacek, 2013]; internal climate variability [Deser et al., 2012; Kay et al., 2014]; climate downscaling methods [Gutmann et al., 2012; Mearns et al., 2013]; and hydrologic models [Addor et al., 2014; Vano et al., 2014; Mendoza et al., 2015]. Revealing, reducing, and representing these uncertainties is essential for defining the plausible quantitative climate change narratives required to inform water-resource decision-making. And to be useful, such quantitative narratives, or storylines, of climate change threats and hydrologic impacts must sample

  4. Detailed climate-change projections for urban land-use change and green-house gas increases for Belgium with COSMO-CLM coupled to TERRA_URB

    Science.gov (United States)

    Wouters, Hendrik; Vanden Broucke, Sam; van Lipzig, Nicole; Demuzere, Matthias

    2016-04-01

    Recent research clearly show that climate modelling at high resolution - which resolve the deep convection, the detailed orography and land-use including urbanization - leads to better modelling performance with respect to temperatures, the boundary-layer, clouds and precipitation. The increasing computational power enables the climate research community to address climate-change projections with higher accuracy and much more detail. In the framework of the CORDEX.be project aiming for coherent high-resolution micro-ensemble projections for Belgium employing different GCMs and RCMs, the KU Leuven contributes by means of the downscaling of EC-EARTH global climate model projections (provided by the Royal Meteorological Institute of the Netherlands) to the Belgian domain. The downscaling is obtained with regional climate simulations at 12.5km resolution over Europe (CORDEX-EU domain) and at 2.8km resolution over Belgium (CORDEX.be domain) using COSMO-CLM coupled to urban land-surface parametrization TERRA_URB. This is done for the present-day (1975-2005) and future (2040 → 2070 and 2070 → 2100). In these high-resolution runs, both GHG changes (in accordance to RCP8.5) and urban land-use changes (in accordance to a business-as-usual urban expansion scenario) are taken into account. Based on these simulations, it is shown how climate-change statistics are modified when going from coarse resolution modelling to high-resolution modelling. The climate-change statistics of particular interest are the changes in number of extreme precipitation events and extreme heat waves in cities. Hereby, it is futher investigated for the robustness of the signal change between the course and high-resolution and whether a (statistical) translation is possible. The different simulations also allow to address the relative impact and synergy between the urban expansion and increased GHG on the climate-change statistics. Hereby, it is investigated for which climate-change statistics the

  5. Climate change impact assessment on food security in Indonesia

    Science.gov (United States)

    Ettema, Janneke; Aldrian, Edvin; de Bie, Kees; Jetten, Victor; Mannaerts, Chris

    2013-04-01

    As Indonesia is the world's fourth most populous country, food security is a persistent challenge. The potential impact of future climate change on the agricultural sector needs to be addressed in order to allow early implementation of mitigation strategies. The complex island topography and local sea-land-air interactions cannot adequately be represented in large scale General Climate Models (GCMs) nor visualized by TRMM. Downscaling is needed. Using meteorological observations and a simple statistical downscaling tool, local future projections are derived from state-of-the-art, large-scale GCM scenarios, provided by the CMIP5 project. To support the agriculture sector, providing information on especially rainfall and temperature variability is essential. Agricultural production forecast is influenced by several rain and temperature factors, such as rainy and dry season onset, offset and length, but also by daily and monthly minimum and maximum temperatures and its rainfall amount. A simple and advanced crop model will be used to address the sensitivity of different crops to temperature and rainfall variability, present-day and future. As case study area, Java Island is chosen as it is fourth largest island in Indonesia but contains more than half of the nation's population and dominates it politically and economically. The objective is to identify regions at agricultural risk due to changing patterns in precipitation and temperature.

  6. Adaptation potential to climate change of the Peribonka River (Quebec, Canada) water resources system

    International Nuclear Information System (INIS)

    Minville, M.; Krau, S.; Brissette, F.; Leconte, R.

    2008-01-01

    This study investigated the influence of climatic change on the Peribonka water resources system. The impacts of climatic change on hydroelectric power reservoir operations in the region were assessed using a set of operating rules optimized for future hydrological regimes. Thirty climate change projections from 5 climate models, 2 greenhouse gas (GHG) scenarios, and 3 temporal horizons were used in the study. Climatic change projections were then downscaled using the Delta approach and coupled to a stochastic weather generator developed to account for natural variabilities in local climates. A lumped hydrological model was used to simulate future hydrological regimes. A stochastic dynamic programming technique was then used to optimize reservoir operating rules for various time series of future river flows. The operating rules were then used in conjunction with a river system simulation tool in order to determine reservoir and hydroelectric production scenarios under different climatic change regimes. Results of the study showed significant increases in hydroelectricity production for most of the climate change projections. However, nonproductive spillage was also increased. Reservoir reliability was also reduced. tabs., figs

  7. Projecting climate change, drought conditions and crop productivity in Turkey

    NARCIS (Netherlands)

    Sen, B.; Topcu, S.; Türkes, M.; Warner, J.F.

    2012-01-01

    This paper focuses on the evaluation of regional climate model simulation for Turkey for the 21st century. A regional climate model, ICTP-RegCM3, with 20 km horizontal resolution, is used to downscale the reference and future climate scenario (IPCC-A2) simulations. Characteristics of droughts as

  8. A Comprehensive Hydrologic Projections Resource to support Climate Change Vulnerability Assessments in the Western U.S

    Science.gov (United States)

    Brekke, L. D.; Pruitt, T.; Gangopadhyay, S.; Raff, D. A.

    2010-12-01

    The SECURE Water Act § 9503(b)(2) authorizes the U.S. Department of Interior's Bureau of Reclamation to assess climate change risks for water and environmental resources in eight "major Reclamation river basins" in the Western United States (i.e. Colorado, Columbia, Klamath, Missouri, Rio Grande, Sacramento, San Joaquin, and Truckee basins). The legislation calls for Reclamation to provide periodic reports on implications for water supplies, water deliveries, hydropower generation, fish and wildlife, water quality, flood control, ecological resiliency, and recreation. Reclamation's is developing a framework for consistently characterizing risks in Western U.S. river basins through the West-Wide Climate Risk Assessments, part of the Basin Study Program. One initial activity within this framework is focused on characterizing hydrologic and water supply implications of climate change. The centerpiece of this activity is the development of a west-wide ensemble of hydrologic projections, tiering from information in the online archive "Bias Corrected and Downscaled WCRP CMIP3 Climate Projections" (http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections/dcpInterface.html) and utilizing a network of hydrologic model applications featured in the University of Washington and Princeton University's "Experimental National Hydrologic Prediction System" (http://www.hydro.washington.edu/forecast/westwide/index.shtml). The resulting hydrologic information has the same space and time attributes as the underlying downscaled climate information: 112 projections of monthly downscaled CMIP3 conditions from 1950-2099 at 1/8° resolution over the Western U.S. (nested within the underlying archive’s contiguous U.S. domain). Such attributes permit a time evolving risk-based portrayal of hydrologic conditions, which is useful for climate change adaptation discussions where the timing of impacts matters in relation the initiation and investment of adaptation or mitigation measures

  9. A nested modeling study of elevation-dependent climate change signals in California induced by increased atmospheric CO2

    International Nuclear Information System (INIS)

    Kim, Jinwon

    2001-01-01

    Dynamically downscaled climate change signals due to increased atmospheric CO2 are investigated for three California basins. The downscaled signals show strong elevation dependence, mainly due to elevated freezing levels in the increased CO2 climate. Below 2.5 km, rainfall increases by over 150% while snowfall decreases by 20-40% in the winter. Above 2.5 km, rainfall and snowfall both increase in the winter, as the freezing levels appear mostly below this level. Winter snowmelt increases in all elevations due to warmer temperatures in the increased CO2 climate. Reduced snowfall and enhanced snowmelt during the winter decreases snowmelt-driven spring runoff below the 2.5 km level, where the peak snowmelt occurs one month earlier in the increased CO2 climate. Above 2.5km, increased winter snowfall maintains snowmelt-driven runoff through most of the warm season. The altered hydrologic characteristics in the increased CO2 climate affect the diurnal temperature variation mainly via snow-albedo-soil moisture feedback

  10. Climate Change Modelling and Its Roles to Chinese Crops Yield

    Institute of Scientific and Technical Information of China (English)

    JU Hui; LIN Er-da; Tim Wheeler; Andrew Challinor; JIANG Shuai

    2013-01-01

    Climate has been changing in the last fifty years in China and will continue to change regardless any efforts for mitigation. Agriculture is a climate-dependent activity and highly sensitive to climate changes and climate variability. Understanding the interactions between climate change and agricultural production is essential for society stable development of China. The first mission is to fully understand how to predict future climate and link it with agriculture production system. In this paper, recent studies both domestic and international are reviewed in order to provide an overall image of the progress in climate change researches. The methods for climate change scenarios construction are introduced. The pivotal techniques linking crop model and climate models are systematically assessed and climate change impacts on Chinese crops yield among model results are summarized. The study found that simulated productions of grain crop inherit uncertainty from using different climate models, emission scenarios and the crops simulation models. Moreover, studies have different spatial resolutions, and methods for general circulation model (GCM) downscaling which increase the uncertainty for regional impacts assessment. However, the magnitude of change in crop production due to climate change (at 700 ppm CO2 eq correct) appears within ±10%for China in these assessments. In most literatures, the three cereal crop yields showed decline under climate change scenarios and only wheat in some region showed increase. Finally, the paper points out several gaps in current researches which need more studies to shorten the distance for objective recognizing the impacts of climate change on crops. The uncertainty for crop yield projection is associated with climate change scenarios, CO2 fertilization effects and adaptation options. Therefore, more studies on the fields such as free air CO2 enrichment experiment and practical adaptations implemented need to be carried out.

  11. Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia; Hundecha, Y.; Lawrence, D.

    2015-01-01

    Information on extreme precipitation for future climate is needed to assess the changes in the frequency and intensity of flooding. The primary source of information in climate change impact studies is climate model projections. However, due to the coarse resolution and biases of these models......), three are bias correction (BC) methods, and one is a perfect prognosis method. The eight methods are used to downscale precipitation output from 15 regional climate models (RCMs) from the ENSEMBLES project for 11 catchments in Europe. The overall results point to an increase in extreme precipitation...... that at least 30% and up to approximately half of the total variance is derived from the SDMs. This study illustrates the large variability in the expected changes in extreme precipitation and highlights the need for considering an ensemble of both SDMs and climate models. Recommendations are provided...

  12. Century long observation constrained global dynamic downscaling and hydrologic implication

    Science.gov (United States)

    Kim, H.; Yoshimura, K.; Chang, E.; Famiglietti, J. S.; Oki, T.

    2012-12-01

    It has been suggested that greenhouse gas induced warming climate causes the acceleration of large scale hydrologic cycles, and, indeed, many regions on the Earth have been suffered by hydrologic extremes getting more frequent. However, historical observations are not able to provide enough information in comprehensive manner to understand their long-term variability and/or global distributions. In this study, a century long high resolution global climate data is developed in order to break through existing limitations. 20th Century Reanalysis (20CR) which has relatively low spatial resolution (~2.0°) and longer term availability (140 years) is dynamically downscaled into global T248 (~0.5°) resolution using Experimental Climate Prediction Center (ECPC) Global Spectral Model (GSM) by spectral nudging data assimilation technique. Also, Global Precipitation Climatology Centre (GPCC) and Climate Research Unit (CRU) observational data are adopted to reduce model dependent uncertainty. Downscaled product successfully represents realistic geographical detail keeping low frequency signal in mean state and spatiotemporal variability, while previous bias correction method fails to reproduce high frequency variability. Newly developed data is used to investigate how long-term large scale terrestrial hydrologic cycles have been changed globally and how they have been interacted with various climate modes, such as El-Niño Southern Oscillation (ENSO) and Atlantic Multidecadal Oscillation (AMO). As a further application, it will be used to provide atmospheric boundary condition of multiple land surface models in the Global Soil Wetness Project Phase 3 (GSWP3).

  13. Analysis of reference evapotranspiration (ET0) trends under climate change in Bangladesh using observed and CMIP5 data sets

    Science.gov (United States)

    Rahman, Mohammad Atiqur; Yunsheng, Lou; Sultana, Nahid; Ongoma, Victor

    2018-03-01

    ET0 is an important hydro-meteorological phenomenon, which is influenced by changing climate like other climatic parameters. This study investigates the present and future trends of ET0 in Bangladesh using 39 years' historical and downscaled CMIP5 daily climatic data for the twenty-first century. Statistical Downscaling Model (SDSM) was used to downscale the climate data required to calculate ET0. Penman-Monteith formula was applied in ET0 calculation for both the historical and modelled data. To analyse ET0 trends and trend changing patterns, modified Mann-Kendall and Sequential Mann-Kendall tests were, respectively, done. Spatial variations of ET0 trends are presented by inverse distance weighting interpolation using ArcGIS 10.2.2. Results show that RCP8.5 (2061-2099) will experience the highest amount of ET0 totals in comparison to the historical and all other scenarios in the same time span of 39 years. Though significant positive trends were observed in the mid and last months of year from month-wise trend analysis of representative concentration pathways, significant negative trends were also found for some months using historical data in similar analysis. From long-term annual trend analysis, it was found that major part of the country represents decreasing trends using historical data, but increasing trends were observed for modelled data. Theil-Sen estimations of ET0 trends in the study depict a good consistency with the Mann-Kendall test results. The findings of the study would contribute in irrigation water management and planning of the country and also in furthering the climate change study using modelled data in the context of Bangladesh.

  14. Dynamical and statistical downscaling of precipitation and temperature in a Mediterranean area

    KAUST Repository

    Pizzigalli, Claudia

    2012-03-28

    In this paper we present and discuss a comparison between statistical and regional climate modeling techniques for downscaling GCM prediction . The comparison is carried out over the “Capitanata” region, an area of agricultural interest in south-eastern Italy, for current (1961-1990) and future (2071–2100) climate. The statistical model is based on Canonical Correlation Analysis (CCA), associated with a data pre-filtering obtained by a Principal Component Analysis (PCA), whereas the Regional Climate Model REGCM3 was used for dynamical downscaling. Downscaling techniques were applied to estimate rainfall, maximum and minimum temperatures and average number of consecutive wet and dry days. Both methods have comparable skills in estimating stations data. They show good results for spring, the most important season for agriculture. Both statistical and dynamical models reproduce the statistical properties of precipitation well, the crucial variable for the growth of crops.

  15. Downscaling future climate projections to the watershed scale: A north San Francisco Bay estuary case study

    Science.gov (United States)

    Micheli, Elisabeth; Flint, Lorraine; Flint, Alan; Weiss, Stuart; Kennedy, Morgan

    2012-01-01

    We modeled the hydrology of basins draining into the northern portion of the San Francisco Bay Estuary (North San Pablo Bay) using a regional water balance model (Basin Characterization Model; BCM) to estimate potential effects of climate change at the watershed scale. The BCM calculates water balance components, including runoff, recharge, evapotranspiration, soil moisture, and stream flow, based on climate, topography, soils and underlying geology, and the solar-driven energy balance. We downscaled historical and projected precipitation and air temperature values derived from weather stations and global General Circulation Models (GCMs) to a spatial scale of 270 m. We then used the BCM to estimate hydrologic response to climate change for four scenarios spanning this century (2000–2100). Historical climate patterns show that Marin’s coastal regions are typically on the order of 2 °C cooler and receive five percent more precipitation compared to the inland valleys of Sonoma and Napa because of marine influences and local topography. By the last 30 years of this century, North Bay scenarios project average minimum temperatures to increase by 1.0 °C to 3.1 °C and average maximum temperatures to increase by 2.1 °C to 3.4 °C (in comparison to conditions experienced over the last 30 years, 1981–2010). Precipitation projections for the 21st century vary between GCMs (ranging from 2 to 15% wetter than the 20th-century average). Temperature forcing increases the variability of modeled runoff, recharge, and stream discharge, and shifts hydrologic cycle timing. For both high- and low-rainfall scenarios, by the close of this century warming is projected to amplify late-season climatic water deficit (a measure of drought stress on soils) by 8% to 21%. Hydrologic variability within a single river basin demonstrated at the scale of subwatersheds may prove an important consideration for water managers in the face of climate change. Our results suggest that in arid

  16. Use of RCM simulations to assess the impact of climate change on wind energy availability

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, Rebecca Jane

    2004-01-01

    There is considerable interest in the potential impact of climate change on the feasibility and predictability of renewable energy sources including wind energy. This report presents an application and evaluation of physical (dynamical) downscaling toolsfor examining the impact of climate change...... on near-surface flow and hence wind energy density across northern Europe. It is shown that: - Simulated wind fields using the Rossby Centre coupled Regional Climate Model (RCM) (RCAO) during the control period(1961-1990) exhibit reasonable and realistic features as documented in in situ observations...... and reanalysis data products. - The differences between near-surface wind speed and direction calculated for the control run (January 1, 1961 – December 30, 1990)based on boundary conditions derived from two Global Climate Models (GCM): HadAM3H and ECHAM4/OPYC3 are comparable to changes in the climate change...

  17. Using a weather generator to downscale spatio-temporal precipitation at urban scale

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Christensen, Ole Bøssing; Arnbjerg-Nielsen, Karsten

    In recent years, urban flooding has occurred in Denmark due to very local extreme precipitation events with very short lifetime. Several of these floods have been among the most severe ever experienced. The current study demonstrates the applicability of the Spatio-Temporal Neyman-Scott Rectangular...... the observed spatio-temporal differences at very fine scale for all measured parameters. For downscaling, perturbation with a climate change signal, precipitation from four different regional climate model simulations has been analysed. The analysed models are two runs from the ENSEMBLES (RACMO...

  18. Climate Change Impacts on North Dakota: Agriculture and Hydrology

    Science.gov (United States)

    Kirilenko, Andrei; Zhang, Xiaodong; Lim, Yeo Howe; Teng, William L.

    2011-01-01

    North Dakota is one of the principal producers of agricultural commodities in the USA, including over half of the total spring wheat production. While the region includes some of the best agricultural lands in the world, the steep temperature and precipitation gradients also make it one of the most sensitive to climate change. Over the 20th century, both the temperature and the pattern of precipitation in the state have changed; one of the most dramatic examples of the consequences of this change is the Devils Lake flooding. In two studies, we estimated the climate change impacts on crop yields and on the hydrology of the Devils Lake basin. The projections of six GCMs, driven by three SRES scenarios were statistically downscaled for multiple locations throughout the state, for the 2020s, 2050s, and 2080s climate. Averaged over all GCMs, there is a small increase in precipitation, by 0.6 - 1.1% in 2020s, 3.1 - 3.5% in 2050s, and 3.0 - 7.6% in 2080s. This change in precipitation varies with the seasons, with cold seasons becoming wetter and warm seasons not changing.

  19. Inundation downscaling for the development of a long-term and global inundation database compatible to SWOT mission

    Science.gov (United States)

    Aires, Filipe; Prigent, Catherine; Papa, Fabrice

    2014-05-01

    The Global Inundation Extent from Multi-Satellite (GIEMS) provides multi-year monthly variations of the global surface water extent at about 25 kmx25 km resolution, from 1993 to 2007. It is derived from multiple satellite observations. Its spatial resolution is usually compatible with climate model outputs and with global land surface model grids but is clearly not adequate for local applications that require the characterization of small individual water bodies. There is today a strong demand for high-resolution inundation extent datasets, for a large variety of applications such as water management, regional hydrological modeling, or for the analysis of mosquitos-related diseases. Even for climate applications, the GIEMS resolution might be limited given recent results on the key importance of the smallest ponds in the emission of CH4, as compared to the largest ones. If the inundation extent is combined to altimetry measurements to obtain water volume changes, and finally river discharge to the ocean (Frappart et al. 2011), then a better resolved inundation extent will also improve the accuracy of these estimates. In the context of the SWOT mission, the downscaling of GIEMS has multiple applications uses but a major one will be to use the SWOT retrievals to develop a downscaling of GIEMS. This SWOT-compatible downscaling could then be used to built a SWOT-compatible high-resolution database back in time from 1993 to the SWOT launch date. This extension of SWOT record is necessary to perform climate studies related to climate change. This paper present three approaches to do downscale GIEMS. Two basins will be considered for illustrative purpose, Amazon, Niger and Mekhong. - Aires, F., F. Papa, C. Prigent, J.-F. Cretaux and M. Berge-Nguyen, Characterization and downscaling of the inundation extent over the Inner Niger delta using a multi-wavelength retrievals and Modis data, J. of Hydrometeorology, in press, 2014. - Aires, F., F. Papa and C. Prigent, A long

  20. Projected precipitation changes in South America: a dynamical downscaling within CLARIS

    Energy Technology Data Exchange (ETDEWEB)

    Soerensson, Anna A. [Centra de Investigaciones del Mar y la Atmosfera, CONICET/UBA, Buenos Aires (Argentina); Menendez, Claudio G. [Centra de Investigaciones del Mar y la Atmosfera, CONICET/UBA, Buenos Aires (Argentina); Dept. de Ciencias de la Atmosfera y los Oceanos, FCEN, UBA, Buenos Aires (Argentina); Ruscica, Romina; Alexander, Peter [Dept. de Fisica, FCEN, UBA, Buenos Aires (Argentina); Samuelsson, Patrick; Willen, Ulrika [Rossby Centre, SMHI, Norrkoeping (Sweden)

    2010-06-15

    Responses of precipitation seasonal means and extremes over South America in a downscaling of a climate change scenario are assessed with the Rossby Centre Regional Atmospheric Model (RCA). The anthropogenic warming under A1B scenario influences more on the likelihood of occurrence of severe extreme events like heavy precipitation and dry spells than on the mean seasonal precipitation. The risk of extreme precipitation increases in the La Plata Basin with a factor of 1.5-2.5 during all seasons and in the northwestern part of the continent with a factor 1.5-3 in summer, while it decreases in central and northeastern Brazil during winter and spring. The maximum amount of 5-days precipitation increases by up to 50% in La Plata Basin, indicating risks of flooding. Over central Brazil and the Bolivian lowland, where present 5-days precipitation is higher, the increases are similar in magnitude and could cause less impacts. In southern Amazonia, northeastern Brazil and the Amazon basin, the maximum number of consecutive dry days increases and mean winter and spring precipitation decreases, indicating a longer dry season. In the La Plata Basin, there is no clear pattern of change for the dry spell duration. (orig.)

  1. Consistency and Main Differences Between European Regional Climate Downscaling Intercomparison Results; From PRUDENCE and ENSEMBLES to CORDEX

    Science.gov (United States)

    Christensen, J. H.; Larsen, M. A. D.; Christensen, O. B.; Drews, M.

    2017-12-01

    For more than 20 years, coordinated efforts to apply regional climate models to downscale GCM simulations for Europe have been pursued by an ever increasing group of scientists. This endeavor showed its first results during EU framework supported projects such as RACCS and MERCURE. Here, the foundation for today's advanced worldwide CORDEX approach was laid out by a core of six research teams, who conducted some of the first coordinated RCM simulations with the aim to assess regional climate change for Europe. However, it was realized at this stage that model bias in GCMs as well as RCMs made this task very challenging. As an immediate outcome, the idea was conceived to make an even more coordinated effort by constructing a well-defined and structured set of common simulations; this lead to the PRUDENCE project (2001-2004). Additional coordinated efforts involving ever increasing numbers of GCMs and RCMs followed in ENSEMBLES (2004-2009) and the ongoing Euro-CORDEX (officially commenced 2011) efforts. Along with the overall coordination, simulations have increased their standard resolution from 50km (PRUDENCE) to about 12km (Euro-CORDEX) and from time slice simulations (PRUDENCE) to transient experiments (ENSEMBLES and CORDEX); from one driving model and emission scenario (PRUDENCE) to several (Euro-CORDEX). So far, this wealth of simulations have been used to assess the potential impacts of future climate change in Europe providing a baseline change as defined by a multi-model mean change with associated uncertainties calculated from model spread in the ensemble. But how has the overall picture of state-of-the-art regional climate change projections changed over this period of almost two decades? Here we compare across scenarios, model resolutions and model vintage the results from PRUDENCE, ENSEMBLES and Euro-CORDEX. By appropriate scaling we identify robust findings about the projected future of European climate expressed by temperature and precipitation changes

  2. Future climate change enhances rainfall seasonality in a regional model of western Maritime Continent

    Science.gov (United States)

    Kang, Suchul; Im, Eun-Soon; Eltahir, Elfatih A. B.

    2018-03-01

    In this study, future changes in rainfall due to global climate change are investigated over the western Maritime Continent based on dynamically downscaled climate projections using the MIT Regional Climate Model (MRCM) with 12 km horizontal resolution. A total of nine 30-year regional climate projections driven by multi-GCMs projections (CCSM4, MPI-ESM-MR and ACCESS1.0) under multi-scenarios of greenhouse gases emissions (Historical: 1976-2005, RCP4.5 and RCP8.5: 2071-2100) from phase 5 of the Coupled Model Inter-comparison Project (CMIP5) are analyzed. Focusing on dynamically downscaled rainfall fields, the associated systematic biases originating from GCM and MRCM are removed based on observations using Parametric Quantile Mapping method in order to enhance the reliability of future projections. The MRCM simulations with bias correction capture the spatial patterns of seasonal rainfall as well as the frequency distribution of daily rainfall. Based on projected rainfall changes under both RCP4.5 and RCP8.5 scenarios, the ensemble of MRCM simulations project a significant decrease in rainfall over the western Maritime Continent during the inter-monsoon periods while the change in rainfall is not relevant during wet season. The main mechanism behind the simulated decrease in rainfall is rooted in asymmetries of the projected changes in seasonal dynamics of the meridional circulation along different latitudes. The sinking motion, which is marginally positioned in the reference simulation, is enhanced and expanded under global climate change, particularly in RCP8.5 scenario during boreal fall season. The projected enhancement of rainfall seasonality over the western Maritime Continent suggests increased risk of water stress for natural ecosystems as well as man-made water resources reservoirs.

  3. A changing climate: impacts on human exposures to O3 using ...

    Science.gov (United States)

    Predicting the impacts of changing climate on human exposure to air pollution requires future scenarios that account for changes in ambient pollutant concentrations, population sizes and distributions, and housing stocks. An integrated methodology to model changes in human exposures due to these impacts was developed by linking climate, air quality, land-use, and human exposure models. This methodology was then applied to characterize changes in predicted human exposures to O3 under multiple future scenarios. Regional climate projections for the U.S. were developed by downscaling global circulation model (GCM) scenarios for three of the Intergovernmental Panel on Climate Change’s (IPCC’s) Representative Concentration Pathways (RCPs) using the Weather Research and Forecasting (WRF) model. The regional climate results were in turn used to generate air quality (concentration) projections using the Community Multiscale Air Quality (CMAQ) model. For each of the climate change scenarios, future U.S. census-tract level population distributions from the Integrated Climate and Land Use Scenarios (ICLUS) model for four future scenarios based on the IPCC’s Special Report on Emissions Scenarios (SRES) storylines were used. These climate, air quality, and population projections were used as inputs to EPA’s Air Pollutants Exposure (APEX) model for 12 U.S. cities. Probability density functions show changes in the population distribution of 8 h maximum daily O3 exposur

  4. European extra-tropical storm damage risk from a multi-model ensemble of dynamically-downscaled global climate models

    Science.gov (United States)

    Haylock, M. R.

    2011-10-01

    Uncertainty in the return levels of insured loss from European wind storms was quantified using storms derived from twenty-two 25 km regional climate model runs driven by either the ERA40 reanalyses or one of four coupled atmosphere-ocean global climate models. Storms were identified using a model-dependent storm severity index based on daily maximum 10 m wind speed. The wind speed from each model was calibrated to a set of 7 km historical storm wind fields using the 70 storms with the highest severity index in the period 1961-2000, employing a two stage calibration methodology. First, the 25 km daily maximum wind speed was downscaled to the 7 km historical model grid using the 7 km surface roughness length and orography, also adopting an empirical gust parameterisation. Secondly, downscaled wind gusts were statistically scaled to the historical storms to match the geographically-dependent cumulative distribution function of wind gust speed. The calibrated wind fields were run through an operational catastrophe reinsurance risk model to determine the return level of loss to a European population density-derived property portfolio. The risk model produced a 50-yr return level of loss of between 0.025% and 0.056% of the total insured value of the portfolio.

  5. European extra-tropical storm damage risk from a multi-model ensemble of dynamically-downscaled global climate models

    Directory of Open Access Journals (Sweden)

    M. R. Haylock

    2011-10-01

    Full Text Available Uncertainty in the return levels of insured loss from European wind storms was quantified using storms derived from twenty-two 25 km regional climate model runs driven by either the ERA40 reanalyses or one of four coupled atmosphere-ocean global climate models. Storms were identified using a model-dependent storm severity index based on daily maximum 10 m wind speed. The wind speed from each model was calibrated to a set of 7 km historical storm wind fields using the 70 storms with the highest severity index in the period 1961–2000, employing a two stage calibration methodology. First, the 25 km daily maximum wind speed was downscaled to the 7 km historical model grid using the 7 km surface roughness length and orography, also adopting an empirical gust parameterisation. Secondly, downscaled wind gusts were statistically scaled to the historical storms to match the geographically-dependent cumulative distribution function of wind gust speed.

    The calibrated wind fields were run through an operational catastrophe reinsurance risk model to determine the return level of loss to a European population density-derived property portfolio. The risk model produced a 50-yr return level of loss of between 0.025% and 0.056% of the total insured value of the portfolio.

  6. Climate change impact on groundwater levels in the Guarani Aquifer outcrop zone

    Science.gov (United States)

    Melo, D. D.; Wendland, E.

    2013-12-01

    The unsustainable use of groundwater in many countries might cause water availability restrictions in the future. Such issue is likely to worsen due to predicted climate changes for the incoming decades. As numerous studies suggest, aquifers recharge rates will be affected as a result of climate change. The Guarani Aquifer System (GAS) is one of the most important transboundary aquifer in the world, providing drinkable water for millions of people in four South American countries (Brazil, Argentina, Uruguay and Paraguay). Considering the GAS relevance and how its recharge rates might be altered by climatic conditions anomalies, the objective of this work is to assess possible climate changes impacts on groundwater levels in this aquifer outcrop zone. Global Climate Models' (GCM) outputs were used as inputs in a transient flux groundwater model created using the software SPA (Simulation of Process in Aquifers), enabling groundwater table fluctuation to be evaluated under distinct climatic scenarios. Six monitoring wells, located in a representative basin (Ribeirão da Onça basin) inside a GAS outcrop zone (ROB), provided water table measurements between 2004 and 2011 to calibrate the groundwater model. Using observed climatic data, a water budget method was applied to estimate recharge in different types of land uses. Statistically downscaled future climate scenarios were used as inputs for that same recharge model, which provided data for running SPA under those scenarios. The results show that most of the GCMs used here predict temperature arises over 275,15 K and major monthly rainfall mean changes to take place in the dry season. During wet seasons, those means might experience around 50% decrease. The transient model results indicate that water table variations, derived from around 70% of the climate scenarios, would vary below those measured between 2004 and 2011. Among the thirteen GCMs considered in this work, only four of them predicted more extreme

  7. Climate Change and Crop Exposure to Adverse Weather: Changes to Frost Risk and Grapevine Flowering Conditions.

    Science.gov (United States)

    Mosedale, Jonathan R; Wilson, Robert J; Maclean, Ilya M D

    2015-01-01

    The cultivation of grapevines in the UK and many other cool climate regions is expected to benefit from the higher growing season temperatures predicted under future climate scenarios. Yet the effects of climate change on the risk of adverse weather conditions or events at key stages of crop development are not always captured by aggregated measures of seasonal or yearly climates, or by downscaling techniques that assume climate variability will remain unchanged under future scenarios. Using fine resolution projections of future climate scenarios for south-west England and grapevine phenology models we explore how risks to cool-climate vineyard harvests vary under future climate conditions. Results indicate that the risk of adverse conditions during flowering declines under all future climate scenarios. In contrast, the risk of late spring frosts increases under many future climate projections due to advancement in the timing of budbreak. Estimates of frost risk, however, were highly sensitive to the choice of phenology model, and future frost exposure declined when budbreak was calculated using models that included a winter chill requirement for dormancy break. The lack of robust phenological models is a major source of uncertainty concerning the impacts of future climate change on the development of cool-climate viticulture in historically marginal climatic regions.

  8. Impact of the choice of the precipitation reference data set on climate model selection and the resulting climate change signal

    Science.gov (United States)

    Gampe, D.; Ludwig, R.

    2017-12-01

    Regional Climate Models (RCMs) that downscale General Circulation Models (GCMs) are the primary tool to project future climate and serve as input to many impact models to assess the related changes and impacts under such climate conditions. Such RCMs are made available through the Coordinated Regional climate Downscaling Experiment (CORDEX). The ensemble of models provides a range of possible future climate changes around the ensemble mean climate change signal. The model outputs however are prone to biases compared to regional observations. A bias correction of these deviations is a crucial step in the impact modelling chain to allow the reproduction of historic conditions of i.e. river discharge. However, the detection and quantification of model biases are highly dependent on the selected regional reference data set. Additionally, in practice due to computational constraints it is usually not feasible to consider the entire ensembles of climate simulations with all members as input for impact models which provide information to support decision-making. Although more and more studies focus on model selection based on the preservation of the climate model spread, a selection based on validity, i.e. the representation of the historic conditions is still a widely applied approach. In this study, several available reference data sets for precipitation are selected to detect the model bias for the reference period 1989 - 2008 over the alpine catchment of the Adige River located in Northern Italy. The reference data sets originate from various sources, such as station data or reanalysis. These data sets are remapped to the common RCM grid at 0.11° resolution and several indicators, such as dry and wet spells, extreme precipitation and general climatology, are calculate to evaluate the capability of the RCMs to produce the historical conditions. The resulting RCM spread is compared against the spread of the reference data set to determine the related uncertainties and

  9. Impacts of climate change on wind energy resources in France: a regionalization study; Impacts du changement climatique sur le potentiel eolien en France: une etude de regionalisation

    Energy Technology Data Exchange (ETDEWEB)

    Najac, J.

    2008-11-15

    In this work, we study the impact of climate change on surface winds in France and draw conclusions concerning wind energy resources. Because of their coarse spatial resolution, climate models cannot properly reproduce the spatial variability of surface winds. Thus, 2 down-scaling methods are developed in order to regionalize an ensemble of climate scenarios: a statistical method based on weather typing and a statistic-dynamical method that resorts to high resolution mesoscale modelling. By 2050, significant but relatively small changes are depicted with, in particular, a decrease of the wind speed in the southern and an increase in the northern regions of France. The use of other down-scaling methods enables us to study several uncertainty sources: it appears that most of the uncertainty is due to the climate models. (author)

  10. Desertification of forest, range and desert in Tehran province, affected by climate change

    Science.gov (United States)

    Eskandari, Hadi; Borji, Moslem; Khosravi, Hassan; Mesbahzadeh, Tayebeh

    2016-06-01

    Climate change has been identified as a leading human and environmental crisis of the twenty-first century. Drylands throughout the world have always undergone periods of degradation due to naturally occurring fluctuation in climate. Persistence of widespread degradation in arid and semiarid regions of Iran necessitates monitoring and evaluation. This paper aims to monitor the desertification trend in three types of land use, including range, forest and desert, affected by climate change in Tehran province for the 2000s and 2030s. For assessing climate change at Mehrabad synoptic station, the data of two emission scenarios, including A2 and B2, were used, utilizing statistical downscaling techniques and data generated by the Statistical DownScaling Model (SDSM). The index of net primary production (NPP) resulting from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images was employed as an indicator of destruction from 2001 to 2010. The results showed that temperature is the most significant driving force which alters the net primary production in rangeland, forest and desert land use in Tehran province. On the basis of monitoring findings under real conditions, in the 2000s, over 60 % of rangelands and 80 % of the forest were below the average production in the province. On the other hand, the long-term average changes of NPP in the rangeland and forests indicated the presence of relatively large areas of these land uses with a production rate lower than the desert. The results also showed that, assuming the existence of circumstances of each emission scenarios, the desertification status will not improve significantly in the rangelands and forests of Tehran province.

  11. Implications of climate change on hydrological extremes in the Blue Nile basin: A review

    Directory of Open Access Journals (Sweden)

    Meron Teferi Taye

    2015-09-01

    New hydrological insights: The review illustrates some discrepancy among research outputs. For the historical context, this is partially related to the period and length of data analyzed and the failure to consider the influence of multi-decadal oscillations. Consequently, we show that annual cycle of Blue Nile flow has not changed in the past five decades. For the future context, discrepancy is partially attributable to the various and differing climate and hydrological models included and the downscaling techniques applied. The need to prudently consider sources of uncertainty and potential causes of bias in historical trend and climate change impact research is highlighted.

  12. Socio-Economic Vulnerability to Climate Change in California

    Science.gov (United States)

    Heberger, M. G.; Cooley, H.; Moore, E.; Garzon, C.

    2011-12-01

    The western United States faces a range of impacts from global climate change, including increases in extreme heat, wildfires, and coastal flooding and erosion; changes are also likely to occur in air quality, water availability, and the spread of infectious diseases. To date, a great deal of research has been done to forecast the physical effects of climate change, while less attention has been given to the factors make different populations more or less vulnerable to harm from such changes. For example, mortality rates from Hurricane Audrey, which struck the coast of Louisiana in 1957, were more than eight times higher among blacks than among whites. While disaster events may not discriminate, impacts on human populations are shaped by "intervening conditions" that determine the human impact of the flood and the specific needs for preparedness, response, and recovery. In this study, we analyze the potential impacts of climate change by using recent downscaled climate model outputs, creating a variety of statistics and visualizations to communicate potential impacts to community groups and decision makers, after several meetings with these groups to ask, "What types of information are most useful to you for planning?" We relate climate impacts to social vulnerability - defined as the intersection of the exposure, sensitivity, and adaptive capacity of a person or group of people - with a focus on the U.S. state of California. Understanding vulnerability factors and the populations that exhibit these factors are critical for crafting effective climate change policies and response strategies. It is also important to the emerging study of climate justice, which is the concept that no group of people should disproportionately bear the burden of climate impacts or the costs of mitigation and adaptation.

  13. Multisite rainfall downscaling and disaggregation in a tropical urban area

    Science.gov (United States)

    Lu, Y.; Qin, X. S.

    2014-02-01

    A systematic downscaling-disaggregation study was conducted over Singapore Island, with an aim to generate high spatial and temporal resolution rainfall data under future climate-change conditions. The study consisted of two major components. The first part was to perform an inter-comparison of various alternatives of downscaling and disaggregation methods based on observed data. This included (i) single-site generalized linear model (GLM) plus K-nearest neighbor (KNN) (S-G-K) vs. multisite GLM (M-G) for spatial downscaling, (ii) HYETOS vs. KNN for single-site disaggregation, and (iii) KNN vs. MuDRain (Multivariate Rainfall Disaggregation tool) for multisite disaggregation. The results revealed that, for multisite downscaling, M-G performs better than S-G-K in covering the observed data with a lower RMSE value; for single-site disaggregation, KNN could better keep the basic statistics (i.e. standard deviation, lag-1 autocorrelation and probability of wet hour) than HYETOS; for multisite disaggregation, MuDRain outperformed KNN in fitting interstation correlations. In the second part of the study, an integrated downscaling-disaggregation framework based on M-G, KNN, and MuDRain was used to generate hourly rainfall at multiple sites. The results indicated that the downscaled and disaggregated rainfall data based on multiple ensembles from HadCM3 for the period from 1980 to 2010 could well cover the observed mean rainfall amount and extreme data, and also reasonably keep the spatial correlations both at daily and hourly timescales. The framework was also used to project future rainfall conditions under HadCM3 SRES A2 and B2 scenarios. It was indicated that the annual rainfall amount could reduce up to 5% at the end of this century, but the rainfall of wet season and extreme hourly rainfall could notably increase.

  14. Potential impact of climate change to the future streamflow of Yellow River Basin based on CMIP5 data

    Science.gov (United States)

    Yang, Xiaoli; Zheng, Weifei; Ren, Liliang; Zhang, Mengru; Wang, Yuqian; Liu, Yi; Yuan, Fei; Jiang, Shanhu

    2018-02-01

    The Yellow River Basin (YRB) is the largest river basin in northern China, which has suffering water scarcity and drought hazard for many years. Therefore, assessments the potential impacts of climate change on the future streamflow in this basin is very important for local policy and planning on food security. In this study, based on the observations of 101 meteorological stations in YRB, equidistant CDF matching (EDCDFm) statistical downscaling approach was applied to eight climate models under two emissions scenarios (RCP4.5 and RCP8.5) from phase five of the Coupled Model Intercomparison Project (CMIP5). Variable infiltration capacity (VIC) model with 0.25° × 0.25° spatial resolution was developed based on downscaled fields for simulating streamflow in the future period over YRB. The results show that with the global warming trend, the annual streamflow will reduced about 10 % during the period of 2021-2050, compared to the base period of 1961-1990 in YRB. There should be suitable water resources planning to meet the demands of growing populations and future climate changing in this region.

  15. STATISTICAL DOWNSCALING DENGAN PERGESERAN WAKTU BERDASARKAN KORELASI SILANG

    Directory of Open Access Journals (Sweden)

    Aji Hamim Wigena

    2015-09-01

    Full Text Available Pergeseran waktu (time lag dalam analisis data deret waktu diperlukan terutama untuk analisis hubungan dua peubah (variable, seperti dalam statistical downscaling. Pergeseran waktu ini ditentukan berdasarkan korelasi silang tinggi yang setara dengan hubungan yang kuat antar kedua peubah tersebut sehingga dapat digunakan dalam pemodelan untuk prakiraan yang lebih akurat. Makalah ini mengenai statistical downscaling dengan memperhatikan korelasi silang antara data curah hujan dengan data presipitasi Global Circulation Model (GCM dari Climate Model Inter Comparison Project (CMIP5. Salah satu syarat dalam statistical downscaling adalah peubah  skala lokal dan global berkorelasi tinggi. Kedua tipe peubah tersebut berupa data deret waktu sehingga fungsi korelasi silang diterapkan untuk memperoleh pergeseran waktu. Korelasi silang yang tinggi menentukan pergeseran waktu pada luaran GCM yang menghasilkan hubungan fungsional lebih kuat antara kedua tipe peubah. Model regresi komponen utama dan regresi kuadrat terkecil parsial digunakan dalam makalah ini. Model-model dengan pergeseran waktu menduga curah hujan lebih baik daripada model-model tanpa pergeseran waktu.   Time lag in time series data analysis is required especially to analyze the relationship of two variables, such as in statistical downscaling. Time lag is determined based on high cross correlation which is equivalent to strong relationship between the two variables and can be used in modeling for a more accurate forecast. This paper is about  statistical downscaling by considering the cross correlation between rainfall data and precipitation data from Global Circulation Model (GCM of Climate Model Inter Comparison Project (CMIP5. One of the conditions in statistical downscaling is that local scale and global scale variables are highly correlated. Both types of variables are time series data, thus cross correlation function is applied to find time lags. High cross correlation determines

  16. Climate Change Implications for Tropical Islands: Interpolating and Interpreting Statistically Downscaled GCM Projections for Management and Planning

    Science.gov (United States)

    Azad Henareh Khalyani; William A. Gould; Eric Harmsen; Adam Terando; Maya Quinones; Jaime A. Collazo

    2016-01-01

    statistically downscaled general circulation models (GCMs) taking Puerto Rico as a test case. Two model selection/model averaging strategies were used: the average of all available GCMs and the av-erage of the models that are able to...

  17. Climate change impact assessment on Veneto and Friuli plain groundwater. Part I: An integrated modeling approach for hazard scenario construction

    International Nuclear Information System (INIS)

    Baruffi, F.; Cisotto, A.; Cimolino, A.; Ferri, M.; Monego, M.; Norbiato, D.; Cappelletto, M.; Bisaglia, M.; Pretner, A.; Galli, A.; Scarinci, A.; Marsala, V.; Panelli, C.; Gualdi, S.; Bucchignani, E.; Torresan, S.; Pasini, S.; Critto, A.

    2012-01-01

    Climate change impacts on water resources, particularly groundwater, is a highly debated topic worldwide, triggering international attention and interest from both researchers and policy makers due to its relevant link with European water policy directives (e.g. 2000/60/EC and 2007/118/EC) and related environmental objectives. The understanding of long-term impacts of climate variability and change is therefore a key challenge in order to address effective protection measures and to implement sustainable management of water resources. This paper presents the modeling approach adopted within the Life + project TRUST (Tool for Regional-scale assessment of groUndwater Storage improvement in adaptation to climaTe change) in order to provide climate change hazard scenarios for the shallow groundwater of high Veneto and Friuli Plain, Northern Italy. Given the aim to evaluate potential impacts on water quantity and quality (e.g. groundwater level variation, decrease of water availability for irrigation, variations of nitrate infiltration processes), the modeling approach integrated an ensemble of climate, hydrologic and hydrogeologic models running from the global to the regional scale. Global and regional climate models and downscaling techniques were used to make climate simulations for the reference period 1961–1990 and the projection period 2010–2100. The simulation of the recent climate was performed using observed radiative forcings, whereas the projections have been done prescribing the radiative forcings according to the IPCC A1B emission scenario. The climate simulations and the downscaling, then, provided the precipitation, temperatures and evapo-transpiration fields used for the impact analysis. Based on downscaled climate projections, 3 reference scenarios for the period 2071–2100 (i.e. the driest, the wettest and the mild year) were selected and used to run a regional geomorphoclimatic and hydrogeological model. The final output of the model ensemble

  18. Climate change impact assessment on Veneto and Friuli plain groundwater. Part I: An integrated modeling approach for hazard scenario construction

    Energy Technology Data Exchange (ETDEWEB)

    Baruffi, F. [Autorita di Bacino dei Fiumi dell' Alto Adriatico, Cannaregio 4314, 30121 Venice (Italy); Cisotto, A., E-mail: segreteria@adbve.it [Autorita di Bacino dei Fiumi dell' Alto Adriatico, Cannaregio 4314, 30121 Venice (Italy); Cimolino, A.; Ferri, M.; Monego, M.; Norbiato, D.; Cappelletto, M.; Bisaglia, M. [Autorita di Bacino dei Fiumi dell' Alto Adriatico, Cannaregio 4314, 30121 Venice (Italy); Pretner, A.; Galli, A. [SGI Studio Galli Ingegneria, via della Provvidenza 13, 35030 Sarmeola di Rubano (PD) (Italy); Scarinci, A., E-mail: andrea.scarinci@sgi-spa.it [SGI Studio Galli Ingegneria, via della Provvidenza 13, 35030 Sarmeola di Rubano (PD) (Italy); Marsala, V.; Panelli, C. [SGI Studio Galli Ingegneria, via della Provvidenza 13, 35030 Sarmeola di Rubano (PD) (Italy); Gualdi, S., E-mail: silvio.gualdi@bo.ingv.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Bucchignani, E., E-mail: e.bucchignani@cira.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Torresan, S., E-mail: torresan@cmcc.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Pasini, S., E-mail: sara.pasini@stud.unive.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Calle Larga S. Marta 2137, 30123 Venice (Italy); Critto, A., E-mail: critto@unive.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Calle Larga S. Marta 2137, 30123 Venice (Italy); and others

    2012-12-01

    Climate change impacts on water resources, particularly groundwater, is a highly debated topic worldwide, triggering international attention and interest from both researchers and policy makers due to its relevant link with European water policy directives (e.g. 2000/60/EC and 2007/118/EC) and related environmental objectives. The understanding of long-term impacts of climate variability and change is therefore a key challenge in order to address effective protection measures and to implement sustainable management of water resources. This paper presents the modeling approach adopted within the Life + project TRUST (Tool for Regional-scale assessment of groUndwater Storage improvement in adaptation to climaTe change) in order to provide climate change hazard scenarios for the shallow groundwater of high Veneto and Friuli Plain, Northern Italy. Given the aim to evaluate potential impacts on water quantity and quality (e.g. groundwater level variation, decrease of water availability for irrigation, variations of nitrate infiltration processes), the modeling approach integrated an ensemble of climate, hydrologic and hydrogeologic models running from the global to the regional scale. Global and regional climate models and downscaling techniques were used to make climate simulations for the reference period 1961-1990 and the projection period 2010-2100. The simulation of the recent climate was performed using observed radiative forcings, whereas the projections have been done prescribing the radiative forcings according to the IPCC A1B emission scenario. The climate simulations and the downscaling, then, provided the precipitation, temperatures and evapo-transpiration fields used for the impact analysis. Based on downscaled climate projections, 3 reference scenarios for the period 2071-2100 (i.e. the driest, the wettest and the mild year) were selected and used to run a regional geomorphoclimatic and hydrogeological model. The final output of the model ensemble produced

  19. A new methodology for building local climate change scenarios : A case study of monthly temperature projections for Mexico City

    NARCIS (Netherlands)

    Estrada, Francisco; Guerrero, VíCtor M.

    2014-01-01

    This paper proposes a new methodology for generating climate change scenarios at the local scale based on multivariate time series models and restricted forecasting techniques. This methodology offers considerable advantages over the current statistical downscaling techniques such as: (i) it

  20. Bias-correction and Spatial Disaggregation for Climate Change Impact Assessments at a basin scale

    Science.gov (United States)

    Nyunt, Cho; Koike, Toshio; Yamamoto, Akio; Nemoto, Toshihoro; Kitsuregawa, Masaru

    2013-04-01

    Basin-scale climate change impact studies mainly rely on general circulation models (GCMs) comprising the related emission scenarios. Realistic and reliable data from GCM is crucial for national scale or basin scale impact and vulnerability assessments to build safety society under climate change. However, GCM fail to simulate regional climate features due to the imprecise parameterization schemes in atmospheric physics and coarse resolution scale. This study describes how to exclude some unsatisfactory GCMs with respect to focused basin, how to minimize the biases of GCM precipitation through statistical bias correction and how to cover spatial disaggregation scheme, a kind of downscaling, within in a basin. GCMs rejection is based on the regional climate features of seasonal evolution as a bench mark and mainly depends on spatial correlation and root mean square error of precipitation and atmospheric variables over the target region. Global Precipitation Climatology Project (GPCP) and Japanese 25-uear Reanalysis Project (JRA-25) are specified as references in figuring spatial pattern and error of GCM. Statistical bias-correction scheme comprises improvements of three main flaws of GCM precipitation such as low intensity drizzled rain days with no dry day, underestimation of heavy rainfall and inter-annual variability of local climate. Biases of heavy rainfall are conducted by generalized Pareto distribution (GPD) fitting over a peak over threshold series. Frequency of rain day error is fixed by rank order statistics and seasonal variation problem is solved by using a gamma distribution fitting in each month against insi-tu stations vs. corresponding GCM grids. By implementing the proposed bias-correction technique to all insi-tu stations and their respective GCM grid, an easy and effective downscaling process for impact studies at the basin scale is accomplished. The proposed method have been examined its applicability to some of the basins in various climate

  1. Regional projection of climate impact indices over the Mediterranean region

    Science.gov (United States)

    Casanueva, Ana; Frías, M.; Dolores; Herrera, Sixto; Bedia, Joaquín; San Martín, Daniel; Gutiérrez, José Manuel; Zaninovic, Ksenija

    2014-05-01

    Climate Impact Indices (CIIs) are being increasingly used in different socioeconomic sectors to transfer information about climate change impacts and risks to stakeholders. CIIs are typically based on different weather variables such as temperature, wind speed, precipitation or humidity and comprise, in a single index, the relevant meteorological information for the particular impact sector (in this study wildfires and tourism). This dependence on several climate variables poses important limitations to the application of statistical downscaling techniques, since physical consistency among variables is required in most cases to obtain reliable local projections. The present study assesses the suitability of the "direct" downscaling approach, in which the downscaling method is directly applied to the CII. In particular, for illustrative purposes, we consider two popular indices used in the wildfire and tourism sectors, the Fire Weather Index (FWI) and the Physiological Equivalent Temperature (PET), respectively. As an example, two case studies are analysed over two representative Mediterranean regions of interest for the EU CLIM-RUN project: continental Spain for the FWI and Croatia for the PET. Results obtained with this "direct" downscaling approach are similar to those found from the application of the statistical downscaling to the individual meteorological drivers prior to the index calculation ("component" downscaling) thus, a wider range of statistical downscaling methods could be used. As an illustration, future changes in both indices are projected by applying two direct statistical downscaling methods, analogs and linear regression, to the ECHAM5 model. Larger differences were found between the two direct statistical downscaling approaches than between the direct and the component approaches with a single downscaling method. While these examples focus on particular indices and Mediterranean regions of interest for CLIM-RUN stakeholders, the same study

  2. Regional climate model downscaling may improve the prediction of alien plant species distributions

    Science.gov (United States)

    Liu, Shuyan; Liang, Xin-Zhong; Gao, Wei; Stohlgren, Thomas J.

    2014-12-01

    Distributions of invasive species are commonly predicted with species distribution models that build upon the statistical relationships between observed species presence data and climate data. We used field observations, climate station data, and Maximum Entropy species distribution models for 13 invasive plant species in the United States, and then compared the models with inputs from a General Circulation Model (hereafter GCM-based models) and a downscaled Regional Climate Model (hereafter, RCM-based models).We also compared species distributions based on either GCM-based or RCM-based models for the present (1990-1999) to the future (2046-2055). RCM-based species distribution models replicated observed distributions remarkably better than GCM-based models for all invasive species under the current climate. This was shown for the presence locations of the species, and by using four common statistical metrics to compare modeled distributions. For two widespread invasive taxa ( Bromus tectorum or cheatgrass, and Tamarix spp. or tamarisk), GCM-based models failed miserably to reproduce observed species distributions. In contrast, RCM-based species distribution models closely matched observations. Future species distributions may be significantly affected by using GCM-based inputs. Because invasive plants species often show high resilience and low rates of local extinction, RCM-based species distribution models may perform better than GCM-based species distribution models for planning containment programs for invasive species.

  3. Strengthening the link between climate, hydrological and species distribution modeling to assess the impacts of climate change on freshwater biodiversity.

    Science.gov (United States)

    Tisseuil, C; Vrac, M; Grenouillet, G; Wade, A J; Gevrey, M; Oberdorff, T; Grodwohl, J-B; Lek, S

    2012-05-01

    To understand the resilience of aquatic ecosystems to environmental change, it is important to determine how multiple, related environmental factors, such as near-surface air temperature and river flow, will change during the next century. This study develops a novel methodology that combines statistical downscaling and fish species distribution modeling, to enhance the understanding of how global climate changes (modeled by global climate models at coarse-resolution) may affect local riverine fish diversity. The novelty of this work is the downscaling framework developed to provide suitable future projections of fish habitat descriptors, focusing particularly on the hydrology which has been rarely considered in previous studies. The proposed modeling framework was developed and tested in a major European system, the Adour-Garonne river basin (SW France, 116,000 km(2)), which covers distinct hydrological and thermal regions from the Pyrenees to the Atlantic coast. The simulations suggest that, by 2100, the mean annual stream flow is projected to decrease by approximately 15% and temperature to increase by approximately 1.2 °C, on average. As consequence, the majority of cool- and warm-water fish species is projected to expand their geographical range within the basin while the few cold-water species will experience a reduction in their distribution. The limitations and potential benefits of the proposed modeling approach are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Impact of climate change on runoff in Lake Urmia basin, Iran

    Science.gov (United States)

    Sanikhani, Hadi; Kisi, Ozgur; Amirataee, Babak

    2018-04-01

    Investigation of the impact of climate change on water resources is very necessary in dry and arid regions. In the first part of this paper, the climate model Long Ashton Research Station Weather Generator (LARS-WG) was used for downscaling climate data including rainfall, solar radiation, and minimum and maximum temperatures. Two different case studies including Aji-Chay and Mahabad-Chay River basins as sub-basins of Lake Urmia in the northwest part of Iran were considered. The results indicated that the LARS-WG successfully downscaled the climatic variables. By application of different emission scenarios (i.e., A1B, A2, and B1), an increasing trend in rainfall and a decreasing trend in temperature were predicted for both the basins over future time periods. In the second part of this paper, gene expression programming (GEP) was applied for simulating runoff of the basins in the future time periods including 2020, 2055, and 2090. The input combination including rainfall, solar radiation, and minimum and maximum temperatures in current and prior time was selected as the best input combination with highest predictive power for runoff prediction. The results showed that the peak discharge will decrease by 50 and 55.9% in 2090 comparing with the baseline period for the Aji-Chay and Mahabad-Chay basins, respectively. The results indicated that the sustainable adaptation strategies are necessary for these basins for protection of water resources in future.

  5. Projecting the potential evapotranspiration by coupling different formulations and input data reliabilities: The possible uncertainty source for climate change impacts on hydrological regime

    Science.gov (United States)

    Wang, Weiguang; Li, Changni; Xing, Wanqiu; Fu, Jianyu

    2017-12-01

    Representing atmospheric evaporating capability for a hypothetical reference surface, potential evapotranspiration (PET) determines the upper limit of actual evapotranspiration and is an important input to hydrological models. Due that present climate models do not give direct estimates of PET when simulating the hydrological response to future climate change, the PET must be estimated first and is subject to the uncertainty on account of many existing formulae and different input data reliabilities. Using four different PET estimation approaches, i.e., the more physically Penman (PN) equation with less reliable input variables, more empirical radiation-based Priestley-Taylor (PT) equation with relatively dependable downscaled data, the most simply temperature-based Hamon (HM) equation with the most reliable downscaled variable, and downscaling PET directly by the statistical downscaling model, this paper investigated the differences of runoff projection caused by the alternative PET methods by a well calibrated abcd monthly hydrological model. Three catchments, i.e., the Luanhe River Basin, the Source Region of the Yellow River and the Ganjiang River Basin, representing a large climatic diversity were chosen as examples to illustrate this issue. The results indicated that although similar monthly patterns of PET over the period 2021-2050 for each catchment were provided by the four methods, the magnitudes of PET were still slightly different, especially for spring and summer months in the Luanhe River Basin and the Source Region of the Yellow River with relatively dry climate feature. The apparent discrepancy in magnitude of change in future runoff and even the diverse change direction for summer months in the Luanhe River Basin and spring months in the Source Region of the Yellow River indicated that the PET method related uncertainty occurred, especially in the Luanhe River Basin and the Source Region of the Yellow River with smaller aridity index. Moreover, the

  6. Effects of city expansion on heat stress under climate change conditions.

    Directory of Open Access Journals (Sweden)

    Daniel Argüeso

    Full Text Available We examine the joint contribution of urban expansion and climate change on heat stress over the Sydney region. A Regional Climate Model was used to downscale present (1990-2009 and future (2040-2059 simulations from a Global Climate Model. The effects of urban surfaces on local temperature and vapor pressure were included. The role of urban expansion in modulating the climate change signal at local scales was investigated using a human heat-stress index combining temperature and vapor pressure. Urban expansion and climate change leads to increased risk of heat-stress conditions in the Sydney region, with substantially more frequent adverse conditions in urban areas. Impacts are particularly obvious in extreme values; daytime heat-stress impacts are more noticeable in the higher percentiles than in the mean values and the impact at night is more obvious in the lower percentiles than in the mean. Urban expansion enhances heat-stress increases due to climate change at night, but partly compensates its effects during the day. These differences are due to a stronger contribution from vapor pressure deficit during the day and from temperature increases during the night induced by urban surfaces. Our results highlight the inappropriateness of assessing human comfort determined using temperature changes alone and point to the likelihood that impacts of climate change assessed using models that lack urban surfaces probably underestimate future changes in terms of human comfort.

  7. Can bias correction and statistical downscaling methods improve the skill of seasonal precipitation forecasts?

    Science.gov (United States)

    Manzanas, R.; Lucero, A.; Weisheimer, A.; Gutiérrez, J. M.

    2018-02-01

    Statistical downscaling methods are popular post-processing tools which are widely used in many sectors to adapt the coarse-resolution biased outputs from global climate simulations to the regional-to-local scale typically required by users. They range from simple and pragmatic Bias Correction (BC) methods, which directly adjust the model outputs of interest (e.g. precipitation) according to the available local observations, to more complex Perfect Prognosis (PP) ones, which indirectly derive local predictions (e.g. precipitation) from appropriate upper-air large-scale model variables (predictors). Statistical downscaling methods have been extensively used and critically assessed in climate change applications; however, their advantages and limitations in seasonal forecasting are not well understood yet. In particular, a key problem in this context is whether they serve to improve the forecast quality/skill of raw model outputs beyond the adjustment of their systematic biases. In this paper we analyze this issue by applying two state-of-the-art BC and two PP methods to downscale precipitation from a multimodel seasonal hindcast in a challenging tropical region, the Philippines. To properly assess the potential added value beyond the reduction of model biases, we consider two validation scores which are not sensitive to changes in the mean (correlation and reliability categories). Our results show that, whereas BC methods maintain or worsen the skill of the raw model forecasts, PP methods can yield significant skill improvement (worsening) in cases for which the large-scale predictor variables considered are better (worse) predicted by the model than precipitation. For instance, PP methods are found to increase (decrease) model reliability in nearly 40% of the stations considered in boreal summer (autumn). Therefore, the choice of a convenient downscaling approach (either BC or PP) depends on the region and the season.

  8. Downscaling RCP8.5 daily temperatures and precipitation in Ontario using localized ensemble optimal interpolation (EnOI) and bias correction

    Science.gov (United States)

    Deng, Ziwang; Liu, Jinliang; Qiu, Xin; Zhou, Xiaolan; Zhu, Huaiping

    2017-10-01

    A novel method for daily temperature and precipitation downscaling is proposed in this study which combines the Ensemble Optimal Interpolation (EnOI) and bias correction techniques. For downscaling temperature, the day to day seasonal cycle of high resolution temperature of the NCEP climate forecast system reanalysis (CFSR) is used as background state. An enlarged ensemble of daily temperature anomaly relative to this seasonal cycle and information from global climate models (GCMs) are used to construct a gain matrix for each calendar day. Consequently, the relationship between large and local-scale processes represented by the gain matrix will change accordingly. The gain matrix contains information of realistic spatial correlation of temperature between different CFSR grid points, between CFSR grid points and GCM grid points, and between different GCM grid points. Therefore, this downscaling method keeps spatial consistency and reflects the interaction between local geographic and atmospheric conditions. Maximum and minimum temperatures are downscaled using the same method. For precipitation, because of the non-Gaussianity issue, a logarithmic transformation is used to daily total precipitation prior to conducting downscaling. Cross validation and independent data validation are used to evaluate this algorithm. Finally, data from a 29-member ensemble of phase 5 of the Coupled Model Intercomparison Project (CMIP5) GCMs are downscaled to CFSR grid points in Ontario for the period from 1981 to 2100. The results show that this method is capable of generating high resolution details without changing large scale characteristics. It results in much lower absolute errors in local scale details at most grid points than simple spatial downscaling methods. Biases in the downscaled data inherited from GCMs are corrected with a linear method for temperatures and distribution mapping for precipitation. The downscaled ensemble projects significant warming with amplitudes of 3

  9. Future southcentral US wildfire probability due to climate change

    Science.gov (United States)

    Stambaugh, Michael C.; Guyette, Richard P.; Stroh, Esther D.; Struckhoff, Matthew A.; Whittier, Joanna B.

    2018-01-01

    Globally, changing fire regimes due to climate is one of the greatest threats to ecosystems and society. In this paper, we present projections of future fire probability for the southcentral USA using downscaled climate projections and the Physical Chemistry Fire Frequency Model (PC2FM). Future fire probability is projected to both increase and decrease across the study region of Oklahoma, New Mexico, and Texas. Among all end-of-century projections, change in fire probabilities (CFPs) range from − 51 to + 240%. Greatest absolute increases in fire probability are shown for areas within the range of approximately 75 to 160 cm mean annual precipitation (MAP), regardless of climate model. Although fire is likely to become more frequent across the southcentral USA, spatial patterns may remain similar unless significant increases in precipitation occur, whereby more extensive areas with increased fire probability are predicted. Perhaps one of the most important results is illumination of climate changes where fire probability response (+, −) may deviate (i.e., tipping points). Fire regimes of southcentral US ecosystems occur in a geographic transition zone from reactant- to reaction-limited conditions, potentially making them uniquely responsive to different scenarios of temperature and precipitation changes. Identification and description of these conditions may help anticipate fire regime changes that will affect human health, agriculture, species conservation, and nutrient and water cycling.

  10. Climate change impact assessment on flow regime by incorporating spatial correlation and scenario uncertainty

    Science.gov (United States)

    Vallam, P.; Qin, X. S.

    2017-07-01

    Flooding risk is increasing in many parts of the world and may worsen under climate change conditions. The accuracy of predicting flooding risk relies on reasonable projection of meteorological data (especially rainfall) at the local scale. The current statistical downscaling approaches face the difficulty of projecting multi-site climate information for future conditions while conserving spatial information. This study presents a combined Long Ashton Research Station Weather Generator (LARS-WG) stochastic weather generator and multi-site rainfall simulator RainSim (CLWRS) approach to investigate flow regimes under future conditions in the Kootenay Watershed, Canada. To understand the uncertainty effect stemming from different scenarios, the climate output is fed into a hydrologic model. The results showed different variation trends of annual peak flows (in 2080-2099) based on different climate change scenarios and demonstrated that the hydrological impact would be driven by the interaction between snowmelt and peak flows. The proposed CLWRS approach is useful where there is a need for projection of potential climate change scenarios.

  11. Climate change at the coast: from global to local

    International Nuclear Information System (INIS)

    Watkinson, A.R.

    2009-01-01

    The IPCC has recently documented substantial changes in the global heat content of the oceans, salinity, sea level, thermal expansion and biogeochemistry. Over the 21. century anticipated climate related changes include: a rise in sea level of up to 0.6 m or more; increases in sea surface temperatures up to 3 deg. C; an intensification of tropical and extra tropical cyclones; larger extreme waves and storm surges; altered precipitation/ run-off; and ocean acidification. The Tyndall Centre has been exploring how to down-scale the global analysis to the local level within the framework of a coastal simulator. The simulator provides information on possible future states of the coast through the 21. Century under a range of climate and socio-economic futures and shoreline management options. It links models within a nested framework, recognizing three scales: (1) global, (2) regional, and (3) local. The linked models describe a range of processes, including marine climate (waves, surges and mean sea level), sand bank morpho-dynamics, wave transformation, shoreline morpho-dynamics, built environment scenarios, ecosystem change, and erosion and flood risk. Analyses from the simulator reinforce conclusions from IPCC WG2: coasts will be exposed to increasing risks over coming decades due to many compounding climate-change factors; the impact of climate change on coasts will be exacerbated by increasing human induced pressures; the unavoidability of sea-level rise even in the longer-term frequently conflicts with present day human development patterns and trends. (author)

  12. Predicting the Impacts of Climate Change on Runoff and Sediment Processes in Agricultural Watersheds: A Case Study from the Sunflower Watershed in the Lower Mississippi Basin

    Science.gov (United States)

    Elkadiri, R.; Momm, H.; Yasarer, L.; Armour, G. L.

    2017-12-01

    Climatic conditions play a major role in physical processes impacting soil and agrochemicals detachment and transportation from/in agricultural watersheds. In addition, these climatic conditions are projected to significantly vary spatially and temporally in the 21st century, leading to vast uncertainties about the future of sediment and non-point source pollution transport in agricultural watersheds. In this study, we selected the sunflower basin in the lower Mississippi River basin, USA to contribute in the understanding of how climate change affects watershed processes and the transport of pollutant loads. The climate projections used in this study were retrieved from the archive of World Climate Research Programme's (WCRP) Coupled Model Intercomparison Phase 5 (CMIP5) project. The CMIP5 dataset was selected because it contains the most up-to-date spatially downscaled and bias corrected climate projections. A subset of ten GCMs representing a range in projected climate were spatially downscaled for the sunflower watershed. Statistics derived from downscaled GCM output representing the 2011-2040, 2041-2070 and 2071-2100 time periods were used to generate maximum/minimum temperature and precipitation on a daily time step using the USDA Synthetic Weather Generator, SYNTOR. These downscaled climate data were then utilized as inputs to run in the Annualized Agricultural Non-Point Source (AnnAGNPS) pollution watershed model to estimate time series of runoff, sediment, and nutrient loads produced from the watershed. For baseline conditions a validated simulation of the watershed was created and validated using historical data from 2000 until 2015.

  13. Uncertainty of a hydrological climate change impact assessment - Is it really all about climate uncertainty?

    Science.gov (United States)

    Honti, Mark; Reichert, Peter; Scheidegger, Andreas; Stamm, Christian

    2013-04-01

    Climate change impact assessments have become more and more popular in hydrology since the middle 1980's with another boost after the publication of the IPCC AR4 report. During hundreds of impact studies a quasi-standard methodology emerged, which is mainly shaped by the growing public demand for predicting how water resources management or flood protection should change in the close future. The ``standard'' workflow considers future climate under a specific IPCC emission scenario simulated by global circulation models (GCMs), possibly downscaled by a regional climate model (RCM) and/or a stochastic weather generator. The output from the climate models is typically corrected for bias before feeding it into a calibrated hydrological model, which is run on the past and future meteorological data to analyse the impacts of climate change on the hydrological indicators of interest. The impact predictions are as uncertain as any forecast that tries to describe the behaviour of an extremely complex system decades into the future. Future climate predictions are uncertain due to the scenario uncertainty and the GCM model uncertainty that is obvious on finer resolution than continental scale. Like in any hierarchical model system, uncertainty propagates through the descendant components. Downscaling increases uncertainty with the deficiencies of RCMs and/or weather generators. Bias correction adds a strong deterministic shift to the input data. Finally the predictive uncertainty of the hydrological model ends the cascade that leads to the total uncertainty of the hydrological impact assessment. There is an emerging consensus between many studies on the relative importance of the different uncertainty sources. The prevailing perception is that GCM uncertainty dominates hydrological impact studies. There are only few studies, which found that the predictive uncertainty of hydrological models can be in the same range or even larger than climatic uncertainty. We carried out a

  14. Climate change projections for Tamil Nadu, India: deriving high-resolution climate data by a downscaling approach using PRECIS

    Science.gov (United States)

    Bal, Prasanta Kumar; Ramachandran, A.; Geetha, R.; Bhaskaran, B.; Thirumurugan, P.; Indumathi, J.; Jayanthi, N.

    2016-02-01

    In this paper, we present regional climate change projections for the Tamil Nadu state of India, simulated by the Met Office Hadley Centre regional climate model. The model is run at 25 km horizontal resolution driven by lateral boundary conditions generated by a perturbed physical ensemble of 17 simulations produced by a version of Hadley Centre coupled climate model, known as HadCM3Q under A1B scenario. The large scale features of these 17 simulations were evaluated for the target region to choose lateral boundary conditions from six members that represent a range of climate variations over the study region. The regional climate, known as PRECIS, was then run 130 years from 1970. The analyses primarily focus on maximum and minimum temperatures and rainfall over the region. For the Tamil Nadu as a whole, the projections of maximum temperature show an increase of 1.0, 2.2 and 3.1 °C for the periods 2020s (2005-2035), 2050s (2035-2065) and 2080s (2065-2095), respectively, with respect to baseline period (1970-2000). Similarly, the projections of minimum temperature show an increase of 1.1, 2.4 and 3.5 °C, respectively. This increasing trend is statistically significant (Mann-Kendall trend test). The annual rainfall projections for the same periods indicate a general decrease in rainfall of about 2-7, 1-4 and 4-9 %, respectively. However, significant exceptions are noticed over some pockets of western hilly areas and high rainfall areas where increases in rainfall are seen. There are also indications of increasing heavy rainfall events during the northeast monsoon season and a slight decrease during the southwest monsoon season. Such an approach of using climate models may maximize the utility of high-resolution climate change information for impact-adaptation-vulnerability assessments.

  15. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    OpenAIRE

    A. Mahmud; M. Hixson; M. J. Kleeman

    2012-01-01

    The effect of climate change on population-weighted concentrations of particulate matter (PM) during extreme events was studied using the Parallel Climate Model (PCM), the Weather Research and Forecasting (WRF) model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44) global emissions scenario was dynamically downscaled for the entire state of California between the years 2000–2006 and 2047–2053. Air quality simulations were carried out for ...

  16. Changing climatic conditions in the Upper Thames River Basin

    International Nuclear Information System (INIS)

    Simonovic, S.P.

    2009-01-01

    'Full text:' Many climate change impact studies have been conducted using a top-down approach. First, outputs from Global Circulation Models (GCMs) are considered which are downscaled in a second step to the river basin scale using either a statistical/empirical or a dynamic approach. The local climatic signal that is obtained is then used as input into a hydrological model to assess the direct consequences in the basin. Problems related to this approach include: a high degree of uncertainty associated with GCM outputs; and an increase in uncertainty due to the downscaling approach. An original inverse approach is developed in this work in order to improve the understanding of the processes leading to hydrological hazards, including both flood and drought events. The developed approach starts with the analysis of existing guidelines and management practices in a river basin with respect to critical hydrological exposures that may lead to failure of the water resources system or parts thereof. This implies that vulnerable components of the river basin have to be identified together with the risk exposure. In the next step the critical hydrologic exposures (flood levels for example) are transformed into corresponding critical meteorological conditions (extreme precipitation events for example). These local weather scenarios are then be statistically linked to possible large-scale climate conditions that are available from the GCMs. The developed procedure allows for the assessment of the vulnerability of river basins with respect to climate forcing. It also provides a tool for identifying the spatial distribution of the vulnerability and risk. Vulnerability is here characterized by the incremental losses, expressed either quantitatively or qualitatively, due to a change in the probability and magnitude of hazard events driven by climatic forcing. Vulnerability is seen as the basis for risk mitigation measures for hydrologic extremes at the basin level. The

  17. Impacts of climate change under CMIP5 RCP scenarios on the streamflow in the Dinder River and ecosystem habitats in Dinder National Park, Sudan

    Science.gov (United States)

    Basheer, Amir K.; Lu, Haishen; Omer, Abubaker; Ali, Abubaker B.; Abdelgader, Abdeldime M. S.

    2016-04-01

    The fate of seasonal river ecosystem habitats under climate change essentially depends on the changes in annual recharge of the river, which are related to alterations in precipitation and evaporation over the river basin. Therefore, the change in climate conditions is expected to significantly affect hydrological and ecological components, particularly in fragmented ecosystems. This study aims to assess the impacts of climate change on the streamflow in the Dinder River basin (DRB) and to infer its relative possible effects on the Dinder National Park (DNP) ecosystem habitats in Sudan. Four global circulation models (GCMs) from Coupled Model Intercomparison Project Phase 5 and two statistical downscaling approaches combined with a hydrological model (SWAT - the Soil and Water Assessment Tool) were used to project the climate change conditions over the study periods 2020s, 2050s, and 2080s. The results indicated that the climate over the DRB will become warmer and wetter under most scenarios. The projected precipitation variability mainly depends on the selected GCM and downscaling approach. Moreover, the projected streamflow is quite sensitive to rainfall and temperature variation, and will likely increase in this century. In contrast to drought periods during the 1960s, 1970s, and 1980s, the predicted climate change is likely to affect ecosystems in DNP positively and promote the ecological restoration for the habitats of flora and fauna.

  18. Downscaling wind and wavefields for 21st century coastal flood hazard projections in a region of complex terrain

    Science.gov (United States)

    O'Neill, Andrea; Erikson, Li; Barnard, Patrick

    2017-01-01

    While global climate models (GCMs) provide useful projections of near-surface wind vectors into the 21st century, resolution is not sufficient enough for use in regional wave modeling. Statistically downscaled GCM projections from Multivariate Adaptive Constructed Analogues provide daily averaged near-surface winds at an appropriate spatial resolution for wave modeling within the orographically complex region of San Francisco Bay, but greater resolution in time is needed to capture the peak of storm events. Short-duration high wind speeds, on the order of hours, are usually excluded in statistically downscaled climate models and are of key importance in wave and subsequent coastal flood modeling. Here we present a temporal downscaling approach, similar to constructed analogues, for near-surface winds suitable for use in local wave models and evaluate changes in wind and wave conditions for the 21st century. Reconstructed hindcast winds (1975–2004) recreate important extreme wind values within San Francisco Bay. A computationally efficient method for simulating wave heights over long time periods was used to screen for extreme events. Wave hindcasts show resultant maximum wave heights of 2.2 m possible within the Bay. Changes in extreme over-water wind speeds suggest contrasting trends within the different regions of San Francisco Bay, but 21th century projections show little change in the overall magnitude of extreme winds and locally generated waves.

  19. US Army Corps of Engineers sustainable water management for climate change

    International Nuclear Information System (INIS)

    White, K.; Olsen, R.; Townsley, S.; Fissekis, A.; Vaddey, S.

    2008-01-01

    The US Army Corps of Engineers (USACE) is the single largest owner and operator of hydropower in the U.S, with 75 projects. With a total nameplate capacity of 20,720 Megawatts (MW), USACE produces more than 24% of the nation's hydropower generating capacity. Nonfederal power plants at more than 40 USACE facilities add about another 2,000 MW of capacity. Much of this capacity is located in the Pacific Northwest and the Missouri River Basin, both of which are being impacted by climate change. Observed changes in snow pack and hydrology, including changes in the timing of spring snow melt and runoff, could have adverse impacts to hydropower production. Currently, there is more certainty in projecting temperature related impacts than precipitation-related impacts, but significant uncertainties remain. The USACE is currently evaluating adaptation and mitigation measures to better manage uncertainties through the use of both downscaled climate models and improved forecasts to drive adjustments in operating practices. This paper describes climate change impacts to USACE projects and presents an example of potential adaptation to USACE reservoir operating rule curves. (author)

  20. A possible indication of anthropogenic climate change in the wave climate in the central North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Pfizenmayer, A.; Storch, H. von [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    2000-07-01

    In the central North Sea we observe an increase in the frequency of eastward propagating waves in the recent four decades. To assess the significance of this change the wave statistic for this century was reconstructed with a statistical model. With a linear multivariate technique (redundancy analysis) monthly mean air pressure fields over the North Atlantic and Western Europe were downscaled on the intramonthly frequency of directional wave propagation. When compared against this reference, the recent change appears significant at the 5% level. In order to investigate the reason for this local climatic change, reconstruction was compared with the downscaled results of a transient GCM scenario (ECHAMA-OPYC3) and with results obtained in a high resolution time slice experiment with increased concentrations of greenhouse gases and aerosols. Both estimates are qualitatively consistent with the changes observed in the last decades. We suggest that the recent increase of eastward propagation is a local manifestation of anthropogenic global climate change. (orig.) [German] In den letzten Jahrzehnten konnte in der zentralen Nordsee eine Zunahme der Haeufigkeit ostwaerts laufender Wellen beobachtet werden. Mit Hilfe eines statistischen Modells wurde die Wellenstatistik des 20. Jahrhunderts rekonstruiert. Der monatliche mittlere Bodenluftdruck ueber dem Nordatlantik und Westeuropa wurde mit einer linearen multivariaten Technik auf die monatliche Verteilung der Wellenrichtungen regionalisiert. Der Vergleich der juengsten Aenderungen mit dem gesamten Jahrhundert zeigt, dass diese Aenderung im Wellenklima signifikant ist (5-%-Grenze). Zur Untersuchung der Ursachen dieser Veraenderung wurden diese mit den regionalisierten Ergebnissen aus einem transienten Klimaszenario und einem hochaufgeloesten Zeitscheibenexperiment verglichen. Beide Szenarien produzieren bei ansteigenden Treibhausgasen und Aerosolen eine qualitativ konsistente Aenderung. Die Zunahme der oestlich laufenden

  1. Downscaling of rainfall in Peru using Generalised Linear Models

    Science.gov (United States)

    Bergin, E.; Buytaert, W.; Onof, C.; Wheater, H.

    2012-04-01

    The assessment of water resources in the Peruvian Andes is particularly important because the Peruvian economy relies heavily on agriculture. Much of the agricultural land is situated near to the coast and relies on large quantities of water for irrigation. The simulation of synthetic rainfall series is thus important to evaluate the reliability of water supplies for current and future scenarios of climate change. In addition to water resources concerns, there is also a need to understand extreme heavy rainfall events, as there was significant flooding in Machu Picchu in 2010. The region exhibits a reduction of rainfall in 1983, associated with El Nino Southern Oscillation (SOI). NCEP Reanalysis 1 data was used to provide weather variable data. Correlations were calculated for several weather variables using raingauge data in the Andes. These were used to evaluate teleconnections and provide suggested covariates for the downscaling model. External covariates used in the model include sea level pressure and sea surface temperature over the region of the Humboldt Current. Relative humidity and temperature data over the region are also included. The SOI teleconnection is also used. Covariates are standardised using observations for 1960-1990. The GlimClim downscaling model was used to fit a stochastic daily rainfall model to 13 sites in the Peruvian Andes. Results indicate that the model is able to reproduce rainfall statistics well, despite the large area used. Although the correlation between individual rain gauges is generally quite low, all sites are affected by similar weather patterns. This is an assumption of the GlimClim downscaling model. Climate change scenarios are considered using several GCM outputs for the A1B scenario. GCM data was corrected for bias using 1960-1990 outputs from the 20C3M scenario. Rainfall statistics for current and future scenarios are compared. The region shows an overall decrease in mean rainfall but with an increase in variance.

  2. Projected changes over western Canada using convection-permitting regional climate model and the pseudo-global warming method

    Science.gov (United States)

    Li, Y.; Kurkute, S.; Chen, L.

    2017-12-01

    Results from the General Circulation Models (GCMs) suggest more frequent and more severe extreme rain events in a climate warmer than the present. However, current GCMs cannot accurately simulate extreme rainfall events of short duration due to their coarse model resolutions and parameterizations. This limitation makes it difficult to provide the detailed quantitative information for the development of regional adaptation and mitigation strategies. Dynamical downscaling using nested Regional Climate Models (RCMs) are able to capture key regional and local climate processes with an affordable computational cost. Recent studies have demonstrated that the downscaling of GCM results with weather-permitting mesoscale models, such as the pseudo-global warming (PGW) technique, could be a viable and economical approach of obtaining valuable climate change information on regional scales. We have conducted a regional climate 4-km Weather Research and Forecast Model (WRF) simulation with one domain covering the whole western Canada, for a historic run (2000-2015) and a 15-year future run to 2100 and beyond with the PGW forcing. The 4-km resolution allows direct use of microphysics and resolves the convection explicitly, thus providing very convincing spatial detail. With this high-resolution simulation, we are able to study the convective mechanisms, specifically the control of convections over the Prairies, the projected changes of rainfall regimes, and the shift of the convective mechanisms in a warming climate, which has never been examined before numerically at such large scale with such high resolution.

  3. Adapting the Biome-BGC Model to New Zealand Pastoral Agriculture: Climate Change and Land-Use Change

    Science.gov (United States)

    Keller, E. D.; Baisden, W. T.; Timar, L.

    2011-12-01

    We have adapted the Biome-BGC model to make climate change and land-use scenario estimates of New Zealand's pasture production in 2020 and 2050, with comparison to a 2005 baseline. We take an integrated modelling approach with the aim of enabling the model's use for policy assessments across broadly related issues such as climate change mitigation and adaptation, land-use change, and greenhouse gas projections. The Biome-BGC model is a biogeochemical model that simulates carbon, water, and nitrogen cycles in terrestrial ecosystems. We introduce two new 'ecosystems', sheep/beef and dairy pasture, within the existing structure of the Biome-BGC model and calibrate its ecophysiological parameters against pasture clipping data from diverse sites around New Zealand to form a baseline estimate of total New Zealand pasture production. Using downscaled AR4 climate projections, we construct mid- and upper-range climate change scenarios in 2020 and 2050. We produce land-use change scenarios in the same years by combining the Biome-BGC model with the Land Use in Rural New Zealand (LURNZ) model. The LURNZ model uses econometric approaches to predict future land-use change driven by changes in net profits driven by expected pricing, including the introduction of an emission trading system. We estimate the relative change in national pasture production from our 2005 baseline levels for both sheep/beef and dairy systems under each scenario.

  4. Downscaling GRACE Remote Sensing Datasets to High-Resolution Groundwater Storage Change Maps of California’s Central Valley

    Directory of Open Access Journals (Sweden)

    Michelle E. Miro

    2018-01-01

    Full Text Available NASA’s Gravity Recovery and Climate Experiment (GRACE has already proven to be a powerful data source for regional groundwater assessments in many areas around the world. However, the applicability of GRACE data products to more localized studies and their utility to water management authorities have been constrained by their limited spatial resolution (~200,000 km2. Researchers have begun to address these shortcomings with data assimilation approaches that integrate GRACE-derived total water storage estimates into complex regional models, producing higher-resolution estimates of hydrologic variables (~2500 km2. Here we take those approaches one step further by developing an empirically based model capable of downscaling GRACE data to a high-resolution (~16 km2 dataset of groundwater storage changes over a portion of California’s Central Valley. The model utilizes an artificial neural network to generate a series of high-resolution maps of groundwater storage change from 2002 to 2010 using GRACE estimates of variations in total water storage and a series of widely available hydrologic variables (PRISM precipitation and temperature data, digital elevation model (DEM-derived slope, and Natural Resources Conservation Service (NRCS soil type. The neural network downscaling model is able to accurately reproduce local groundwater behavior, with acceptable Nash-Sutcliffe efficiency (NSE values for calibration and validation (ranging from 0.2445 to 0.9577 and 0.0391 to 0.7511, respectively. Ultimately, the model generates maps of local groundwater storage change at a 100-fold higher resolution than GRACE gridded data products without the use of computationally intensive physical models. The model’s simulated maps have the potential for application to local groundwater management initiatives in the region.

  5. Effects of climate change on residential infiltration and air pollution exposure.

    Science.gov (United States)

    Ilacqua, Vito; Dawson, John; Breen, Michael; Singer, Sarany; Berg, Ashley

    2017-01-01

    Air exchange through infiltration is driven partly by indoor/outdoor temperature differences, and as climate change increases ambient temperatures, such differences could vary considerably even with small ambient temperature increments, altering patterns of exposures to both indoor and outdoor pollutants. We calculated changes in air fluxes through infiltration for prototypical detached homes in nine metropolitan areas in the United States (Atlanta, Boston, Chicago, Houston, Los Angeles, Minneapolis, New York, Phoenix, and Seattle) from 1970-2000 to 2040-2070. The Lawrence Berkeley National Laboratory model of infiltration was used in combination with climate data from eight regionally downscaled climate models from the North American Regional Climate Change Assessment Program. Averaged over all study locations, seasons, and climate models, air exchange through infiltration would decrease by ~5%. Localized increased infiltration is expected during the summer months, up to 20-30%. Seasonal and daily variability in infiltration are also expected to increase, particularly during the summer months. Diminished infiltration in future climate scenarios may be expected to increase exposure to indoor sources of air pollution, unless these ventilation reductions are otherwise compensated. Exposure to ambient air pollution, conversely, could be mitigated by lower infiltration, although peak exposure increases during summer months should be considered, as well as other mechanisms.

  6. Improvement of downscaled rainfall and temperature across generations over the Western Himalayan region of India

    Science.gov (United States)

    Das, L.; Dutta, M.; Akhter, J.; Meher, J. K.

    2016-12-01

    It is a challenging task to create station level (local scale) climate change information over the mountainous locations of Western Himalayan Region (WHR) in India because of limited data availability and poor data quality. In the present study, missing values of station data were handled through Multiple Imputation Chained Equation (MICE) technique. Finally 22 numbers of rain gauge and 16 number of temperature station data having continuous record during 1901­2005 and 1969­2009 period respectively were considered as reference stations for developing downscaled rainfall and temperature time series from five commonly available GCMs in the IPCC's different generation assessment reports namely 2nd, 3rd, 4th and 5th hereafter known as SAR, TAR, AR4 and AR5 respectively. Downscaled models were developed using the combined data from the ERA-interim reanalysis and GCMs historical runs (in spite of forcing were not identical in different generation) as predictor and station level rainfall and temperature as predictands. Station level downscaled rainfall and temperature time series were constructed for five GCMs available in each generation. Regional averaged downscaled time series comprising of all stations was prepared for each model and generation and the downscaled results were compared with observed time series. Finally an Overall Model Improvement Index (OMII) was developed using the downscaling results, which was used to investigate the model improvement across generations as well as the improvement of downscaling results obtained from the Empirical Statistical Downscaling (ESD) methods. In case of temperature, models have improved from SAR to AR5 over the study area. In all most all the GCMs TAR is showing worst performance over the WHR by considering the different statistical indices used in this study. In case of precipitation, no model has shown gradual improvement from SAR to AR5 both for interpolated and downscaled values.

  7. Prediction of hydrological responds to climate changes in the Upper Yangtze River Basin, China

    Science.gov (United States)

    Yang, X.; Ren, L.; Wang, Y.; Zhang, M.; Liu, Y.; Jiang, S.; Yuan, F.

    2017-12-01

    Climate changes have direct effects on hydrological cycle, with the increasing temperature and seasonal shift of precipitation. Therefore, understanding of how climate change may affect the population and water resources and economic development is critical to the water and food security for China. This study aims to evaluate the potential impacts of future climate changes on water resources of the upper basin of Yangtze River (the area controlled by the Yichang hydrological station) using the variable infiltration capacity (VIC) model driven by composite observations (1961-2005) and projections of eight CMIP5 models under scenarios RCP4.5 and RCP8.5 from 2006 to 2099. The raw eight CMIP5 models have been downscaled by the equidistant cumulative distribution functions (EDCDF) statistical downscaling approach from 1961 to 2099. The assessment of the performance of model simulated precipitation and temperature were calculated by comparing to the observations during the historical period (1961-2005). For the same variables, eight CMIP5 models for RCP 4.5 and RCP 8.5 downscaled by EDCDF method were generated during the future period (2006-2099). Overall, the VIC model performed well in monthly streamflow simulation, with the Nash-Sutcliffe coefficient of efficiency (NSCE) 0.92 and 0.97 for calibration and validation, respectively. The annual precipitation is projected to increase by 6.3mm and 8.6mm per decade and the annual temperature will increase by 0.22 °C and 0.53°C per decade (2006-2099) for RCP4.5 and RCP8.5, respectively. In the future period, The total runoff of the study basins would either remain stable or moderately increase by 2.7% and 22.4% per decade, the evapotranspiration increase by 2mm and 13mm per decade, and the soil moisture will reduce by -0.1% and -7.4% per decade under RCP4.5 and RCP8.5, respectively. The changes of model-simulated soil moisture, runoff, and evapotranspiration suggest that there probably be an increasing risk of drought in

  8. Uncertainty of simulated groundwater levels arising from stochastic transient climate change scenarios

    Science.gov (United States)

    Goderniaux, Pascal; Brouyère, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley; Dassargues, Alain

    2010-05-01

    The evaluation of climate change impact on groundwater reserves represents a difficult task because both hydrological and climatic processes are complex and difficult to model. In this study, we present an innovative methodology that combines the use of integrated surface - subsurface hydrological models with advanced stochastic transient climate change scenarios. This methodology is applied to the Geer basin (480 km²) in Belgium, which is intensively exploited to supply the city of Liège (Belgium) with drinking water. The physically-based, spatially-distributed, surface-subsurface flow model has been developed with the finite element model HydroGeoSphere . The simultaneous solution of surface and subsurface flow equations in HydroGeoSphere, as well as the internal calculation of the actual evapotranspiration as a function of the soil moisture at each node of the evaporative zone, enables a better representation of interconnected processes in all domains of the catchment (fully saturated zone, partially saturated zone, surface). Additionally, the use of both surface and subsurface observed data to calibrate the model better constrains the calibration of the different water balance terms. Crucially, in the context of climate change impacts on groundwater resources, the evaluation of groundwater recharge is improved. . This surface-subsurface flow model is combined with advanced climate change scenarios for the Geer basin. Climate change simulations were obtained from six regional climate model (RCM) scenarios assuming the SRES A2 greenhouse gases emission (medium-high) scenario. These RCM scenarios were statistically downscaled using a transient stochastic weather generator technique, combining 'RainSim' and the 'CRU weather generator' for temperature and evapotranspiration time series. This downscaling technique exhibits three advantages compared with the 'delta change' method usually used in groundwater impact studies. (1) Corrections to climate model output are

  9. Potential climate change impacts on temperate forest ecosystem processes

    Science.gov (United States)

    Peters, Emily B.; Wythers, Kirk R.; Zhang, Shuxia; Bradford, John B.; Reich, Peter B.

    2013-01-01

    Large changes in atmospheric CO2, temperature and precipitation are predicted by 2100, yet the long-term consequences for carbon, water, and nitrogen cycling in forests are poorly understood. We applied the PnET-CN ecosystem model to compare the long-term effects of changing climate and atmospheric CO2 on productivity, evapotranspiration, runoff, and net nitrogen mineralization in current Great Lakes forest types. We used two statistically downscaled climate projections, PCM B1 (warmer and wetter) and GFDL A1FI (hotter and drier), to represent two potential future climate and atmospheric CO2 scenarios. To separate the effects of climate and CO2, we ran PnET-CN including and excluding the CO2 routine. Our results suggest that, with rising CO2 and without changes in forest type, average regional productivity could increase from 67% to 142%, changes in evapotranspiration could range from –3% to +6%, runoff could increase from 2% to 22%, and net N mineralization could increase 10% to 12%. Ecosystem responses varied geographically and by forest type. Increased productivity was almost entirely driven by CO2 fertilization effects, rather than by temperature or precipitation (model runs holding CO2 constant showed stable or declining productivity). The relative importance of edaphic and climatic spatial drivers of productivity varied over time, suggesting that productivity in Great Lakes forests may switch from being temperature to water limited by the end of the century.

  10. Detection and Attribution of Regional Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G; Mirin, A

    2007-01-19

    We developed a high resolution global coupled modeling capability to perform breakthrough studies of the regional climate change. The atmospheric component in our simulation uses a 1{sup o} latitude x 1.25{sup o} longitude grid which is the finest resolution ever used for the NCAR coupled climate model CCSM3. Substantial testing and slight retuning was required to get an acceptable control simulation. The major accomplishment is the validation of this new high resolution configuration of CCSM3. There are major improvements in our simulation of the surface wind stress and sea ice thickness distribution in the Arctic. Surface wind stress and ocean circulation in the Antarctic Circumpolar Current are also improved. Our results demonstrate that the FV version of the CCSM coupled model is a state of the art climate model whose simulation capabilities are in the class of those used for IPCC assessments. We have also provided 1000 years of model data to Scripps Institution of Oceanography to estimate the natural variability of stream flow in California. In the future, our global model simulations will provide boundary data to high-resolution mesoscale model that will be used at LLNL. The mesoscale model would dynamically downscale the GCM climate to regional scale on climate time scales.

  11. Possible impact of climate change on meningitis in northwest Nigeria: an assessment using CMIP5 climate model simulations

    Science.gov (United States)

    Abdussalam, Auwal; Monaghan, Andrew; Steinhoff, Daniel; Dukic, Vanja; Hayden, Mary; Hopson, Thomas; Thornes, John; Leckebusch, Gregor

    2014-05-01

    Meningitis remains a major health burden throughout Sahelian Africa, especially in heavily-populated northwest Nigeria. Cases exhibit strong sensitivity to intra- and inter-annual climate variability, peaking during the hot and dry boreal spring months, raising concern that future climate change may increase the incidence of meningitis in the region. The impact of future climate change on meningitis risk in northwest Nigeria is assessed by forcing an empirical model of meningitis with monthly simulations from an ensemble of thirteen statistically downscaled global climate model projections from the Coupled Model Intercomparison Experiment Phase 5 (CMIP5) for RCPs 2.6, 6.0 and 8.5 scenarios. The results suggest future temperature increases due to climate change has the potential to significantly increase meningitis cases in both the early and late 21st century, and to increase the length of the meningitis season in the late century. March cases may increase from 23 per 100,000 people for present day (1990-2005), to 29-30 per 100,000 (p<0.01) in the early century (2020-2035) and 31-42 per 100,000 (p<0.01) in the late century (2060-2075), the range being dependent on the emissions scenario. It is noteworthy that these results represent the climatological potential for increased cases due to climate change, as we assume current prevention and treatment strategies remain similar in the future.

  12. Title:Evaluation of Optimal Water Allocation Scenarios for Bar River of NeishabourUsing WEAP Model Under A2 Climatic Changes Scenario

    Directory of Open Access Journals (Sweden)

    Gh. Ghandhari

    2017-01-01

    Full Text Available Introduction: The rapid population growth in Iran and the corresponding increases in water demands, including drinking water, industry, agriculture and urban development and existing constraints necessitate optimal scheduling necessity in use of this crucial source. Furthermore, the phenomenon of climate change as a major challenge for humanity can be considered in future periods. Climate change is caused by human activity have also been identified as significant causes of recent climate change, referred to as "global warming". Climate change indicates an unusual change in the Earth's atmosphere and climate consequences of the different parts of planet Earth. Climate change may refer to a change in average weather conditions, or in the time variation of weather around longer-term average conditions. A Warmer climate exacerbates the hydrologic cycle, altering precipitation, magnitude and timing of runoff. The purpose of this study was to evaluate the effect of climate change on water consumption and demand in Bar river basin of Neighbor. Climate change affects precipitation and temperature patterns and hence, may alter on water requirements and demand at three sectors; agriculture, industry and urban water. Materials and Methods: At present, Global coupled atmosphere-ocean general circulation models (AOGCMs are the most frequently used models for projection of different climatic change scenarios. AOGCMs models represent the pinnacle of complexity in climate models and internalize as many processes as possible. These models are based on physical laws that are provided by mathematical relations. AOGCMs models used for climate studies and climate forecast are run at coarse spatial resolution and are unable to resolve important sub-grid scale features such as clouds and topography. As a result AOGCMs output cannot be used for local impact studies. Therefore, downscaling methods were developed to obtain local-scale weather and climate, particularly at

  13. Coupled ice sheet - climate simulations of the last glacial inception and last glacial maximum with a model of intermediate complexity that includes a dynamical downscaling of heat and moisture

    Science.gov (United States)

    Quiquet, Aurélien; Roche, Didier M.

    2017-04-01

    Comprehensive fully coupled ice sheet - climate models allowing for multi-millenia transient simulations are becoming available. They represent powerful tools to investigate ice sheet - climate interactions during the repeated retreats and advances of continental ice sheets of the Pleistocene. However, in such models, most of the time, the spatial resolution of the ice sheet model is one order of magnitude lower than the one of the atmospheric model. As such, orography-induced precipitation is only poorly represented. In this work, we briefly present the most recent improvements of the ice sheet - climate coupling within the model of intermediate complexity iLOVECLIM. On the one hand, from the native atmospheric resolution (T21), we have included a dynamical downscaling of heat and moisture at the ice sheet model resolution (40 km x 40 km). This downscaling accounts for feedbacks of sub-grid precipitation on large scale energy and water budgets. From the sub-grid atmospheric variables, we compute an ice sheet surface mass balance required by the ice sheet model. On the other hand, we also explicitly use oceanic temperatures to compute sub-shelf melting at a given depth. Based on palaeo evidences for rate of change of eustatic sea level, we discuss the capability of our new model to correctly simulate the last glacial inception ( 116 kaBP) and the ice volume of the last glacial maximum ( 21 kaBP). We show that the model performs well in certain areas (e.g. Canadian archipelago) but some model biases are consistent over time periods (e.g. Kara-Barents sector). We explore various model sensitivities (e.g. initial state, vegetation, albedo) and we discuss the importance of the downscaling of precipitation for ice nucleation over elevated area and for the surface mass balance of larger ice sheets.

  14. Forecasting the combined effects of urbanization and climate change on stream ecosystems: from impacts to management options

    Science.gov (United States)

    Nelson, Kären C.; Palmer, Margaret A.; Pizzuto, James E.; Moglen, Glenn E.; Angermeier, Paul L.; Hilderbrand, Robert H.; Dettinger, Mike; Hayhoe, Katharine

    2015-01-01

    Streams collect runoff, heat, and sediment from their watersheds, making them highly vulnerable to anthropogenic disturbances such as urbanization and climate change. Forecasting the effects of these disturbances using process-based models is critical to identifying the form and magnitude of likely impacts. Here, we integrate a new biotic model with four previously developed physical models (downscaled climate projections, stream hydrology, geomorphology, and water temperature) to predict how stream fish growth and reproduction will most probably respond to shifts in climate and urbanization over the next several decades.

  15. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    OpenAIRE

    A. Mahmud; M. Hixson; M. J. Kleeman

    2012-01-01

    The effect of climate change on population-weighted concentrations of particulate matter (PM) during extreme pollution events was studied using the Parallel Climate Model (PCM), the Weather Research and Forecasting (WRF) model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44) global emissions scenario was dynamically downscaled for the entire state of California between the years 2000–2006 and 2047–2053. Air quality simulations were carried out for 1008 days ...

  16. Dynamical Downscaling over Siberia: Is there an added value in representing recent climate conditions?

    Science.gov (United States)

    Klehmet, K.; Rockel, B.

    2012-04-01

    The analysis of long-term changes and variability of climate variables for the large areal extent of Siberia - covering arctic, subarctic and temperate northern latitudes - is hampered by the sparseness of in-situ observations. To counteract this deficiency we aimed to provide a reconstruction of regional climate for the period 1948-2010 getting homogenous, consistent fields of various terrestrial and atmospheric parameters for Siberia. In order to obtain in addition a higher temporal and spatial resolution than global datasets can provide, we performed the reconstruction using the regional climate model COSMO-CLM (climate mode of the limited area model COSMO developed by the German weather service). However, the question arises whether the dynamically downscaled data of reanalysis can improve the representation of recent climate conditions. As global forcing for the initialization and the regional boundaries we use NCEP-1 Reanalysis of the National Centers for Environmental Prediction since it has the longest temporal data coverage among the reanalysis products. Additionally, spectral nudging is applied to prevent the regional model from deviating from the prescribed large-scale circulation within the whole simulation domain. The area of interest covers a region in Siberia, spanning from the Laptev Sea and Kara Sea to Northern Mongolia and from the West Siberian Lowland to the border of Sea of Okhotsk. The current horizontal resolution is of about 50 km which is planned to be increased to 25 km. To answer the question, we investigate spatial and temporal characteristics of temperature and precipitation of the model output in comparison to global reanalysis data (NCEP-1, ERA40, ERA-Interim). As reference Russian station data from the "Global Summary of the Day" data set, provided by NCDC, is used. Temperature is analyzed with respect to its climatologically spatial patterns across the model domain and its variability of extremes based on climate indices derived

  17. Downscaling of South America present climate driven by 4-member HadCM3 runs

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Sin Chan; Marengo, Jose A.; Lyra, Andre A.; Sueiro, Gustavo; Pesquero, Jose F.; Alves, Lincoln M.; Chagas, Diego J.; Gomes, Jorge L.; Bustamante, Josiane F.; Tavares, Priscila [National Institute for Space Research (INPE), Sao Paulo (Brazil); Kay, Gillian; Betts, Richard [UK Met Office Hadley Centre, Devon (United Kingdom)

    2012-02-15

    The objective of this work is to evaluate climate simulations over South America using the regional Eta Model driven by four members of an ensemble of the UK Met Office Hadley Centre HadCM3 global model. The Eta Model has been modified with the purpose of performing long-term decadal integrations and has shown to reproduce ''present climate'' - the period 1961-1990 - reasonably well when forced by HadCM3. The global model lateral conditions with a resolution of 2.5 latitude x 3.75 longitude were provided at a frequency of 6 h. Each member of the global model ensemble has a different climate sensitivity, and the four members were selected to span the range of uncertainty encompassed by the ensemble. The Eta Model nested in the HadCM3 global model was configured with 40-km horizontal resolution and 38 layers in the vertical. No large-scale internal nudging was applied. Results are shown for austral summer and winter at present climate defined as 1961-90. The upper and low-level circulation patterns produced by the Eta-CPTEC/HadCM3 experiment set-up show good agreement with reanalysis data and the mean precipitation and temperature with CRU observation data. The spread in the downscaled mean precipitation and temperature is small when compared against model errors. On the other hand, the benefits in using an ensemble is clear in the improved representation of the seasonal cycle by the ensemble mean over any one realization. El Nino and La Nina years were identified in the HadCM3 member runs based on the NOAA Climate Prediction Center criterion of sea surface temperature anomalies in the Nino 3.4 area. The frequency of the El Nino and La Nina events in the studied period is underestimated by HadCM3. The precipitation and temperature anomalies typical of these events are reproduced by most of the Eta-CPTEC/HadCM3 ensemble, although small displacements of the positions of the anomalies occur. This experiment configuration is the first step on the

  18. Climate data used to study the potential impacts of climate change on future hydrological regimes and water resources (2010-2050) in the Philippines

    NARCIS (Netherlands)

    Tolentino, Pamela Louise M.; Poortinga, A.; Kanamaru, Hideki; Keesstra, S.D.; Maroulis, J.; David, Carlos Primo C.; Ritsema, C.J.

    2016-01-01

    The collection contains downscaled ERA-Interim and climate scenario data, derived from three global climate models (BCM2, CNCM3 and MPEH5), for the Philippines. ERA-Interim (1979-2010) is the reanalysis dataset used to generate climate data in the absence of actual climate observations.

  19. THE APPLICATION OF A STATISTICAL DOWNSCALING PROCESS TO DERIVE 21{sup ST} CENTURY RIVER FLOW PREDICTIONS USING A GLOBAL CLIMATE SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Werth, D.; Chen, K. F.

    2013-08-22

    The ability of water managers to maintain adequate supplies in coming decades depends, in part, on future weather conditions, as climate change has the potential to alter river flows from their current values, possibly rendering them unable to meet demand. Reliable climate projections are therefore critical to predicting the future water supply for the United States. These projections cannot be provided solely by global climate models (GCMs), however, as their resolution is too coarse to resolve the small-scale climate changes that can affect hydrology, and hence water supply, at regional to local scales. A process is needed to ‘downscale’ the GCM results to the smaller scales and feed this into a surface hydrology model to help determine the ability of rivers to provide adequate flow to meet future needs. We apply a statistical downscaling to GCM projections of precipitation and temperature through the use of a scaling method. This technique involves the correction of the cumulative distribution functions (CDFs) of the GCM-derived temperature and precipitation results for the 20{sup th} century, and the application of the same correction to 21{sup st} century GCM projections. This is done for three meteorological stations located within the Coosa River basin in northern Georgia, and is used to calculate future river flow statistics for the upper Coosa River. Results are compared to the historical Coosa River flow upstream from Georgia Power Company’s Hammond coal-fired power plant and to flows calculated with the original, unscaled GCM results to determine the impact of potential changes in meteorology on future flows.

  20. Regional climate projection of the Maritime Continent using the MIT Regional Climate Model

    Science.gov (United States)

    IM, E. S.; Eltahir, E. A. B.

    2014-12-01

    Given that warming of the climate system is unequivocal (IPCC AR5), accurate assessment of future climate is essential to understand the impact of climate change due to global warming. Modelling the climate change of the Maritime Continent is particularly challenge, showing a high degree of uncertainty. Compared to other regions, model agreement of future projections in response to anthropogenic emission forcings is much less. Furthermore, the spatial and temporal behaviors of climate projections seem to vary significantly due to a complex geographical condition and a wide range of scale interactions. For the fine-scale climate information (27 km) suitable for representing the complexity of climate change over the Maritime Continent, dynamical downscaling is performed using the MIT regional climate model (MRCM) during two thirty-year period for reference (1970-1999) and future (2070-2099) climate. Initial and boundary conditions are provided by Community Earth System Model (CESM) simulations under the emission scenarios projected by MIT Integrated Global System Model (IGSM). Changes in mean climate as well as the frequency and intensity of extreme climate events are investigated at various temporal and spatial scales. Our analysis is primarily centered on the different behavior of changes in convective and large-scale precipitation over land vs. ocean during dry vs. wet season. In addition, we attempt to find the added value to downscaled results over the Maritime Continent through the comparison between MRCM and CESM projection. Acknowledgements.This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's Center for Environmental Sensing and Modeling interdisciplinary research program.

  1. Choosing and using climate change scenarios for ecological-impact assessments and conservation decisions

    Science.gov (United States)

    Amy K. Snover,; Nathan J. Mantua,; Littell, Jeremy; Michael A. Alexander,; Michelle M. McClure,; Janet Nye,

    2013-01-01

    Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment.

  2. How Will Climate Change Impact Cholera Outbreaks?

    Science.gov (United States)

    Nasr Azadani, F.; Jutla, A.; Rahimikolu, J.; Akanda, A. S.; Huq, A.; Colwell, R. R.

    2014-12-01

    Environmental parameters associated with cholera are well documented. However, cholera continues to be a global public health threat. Uncertainty in defining environmental processes affecting growth and multiplication of the cholera bacteria can be affected significantly by changing climate at different temporal and spatial scales, either through amplification of the hydroclimatic cycle or by enhanced variability of large scale geophysical processes. Endemic cholera in the Bengal Delta region of South Asia has a unique pattern of two seasonal peaks and there are associated with asymmetric and episodic variability in river discharge. The first cholera outbreak in spring is related with intrusion of bacteria laden coastal seawater during low river discharge. Cholera occurring during the fall season is hypothesized to be associated with high river discharge related to a cross-contamination of water resources and, therefore, a second wave of disease, a phenomenon characteristic primarily in the inland regions. Because of difficulties in establishing linkage between coarse resolutions of the Global Climate Model (GCM) output and localized disease outbreaks, the impact of climate change on diarrheal disease has not been explored. Here using the downscaling method of Support Vector Machines from HADCM3 and ECHAM models, we show how cholera outbreak patterns are changing in the Bengal Delta. Our preliminary results indicate statistically significant changes in both seasonality and magnitude in the occurrence of cholera over the next century. Endemic cholera is likely to transform into epidemic forms and new geographical areas will be at risk for cholera outbreaks.

  3. Integrated climate change risk assessment:

    DEFF Research Database (Denmark)

    Kaspersen, Per Skougaard; Halsnæs, Kirsten

    2017-01-01

    Risk assessments of flooding in urban areas during extreme precipitation for use in, for example, decision-making regarding climate adaptation, are surrounded by great uncertainties stemming from climate model projections, methods of downscaling and the assumptions of socioeconomic impact models...... to address the complex linkages between the different kinds of data required in assessing climate adaptation. It emphasizes that the availability of spatially explicit data can reduce the overall uncertainty of the risk assessment and assist in identifying key vulnerable assets. The usefulness...... of such a framework is demonstrated by means of a risk assessment of flooding from extreme precipitation for the city of Odense, Denmark. A sensitivity analysis shows how the presence of particularly important assets, such as cultural and historical heritage, may be addressed in assessing such risks. The output...

  4. Impact of spectral nudging on the downscaling of tropical cyclones in regional climate simulations

    Science.gov (United States)

    Choi, Suk-Jin; Lee, Dong-Kyou

    2016-06-01

    This study investigated the simulations of three months of seasonal tropical cyclone (TC) activity over the western North Pacific using the Advanced Research WRF Model. In the control experiment (CTL), the TC frequency was considerably overestimated. Additionally, the tracks of some TCs tended to have larger radii of curvature and were shifted eastward. The large-scale environments of westerly monsoon flows and subtropical Pacific highs were unreasonably simulated. The overestimated frequency of TC formation was attributed to a strengthened westerly wind field in the southern quadrants of the TC center. In comparison with the experiment with the spectral nudging method, the strengthened wind speed was mainly modulated by large-scale flow that was greater than approximately 1000 km in the model domain. The spurious formation and undesirable tracks of TCs in the CTL were considerably improved by reproducing realistic large-scale atmospheric monsoon circulation with substantial adjustment between large-scale flow in the model domain and large-scale boundary forcing modified by the spectral nudging method. The realistic monsoon circulation took a vital role in simulating realistic TCs. It revealed that, in the downscaling from large-scale fields for regional climate simulations, scale interaction between model-generated regional features and forced large-scale fields should be considered, and spectral nudging is a desirable method in the downscaling method.

  5. Socio-economic scenario development for the assessment of climate change impacts on agricultural land use: a pairwise comparison approach

    DEFF Research Database (Denmark)

    Abildtrup, Jens; Audsley, E.; Fekete-Farkas, M.

    2006-01-01

    Assessment of the vulnerability of agriculture to climate change is strongly dependent on concurrent changes in socio-economic development pathways. This paper presents an integrated approach to the construction of socio-economic scenarios required for the analysis of climate change impacts...... on European agricultural land use. The scenarios are interpreted from the storylines described in the intergovernmental panel on climate change (IPCC) special report on emission scenarios (SRES), which ensures internal consistency between the evolution of socio-economics and climate change. A stepwise...... downscaling procedure based on expert-judgement and pairwise comparison is presented to obtain quantitative socio-economic parameters, e.g. prices and productivity estimates that are input to the ACCELERATES integrated land use model. In the first step, the global driving forces are identified and quantified...

  6. Assessing the Added Value of Dynamical Downscaling in the Context of Hydrologic Implication

    Science.gov (United States)

    Lu, M.; IM, E. S.; Lee, M. H.

    2017-12-01

    There is a scientific consensus that high-resolution climate simulations downscaled by Regional Climate Models (RCMs) can provide valuable refined information over the target region. However, a significant body of hydrologic impact assessment has been performing using the climate information provided by Global Climate Models (GCMs) in spite of a fundamental spatial scale gap. It is probably based on the assumption that the substantial biases and spatial scale gap from GCMs raw data can be simply removed by applying the statistical bias correction and spatial disaggregation. Indeed, many previous studies argue that the benefit of dynamical downscaling using RCMs is minimal when linking climate data with the hydrological model, from the comparison of the impact between bias-corrected GCMs and bias-corrected RCMs on hydrologic simulations. It may be true for long-term averaged climatological pattern, but it is not necessarily the case when looking into variability across various temporal spectrum. In this study, we investigate the added value of dynamical downscaling focusing on the performance in capturing climate variability. For doing this, we evaluate the performance of the distributed hydrological model over the Korean river basin using the raw output from GCM and RCM, and bias-corrected output from GCM and RCM. The impacts of climate input data on streamflow simulation are comprehensively analyzed. [Acknowledgements]This research is supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 17AWMP-B083066-04).

  7. Modelling changes to electricity demand load duration curves as a consequence of predicted climate change for Australia

    International Nuclear Information System (INIS)

    Thatcher, Marcus J.

    2007-01-01

    In this paper, we describe a method for constructing regional electricity demand data sets at 30 min intervals, which are consistent with climate change scenarios. Specifically, we modify a commonly used linear regression model between regional electricity demand and climate to also describe intraday variability in demand so that regional load duration curves (LDCs) can be predicted. The model is evaluated for four different Australian states that are participants in the Australian National Electricity Market (NEM) and the resultant data sets are found to reproduce each state's LDCs with reasonable accuracy. We also apply the demand model to CSIRO's Mk 3 global climate model data sets that have been downscaled to 60 km resolution using CSIRO's conformal-cubic atmospheric model to estimate how LDCs change as a consequence of a 1 C increase in the average temperature of Australian state capital cities. These regional electricity demand data sets are then useful for economic modelling of electricity markets such as the NEM. (author)

  8. Northern Great Basin Seasonal Lakes: Vulnerability to Climate Change.

    Science.gov (United States)

    Russell, M.; Eitel, J.

    2017-12-01

    Seasonal alkaline lakes in southeast Oregon, northeast California, and northwest Nevada serve as important habitat for migrating birds utilizing the Pacific Flyway, as well as local plant and animal communities. Despite their ecological importance, and anecdotal suggestions that these lakes are becoming less reliable, little is known about the vulnerability of these lakes to climate change. Our research seeks to understand the vulnerability of Northern Great Basin seasonal lakes to climate change. For this, we will be using historical information from the European Space Agency's Global Surface Water Explorer and the University of Idaho's gridMET climate product, to build a model that allows estimating surface water extent and timing based on climate variables. We will then utilize downscaled future climate projections to model surface water extent and timing in the coming decades. In addition, an unmanned aerial system (UAS) will be utilized at a subset of dried basins to obtain precise 3D bathymetry and calculate water volume hypsographs, a critical factor in understanding the likelihood of water persistence and biogeochemical habitat suitability. These results will be incorporated into decision support tools that land managers can utilize in water conservation, wildlife management, and climate mitigation actions. Future research may pair these forecasts with animal movement data to examine fragmentation of migratory corridors and species-specific impacts.

  9. Optimizing dynamic downscaling in one-way nesting using a regional ocean model

    Science.gov (United States)

    Pham, Van Sy; Hwang, Jin Hwan; Ku, Hyeyun

    2016-10-01

    Dynamical downscaling with nested regional oceanographic models has been demonstrated to be an effective approach for both operationally forecasted sea weather on regional scales and projections of future climate change and its impact on the ocean. However, when nesting procedures are carried out in dynamic downscaling from a larger-scale model or set of observations to a smaller scale, errors are unavoidable due to the differences in grid sizes and updating intervals. The present work assesses the impact of errors produced by nesting procedures on the downscaled results from Ocean Regional Circulation Models (ORCMs). Errors are identified and evaluated based on their sources and characteristics by employing the Big-Brother Experiment (BBE). The BBE uses the same model to produce both nesting and nested simulations; so it addresses those error sources separately (i.e., without combining the contributions of errors from different sources). Here, we focus on discussing errors resulting from the spatial grids' differences, the updating times and the domain sizes. After the BBE was separately run for diverse cases, a Taylor diagram was used to analyze the results and recommend an optimal combination of grid size, updating period and domain sizes. Finally, suggested setups for the downscaling were evaluated by examining the spatial correlations of variables and the relative magnitudes of variances between the nested model and the original data.

  10. The influence of climate change on flood risks in France - first estimates and uncertainty analysis

    Science.gov (United States)

    Dumas, P.; Hallegatte, S.; Quintana-Seguì, P.; Martin, E.

    2013-03-01

    This paper proposes a methodology to project the possible evolution of river flood damages due to climate change, and applies it to mainland France. Its main contributions are (i) to demonstrate a methodology to investigate the full causal chain from global climate change to local economic flood losses; (ii) to show that future flood losses may change in a very significant manner over France; (iii) to show that a very large uncertainty arises from the climate downscaling technique, since two techniques with comparable skills at reproducing reference river flows give very different estimates of future flows, and thus of future local losses. The main conclusion is thus that estimating future flood losses is still out of reach, especially at local scale, but that future national-scale losses may change significantly over this century, requiring policy changes in terms of risk management and land-use planning.

  11. Assessment of Climate Change Impacts on Agricultural Water Demands and Crop Yields in California's Central Valley

    Science.gov (United States)

    Tansey, M. K.; Flores-Lopez, F.; Young, C. A.; Huntington, J. L.

    2012-12-01

    Long term planning for the management of California's water resources requires assessment of the effects of future climate changes on both water supply and demand. Considerable progress has been made on the evaluation of the effects of future climate changes on water supplies but less information is available with regard to water demands. Uncertainty in future climate projections increases the difficulty of assessing climate impacts and evaluating long range adaptation strategies. Compounding the uncertainty in the future climate projections is the fact that most readily available downscaled climate projections lack sufficient meteorological information to compute evapotranspiration (ET) by the widely accepted ASCE Penman-Monteith (PM) method. This study addresses potential changes in future Central Valley water demands and crop yields by examining the effects of climate change on soil evaporation, plant transpiration, growth and yield for major types of crops grown in the Central Valley of California. Five representative climate scenarios based on 112 bias corrected spatially downscaled CMIP 3 GCM climate simulations were developed using the hybrid delta ensemble method to span a wide range future climate uncertainty. Analysis of historical California Irrigation Management Information System meteorological data was combined with several meteorological estimation methods to compute future solar radiation, wind speed and dew point temperatures corresponding to the GCM projected temperatures and precipitation. Future atmospheric CO2 concentrations corresponding to the 5 representative climate projections were developed based on weighting IPCC SRES emissions scenarios. The Land, Atmosphere, and Water Simulator (LAWS) model was used to compute ET and yield changes in the early, middle and late 21st century for 24 representative agricultural crops grown in the Sacramento, San Joaquin and Tulare Lake basins. Study results indicate that changes in ET and yield vary

  12. Visualizing and communicating climate change using the ClimateWizard: decision support and education through web-based analysis and mapping

    Science.gov (United States)

    Girvetz, E. H.; Zganjar, C.; Raber, G. T.; Maurer, E. P.; Duffy, P.

    2009-12-01

    Virtually all fields of study and parts of society—from ecological science and nature conservation, to global development, multinational corporations, and government bodies—need to know how climate change has and may impact specific locations of interest. Our ability to respond to climate change depends on having convenient tools that make past and projected climate trends available to planners, managers, scientists and the general public, at scales ranging from global to local scales. Web-mapping applications provide an effective platform for communicating climate change impacts in specific geographic areas of interest to the public. Here, we present one such application, the ClimateWizard, that allows users to analyze, visualize and explore climate change maps for specific geographic areas of interest throughout the world (http://ClimateWizard.org). Built on Web 2.0 web-services (SOAP), Google Maps mash-up, and cloud computing technologies, the ClimateWizard analyzes large databases of climate information located on remote servers to create synthesized information and useful products tailored to geographic areas of interest (e.g. maps, graphs, tables, GIS layers). We demonstrate how the ClimateWizard can be used to assess projected changes to temperature and precipitation across all states in the contiguous United States and all countries of the world using statistically downscaled general circulation models from the CMIP3 dataset. We then go on to show how ClimateWizard can be used to analyze changes to other climate related variables, such as moisture stress and water production. Finally, we discuss how this tool can be adapted to develop a wide range of web-based tools that are targeted at informing specific audiences—from scientific research and natural resource management, to K-12 and higher education—about how climate change may affect different aspects of human and natural systems.

  13. Statistical Downscaling of Temperature with the Random Forest Model

    Directory of Open Access Journals (Sweden)

    Bo Pang

    2017-01-01

    Full Text Available The issues with downscaling the outputs of a global climate model (GCM to a regional scale that are appropriate to hydrological impact studies are investigated using the random forest (RF model, which has been shown to be superior for large dataset analysis and variable importance evaluation. The RF is proposed for downscaling daily mean temperature in the Pearl River basin in southern China. Four downscaling models were developed and validated by using the observed temperature series from 61 national stations and large-scale predictor variables derived from the National Center for Environmental Prediction–National Center for Atmospheric Research reanalysis dataset. The proposed RF downscaling model was compared to multiple linear regression, artificial neural network, and support vector machine models. Principal component analysis (PCA and partial correlation analysis (PAR were used in the predictor selection for the other models for a comprehensive study. It was shown that the model efficiency of the RF model was higher than that of the other models according to five selected criteria. By evaluating the predictor importance, the RF could choose the best predictor combination without using PCA and PAR. The results indicate that the RF is a feasible tool for the statistical downscaling of temperature.

  14. Introduction to the special issue: Observed and projected changes in weather and climate extremes

    Directory of Open Access Journals (Sweden)

    John E. Hay

    2016-03-01

    Full Text Available This Special Issue documents not only the more recent progress made in detecting and attributing changes in temperature and precipitation extremes in the observational record, but also in projecting changes in such extremes at regional and local scales. It also deals with the impacts and other consequences and implications of both the historic and anticipated changes in extreme weather and climate events. Impact assessments using both dynamical downscaling and statistical modelling for two tropical cyclones are reported, as well as for storm surge and extreme wave changes. The Special Issue concludes with a consideration of some policy implications and practical applications arising from our relatively robust understanding of how the build up of greenhouse gases in the Earth’s atmosphere affects weather and climate extremes.

  15. Possible future changes in South East Australian frost frequency: an inter-comparison of statistical downscaling approaches

    Science.gov (United States)

    Crimp, Steven; Jin, Huidong; Kokic, Philip; Bakar, Shuvo; Nicholls, Neville

    2018-04-01

    Anthropogenic climate change has already been shown to effect the frequency, intensity, spatial extent, duration and seasonality of extreme climate events. Understanding these changes is an important step in determining exposure, vulnerability and focus for adaptation. In an attempt to support adaptation decision-making we have examined statistical modelling techniques to improve the representation of global climate model (GCM) derived projections of minimum temperature extremes (frosts) in Australia. We examine the spatial changes in minimum temperature extreme metrics (e.g. monthly and seasonal frost frequency etc.), for a region exhibiting the strongest station trends in Australia, and compare these changes with minimum temperature extreme metrics derived from 10 GCMs, from the Coupled Model Inter-comparison Project Phase 5 (CMIP 5) datasets, and via statistical downscaling. We compare the observed trends with those derived from the "raw" GCM minimum temperature data as well as examine whether quantile matching (QM) or spatio-temporal (spTimerQM) modelling with Quantile Matching can be used to improve the correlation between observed and simulated extreme minimum temperatures. We demonstrate, that the spTimerQM modelling approach provides correlations with observed daily minimum temperatures for the period August to November of 0.22. This represents an almost fourfold improvement over either the "raw" GCM or QM results. The spTimerQM modelling approach also improves correlations with observed monthly frost frequency statistics to 0.84 as opposed to 0.37 and 0.81 for the "raw" GCM and QM results respectively. We apply the spatio-temporal model to examine future extreme minimum temperature projections for the period 2016 to 2048. The spTimerQM modelling results suggest the persistence of current levels of frost risk out to 2030, with the evidence of continuing decadal variation.

  16. A Governing Framework for Climate Change Adaptation in the Built Environment

    Directory of Open Access Journals (Sweden)

    Daniel A. Mazmanian

    2013-12-01

    Full Text Available Developing an approach to governing adaptation to climate change is severely hampered by the dictatorship of the present when the needs of future generations are inadequately represented in current policy making. We posit this problem as a function of the attributes of adaptation policy making, including deep uncertainty and nonstationarity, where past observations are not reliable predictors of future outcomes. Our research links organizational decision-making attributes with adaptation decision making and identifies cases in which adaptation actions cause spillovers, free riding, and distributional impacts. We develop a governing framework for adaptation that we believe will enable policy, planning, and major long-term development decisions to be made appropriately at all levels of government in the face of the deep uncertainty and nonstationarity caused by climate change. Our framework requires that approval of projects with an expected life span of 30 years or more in the built environment include minimum building standards that integrate forecasted climate change impacts from the Intergovernmental Panel on Climate Change (IPCC intermediate scenario. The intermediate IPCC scenario must be downscaled to include local or regional temperature, water availability, sea level rise, susceptibility to forest fires, and human habitation impacts to minimize climate-change risks to the built environment. The minimum standard is systematically updated every six years to facilitate learning by formal and informal organizations. As a minimum standard, the governance framework allows jurisdictions to take stronger actions to increase their climate resilience and thus maintain system flexibility.

  17. A multi-model ensemble of downscaled spatial climate change scenarios for the Dommel catchment, Western Europe

    NARCIS (Netherlands)

    Vliet, M.T.H. van; Blenkinsop, S.; Burton, A.; Harpham, C.; Broers, H.P.; Fowler, H.J.

    2012-01-01

    Regional or local scale hydrological impact studies require high resolution climate change scenarios which should incorporate some assessment of uncertainties in future climate projections. This paper describes a method used to produce a multi-model ensemble of multivariate weather simulations

  18. Evaluating Downscaling Methods for Seasonal Climate Forecasts over East Africa

    Science.gov (United States)

    Roberts, J. Brent; Robertson, Franklin R.; Bosilovich, Michael; Lyon, Bradfield; Funk, Chris

    2013-01-01

    The U.S. National Multi-Model Ensemble seasonal forecasting system is providing hindcast and real-time data streams to be used in assessing and improving seasonal predictive capacity. The NASA / USAID SERVIR project, which leverages satellite and modeling-based resources for environmental decision making in developing nations, is focusing on the evaluation of NMME forecasts specifically for use in impact modeling within hub regions including East Africa, the Hindu Kush-Himalayan (HKH) region and Mesoamerica. One of the participating models in NMME is the NASA Goddard Earth Observing System (GEOS5). This work will present an intercomparison of downscaling methods using the GEOS5 seasonal forecasts of temperature and precipitation over East Africa. The current seasonal forecasting system provides monthly averaged forecast anomalies. These anomalies must be spatially downscaled and temporally disaggregated for use in application modeling (e.g. hydrology, agriculture). There are several available downscaling methodologies that can be implemented to accomplish this goal. Selected methods include both a non-homogenous hidden Markov model and an analogue based approach. A particular emphasis will be placed on quantifying the ability of different methods to capture the intermittency of precipitation within both the short and long rain seasons. Further, the ability to capture spatial covariances will be assessed. Both probabilistic and deterministic skill measures will be evaluated over the hindcast period

  19. Local-scale changes in mean and heavy precipitation in Western Europe, climate change or internal variability?

    Science.gov (United States)

    Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.

    2017-09-01

    High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.

  20. Local-scale changes in mean and heavy precipitation in Western Europe, climate change or internal variability?

    Science.gov (United States)

    Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.

    2018-06-01

    High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.

  1. Climate change mitigation: comparative assessment of Malaysian and ASEAN scenarios.

    Science.gov (United States)

    Rasiah, Rajah; Ahmed, Adeel; Al-Amin, Abul Quasem; Chenayah, Santha

    2017-01-01

    This paper analyses empirically the optimal climate change mitigation policy of Malaysia with the business as usual scenario of ASEAN to compare their environmental and economic consequences over the period 2010-2110. A downscaling empirical dynamic model is constructed using a dual multidisciplinary framework combining economic, earth science, and ecological variables to analyse the long-run consequences. The model takes account of climatic variables, including carbon cycle, carbon emission, climatic damage, carbon control, carbon concentration, and temperature. The results indicate that without optimal climate policy and action, the cumulative cost of climate damage for Malaysia and ASEAN as a whole over the period 2010-2110 would be MYR40.1 trillion and MYR151.0 trillion, respectively. Under the optimal policy, the cumulative cost of climatic damage for Malaysia would fall to MYR5.3 trillion over the 100 years. Also, the additional economic output of Malaysia will rise from MYR2.1 billion in 2010 to MYR3.6 billion in 2050 and MYR5.5 billion in 2110 under the optimal climate change mitigation scenario. The additional economic output for ASEAN would fall from MYR8.1 billion in 2010 to MYR3.2 billion in 2050 before rising again slightly to MYR4.7 billion in 2110 in the business as usual ASEAN scenario.

  2. Assessment of the Performance of Three Dynamical Climate Downscaling Methods Using Different Land Surface Information over China

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2018-03-01

    Full Text Available This study aims to assess the performance of different dynamical downscaling methods using updated land surface information. Particular attention is given to obtaining high-resolution climate information over China by the combination of an appropriate dynamical downscaling method and updated land surface information. Two group experiments using two land surface datasets are performed, including default Weather Research and Forecasting (WRF land surface data (OLD and accurate dynamically accordant MODIS data (NEW. Each group consists of three types of experiments for the summer of 2014, including traditional continuous integration (CT, spectral nudging (SN, and re-initialization (Re experiments. The Weather Research and Forecasting (WRF model is used to dynamically downscale ERA-Interim (reanalysis of the European Centre for Medium-Range Weather Forecast, ECMWF data with a grid spacing of 30 km over China. The simulations are evaluated via comparison with observed conventional meteorological variables, showing that the CT method, which notably overestimates 2 m temperature and underestimates 2 m relative humidity across China, performs the worst; the SN and Re runs outperform the CT method, and the Re shows the smallest RMSE (root means square error. A comparison of observed and simulated precipitation shows that the SN simulation is closest to the observed data, while the CT and Re simulations overestimate precipitation south of the Yangtze River. Compared with the OLD group, the RMSE values of temperature and relative humidity are significantly improved in CT and SN, and there is smaller improved in Re. However, obvious improvements in precipitation are not evident.

  3. Uncertainties of statistical downscaling from predictor selection: Equifinality and transferability

    Science.gov (United States)

    Fu, Guobin; Charles, Stephen P.; Chiew, Francis H. S.; Ekström, Marie; Potter, Nick J.

    2018-05-01

    The nonhomogeneous hidden Markov model (NHMM) statistical downscaling model, 38 catchments in southeast Australia and 19 general circulation models (GCMs) were used in this study to demonstrate statistical downscaling uncertainties caused by equifinality to and transferability. That is to say, there could be multiple sets of predictors that give similar daily rainfall simulation results for both calibration and validation periods, but project different amounts (or even directions of change) of rainfall changing in the future. Results indicated that two sets of predictors (Set 1 with predictors of sea level pressure north-south gradient, u-wind at 700 hPa, v-wind at 700 hPa, and specific humidity at 700 hPa and Set 2 with predictors of sea level pressure north-south gradient, u-wind at 700 hPa, v-wind at 700 hPa, and dewpoint temperature depression at 850 hPa) as inputs to the NHMM produced satisfactory results of seasonal rainfall in comparison with observations. For example, during the model calibration period, the relative errors across the 38 catchments ranged from 0.48 to 1.76% with a mean value of 1.09% for the predictor Set 1, and from 0.22 to 2.24% with a mean value of 1.16% for the predictor Set 2. However, the changes of future rainfall from NHMM projections based on 19 GCMs produced projections with a different sign for these two different sets of predictors: Set 1 predictors project an increase of future rainfall with magnitudes depending on future time periods and emission scenarios, but Set 2 predictors project a decline of future rainfall. Such divergent projections may present a significant challenge for applications of statistical downscaling as well as climate change impact studies, and could potentially imply caveats in many existing studies in the literature.

  4. Aspect of ECMWF downscaled Regional Climate Modeling in simulating Indian summer monsoon rainfall and dependencies on lateral boundary conditions

    Science.gov (United States)

    Ghosh, Soumik; Bhatla, R.; Mall, R. K.; Srivastava, Prashant K.; Sahai, A. K.

    2018-03-01

    Climate model faces considerable difficulties in simulating the rainfall characteristics of southwest summer monsoon. In this study, the dynamical downscaling of European Centre for Medium-Range Weather Forecast's (ECMWF's) ERA-Interim (EIN15) has been utilized for the simulation of Indian summer monsoon (ISM) through the Regional Climate Model version 4.3 (RegCM-4.3) over the South Asia Co-Ordinated Regional Climate Downscaling EXperiment (CORDEX) domain. The complexities of model simulation over a particular terrain are generally influenced by factors such as complex topography, coastal boundary, and lack of unbiased initial and lateral boundary conditions. In order to overcome some of these limitations, the RegCM-4.3 is employed for simulating the rainfall characteristics over the complex topographical conditions. For reliable rainfall simulation, implementations of numerous lower boundary conditions are forced in the RegCM-4.3 with specific horizontal grid resolution of 50 km over South Asia CORDEX domain. The analysis is considered for 30 years of climatological simulation of rainfall, outgoing longwave radiation (OLR), mean sea level pressure (MSLP), and wind with different vertical levels over the specified region. The dependency of model simulation with the forcing of EIN15 initial and lateral boundary conditions is used to understand the impact of simulated rainfall characteristics during different phases of summer monsoon. The results obtained from this study are used to evaluate the activity of initial conditions of zonal wind circulation speed, which causes an increase in the uncertainty of regional model output over the region under investigation. Further, the results showed that the EIN15 zonal wind circulation lacks sufficient speed over the specified region in a particular time, which was carried forward by the RegCM output and leads to a disrupted regional simulation in the climate model.

  5. A model for evaluating stream temperature response to climate change in Wisconsin

    Science.gov (United States)

    Stewart, Jana S.; Westenbroek, Stephen M.; Mitro, Matthew G.; Lyons, John D.; Kammel, Leah E.; Buchwald, Cheryl A.

    2015-01-01

    Expected climatic changes in air temperature and precipitation patterns across the State of Wisconsin may alter future stream temperature and flow regimes. As a consequence of flow and temperature changes, the composition and distribution of fish species assemblages are expected to change. In an effort to gain a better understanding of how climatic changes may affect stream temperature, an approach was developed to predict and project daily summertime stream temperature under current and future climate conditions for 94,341 stream kilometers across Wisconsin. The approach uses a combination of static landscape characteristics and dynamic time-series climatic variables as input for an Artificial Neural Network (ANN) Model integrated with a Soil-Water-Balance (SWB) Model. Future climate scenarios are based on output from downscaled General Circulation Models (GCMs). The SWB model provided a means to estimate the temporal variability in groundwater recharge and provided a mechanism to evaluate the effect of changing air temperature and precipitation on groundwater recharge and soil moisture. The Integrated Soil-Water-Balance and Artificial Neural Network version 1 (SWB-ANNv1) Model was used to simulate daily summertime stream temperature under current (1990–2008) climate and explained 76 percent of the variation in the daily mean based on validation at 67 independent sites. Results were summarized as July mean water temperature, and individual stream segments were classified by thermal class (cold, cold transition, warm transition, and warm) for comparison of current (1990–2008) with future climate conditions.

  6. Climate program "stone soup": Assessing climate change vulnerabilities in the Aleutian and Bering Sea Islands of Alaska

    Science.gov (United States)

    Littell, J. S.; Poe, A.; van Pelt, T.

    2015-12-01

    Climate change is already affecting the Bering Sea and Aleutian Island region of Alaska. Past and present marine research across a broad spectrum of disciplines is shedding light on what sectors of the ecosystem and the human dimension will be most impacted. In a grassroots approach to extend existing research efforts, leveraging recently completed downscaled climate projections for the Bering Sea and Aleutian Islands region, we convened a team of 30 researchers-- with expertise ranging from anthropology to zooplankton to marine mammals-- to assess climate projections in the context of their expertise. This Aleutian-Bering Climate Vulnerability Assessment (ABCVA) began with researchers working in five teams to evaluate the vulnerabilities of key species and ecosystem services relative to projected changes in climate. Each team identified initial vulnerabilities for their focal species or services, and made recommendations for further research and information needs that would help managers and communities better understand the implications of the changing climate in this region. Those draft recommendations were shared during two focused, public sessions held within two hub communities for the Bering and Aleutian region: Unalaska and St. Paul. Qualitative insights about local concerns and observations relative to climate change were collected during these sessions, to be compared to the recommendations being made by the ABCVA team of researchers. Finally, we used a Structured Decision Making process to prioritize the recommendations of participating scientists, and integrate the insights shared during our community sessions. This work brought together residents, stakeholders, scientists, and natural resource managers to collaboratively identify priorities for addressing current and expected future impacts of climate change. Recommendations from this project will be incorporated into future research efforts of the Aleutian and Bering Sea Islands Landscape Conservation

  7. Nation-wide assessment of climate change impacts on crops in the Philippines and Peru as part of multi-disciplinary modelling framework

    Science.gov (United States)

    Fujisawa, Mariko; Kanamaru, Hideki

    2016-04-01

    Agriculture is vulnerable to environmental changes, and climate change has been recognized as one of the most devastating factors. In many developing countries, however, few studies have focused on nation-wide assessment of crop yield and crop suitability in the future, and hence there is a large pressure on science to provide policy makers with solid predictions for major crops in the countries in support of climate risk management policies and programmes. FAO has developed the tool MOSAICC (Modelling System for Agricultural Impacts of Climate Change) where statistical climate downscaling is combined with crop yield projections under climate change scenarios. Three steps are required to get the results: 1. The historical meteorological data such as temperature and precipitation for about 30 years were collected, and future climates were statistically downscaled to the local scale, 2. The historical crop yield data were collected and regression functions were made to estimate the yield by using observed climatic data and water balance during the growing period for each crop, and 3. The yield changes in the future were estimated by using the future climate data, produced by the first step, as an input to the yield regression functions. The yield was first simulated at sub-national scale and aggregated to national scale, which is intended to provide national policies with adaptation options. The methodology considers future changes in characteristics of extreme weather events as the climate projections are on daily scale while crop simulations are on 10-daily scale. Yields were simulated with two greenhouse gas concentration pathways (RCPs) for three GCMs per crop to account for uncertainties in projections. The crop assessment constitutes a larger multi-disciplinary assessment of climate change impacts on agriculture and vulnerability of livelihoods in terms of food security (e.g. water resources, agriculture market, household-level food security from socio

  8. Analyses of possible changes in intense and extreme wind speeds over northern Europe under climate change scenarios

    DEFF Research Database (Denmark)

    Pryor, Sara; Barthelmie, Rebecca Jane; Clausen, Niels-Erik

    2012-01-01

    Regional Climate Models. Additionally, internal (inherent) variability and initial conditions exert a strong impact on projected wind climates throughout the twenty-first century. Simulations of wind gusts by one of the RCMs (RCA3) indicate some evidence for increased magnitudes (of up to +10...... be used in interpreting this inference given the high degree of wind climate projection spread that derives from the specific AOGCM and RCM used in the downscaling....

  9. Vulnerability of birds to climate change in California's Sierra Nevada

    Directory of Open Access Journals (Sweden)

    Rodney B. Siegel

    2014-06-01

    Full Text Available In a rapidly changing climate, effective bird conservation requires not only reliable information about the current vulnerability of species of conservation concern, but also credible projections of their future vulnerability. Such projections may enable managers to preempt or reduce emerging climate-related threats through appropriate habitat management. We used NatureServe's Climate Change Vulnerability Index (CCVI to predict vulnerability to climate change of 168 bird species that breed in the Sierra Nevada mountains of California, USA. The CCVI assesses species-specific exposure and sensitivity to climate change within a defined geographic area, through the integration of (a species' range maps, (b information about species' natural history traits and ecological relationships, (c historic and current climate data, and (d spatially explicit climate change projections. We conducted the assessment under two different downscaled climate models with divergent projections about future precipitation through the middle of the 21st century. Assessments differed relatively little under the two climate models. Of five CCVI vulnerability ranking categories, only one species, White-tailed Ptarmigan (Lagopus leucura, received the most vulnerable rank, Extremely Vulnerable. No species received the second-highest vulnerability ranking, Highly Vulnerable. Sixteen species scored as Moderately Vulnerable using one or both climate models: Common Merganser (Mergus merganser, Osprey (Pandion haliaetus, Bald Eagle (Haliaeetus leucocephalus, Northern Goshawk (Accipiter gentilis, Peregrine Falcon (Falco peregrinus, Prairie Falcon (Falco mexicanus, Spotted Sandpiper (Actitis macularius, Great Gray Owl (Strix nebulosa, Black Swift (Cypseloides niger, Clark's Nutcracker (Nucifraga columbiana, American Dipper (Cinclus mexicanus, Swainson's Thrush (Catharus ustulatus, American Pipit (Anthus rubescens, Gray-crowned Rosy-Finch (Leucosticte tephrocotis, Pine Grosbeak

  10. On the impact of using downscaled reanalysis data instead of direct measurements for modeling the mass balance of a tropical glacier (Cordillera Blanca, Peru)

    Science.gov (United States)

    Galos, Stephan; Hofer, Marlis; Marzeion, Ben; Mölg, Thomas; Großhauser, Martin

    2013-04-01

    Due to their setting, tropical glaciers are sensitive indicators of mid-tropospheric meteorological variability and climate change. Furthermore these glaciers are of particular interest because they respond faster to climatic changes than glaciers located in mid- or high-latitudes. As long-term direct meteorological measurements in such remote environments are scarce, reanalysis data (e.g. ERA-Interim) provide a highly valuable source of information. Reanalysis datasets (i) enable a temporal extension of data records gained by direct measurements and (ii) provide information from regions where direct measurements are not available. In order to properly derive the physical exchange processes between glaciers and atmosphere from reanalysis data, downscaling procedures are required. In the present study we investigate if downscaled atmospheric variables (air temperature and relative humidity) from a reanalysis dataset can be used as input for a physically based, high resolution energy and mass balance model. We apply a well validated empirical-statistical downscaling model, fed with ERA-Interim data, to an automated weather station (AWS) on the surface of Glaciar Artesonraju (8.96° S | 77.63° W). The downscaled data is then used to replace measured air temperature and relative humidity in the input for the energy and mass balance model, which was calibrated using ablation data from stakes and a sonic ranger. In order to test the sensitivity of the modeled mass balance to the downscaled data, the results are compared to a reference model run driven solely with AWS data as model input. We finally discuss the results and present future perspectives for further developing this method.

  11. Proceedings of the CEATI water management 2008 workshop : climate change impacts on hydroelectric water resource management

    International Nuclear Information System (INIS)

    2008-01-01

    Hydroelectric power will occupy a significant portion of future renewable energy sources. This conference provided a forum for scientists, industry experts, and utility operators to discuss methods of determining and managing the potential impacts of climatic change on water resources. Attendants at the conference discussed issues related to future water supplies, and examined methods of predicting hydrological shifts and pattern changes for various watersheds and basins. Methods of using global climate and regional climate models for predicting the impacts of climatic change on water resources were reviewed, and new strategies for simulating and predicting shifts in sedimentation and shoreline erosion were discussed. New technologies and tools designed to improve the accuracy of utility risk assessments were also presented. The conference was divided into the following 11 sessions: (1) climate change impacts, (2) hydroclimatic variability, (3) downscaling of climate models, (4) global climate models and regional climate models, (5) watershed modelling, (6) adaptation on short-, medium-, and long-term planning, (7) climate change adaptation, (8) operations and planning, (9) risk assessment and uncertainty, (10) operations and planning, and (11) extreme events. A series of workshop posters presented new forecasting and simulation tools. The conference featured 35 presentations, of which 11 have been catalogued separately for inclusion in this database. tabs., figs

  12. Simulated Impacts of Climate Change on Water Use and Yield of Irrigated Sugarcane in South Africa

    Science.gov (United States)

    Jones, M.R; Singels, A.; Ruane, A. C.

    2015-01-01

    Reliable predictions of climate change impacts on water use, irrigation requirements and yields of irrigated sugarcane in South Africa (a water-scarce country) are necessary to plan adaptation strategies. Although previous work has been done in this regard, methodologies and results vary considerably. The objectives were (1) to estimate likely impacts of climate change on sugarcane yields, water use and irrigation demand at three irrigated sugarcane production sites in South Africa (Malelane, Pongola and La Mercy) for current (1980-2010) and future (2070-2100) climate scenarios, using an approach based on the Agricultural Model Inter-comparison and Improvement Project (AgMIP) protocols; and (2) to assess the suitability of this methodology for investigating climate change impacts on sugarcane production. Future climate datasets were generated using the Delta downscaling method and three Global Circulation Models (GCMs) assuming atmospheric CO2 concentration [CO2] of 734 ppm(A2 emissions scenario). Yield and water use were simulated using the DSSAT-Canegro v4.5 model. Irrigated cane yields are expected to increase at all three sites (between 11 and 14%), primarily due to increased interception of radiation as a result of accelerated canopy development. Evapotranspiration and irrigation requirements increased by 11% due to increased canopy cover and evaporative demand. Sucrose yields are expected to decline because of increased consumption of photo-assimilate for structural growth and maintenance respiration. Crop responses in canopy development and yield formation differed markedly between the crop cycles investigated. Possible agronomic implications of these results include reduced weed control costs due to shortened periods of partial canopy, a need for improved efficiency of irrigation to counter increased demands, and adjustments to ripening and harvest practices to counter decreased cane quality and optimize productivity. Although the Delta climate data

  13. Comparison of Analysis and Spectral Nudging Techniques for Dynamical Downscaling with the WRF Model over China

    OpenAIRE

    Ma, Yuanyuan; Yang, Yi; Mai, Xiaoping; Qiu, Chongjian; Long, Xiao; Wang, Chenghai

    2016-01-01

    To overcome the problem that the horizontal resolution of global climate models may be too low to resolve features which are important at the regional or local scales, dynamical downscaling has been extensively used. However, dynamical downscaling results generally drift away from large-scale driving fields. The nudging technique can be used to balance the performance of dynamical downscaling at large and small scales, but the performances of the two nudging techniques (analysis nudging and s...

  14. (Un)certainty in climate change impacts on global energy consumption

    Science.gov (United States)

    van Ruijven, B. J.; De Cian, E.; Sue Wing, I.

    2017-12-01

    Climate change is expected to have an influence on the energy sector, especially on energy demand. For many locations, this change in energy demand is a balance between increase of demand for space cooling and a decrease of space heating demand. We perform a large-scale uncertainty analysis to characterize climate change risk on energy consumption as driven by climate and socioeconomic uncertainty. We combine a dynamic econometric model1 with multiple realizations of temperature projections from all 21 CMIP5 models (from the NASA Earth Exchange Global Daily Downscaled Projections2) under moderate (RCP4.5) and vigorous (RCP8.5) warming. Global spatial population projections for five SSPs are combined with GDP projections to construct scenarios for future energy demand driven by socioeconomic change. Between the climate models, we find a median global increase in climate-related energy demand of around 24% by 2050 under RCP8.5 with an interquartile range of 18-38%. Most climate models agree on increases in energy demand of more than 25% or 50% in tropical regions, the Southern USA and Southern China (see Figure). With respect to socioeconomic scenarios, we find wide variations between the SSPs for the number of people in low-income countries who are exposed to increases in energy demand. Figure attached: Number of models that agree on total climate-related energy consumption to increase or decrease by more than 0, 10, 25 or 50% by 2050 under RCP8.5 and SSP5 as result of the CMIP5 ensemble of temperature projections. References1. De Cian, E. & Sue Wing, I. Global Energy Demand in a Warming Climate. (FEEM, 2016). 2. Thrasher, B., Maurer, E. P., McKellar, C. & Duffy, P. B. Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol Earth Syst Sci 16, 3309-3314 (2012).

  15. Assessment of the Impact of Climate Change on the Water Balances and Flooding Conditions of Peninsular Malaysia watersheds by a Coupled Numerical Climate Model - Watershed Hydrology Model

    Science.gov (United States)

    Ercan, A.; Kavvas, M. L.; Ishida, K.; Chen, Z. Q.; Amin, M. Z. M.; Shaaban, A. J.

    2017-12-01

    Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over various watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model that utilized an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century were dynamically downscaled to 6 km resolution over Peninsular Malaysia by a regional numerical climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over the selected watersheds of Peninsular Malaysia. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions at the selected watersheds during the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90 years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant at the selected watersheds. Furthermore, the flood frequency analyses for the selected watersheds indicate an overall increasing trend in the second half of the 21st century.

  16. Does internal climate variability overwhelm climate change signals in streamflow? The upper Po and Rhone basin case studies

    International Nuclear Information System (INIS)

    Fatichi, S.; Rimkus, S.; Burlando, P.; Bordoy, R.

    2014-01-01

    Projections of climate change effects in streamflow are increasingly required to plan water management strategies. These projections are however largely uncertain due to the spread among climate model realizations, internal climate variability, and difficulties in transferring climate model results at the spatial and temporal scales required by catchment hydrology. A combination of a stochastic downscaling methodology and distributed hydrological modeling was used in the ACQWA project to provide projections of future streamflow (up to year 2050) for the upper Po and Rhone basins, respectively located in northern Italy and south-western Switzerland. Results suggest that internal (stochastic) climate variability is a fundamental source of uncertainty, typically comparable or larger than the projected climate change signal. Therefore, climate change effects in streamflow mean, frequency, and seasonality can be masked by natural climatic fluctuations in large parts of the analyzed regions. An exception to the overwhelming role of stochastic variability is represented by high elevation catchments fed by glaciers where streamflow is expected to be considerably reduced due to glacier retreat, with consequences appreciable in the main downstream rivers in August and September. Simulations also identify regions (west upper Rhone and Toce, Ticino river basins) where a strong precipitation increase in the February to April period projects streamflow beyond the range of natural climate variability during the melting season. This study emphasizes the importance of including internal climate variability in climate change analyses, especially when compared to the limited uncertainty that would be accounted for by few deterministic projections. The presented results could be useful in guiding more specific impact studies, although design or management decisions should be better based on reliability and vulnerability criteria as suggested by recent literature. - Highlights:

  17. Does internal climate variability overwhelm climate change signals in streamflow? The upper Po and Rhone basin case studies

    Energy Technology Data Exchange (ETDEWEB)

    Fatichi, S., E-mail: simone.fatichi@ifu.baug.ethz.ch; Rimkus, S.; Burlando, P.; Bordoy, R.

    2014-09-15

    Projections of climate change effects in streamflow are increasingly required to plan water management strategies. These projections are however largely uncertain due to the spread among climate model realizations, internal climate variability, and difficulties in transferring climate model results at the spatial and temporal scales required by catchment hydrology. A combination of a stochastic downscaling methodology and distributed hydrological modeling was used in the ACQWA project to provide projections of future streamflow (up to year 2050) for the upper Po and Rhone basins, respectively located in northern Italy and south-western Switzerland. Results suggest that internal (stochastic) climate variability is a fundamental source of uncertainty, typically comparable or larger than the projected climate change signal. Therefore, climate change effects in streamflow mean, frequency, and seasonality can be masked by natural climatic fluctuations in large parts of the analyzed regions. An exception to the overwhelming role of stochastic variability is represented by high elevation catchments fed by glaciers where streamflow is expected to be considerably reduced due to glacier retreat, with consequences appreciable in the main downstream rivers in August and September. Simulations also identify regions (west upper Rhone and Toce, Ticino river basins) where a strong precipitation increase in the February to April period projects streamflow beyond the range of natural climate variability during the melting season. This study emphasizes the importance of including internal climate variability in climate change analyses, especially when compared to the limited uncertainty that would be accounted for by few deterministic projections. The presented results could be useful in guiding more specific impact studies, although design or management decisions should be better based on reliability and vulnerability criteria as suggested by recent literature. - Highlights:

  18. An application of a hydraulic model simulator in flood risk assessment under changing climatic conditions

    Science.gov (United States)

    Doroszkiewicz, J. M.; Romanowicz, R. J.

    2016-12-01

    The standard procedure of climate change impact assessment on future hydrological extremes consists of a chain of consecutive actions, starting from the choice of GCM driven by an assumed CO2 scenario, through downscaling of climatic forcing to a catchment scale, estimation of hydrological extreme indices using hydrological modelling tools and subsequent derivation of flood risk maps with the help of a hydraulic model. Among many possible sources of uncertainty, the main are the uncertainties related to future climate scenarios, climate models, downscaling techniques and hydrological and hydraulic models. Unfortunately, we cannot directly assess the impact of these different sources of uncertainties on flood risk in future due to lack of observations of future climate realizations. The aim of this study is an assessment of a relative impact of different sources of uncertainty on the uncertainty of flood risk maps. Due to the complexity of the processes involved, an assessment of total uncertainty of maps of inundation probability might be very computer time consuming. As a way forward we present an application of a hydraulic model simulator based on a nonlinear transfer function model for the chosen locations along the river reach. The transfer function model parameters are estimated based on the simulations of the hydraulic model at each of the model cross-sections. The study shows that the application of a simulator substantially reduces the computer requirements related to the derivation of flood risk maps under future climatic conditions. Biala Tarnowska catchment, situated in southern Poland is used as a case study. Future discharges at the input to a hydraulic model are obtained using the HBV model and climate projections obtained from the EUROCORDEX project. The study describes a cascade of uncertainty related to different stages of the process of derivation of flood risk maps under changing climate conditions. In this context it takes into account the

  19. A new dynamical downscaling approach with GCM bias corrections and spectral nudging

    Science.gov (United States)

    Xu, Zhongfeng; Yang, Zong-Liang

    2015-04-01

    To improve confidence in regional projections of future climate, a new dynamical downscaling (NDD) approach with both general circulation model (GCM) bias corrections and spectral nudging is developed and assessed over North America. GCM biases are corrected by adjusting GCM climatological means and variances based on reanalysis data before the GCM output is used to drive a regional climate model (RCM). Spectral nudging is also applied to constrain RCM-based biases. Three sets of RCM experiments are integrated over a 31 year period. In the first set of experiments, the model configurations are identical except that the initial and lateral boundary conditions are derived from either the original GCM output, the bias-corrected GCM output, or the reanalysis data. The second set of experiments is the same as the first set except spectral nudging is applied. The third set of experiments includes two sensitivity runs with both GCM bias corrections and nudging where the nudging strength is progressively reduced. All RCM simulations are assessed against North American Regional Reanalysis. The results show that NDD significantly improves the downscaled mean climate and climate variability relative to other GCM-driven RCM downscaling approach in terms of climatological mean air temperature, geopotential height, wind vectors, and surface air temperature variability. In the NDD approach, spectral nudging introduces the effects of GCM bias corrections throughout the RCM domain rather than just limiting them to the initial and lateral boundary conditions, thereby minimizing climate drifts resulting from both the GCM and RCM biases.

  20. Climate Change driven evolution of hazards to Europe's transport infrastructure throughout the twenty-first century

    Science.gov (United States)

    Matulla, Christoph; Hollósi, Brigitta; Andre, Konrad; Gringinger, Julia; Chimani, Barbara; Namyslo, Joachim; Fuchs, Tobias; Auerbach, Markus; Herrmann, Carina; Sladek, Brigitte; Berghold, Heimo; Gschier, Roland; Eichinger-Vill, Eva

    2017-06-01

    Road authorities, freight, and logistic industries face a multitude of challenges in a world changing at an ever growing pace. While globalization, changes in technology, demography, and traffic, for instance, have received much attention over the bygone decades, climate change has not been treated with equal care until recently. However, since it has been recognized that climate change jeopardizes many business areas in transport, freight, and logistics, research programs investigating future threats have been initiated. One of these programs is the Conference of European Directors of Roads' (CEDR) Transnational Research Programme (TRP), which emerged about a decade ago from a cooperation between European National Road Authorities and the EU. This paper presents findings of a CEDR project called CliPDaR, which has been designed to answer questions from road authorities concerning climate-driven future threats to transport infrastructure. Pertaining results are based on two potential future socio-economic pathways of mankind (one strongly economically oriented "A2" and one more balanced scenario "A1B"), which are used to drive global climate models (GCMs) producing global and continental scale climate change projections. In order to achieve climate change projections, which are valid on regional scales, GCM projections are downscaled by regional climate models. Results shown here originate from research questions raised by European Road Authorities. They refer to future occurrence frequencies of severely cold winter seasons in Fennoscandia, to particularly hot summer seasons in the Iberian Peninsula and to changes in extreme weather phenomena triggering landslides and rutting in Central Europe. Future occurrence frequencies of extreme winter and summer conditions are investigated by empirical orthogonal function analyses of GCM projections driven with by A2 and A1B pathways. The analysis of future weather phenomena triggering landslides and rutting events requires

  1. Does internal climate variability overwhelm climate change signals in streamflow? The upper Po and Rhone basin case studies.

    Science.gov (United States)

    Fatichi, S; Rimkus, S; Burlando, P; Bordoy, R

    2014-09-15

    Projections of climate change effects in streamflow are increasingly required to plan water management strategies. These projections are however largely uncertain due to the spread among climate model realizations, internal climate variability, and difficulties in transferring climate model results at the spatial and temporal scales required by catchment hydrology. A combination of a stochastic downscaling methodology and distributed hydrological modeling was used in the ACQWA project to provide projections of future streamflow (up to year 2050) for the upper Po and Rhone basins, respectively located in northern Italy and south-western Switzerland. Results suggest that internal (stochastic) climate variability is a fundamental source of uncertainty, typically comparable or larger than the projected climate change signal. Therefore, climate change effects in streamflow mean, frequency, and seasonality can be masked by natural climatic fluctuations in large parts of the analyzed regions. An exception to the overwhelming role of stochastic variability is represented by high elevation catchments fed by glaciers where streamflow is expected to be considerably reduced due to glacier retreat, with consequences appreciable in the main downstream rivers in August and September. Simulations also identify regions (west upper Rhone and Toce, Ticino river basins) where a strong precipitation increase in the February to April period projects streamflow beyond the range of natural climate variability during the melting season. This study emphasizes the importance of including internal climate variability in climate change analyses, especially when compared to the limited uncertainty that would be accounted for by few deterministic projections. The presented results could be useful in guiding more specific impact studies, although design or management decisions should be better based on reliability and vulnerability criteria as suggested by recent literature. Copyright © 2013

  2. Future intensification of hydro-meteorological extremes: downscaling using the weather research and forecasting model

    KAUST Repository

    El-Samra, R.

    2017-02-15

    A set of ten downscaling simulations at high spatial resolution (3 km horizontally) were performed using the Weather Research and Forecasting (WRF) model to generate future climate projections of annual and seasonal temperature and precipitation changes over the Eastern Mediterranean (with a focus on Lebanon). The model was driven with the High Resolution Atmospheric Model (HiRAM), running over the whole globe at a resolution of 25 km, under the conditions of two Representative Concentration Pathways (RCP) (4.5 and 8.5). Each downscaling simulation spanned one year. Two past years (2003 and 2008), also forced by HiRAM without data assimilation, were simulated to evaluate the model’s ability to capture the cold and wet (2003) and hot and dry (2008) extremes. The downscaled data were in the range of recent observed climatic variability, and therefore corrected for the cold bias of HiRAM. Eight future years were then selected based on an anomaly score that relies on the mean annual temperature and accumulated precipitation to identify the worst year per decade from a water resources perspective. One hot and dry year per decade, from 2011 to 2050, and per scenario was simulated and compared to the historic 2008 reference. The results indicate that hot and dry future extreme years will be exacerbated and the study area might be exposed to a significant decrease in annual precipitation (rain and snow), reaching up to 30% relative to the current extreme conditions.

  3. A large-scale simulation of climate change effects on flood regime - A case study for the Alabama-Coosa-Tallapoosa River Basin

    Science.gov (United States)

    Dullo, T. T.; Gangrade, S.; Marshall, R.; Islam, S. R.; Ghafoor, S. K.; Kao, S. C.; Kalyanapu, A. J.

    2017-12-01

    The damage and cost of flooding are continuously increasing due to climate change and variability, which compels the development and advance of global flood hazard models. However, due to computational expensiveness, evaluation of large-scale and high-resolution flood regime remains a challenge. The objective of this research is to use a coupled modeling framework that consists of a dynamically downscaled suite of eleven Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models, a distributed hydrologic model called DHSVM, and a computational-efficient 2-dimensional hydraulic model called Flood2D-GPU to study the impacts of climate change on flood regime in the Alabama-Coosa-Tallapoosa (ACT) River Basin. Downscaled meteorologic forcings for 40 years in the historical period (1966-2005) and 40 years in the future period (2011-2050) were used as inputs to drive the calibrated DHSVM to generate annual maximum flood hydrographs. These flood hydrographs along with 30-m resolution digital elevation and estimated surface roughness were then used by Flood2D-GPU to estimate high-resolution flood depth, velocities, duration, and regime. Preliminary results for the Conasauga river basin (an upper subbasin within ACT) indicate that seven of the eleven climate projections show an average increase of 25 km2 in flooded area (between historic and future projections). Future work will focus on illustrating the effects of climate change on flood duration and area for the entire ACT basin.

  4. Regional and urban downscaling of global climate scenarios for health impact assessments

    Energy Technology Data Exchange (ETDEWEB)

    San Jose, R.; Perez, J.L.; Perez, L.; Gonzalez, R.M.; Pecci, J.; Garzon, A.; Palacios, M.

    2015-07-01

    In this contribution we have used global climate RCP IPCC scenarios to produce climate and air pollution maps at regional (25 km resolution) and urban scale with 200 m spatial resolution over Europe and five European cities in order to investigate the impact on meteorological variables and pollutant concentrations . We have used the very well known mesoscale meeorological model WRF-Chem (NOAA, US). We have used 2011 as control past year and two RCP scenarios from CCSM global climate model with 4.5 W/m2 and 8.5 W/m2 for 2030, 2050 and 2100 years. After running WRF-Chem model, using the boundary conditions provided by RCP scenarios with the emissions of 2011, we have performed a detailed downscaling process using CALMET diagnostic model to obtain a full 200 m spatial resolution map of five European cities (London, Antwerp, Madrid, Milan, and Helsinki). We will show the results and the health impacts for future RCP IPCC climate scenarios in comparison with the 2011 control year information for climate and health indicators. Finnally, we have also investigated the impact of the aerosol effects in the short wave radiation mean value. Two simulations with the WRF-Chem model have been performed over Europe in 2010. A baseline simulation without any feedback effects and a second simulation including the direct effects affecting the solar radiation reaching the surface as well as the indirect aerosol effect with potential impacts on increasing or decreasing the precipitation rates. Aerosol effects produce an increase of incoming radiation over Atlantic Ocean (up to 70%) because the prescribed aerosol concentrations in the WRF-Chem without feedbacks is substantially higher than the aerosol concentrations produced when we activate the feedback effects. The decrease in solar radiation in the Sahara area (10%) is found to be produced because the prescribed aerosol concentration in the {sup n}o feedback{sup s}imulation is lower than when we activate the feedback effects. (Author)

  5. Impact of the climate change to shallow groundwater in Baltic artesian basin

    Science.gov (United States)

    Lauva, D.; Bethers, P.; Timuhins, A.; Sennikovs, J.

    2012-04-01

    The purpose of our work was to find the long term pattern of annual shallow ground water changes in region of Latvia, ground water level modelling for the contemporary climate and future climate scenarios and the model generalization to the Baltic artesian basin (BAB) region. Latvia is located in the middle part of BAB. It occupies about 65'000 square kilometers. BAB territory (480'000 square kilometres) also includes Lithuania, Estonia as well as parts of Poland, Russia, Belarus and the Baltic Sea. Territory of BAB is more than seven times bigger than Latvia. Precipitation and spring snow melt are the main sources of the ground water recharge in BAB territory. The long term pattern of annual shallow ground water changes was extracted from the data of 25 monitoring wells in the territory of Latvia. The main Latvian groundwater level fluctuation regime can be described as a function with two maximums (in spring and late autumn) and two minimums (in winter and late summer). The mathematical model METUL (developed by Latvian University of Agriculture) was chosen for the ground water modelling. It was calibrated on the observations in 25 gauging wells around Latvia. After the calibration we made calculations using data provided by an ensemble of regional climate models, yielding a continuous groundwater table time-series from 1961 to 2100, which were analysed and split into 3 time windows for further analysis: contemporary climate (1961-1990), near future (2021-2050) and far future (2071-2100). The daily average temperature, precipitation and humidity time series were used as METUL forcing parameters. The statistical downscaling method (Sennikovs and Bethers, 2009) was applied for the bias correction of RCM calculated and measured variables. The qualitative differences in future and contemporary annual groundwater regime are expected. The future Latvian annual groundwater cycle according to the RCM climate projection changes to curve with one peak and one drought point

  6. A Study of the Climate Change during 21st Century over Peninsular Malaysia Watersheds

    Science.gov (United States)

    Kavvas, M. L.; Ercan, A.; Ishida, K.; Chen, Z. R.; Jang, S.; Amin, M. Z. M.; Shaaban, A. J.

    2016-12-01

    15 coarse-resolution (150 - 300 km) climate projections for the 21st century by 3 different coupled land-atmosphere-ocean GCMs (ECHAM5 of the Max Planck Institute of Meteorology of Germany, CCSM3 of the National Center for Atmospheric Research (NCAR) of the United States, and MRI-CGCM2.3.2 of the Meteorological Research Institute of Japan) under 4 different greenhouse gas emission scenarios (B1, A1B, A2, A1FI) were dynamically downscaled at hourly intervals by a regional hydro-climate model of Peninsular Malaysia (RegHCM-PM) that consisted of Regional Atmospheric Model MM5 that was coupled with WEHY watershed hydrology model over Peninsular Malaysia (PM), at the scale of the hillslopes of 13 selected watersheds (Batu Pahat, Johor, Muda, Kelang, Kelantan, Linggi, Muar, Pahang, Perak, Selangor, Dungun, Kemaman and Kuantan) and 12 selected intervening coastal regions in order to assess the impact of climate change on the climate conditions at the selected watersheds and coastal regions of PM. From the downscaled climate projections it can be concluded that the mean annual precipitation gradually increases toward the end of the 21st century over each of the 13 watersheds and the 12 coastal regions. The basin-average mean annual temperature increases in the range of 2.50C - 2.950C over PM during the 2010 -2100 period when compared to the 1970-2000 historical period. The ensemble average basin-average annual potential evapotranspiration increases gradually throughout the 21st century over all watersheds.

  7. Choosing and using climate-change scenarios for ecological-impact assessments and conservation decisions.

    Science.gov (United States)

    Snover, Amy K; Mantua, Nathan J; Littell, Jeremy S; Alexander, Michael A; McClure, Michelle M; Nye, Janet

    2013-12-01

    Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment. Selección y Uso de Escenarios de Cambio Climático para Estudios de Impacto Ecológico y Decisiones de Conservación. © 2013 Society for Conservation Biology.

  8. Assessment of Climate Change Effects on Shahcheraghi Reservoir Inflow

    Directory of Open Access Journals (Sweden)

    M. E. Banihabib

    2016-10-01

    Full Text Available Introduction: Forecasting the inflow to the reservoir is important issues due to the limited water resources and the importance of optimal utilization of reservoirs to meet the need for drinking, industry and agriculture in future time periods. In the meantime, ignoring the effects of climate change on meteorological and hydrological parameters and water resources in long-term planning of water resources cause inaccuracy. It is essential to assess the impact of climate change on reservoir operation in arid regions. In this research, climate change impact on hydrological and meteorological variables of the Shahcheragh dam basin, in Semnan Province, was studied using an integrated model of climate change assessment. Materials and Methods: The case study area of this study was located in Damghan Township, Semnan Province, Iran. It is an arid zone. The case study area is a part of the Iran Central Desert. The basin is in 12 km north of the Damghan City and between 53° E to 54° 30’ E longitude and 36° N to 36° 30’ N latitude. The area of the basin is 1,373 km2 with average annual inflow around 17.9 MCM. Total actual evaporation and average annual rainfall are 1,986 mm and 137 mm, respectively. This case study is chosen to test proposed framework for assessment of climate change impact hydrological and meteorological variables of the basin. In the proposed model, LARS-WG and ANN sub-models (7 sub models with a combination of different inputs such as temperature, precipitation and also solar radiation were used for downscaling daily outputs of CGCM3 model under 3 emission scenarios, A2, B1 and A1B and reservoir inflow simulation, respectively. LARS-WG was tested in 99% confidence level before using it as downscaling model and feed-forward neural network was used as raifall-runoff model. Moreover, the base period data (BPD, 1990-2008, were used for calibration. Finally, reservoir inflow was simulated for future period data (FPD of 2015-2044 and

  9. A space and time scale-dependent nonlinear geostatistical approach for downscaling daily precipitation and temperature

    KAUST Repository

    Jha, Sanjeev Kumar

    2015-07-21

    A geostatistical framework is proposed to downscale daily precipitation and temperature. The methodology is based on multiple-point geostatistics (MPS), where a multivariate training image is used to represent the spatial relationship between daily precipitation and daily temperature over several years. Here, the training image consists of daily rainfall and temperature outputs from the Weather Research and Forecasting (WRF) model at 50 km and 10 km resolution for a twenty year period ranging from 1985 to 2004. The data are used to predict downscaled climate variables for the year 2005. The result, for each downscaled pixel, is daily time series of precipitation and temperature that are spatially dependent. Comparison of predicted precipitation and temperature against a reference dataset indicates that both the seasonal average climate response together with the temporal variability are well reproduced. The explicit inclusion of time dependence is explored by considering the climate properties of the previous day as an additional variable. Comparison of simulations with and without inclusion of time dependence shows that the temporal dependence only slightly improves the daily prediction because the temporal variability is already well represented in the conditioning data. Overall, the study shows that the multiple-point geostatistics approach is an efficient tool to be used for statistical downscaling to obtain local scale estimates of precipitation and temperature from General Circulation Models. This article is protected by copyright. All rights reserved.

  10. Downscaling the Local Weather Above Glaciers in Complex Topography

    Science.gov (United States)

    Horak, Johannes; Hofer, Marlis; Gutmann, Ethan; Gohm, Alexander; Rotach, Mathias

    2017-04-01

    Glaciers have experienced a substantial ice-volume loss during the 20th century. To study their response to climate change, process-based glacier mass-balance models (PBGMs) are employed, which require a faithful representation of the state of the atmosphere above the glacier at high spatial and temporal resolution. Glaciers are usually located in complex topography where weather stations are scarce or not existent at all due to the remoteness of such sites and the associated high cost of maintenance. Furthermore. the effective resolution of global circulation models is too large to adequately capture the local topography and represent local weather, which is prerequisite for atmospheric input used by PBGMs. Dynamical downscaling is a physically consistent but computationally expensive approach to bridge the scale gap between GCM output and input needed by PBGMs, while statistical downscaling is faster but requires measurements for training. Both methods have their merits, however, a computationally frugal approach that does not rely on measurements is desirable, especially for long term studies of glacier response to future climate. In this study the intermediate complexity atmospheric research model (ICAR) is employed (Gutmann et al., 2016). It simplifies the wind field physics by relying on analytical solutions derived with linear theory. ICAR then advects atmospheric quantities within this wind field. This allows for computationally fast downscaling and yields a physically consistent set of atmospheric variables. First results obtained from downscaling air temperature, precipitation amount, relative humidity and wind speed to 4 × 4 km2 are presented. Preliminary ICAR is applied for a six month simulation period during five years and evaluated for three domains located in very distinct climates, namely the Southern Alps of New Zealand, the Cordillera Blanca in Peru and the European Alps using ERA Interim reanalysis data (ERAI) as forcing data set. The

  11. From GCM Output to Local Hydrologic and Ecological Impacts: Integrating Climate Change Projections into Conservation Lands

    Science.gov (United States)

    Weiss, S. B.; Micheli, L.; Flint, L. E.; Flint, A. L.; Thorne, J. H.

    2014-12-01

    Assessment of climate change resilience, vulnerability, and adaptation options require downscaling of GCM outputs to local scales, and conversion of temperature and precipitation forcings into hydrologic and ecological responses. Recent work in the San Francisco Bay Area, and California demonstrate a practical approach to this process. First, climate futures (GCM x Emissions Scenario) are screened using cluster analysis for seasonal precipitation and temperature, to select a tractable subset of projections that still represent the range of climate projections. Second, monthly climate projections are downscaled to 270m and the Basin Characterization Model (BCM) applied, to generate fine-scale recharge, runoff, actual evapotranspiration (AET), and climatic water deficit (CWD) accounting for soils, bedrock geology, topography, and local climate. Third, annual time-series are used to derive 30-year climatologies and recurrence intervals of extreme events (including multi-year droughts) at the scale of small watersheds and conservation parcels/networks. We take a "scenario-neutral" approach where thresholds are defined for system "failure," such as water supply shortfalls or drought mortality/vegetation transitions, and the time-window for hitting those thresholds is evaluated across all selected climate projections. San Francisco Bay Area examples include drought thresholds (CWD) for specific vegetation-types that identify leading/trailing edges and local refugia, evaluation of hydrologic resources (recharge and runoff) provided by conservation lands, and productivity of rangelands (AET). BCM outputs for multiple futures are becoming available to resource managers through on-line data extraction tools. This approach has wide applicability to numerous resource management issues.

  12. Weather and Climate Change Impacts on Human Mortality in Bangladesh

    Science.gov (United States)

    Burkart, Katrin; Lesk, Corey; Bader, Daniel; Horton, Radley; Kinney, Patrick

    2016-01-01

    Weather and climate profoundly affect human health. Several studies have demonstrated a U-, V-, or J-shaped temperature-mortality relationship with increasing death rates at the lower and particularly upper end of the temperature distribution. The objectives of this study were (1) to analyze the relationship between temperature and mortality in Bangladesh for different subpopulations and (2) to project future heat-related mortality under climate change scenarios. We used (non-)parametric Generalized Additive Models adjusted for trend, season and day of the month to analyze the effect of temperature on daily mortality. We found a decrease in mortality with increasing temperature over a wide range of values; between the 90th and 95th percentile an abrupt increase in mortality was observed which was particularly pronounced for the elderly above the age of 65 years, for males, as well as in urban areas and in areas with a high socio-economic status. Daily historical and future temperature values were obtained from the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset. This dataset is comprised of downscaled climate scenarios for the globe that are derived from the General Circulation Model (GCM) runs conducted under the Coupled Model Intercomparison Project Phase 5 (CMIP5). The derived dose-response functions were used to estimate the number of heat-related deaths occurring during the 1990s (1980-2005), the 2020s (2011-2040) and the 2050s (2041-2070). We estimated that excess deaths due to heat will triple from the 1990s to the 2050s, with an annual number of 0.5 million excess deaths in 1990 to and expected number of 1.5 millions in 2050.

  13. Application of a hybrid method for downscaling of the global climate model fields for evaluation of future surface mass balance of mountain glaciers

    Science.gov (United States)

    Morozova, Polina; Rybak, Oleg; Kaminskaia, Mariia

    2017-04-01

    Mountain glaciers in the Caucasus have been degrading during the last century. During this time period they lost approximately one-third in area and half of their volume. Prediction of their evolution in changing climate is crucial for the local economy because hydrological regime in the territory north to the Main Caucasus Chain is mainly driven by glacier run-off. For future projections of glaciers' surface mass balance (SMB) we apply a hybrid method of downscaling of GCM-generated meteorological fields from the global scale to the characteristic spatial resolution normally used for modeling of a single mountain glacier SMB. A method consists of two stages. On the first, dynamical stage, we use the results of calculations of regional climate model (RCM) HadRM3P for the Black Sea-Caspian region with a spatial resolution of approximately 25 km. Initial and boundary conditions for HadRM3P are provided by an AO GCM INMCM developed in the Institute of Numerical Mathematics (Moscow, Russia). Calculations were carried out for two time slices: the present (reference) climate (1971-2000 years) and climate in the late 21st century (2071-2100 years) according to scenario of greenhouse gas emissions RCP 8.5. On the second stage of downscaling, further regionalization is achieved by projecting of RCM-generated data to the high-resolution (25 m) digital elevation models in a domain enclosing target glaciers (Marukh in the Western Caucasus and Djankuat in the Central Caucasus, both being typical valley glaciers). Elevation gradient of surface air temperature and precipitation were derived from the model data. Further, results were corrected using data of observations. The incoming shortwave radiation is calculated separately, taking into account slopes, aspects and shade effect. In the end of the current century expected air temperature growth in the Central and Western Caucasus is about 5-6 °C (summer), and 2-3 °C (winter). Reduction in annual precipitation is not

  14. Statistical downscaling based on dynamically downscaled predictors: Application to monthly precipitation in Sweden

    Science.gov (United States)

    Hellström, Cecilia; Chen, Deliang

    2003-11-01

    A prerequisite of a successful statistical downscaling is that large-scale predictors simulated by the General Circulation Model (GCM) must be realistic. It is assumed here that features smaller than the GCM resolution are important in determining the realism of the large-scale predictors. It is tested whether a three-step method can improve conventional one-step statistical downscaling. The method uses predictors that are upscaled from a dynamical downscaling instead of predictors taken directly from a GCM simulation. The method is applied to downscaling of monthly precipitation in Sweden. The statistical model used is a multiple regression model that uses indices of large-scale atmospheric circulation and 850-hPa specific humidity as predictors. Data from two GCMs (HadCM2 and ECHAM4) and two RCM experiments of the Rossby Centre model (RCA1) driven by the GCMs are used. It is found that upscaled RCA1 predictors capture the seasonal cycle better than those from the GCMs, and hence increase the reliability of the downscaled precipitation. However, there are only slight improvements in the simulation of the seasonal cycle of downscaled precipitation. Due to the cost of the method and the limited improvements in the downscaling results, the three-step method is not justified to replace the one-step method for downscaling of Swedish precipitation.

  15. Advance strategy for climate change adaptation and mitigation in cities

    Science.gov (United States)

    Varquez, A. C. G.; Kanda, M.; Darmanto, N. S.; Sueishi, T.; Kawano, N.

    2017-12-01

    An on-going 5-yr project financially supported by the Ministry of Environment, Japan, has been carried out to specifically address the issue of prescribing appropriate adaptation and mitigation measures to climate change in cities. Entitled "Case Study on Mitigation and Local Adaptation to Climate Change in an Asian Megacity, Jakarta", the project's relevant objectives is to develop a research framework that can consider both urbanization and climate change with the main advantage of being readily implementable for all cities around the world. The test location is the benchmark city, Jakarta, Indonesia, with the end focus of evaluating the benefits of various mitigation and adaptation strategies in Jakarta and other megacities. The framework was designed to improve representation of urban areas when conducting climate change investigations in cities; and to be able to quantify separately the impacts of urbanization and climate change to all cities globally. It is comprised of a sophisticated, top-down, multi-downscaling approach utilizing a regional model (numerical weather model) and a microscale model (energy balance model and CFD model), with global circulation models (GCM) as input. The models, except the GCM, were configured to reasonably consider land cover, urban morphology, and anthropogenic heating (AH). Equally as important, methodologies that can collect and estimate global distribution of urban parametric and AH datasets are continually being developed. Urban growth models, climate scenario matrices that match representative concentration pathways with shared socio-economic pathways, present distribution of socio-demographic indicators such as population and GDP, existing GIS datasets of urban parameters, are utilized. From these tools, future urbanization (urban morphological parameters and AH) can be introduced into the models. Sensitivity using various combinations of GCM and urbanization can be conducted. Furthermore, since the models utilize

  16. Climate Change Impacts on Peak Electricity Consumption: US vs. Europe.

    Science.gov (United States)

    Auffhammer, M.

    2016-12-01

    It has been suggested that climate change impacts on the electric sector will account for the majority of global economic damages by the end of the current century and beyond. This finding is at odds with the relatively modest increase in climate driven impacts on consumption. Comprehensive high frequency load balancing authority level data have not been used previously to parameterize the relationship between electric demand and temperature for any major economy. Using statistical models we analyze multi-year data from load balancing authorities in the United States of America and the European Union, which are responsible for more than 90% of the electricity delivered to residential, industrial, commercial and agricultural customers. We couple the estimated response functions between total daily consumption and daily peak load with an ensemble of downscaled GCMs from the CMIP5 archive to simulate climate change driven impacts on both outcomes. We show moderate and highly spatially heterogeneous changes in consumption. The results of our peak load simulations, however, suggest significant changes in the intensity and frequency of peak events throughout the United States and Europe. As the electricity grid is built to endure maximum load, which usually occurs on the hottest day of the year, our findings have significant implications for the construction of costly peak generating and transmission capacity.

  17. Genetic Programming for the Downscaling of Extreme Rainfall Events on the East Coast of Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Sahar Hadi Pour

    2014-11-01

    Full Text Available A genetic programming (GP-based logistic regression method is proposed in the present study for the downscaling of extreme rainfall indices on the east coast of Peninsular Malaysia, which is considered one of the zones in Malaysia most vulnerable to climate change. A National Centre for Environmental Prediction reanalysis dataset at 42 grid points surrounding the study area was used to select the predictors. GP models were developed for the downscaling of three extreme rainfall indices: days with larger than or equal to the 90th percentile of rainfall during the north-east monsoon; consecutive wet days; and consecutive dry days in a year. Daily rainfall data for the time periods 1961–1990 and 1991–2000 were used for the calibration and validation of models, respectively. The results are compared with those obtained using the multilayer perceptron neural network (ANN and linear regression-based statistical downscaling model (SDSM. It was found that models derived using GP can predict both annual and seasonal extreme rainfall indices more accurately compared to ANN and SDSM.

  18. Assessing the impacts of combined climate and land use changes for water availability and demands in a Mediterranean watershed.

    Science.gov (United States)

    Jacinto, Rita; Nunes, João Pedro; Santos, Juliana

    2014-05-01

    Mediterranean basins experience water scarcity issues due to the dry climate associated with the need for agricultural irrigation and recurrent severe drought episodes. Recent land use changes have increased the pressure over water resources due to an expansion of irrigation. Global climate change is expected to bring forth a drier climate, which may simultaneously lead to higher irrigation demands and less water to sustain them, which would be a great management challenge. The issues surrounding climate and associated land use changes were addressed for the Xarrama basin in southern Portugal. This is a region where there is already a large amount of irrigation, mostly consisting of corn and rice fields, but recent trends point to an increase of drip-irrigation in olives and vineyards. The water management strategies for this region assume water transfers from the larger Alqueva reservoir, without taking into account the impacts of these future changes which might introduce additional evapotranspiration losses while decreasing the amount of available water both in Xarrama and Alqueva. Future climate and land-use scenarios were downscaled to the basin level, the latter taking into account local land-use change trends in recent decades. Downscaling based on local tendencies allowed detailed land use changes for agriculture and forest (the main land uses for this region), i.e. the most likely types of crops and trees to be introduced or replaced. The results of local tendencies scenarios reflect the SRES tendencies for Europe, namely agricultural abandonment and increased biofuel production, with species adapted to this climatic region. These scenarios are the first for this region with highly detailed information about land use change scenarios under climate change. The SWAT eco-hydrological model is being applied to quantify the individual impact of climate and land-use change scenarios on both water availability and demands, and the synergies between both. This

  19. Modeling transport of nutrients & sediment loads into Lake Tahoe under climate change

    Science.gov (United States)

    Riverson, John; Coats, Robert; Costa-Cabral, Mariza; Dettinger, Mike; Reuter, John; Sahoo, Goloka; Schladow, Geoffrey

    2013-01-01

    The outputs from two General Circulation Models (GCMs) with two emissions scenarios were downscaled and bias-corrected to develop regional climate change projections for the Tahoe Basin. For one model—the Geophysical Fluid Dynamics Laboratory or GFDL model—the daily model results were used to drive a distributed hydrologic model. The watershed model used an energy balance approach for computing evapotranspiration and snowpack dynamics so that the processes remain a function of the climate change projections. For this study, all other aspects of the model (i.e. land use distribution, routing configuration, and parameterization) were held constant to isolate impacts of climate change projections. The results indicate that (1) precipitation falling as rain rather than snow will increase, starting at the current mean snowline, and moving towards higher elevations over time; (2) annual accumulated snowpack will be reduced; (3) snowpack accumulation will start later; and (4) snowmelt will start earlier in the year. Certain changes were masked (or counter-balanced) when summarized as basin-wide averages; however, spatial evaluation added notable resolution. While rainfall runoff increased at higher elevations, a drop in total precipitation volume decreased runoff and fine sediment load from the lower elevation meadow areas and also decreased baseflow and nitrogen loads basin-wide. This finding also highlights the important role that the meadow areas could play as high-flow buffers under climatic change. Because the watershed model accounts for elevation change and variable meteorological patterns, it provided a robust platform for evaluating the impacts of projected climate change on hydrology and water quality.

  20. Characterization of soil droughts in France and climate change. The ClimSec project: results and applications

    International Nuclear Information System (INIS)

    Soubeyroux, Jean-Michel; Blanchard, Michele; Dandin, Philippe; Kitova, Nadia; Martin, Eric; Vidal, Jean-Philippe

    2012-01-01

    The ClimSec project has studied the impact of climate change on drought and soil water over France by using a climatological reanalysis of the SAFRAN/ISBA/MODCOU suite (SIM) since 1958. Standardized drought indices for precipitation (SPI) and soil moisture (SSWI) have been defined for research purposes to characterize the various kinds of events. They were then adapted for operational hydrological monitoring and used to assess the exceptional drought of spring 2011. These indices were also calculated for future climate from the various regionalized climate projections available over France. Three particular experiments in socio-economic scenarios, climate models and down-scaling methods have been run to estimate the relative importance of the different uncertainties in drought evolution. The assessment of 21. century drought evolution shows a much earlier and more intense occurrence of changes for agricultural droughts linked to soil moisture deficits than for meteorological drought linked with precipitation deficits. Climate projections suggest that France could be affected on the second half of the 21. century by a quasi-continuous drought with a strong intensity, totally unknown in present climate. (authors)

  1. The influence of climate change on Tanzania's hydropower sustainability

    Science.gov (United States)

    Sperna Weiland, Frederiek; Boehlert, Brent; Meijer, Karen; Schellekens, Jaap; Magnell, Jan-Petter; Helbrink, Jakob; Kassana, Leonard; Liden, Rikard

    2015-04-01

    Economic costs induced by current climate variability are large for Tanzania and may further increase due to future climate change. The Tanzanian National Climate Change Strategy addressed the need for stabilization of hydropower generation and strengthening of water resources management. Increased hydropower generation can contribute to sustainable use of energy resources and stabilization of the national electricity grid. To support Tanzania the World Bank financed this study in which the impact of climate change on the water resources and related hydropower generation capacity of Tanzania is assessed. To this end an ensemble of 78 GCM projections from both the CMIP3 and CMIP5 datasets was bias-corrected and down-scaled to 0.5 degrees resolution following the BCSD technique using the Princeton Global Meteorological Forcing Dataset as a reference. To quantify the hydrological impacts of climate change by 2035 the global hydrological model PCR-GLOBWB was set-up for Tanzania at a resolution of 3 minutes and run with all 78 GCM datasets. From the full set of projections a probable (median) and worst case scenario (95th percentile) were selected based upon (1) the country average Climate Moisture Index and (2) discharge statistics of relevance to hydropower generation. Although precipitation from the Princeton dataset shows deviations from local station measurements and the global hydrological model does not perfectly reproduce local scale hydrographs, the main discharge characteristics and precipitation patterns are represented well. The modeled natural river flows were adjusted for water demand and irrigation within the water resources model RIBASIM (both historical values and future scenarios). Potential hydropower capacity was assessed with the power market simulation model PoMo-C that considers both reservoir inflows obtained from RIBASIM and overall electricity generation costs. Results of the study show that climate change is unlikely to negatively affect the

  2. Climate change and watershed mercury export: a multiple projection and model analysis.

    Science.gov (United States)

    Golden, Heather E; Knightes, Christopher D; Conrads, Paul A; Feaster, Toby D; Davis, Gary M; Benedict, Stephen T; Bradley, Paul M

    2013-09-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling. Copyright © 2013 SETAC.

  3. Climate change and watershed mercury export: a multiple projection and model analysis

    Science.gov (United States)

    Golden, Heather E.; Knightes, Christopher D.; Conrads, Paul; Feaster, Toby D.; Davis, Gary M.; Benedict, Stephen T.; Bradley, Paul M.

    2013-01-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling.

  4. Climate change impacts and adaptation options for the Greek agriculture in 2021–2050: A monetary assessment

    Directory of Open Access Journals (Sweden)

    E. Georgopoulou

    2017-01-01

    Full Text Available The paper presents a quantitative assessment of mid-term (2021–2050 climate change impacts on and potential adaptation options for selected crops in Greece that are of importance in terms of their share in national agricultural production and gross value added. Central points in the assessment are the monetary evaluation of impacts and the cost-benefit analysis of adaptation options. To address local variability in current and future climate conditions, analysis is spatially disaggregated into geographical regions using as an input downscaled results from climatic models. For some crops (cereals, vegetables, pulses, grapevines, changes in future agricultural yields are assessed by means of agronomic simulation models, while for the rest crops changes are assessed through regression models. The expected effects on crop yields of a number of potential adaptation options are also investigated through the same models, and the costs and benefits of these options are also quantitatively assessed. The findings indicate that climate change may create winners and losers depending on their agricultural activity and location, while adaptation can mitigate adverse effects of climate change under cost-effective terms.

  5. The American Climate Prospectus: a risk-centered analysis of the economic impacts of climate change

    Science.gov (United States)

    Jina, A.; Houser, T.; Hsiang, S. M.; Kopp, R. E., III; Delgado, M.; Larsen, K.; Mohan, S.; Rasmussen, D.; Rising, J.; Wilson, P. S.; Muir-Wood, R.

    2014-12-01

    The American Climate Prospectus (ACP), the analysis underlying the Risky Business project, quantitatively assessed the climate risks posed to the United States' economy in six sectors - crop yields, energy demand, coastal property, crime, labor productivity, and mortality [1]. The ACP is unique in its characterization of the full probability distribution of economic impacts of climate change throughout the 21st century, making it an extremely useful basis for risk assessments. Three key innovations allow for this characterization. First, climate projections from CMIP5 models are scaled to a temperature probability distribution derived from a coarser climate model (MAGICC). This allows a more accurate representation of the whole distribution of future climates (in particular the tails) than a simple ensemble average. These are downscaled both temporally and spatially. Second, a set of local sea level rise and tropical cyclone projections are used in conjunction with the most detailed dataset of coastal property in the US in order to capture the risks of rising seas and storm surge. Third, we base many of our sectors on empirically-derived responses to temperature and precipitation. Each of these dose-response functions is resampled many times to populate a statistical distribution. Combining these with uncertainty in emissions scenario, climate model, and weather, we create the full probability distribution of climate impacts from county up to national levels, as well as model the effects upon the economy as a whole. Results are presented as likelihood ranges, as well as changes to return intervals of extreme events. The ACP analysis allows us to compare between sectors to understand the magnitude of required policy responses, and also to identify risks through time. Many sectors displaying large impacts at the end of the century, like those of mortality, have smaller changes in the near-term, due to non-linearities in the response functions. Other sectors, like

  6. Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model

    Energy Technology Data Exchange (ETDEWEB)

    Heikkilae, U. [Bjerknes Centre for Climate Research, Uni Bjerknes Centre, Bergen (Norway); Sandvik, A. [Bjerknes Centre for Climate Research, Institute for Marine Research (IMR), Bergen (Norway); Sorteberg, A. [University of Bergen, Geophysical Institute, Bergen (Norway)

    2011-10-15

    Results from a first-time employment of the WRF regional climate model to climatological simulations in Europe are presented. The ERA-40 reanalysis (resolution 1 ) has been downscaled to a horizontal resolution of 30 and 10 km for the period of 1961-1990. This model setup includes the whole North Atlantic in the 30 km domain and spectral nudging is used to keep the large scales consistent with the driving ERA-40 reanalysis. The model results are compared against an extensive observational network of surface variables in complex terrain in Norway. The comparison shows that the WRF model is able to add significant detail to the representation of precipitation and 2-m temperature of the ERA-40 reanalysis. Especially the geographical distribution, wet day frequency and extreme values of precipitation are highly improved due to the better representation of the orography. Refining the resolution from 30 to 10 km further increases the skill of the model, especially in case of precipitation. Our results indicate that the use of 10-km resolution is advantageous for producing regional future climate projections. Use of a large domain and spectral nudging seems to be useful in reproducing the extreme precipitation events due to the better resolved synoptic scale features over the North Atlantic, and also helps to reduce the large regional temperature biases over Norway. This study presents a high-resolution, high-quality climatological data set useful for reference climate impact studies. (orig.)

  7. Changes in groundwater recharge under projected climate in the upper Colorado River basin

    Science.gov (United States)

    Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-01-01

    Understanding groundwater-budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the future. This study quantifies projected changes in upper Colorado River basin (UCRB) groundwater recharge from recent historical (1950–2015) through future (2016–2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections. Simulated future groundwater recharge in the UCRB is generally expected to be greater than the historical average in most decades. Increases in groundwater recharge in the UCRB are a consequence of projected increases in precipitation, offsetting reductions in recharge that would result from projected increased temperatures.

  8. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    Science.gov (United States)

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national

  9. Impact of climate change on fish population dynamics in the baltic sea: a dynamical downscaling investigation

    DEFF Research Database (Denmark)

    Mackenzie, Brian R; Meier, H E Markus; Lindegren, Martin

    2012-01-01

    Understanding how climate change, exploitation and eutrophication will affect populations and ecosystems of the Baltic Sea can be facilitated with models which realistically combine these forcings into common frameworks. Here, we evaluate sensitivity of fish recruitment and population dynamics...... and the temperature have influenced recruitment for at least 50 years. The three Baltic Sea models estimate relatively similar developments (increases) in biomass and fishery yield during twenty-first century climate change (ca. 28 % range among models). However, this uncertainty is exceeded by the one associated...... to past and future environmental forcings provided by three ocean-biogeochemical models of the Baltic Sea. Modeled temperature explained nearly as much variability in reproductive success of sprat (Sprattus sprattus; Clupeidae) as measured temperatures during 1973-2005, and both the spawner biomass...

  10. Developing Intensity–Duration–Frequency (IDF Curves under Climate Change Uncertainty: The Case of Bangkok, Thailand

    Directory of Open Access Journals (Sweden)

    Ashish Shrestha

    2017-02-01

    Full Text Available The magnitude and frequency of hydrological events are expected to increase in coming years due to climate change in megacities of Asia. Intensity–Duration–Frequency (IDF curves represent essential means to study effects on the performance of drainage systems. Therefore, the need for updating IDF curves comes from the necessity to gain better understanding of climate change effects. The present paper explores an approach based on spatial downscaling-temporal disaggregation method (DDM to develop future IDFs using stochastic weather generator, Long Ashton Research Station Weather Generator (LARS-WG and the rainfall disaggregation tool, Hyetos. The work was carried out for the case of Bangkok, Thailand. The application of LARS-WG to project extreme rainfalls showed promising results and nine global climate models (GCMs were used to estimate changes in IDF characteristics for future time periods of 2011–2030 and 2046–2065 under climate change scenarios. The IDFs derived from this approach were corrected using higher order equation to mitigate biases. IDFs from all GCMs showed increasing intensities in the future for all return periods. The work presented demonstrates the potential of this approach in projecting future climate scenarios for urban catchment where long term hourly rainfall data are not readily available.

  11. Influence of Climate Change on River Discharge in Austria

    Directory of Open Access Journals (Sweden)

    Robert A. Goler

    2016-10-01

    Full Text Available The effect of climate change on the river discharge characteristics in four catchment basins within Austria is investigated using a hydrological model. Input for the model are daily climate data generated from three regional climate models (RCMs over the time period 1951–2100 using the A1B emission scenario. Due to the complex terrain of the basins, the climate data has been downscaled to a resolution of 1km×1km$1\\,\\text{km}\\times1\\,\\text{km}$. The hydrological model includes processes such as meltwater from snow and glaciers; surface, subsurface, and groundwater flows; and evapotranspiration. The modelling results show that, although only one RCM exhibits a significant reduction in the mean annual discharge towards the end of the 21st century, all RCMs exhibit significant changes in the seasonal distribution of the discharge. In particular, for basins whose discharge is dependent on water stored as snow, there will be a shift in the time of maximum river discharge to earlier in the year as the snow and ice melt earlier. During the winter months the discharge is forecasted to be higher than at present, which would lead to the number of days of low discharge being reduced. However, the earlier snow melt means that the available water for the summer months will be reduced, leading to lower discharges than present, and thus an increase in the number of low discharge days.

  12. Dynamical and statistical downscaling of precipitation and temperature in a Mediterranean area

    KAUST Repository

    Pizzigalli, Claudia; Palatella, L.; Zampieri, M.; Lionello, P.; Miglietta, M.M.; Paradisi, P.

    2012-01-01

    In this paper we present and discuss a comparison between statistical and regional climate modeling techniques for downscaling GCM prediction . The comparison is carried out over the “Capitanata” region, an area of agricultural interest in south

  13. European climate change at global mean temperature increases of 1.5 and 2 °C above pre-industrial conditions as simulated by the EURO-CORDEX regional climate models

    Science.gov (United States)

    Kjellström, Erik; Nikulin, Grigory; Strandberg, Gustav; Bøssing Christensen, Ole; Jacob, Daniela; Keuler, Klaus; Lenderink, Geert; van Meijgaard, Erik; Schär, Christoph; Somot, Samuel; Sørland, Silje Lund; Teichmann, Claas; Vautard, Robert

    2018-05-01

    We investigate European regional climate change for time periods when the global mean temperature has increased by 1.5 and 2 °C compared to pre-industrial conditions. Results are based on regional downscaling of transient climate change simulations for the 21st century with global climate models (GCMs) from the fifth-phase Coupled Model Intercomparison Project (CMIP5). We use an ensemble of EURO-CORDEX high-resolution regional climate model (RCM) simulations undertaken at a computational grid of 12.5 km horizontal resolution covering Europe. The ensemble consists of a range of RCMs that have been used for downscaling different GCMs under the RCP8.5 forcing scenario. The results indicate considerable near-surface warming already at the lower 1.5 °C of warming. Regional warming exceeds that of the global mean in most parts of Europe, being the strongest in the northernmost parts of Europe in winter and in the southernmost parts of Europe together with parts of Scandinavia in summer. Changes in precipitation, which are less robust than the ones in temperature, include increases in the north and decreases in the south with a borderline that migrates from a northerly position in summer to a southerly one in winter. Some of these changes are already seen at 1.5 °C of warming but are larger and more robust at 2 °C. Changes in near-surface wind speed are associated with a large spread among individual ensemble members at both warming levels. Relatively large areas over the North Atlantic and some parts of the continent show decreasing wind speed while some ocean areas in the far north show increasing wind speed. The changes in temperature, precipitation and wind speed are shown to be modified by changes in mean sea level pressure, indicating a strong relationship with the large-scale circulation and its internal variability on decade-long timescales. By comparing to a larger ensemble of CMIP5 GCMs we find that the RCMs can alter the results, leading either to

  14. Downscaling Coarse Scale Microwave Soil Moisture Product using Machine Learning

    Science.gov (United States)

    Abbaszadeh, P.; Moradkhani, H.; Yan, H.

    2016-12-01

    Soil moisture (SM) is a key variable in partitioning and examining the global water-energy cycle, agricultural planning, and water resource management. It is also strongly coupled with climate change, playing an important role in weather forecasting and drought monitoring and prediction, flood modeling and irrigation management. Although satellite retrievals can provide an unprecedented information of soil moisture at a global-scale, the products might be inadequate for basin scale study or regional assessment. To improve the spatial resolution of SM, this work presents a novel approach based on Machine Learning (ML) technique that allows for downscaling of the satellite soil moisture to fine resolution. For this purpose, the SMAP L-band radiometer SM products were used and conditioned on the Variable Infiltration Capacity (VIC) model prediction to describe the relationship between the coarse and fine scale soil moisture data. The proposed downscaling approach was applied to a western US basin and the products were compared against the available SM data from in-situ gauge stations. The obtained results indicated a great potential of the machine learning technique to derive the fine resolution soil moisture information that is currently used for land data assimilation applications.

  15. Downscaling global land cover projections from an integrated assessment model for use in regional analyses: results and evaluation for the US from 2005 to 2095

    International Nuclear Information System (INIS)

    West, Tristram O; Le Page, Yannick; Wolf, Julie; Thomson, Allison M; Huang, Maoyi

    2014-01-01

    Projections of land cover change generated from integrated assessment models (IAM) and other economic-based models can be applied for analyses of environmental impacts at sub-regional and landscape scales. For those IAM and economic models that project land cover change at the continental or regional scale, these projections must be downscaled and spatially distributed prior to use in climate or ecosystem models. Downscaling efforts to date have been conducted at the national extent with relatively high spatial resolution (30 m) and at the global extent with relatively coarse spatial resolution (0.5°). We revised existing methods to downscale global land cover change projections for the US to 0.05° resolution using MODIS land cover data as the initial proxy for land class distribution. Land cover change realizations generated here represent a reference scenario and two emissions mitigation pathways (MPs) generated by the global change assessment model (GCAM). Future gridded land cover realizations are constructed for each MODIS plant functional type (PFT) from 2005 to 2095, commensurate with the community land model PFT land classes, and archived for public use. The GCAM land cover realizations provide spatially explicit estimates of potential shifts in croplands, grasslands, shrublands, and forest lands. Downscaling of the MPs indicate a net replacement of grassland by cropland in the western US and by forest in the eastern US. An evaluation of the downscaling method indicates that it is able to reproduce recent changes in cropland and grassland distributions in respective areas in the US, suggesting it could provide relevant insights into the potential impacts of socio-economic and environmental drivers on future changes in land cover. (letters)

  16. Recent Advances in Climate Impacts, Vulnerability, and Adaptation Studies in California

    Science.gov (United States)

    Franco, G.; Cayan, D. R.; Moser, S. C.; Hanemann, M.; Pittiglio, S.

    2010-12-01

    The State of California is committed to preparing periodic climate change impacts and adaptation assessments to inform and develop policy in the State. The most recent assessment was released late in 2009 and a new vulnerability and adaptation assessment is underway for release in late 2011. Both assessments use IPCC climate simulations that were statistically downscaled to a horizontal resolution of about 12 Km. The 2009 California assessment attempted to translate some impacts and adaptation options into monetary terms which introduced additional uncertainties. The 2011 California assessment combines a set of coordinated statewide and regional/local studies because many adaptation options, though informed by state and national policies, will be implemented at regional and local levels. The 2011 assessment expands the number of climate simulations that are employed in order to form a fuller estimate of the potential envelope of climate change and its impacts in the state. It also introduces a subset of dynamically downscaled scenarios to understand how well statistical relationships, developed using historical data, hold up in future climate regimes. Investigations are on-going to translate the ensemble of climate simulations and to begin to attach probabilities to the scenarios using subjective and objective techniques. In addition to advances in climate simulations and downscaling techniques, the new vulnerability and adaptation assessment also increasingly integrates social science approaches to assessing vulnerabilities and adaptation options. This presentation will illustrate results from the 2009 assessment and describe the design and initial implementation of the 2011 assessment.

  17. Assessment of Climate Change Impacts on Water Resources in Zarrinehrud Basin Using SWAT Model

    Directory of Open Access Journals (Sweden)

    B. Mansouri

    2015-06-01

    Full Text Available This paper evaluate impacts of climate change on temperature, rainfall and runoff in the future Using statistical model, LARS-WG, and conceptual hydrological model, SWAT. In order to the Zarrinehrud river basin, as the biggest catchment of the Lake Urmia basin was selected as a case study. At first, for the generation of future weather data in the basin, LARS-WG model was calibrated using meteorological data and then 14 models of AOGCM were applied and results of these models were downscaled using LARS-WG model in 6 synoptic stations for period of 2015 to 2030. SWAT model was used for evaluation of climate change impacts on runoff in the basin. In order to, the model was calibrated and validated using 6 gauging stations for period of 1987-2007 and the value of R2 was between 0.49 and 0.71 for calibration and between 0.54 and 0.77 for validation. Then by introducing average of downscaled results of AOGCM models to the SWAT, runoff changes of the basin were simulated during 2015-2030. Average of results of LARS-WG model indicated that the monthly mean of minimum and maximum temperatures will increase compared to the baseline period. Also monthly average of precipitation will decrease in spring season but will increase in summer and autumn. The results showed that in addition to the amount of precipitation, its pattern will change in the future period, too. The results of runoff simulation showed that the amount of inflow to the Zarrinehrud reservoir will reduce 28.4 percent compared to the baseline period.

  18. Evaluating Impacts of climate and land use changes on streamflow using SWAT and land use models based CESM1-CAM5 Climate scenarios

    Science.gov (United States)

    Lin, Tzu Ping; Lin, Yu Pin; Lien, Wan Yu

    2015-04-01

    Climate change projects have various levels of impacts on hydrological cycles around the world. The impact of climate change and uncertainty of climate projections from general circulation models (GCMs) from the Coupled Model Intercomparison Project (CMIP5) which has been just be released in Taiwan, 2014. Since the streamflow run into ocean directly due to the steep terrain and the rainfall difference between wet and dry seasons is apparent; as a result, the allocation water resource reasonable is very challenge in Taiwan, particularly under climate change. The purpose of this study was to evaluate the impacts of climate and land use changes on a small watershed in Taiwan. The AR5 General Circulation Models(GCM) output data was adopted in this study and was downscaled from the monthly to the daily weather data as the input data of hydrological model such as Soil and Water Assessment Tool (SWAT) model in this study. The spatially explicit land uses change model, the Conservation of Land Use and its Effects at Small regional extent (CLUE-s), was applied to simulate land use scenarios in 2020-2039. Combined climate and land use change scenarios were adopted as input data of the hydrological model, the SWAT model, to estimate the future streamflows. With the increasing precipitation, increasing urban area and decreasing agricultural and grass land, the annual streamflow in the most of twenty-three subbasins were also increased. Besides, due to the increasing rainfall in wet season and decreasing rainfall in dry season, the difference of streamflow between wet season and dry season are also increased. This result indicates a more stringent challenge on the water resource management in future. Therefore, impacts on water resource caused by climate change and land use change should be considered in water resource planning for the Datuan river watershed. Keywords: SWAT, GCM, CLUE-s, streamflow, climate change, land use change

  19. Impact of choice of future climate change projection on growth chamber experimental outcomes: a preliminary study in potato

    Science.gov (United States)

    Leisner, Courtney P.; Wood, Joshua C.; Vaillancourt, Brieanne; Tang, Ying; Douches, Dave S.; Robin Buell, C.; Winkler, Julie A.

    2017-11-01

    Understanding the impacts of climate change on agriculture is essential to ensure adequate future food production. Controlled growth experiments provide an effective tool for assessing the complex effects of climate change. However, a review of the use of climate projections in 57 previously published controlled growth studies found that none considered within-season variations in projected future temperature change, and few considered regional differences in future warming. A fixed, often arbitrary, temperature perturbation typically was applied for the entire growing season. This study investigates the utility of employing more complex climate change scenarios in growth chamber experiments. A case study in potato was performed using three dynamically downscaled climate change projections for the mid-twenty-first century that differ in terms of the timing during the growing season of the largest projected temperature changes. The climate projections were used in growth chamber experiments for four elite potato cultivars commonly planted in Michigan's major potato growing region. The choice of climate projection had a significant influence on the sign and magnitude of the projected changes in aboveground biomass and total tuber count, whereas all projections suggested an increase in total tuber weight and a decrease in specific gravity, a key market quality trait for potato, by mid-century. These results demonstrate that the use of more complex climate projections that extend beyond a simple incremental change can provide additional insights into the future impacts of climate change on crop production and the accompanying uncertainty.

  20. Assimilating Non-linear Effects of Customized Large-Scale Climate Predictors on Downscaled Precipitation over the Tropical Andes

    Science.gov (United States)

    Molina, J. M.; Zaitchik, B. F.

    2016-12-01

    Recent findings considering high CO2 emission scenarios (RCP8.5) suggest that the tropical Andes may experience a massive warming and a significant precipitation increase (decrease) during the wet (dry) seasons by the end of the 21st century. Variations on rainfall-streamflow relationships and seasonal crop yields significantly affect human development in this region and make local communities highly vulnerable to climate change and variability. We developed an expert-informed empirical statistical downscaling (ESD) algorithm to explore and construct robust global climate predictors to perform skillful RCP8.5 projections of in-situ March-May (MAM) precipitation required for impact modeling and adaptation studies. We applied our framework to a topographically-complex region of the Colombian Andes where a number of previous studies have reported El Niño-Southern Oscillation (ENSO) as the main driver of climate variability. Supervised machine learning algorithms were trained with customized and bias-corrected predictors from NCEP reanalysis, and a cross-validation approach was implemented to assess both predictive skill and model selection. We found weak and not significant teleconnections between precipitation and lagged seasonal surface temperatures over El Niño3.4 domain, which suggests that ENSO fails to explain MAM rainfall variability in the study region. In contrast, series of Sea Level Pressure (SLP) over American Samoa -likely associated with the South Pacific Convergence Zone (SPCZ)- explains more than 65% of the precipitation variance. The best prediction skill was obtained with Selected Generalized Additive Models (SGAM) given their ability to capture linear/nonlinear relationships present in the data. While SPCZ-related series exhibited a positive linear effect in the rainfall response, SLP predictors in the north Atlantic and central equatorial Pacific showed nonlinear effects. A multimodel (MIROC, CanESM2 and CCSM) ensemble of ESD projections revealed

  1. A Dynamical Downscaling study over the Great Lakes Region Using WRF-Lake: Historical Simulation

    Science.gov (United States)

    Xiao, C.; Lofgren, B. M.

    2014-12-01

    As the largest group of fresh water bodies on Earth, the Laurentian Great Lakes have significant influence on local and regional weather and climate through their unique physical features compared with the surrounding land. Due to the limited spatial resolution and computational efficiency of general circulation models (GCMs), the Great Lakes are geometrically ignored or idealized into several grid cells in GCMs. Thus, the nested regional climate modeling (RCM) technique, known as dynamical downscaling, serves as a feasible solution to fill the gap. The latest Weather Research and Forecasting model (WRF) is employed to dynamically downscale the historical simulation produced by the Geophysical Fluid Dynamics Laboratory-Coupled Model (GFDL-CM3) from 1970-2005. An updated lake scheme originated from the Community Land Model is implemented in the latest WRF version 3.6. It is a one-dimensional mass and energy balance scheme with 20-25 model layers, including up to 5 snow layers on the lake ice, 10 water layers, and 10 soil layers on the lake bottom. The lake scheme is used with actual lake points and lake depth. The preliminary results show that WRF-Lake model, with a fine horizontal resolution and realistic lake representation, provides significantly improved hydroclimates, in terms of lake surface temperature, annual cycle of precipitation, ice content, and lake-effect snowfall. Those improvements suggest that better resolution of the lakes and the mesoscale process of lake-atmosphere interaction are crucial to understanding the climate and climate change in the Great Lakes region.

  2. Influences of climate change on water resources availability in Jinjiang Basin, China.

    Science.gov (United States)

    Sun, Wenchao; Wang, Jie; Li, Zhanjie; Yao, Xiaolei; Yu, Jingshan

    2014-01-01

    The influences of climate change on water resources availability in Jinjiang Basin, China, were assessed using the Block-wise use of the TOPmodel with the Muskingum-Cunge routing method (BTOPMC) distributed hydrological model. The ensemble average of downscaled output from sixteen GCMs (General Circulation Models) for A1B emission scenario (medium CO2 emission) in the 2050s was adopted to build regional climate change scenario. The projected precipitation and temperature data were used to drive BTOPMC for predicting hydrological changes in the 2050s. Results show that evapotranspiration will increase in most time of a year. Runoff in summer to early autumn exhibits an increasing trend, while in the rest period of a year it shows a decreasing trend, especially in spring season. From the viewpoint of water resource availability, it is indicated that it has the possibility that water resources may not be sufficient to fulfill irrigation water demand in the spring season and one possible solution is to store more water in the reservoir in previous summer.

  3. Climate Projection Data base for Roads - CliPDaR: Design a guideline for a transnational database of downscaled climate projection data for road impact models - within the Conference's of European Directors of Roads (CEDR) TRANSNATIONAL ROAD RESEARCH PROG

    Science.gov (United States)

    Matulla, Christoph; Namyslo, Joachim; Fuchs, Tobias; Türk, Konrad

    2013-04-01

    The European road sector is vulnerable to extreme weather phenomena, which can cause large socio-economic losses. Almost every year there occur several weather triggered events (like heavy precipitation, floods, landslides, high winds, snow and ice, heat or cold waves, etc.), that disrupt transportation, knock out power lines, cut off populated regions from the outside and so on. So, in order to avoid imbalances in the supply of vital goods to people as well as to prevent negative impacts on health and life of people travelling by car it is essential to know present and future threats to roads. Climate change might increase future threats to roads. CliPDaR focuses on parts of the European road network and contributes, based on the current body of knowledge, to the establishment of guidelines helping to decide which methods and scenarios to apply for the estimation of future climate change based challenges in the field of road maintenance. Based on regional scale climate change projections specific road-impact models are applied in order to support protection measures. In recent years, it has been recognised that it is essential to assess the uncertainty and reliability of given climate projections by using ensemble approaches and downscaling methods. A huge amount of scientific work has been done to evaluate these approaches with regard to reliability and usefulness for investigations on possible impacts of climate changes. CliPDaR is going to collect the existing approaches and methodologies in European countries, discuss their differences and - in close cooperation with the road owners - develops a common line on future applications of climate projection data to road impact models. As such, the project will focus on reviewing and assessing existing regional climate change projections regarding transnational highway transport needs. The final project report will include recommendations how the findings of CliPDaR may support the decision processes of European

  4. Reduction of systematic biases in regional climate downscaling through ensemble forcing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hongwei; Wang, Bin [Chinese Academy of Sciences, LASG, Institute of Atmospheric Physics, Beijing (China); Wang, Bin [University of Hawaii at Manoa, Department of Meteorology, Honolulu, Hawaii (United States); University of Hawaii at Manoa, International Pacific Research Center, Honolulu, Hawaii (United States)

    2012-02-15

    Simulations of the East Asian summer monsoon for the period of 1979-2001 were carried out using the Weather Research and Forecast (WRF) model forced by three reanalysis datasets (NCEP-R2, ERA-40, and JRA-25). The experiments forced by different reanalysis data exhibited remarkable differences, primarily caused by uncertainties in the lateral boundary (LB) moisture fluxes over the Bay of Bengal and the Philippine Sea. The climatological mean water vapor convergence into the model domain computed from ERA-40 was about 24% higher than that from the NCEP-R2 reanalysis. We demonstrate that using the ensemble mean of NCEP-R2, ERA-40, and JRA-25 as LB forcing considerably reduced the biases in the model simulation. The use of ensemble forcing improved the performance in simulated mean circulation and precipitation, inter-annual variation in seasonal precipitation, and daily precipitation. The model simulated precipitation was superior to that in the reanalysis in both climatology and year-to-year variations, indicating the added value of dynamic downscaling. The results suggest that models having better performance under one set of LB forcing might worsen when another set of reanalysis data is used as LB forcing. Use of ensemble mean LB forcing for assessing regional climate model performance is recommended. (orig.)

  5. Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes.

    Directory of Open Access Journals (Sweden)

    A F Lutz

    Full Text Available The Indus basin heavily depends on its upstream mountainous part for the downstream supply of water while downstream demands are high. Since downstream demands will likely continue to increase, accurate hydrological projections for the future supply are important. We use an ensemble of statistically downscaled CMIP5 General Circulation Model outputs for RCP4.5 and RCP8.5 to force a cryospheric-hydrological model and generate transient hydrological projections for the entire 21st century for the upper Indus basin. Three methodological advances are introduced: (i A new precipitation dataset that corrects for the underestimation of high-altitude precipitation is used. (ii The model is calibrated using data on river runoff, snow cover and geodetic glacier mass balance. (iii An advanced statistical downscaling technique is used that accounts for changes in precipitation extremes. The analysis of the results focuses on changes in sources of runoff, seasonality and hydrological extremes. We conclude that the future of the upper Indus basin's water availability is highly uncertain in the long run, mainly due to the large spread in the future precipitation projections. Despite large uncertainties in the future climate and long-term water availability, basin-wide patterns and trends of seasonal shifts in water availability are consistent across climate change scenarios. Most prominent is the attenuation of the annual hydrograph and shift from summer peak flow towards the other seasons for most ensemble members. In addition there are distinct spatial patterns in the response that relate to monsoon influence and the importance of meltwater. Analysis of future hydrological extremes reveals that increases in intensity and frequency of extreme discharges are very likely for most of the upper Indus basin and most ensemble members.

  6. Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes

    Science.gov (United States)

    Immerzeel, W. W.; Kraaijenbrink, P. D. A.; Shrestha, A. B.; Bierkens, M. F. P.

    2016-01-01

    The Indus basin heavily depends on its upstream mountainous part for the downstream supply of water while downstream demands are high. Since downstream demands will likely continue to increase, accurate hydrological projections for the future supply are important. We use an ensemble of statistically downscaled CMIP5 General Circulation Model outputs for RCP4.5 and RCP8.5 to force a cryospheric-hydrological model and generate transient hydrological projections for the entire 21st century for the upper Indus basin. Three methodological advances are introduced: (i) A new precipitation dataset that corrects for the underestimation of high-altitude precipitation is used. (ii) The model is calibrated using data on river runoff, snow cover and geodetic glacier mass balance. (iii) An advanced statistical downscaling technique is used that accounts for changes in precipitation extremes. The analysis of the results focuses on changes in sources of runoff, seasonality and hydrological extremes. We conclude that the future of the upper Indus basin’s water availability is highly uncertain in the long run, mainly due to the large spread in the future precipitation projections. Despite large uncertainties in the future climate and long-term water availability, basin-wide patterns and trends of seasonal shifts in water availability are consistent across climate change scenarios. Most prominent is the attenuation of the annual hydrograph and shift from summer peak flow towards the other seasons for most ensemble members. In addition there are distinct spatial patterns in the response that relate to monsoon influence and the importance of meltwater. Analysis of future hydrological extremes reveals that increases in intensity and frequency of extreme discharges are very likely for most of the upper Indus basin and most ensemble members. PMID:27828994

  7. Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes.

    Science.gov (United States)

    Lutz, A F; Immerzeel, W W; Kraaijenbrink, P D A; Shrestha, A B; Bierkens, M F P

    2016-01-01

    The Indus basin heavily depends on its upstream mountainous part for the downstream supply of water while downstream demands are high. Since downstream demands will likely continue to increase, accurate hydrological projections for the future supply are important. We use an ensemble of statistically downscaled CMIP5 General Circulation Model outputs for RCP4.5 and RCP8.5 to force a cryospheric-hydrological model and generate transient hydrological projections for the entire 21st century for the upper Indus basin. Three methodological advances are introduced: (i) A new precipitation dataset that corrects for the underestimation of high-altitude precipitation is used. (ii) The model is calibrated using data on river runoff, snow cover and geodetic glacier mass balance. (iii) An advanced statistical downscaling technique is used that accounts for changes in precipitation extremes. The analysis of the results focuses on changes in sources of runoff, seasonality and hydrological extremes. We conclude that the future of the upper Indus basin's water availability is highly uncertain in the long run, mainly due to the large spread in the future precipitation projections. Despite large uncertainties in the future climate and long-term water availability, basin-wide patterns and trends of seasonal shifts in water availability are consistent across climate change scenarios. Most prominent is the attenuation of the annual hydrograph and shift from summer peak flow towards the other seasons for most ensemble members. In addition there are distinct spatial patterns in the response that relate to monsoon influence and the importance of meltwater. Analysis of future hydrological extremes reveals that increases in intensity and frequency of extreme discharges are very likely for most of the upper Indus basin and most ensemble members.

  8. Collaborative Research for Water Resource Management under Climate Change Conditions

    Science.gov (United States)

    Brundiers, K.; Garfin, G. M.; Gober, P.; Basile, G.; Bark, R. H.

    2010-12-01

    We present an ongoing project to co-produce science and policy called Collaborative Planning for Climate Change: An Integrated Approach to Water-Planning, Climate Downscaling, and Robust Decision-Making. The project responds to motivations related to dealing with sustainability challenges in research and practice: (a) state and municipal water managers seek research that addresses their planning needs; (b) the scientific literature and funding agencies call for more meaningful engagement between science and policy communities, in ways that address user needs, while advancing basic research; and (c) empirical research contributes to methods for the design and implementation of collaborative projects. To understand how climate change might impact water resources and management in the Southwest US, our project convenes local, state, and federal water management practitioners with climate-, hydrology-, policy-, and decision scientists. Three areas of research inform this collaboration: (a) the role of paleo-hydrology in water resources scenario construction; (b) the types of uncertainties that impact decision-making beyond climate and modeling uncertainty; and (c) basin-scale statistical and dynamical downscaling of climate models to generate hydrologic projections for regional water resources planning. The project engages all participants in the research process, from research design to workshops that build capacity for understanding data generation and sources of uncertainty to the discussion of water management decision contexts. A team of “science-practice translators” facilitates the collaboration between academic and professional communities. In this presentation we contextualize the challenges and opportunities of use-inspired science-policy research collaborations by contrasting the initial project design with the process of implementation. We draw from two sources to derive lessons learned: literature on collaborative research, and evaluations provided by

  9. Potential Impacts of Future Climate Change on Regional Air Quality and Public Health over China

    Science.gov (United States)

    Hong, C.; Zhang, Q.; Zhang, Y.; He, K.

    2017-12-01

    Future climate change would affect public health through changing air quality. Climate extremes and poor weather conditions are likely to occur at a higher frequency in China under a changing climate, but the air pollution-related health impacts due to future climate change remain unclear. Here the potential impacts of future climate change on regional air quality and public health over China is projected using a coupling of climate, air quality and epidemiological models. We present the first assessment of China's future air quality in a changing climate under the Representative Concentration Pathway 4.5 (RCP4.5) scenario using the dynamical downscaling technique. In RCP4.5 scenario, we estimate that climate change from 2006-2010 to 2046-2050 is likely to adversely affect air quality covering more than 86% of population and 55% of land area in China, causing an average increase of 3% in O3 and PM2.5 concentrations, which are found to be associated with the warmer climate and the more stable atmosphere. Our estimate of air pollution-related mortality due to climate change in 2050 is 26,000 people per year in China. Of which, the PM2.5-related mortality is 18,700 people per year, and the O3-related mortality is 7,300 people per year. The climate-induced air pollution and health impacts vary spatially. The climate impacts are even more pronounced on the urban areas where is densely populated and polluted. 90% of the health loss is concentrated in 20% of land areas in China. We use a simple statistical analysis method to quantify the contributions of climate extremes and find more intense climate extremes play an important role in climate-induced air pollution-related health impacts. Our results indicate that global climate change will likely alter the level of pollutant management required to meet future air quality targets as well as the efforts to protect public health in China.

  10. Combined effects of global climate change and regional ecosystem drivers on an exploited marine food web

    DEFF Research Database (Denmark)

    Niiranen, S.; Yletyinen, J.; Tomczak, M.T.

    2013-01-01

    approach to project how the interaction of climate, nutrient loads, and cod fishing may affect the future of the open Central Baltic Sea food web. Regionally downscaled global climate scenarios were, in combination with three nutrient load scenarios, used to drive an ensemble of three regional...... biogeochemical models (BGMs). An Ecopath with Ecosim food web model was then forced with the BGM results from different nutrient-climate scenarios in combination with two different cod fishing scenarios. The results showed that regional management is likely to play a major role in determining the future......Changes in climate, in combination with intensive exploitation of marine resources, have caused large-scale reorganizations in many of the world's marine ecosystems during the past decades. The Baltic Sea in Northern Europe is one of the systems most affected. In addition to being exposed...

  11. Ensemble downscaling in coupled solar wind-magnetosphere modeling for space weather forecasting.

    Science.gov (United States)

    Owens, M J; Horbury, T S; Wicks, R T; McGregor, S L; Savani, N P; Xiong, M

    2014-06-01

    Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind "noise," which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical "downscaling" of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme. Solar wind models must be downscaled in order to drive magnetospheric models Ensemble downscaling is more effective than deterministic downscaling The magnetosphere responds nonlinearly to small-scale solar wind fluctuations.

  12. Downscaling with a nested regional climate model in near-surface fields over the contiguous United States: WRF dynamical downscaling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiali [Environmental Science Division, Argonne National Laboratory, Argonne Illinois USA; Kotamarthi, Veerabhadra R. [Environmental Science Division, Argonne National Laboratory, Argonne Illinois USA

    2014-07-27

    The Weather Research and Forecasting (WRF) model is used for dynamic downscaling of 2.5 degree National Centers for Environmental Prediction-U.S. Department of Energy Reanalysis II (NCEP-R2) data for 1980-2010 at 12 km resolution over most of North America. The model's performance for surface air temperature and precipitation is evaluated by comparison with high-resolution observational data sets. The model's ability to add value is investigated by comparison with NCEP-R2 data and a 50 km regional climate simulation. The causes for major model bias are studied through additional sensitivity experiments with various model setup/integration approaches and physics representations. The WRF captures the main features of the spatial patterns and annual cycles of air temperature and precipitation over most of the contiguous United States. However, simulated air temperatures over the south central region and precipitation over the Great Plains and the Southwest have significant biases. Allowing longer spin-up time, reducing the nudging strength, or replacing the WRF Single-Moment 6-class microphysics with Morrison microphysics reduces the bias over some subregions. However, replacing the Grell-Devenyi cumulus parameterization with Kain-Fritsch shows no improvement. The 12 km simulation does add value above the NCEP-R2 data and the 50 km simulation over mountainous and coastal zones.

  13. Impact of climate change in Switzerland on socioeconomic snow indices

    Science.gov (United States)

    Schmucki, Edgar; Marty, Christoph; Fierz, Charles; Weingartner, Rolf; Lehning, Michael

    2017-02-01

    Snow is a key element for many socioeconomic activities in mountainous regions. Due to the sensitivity of the snow cover to variations of temperature and precipitation, major changes caused by climate change are expected to happen. We analyze the evolution of some key snow indices under future climatic conditions. Ten downscaled and postprocessed climate scenarios from the ENSEMBLES database have been used to feed the physics-based snow model SNOWPACK. The projected snow cover has been calculated for 11 stations representing the diverse climates found in Switzerland. For the first time, such a setup is used to reveal changes in frequently applied snow indices and their implications on various socioeconomic sectors. Toward the end of the twenty-first century, a continuous snow cover is likely only guaranteed at high elevations above 2000 m a.s.l., whereas at mid elevations (1000-1700 m a.s.l.), roughly 50 % of all winters might be characterized by an ephemeral snow cover. Low elevations (below 500 m a.s.l.) are projected to experience only 2 days with snowfall per year and show the strongest relative reductions in mean winter snow depth of around 90 %. The range of the mean relative reductions of the snow indices is dominated by uncertainties from different GCM-RCM projections and amounts to approximately 30 %. Despite these uncertainties, all snow indices show a clear decrease in all scenario periods and the relative reductions increase toward lower elevations. These strong reductions can serve as a basis for policy makers in the fields of tourism, ecology, and hydropower.

  14. Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge

    Directory of Open Access Journals (Sweden)

    H. Lauri

    2012-12-01

    Full Text Available The transboundary Mekong River is facing two ongoing changes that are expected to significantly impact its hydrology and the characteristics of its exceptional flood pulse. The rapid economic development of the riparian countries has led to massive plans for hydropower construction, and projected climate change is expected to alter the monsoon patterns and increase temperature in the basin. The aim of this study is to assess the cumulative impact of these factors on the hydrology of the Mekong within next 20–30 yr. We downscaled the output of five general circulation models (GCMs that were found to perform well in the Mekong region. For the simulation of reservoir operation, we used an optimisation approach to estimate the operation of multiple reservoirs, including both existing and planned hydropower reservoirs. For the hydrological assessment, we used a distributed hydrological model, VMod, with a grid resolution of 5 km × 5 km. In terms of climate change's impact on hydrology, we found a high variation in the discharge results depending on which of the GCMs is used as input. The simulated change in discharge at Kratie (Cambodia between the baseline (1982–1992 and projected time period (2032–2042 ranges from −11% to +15% for the wet season and −10% to +13% for the dry season. Our analysis also shows that the changes in discharge due to planned reservoir operations are clearly larger than those simulated due to climate change: 25–160% higher dry season flows and 5–24% lower flood peaks in Kratie. The projected cumulative impacts follow rather closely the reservoir operation impacts, with an envelope around them induced by the different GCMs. Our results thus indicate that within the coming 20–30 yr, the operation of planned hydropower reservoirs is likely to have a larger impact on the Mekong hydrograph than the impacts of climate change, particularly during the dry season. On the other hand, climate change will

  15. Averaged 30 year climate change projections mask opportunities for species establishment

    Science.gov (United States)

    Serra-Diaz, Josep M.; Franklin, Janet; Sweet, Lynn C.; McCullough, Ian M.; Syphard, Alexandra D.; Regan, Helen M.; Flint, Lorraine E.; Flint, Alan L.; Dingman, John; Moritz, Max A.; Redmond, Kelly T.; Hannah, Lee; Davis, Frank W.

    2016-01-01

    Survival of early life stages is key for population expansion into new locations and for persistence of current populations (Grubb 1977, Harper 1977). Relative to adults, these early life stages are very sensitive to climate fl uctuations (Ropert-Coudert et al. 2015), which often drive episodic or ‘event-limited’ regeneration (e.g. pulses) in long-lived plant species (Jackson et al. 2009). Th us, it is diffi cult to mechanistically associate 30-yr climate norms to dynamic processes involved in species range shifts (e.g. seedling survival). What are the consequences of temporal aggregation for estimating areas of potential establishment? We modeled seedling survival for three widespread tree species in California, USA ( Quercus douglasii, Q. kelloggii , Pinus sabiniana ) by coupling a large-scale, multi-year common garden experiment to high-resolution downscaled grids of climatic water defi cit and air temperature (Flint and Flint 2012, Supplementary material Appendix 1). We projected seedling survival for nine climate change projections in two mountain landscapes spanning wide elevation and moisture gradients. We compared areas with windows of opportunity for seedling survival – defi ned as three consecutive years of seedling survival in our species, a period selected based on studies of tree niche ontogeny (Supplementary material Appendix 1) – to areas of 30-yr averaged estimates of seedling survival. We found that temporal aggregation greatly underestimated the potential for species establishment (e.g. seedling survival) under climate change scenarios.

  16. Spatial Downscaling of Alien Species Presences Using Machine Learning

    Directory of Open Access Journals (Sweden)

    Ioannis N. Daliakopoulos

    2017-07-01

    Full Text Available Spatially explicit assessments of alien species environmental and socio-economic impacts, and subsequent management interventions for their mitigation, require large scale, high-resolution data on species presence distribution. However, these data are often unavailable. This paper presents a method that relies on Random Forest (RF models to distribute alien species presence counts at a finer resolution grid, thus achieving spatial downscaling. A bootstrapping scheme is designed to account for sub-setting uncertainty, and subsets are used to train a sufficiently large number of RF models. RF results are processed to estimate variable importance and model performance. The method is tested with an ~8 × 8 km2 grid containing floral alien species presence and several potentially exploratory indices of climatic, habitat, land use, and soil property covariates for the Mediterranean island of Crete, Greece. Alien species presence is aggregated at 16 × 16 km2 and used as a predictor of presence at the original resolution, thus simulating spatial downscaling. Uncertainty assessment of the spatial downscaling of alien species' occurrences was also performed and true/false presences and absences were quantified. The approach is promising for downscaling alien species datasets of larger spatial scale but coarse resolution, where the underlying environmental information is available at a finer resolution. Furthermore, the RF architecture allows for tuning toward operationally optimal sensitivity and specificity, thus providing a decision support tool for designing a resource efficient alien species census.

  17. Climate change influences on the annual onset of Lyme disease in the United States

    Science.gov (United States)

    Monaghan, A. J.; Moore, S. M.; Sampson, K. M.; Beard, C. B.; Eisen, R. J.

    2015-12-01

    Lyme disease is the most commonly reported vector-borne illness in the United States. Lyme disease occurrence is highly seasonal and the annual springtime onset of cases is modulated by meteorological conditions in preceding months. A meteorological-based empirical model for Lyme disease onset week in the United States is driven with downscaled simulations from five global climate models and four greenhouse gas emissions scenarios to project the impacts of 21st century climate change on the annual onset week of Lyme disease. Projections are made individually and collectively for the 12 eastern States where >90% of cases occur. The national average annual onset week of Lyme disease is projected to become 0.4-0.5 weeks earlier for 2025-2040 (pLyme disease spirochete Borrelia burgdorferi in the eastern United States, may alter the disease transmission cycle in unforeseen ways. The results suggest 21st century climate change will make environmental conditions suitable for earlier annual onset of Lyme disease cases in the United States with possible implications for the timing of public health interventions.

  18. Impact of climate change on heavy precipitation events of the Mediterranean basin; Impact du changement climatique sur les evenements de pluie intense du bassin mediterraneen

    Energy Technology Data Exchange (ETDEWEB)

    Ricard, D.; Beaulant, A.L.; Deque, M.; Ducrocq, V.; Joly, A.; Joly, B.; Martin, E.; Nuissier, O.; Quintana Segui, P.; Ribes, A.; Sevault, F.; Somot, S. [Meteo-France et CNRS, Groupe d' Etude de l' Atmosphere Meteorologique (GAME), 31 - Toulouse (France); Boe, J. [California Univ., Dept. of Atmospheric and Oceanic Sciences, Los Angeles, CA (United States)

    2009-11-15

    A second topic covered by the CYPRIM project aims to characterize the evolution of heavy precipitation events in Mediterranean in the context of climate change. To this end, a continuous climate simulation from 1960 to 2099 has been run using a regional ocean-atmosphere coupled model under IPCC A2 emission scenario. Various techniques of down-scaling, down to the very fine 2 km scale, and methods to highlight synoptic environments favourable to heavy rain, have been used to estimate the impact of climate change on precipitation and hydrology over South-East France, both for the whole autumn season and the heavy rain events. (authors)

  19. High-Resolution Climate Data Visualization through GIS- and Web-based Data Portals

    Science.gov (United States)

    WANG, X.; Huang, G.

    2017-12-01

    Sound decisions on climate change adaptation rely on an in-depth assessment of potential climate change impacts at regional and local scales, which usually requires finer resolution climate projections at both spatial and temporal scales. However, effective downscaling of global climate projections is practically difficult due to the lack of computational resources and/or long-term reference data. Although a large volume of downscaled climate data has been make available to the public, how to understand and interpret the large-volume climate data and how to make use of the data to drive impact assessment and adaptation studies are still challenging for both impact researchers and decision makers. Such difficulties have become major barriers preventing informed climate change adaptation planning at regional scales. Therefore, this research will explore new GIS- and web-based technologies to help visualize the large-volume regional climate data with high spatiotemporal resolutions. A user-friendly public data portal, named Climate Change Data Portal (CCDP, http://ccdp.network), will be established to allow intuitive and open access to high-resolution regional climate projections at local scales. The CCDP offers functions of visual representation through geospatial maps and data downloading for a variety of climate variables (e.g., temperature, precipitation, relative humidity, solar radiation, and wind) at multiple spatial resolutions (i.e., 25 - 50 km) and temporal resolutions (i.e., annual, seasonal, monthly, daily, and hourly). The vast amount of information the CCDP encompasses can provide a crucial basis for assessing impacts of climate change on local communities and ecosystems and for supporting better decision making under a changing climate.

  20. Toward Robust and Efficient Climate Downscaling for Wind Energy

    Science.gov (United States)

    Vanvyve, E.; Rife, D.; Pinto, J. O.; Monaghan, A. J.; Davis, C. A.

    2011-12-01

    This presentation describes a more accurate and economical (less time, money and effort) wind resource assessment technique for the renewable energy industry, that incorporates innovative statistical techniques and new global mesoscale reanalyzes. The technique judiciously selects a collection of "case days" that accurately represent the full range of wind conditions observed at a given site over a 10-year period, in order to estimate the long-term energy yield. We will demonstrate that this new technique provides a very accurate and statistically reliable estimate of the 10-year record of the wind resource by intelligently choosing a sample of ±120 case days. This means that the expense of downscaling to quantify the wind resource at a prospective wind farm can be cut by two thirds from the current industry practice of downscaling a randomly chosen 365-day sample to represent winds over a "typical" year. This new estimate of the long-term energy yield at a prospective wind farm also has far less statistical uncertainty than the current industry standard approach. This key finding has the potential to reduce significantly market barriers to both onshore and offshore wind farm development, since insurers and financiers charge prohibitive premiums on investments that are deemed to be high risk. Lower uncertainty directly translates to lower perceived risk, and therefore far more attractive financing terms could be offered to wind farm developers who employ this new technique.

  1. An Integrated Systems Approach to Designing Climate Change Adaptation Policy in Water Resources

    Science.gov (United States)

    Ryu, D.; Malano, H. M.; Davidson, B.; George, B.

    2014-12-01

    Climate change projections are characterised by large uncertainties with rainfall variability being the key challenge in designing adaptation policies. Climate change adaptation in water resources shows all the typical characteristics of 'wicked' problems typified by cognitive uncertainty as new scientific knowledge becomes available, problem instability, knowledge imperfection and strategic uncertainty due to institutional changes that inevitably occur over time. Planning that is characterised by uncertainties and instability requires an approach that can accommodate flexibility and adaptive capacity for decision-making. An ability to take corrective measures in the event that scenarios and responses envisaged initially derive into forms at some future stage. We present an integrated-multidisciplinary and comprehensive framework designed to interface and inform science and decision making in the formulation of water resource management strategies to deal with climate change in the Musi Catchment of Andhra Pradesh, India. At the core of this framework is a dialogue between stakeholders, decision makers and scientists to define a set of plausible responses to an ensemble of climate change scenarios derived from global climate modelling. The modelling framework used to evaluate the resulting combination of climate scenarios and adaptation responses includes the surface and groundwater assessment models (SWAT & MODFLOW) and the water allocation modelling (REALM) to determine the water security of each adaptation strategy. Three climate scenarios extracted from downscaled climate models were selected for evaluation together with four agreed responses—changing cropping patterns, increasing watershed development, changing the volume of groundwater extraction and improving irrigation efficiency. Water security in this context is represented by the combination of level of water availability and its associated security of supply for three economic activities (agriculture

  2. Water Planning and Climate Change: Actionable Intelligence Yet?

    Science.gov (United States)

    Milly, P.

    2008-05-01

    Within a rational planning framework, water planners design major water projects by evaluating tradeoffs of costs, benefits, and risks to life and property. The evaluation is based on anticipated future runoff and streamflow. Generally, planners have invoked the stationarity approximation: they have assumed that hydrologic conditions during the planned lifetime of a project will be similar to those observed in the past. Contemporary anthropogenic climate change arguably makes stationarity untenable. In principle, stationarity-based planning under non- stationarity potentially leads to incorrect assessment of tradeoffs, sub-optimal decisions, and excessive financial and environmental costs (e.g., a reservoir that is too big to ever be filled) and/or insufficient benefits (e.g., levees that are too small to hold back the flood waters). As the reigning default assumption for planning, stationarity is an easy target for criticism; provision of a practical alternative is not so easy. The leading alternative, use of quantitative climate-change projections from global climate models in conjunction with water planners' river-basin models, has serious shortcomings of its own. Climate models (1) neglect some terrestrial processes known to influence runoff and streamflow; (2) do not represent precipitation well at the finer resolved time and space scales; (3) do not resolve any processes at the even finer spatial scale of relevance to much of water planning; and (4) disagree among themselves about some changes. Even setting aside the issue of scale mismatch, for which various "downscaling" methods have been proposed, outputs from climate models generally are not directly transferable to river-basin models, and river-basin models commonly use empiricisms whose historical validity might not extrapolate well under climate change. So climate science is informing water management that stationarity is a flawed assumption, but it has not presented a universally and reliably superior

  3. Regionalization of climate model results for the North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Kauker, F.

    1999-07-01

    A dynamical downscaling is presented that allows an estimation of potential effects of climate change on the North Sea. Therefore, the ocean general circulation model OPYC is adapted for application on a shelf by adding a lateral boundary formulation and a tide model. In this set-up the model is forced, first, with data from the ECMWF reanalysis for model validation and the study of the natural variability, and, second, with data from climate change experiments to estimate the effects of climate change on the North Sea. (orig.)

  4. The impact of climate change and emissions control on future ozone levels: Implications for human health.

    Science.gov (United States)

    Stowell, Jennifer D; Kim, Young-Min; Gao, Yang; Fu, Joshua S; Chang, Howard H; Liu, Yang

    2017-11-01

    Overwhelming evidence has shown that, from the Industrial Revolution to the present, human activities influence ground-level ozone (O 3 ) concentrations. Past studies demonstrate links between O 3 exposure and health. However, knowledge gaps remain in our understanding concerning the impacts of climate change mitigation policies on O 3 concentrations and health. Using a hybrid downscaling approach, we evaluated the separate impact of climate change and emission control policies on O 3 levels and associated excess mortality in the US in the 2050s under two Representative Concentration Pathways (RCPs). We show that, by the 2050s, under RCP4.5, increased O 3 levels due to combined climate change and emission control policies, could contribute to an increase of approximately 50 premature deaths annually nationwide in the US. The biggest impact, however, is seen under RCP8.5, where rises in O 3 concentrations are expected to result in over 2,200 additional premature deaths annually. The largest increases in O 3 are seen in RCP8.5 in the Northeast, the Southeast, the Central, and the West regions of the US. Additionally, when O 3 increases are examined by climate change and emissions contributions separately, the benefits of emissions mitigation efforts may significantly outweigh the effects of climate change mitigation policies on O 3 -related mortality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effects of Climate Change on Groundwater Recharge (Case Study: Sefid Dasht Plain

    Directory of Open Access Journals (Sweden)

    samin ansari

    2017-02-01

    Full Text Available Introduction: Nowadays, the issue of climate change and its related problems are fundamental crisis in water resource management. On the other hand, considering that groundwater is the most important water resources, determination of the effects of climate change on groundwater and estimation the amount of their recharge will be necessary in the future. Materials and Methods: In this research, to analyze the effects of climate change scenarios on groundwater resources, a case study has been applied to the Sefid Dasht Plain located in Chahar Mahal and Bakhtiari Province in Iran. One of the three Atmospheric-Ocean General Circulation Models (AOGCM which is called HadCM3, under the emission scenarios A2 and B1 is used to predict time series of climate variables of temperature and precipitation in the future. In order to downscale the data for producing the regional climate scenarios, LARS-WG model has been applied. Also, IHACRES model is calibrated and used for simulation of rainfall - runoff with monthly temperature, precipitation and runoff data. The predicted runoff and precipitation production in future have been considered as recharge parameters in the ground water model and the effects of climate change scenarios on the ground water table has been studied. To simulate the aquifer, GMS software has been used. GMS model is calibrated in both steady and unsteady state for one year available data and verification model has been performed by using the calibration parameters for four years. Results and Discussion: Results of T- test shows that LARS-WG model was able to simulate precipitation and temperature selected station appropriately. Calibration of IHACRES model indicated the best performance with τw=6 و f=7.7 and the results shows that IHACRES model simulated minimum amount of runoff appropriately. Although it didn’t simulate the maximum amount of runoff accurately, but its performance and Nash coefficient is acceptable. Results indicate

  6. Does Dynamical Downscaling Introduce Novel Information in Climate Model Simulations of Recipitation Change over a Complex Topography Region?

    Science.gov (United States)

    Tselioudis, George; Douvis, Costas; Zerefos, Christos

    2012-01-01

    Current climate and future climate-warming runs with the RegCM Regional Climate Model (RCM) at 50 and 11 km-resolutions forced by the ECHAM GCM are used to examine whether the increased resolution of the RCM introduces novel information in the precipitation field when the models are run for the mountainous region of the Hellenic peninsula. The model results are inter-compared with the resolution of the RCM output degraded to match that of the GCM, and it is found that in both the present and future climate runs the regional models produce more precipitation than the forcing GCM. At the same time, the RCM runs produce increases in precipitation with climate warming even though they are forced with a GCM that shows no precipitation change in the region. The additional precipitation is mostly concentrated over the mountain ranges, where orographic precipitation formation is expected to be a dominant mechanism. It is found that, when examined at the same resolution, the elevation heights of the GCM are lower than those of the averaged RCM in the areas of the main mountain ranges. It is also found that the majority of the difference in precipitation between the RCM and the GCM can be explained by their difference in topographic height. The study results indicate that, in complex topography regions, GCM predictions of precipitation change with climate warming may be dry biased due to the GCM smoothing of the regional topography.

  7. Watershed-scale response to climate change through the twenty-first century for selected basins across the United States

    Science.gov (United States)

    Hay, Lauren E.; Markstrom, Steven; Ward-Garrison, Christian D.

    2011-01-01

    The hydrologic response of different climate-change emission scenarios for the twenty-first century were evaluated in 14 basins from different hydroclimatic regions across the United States using the Precipitation-Runoff Modeling System (PRMS), a process-based, distributed-parameter watershed model. This study involves four major steps: 1) setup and calibration of the PRMS model in 14 basins across the United States by local U.S. Geological Survey personnel; 2) statistical downscaling of the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3 climate-change emission scenarios to create PRMS input files that reflect these emission scenarios; 3) run PRMS for the climate-change emission scenarios for the 14 basins; and 4) evaluation of the PRMS output.This paper presents an overview of this project, details of the methodology, results from the 14 basin simulations, and interpretation of these results. A key finding is that the hydrological response of the different geographical regions of the United States to potential climate change may be very different, depending on the dominant physical processes of that particular region. Also considered is the tremendous amount of uncertainty present in the climate emission scenarios and how this uncertainty propagates through the hydrologic simulations. This paper concludes with a discussion of the lessons learned and potential for future work.

  8. Spatial and Temporal Responses of Soil Erosion to Climate Change Impacts in a Transnational Watershed in Southeast Asia

    Directory of Open Access Journals (Sweden)

    Pham Quy Giang

    2017-03-01

    Full Text Available It has been widely predicted that Southeast Asia is among the regions facing the most severe climate change impacts. Despite this forecast, little research has been published on the potential impacts of climate change on soil erosion in this region. This study focused on the impact of climate change on spatial and temporal patterns of soil erosion in the Laos–Vietnam transnational Upper Ca River Watershed. The Soil and Water Assessment Tool (SWAT coupled with downscaled global climate models (GCMs was employed for simulation. Soil erosion in the watershed was mostly found as “hill-slope erosion”, which occurred seriously in the upstream area where topography is dominated by numerous steep hills with sparse vegetation cover. However, under the impact of climate change, it is very likely that soil erosion rate in the downstream area will increase at a higher rate than in its upstream area due to a greater increase in precipitation. Seasonally, soil erosion is predicted to increase significantly in the warmer and wetter climate of the wet season, when higher erosive power of an increased amount and intensity of rainfall is accompanied by higher sediment transport capacity. The results of this study provide useful information for decision makers to plan where and when soil conservation practice should be focused.

  9. Representation of spatial and temporal variability of daily wind speed and of intense wind events over the Mediterranean Sea using dynamical downscaling: impact of the regional climate model configuration

    Directory of Open Access Journals (Sweden)

    M. Herrmann

    2011-07-01

    Full Text Available Atmospheric datasets coming from long term reanalyzes of low spatial resolution are used for different purposes. Wind over the sea is, for example, a major ingredient of oceanic simulations. However, the shortcomings of those datasets prevent them from being used without an adequate corrective preliminary treatment. Using a regional climate model (RCM to perform a dynamical downscaling of those large scale reanalyzes is one of the methods used in order to produce fields that realistically reproduce atmospheric chronology and where those shortcomings are corrected. Here we assess the influence of the configuration of the RCM used in this framework on the representation of wind speed spatial and temporal variability and intense wind events on a daily timescale. Our RCM is ALADIN-Climate, the reanalysis is ERA-40, and the studied area is the Mediterranean Sea.

    First, the dynamical downscaling significantly reduces the underestimation of daily wind speed, in average by 9 % over the whole Mediterranean. This underestimation has been corrected both globally and locally, and for the whole wind speed spectrum. The correction is the strongest for periods and regions of strong winds. The representation of spatial variability has also been significantly improved. On the other hand, the temporal correlation between the downscaled field and the observations decreases all the more that one moves eastwards, i.e. further from the atmospheric flux entry. Nonetheless, it remains ~0.7, the downscaled dataset reproduces therefore satisfactorily the real chronology.

    Second, the influence of the choice of the RCM configuration has an influence one order of magnitude smaller than the improvement induced by the initial downscaling. The use of spectral nudging or of a smaller domain helps to improve the realism of the temporal chronology. Increasing the resolution very locally (both spatially and temporally improves the representation of spatial

  10. Validation of non-stationary precipitation series for site-specific impact assessment: comparison of two statistical downscaling techniques

    Science.gov (United States)

    Mullan, Donal; Chen, Jie; Zhang, Xunchang John

    2016-02-01

    Statistical downscaling (SD) methods have become a popular, low-cost and accessible means of bridging the gap between the coarse spatial resolution at which climate models output climate scenarios and the finer spatial scale at which impact modellers require these scenarios, with various different SD techniques used for a wide range of applications across the world. This paper compares the Generator for Point Climate Change (GPCC) model and the Statistical DownScaling Model (SDSM)—two contrasting SD methods—in terms of their ability to generate precipitation series under non-stationary conditions across ten contrasting global climates. The mean, maximum and a selection of distribution statistics as well as the cumulative frequencies of dry and wet spells for four different temporal resolutions were compared between the models and the observed series for a validation period. Results indicate that both methods can generate daily precipitation series that generally closely mirror observed series for a wide range of non-stationary climates. However, GPCC tends to overestimate higher precipitation amounts, whilst SDSM tends to underestimate these. This infers that GPCC is more likely to overestimate the effects of precipitation on a given impact sector, whilst SDSM is likely to underestimate the effects. GPCC performs better than SDSM in reproducing wet and dry day frequency, which is a key advantage for many impact sectors. Overall, the mixed performance of the two methods illustrates the importance of users performing a thorough validation in order to determine the influence of simulated precipitation on their chosen impact sector.

  11. Influence of urban land cover changes and climate change for the exposure of European cities to flooding during high-intensity precipitation

    Directory of Open Access Journals (Sweden)

    P. Skougaard Kaspersen

    2015-06-01

    Full Text Available The extent and location of impervious surfaces within urban areas due to past and present city development strongly affects the amount and velocity of run-off during high-intensity rainfall and consequently influences the exposure of cities towards flooding. The frequency and intensity of extreme rainfall are expected to increase in many places due to climate change and thus further exacerbate the risk of pluvial flooding. This paper presents a combined hydrological-hydrodynamic modelling and remote sensing approach suitable for examining the susceptibility of European cities to pluvial flooding owing to recent changes in urban land cover, under present and future climatic conditions. Estimated changes in impervious urban surfaces based on Landsat satellite imagery covering the period 1984–2014 are combined with regionally downscaled estimates of current and expected future rainfall extremes to enable 2-D overland flow simulations and flood hazard assessments. The methodology is evaluated for the Danish city of Odense. Results suggest that the past 30 years of urban development alone has increased the city's exposure to pluvial flooding by 6% for 10-year rainfall up to 26% for 100-year rainfall. Corresponding estimates for RCP4.5 and RCP8.5 climate change scenarios (2071–2100 are in the order of 40 and 100%, indicating that land cover changes within cities can play a central role for the cities' exposure to flooding and conversely also for their adaptation to a changed climate.

  12. Influence of urban land cover changes and climate change for the exposure of European cities to flooding during high-intensity precipitation

    Science.gov (United States)

    Skougaard Kaspersen, P.; Høegh Ravn, N.; Arnbjerg-Nielsen, K.; Madsen, H.; Drews, M.

    2015-06-01

    The extent and location of impervious surfaces within urban areas due to past and present city development strongly affects the amount and velocity of run-off during high-intensity rainfall and consequently influences the exposure of cities towards flooding. The frequency and intensity of extreme rainfall are expected to increase in many places due to climate change and thus further exacerbate the risk of pluvial flooding. This paper presents a combined hydrological-hydrodynamic modelling and remote sensing approach suitable for examining the susceptibility of European cities to pluvial flooding owing to recent changes in urban land cover, under present and future climatic conditions. Estimated changes in impervious urban surfaces based on Landsat satellite imagery covering the period 1984-2014 are combined with regionally downscaled estimates of current and expected future rainfall extremes to enable 2-D overland flow simulations and flood hazard assessments. The methodology is evaluated for the Danish city of Odense. Results suggest that the past 30 years of urban development alone has increased the city's exposure to pluvial flooding by 6% for 10-year rainfall up to 26% for 100-year rainfall. Corresponding estimates for RCP4.5 and RCP8.5 climate change scenarios (2071-2100) are in the order of 40 and 100%, indicating that land cover changes within cities can play a central role for the cities' exposure to flooding and conversely also for their adaptation to a changed climate.

  13. A modelling framework to project future climate change impacts on streamflow variability and extremes in the West River, China

    Directory of Open Access Journals (Sweden)

    Y. Fei

    2014-09-01

    Full Text Available In this study, a hydrological modelling framework was introduced to assess the climate change impacts on future river flow in the West River basin, China, especially on streamflow variability and extremes. The modelling framework includes a delta-change method with the quantile-mapping technique to construct future climate forcings on the basis of observed meteorological data and the downscaled climate model outputs. This method is able to retain the signals of extreme weather events, as projected by climate models, in the constructed future forcing scenarios. Fed with the historical and future forcing data, a large-scale hydrologic model (the Variable Infiltration Capacity model, VIC was executed for streamflow simulations and projections at daily time scales. A bootstrapping resample approach was used as an indirect alternative to test the equality of means, standard deviations and the coefficients of variation for the baseline and future streamflow time series, and to assess the future changes in flood return levels. The West River basin case study confirms that the introduced modelling framework is an efficient effective tool to quantify streamflow variability and extremes in response to future climate change.

  14. Robustness-based evaluation of hydropower infrastructure design under climate change

    Directory of Open Access Journals (Sweden)

    Mehmet Ümit Taner

    2017-01-01

    Full Text Available The conventional tools of decision-making in water resources infrastructure planning have been developed for problems with well-characterized uncertainties and are ill-suited for problems involving climate nonstationarity. In the past 20 years, a predict-then-act-based approach to the incorporation of climate nonstationarity has been widely adopted in which the outputs of bias-corrected climate model projections are used to evaluate planning options. However, the ambiguous nature of results has often proved unsatisfying to decision makers. This paper presents the use of a bottom-up, decision scaling framework for the evaluation of water resources infrastructure design alternatives regarding their robustness to climate change and expected value of performance. The analysis begins with an assessment of the vulnerability of the alternative designs under a wide domain of systematically-generated plausible future climates and utilizes downscaled climate projections ex post to inform likelihoods within a risk-based evaluation. The outcomes under different project designs are compared by way of a set of decision criteria, including the performance under the most likely future, expected value of performance across all evaluated futures and robustness. The method is demonstrated for the design of a hydropower system in sub-Saharan Africa and is compared to the results that would be found using a GCM-based, scenario-led analysis. The results indicate that recommendations from the decision scaling analysis can be substantially different from the scenario-led approach, alleviate common shortcomings related to the use of climate projections in water resources planning, and produce recommendations that are more robust to future climate uncertainty.

  15. A hybrid downscaling procedure for estimating the vertical distribution of ambient temperature in local scale

    Science.gov (United States)

    Yiannikopoulou, I.; Philippopoulos, K.; Deligiorgi, D.

    2012-04-01

    The vertical thermal structure of the atmosphere is defined by a combination of dynamic and radiation transfer processes and plays an important role in describing the meteorological conditions at local scales. The scope of this work is to develop and quantify the predictive ability of a hybrid dynamic-statistical downscaling procedure to estimate the vertical profile of ambient temperature at finer spatial scales. The study focuses on the warm period of the year (June - August) and the method is applied to an urban coastal site (Hellinikon), located in eastern Mediterranean. The two-step methodology initially involves the dynamic downscaling of coarse resolution climate data via the RegCM4.0 regional climate model and subsequently the statistical downscaling of the modeled outputs by developing and training site-specific artificial neural networks (ANN). The 2.5ox2.5o gridded NCEP-DOE Reanalysis 2 dataset is used as initial and boundary conditions for the dynamic downscaling element of the methodology, which enhances the regional representivity of the dataset to 20km and provides modeled fields in 18 vertical levels. The regional climate modeling results are compared versus the upper-air Hellinikon radiosonde observations and the mean absolute error (MAE) is calculated between the four grid point values nearest to the station and the ambient temperature at the standard and significant pressure levels. The statistical downscaling element of the methodology consists of an ensemble of ANN models, one for each pressure level, which are trained separately and employ the regional scale RegCM4.0 output. The ANN models are theoretically capable of estimating any measurable input-output function to any desired degree of accuracy. In this study they are used as non-linear function approximators for identifying the relationship between a number of predictor variables and the ambient temperature at the various vertical levels. An insight of the statistically derived input

  16. Attribution of projected changes in summertime US ozone and PM2.5 concentrations to global changes

    Directory of Open Access Journals (Sweden)

    A. Guenther

    2009-02-01

    Full Text Available The impact that changes in future climate, anthropogenic US emissions, background tropospheric composition, and land-use have on summertime regional US ozone and PM2.5 concentrations is examined through a matrix of downscaled regional air quality simulations, where each set of simulations was conducted for five months of July climatology, using the Community Multi-scale Air Quality (CMAQ model. Projected regional scale changes in meteorology due to climate change under the Intergovernmental Panel on Climate Change (IPCC A2 scenario are derived through the downscaling of Parallel Climate Model (PCM output with the MM5 meteorological model. Future chemical boundary conditions are obtained through downscaling of MOZART-2 (Model for Ozone and Related Chemical Tracers, version 2.4 global chemical model simulations based on the IPCC Special Report on Emissions Scenarios (SRES A2 emissions scenario. Projected changes in US anthropogenic emissions are estimated using the EPA Economic Growth Analysis System (EGAS, and changes in land-use are projected using data from the Community Land Model (CLM and the Spatially Explicit Regional Growth Model (SERGOM. For July conditions, changes in chemical boundary conditions are found to have the largest impact (+5 ppbv on average daily maximum 8-h (DM8H ozone. Changes in US anthropogenic emissions are projected to increase average DM8H ozone by +3 ppbv. Land-use changes are projected to have a significant influence on regional air quality due to the impact these changes have on biogenic hydrocarbon emissions. When climate changes and land-use changes are considered simultaneously, the average DM8H ozone decreases due to a reduction in biogenic VOC emissions (−2.6 ppbv. Changes in average 24-h (A24-h PM2.5 concentrations are dominated by projected changes in anthropogenic emissions (+3 μg m−3, while changes in chemical boundary conditions have a negligible effect. On average, climate change reduces A24-h PM2

  17. Two-Step Downscaling of Trmm 3b43 V7 Precipitation in Contrasting Climatic Regions With Sparse Monitoring: The Case of Ecuador in Tropical South America

    Directory of Open Access Journals (Sweden)

    Jacinto Ulloa

    2017-07-01

    Full Text Available Spatial prediction of precipitation with high resolution is a challenging task in regions with strong climate variability and scarce monitoring. For this purpose, the quasi-continuous supply of information from satellite imagery is commonly used to complement in situ data. However, satellite images of precipitation are available at coarse resolutions, and require adequate methods for spatial downscaling and calibration. The objective of this paper is to introduce and evaluate a 2-step spatial downscaling approach for monthly precipitation applied to TRMM 3B43 (from 0 . 25 ∘ ≈ 27 km to 5 km resolution, resulting in 5 downscaled products for the period 01-2001/12-2011. The methodology was evaluated in 3 contrasting climatic regions of Ecuador. In step 1, bilinear resampling was applied over TRMM, and used as a reference product. The second step introduces further variability, and consists of four alternative gauge-satellite merging methods: (1 regression with in situ stations, (2 regression kriging with in situ stations, (3 regression with in situ stations and auxiliary variables, and (4 regression kriging with in situ stations and auxiliary variables. The first 2 methods only use the resampled TRMM data set as an independent variable. The last 2 methods enrich these models with auxiliary environmental factors, incorporating atmospheric and land variables. The results showed that no product outperforms the others in every region. In general, the methods with residual kriging correction outperformed the regression models. Regression kriging with situ data provided the best representation in the Coast, while regression kriging with in situ and auxiliary data generated the best results in the Andes. In the Amazon, no product outperformed the resampled TRMM images, probably due to the low density of in situ stations. These results are relevant to enhance satellite precipitation, depending on the availability of in situ data, auxiliary satellite

  18. High-resolution integration of water, energy, and climate models to assess electricity grid vulnerabilities to climate change

    Science.gov (United States)

    Meng, M.; Macknick, J.; Tidwell, V. C.; Zagona, E. A.; Magee, T. M.; Bennett, K.; Middleton, R. S.

    2017-12-01

    The U.S. electricity sector depends on large amounts of water for hydropower generation and cooling thermoelectric power plants. Variability in water quantity and temperature due to climate change could reduce the performance and reliability of individual power plants and of the electric grid as a system. While studies have modeled water usage in power systems planning, few have linked grid operations with physical water constraints or with climate-induced changes in water resources to capture the role of the energy-water nexus in power systems flexibility and adequacy. In addition, many hydrologic and hydropower models have a limited representation of power sector water demands and grid interaction opportunities of demand response and ancillary services. A multi-model framework was developed to integrate and harmonize electricity, water, and climate models, allowing for high-resolution simulation of the spatial, temporal, and physical dynamics of these interacting systems. The San Juan River basin in the Southwestern U.S., which contains thermoelectric power plants, hydropower facilities, and multiple non-energy water demands, was chosen as a case study. Downscaled data from three global climate models and predicted regional water demand changes were implemented in the simulations. The Variable Infiltration Capacity hydrologic model was used to project inflows, ambient air temperature, and humidity in the San Juan River Basin. Resulting river operations, water deliveries, water shortage sharing agreements, new water demands, and hydroelectricity generation at the basin-scale were estimated with RiverWare. The impacts of water availability and temperature on electric grid dispatch, curtailment, cooling water usage, and electricity generation cost were modeled in PLEXOS. Lack of water availability resulting from climate, new water demands, and shortage sharing agreements will require thermoelectric generators to drastically decrease power production, as much as 50

  19. Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins.

    Science.gov (United States)

    Wijngaard, René R; Lutz, Arthur F; Nepal, Santosh; Khanal, Sonu; Pradhananga, Saurav; Shrestha, Arun B; Immerzeel, Walter W

    2017-01-01

    Future hydrological extremes, such as floods and droughts, may pose serious threats for the livelihoods in the upstream domains of the Indus, Ganges, Brahmaputra. For this reason, the impacts of climate change on future hydrological extremes is investigated in these river basins. We use a fully-distributed cryospheric-hydrological model to simulate current and future hydrological fluxes and force the model with an ensemble of 8 downscaled General Circulation Models (GCMs) that are selected from the RCP4.5 and RCP8.5 scenarios. The model is calibrated on observed daily discharge and geodetic mass balances. The climate forcing and the outputs of the hydrological model are used to evaluate future changes in climatic extremes, and hydrological extremes by focusing on high and low flows. The outcomes show an increase in the magnitude of climatic means and extremes towards the end of the 21st century where climatic extremes tend to increase stronger than climatic means. Future mean discharge and high flow conditions will very likely increase. These increases might mainly be the result of increasing precipitation extremes. To some extent temperature extremes might also contribute to increasing discharge extremes, although this is highly dependent on magnitude of change in temperature extremes. Low flow conditions may occur less frequently, although the uncertainties in low flow projections can be high. The results of this study may contribute to improved understanding on the implications of climate change for the occurrence of future hydrological extremes in the Hindu Kush-Himalayan region.

  20. Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins.

    Directory of Open Access Journals (Sweden)

    René R Wijngaard

    Full Text Available Future hydrological extremes, such as floods and droughts, may pose serious threats for the livelihoods in the upstream domains of the Indus, Ganges, Brahmaputra. For this reason, the impacts of climate change on future hydrological extremes is investigated in these river basins. We use a fully-distributed cryospheric-hydrological model to simulate current and future hydrological fluxes and force the model with an ensemble of 8 downscaled General Circulation Models (GCMs that are selected from the RCP4.5 and RCP8.5 scenarios. The model is calibrated on observed daily discharge and geodetic mass balances. The climate forcing and the outputs of the hydrological model are used to evaluate future changes in climatic extremes, and hydrological extremes by focusing on high and low flows. The outcomes show an increase in the magnitude of climatic means and extremes towards the end of the 21st century where climatic extremes tend to increase stronger than climatic means. Future mean discharge and high flow conditions will very likely increase. These increases might mainly be the result of increasing precipitation extremes. To some extent temperature extremes might also contribute to increasing discharge extremes, although this is highly dependent on magnitude of change in temperature extremes. Low flow conditions may occur less frequently, although the uncertainties in low flow projections can be high. The results of this study may contribute to improved understanding on the implications of climate change for the occurrence of future hydrological extremes in the Hindu Kush-Himalayan region.

  1. Use of RCM simulations to assess the impact of climate change on wind energy availability

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, S.C.; Barthelmie, R.J.

    2004-08-01

    There is considerable interest in the potential impact of climate change on the feasibility and predictability of renewable energy sources including wind energy. This report presents an application and evaluation of physical (dynamical) downscaling tools for examining the impact of climate change on near-surface flow and hence wind energy density across northern Europe. It is shown that: Simulated wind fields using the Rossby Centre coupled Regional Climate Model (RCM) (RCAO) during the control period (1961-1990) exhibit reasonable and realistic features as documented in in situ observations and reanalysis data products. The differences between near-surface wind speed and direction calculated for the control run (January 1, 1961 December 30, 1990) based on boundary conditions derived from two Global Climate Models (GCM): HadAM3H and ECHAM4/OPYC3 are comparable to changes in the climate change projection period (January 1, 2071 December 30, 2100) for two emission scenarios (SRES A2 and B2). These differences are also of similar magnitude to differences between the RCAO fields in the control period and the NCEP/NCAR reanalysis data. The RCAO simulations for the 2071-2100 period indicate evidence for a small increase in the annual wind energy resource over northern Europe between the control run (January 1, 1961 December 30, 1990) and climate change projection period (January 1, 2071 December 30, 2100), and for more substantial increases in mean wind speed and energy density during the winter season (December February), but the uncertainty of these prognoses remains high. (au)

  2. Downscaling drivers of global environmental change: Enabling use of global SRES scenarios at the national and grid levels

    NARCIS (Netherlands)

    van Vuuren, D.P.; Lucas, P.L.; Hilderink, H.

    2007-01-01

    Global environmental change scenarios typically distinguish between about 10–20 global regions. However, various studies need scenario information at a higher level of spatial detail. This paper presents a set of algorithms that aim to fill this gap by providing downscaled scenario data for

  3. Agricultural conservation practices can help mitigate the impact of climate change.

    Science.gov (United States)

    Wagena, Moges B; Easton, Zachary M

    2018-09-01

    Agricultural conservation practices (CPs) are commonly implemented to reduce diffuse nutrient pollution. Climate change can complicate the development, implementation, and efficiency of agricultural CPs by altering hydrology, nutrient cycling, and erosion. This research quantifies the impact of climate change on hydrology, nutrient cycling, erosion, and the effectiveness of agricultural CP in the Susquehanna River Basin in the Chesapeake Bay Watershed, USA. We develop, calibrate, and test the Soil and Water Assessment Tool-Variable Source Area (SWAT-VSA) model and select four CPs; buffer strips, strip-cropping, no-till, and tile drainage, to test their effectiveness in reducing climate change impacts on water quality. We force the model with six downscaled global climate models (GCMs) for a historic period (1990-2014) and two future scenario periods (2041-2065 and 2075-2099) and quantify the impact of climate change on hydrology, nitrate-N (NO 3 -N), total N (TN), dissolved phosphorus (DP), total phosphorus (TP), and sediment export with and without CPs. We also test prioritizing CP installation on the 30% of agricultural lands that generate the most runoff (e.g., critical source areas-CSAs). Compared against the historical baseline and with no CPs, the ensemble model predictions indicate that climate change results in annual increases in flow (4.5±7.3%), surface runoff (3.5±6.1%), sediment export (28.5±18.2%) and TN export (9.5±5.1%), but decreases in NO 3 -N (12±12.8%), DP (14±11.5), and TP (2.5±7.4%) export. When agricultural CPs are simulated most do not appreciably change the water balance, however, tile drainage and strip-cropping decrease surface runoff, sediment export, and DP/TP, while buffer strips reduce N export. Installing CPs on CSAs results in nearly the same level of performance for most practices and most pollutants. These results suggest that climate change will influence the performance of agricultural CPs and that targeting agricultural

  4. Spatial Downscaling of Alien Species Presences using Machine Learning

    Science.gov (United States)

    Daliakopoulos, Ioannis N.; Katsanevakis, Stelios; Moustakas, Aristides

    2017-07-01

    Large scale, high-resolution data on alien species distributions are essential for spatially explicit assessments of their environmental and socio-economic impacts, and management interventions for mitigation. However, these data are often unavailable. This paper presents a method that relies on Random Forest (RF) models to distribute alien species presence counts at a finer resolution grid, thus achieving spatial downscaling. A sufficiently large number of RF models are trained using random subsets of the dataset as predictors, in a bootstrapping approach to account for the uncertainty introduced by the subset selection. The method is tested with an approximately 8×8 km2 grid containing floral alien species presence and several indices of climatic, habitat, land use covariates for the Mediterranean island of Crete, Greece. Alien species presence is aggregated at 16×16 km2 and used as a predictor of presence at the original resolution, thus simulating spatial downscaling. Potential explanatory variables included habitat types, land cover richness, endemic species richness, soil type, temperature, precipitation, and freshwater availability. Uncertainty assessment of the spatial downscaling of alien species’ occurrences was also performed and true/false presences and absences were quantified. The approach is promising for downscaling alien species datasets of larger spatial scale but coarse resolution, where the underlying environmental information is available at a finer resolution than the alien species data. Furthermore, the RF architecture allows for tuning towards operationally optimal sensitivity and specificity, thus providing a decision support tool for designing a resource efficient alien species census.

  5. Use of a crop climate modeling system to evaluate climate change adaptation practices: maize yield in East Africa

    Science.gov (United States)

    Moore, N. J.; Alagarswamy, G.; Andresen, J.; Olson, J.; Thornton, P.

    2013-12-01

    Sub Saharan African agriculture is dominated by small-scale farmers and is heavily depend on growing season precipitation. Recent studies indicate that anthropogenic- induced warming including the Indian Ocean sea surface significantly influences precipitation in East Africa. East Africa is a useful region to assess impacts of future climate because of its large rainfall gradient, large percentage of its area being sub-humid or semi-arid, complex climatology and topography, varied soils, and because the population is particularly vulnerable to shifts in climate. Agronomic adaptation practices most commonly being considered include include a shift to short season, drought resistant maize varieties, better management practices especially fertilizer use, and irrigation. The effectiveness of these practices with climate change had not previously been tested. We used the WorldClim data set to represent current climate and compared the current and future climate scenarios of 4 Global Climate Models (GCMs) including a wetter (CCSM) and drier (HadCM3) GCM downscaled to 6 km resolution. The climate data was then used in the process-based CERES maize crop model to simulate the current period (representing 1960- 1990) and change in future maize production (from 2000 to 2050s). The effectiveness of agronomic practices, including short duration maize variety, fertilizer use and irrigation, to reduce projected future yield losses due to climate change were simulated. The GCMs project an increase in maximum temperature during growing season ranging from 1.5 to 3°C. Changes in precipitation were dependent on the GCM, with high variability across different topographies land cover types and elevations. Projected warmer temperatures in the future scenarios accelerated plant development and led to a reduction in growing season length and yields even where moisture was sufficient Maize yield changes in 2050 relative to the historical period were highly varied, in excess of +/- 500 kg

  6. More homogeneous wind conditions under strong climate change decrease the potential for inter-state balancing of electricity in Europe

    Science.gov (United States)

    Wohland, Jan; Reyers, Mark; Weber, Juliane; Witthaut, Dirk

    2017-11-01

    Limiting anthropogenic climate change requires the fast decarbonization of the electricity system. Renewable electricity generation is determined by the weather and is hence subject to climate change. We simulate the operation of a coarse-scale fully renewable European electricity system based on downscaled high-resolution climate data from EURO-CORDEX. Following a high-emission pathway (RCP8.5), we find a robust but modest increase (up to 7 %) of backup energy in Europe through the end of the 21st century. The absolute increase in the backup energy is almost independent of potential grid expansion, leading to the paradoxical effect that relative impacts of climate change increase in a highly interconnected European system. The increase is rooted in more homogeneous wind conditions over Europe resulting in intensified simultaneous generation shortfalls. Individual country contributions to European generation shortfall increase by up to 9 TWh yr-1, reflecting an increase of up to 4 %. Our results are strengthened by comparison with a large CMIP5 ensemble using an approach based on circulation weather types.

  7. What’s Needed from Climate Modeling to Advance Actionable Science for Water Utilities?

    Science.gov (United States)

    Barsugli, J. J.; Anderson, C. J.; Smith, J. B.; Vogel, J. M.

    2009-12-01

    “…perfect information on climate change is neither available today nor likely to be available in the future, but … over time, as the threats climate change poses to our systems grow more real, predicting those effects with greater certainty is non-discretionary. We’re not yet at a level at which climate change projections can drive climate change adaptation.” (Testimony of WUCA Staff Chair David Behar to the House Committee on Science and Technology, May 5, 2009) To respond to this challenge, the Water Utility Climate Alliance (WUCA) has sponsored a white paper titled “Options for Improving Climate Modeling to Assist Water Utility Planning for Climate Change. ” This report concerns how investments in the science of climate change, and in particular climate modeling and downscaling, can best be directed to help make climate projections more actionable. The meaning of “model improvement” can be very different depending on whether one is talking to a climate model developer or to a water manager trying to incorporate climate projections in to planning. We first surveyed the WUCA members on present and potential uses of climate model projections and on climate inputs to their various system models. Based on those surveys and on subsequent discussions, we identified four dimensions along which improvement in modeling would make the science more “actionable”: improved model agreement on change in key parameters; narrowing the range of model projections; providing projections at spatial and temporal scales that match water utilities system models; providing projections that water utility planning horizons. With these goals in mind we developed four options for improving global-scale climate modeling and three options for improving downscaling that will be discussed. However, there does not seem to be a single investment - the proverbial “magic bullet” -- which will substantially reduce the range of model projections at the scales at which utility

  8. How is the River Water Quality Response to Climate Change Impacts?

    Science.gov (United States)

    Nguyen, T. T.; Willems, P.

    2015-12-01

    Water quality and its response to climate change have been become one of the most important issues of our society, which catches the attention of many scientists, environmental activists and policy makers. Climate change influences the river water quality directly and indirectly via rainfall and air temperature. For example, low flow decreases the volume of water for dilution and increases the residence time of the pollutants. By contrast, high flow leads to increases in the amount of pollutants and sediment loads from catchments to rivers. The changes in hydraulic characteristics, i.e. water depth and velocity, affect the transportation and biochemical transformation of pollutants in the river water body. The high air temperature leads to increasing water temperature, shorter growing periods of different crops and water demands from domestic households and industries, which eventually effects the level of river pollution. This study demonstrates the quantification of the variation of the water temperature and pollutant concentrations along the Molse Neet river in the North East of Belgium as a result of the changes in the catchment rainfall-runoff, air temperature and nutrient loads. Firstly, four climate change scenarios were generated based on a large ensemble of available global and regional climate models and statistical downscaling based on a quantile perturbation method. Secondly, the climatic changes to rainfall and temperature were transformed to changes in the evapotranspiration and runoff flow through the conceptual hydrological model PDM. Thirdly, the adjustment in nutrient loads from agriculture due to rainfall and growing periods of crops were calculated by means of the semi-empirical SENTWA model. Water temperature was estimated from air temperature by a stochastic model separating the temperature into long-term annual and short-term residual components. Next, hydrodynamic and water quality models of the river, implemented in InfoWorks RS, were

  9. Effects of Climate Change on Urban Rainwater Harvesting in Colombo City, Sri Lanka

    Directory of Open Access Journals (Sweden)

    Kwong Fai A. Lo

    2015-03-01

    Full Text Available Cities are becoming increasingly vulnerable to water-related issues due to rapid urbanization, installation of complex infrastructure and changes in rainfall patterns. This study aims at assessing the impacts of climate change on rainwater harvesting systems (RWH in the tropical urban city, Colombo, Sri Lanka. The future climate change projections are downscaled from global circulation models to the urban catchment scale using the Long Ashton Research Station Weather Generator (LARS-WG, described in the Intergovernmental Panel on Climate Change (IPCC Fourth Assessment Report (AR4, coupled with Inter Comparison Project (CMIP3 model results. Historical rainfall data from 1981–2010 is used to simulate long-term future rainfall data from 2011–2099. The percentage change of the rainfall is calculated. The rainfall patterns are analyzed based on the daily, monthly, seasonal and annual time scales. Water requirements are calculated based on the selected scenario types. Rainfall and water demand data are incorporated into a water balance model. Climate change impacts for the selected RWH scenarios are calculated based on the water security analysis for each scenario. Analysis of the future rainfall data of Colombo reveals that several extreme weather events with very heavy rainfall may occur in the future. However, the frequency of these big events may not occur too often. Most of the selected global circulation models (GCMs in this study predict that there will be more rainfall towards the end of this century (2080-2099. Residential RWH systems will be more affected than non-residential systems. RWH systems in Colombo should include potential future climate changes in their future design and planning and be prepared for excess runoff and additional measures against potential overflow and urban floods.

  10. Low robustness of increasing reservoir capacity for adaptation to climate change: A case study for an agricultural river basin

    Science.gov (United States)

    Kim, Daeha; Eum, Hyung-Il

    2017-04-01

    With growing concerns of the uncertain climate change, investments in water infrastructures are considered as adaptation policies for water managers and stakeholders despite their negative impacts on the environment. Particularly in regions with limited water availability or conflicting demands, building reservoirs and/or augmenting their storage capacity were already adopted for alleviating influences of the climate change. This study provides a probabilistic assessment of climate change impacts on water scarcity in a river system regulated by an agricultural reservoir in South Korea, which already increased its storage capacity for water supply. For the assessment, we developed the climate response functions (CRFs) defined as relationships between bi-decadal system performance indicators (reservoir reliability and vulnerability) and corresponding climatic conditions, using hydrological models with 10,000-year long stochastic generation of daily precipitation and temperatures. The climate change impacts were assessed by plotting 52 downscaled climate projections of general circulation models (GCMs) on the CRFs. Results indicated that augmented reservoir capacity makes the reservoir system more sensitive to changes in long-term averages of precipitation and temperatures despite improved system performances. Increasing reservoir capacity is unlikely to be "no regret" adaptation policy for the river system. On the other hand, converting the planting strategy from transplanting to direct sowing (i.e., a demand control) could be a more robust to bi-decadal climatic changes based on CRFs and thus could be good to be a no-regret policy.

  11. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  12. Investigation of climate change impact on water resources for an Alpine basin in northern Italy: implications for evapotranspiration modeling complexity.

    Directory of Open Access Journals (Sweden)

    Giovanni Ravazzani

    Full Text Available Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required because of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied.

  13. Investigation of climate change impact on water resources for an Alpine basin in northern Italy: implications for evapotranspiration modeling complexity.

    Science.gov (United States)

    Ravazzani, Giovanni; Ghilardi, Matteo; Mendlik, Thomas; Gobiet, Andreas; Corbari, Chiara; Mancini, Marco

    2014-01-01

    Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required because of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied.

  14. Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia; Hundecha, Y.; Lawrence, D.

    impact studies. Four methods are based on change factors and four are bias correction methods. The change factor methods perturb the observations according to changes in precipitation properties estimated from the Regional Climate Models (RCMs). The bias correction methods correct the output from...... the RCMs. The eight methods are used to downscale precipitation output from fifteen RCMs from the ENSEMBLES project for eleven catchments in Europe. The performance of the bias correction methods depends on the catchment, but in all cases they represent an improvement compared to RCM output. The overall...... results point to an increase in extreme precipitation in all the catchments in winter and in most catchments in summer. For each catchment, the results tend to agree on the direction of the change but differ in the magnitude. These differences can be mainly explained due to differences in the RCMs....

  15. Flash floods in small Alpine catchments in a changing climate

    Science.gov (United States)

    Breinl, Korbinian; Di Baldassarre, Giuliano

    2017-04-01

    Climate change is expected to increase the frequency and intensity of hazardous meteorological and hydrological events in numerous mountainous areas. The mountain environment is becoming more and more important for urbanization and the tourism-based economy. Here we show new and innovative methodologies for assessing intensity and frequency of flash floods in small Alpine catchments, in South Tyrol (Italy), under climate change. This research is done within the STEEP STREAMS project, whereby we work closely with decision makers in Italian authorities, and the final goal is to provide them with clear guidelines on how to adapt current structural solutions for mitigating hazardous events under future climate conditions. To this end, we develop a coupled framework of weather generation (i.e. extrapolation of observations and trained with climate projections), time series disaggregation and hydrological modelling using the conceptual HBV model. One of the key challenges is the transfer of comparatively coarse RCM projections to small catchments, whose sizes range from only about 10km2 to 100km2. We examine different strategies to downscale the RCM data from e.g. the EURO-CORDEX dataset using our weather generator. The selected projections represent combinations of warmer, milder, drier and wetter conditions. In general, our main focus is to develop an improved understanding of the impact of the multiple sources of uncertainty in this modelling framework, and make these uncertainties tangible. The output of this study (i.e. discharge with a return period and associated uncertainty) will allow hydraulic and sediment transport modelling of flash floods and debris flows.

  16. Simulated Benefits of Green Infrastructure for Urban Stormwater Management under Climate Change in Different Hydroclimatic and Archetypal Urban Settings

    Science.gov (United States)

    Johnson, T. E.; Butcher, J.; Sarkar, S.; Clark, C.

    2015-12-01

    Climate change could significantly alter the occurrence and management of urban stormwater runoff quantity and quality. Responding to this challenge requires an improved understanding of potential changes together with the effectiveness of management responses for reducing impacts under range of potential future climatic conditions. Traditional gray stormwater infrastructure generally uses single-purpose, hard structures including detention basins and storm sewers to dispose of rainwater. Green infrastructure (GI) uses vegetation and soil to manage rainwater where it falls. GI has been gaining in popularity, and has been shown to provide a number of benefits for adapting to climate change including effects on stormwater quantity, quality and carbon and nutrient biogeochemical cycling. Uncertainty remains, however, due to limited understanding of GI performance in different hydroclimatic and urban settings, and in response to changes in climate. In this study we use simulation modeling to assess the impacts of climate change on both gray (wet ponds) and green infrastructure practices (green roofs, swales, bioretention) in different hydroclimatic and urban settings. Simulations were conducted using RHESSYs, a mechanistic, hydrologic and biogeochemical model, for 36 characteristic urban "archetypes" (AUSs) representing different development patterns and GI practices found in typical U.S. cities. Climate change scenarios are based on dynamically and temporally downscaled, mid-21st century climate model output from the North American Regional Climate Change Assessment Program (NARCCAP). Results suggest altered mass and energy inputs will cause changes in performance of these practices for water quantity, water quality, and carbon sequestration that vary across the country. Infrastructure design should take these potential changes into consideration.

  17. Hydrological Appraisal of Climate Change Impacts on the Water Resources of the Xijiang Basin, South China

    Directory of Open Access Journals (Sweden)

    Dehua Zhu

    2017-10-01

    Full Text Available Assessing the impact of climate change on streamflow is critical to understanding the changes to water resources and to improve water resource management. The use of hydrological models is a common practice to quantify and assess water resources in such situations. In this study, two hydrological models with different structures, e.g., a physically-based distributed model Liuxihe (LXH and a lumped conceptual model Xinanjiang (XAJ are employed to simulate the daily runoff in the Xijiang basin in South China, under historical (1964–2013 and future (2014–2099 climate conditions. The future climate series are downscaled from a global climate model (Beijing Climate Centre-Climate System Model, BCC-CSM version 1.1 by a high-resolution regional climate model under two representative concentration pathways—RCP4.5 and RCP8.5. The hydrological responses to climate change via the two rainfall–runoff models with different mathematical structures are compared, in relation to the uncertainties in hydrology and meteorology. It is found that the two rainfall–runoff models successfully simulate the historical runoff for the Xijiang basin, with a daily runoff Nash–Sutcliffe Efficiency of 0.80 for the LXH model and 0.89 for the XAJ model. The characteristics of high flow in the future are also analysed including their frequency (magnitude–return-period relationship. It shows that the distributed model could produce more streamflow and peak flow than the lumped model under the climate change scenarios. However the difference of the impact from the two climate scenarios is marginal on median monthly streamflow. The flood frequency analysis under climate change suggests that flood magnitudes in the future will be more severe than the historical floods with the same return period. Overall, the study reveals how uncertain it can be to quantify water resources with two different but well calibrated hydrological models.

  18. The Impact of Urban Growth and Climate Change on Heat Stress in an Australian City

    Science.gov (United States)

    Chapman, S.; Mcalpine, C. A.; Thatcher, M. J.; Salazar, A.; Watson, J. R.

    2017-12-01

    Over half of the world's population lives in urban areas. Most people will therefore be exposed to climate change in an urban environment. One of the climate risks facing urban residents is heat stress, which can lead to illness and death. Urban residents are at increased risk of heat stress due to the urban heat island effect. The urban heat island is a modification of the urban environment and increases temperatures on average by 2°C, though the increase can be much higher, up to 8°C when wind speeds and cloud cover are low. The urban heat island is also expected to increase in the future due to urban growth and intensification, further exacerbating urban heat stress. Climate change alters the urban heat island due to changes in weather (wind speed and cloudiness) and evapotranspiration. Future urban heat stress will therefore be affected by urban growth and climate change. The aim of this study was to examine the impact of urban growth and climate change on the urban heat island and heat stress in Brisbane, Australia. We used CCAM, the conformal cubic atmospheric model developed by the CSIRO, to examine temperatures in Brisbane using scenarios of urban growth and climate change. We downscaled the urban climate using CCAM, based on bias corrected Sea Surface Temperatures from the ACCESS1.0 projection of future climate. We used Representative Concentration Pathway (RCP) 8.5 for the periods 1990 - 2000, 2049 - 2060 and 2089 - 2090 with current land use and an urban growth scenario. The present day climatology was verified using weather station data from the Australian Bureau of Meteorology. We compared the urban heat island of the present day with the urban heat island with climate change to determine if climate change altered the heat island. We also calculated heat stress using wet-bulb globe temperature and apparent temperature for the climate change and base case scenarios. We found the urban growth scenario increased present day temperatures by 0.5°C in the

  19. Uncertainty of climate change impacts and consequences on the prediction of future hydrological trends

    International Nuclear Information System (INIS)

    Minville, M.; Brissette, F.; Leconte, R.

    2008-01-01

    In the future, water is very likely to be the resource that will be most severely affected by climate change. It has been shown that small perturbations in precipitation frequency and/or quantity can result in significant impacts on the mean annual discharge. Moreover, modest changes in natural inflows result in larger changes in reservoir storage. There is however great uncertainty linked to changes in both the magnitude and direction of future hydrological trends. This presentation discusses the various sources of this uncertainty and their potential impact on the prediction of future hydrological trends. A companion paper will look at adaptation potential, taking into account some of the sources of uncertainty discussed in this presentation. Uncertainty is separated into two main components: climatic uncertainty and 'model and methods' uncertainty. Climatic uncertainty is linked to uncertainty in future greenhouse gas emission scenarios (GHGES) and to general circulation models (GCMs), whose representation of topography and climate processes is imperfect, in large part due to computational limitations. The uncertainty linked to natural variability (which may or may not increase) is also part of the climatic uncertainty. 'Model and methods' uncertainty regroups the uncertainty linked to the different approaches and models needed to transform climate data so that they can be used by hydrological models (such as downscaling methods) and the uncertainty of the models themselves and of their use in a changed climate. The impacts of the various sources of uncertainty on the hydrology of a watershed are demonstrated on the Peribonka River basin (Quebec, Canada). The results indicate that all sources of uncertainty can be important and outline the importance of taking these sources into account for any impact and adaptation studies. Recommendations are outlined for such studies. (author)

  20. High Resolution Simulations of Future Climate in West Africa Using a Variable-Resolution Atmospheric Model

    Science.gov (United States)

    Adegoke, J. O.; Engelbrecht, F.; Vezhapparambu, S.

    2013-12-01

    In previous work demonstrated the application of a var¬iable-resolution global atmospheric model, the conformal-cubic atmospheric model (CCAM), across a wide range of spatial and time scales to investigate the ability of the model to provide realistic simulations of present-day climate and plausible projections of future climate change over sub-Saharan Africa. By applying the model in stretched-grid mode the versatility of the model dynamics, numerical formulation and physical parameterizations to function across a range of length scales over the region of interest, was also explored. We primarily used CCAM to illustrate the capability of the model to function as a flexible downscaling tool at the climate-change time scale. Here we report on additional long term climate projection studies performed by downscaling at much higher resolutions (8 Km) over an area that stretches from just south of Sahara desert to the southern coast of the Niger Delta and into the Gulf of Guinea. To perform these simulations, CCAM was provided with synoptic-scale forcing of atmospheric circulation from 2.5 deg resolution NCEP reanalysis at 6-hourly interval and SSTs from NCEP reanalysis data uses as lower boundary forcing. CCAM 60 Km resolution downscaled to 8 Km (Schmidt factor 24.75) then 8 Km resolution simulation downscaled to 1 Km (Schmidt factor 200) over an area approximately 50 Km x 50 Km in the southern Lake Chad Basin (LCB). Our intent in conducting these high resolution model runs was to obtain a deeper understanding of linkages between the projected future climate and the hydrological processes that control the surface water regime in this part of sub-Saharan Africa.

  1. Climate change effects on the hydrological regime of small non-perennial river basins

    International Nuclear Information System (INIS)

    Pumo, Dario; Caracciolo, Domenico; Viola, Francesco; Noto, Leonardo V.

    2016-01-01

    Recent years have been witnessing an increasing interest on global climate change and, although we are only at the first stage of the projected trends, some signals of climate alteration are already visible. Climate change encompasses modifications in the characteristics of several interrelated climate variables, and unavoidably produces relevant effects on almost all the natural processes related to the hydrological cycle. This study focuses on potential impacts of climate variations on the streamflow regime of small river basins in Mediterranean, seasonally dry, regions. The paper provides a quantitative evaluation of potential modifications in the flow duration curves (FDCs) and in the partitioning between surface and subsurface contributions to streamflow, induced by climate changes projected over the next century in different basins, also exploring the role exerted by different soil–vegetation compositions. To this aim, it is used a recent hydrological model, which is calibrated at five Sicilian (Italy) basins using a past period with available streamflow observations. The model is then forced by daily precipitation and reference evapotranspiration series representative of the current climatic conditions and two future temporal horizons, referring to the time windows 2045–2065 and 2081–2100. Future climatic series are generated by a weather generator, based on a stochastic downscaling of an ensemble of General Circulation Models. The results show how the projected climatic modifications are differently reflected in the hydrological response of the selected basins, implying, in general, a sensible downshift of the FDCs, with a significant reduction in the mean annual streamflow, and substantial alterations in streamflow seasonality and in the relative importance of the surface and subsurface components. The projected climate change impact on the hydrological regime of ephemeral rivers could have important implications for the water resource management and

  2. Climate change effects on the hydrological regime of small non-perennial river basins

    Energy Technology Data Exchange (ETDEWEB)

    Pumo, Dario, E-mail: dario.pumo@unipa.it; Caracciolo, Domenico, E-mail: domenico.caracciolo@unipa.it; Viola, Francesco, E-mail: francesco.viola77@unipa.it; Noto, Leonardo V., E-mail: leonardo.noto@unipa.it

    2016-01-15

    Recent years have been witnessing an increasing interest on global climate change and, although we are only at the first stage of the projected trends, some signals of climate alteration are already visible. Climate change encompasses modifications in the characteristics of several interrelated climate variables, and unavoidably produces relevant effects on almost all the natural processes related to the hydrological cycle. This study focuses on potential impacts of climate variations on the streamflow regime of small river basins in Mediterranean, seasonally dry, regions. The paper provides a quantitative evaluation of potential modifications in the flow duration curves (FDCs) and in the partitioning between surface and subsurface contributions to streamflow, induced by climate changes projected over the next century in different basins, also exploring the role exerted by different soil–vegetation compositions. To this aim, it is used a recent hydrological model, which is calibrated at five Sicilian (Italy) basins using a past period with available streamflow observations. The model is then forced by daily precipitation and reference evapotranspiration series representative of the current climatic conditions and two future temporal horizons, referring to the time windows 2045–2065 and 2081–2100. Future climatic series are generated by a weather generator, based on a stochastic downscaling of an ensemble of General Circulation Models. The results show how the projected climatic modifications are differently reflected in the hydrological response of the selected basins, implying, in general, a sensible downshift of the FDCs, with a significant reduction in the mean annual streamflow, and substantial alterations in streamflow seasonality and in the relative importance of the surface and subsurface components. The projected climate change impact on the hydrological regime of ephemeral rivers could have important implications for the water resource management and

  3. Hydrological responses to climatic changes in the Yellow River basin, China: Climatic elasticity and streamflow prediction

    Science.gov (United States)

    Zhang, Qiang; Liu, Jianyu; Singh, Vijay P.; Shi, Peijun; Sun, Peng

    2017-11-01

    Prediction of streamflow of the Yellow River basin was done using downscaled precipitation and temperature based on outputs of 12 GCMs under RCP2.6 and RCP8.5 scenarios. Streamflow changes of 37 tributaries of the Yellow River basin during 2070-2099 were predicted related to different GCMs and climatic scenarios using Budyko framework. The results indicated that: (1) When compared to precipitation and temperature during 1960-1979, increasing precipitation and temperature are dominant during 2070-2099. Particularly, under RCP8.5, increase of 10% and 30% can be detected for precipitation and temperature respectively; (2) Precipitation changes have larger fractional contribution to streamflow changes than temperature changes, being the major driver for spatial and temporal patterns of water resources across the Yellow River basin; (3) 2070-2099 period will witness increased streamflow depth and decreased streamflow can be found mainly in the semi-humid regions and headwater regions of the Yellow River basin, which can be attributed to more significant increase of temperature than precipitation in these regions; (4) Distinctly different picture of streamflow changes can be observed with consideration of different outputs of GCMs which can be attributed to different outputs of GCMs under different scenarios. Even so, under RCP2.6 and RCP8.5 scenarios, 36.8% and 71.1% of the tributaries of the Yellow River basin are dominated by increasing streamflow. The results of this study are of theoretical and practical merits in terms of management of water resources and also irrigated agriculture under influences of changing climate.

  4. Evaluation for Moroccan dynamically downscaled precipitation from GCM CHAM5 and its regional hydrologic response

    Directory of Open Access Journals (Sweden)

    Tsou Jaw

    2015-03-01

    Full Text Available Study region: Morocco (excluding Western Sahara. Study focus: This study evaluated Moroccan precipitation, dynamically downscaled (0.18-degree from three runs of the studied GCM ECHAM5/MPI-OM, under the present-day (1971–2000/20C3M and future (2036–2065/A1B climate scenarios. The spatial and quantitative properties of the downscaled precipitation were evaluated by a verified, fine-resolution reference. The effectiveness of the hydrologic responses, driven by the downscaled precipitation, was further evaluated for the study region over the upstream watershed of Oum er Rbia River located in Central Morocco. New hydrological insights for the region: The raw downscaling runs reasonably featured the spatial properties but quantitatively misrepresented the mean and extreme intensities of present-day precipitation. Two proposed bias correction approaches, namely stationary Quantile-Mapping (QM and non-stationary Equidistant CDF Matching model (EDCDFm, successfully reduced the system biases existing in the raw downscaling runs. However, both raw and corrected runs projected great diversity in terms of the quantity of future precipitation. Hydrologic simulations performed by a well-calibrated Variable Infiltration Capacity model successfully reproduced the present-day streamflow. The driven flows were identified highly correlated with the effectiveness of the downscaled precipitation. The future flows were projected to be markedly diverse, mainly due to the varied precipitation projections. Two of the three flow simulation runs projected slight to severe drying scenarios, while another projected an opposite trend for the evaluated future period. Keywords: Dynamical downscaling, Moroccan precipitation, Regional hydrology

  5. Ecological contingency in the effects of climatic warming on forest herb communities

    Science.gov (United States)

    Harrison, Susan; Damschen, Ellen Ingman; Grace, James B.

    2010-01-01

    Downscaling from the predictions of general climate models is critical to current strategies for mitigating species loss caused by climate change. A key impediment to this downscaling is that we lack a fully developed understanding of how variation in physical, biological, or land-use characteristics mediates the effects of climate change on ecological communities within regions. We analyzed change in understory herb communities over a 60-y period (1949/1951–2007/2009) in a complex montane landscape (the Siskiyou Mountains, Oregon) where mean temperatures have increased 2 °C since 1948, similar to projections for other terrestrial communities. Our 185 sites included primary and secondary-growth lower montane forests (500–1.200 m above sea level) and primary upper montane to subalpine forests (1,500–2,100 m above sea level). In lower montane forests, regardless of land-use history, we found multiple herb-community changes consistent with an effectively drier climate, including lower mean specific leaf area, lower relative cover by species of northern biogeographic affinity, and greater compositional resemblance to communities in southerly topographic positions. At higher elevations we found qualitatively different and more modest changes, including increases in herbs of northern biogeographic affinity and in forest canopy cover. Our results provide community-level validation of predicted nonlinearities in climate change effects.

  6. An intercomparison of a large ensemble of statistical downscaling methods for Europe: Overall results from the VALUE perfect predictor cross-validation experiment

    Science.gov (United States)

    Gutiérrez, Jose Manuel; Maraun, Douglas; Widmann, Martin; Huth, Radan; Hertig, Elke; Benestad, Rasmus; Roessler, Ole; Wibig, Joanna; Wilcke, Renate; Kotlarski, Sven

    2016-04-01

    VALUE is an open European network to validate and compare downscaling methods for climate change research (http://www.value-cost.eu). A key deliverable of VALUE is the development of a systematic validation framework to enable the assessment and comparison of both dynamical and statistical downscaling methods. This framework is based on a user-focused validation tree, guiding the selection of relevant validation indices and performance measures for different aspects of the validation (marginal, temporal, spatial, multi-variable). Moreover, several experiments have been designed to isolate specific points in the downscaling procedure where problems may occur (assessment of intrinsic performance, effect of errors inherited from the global models, effect of non-stationarity, etc.). The list of downscaling experiments includes 1) cross-validation with perfect predictors, 2) GCM predictors -aligned with EURO-CORDEX experiment- and 3) pseudo reality predictors (see Maraun et al. 2015, Earth's Future, 3, doi:10.1002/2014EF000259, for more details). The results of these experiments are gathered, validated and publicly distributed through the VALUE validation portal, allowing for a comprehensive community-open downscaling intercomparison study. In this contribution we describe the overall results from Experiment 1), consisting of a European wide 5-fold cross-validation (with consecutive 6-year periods from 1979 to 2008) using predictors from ERA-Interim to downscale precipitation and temperatures (minimum and maximum) over a set of 86 ECA&D stations representative of the main geographical and climatic regions in Europe. As a result of the open call for contribution to this experiment (closed in Dec. 2015), over 40 methods representative of the main approaches (MOS and Perfect Prognosis, PP) and techniques (linear scaling, quantile mapping, analogs, weather typing, linear and generalized regression, weather generators, etc.) were submitted, including information both data

  7. Hindcasting Historical Breeding Conditions for an Endangered Salamander in Ephemeral Wetlands of the Southeastern USA: Implications of Climate Change.

    Directory of Open Access Journals (Sweden)

    Houston C Chandler

    Full Text Available The hydroperiod of ephemeral wetlands is often the most important characteristic determining amphibian breeding success, especially for species with long development times. In mesic and wet pine flatwoods of the southeastern United States, ephemeral wetlands were a common landscape feature. Reticulated flatwoods salamanders (Ambystoma bishopi, a federally endangered species, depend exclusively on ephemeral wetlands and require at least 11 weeks to successfully metamorphose into terrestrial adults. We empirically modeled hydroperiod of 17 A. bishopi breeding wetlands by combining downscaled historical climate-model data with a recent 9-year record (2006-2014 of observed water levels. Empirical models were subsequently used to reconstruct wetland hydrologic conditions from 1896-2014 using the downscaled historical climate datasets. Reconstructed hydroperiods for the 17 wetlands were highly variable through time but were frequently unfavorable for A. bishopi reproduction (e.g., only 61% of years, using a conservative estimate of development time [12 weeks], were conducive to larval development and metamorphosis. Using change-point analysis, we identified significant shifts in average hydroperiod over the last century in all 17 wetlands. Mean hydroperiods were shorter in recent years than at any other point since 1896, and thus less suitable for A. bishopi reproduction. We suggest that climate change will continue to impact the reproductive success of flatwoods salamanders and other ephemeral wetland breeders by reducing the number of years these wetlands have suitable hydroperiods. Consequently, we emphasize the importance of conservation and management for mitigating other forms of habitat degradation, especially maintenance of high quality breeding sites where reproduction can occur during appropriate environmental conditions.

  8. Impacts of Climate Change on Malaria Transmission in Africa

    Science.gov (United States)

    Eltahir, E. A. B.; Endo, N.; Yamana, T. K.

    2017-12-01

    Malaria is a major vector-borne parasitic disease transmitted to humans by Anopheles spp mosquitoes. Africa is the hotspot for malaria transmission where more than 90% of malaria deaths occur every year. Malaria transmission is an intricate function of climatic factors, which non-linearly affect the development of vectors and parasites. We project that the risk of malaria will increase towards the end of the 21st century in east Africa, but decrease in west Africa. We combine a novel malaria transmission simulator, HYDREMATS, that has been developed based on comprehensive multi-year field surveys both in East Africa and West Africa, and the most reliable climate projections through regional dynamical downscaling and rigorous selection of GCMs from among CMIP5 models. We define a bell-shaped relation between malaria intensity and temperature, centered around a temperature of 30°C. Future risks of malaria are projected for two highly populated regions in Africa: the highlands in East Africa and the fringes of the desert in West Africa. In the highlands of East Africa, temperature is substantially colder than this optimal temperature; warmer future climate exacerbate malaria conditions. In the Sahel fringes in West Africa, temperature is around this optimal temperature; warming is not likely to exacerbate and might even reduce malaria burden. Unlike the highlands of East Africa, which receive significant amounts of annual rainfall, dry conditions also limit malaria transmission in the Sahel fringes in West Africa. This disproportionate risk of malaria due to climate change should guide strategies for climate adaptation over Africa.

  9. Optimizing Reservoir Operation to Adapt to the Climate Change

    Science.gov (United States)

    Madadgar, S.; Jung, I.; Moradkhani, H.

    2010-12-01

    Climate change and upcoming variation in flood timing necessitates the adaptation of current rule curves developed for operation of water reservoirs as to reduce the potential damage from either flood or draught events. This study attempts to optimize the current rule curves of Cougar Dam on McKenzie River in Oregon addressing some possible climate conditions in 21th century. The objective is to minimize the failure of operation to meet either designated demands or flood limit at a downstream checkpoint. A simulation/optimization model including the standard operation policy and a global optimization method, tunes the current rule curve upon 8 GCMs and 2 greenhouse gases emission scenarios. The Precipitation Runoff Modeling System (PRMS) is used as the hydrology model to project the streamflow for the period of 2000-2100 using downscaled precipitation and temperature forcing from 8 GCMs and two emission scenarios. An ensemble of rule curves, each associated with an individual scenario, is obtained by optimizing the reservoir operation. The simulation of reservoir operation, for all the scenarios and the expected value of the ensemble, is conducted and performance assessment using statistical indices including reliability, resilience, vulnerability and sustainability is made.

  10. A framework for examining climate-driven changes to the seasonality and geographical range of coastal pathogens and harmful algae

    Directory of Open Access Journals (Sweden)

    John Jacobs

    2015-01-01

    Full Text Available Climate change is expected to alter coastal ecosystems in ways which may have predictable consequences for the seasonality and geographical distribution of human pathogens and harmful algae. Here we demonstrate relatively simple approaches for evaluating the risk of occurrence of pathogenic bacteria in the genus Vibrio and outbreaks of toxin-producing harmful algae in the genus Alexandrium, with estimates of uncertainty, in U.S. coastal waters under future climate change scenarios through the end of the 21st century. One approach forces empirical models of growth, abundance and the probability of occurrence of the pathogens and algae at specific locations in the Chesapeake Bay and Puget Sound with ensembles of statistically downscaled climate model projections to produce first order assessments of changes in seasonality. In all of the case studies examined, the seasonal window of occurrence for Vibrio and Alexandrium broadened, indicating longer annual periods of time when there is increased risk for outbreaks. A second approach uses climate model projections coupled with GIS to identify the potential for geographic range shifts for Vibrio spp. in the coastal waters of Alaska. These two approaches could be applied to other coastal pathogens that have climate sensitive drivers to investigate potential changes to the risk of outbreaks in both time (seasonality and space (geographical distribution under future climate change scenarios.

  11. Simulating the Impact of Future Land Use and Climate Change on Soil Erosion and Deposition in the Mae Nam Nan Sub-Catchment, Thailand

    Directory of Open Access Journals (Sweden)

    Nitin Kumar Tripathi

    2013-07-01

    Full Text Available This paper evaluates the possible impacts of climate change and land use change and its combined effects on soil loss and net soil loss (erosion and deposition in the Mae Nam Nan sub-catchment, Thailand. Future climate from two general circulation models (GCMs and a regional circulation model (RCM consisting of HadCM3, NCAR CSSM3 and PRECIS RCM ware downscaled using a delta change approach. Cellular Automata/Markov (CA_Markov model was used to characterize future land use. Soil loss modeling using Revised Universal Soil Loss Equation (RUSLE and sedimentation modeling in Idrisi software were employed to estimate soil loss and net soil loss under direct impact (climate change, indirect impact (land use change and full range of impact (climate and land use change to generate results at a 10 year interval between 2020 and 2040. Results indicate that soil erosion and deposition increase or decrease, depending on which climate and land use scenarios are considered. The potential for climate change to increase soil loss rate, soil erosion and deposition in future periods was established, whereas considerable decreases in erosion are projected when land use is increased from baseline periods. The combined climate and land use change analysis revealed that land use planning could be adopted to mitigate soil erosion and deposition in the future, in conjunction with the projected direct impact of climate change.

  12. Climate change

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In this paper, the authors discuss in brief the magnitude and rate of past changes in climate and examine the various factors influencing climate in order to place the potential warming due to increasing greenhouse gas concentrations in context. Feedback mechanisms that can amplify or lessen imposed climate changes are discussed next. The overall sensitivity of climate to changes in forcing is then considered, followed by a discussion of the time-dependent response of the Earth system. The focus is on global temperature as an indicator for the magnitude of climatic change

  13. Applicability of ranked Regional Climate Models (RCM) to assess the impact of climate change on Ganges: A case study.

    Science.gov (United States)

    Anand, Jatin; Devak, Manjula; Gosain, Ashvani Kumar; Khosa, Rakesh; Dhanya, Ct

    2017-04-01

    The negative impact of climate change is felt over wide range of spatial scales, ranging from small basins to large watershed area, which can possibly outweighs the benefits of natural water system. General Circulation Models (GCMs) has been widely used as an input to a hydrological models (HMs), to simulate different hydrological components of a river basin. However, the coarser scale of GCMs and spatio-temporal biases, restricted its use at finer resolution. If downscaled, adds one more level of uncertainty i.e., downscaling uncertainty together with model and scenario uncertainty. The outputs computed from Regional Climate Models (RCM) may aid the uncertainties arising from GCMs, as the RCMs are the miniatures of GCMs. However, the RCMs do have some inherent systematic biases, hence bias correction is a prerequisite process before it is fed to HMs. RCMs, together with the input from GCMs at later boundaries also takes topography of the area into account. Hence, RCMs need to be ranked a priori. In this study, impact of climate change on the Ganga basin, India, is assessed using the ranked RCMs. Firstly, bias correction of 14 RCM models are done using Quantile-Quantile mapping and Equidistant cumulative distribution method, for historic (1990-2004) and future scenario (2021-2100), respectively. The runoff simulations from Soil Water Assessment Tool (SWAT), for historic scenario is used for ranking of RCMs. Entropy and PROMETHEE-2 method is employed to rank the RCMs based on five performance indicators namely, Nash-Sutcliffe efficiency (NSE), coefficient of determination (R2), normalised root mean square error (NRMSE), absolute normalised mean bias error (ANMBE) and average absolute relative error (AARE). The results illustrated that each of the performance indicators behaves differently for different RCMs. RCA 4 (CNRM-CERFACS) is found as the best model with the highest value of  (0.85), followed by RCA4 (MIROC) and RCA4 (ICHEC) with  values of 0.80 and 0

  14. Climate change 101 : understanding and responding to global climate change

    Science.gov (United States)

    2009-01-01

    To inform the climate change dialogue, the Pew Center on Global Climate Change and the Pew Center on the States have developed a series of brief reports entitled Climate Change 101: Understanding and Responding to Global Climate Change. These reports...

  15. Use of System Thinking Software for Determining Climate Change Impacts in Water Balance for the Rio Yaqui Basin, Sonora, Mexico

    Science.gov (United States)

    Tapia, E. M.; Minjarez, J. I.; Espinoza, I. G.; Sosa, C. M.

    2013-05-01

    Climate change in Northwestern Mexico and its hydrological impact on water balance, water scarcity and flooding events, has become a matter of increasing concern over the past several decades due to the region's semiarid conditions. Changes in temperature, precipitation, and sea level will affect agriculture, farming, and aquaculture, in addition to compromising the quality of water resources for human consumption. According to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2007), Global Circulation Models (GCMs) can provide reliable estimations of future climate conditions in addition to atmospheric processes that cause them, based on different input scenarios such as A2 (higher emission of greenhouse gases) and B1 (lower emission of GHG), among others. However, GCM`s resolution results to coarse in regions which have high space and time climate variability. To remediate this, several methods based on dynamical, statistical and empirical analysis have been proposed for downcaling. In this study, we evaluate possible changes in precipitation and temperature for the "Rio Yaqui Basin" in Sonora, Mexico and assess the impact of such changes on runoff, evapotranspiration and aquifer recharge for the 2010-2099 period of time. For this purpose, we analyzed the results of a Bias Corrected and Downscaled Climate Projection from the World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset: UKMO-HADCM3 from the Hadley Centre for Climate Prediction. Northwest Mexico is under the influence of the North American Monsoon (NAM), a system affecting the states of Sinaloa and Sonora where the precipitation regimes change drastically during the summer months of June, July and August. It is associated to the sharp variations of topography, precipitation and temperature regimes in the region, so the importance of analyzing the downscaled climate projections. The Rio Yaqui Basin is one of

  16. The response of Lake Tahoe to climate change

    Science.gov (United States)

    Sahoo, G.B.; Schladow, S.G.; Reuter, J.E.; Coats, R.; Dettinger, M.; Riverson, J.; Wolfe, B.; Costa-Cabral, M.

    2013-01-01

    Meteorology is the driving force for lake internal heating, cooling, mixing, and circulation. Thus continued global warming will affect the lake thermal properties, water level, internal nutrient loading, nutrient cycling, food-web characteristics, fish-habitat, aquatic ecosystem, and other important features of lake limnology. Using a 1-D numerical model - the Lake Clarity Model (LCM) - together with the down-scaled climatic data of the two emissions scenarios (B1 and A2) of the Geophysical Fluid Dynamics Laboratory (GFDL) Global Circulation Model, we found that Lake Tahoe will likely cease to mix to the bottom after about 2060 for A2 scenario, with an annual mixing depth of less than 200 m as the most common value. Deep mixing, which currently occurs on average every 3-4 years, will (under the GFDL B1 scenario) occur only four times during 2061 to 2098. When the lake fails to completely mix, the bottom waters are not replenished with dissolved oxygen and eventually dissolved oxygen at these depths will be depleted to zero. When this occurs, soluble reactive phosphorus (SRP) and ammonium-nitrogen (both biostimulatory) are released from the deep sediments and contribute approximately 51 % and 14 % of the total SRP and dissolved inorganic nitrogen load, respectively. The lake model suggests that climate change will drive the lake surface level down below the natural rim after 2085 for the GFDL A2 but not the GFDL B1 scenario. The results indicate that continued climate changes could pose serious threats to the characteristics of the Lake that are most highly valued. Future water quality planning must take these results into account.

  17. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  18. Future Climate Forcings and Olive Yield in a Mediterranean Orchard

    Directory of Open Access Journals (Sweden)

    Francesco Viola

    2014-05-01

    Full Text Available The olive tree is one of the most characteristic rainfed trees in the Mediterranean region. Observed and forecasted climate modifications in this region, such as the CO2 concentration and temperature increase and the net radiation, rainfall and wind speed decrease, will likely alter vegetation water stress and modify productivity. In order to simulate how climatic change could alter soil moisture dynamic, biomass growth and fruit productivity, a water-driven crop model has been used in this study. The numerical model, previously calibrated on an olive orchard located in Sicily (Italy with a satisfactory reproduction of historical olive yield data, has been forced with future climate scenarios generated using a stochastic weather generator and a downscaling procedure of an ensemble of climate model outputs. The stochastic downscaling is carried out using simulations of some General Circulation Models adopted in the fourth Intergovernmental Panel on Climate Change (IPCC assessment report (4AR for future scenarios. The outcomes state that climatic forcings driving potential evapotranspiration compensate for each other, resulting in a slight increase of this water demand flux; moreover, the increase of CO2 concentration leads to a potential assimilation increase and, consequently, to an overall productivity increase in spite of the growth of water stress due to the rainfall reduction.

  19. Analyses of Observed and Anticipated Changes in Extreme Climate Events in the Northwest Himalaya

    Directory of Open Access Journals (Sweden)

    Dharmaveer Singh

    2016-02-01

    Full Text Available In this study, past (1970-2005 as well as future long term (2011-2099 trends in various extreme events of temperature and precipitation have been investigated over selected hydro-meteorological stations in the Sutlej river basin. The ensembles of two Coupled Model Intercomparison Project (CMIP3 models: third generation Canadian Coupled Global Climate Model and Hadley Centre Coupled Model have been used for simulation of future daily time series of temperature (maximum and minimum and precipitation under A2 emission scenario. Large scale atmospheric variables of both models and National Centre for Environmental Prediction/National Centre for Atmospheric Research reanalysis data sets have been downscaled using statistical downscaling technique at individual stations. A total number of 25 extreme indices of temperature (14 and precipitation (11 as specified by the Expert Team of the World Meteorological Organization and Climate Variability and Predictability are derived for the past and future periods. Trends in extreme indices are detected over time using the modified Mann-Kendall test method. The stations which have shown either decrease or no change in hot extreme events (i.e., maximum TMax, warm days, warm nights, maximum TMin, tropical nights, summer days and warm spell duration indicators for 1970–2005 and increase in cold extreme events (cool days, cool nights, frost days and cold spell duration indicators are predicted to increase and decrease respectively in the future. In addition, an increase in frequency and intensity of extreme precipitation events is also predicted.

  20. Climate Change

    Science.gov (United States)

    Climate is the average weather in a place over a period of time. Climate change is major change in temperature, rainfall, snow, ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. ...

  1. Extreme winds over Europe in the ENSEMBLES regional climate models

    Directory of Open Access Journals (Sweden)

    S. D. Outten

    2013-05-01

    Full Text Available Extreme winds cause vast amounts of damage every year and represent a major concern for numerous industries including construction, afforestation, wind energy and many others. Under a changing climate, the intensity and frequency of extreme events are expected to change, and accurate projections of these changes will be invaluable to decision makers and society as a whole. This work examines four regional climate model downscalings over Europe following the SRES A1B scenario from the "ENSEMBLE-based Predictions of Climate Changes and their Impacts" project (ENSEMBLES. It investigates the projected changes in the 50 yr return wind speeds and the associated uncertainties. This is accomplished by employing the peaks-over-threshold method with the use of the generalised Pareto distribution. The models show that, for much of Europe, the 50 yr return wind is projected to change by less than 2 m s−1, while the uncertainties associated with the statistical estimates are larger than this. In keeping with previous works in this field, the largest source of uncertainty is found to be the inter-model spread, with some locations showing differences in the 50 yr return wind of over 20 m s−1 between two different downscalings.

  2. Evaluating the performance and utility of regional climate models

    DEFF Research Database (Denmark)

    Christensen, Jens H.; Carter, Timothy R.; Rummukainen, Markku

    2007-01-01

    This special issue of Climatic Change contains a series of research articles documenting co-ordinated work carried out within a 3-year European Union project 'Prediction of Regional scenarios and Uncertainties for Defining European Climate change risks and Effects' (PRUDENCE). The main objective...... of the PRUDENCE project was to provide high resolution climate change scenarios for Europe at the end of the twenty-first century by means of dynamical downscaling (regional climate modelling) of global climate simulations. The first part of the issue comprises seven overarching PRUDENCE papers on: (1) the design...... of the model simulations and analyses of climate model performance, (2 and 3) evaluation and intercomparison of simulated climate changes, (4 and 5) specialised analyses of impacts on water resources and on other sectors including agriculture, ecosystems, energy, and transport, (6) investigation of extreme...

  3. Comparison of Analysis and Spectral Nudging Techniques for Dynamical Downscaling with the WRF Model over China

    Directory of Open Access Journals (Sweden)

    Yuanyuan Ma

    2016-01-01

    Full Text Available To overcome the problem that the horizontal resolution of global climate models may be too low to resolve features which are important at the regional or local scales, dynamical downscaling has been extensively used. However, dynamical downscaling results generally drift away from large-scale driving fields. The nudging technique can be used to balance the performance of dynamical downscaling at large and small scales, but the performances of the two nudging techniques (analysis nudging and spectral nudging are debated. Moreover, dynamical downscaling is now performed at the convection-permitting scale to reduce the parameterization uncertainty and obtain the finer resolution. To compare the performances of the two nudging techniques in this study, three sensitivity experiments (with no nudging, analysis nudging, and spectral nudging covering a period of two months with a grid spacing of 6 km over continental China are conducted to downscale the 1-degree National Centers for Environmental Prediction (NCEP dataset with the Weather Research and Forecasting (WRF model. Compared with observations, the results show that both of the nudging experiments decrease the bias of conventional meteorological elements near the surface and at different heights during the process of dynamical downscaling. However, spectral nudging outperforms analysis nudging for predicting precipitation, and analysis nudging outperforms spectral nudging for the simulation of air humidity and wind speed.

  4. Climate change, habitat loss, protected areas and the climate adaptation potential of species in mediterranean ecosystems worldwide.

    Directory of Open Access Journals (Sweden)

    Kirk R Klausmeyer

    Full Text Available Mediterranean climate is found on five continents and supports five global biodiversity hotspots. Based on combined downscaled results from 23 atmosphere-ocean general circulation models (AOGCMs for three emissions scenarios, we determined the projected spatial shifts in the mediterranean climate extent (MCE over the next century. Although most AOGCMs project a moderate expansion in the global MCE, regional impacts are large and uneven. The median AOGCM simulation output for the three emissions scenarios project the MCE at the end of the 21(st century in Chile will range from 129-153% of its current size, while in Australia, it will contract to only 77-49% of its current size losing an area equivalent to over twice the size of Portugal. Only 4% of the land area within the current MCE worldwide is in protected status (compared to a global average of 12% for all biome types, and, depending on the emissions scenario, only 50-60% of these protected areas are likely to be in the future MCE. To exacerbate the climate impact, nearly one third (29-31% of the land where the MCE is projected to remain stable has already been converted to human use, limiting the size of the potential climate refuges and diminishing the adaptation potential of native biota. High conversion and low protection in projected stable areas make Australia the highest priority region for investment in climate-adaptation strategies to reduce the threat of climate change to the rich biodiversity of the mediterranean biome.

  5. Climate change velocity underestimates climate change exposure in mountainous regions

    Science.gov (United States)

    Solomon Z. Dobrowski; Sean A. Parks

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not...

  6. A synopsis of climate change effects on groundwater recharge

    Science.gov (United States)

    Smerdon, Brian D.

    2017-12-01

    Six review articles published between 2011 and 2016 on groundwater and climate change are briefly summarized. This synopsis focuses on aspects related to predicting changes to groundwater recharge conditions, with several common conclusions between the review articles being noted. The uncertainty of distribution and trend in future precipitation from General Circulation Models (GCMs) results in varying predictions of recharge, so much so that modelling studies are often not able to predict the magnitude and direction (increase or decrease) of future recharge conditions. Evolution of modelling approaches has led to the use of multiple GCMs and hydrologic models to create an envelope of future conditions that reflects the probability distribution. The choice of hydrologic model structure and complexity, and the choice of emissions scenario, has been investigated and somewhat resolved; however, recharge results remain sensitive to downscaling methods. To overcome uncertainty and provide practical use in water management, the research community indicates that modelling at a mesoscale, somewhere between watersheds and continents, is likely ideal. Improvements are also suggested for incorporating groundwater processes within GCMs.

  7. Hydrologic response to multimodel climate output using a physically based model of groundwater/surface water interactions

    Science.gov (United States)

    Sulis, M.; Paniconi, C.; Marrocu, M.; Huard, D.; Chaumont, D.

    2012-12-01

    General circulation models (GCMs) are the primary instruments for obtaining projections of future global climate change. Outputs from GCMs, aided by dynamical and/or statistical downscaling techniques, have long been used to simulate changes in regional climate systems over wide spatiotemporal scales. Numerous studies have acknowledged the disagreements between the various GCMs and between the different downscaling methods designed to compensate for the mismatch between climate model output and the spatial scale at which hydrological models are applied. Very little is known, however, about the importance of these differences once they have been input or assimilated by a nonlinear hydrological model. This issue is investigated here at the catchment scale using a process-based model of integrated surface and subsurface hydrologic response driven by outputs from 12 members of a multimodel climate ensemble. The data set consists of daily values of precipitation and min/max temperatures obtained by combining four regional climate models and five GCMs. The regional scenarios were downscaled using a quantile scaling bias-correction technique. The hydrologic response was simulated for the 690 km2des Anglais catchment in southwestern Quebec, Canada. The results show that different hydrological components (river discharge, aquifer recharge, and soil moisture storage) respond differently to precipitation and temperature anomalies in the multimodel climate output, with greater variability for annual discharge compared to recharge and soil moisture storage. We also find that runoff generation and extreme event-driven peak hydrograph flows are highly sensitive to any uncertainty in climate data. Finally, the results show the significant impact of changing sequences of rainy days on groundwater recharge fluxes and the influence of longer dry spells in modifying soil moisture spatial variability.

  8. Climate and Land Use Changes on Streamflow and Subsurface Recharge in the Fluvià Basin, Spain

    Directory of Open Access Journals (Sweden)

    Lucila Candela

    2016-05-01

    Full Text Available Climate change impact on water resources (streamflow and deep natural recharge based on the downscaled outputs from the ECHAM5 general circulation model (GCM has been investigated in the Mediterranean basin (Fluvià, Spain for the A2, B1 greenhouse scenarios and 2000–2024/2025–2050 time slices. The HEC-HMS 3.4 rainfall-runoff numerical model was the basic tool used to generate streamflow for the historical period, and deep natural recharge was calculated from Visual-BALAN 2.0, a water-soil-plant distributed model. The hydrologic and recharge models were employed to generate future climate change hydrographs and the deep recharge amount. Furthermore, the selected future climate scenarios, subject to possible changes in the land use/land cover forecast, were integrated into the models, and water resource impacts were assessed. The multiple combinations of climate model, time slices, greenhouse scenarios, land use/land cover scenarios and hydrological estimation methods resulted in six scenarios. The obtained results estimate an increase in temperature (1.5 °C, a decline in precipitation (17% and a maximum decrease of 49.5% and 16.8% in runoff and groundwater recharge, respectively, for 2050 (A2 compared to the historical values. Planned land cover scenarios, implying small changes of agricultural and forested land, show no major contribution to future water resource changes. According to the results, the most sensitive parameters conditioning future water resources are changes in temperature and precipitation.

  9. Analysis and modelling of surface Urban Heat Island in 20 Canadian cities under climate and land-cover change.

    Science.gov (United States)

    Gaur, Abhishek; Eichenbaum, Markus Kalev; Simonovic, Slobodan P

    2018-01-15

    Surface Urban Heat Island (SUHI) is an urban climate phenomenon that is expected to respond to future climate and land-use land-cover change. It is important to further our understanding of physical mechanisms that govern SUHI phenomenon to enhance our ability to model future SUHI characteristics under changing geophysical conditions. In this study, SUHI phenomenon is quantified and modelled at 20 cities distributed across Canada. By analyzing MODerate Resolution Imaging Spectroradiometer (MODIS) sensed surface temperature at the cities over 2002-2012, it is found that 16 out of 20 selected cities have experienced a positive SUHI phenomenon while 4 cities located in the prairies region and high elevation locations have experienced a negative SUHI phenomenon in the past. A statistically significant relationship between observed SUHI magnitude and city elevation is also recorded over the observational period. A Physical Scaling downscaling model is then validated and used to downscale future surface temperature projections from 3 GCMs and 2 extreme Representative Concentration Pathways in the urban and rural areas of the cities. Future changes in SUHI magnitudes between historical (2006-2015) and future timelines: 2030s (2026-2035), 2050s (2046-2055), and 2090s (2091-2100) are estimated. Analysis of future projected changes indicate that 15 (13) out of 20 cities can be expected to experience increases in SUHI magnitudes in future under RCP 2.6 (RCP 8.5). A statistically significant relationship between projected future SUHI change and current size of the cities is also obtained. The study highlights the role of city properties (i.e. its size, elevation, and surrounding land-cover) towards shaping their current and future SUHI characteristics. The results from this analysis will help decision-makers to manage Canadian cities more efficiently under rapidly changing geophysical and demographical conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Understanding climatic change

    International Nuclear Information System (INIS)

    Fellous, J.L.; Gautier, C.; Andre, J.C.; Balstad, R.; Boucher, O.; Brasseur, G.; Chahine, M.T.; Chanin, M.L.; Ciais, P.; Corell, W.; Duplessy, J.C.; Hourcade, J.C.; Jouzel, J.; Kaufman, Y.J.; Laval, K.; Le Treut, H.; Minster, J.F.; Moore, B. III; Morel, P.; Rasool, S.I.; Remy, F.; Smith, R.C.; Somerville, R.C.J.; Wood, E.F.; Wood, H.; Wunsch, C.

    2007-01-01

    Climatic change is gaining ground and with no doubt is stimulated by human activities. It is therefore urgent to better understand its nature, importance and potential impacts. The chapters of this book have been written by US and French experts of the global warming question. After a description of the Intergovernmental Panel on Climate Change (IPCC, GIEC in French) consensus, they present the past and present researches on each of the main component of the climate system, on the question of climatic change impacts and on the possible answers. The conclusion summarizes the results of each chapter. Content: presentation of the IPCC; greenhouse effect, radiation balance and clouds; atmospheric aerosols and climatic change; global water cycle and climate; influence of climatic change on the continental hydrologic cycle; ocean and climate; ice and climate; global carbon cycle; about some impacts of climatic change on Europe and the Atlantic Ocean; interaction between atmospheric chemistry and climate; climate and society, the human dimension. (J.S.)

  11. Climate induced changes on the hydrology of Mediterranean basins - assessing uncertainties and quantifying risks

    Science.gov (United States)

    Ludwig, Ralf

    2014-05-01

    According to current climate projections, the Mediterranean area is at high risk for severe changes in the hydrological budget and extremes. With innovative scientific measures, integrated hydrological modeling and novel field geophysical field monitoring techniques, the FP7 project CLIMB (Climate Induced Changes on the Hydrology of Mediterranean Basins; GA: 244151) assessed the impacts of climate change on the hydrology in seven basins in the Mediterranean area, in Italy, France, Turkey, Tunisia, Egypt and the Gaza Strip, and quantified uncertainties and risks for the main stakeholders of each test site. Intensive climate model auditing selected four regional climate models, whose data was bias corrected and downscaled to serve as climate forcing for a set of hydrological models in each site. The results of the multi-model hydro-climatic ensemble and socio-economic factor analysis were applied to develop a risk model building upon spatial vulnerability and risk assessment. Findings generally reveal an increasing risk for water resources management in the test sites, yet at different rates and severity in the investigated sectors, with highest impacts likely to occur in the transition months. Most important elements of this research include the following aspects: • Climate change contributes, yet in strong regional variation, to water scarcity in the Mediterranean; other factors, e.g. pollution or poor management practices, are regionally still dominant pressures on water resources. • Rain-fed agriculture needs to adapt to seasonal changes; stable or increasing productivity likely depends on additional irrigation. • Tourism could benefit in shoulder seasons, but may expect income losses in the summer peak season due to increasing heat stress. • Local & regional water managers and water users, lack, as yet, awareness of climate change induced risks; emerging focus areas are supplies of domestic drinking water, irrigation, hydropower and livestock. • Data

  12. Climate change impacts utilizing regional models for agriculture, hydrology and natural ecosystems

    Science.gov (United States)

    Kafatos, M.; Asrar, G. R.; El-Askary, H. M.; Hatzopoulos, N.; Kim, J.; Kim, S.; Medvigy, D.; Prasad, A. K.; Smith, E.; Stack, D. H.; Tremback, C.; Walko, R. L.

    2012-12-01

    Climate change impacts the entire Earth but with crucial and often catastrophic impacts at local and regional levels. Extreme phenomena such as fires, dust storms, droughts and other natural hazards present immediate risks and challenges. Such phenomena will become more extreme as climate change and anthropogenic activities accelerate in the future. We describe a major project funded by NIFA (Grant # 2011-67004-30224), under the joint NSF-DOE-USDA Earth System Models (EaSM) program, to investigate the impacts of climate variability and change on the agricultural and natural (i.e. rangeland) ecosystems in the Southwest USA using a combination of historical and present observations together with climate, and ecosystem models, both in hind-cast and forecast modes. The applicability of the methodology to other regions is relevant (for similar geographic regions as well as other parts of the world with different agriculture and ecosystems) and should advance the state of knowledge for regional impacts of climate change. A combination of multi-model global climate projections from the decadal predictability simulations, to downscale dynamically these projections using three regional climate models, combined with remote sensing MODIS and other data, in order to obtain high-resolution climate data that can be used with hydrological and ecosystem models for impacts analysis, is described in this presentation. Such analysis is needed to assess the future risks and potential impacts of projected changes on these natural and managed ecosystems. The results from our analysis can be used by scientists to assist extended communities to determine agricultural coping strategies, and is, therefore, of interest to wide communities of stakeholders. In future work we will be including surface hydrologic modeling and water resources, extend modeling to higher resolutions and include significantly more crops and geographical regions with different weather and climate conditions

  13. CLIMATE CHANGE, Change International Negociations?

    Institute of Scientific and Technical Information of China (English)

    Gao Xiaosheng

    2009-01-01

    @@ Climate change is one of key threats to human beings who have to deal with.According to Bali Action Plan released after the 2007 Bali Climate Talk held in Indonesia,the United Nations Framework on Climate Change(UNFCCC) has launched a two-year process to negotiate a post-2012 climate arrangement after the Kyoto Protocol expires in 2012 and the Copenhagen Climate Change Conference will seal a final deal on post-2012 climate regime in December,2009.For this,the United Nation Chief Ban Ki Moon called 2009"the year ofclimate change".

  14. Estimation of the impact of climate change-induced extreme precipitation events on floods

    Science.gov (United States)

    Hlavčová, Kamila; Lapin, Milan; Valent, Peter; Szolgay, Ján; Kohnová, Silvia; Rončák, Peter

    2015-09-01

    In order to estimate possible changes in the flood regime in the mountainous regions of Slovakia, a simple physically-based concept for climate change-induced changes in extreme 5-day precipitation totals is proposed in the paper. It utilizes regionally downscaled scenarios of the long-term monthly means of the air temperature, specific air humidity and precipitation projected for Central Slovakia by two regional (RCM) and two global circulation models (GCM). A simplified physically-based model for the calculation of short-term precipitation totals over the course of changing air temperatures, which is used to drive a conceptual rainfall-runoff model, was proposed. In the paper a case study of this approach in the upper Hron river basin in Central Slovakia is presented. From the 1981-2010 period, 20 events of the basin's most extreme average of 5-day precipitation totals were selected. Only events with continual precipitation during 5 days were considered. These 5-day precipitation totals were modified according to the RCM and GCM-based scenarios for the future time horizons of 2025, 2050 and 2075. For modelling runoff under changed 5-day precipitation totals, a conceptual rainfall-runoff model developed at the Slovak University of Technology was used. Changes in extreme mean daily discharges due to climate change were compared with the original flood events and discussed.

  15. Impact of climate change on Precipitation and temperature under the RCP 8.5 and A1B scenarios in an Alpine Cathment (Alto-Genil Basin,southeast Spain). A comparison of statistical downscaling methods

    Science.gov (United States)

    Pulido-Velazquez, David; Juan Collados-Lara, Antonio; Pardo-Iguzquiza, Eulogio; Jimeno-Saez, Patricia; Fernandez-Chacon, Francisca

    2016-04-01

    comparison between results for scenario A1B and RCP8.5 has been performed. The reduction obtained for the mean rainfall respect to the historical are 24.2 % and 24.4 % respectively, and the increment in the temperature are 46.3 % and 31.2 % respectively. A sensitivity analysis of the results to the statistical downscaling techniques employed has been performed. The next techniques have been explored: Perturbation method or "delta-change"; Regression method (a regression function which relates the RCM and the historic information will be used to generate future climate series for the fixed period); Quantile mapping, (it attempts to find a transformation function which relates the observed variable and the modeled variable maintaining an statistical distribution equals the observed variable); Stochastic weather generator (SWG): They can be uni-site or multi-site (which considers the spatial correlation of climatic series). A comparative analysis of these techniques has been performed identifying the advantages and disadvantages of each of them. Acknowledgments: This research has been partially supported by the GESINHIMPADAPT project (CGL2013-48424-C2-2-R) with Spanish MINECO funds. We would also like to thank Spain02, ENSEMBLES and CORDEX projects for the data provided for this study.

  16. Modeling Impacts of Climate and Land Use Change on Ecosystem Processes to Quantify Exposure to Climate Change in Two Landscape Conservation Cooperatives

    Science.gov (United States)

    Quackenbush, A.

    2015-12-01

    Urban land cover and associated impervious surface area is expected to increase by as much as 50% over the next few decades across substantial portions of the United States. In combination with urban expansion, increases in temperature and changes in precipitation are expected to impact ecosystems through changes in productivity, disturbance and hydrological properties. In this study, we use the NASA Terrestrial Observation and Prediction System Biogeochemical Cycle (TOPS-BGC) model to explore the combined impacts of urbanization and climate change on hydrologic dynamics (snowmelt, runoff, and evapotranspiration) and vegetation carbon uptake (gross productivity). The model is driven using land cover predictions from the Spatially Explicit Regional Growth Model (SERGoM) to quantify projected changes in impervious surface area, and climate projections from the 30 arc-second NASA Earth Exchange Downscaled Climate Projection (NEX-DCP30) dataset derived from the CMIP5 climate scenarios. We present the modeling approach and an analysis of the ecosystem impacts projected to occur in the US, with an emphasis on protected areas in the Great Northern and Appalachian Landscape Conservation Cooperatives (LCC). Under the ensemble average of the CMIP5 models and land cover change scenarios for both representative concentration pathways (RCPs) 4.5 and 8.5, both LCCs are predicted to experience increases in maximum and minimum temperatures as well as annual average precipitation. In the Great Northern LCC, this is projected to lead to increased annual runoff, especially under RCP 8.5. Earlier melt of the winter snow pack and increased evapotranspiration, however, reduces summer streamflow and soil water content, leading to a net reduction in vegetation productivity across much of the Great Northern LCC, with stronger trends occurring under RCP 8.5. Increased runoff is also projected to occur in the Appalachian LCC under both RCP 4.5 and 8.5. However, under RCP 4.5, the model

  17. Evaluation of Water Quality Change of Brackish Lake in Snowy Cold Regions Accompanying Climate Change

    Science.gov (United States)

    Kudo, K.; Hasegawa, H.; Nakatsugawa, M.

    2017-12-01

    This study addresses evaluation of water quality change of brackish lake based on the estimation of hydrological quantities resulting from long-term hydrologic process accompanying climate change. For brackish lakes, such as Lake Abashiri in Eastern Hokkaido, there are concerns about water quality deterioration due to increases in water temperature and salinity. For estimating some hydrological quantities in the Abashiri River basin, including Lake Abashiri, we propose the following methods: 1) MRI-NHRCM20, a regional climate model based on the Representative Concentration Pathways adopted by IPCC AR5, 2) generalized extreme value distribution for correcting bias, 3) kriging adopted variogram for downscaling and 4) Long term Hydrologic Assessment model considering Snow process (LoHAS). In addition, we calculate the discharge from Abashiri River into Lake Abashiri by using estimated hydrological quantities and a tank model, and simulate impacts on water quality of Lake Abashiri due to climate change by setting necessary conditions, including the initial conditions of water temperature and water quality, the pollution load from the inflow rivers, the duration of ice cover and salt pale boundary. The result of the simulation of water quality indicates that climate change is expected to raise the water temperature of the lake surface by approximately 4°C and increase salinity of surface of the lake by approximately 4psu, also if salt pale boundary in the lake raises by approximately 2-m, the concentration of COD, T-N and T-P in the bottom of the lake might increase. The processes leading to these results are likely to be as follows: increased river water flows in along salt pale boundary in lake, causing dynamic flow of surface water; saline bottom water is entrained upward, where it mixes with surface water; and the shear force acting at salt pale boundary helps to increase the supply of salts from bottom saline water to the surface water. In the future, we will

  18. Future changes in Yuan River ecohydrology: Individual and cumulative impacts of climates change and cascade hydropower development on runoff and aquatic habitat quality.

    Science.gov (United States)

    Wen, Xin; Liu, Zhehua; Lei, Xiaohui; Lin, Rongjie; Fang, Guohua; Tan, Qiaofeng; Wang, Chao; Tian, Yu; Quan, Jin

    2018-08-15

    The eco-hydrological system in southwestern China is undergoing great changes in recent decades owing to climate change and extensive cascading hydropower exploitation. With a growing recognition that multiple drivers often interact in complex and nonadditive ways, the purpose of this study is to predict the potential future changes in streamflow and fish habitat quality in the Yuan River and quantify the individual and cumulative effect of cascade damming and climate change. The bias corrected and spatial downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) General Circulation Model (GCM) projections are employed to drive the Soil and Water Assessment Tool (SWAT) hydrological model and to simulate and predict runoff responses under diverse scenarios. Physical habitat simulation model is established to quantify the relationship between river hydrology and fish habitat, and the relative change rate is used to assess the individual and combined effects of cascade damming and climate change. Mean annual temperature, precipitation and runoff in 2015-2100 show an increasing trend compared with that in 1951-2010, with a particularly pronounced difference between dry and wet years. The ecological habitat quality is improved under cascade hydropower development since that ecological requirement has been incorporated in the reservoir operation policy. As for middle reach, the runoff change from January to August is determined mainly by damming, and climate change influence becomes more pronounced in dry seasons from September to December. Cascade development has an effect on runoff of lower reach only in dry seasons due to the limited regulation capacity of reservoirs, and climate changes have an effect on runoff in wet seasons. Climate changes have a less significant effect on fish habitat quality in middle reach than damming, but a more significant effect in lower reach. In addition, the effect of climate changes on fish habitat quality in lower reach is high

  19. Spatial and temporal variations of Norwegian geohazards in a changing climate, the GeoExtreme Project

    Directory of Open Access Journals (Sweden)

    C. Jaedicke

    2008-08-01

    Full Text Available Various types of slope processes, mainly landslides and avalanches (snow, rock, clay and debris pose together with floods the main geohazards in Norway. Landslides and avalanches have caused more than 2000 casualties and considerable damage to infrastructure over the last 150 years. The interdisciplinary research project "GeoExtreme" focuses on investigating the coupling between meteorological factors and landslides and avalanches, extrapolating this into the near future with a changing climate and estimating the socioeconomic implications. The main objective of the project is to predict future geohazard changes in a changing climate. A database consisting of more than 20 000 recorded historical events have been coupled with a meteorological database to assess the predictability of landslides and avalanches caused by meteorological conditions. Present day climate and near future climate scenarios are modelled with a global climate model on a stretched grid, focusing on extreme weather events in Norway. The effects of climate change on landslides and avalanche activity are studied in four selected areas covering the most important climatic regions in Norway. The statistical analysis of historical landslide and avalanche events versus weather observations shows strong regional differences in the country. Avalanches show the best correlation with weather events while landslides and rockfalls are less correlated. The new climate modelling approach applying spectral nudging to achieve a regional downscaling for Norway proves to reproduce extreme events of precipitation much better than conventional modelling approaches. Detailed studies of slope stabilities in one of the selected study area show a high sensitivity of slope stability in a changed precipitation regime. The value of elements at risk was estimated in one study area using a GIS based approach that includes an estimation of the values within given present state hazard zones. The ongoing

  20. Impact of Future Climate Change on Regional Crop Water Requirement—A Case Study of Hetao Irrigation District, China

    Directory of Open Access Journals (Sweden)

    Tianwa Zhou

    2017-06-01

    Full Text Available Water shortage is a limiting factor for agricultural production in China, and climate change will affect agricultural water use. Studying the effects of climate change on crop irrigation requirement (CIR would help to tackle climate change, from both food security and sustainable water resource use perspectives. This paper applied SDSM (Statistical DownScaling Model to simulate future meteorological parameters in the Hetao irrigation district (HID in the time periods 2041–2070 and 2071–2099, and used the Penman–Monteith equation to calculate reference crop evapotranspiration (ET0, which was further used to calculate crop evapotranspiration (ETc and crop water requirement (CWR. CWR and predicted future precipitation were used to calculate CIR. The results show that the climate in the HID will become warmer and wetter; ET0 would would increase by 4% to 7%; ETc and CWR have the same trend as ET0, but different crops have different increase rates. CIR would increase because of the coefficient of the increase of CWR and the decrease of effective precipitation. Based on the current growing area, the CIR would increase by 198 × 106 to 242 × 106 m3 by the year 2041–2070, and by 342 × 106 to 456 × 106 m3 by the years 2071–2099 respectively. Future climate change will bring greater challenges to regional agricultural water use.