WorldWideScience

Sample records for down-regulates multiple cell

  1. [HSP90 Inhibitor 17-AAG Inhibits Multiple Myeloma Cell Proliferation by Down-regulating Wnt/β-Catenin Signaling Pathway].

    Science.gov (United States)

    Chen, Kan-Kan; He, Zheng-Mei; Ding, Bang-He; Chen, Yue; Zhang, Li-Juan; Yu, Liang; Gao, Jian

    2016-02-01

    To investigate the inhibitory effect of HSP90 inhibitory 17-AAG on proliferation of multiple myeloma cells and its main mechanism. The multiple myeloma cells U266 were treated with 17-AAG of different concentrations (200, 400, 600 and 800 nmol/L) for 24, 48, and 72 hours respectively, then the proliferation rate, expression levels of β-catenin and C-MYC protein, as well as cell cycle of U266 cells were treated with 17-AAG and were detected by MTT method, Western blot and flow cytometry, respectively. The 17-AAG showed inhibitory effect on the proliferation of U266 cells in dose- and time-depetent manners (r = -0.518, P AAG displayed no inhibitory effect on proliferation of U266 cells (P > 0.05). The result of culturing U266 cells for 72 hours by 17-AAG of different concentrations showed that the more high of 17-AAG concentration, the more low level of β-catenin and C-MYC proteins (P AAG concentration, the more high of cell ratio in G1 phase (P AAG, the more long time of culture, the more high of cell ratio in G1 phase (P AAG can inhibit the proliferation of multiple myeloma cells, the down-regulation of Wnt/β-catenin signaling pathway and inhibition of HSP90 expression may be the main mechnisms of 17-AAG effect.

  2. TCR Down-Regulation Controls Virus-Specific CD8+ T Cell Responses

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte Menné; Haks, Mariëlle; Nielsen, Bodil

    2008-01-01

    The CD3gamma di-leucine-based motif plays a central role in TCR down-regulation. However, little is understood about the role of the CD3gamma di-leucine-based motif in physiological T cell responses. In this study, we show that the expansion in numbers of virus-specific CD8(+) T cells is impaired...... in mice with a mutated CD3gamma di-leucine-based motif. The CD3gamma mutation did not impair early TCR signaling, nor did it compromise recruitment or proliferation of virus-specific T cells, but it increased the apoptosis rate of the activated T cells by increasing down-regulation of the antiapoptotic...... molecule Bcl-2. This resulted in a 2-fold reduction in the clonal expansion of virus-specific CD8(+) T cells during the acute phase of vesicular stomatitis virus and lymphocytic choriomeningitis virus infections. These results identify an important role of CD3gamma-mediated TCR down-regulation in virus...

  3. Nucleolin down-regulation is involved in ADP-induced cell cycle arrest in S phase and cell apoptosis in vascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Wenmeng Wang

    Full Text Available High concentration of extracellular ADP has been reported to induce cell apoptosis, but the molecular mechanisms remain not fully elucidated. In this study, we found by serendipity that ADP treatment of human umbilical vein endothelial cells (HUVEC and human aortic endothelial cells (HAEC down-regulated the protein level of nucleolin in a dose- and time-dependent manner. ADP treatment did not decrease the transcript level of nucloelin, suggesting that ADP might induce nucleolin protein degradation. HUVEC and HAEC expressed ADP receptor P2Y13 receptor, but did not express P2Y1 or P2Y12 receptors. However, P2Y1, 12, 13 receptor antagonists MRS2179, PSB0739, MRS2211 did not inhibit ADP-induced down-regulation of nucleolin. Moreover, MRS2211 itself down-regulated nucleolin protein level. In addition, 2-MeSADP, an agonist for P2Y1, 12 and 13 receptors, did not down-regulate nucleolin protein. These results suggested that ADP-induced nucleolin down-regulation was not due to the activation of P2Y1, 12, or 13 receptors. We also found that ADP treatment induced cell cycle arrest in S phase, cell apoptosis and cell proliferation inhibition via nucleolin down-regulation. The over-expression of nucleolin by gene transfer partly reversed ADP-induced cell cycle arrest, cell apoptosis and cell proliferation inhibition. Furthermore, ADP sensitized HUVEC to cisplatin-induced cell death by the down-regulation of Bcl-2 expression. Taken together, we found, for the first time to our knowledge, a novel mechanism by which ADP regulates cell proliferation by induction of cell cycle arrest and cell apoptosis via targeting nucelolin.

  4. Down-regulation of Wnt10a affects odontogenesis and proliferation in mesenchymal cells

    International Nuclear Information System (INIS)

    Liu, Yang; Han, Dong; Wang, Lei; Feng, Hailan

    2013-01-01

    Highlights: •Down-regulation of Wnt10a in dental mesenchymal cells impairs odontogenesis of reassociated tooth germs. •Dspp is down- and up-regulated after Wnt10a-knockdown and overexpression in dental mesenchymal cells. •Down-regulation of Wnt10a inhibits proliferation of dental mesenchymal cells. -- Abstract: The WNT10a mutation has been found in patients with abnormal odontogenesis. In mice, Wnt10a expression is found in the tooth germ, but its role has not yet been elucidated. We aimed to investigate the role of Wnt10a in odontogenesis. Mesenchymal cells of the first mandibular molar germ at the bell stage were isolated, transfected with Wnt10a SiRNA or plasmid, and reassociated with epithelial part of the molar germ. Scrambled SiRNA or empty vector was used in the control group. The reassociated tooth germs were transplanted into mice subrenal capsules. After gene modification, dental mesenchymal cells cultured in vitro were checked for cell proliferation and the expression of Dspp was examined. All 12 reassociated tooth germs in the control group resumed odontogenesis, while only 5 of 12 in the Wnt10a knockdown group developed into teeth. After Wnt10a knockdown, the mesenchymal cells cultured in vitro presented repressed proliferation. Wnt10a knockdown and overexpression led to both down- and up-regulation of Dspp. We conclude that the down-regulation of Wnt10a impairs odontogensis and cell proliferation, and that Wnt10a regulates Dspp expression in mesenchymal cells. These findings help to elucidate the mechanism of abnormal tooth development in patients with the WNT10A mutation

  5. Curcumin and emodin down-regulate TGF-β signaling pathway in human cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Pooja Chandrakant Thacker

    Full Text Available Cervical cancer is the major cause of cancer related deaths in women, especially in developing countries and Human Papilloma Virus infection in conjunction with multiple deregulated signaling pathways leads to cervical carcinogenesis. TGF-β signaling in later stages of cancer is known to induce epithelial to mesenchymal transition promoting tumor growth. Phytochemicals, curcumin and emodin, are effective as chemopreventive and chemotherapeutic compounds against several cancers including cervical cancer. The main objective of this work was to study the effect of curcumin and emodin on TGF-β signaling pathway and its functional relevance to growth, migration and invasion in two cervical cancer cell lines, SiHa and HeLa. Since TGF-β and Wnt/β-catenin signaling pathways are known to cross talk having common downstream targets, we analyzed the effect of TGF-β on β-catenin (an important player in Wnt/β-catenin signaling and also studied whether curcumin and emodin modulate them. We observed that curcumin and emodin effectively down regulate TGF-β signaling pathway by decreasing the expression of TGF-β Receptor II, P-Smad3 and Smad4, and also counterbalance the tumorigenic effects of TGF-β by inhibiting the TGF-β-induced migration and invasion. Expression of downstream effectors of TGF-β signaling pathway, cyclinD1, p21 and Pin1, was inhibited along with the down regulation of key mesenchymal markers (Snail and Slug upon curcumin and emodin treatment. Curcumin and emodin were also found to synergistically inhibit cell population and migration in SiHa and HeLa cells. Moreover, we found that TGF-β activates Wnt/β-catenin signaling pathway in HeLa cells, and curcumin and emodin down regulate the pathway by inhibiting β-catenin. Taken together our data provide a mechanistic basis for the use of curcumin and emodin in the treatment of cervical cancer.

  6. TCR down-regulation controls T cell homeostasis

    DEFF Research Database (Denmark)

    Boding, Lasse; Bonefeld, Charlotte Menné; Nielsen, Bodil L

    2009-01-01

    TCR and cytokine receptor signaling play key roles in the complex homeostatic mechanisms that maintain a relative stable number of T cells throughout life. Despite the homeostatic mechanisms, a slow decline in naive T cells is typically observed with age. The CD3gamma di-leucine-based motif...... controls TCR down-regulation and plays a central role in fine-tuning TCR expression and signaling in T cells. In this study, we show that the age-associated decline of naive T cells is strongly accelerated in CD3gammaLLAA knock-in mice homozygous for a double leucine to alanine mutation in the CD3gamma di......-leucine-based motif, whereas the number of memory T cells is unaffected by the mutation. This results in premature T cell population senescence with a severe dominance of memory T cells and very few naive T cells in middle-aged to old CD3gamma mutant mice. The reduced number of naive T cells in CD3gamma mutant mice...

  7. microRNA-143 down-regulates Hexokinase 2 in colon cancer cells

    DEFF Research Database (Denmark)

    Gregersen, Lea Haarup; Jacobsen, Anders; Frankel, Lisa

    2012-01-01

    a significant enrichment of miR-143 seed sites in their 3' UTRs. Here we report the identification of Hexokinase 2 (HK2) as a direct target of miR-143. We show that re-introduction of miR-143 in the colon cancer cell line DLD-1 results in a decreased lactate secretion. CONCLUSION: We have identified...... and validated HK2 as a miR-143 target. Furthermore, our results indicate that miR-143 mediated down-regulation of HK2 affects glucose metabolism in colon cancer cells. We hypothesize that loss of miR-143-mediated repression of HK2 can promote glucose metabolism in cancer cells, contributing to the shift towards......ABSTRACT: BACKGROUND: MicroRNAs (miRNAs) are well recognized as gene regulators and have been implicated in the regulation of development as well as human diseases. miR-143 is located at a fragile site on chromosome 5 frequently deleted in cancer, and has been reported to be down...

  8. Histones Induce the Procoagulant Phenotype of Endothelial Cells through Tissue Factor Up-Regulation and Thrombomodulin Down-Regulation.

    Science.gov (United States)

    Kim, Ji Eun; Yoo, Hyun Ju; Gu, Ja Yoon; Kim, Hyun Kyung

    2016-01-01

    The high circulating levels of histones found in various thrombotic diseases may compromise the anticoagulant barrier of endothelial cells. We determined how histones affect endothelial procoagulant tissue factor (TF) and anticoagulant thrombomodulin (TM). Surface antigens, soluble forms, and mRNA levels of TF and TM were measured by flow cytometry, ELISA, and real-time RT-PCR, respectively. TF and TM activity were measured using procoagulant activity, thrombin generation, or chromogenic assays. Involvement of the toll-like receptor (TLR) was assessed using the neutralizing antibodies. Histones dose-dependently induced surface antigens, activity and mRNA levels of endothelial TF. Histone-treated endothelial cells significantly shortened the lag time and enhanced the endogenous thrombin potential of normal plasma, which was normalized by a TF neutralizing antibody. Histones induced phosphatidylserine and protein-disulfide isomerase expression in endothelial cells. Histones also reduced the surface antigen, activity, and mRNA levels of endothelial TM. Polysialic acid and heparin reversed the histone-induced TF up-regulation and TM down-regulation. Activated protein C did not affect the TF up-regulation, but interrupted TM down-regulation. TLR2, and TLR4 inhibitors partially blocked the TF up-regulation. Histones induced the endothelial procoagulant phenotype through TF up-regulation and TM down-regulation. The effects of histones were partly mediated by TLR2, TLR4. Strategies to inhibit the harmful effects of histones in endothelial cells may be required in order to prevent a thrombotic environment.

  9. Pu-erh Tea Inhibits Tumor Cell Growth by Down-Regulating Mutant p53

    Science.gov (United States)

    Zhao, Lanjun; Jia, Shuting; Tang, Wenru; Sheng, Jun; Luo, Ying

    2011-01-01

    Pu-erh tea is a kind of fermented tea with the incorporation of microorganisms’ metabolites. Unlike green tea, the chemical characteristics and bioactivities of Pu-erh tea are still not well understood. Using water extracts of Pu-erh tea, we analyzed the tumor cell growth inhibition activities on several genetically engineered mouse tumor cell lines. We found that at the concentration that did not affect wild type mouse embryo fibroblasts (MEFs) growth, Pu-erh tea extracts could inhibit tumor cell growth by down-regulated S phase and cause G1 or G2 arrest. Further study showed that Pu-erh tea extracts down-regulated the expression of mutant p53 in tumor cells at the protein level as well as mRNA level. The same concentration of Pu-erh tea solution did not cause p53 stabilization or activation of its downstream pathways in wild type cells. We also found that Pu-erh tea treatment could slightly down-regulate both HSP70 and HSP90 protein levels in tumor cells. These data revealed the action of Pu-erh tea on tumor cells and provided the possible mechanism for Pu-erh tea action, which explained its selectivity in inhibiting tumor cells without affecting wild type cells. Our data sheds light on the application of Pu-erh tea as an anti-tumor agent with low side effects. PMID:22174618

  10. Coupled down-regulation of mTOR and telomerase activity during fluorouracil-induced apoptosis of hepatocarcinoma Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Xinxin; Jia, Fengqi; Wang, Weifeng; Guo, Xianling; Wu, Mengchao; Wei, Lixin [Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Hospital, Second Military Medical Universisty, 225 Changhai Road, Shanghai 200438 (China)

    2007-11-12

    Hepatocellular carcinoma (HCC) is the most invasive and frequently diagnosed malignancy and the second leading cause of cancer death in many regions of Asia. The PI3K/Akt/mTOR signal pathway is involved in multiple cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis. Up-regulation of telomerase activity is thought to be a critical step leading to cell transformation. This study investigated changes in mTOR pathway and telomerase activity in hepatocarcinoma cell line SMMC-7721 treated with chemotherapeutic agent 5-fluorouracil (5-Fu). We detected apoptosis of hepatocarcinoma cells by TUNEL assay. Telomerase activity, hTERT transcription level and p- p70 S6k was demonstrated by the telomeric repeat amplification protocol and silver staining assay, Dual-Luciferase Reporter Assay and Western blot analysis respectively. Treating SMMC-7721 cells with 5-Fu leads to apoptosis of the cells, and reduction in telomerase activity, as well as a dramatic reduction in the activated form of p70 S6 kinase, a mTOR substrate. The 5-Fu treatment nearly abolishes transcription of hTERT (the major component of telomerase) mRNA. Treating SMMC-7721 cells with Rapamycin, a specific mTOR inhibitor, significantly reduce hTERT protein level but did not affect hTERT transcription. 5-Fu and rapamycin were synergistic in regards to down-regulation of telomerase activity in hepatocarcinoma cells. These results suggest that chemotherapeutic agent 5-Fu may down-regulate telomerase activity at both transcriptional level and PI3K/Akt/mTOR pathway-dependent post-transcriptional level to facilitate hepatocellular carcinoma cell apoptosis.

  11. Coupled down-regulation of mTOR and telomerase activity during fluorouracil-induced apoptosis of hepatocarcinoma Cells

    International Nuclear Information System (INIS)

    Bu, Xinxin; Jia, Fengqi; Wang, Weifeng; Guo, Xianling; Wu, Mengchao; Wei, Lixin

    2007-01-01

    Hepatocellular carcinoma (HCC) is the most invasive and frequently diagnosed malignancy and the second leading cause of cancer death in many regions of Asia. The PI3K/Akt/mTOR signal pathway is involved in multiple cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis. Up-regulation of telomerase activity is thought to be a critical step leading to cell transformation. This study investigated changes in mTOR pathway and telomerase activity in hepatocarcinoma cell line SMMC-7721 treated with chemotherapeutic agent 5-fluorouracil (5-Fu). We detected apoptosis of hepatocarcinoma cells by TUNEL assay. Telomerase activity, hTERT transcription level and p- p70 S6k was demonstrated by the telomeric repeat amplification protocol and silver staining assay, Dual-Luciferase Reporter Assay and Western blot analysis respectively. Treating SMMC-7721 cells with 5-Fu leads to apoptosis of the cells, and reduction in telomerase activity, as well as a dramatic reduction in the activated form of p70 S6 kinase, a mTOR substrate. The 5-Fu treatment nearly abolishes transcription of hTERT (the major component of telomerase) mRNA. Treating SMMC-7721 cells with Rapamycin, a specific mTOR inhibitor, significantly reduce hTERT protein level but did not affect hTERT transcription. 5-Fu and rapamycin were synergistic in regards to down-regulation of telomerase activity in hepatocarcinoma cells. These results suggest that chemotherapeutic agent 5-Fu may down-regulate telomerase activity at both transcriptional level and PI3K/Akt/mTOR pathway-dependent post-transcriptional level to facilitate hepatocellular carcinoma cell apoptosis

  12. TCR down-regulation controls virus-specific CD8+ T cell responses

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte Menné; Haks, Mariëlle; Nielsen, Bodil

    2008-01-01

    in mice with a mutated CD3gamma di-leucine-based motif. The CD3gamma mutation did not impair early TCR signaling, nor did it compromise recruitment or proliferation of virus-specific T cells, but it increased the apoptosis rate of the activated T cells by increasing down-regulation of the antiapoptotic...

  13. Down-regulation of Rab5 decreases characteristics associated with maintenance of cell transformation

    International Nuclear Information System (INIS)

    Silva, Patricio; Soto, Nicolás; Díaz, Jorge; Mendoza, Pablo; Díaz, Natalia; Quest, Andrew F.G.; Torres, Vicente A.

    2015-01-01

    The early endosomal protein Rab5 is highly expressed in tumor samples, although a causal relationship between Rab5 expression and cell transformation has not been established. Here, we report the functional effects of targeting endogenous Rab5 with specific shRNA sequences in different tumor cell lines. Rab5 down-regulation in B16-F10 cells decreased tumor formation by subcutaneous injection into C57/BL6 mice. Accordingly, Rab5 targeting in B16-F10 and A549, but not MDA-MB-231 cells was followed by decreased cell proliferation, increased apoptosis and decreased anchorage-independent growth. These findings suggest that Rab5 expression is required to maintain characteristics associated with cell transformation. - Highlights: • Rab5 is important to the maintenance of cell transformation characteristics. • Down-regulation of Rab5 decreases cell proliferation and increases apoptosis in different cancer cells. • Rab5 is required for anchorage-independent growth and tumorigenicity in-vivo

  14. Coupled down-regulation of mTOR and telomerase activity during fluorouracil-induced apoptosis of hepatocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Wu Mengchao

    2007-11-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC is the most invasive and frequently diagnosed malignancy and the second leading cause of cancer death in many regions of Asia. The PI3K/Akt/mTOR signal pathway is involved in multiple cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis. Up-regulation of telomerase activity is thought to be a critical step leading to cell transformation. Methods This study investigated changes in mTOR pathway and telomerase activity in hepatocarcinoma cell line SMMC-7721 treated with chemotherapeutic agent 5-fluorouracil (5-Fu. We detected apoptosis of hepatocarcinoma cells by TUNEL assay. Telomerase activity, hTERT transcription level and p- p70 S6k was demonstrated by the telomeric repeat amplification protocol and silver staining assay, Dual-Luciferase Reporter Assay and Western blot analysis respectively. Results Treating SMMC-7721 cells with 5-Fu leads to apoptosis of the cells, and reduction in telomerase activity, as well as a dramatic reduction in the activated form of p70 S6 kinase, a mTOR substrate. The 5-Fu treatment nearly abolishes transcription of hTERT (the major component of telomerase mRNA. Treating SMMC-7721 cells with Rapamycin, a specific mTOR inhibitor, significantly reduce hTERT protein level but did not affect hTERT transcription. 5-Fu and rapamycin were synergistic in regards to down-regulation of telomerase activity in hepatocarcinoma cells. Conclusion These results suggest that chemotherapeutic agent 5-Fu may down-regulate telomerase activity at both transcriptional level and PI3K/Akt/mTOR pathway-dependent post-transcriptional level to facilitate hepatocellular carcinoma cell apoptosis.

  15. Cholesterol Down-Regulates BK Channels Stably Expressed in HEK 293 Cells

    Science.gov (United States)

    Deng, Xiu-Ling; Sun, Hai-Ying; Li, Gui-Rong

    2013-01-01

    Cholesterol is one of the major lipid components of the plasma membrane in mammalian cells and is involved in the regulation of a number of ion channels. The present study investigates how large conductance Ca2+-activated K+ (BK) channels are regulated by membrane cholesterol in BK-HEK 293 cells expressing both the α-subunit hKCa1.1 and the auxiliary β1-subunit or in hKCa1.1-HEK 293 cells expressing only the α-subunit hKCa1.1 using approaches of electrophysiology, molecular biology, and immunocytochemistry. Membrane cholesterol was depleted in these cells with methyl-β-cyclodextrin (MβCD), and enriched with cholesterol-saturated MβCD (MβCD-cholesterol) or low-density lipoprotein (LDL). We found that BK current density was decreased by cholesterol enrichment in BK-HEK 293 cells, with a reduced expression of KCa1.1 protein, but not the β1-subunit protein. This effect was fully countered by the proteasome inhibitor lactacystin or the lysosome function inhibitor bafilomycin A1. Interestingly, in hKCa1.1-HEK 293 cells, the current density was not affected by cholesterol enrichment, but directly decreased by MβCD, suggesting that the down-regulation of BK channels by cholesterol depends on the auxiliary β1-subunit. The reduced KCa1.1 channel protein expression was also observed in cultured human coronary artery smooth muscle cells with cholesterol enrichment using MβCD-cholesterol or LDL. These results demonstrate the novel information that cholesterol down-regulates BK channels by reducing KCa1.1 protein expression via increasing the channel protein degradation, and the effect is dependent on the auxiliary β1-subunit. PMID:24260325

  16. Down-regulation of endothelin binding sites in rat vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Roubert, P.; Gillard, V.; Plas, P.; Chabrier, P.E.; Braquet, P.

    1990-01-01

    In cultured rat aortic smooth muscle cells, [ 125 I]endothelin (ET-1) bound to an apparent single class of high affinity recognition sites with a dissociation constant of 1.84 +/- 0.29 nmol/L and a maximum binding of 62 +/- 10.5 fmol/10(6) cells. The binding was not affected by calcium antagonists or vasoactive substances, including angiotensin II, arginine vasopressin, atrial natriuretic factor and bradykinin. Exposure of the cells to ET-1 (0.01 nmol/L to 10 nmol/L) resulted in an apparent dose-dependent reduction of the number of endothelin binding sites with no significant modification of its binding affinity. The time course of the down-regulation of ET-1 binding sites showed that this effect was present after 30 min incubation and persisted after 18 h. This indicates that down-regulation of ET-1 binding sites can modulate the activity of ET-1 and suggests a rapid internalization of ET-1 in vascular cells

  17. Down-regulation of lipoprotein lipase increases glucose uptake in L6 muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Veronica; Saraff, Kumuda [Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262 (United States); Medh, Jheem D., E-mail: jheem.medh@csun.edu [Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262 (United States)

    2009-11-06

    Thiazolidinediones (TZDs) are synthetic hypoglycemic agents used to treat type 2 diabetes. TZDs target the peroxisome proliferator activated receptor-gamma (PPAR-{gamma}) and improve systemic insulin sensitivity. The contributions of specific tissues to TZD action, or the downstream effects of PPAR-{gamma} activation, are not very clear. We have used a rat skeletal muscle cell line (L6 cells) to demonstrate that TZDs directly target PPAR-{gamma} in muscle cells. TZD treatment resulted in a significant repression of lipoprotein lipase (LPL) expression in L6 cells. This repression correlated with an increase in glucose uptake. Down-regulation of LPL message and protein levels using siRNA resulted in a similar increase in insulin-dependent glucose uptake. Thus, LPL down-regulation improved insulin sensitivity independent of TZDs. This finding provides a novel method for the management of insulin resistance.

  18. N-methylhemeanthidine chloride, a novel Amaryllidaceae alkaloid, inhibits pancreatic cancer cell proliferation via down-regulating AKT activation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Guoli; Yao, Guangmin; Zhan, Guanqun; Hu, Yufeng [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China); Yue, Ming [Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Cheng, Ling; Liu, Yaping; Ye, Qi [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China); Qing, Guoliang [Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Zhang, Yonghui, E-mail: zhangyh@mails.tjmu.edu.cn [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China); Liu, Hudan, E-mail: hudanliu@hust.edu.cn [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China)

    2014-11-01

    We previously reported the isolation of a novel Amaryllidaceae alkaloid, N-methylhemeanthidine chloride (NMHC), from Zephyranthes candida, which exhibits potent cytotoxicity in a spectrum of tumor cells. However, the mechanism of action remains unclear. Using multiple cell lines derived from human pancreatic cancer, one of the most mortal and refractory human malignancies, we further studied the NMHC-mediated cytotoxicity and found that it induced drastic cytotoxicity in pancreatic cancer cells whereas an insignificant effect on a noncancerous cell line. The NMHC-mediated growth inhibition was more severe than the first-line chemotherapeutic agent gemcitabine, leading to cell cycle arrest, apoptotic death and decreased glycolysis. NMHC exerted its function through down-regulating AKT activation, and the ectopic expression of activated AKT rescued the growth inhibition. Consistently, NMHC injections in a pancreatic cancer xenograft model manifested the anti-tumor effect in vivo. Engrafted tumor cells underwent AKT attenuation and apoptotic death upon treatments. As such, we here demonstrate the AKT inhibition may be one of the mechanisms by which NMHC decreases tumor cell survival rate in vitro and in vivo. Our data thereby suggest that NMHC holds great promise as a potent chemotherapeutic agent against pancreatic cancer and sheds new light on obtaining such agents from natural products toward therapeutic purposes. - Highlights: • N-methylhemeanthidine chloride (NMHC) is a novel Amaryllidaceae alkaloid. • NMHC exhibits potent anti-neoplastic activity. • NMHC leads to cell cycle arrest, apoptotic death and decreased metabolism. • NMHC down-regulates the AKT signaling pathway.

  19. Mesenchymal stem cells cultured under hypoxia escape from senescence via down-regulation of p16 and extracellular signal regulated kinase

    International Nuclear Information System (INIS)

    Jin, Yonghui; Kato, Tomohisa; Furu, Moritoshi; Nasu, Akira; Kajita, Yoichiro; Mitsui, Hiroto; Ueda, Michiko; Aoyama, Tomoki; Nakayama, Tomitaka; Nakamura, Takashi; Toguchida, Junya

    2010-01-01

    Hypoxia has been considered to affect the properties of tissue stem cells including mesenchymal stem cells (MSCs). Effects of long periods of exposure to hypoxia on human MSCs, however, have not been clearly demonstrated. MSCs cultured under normoxic conditions (20% pO 2 ) ceased to proliferate after 15-25 population doublings, while MSCs cultured under hypoxic conditions (1% pO 2 ) retained the ability to proliferate with an additional 8-20 population doublings. Most of the MSCs cultured under normoxic conditions were in a senescent state after 100 days, while few senescent cells were found in the hypoxic culture, which was associated with a down-regulation of p16 gene expression. MSCs cultured for 100 days under hypoxic conditions were superior to those cultured under normoxic conditions in the ability to differentiate into the chondro- and adipogenic, but not osteogenic, lineage. Among the molecules related to mitogen-activated protein kinase (MAPK) signaling pathways, extracellular signal regulated kinase (ERK) was significantly down-regulated by hypoxia, which helped to inhibit the up-regulation of p16 gene expression. Therefore, the hypoxic culture retained MSCs in an undifferentiated and senescence-free state through the down-regulation of p16 and ERK.

  20. Down-regulation of Transducin-Like Enhancer of Split protein 4 in hepatocellular carcinoma promotes cell proliferation and epithelial-Mesenchymal-Transition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiao-cai; Xiao, Cui-cui; Li, Hua [Department of Hepatic Surgery, 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou (China); Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou (China); Tai, Yan; Zhang, Qi [Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou (China); Yang, Yang, E-mail: yysysu2@163.com [Department of Hepatic Surgery, 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou (China)

    2016-08-19

    Background: Transducin-Like Enhancer of Split protein 4 (TLE4) has been reported to be involved in some subsets of acute myeloid leukemia and colorectal cancer. In the present study, we aimed to explore the role of TLE4 in tumorigenesis and cancer progression in hepatocellular carcinoma (HCC). Methods: The expression pattern of TLE4 in HCC was determined by Western-blot and qRT-PCR, gain-of-function and loss-of-function was used to explore the biological role of TLE4 in HCC cells. A xenograft model was established to confirm its effects on proliferation. Results: The protein expression levels of TLE4 were significantly down-regulated in HCC tissues compared to matched adjacent normal liver tissues. In vitro, down-regulation of TLE4 in Huh7 or SMMC-7721 promoted cell proliferation and ectopical expression of TLE4 in Hep3B or Bel-7404 suppressed cell proliferation. In addition, the cell colony formation ability was enhanced after down-regulation of TLE4 expression in Huh-7 but suppressed after over-expression in Hep3B. Furthermore, down-regulation of TLE4 increased the cell invasion ability, as well as increased the expression level of Vimentin and decreased that of E-cadherin, indicating a phenotype of epithelial-mesenchymal transition (EMT) in HCC cells. On the contrary, ectopical expression of TLE4 in HCC cells decreased the cell invasion ability and inhibited EMT. In vivo, compared to control group, xenograft tumor volumes were significantly decreased in TLE4 overexpression group. Conclusions: These results demonstrated that TLE4 might play important regulatory roles in cellular proliferation and EMT process in HCC. - Highlights: • TLE4 is significantly down-regulated in HCC samples. • Down regulated of TLE4 in HCC cells promotes cell proliferation. • Down regulated of TLE4 in HCC cells promotes epithelial-to-mesenchymal transition.

  1. SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation

    International Nuclear Information System (INIS)

    Wang, Jia-lei; Lu, Fan-zhen; Shen, Xiao-Yong; Wu, Yun; Zhao, Li-ting

    2014-01-01

    Highlights: • SAMHD1 expression level is down regulated in lung adenocarcinoma. • The promoter of SAMHD1 is methylated in lung adenocarcinoma. • Over expression of SAMHD1 inhibits the proliferation of lung cancer cells. - Abstract: The function of dNTP hydrolase SAMHD1 as a viral restriction factor to inhibit the replication of several viruses in human immune cells was well established. However, its regulation and function in lung cancer have been elusive. Here, we report that SAMHD1 is down regulated both on protein and mRNA levels in lung adenocarcinoma compared to adjacent normal tissue. We also found that SAMHD1 promoter is highly methylated in lung adenocarcinoma, which may inhibit its gene expression. Furthermore, over expression of the SAMHD1 reduces dNTP level and inhibits the proliferation of lung tumor cells. These results reveal the regulation and function of SAMHD1 in lung cancer, which is important for the proliferation of lung tumor cells

  2. Down-Regulation of Desmosomes in Cultured Cells: The Roles of PKC, Microtubules and Lysosomal/Proteasomal Degradation

    Science.gov (United States)

    McHarg, Selina; Hopkins, Gemma; Lim, Lusiana; Garrod, David

    2014-01-01

    Desmosomes are intercellular adhesive junctions of major importance for tissue integrity. To allow cell motility and migration they are down-regulated in epidermal wound healing. Electron microscopy indicates that whole desmosomes are internalised by cells in tissues, but the mechanism of down-regulation is unclear. In this paper we provide an overview of the internalisation of half-desmosomes by cultured cells induced by calcium chelation. Our results show that: (i) half desmosome internalisation is dependent on conventional PKC isoforms; (ii) microtubules transport internalised half desmosomes to the region of the centrosome by a kinesin-dependent mechanism; (iii) desmosomal proteins remain colocalised after internalisation and are not recycled to the cell surface; (iv) internalised desmosomes are degraded by the combined action of lysosomes and proteasomes. We also confirm that half desmosome internalisation is dependent upon the actin cytoskeleton. These results suggest that half desmosomes are not disassembled and recycled during or after internalisation but instead are transported to the centrosomal region where they are degraded. These findings may have significance for the down-regulation of desmosomes in wounds. PMID:25291180

  3. Znhit1 causes cell cycle arrest and down-regulates CDK6 expression

    International Nuclear Information System (INIS)

    Yang, Zhengmin; Cao, Yonghao; Zhu, Xiaoyan; Huang, Ying; Ding, Yuqiang; Liu, Xiaolong

    2009-01-01

    Cyclin-dependent kinase 6 (CDK6) is the key element of the D-type cyclin holoenzymes which has been found to function in the regulation of G1-phase of the cell cycle and is presumed to play important roles in T cell function. In this study, Znhit1, a member of a new zinc finger protein family defined by a conserved Zf-HIT domain, induced arrest in the G1-phase of the cell cycle in NIH/3T3 cells. Of the G1 cell cycle factors examined, the expression of CDK6 was found to be strongly down-regulated by Znhit1 via transcriptional repression. This effect may have correlations with the decreased acetylation level of histone H4 in the CDK6 promoter region. In addition, considering that CDK6 expression predominates in T cells, the negative regulatory role of Znhit1 in TCR-induced T cell proliferation was validated using transgenic mice. These findings identified Znhit1 as a CDK6 regulator that plays an important role in cell proliferation.

  4. Epigenetic down-regulated DDX10 promotes cell proliferation through Akt/NF-κB pathway in ovarian cancer

    International Nuclear Information System (INIS)

    Gai, Muhuizi; Bo, Qifang; Qi, Lixia

    2016-01-01

    Ovarian cancer contributes to the majority of ovarian cancer, while the molecular mechanisms remain elusive. Recently, some DEAD box protein 1 has been reported play a tumor suppressor role in ovarian cancer progression. However, the functions of DEAD box protein (DDX) members in ovarian cancer development remain largely unknown. In current study, we retrieved GEO databases and surprisingly found that DDX10 is significantly down-regulated in ovarian cancer tissues compared with normal ovary. These findings suggest that DDX10 might also play a suppressive role in ovarian cancer. We then validated the down-regulated expression pattern of DDX10 in fresh ovarian cancer tissues. Furthermore, both loss- and gain-functions assays reveal that the down-regulated DDX10 could promote ovarian cancer proliferation in vitro and the xenograft subcutaneous tumor formation assays confirmed these findings in vivo. In addition, we found that DDX10 is epigenetic silenced by miR-155-5p in ovarian cancer. Moreover, we further preliminary illustrated that down-regulated DDX10 promotes ovarian cancer cell proliferation through Akt/NF-κB pathway. Taken together, in current study, we found a novel tumor suppressor, DDX10, is epigenetic silenced by miR-155-5p in ovarian cancer, and the down-regulated expression pattern of DDX10 promotes ovarian cancer proliferation through Akt/NF-κB pathway. Our findings shed the light that DDX families might be a novel for ovarian cancer treatment. - Highlights: • A novel DEAD box protein, DDX10 is significantly down-regulated in ovarian cancer tissues. • Down-regulated DDX10 promotes ovarian cancer cell proliferation and growth both in vitro and in vivo. • miR-155-5p is highly expressed in ovarian cancer tissues and epigenetically targets DDX10. • DDX10 and miR-155-5p regulates Akt/p65 axis in ovarian cancer cells.

  5. Epigenetic down-regulated DDX10 promotes cell proliferation through Akt/NF-κB pathway in ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Muhuizi; Bo, Qifang; Qi, Lixia, E-mail: lixiaqi_dph@sina.com

    2016-01-22

    Ovarian cancer contributes to the majority of ovarian cancer, while the molecular mechanisms remain elusive. Recently, some DEAD box protein 1 has been reported play a tumor suppressor role in ovarian cancer progression. However, the functions of DEAD box protein (DDX) members in ovarian cancer development remain largely unknown. In current study, we retrieved GEO databases and surprisingly found that DDX10 is significantly down-regulated in ovarian cancer tissues compared with normal ovary. These findings suggest that DDX10 might also play a suppressive role in ovarian cancer. We then validated the down-regulated expression pattern of DDX10 in fresh ovarian cancer tissues. Furthermore, both loss- and gain-functions assays reveal that the down-regulated DDX10 could promote ovarian cancer proliferation in vitro and the xenograft subcutaneous tumor formation assays confirmed these findings in vivo. In addition, we found that DDX10 is epigenetic silenced by miR-155-5p in ovarian cancer. Moreover, we further preliminary illustrated that down-regulated DDX10 promotes ovarian cancer cell proliferation through Akt/NF-κB pathway. Taken together, in current study, we found a novel tumor suppressor, DDX10, is epigenetic silenced by miR-155-5p in ovarian cancer, and the down-regulated expression pattern of DDX10 promotes ovarian cancer proliferation through Akt/NF-κB pathway. Our findings shed the light that DDX families might be a novel for ovarian cancer treatment. - Highlights: • A novel DEAD box protein, DDX10 is significantly down-regulated in ovarian cancer tissues. • Down-regulated DDX10 promotes ovarian cancer cell proliferation and growth both in vitro and in vivo. • miR-155-5p is highly expressed in ovarian cancer tissues and epigenetically targets DDX10. • DDX10 and miR-155-5p regulates Akt/p65 axis in ovarian cancer cells.

  6. Multinuclear giant cell formation is enhanced by down-regulation of Wnt signaling in gastric cancer cell line, AGS

    International Nuclear Information System (INIS)

    Kim, Shi-Mun; Kim, Rockki; Ryu, Jae-Hyun; Jho, Eek-Hoon; Song, Ki-Joon; Jang, Shyh-Ing; Kee, Sun-Ho

    2005-01-01

    AGS cells, which were derived from malignant gastric adenocarcinoma tissue, lack E-cadherin-mediated cell adhesion but have a high level of nuclear β-catenin, which suggests altered Wnt signal. In addition, approximately 5% of AGS cells form multinuclear giant cells in the routine culture conditions, while taxol treatment causes most AGS cells to become giant cells. The observation of reduced nuclear β-catenin levels in giant cells induced by taxol treatment prompted us to investigate the relationship between Wnt signaling and giant cell formation. After overnight serum starvation, the shape of AGS cells became flattened, and this morphological change was accompanied by decrease in Myc expression and an increase in the giant cell population. Lithium chloride treatment, which inhibits GSK3β activity, reversed these serum starvation effects, which suggests an inverse relationship between Wnt signaling and giant cell formation. Furthermore, the down-regulation of Wnt signaling caused by the over-expression of ICAT, E-cadherin, and Axin enhanced giant cell formation. Therefore, down-regulation of Wnt signaling may be related to giant cell formation, which is considered to be a survival mechanism against induced cell death

  7. Down-regulating overexpressed human Lon in cervical cancer suppresses cell proliferation and bioenergetics.

    Directory of Open Access Journals (Sweden)

    Xiaobo Nie

    Full Text Available The human mitochondrial ATP-dependent Lon protease functions in regulating the metabolism and quality control of proteins and mitochondrial DNA (mtDNA. However, the role of Lon in cancer is not well understood. Therefore, this study was undertaken to investigate the importance of Lon in cervical cancer cells from patients and in established cell lines. Microarray analysis from 30 cancer and 10 normal cervical tissues were analyzed by immunohistochemistry for Lon protein levels. The expression of Lon was also examined by immunoblotting 16 fresh cervical cancer tissues and their respective non-tumor cervical tissues. In all cases, Lon expression was significantly elevated in cervical carcinomas as compared to normal tissues. Augmented Lon expression in tissue microarrays did not vary between age, tumor-node-metastasis grades, or lymph node metastasis. Knocking down Lon in HeLa cervical cancer cells by lentivrial transduction resulted in a substantial decrease in both mRNA and protein levels. Such down-regulation of Lon expression significantly blocked HeLa cell proliferation. In addition, knocking down Lon resulted in decreased cellular bioenergetics as determined by measuring aerobic respiration and glycolysis using the Seahorse XF24 extracellular flux analyzer. Together, these data demonstrate that Lon plays a potential role in the oncogenesis of cervical cancer, and may be a useful biomarker and target in the treatment of cervical cancer. Lon; immunohistochemistry; cervical cancer; cell proliferation; cellular bioenergetics.

  8. CD4(+) NKG2D(+) T cells induce NKG2D down-regulation in natural killer cells in CD86-RAE-1ε transgenic mice.

    Science.gov (United States)

    Lin, Zhijie; Wang, Changrong; Xia, Haizui; Liu, Weiguang; Xiao, Weiming; Qian, Li; Jia, Xiaoqin; Ding, Yanbing; Ji, Mingchun; Gong, Weijuan

    2014-03-01

    The binding of NKG2D to its ligands strengthens the cross-talk between natural killer (NK) cells and dendritic cells, particularly at early stages, before the initiation of the adaptive immune response. We found that retinoic acid early transcript-1ε (RAE-1ε), one of the ligands of NKG2D, was persistently expressed on antigen-presenting cells in a transgenic mouse model (pCD86-RAE-1ε). By contrast, NKG2D expression on NK cells, NKG2D-dependent cytotoxicity and tumour rejection, and dextran sodium sulphate-induced colitis were all down-regulated in this mouse model. The down-regulation of NKG2D on NK cells was reversed by stimulation with poly (I:C). The ectopic expression of RAE-1ε on dendritic cells maintained NKG2D expression levels and stimulated the activity of NK cells ex vivo, but the higher frequency of CD4(+) NKG2D(+) T cells in transgenic mice led to the down-regulation of NKG2D on NK cells in vivo. Hence, high levels of RAE-1ε expression on antigen-presenting cells would be expected to induce the down-regulation of NK cell activation by a regulatory T-cell subset. © 2013 John Wiley & Sons Ltd.

  9. Sensitization of multidrug-resistant human cancer cells to Hsp90 inhibitors by down-regulation of SIRT1

    Science.gov (United States)

    Kim, Hak-Bong; Lee, Su-Hoon; Um, Jee-Hyun; Oh, Won Keun; Kim, Dong-Wan; Kang, Chi-Dug; Kim, Sun-Hee

    2015-01-01

    The effectiveness of Hsp90 inhibitors as anticancer agents was limited in multidrug-resistant (MDR) human cancer cells due to induction of heat shock proteins (Hsps) such as Hsp70/Hsp27 and P-glycoprotein (P-gp)-mediated efflux. In the present study, we showed that resistance to Hsp90 inhibitors of MDR human cancer cells could be overcome with SIRT1 inhibition. SIRT1 knock-down or SIRT1 inhibitors (amurensin G and EX527) effectively suppressed the resistance to Hsp90 inhibitors (17-AAG and AUY922) in several MDR variants of human lymphoblastic leukemia and human breast cancer cell lines. SIRT1 inhibition down-regulated the expression of heat shock factor 1 (HSF1) and subsequently Hsps and facilitated Hsp90 multichaperone complex disruption via hyperacetylation of Hsp90/Hsp70. These findings were followed by acceleration of ubiquitin ligase CHIP-mediated mutant p53 (mut p53) degradation and subsequent down-regulation of P-gp in 17-AAG-treated MDR cancer cells expressing P-gp and mut p53 after inhibition of SIRT1. Therefore, combined treatment with Hsp90 inhibitor and SIRT1 inhibitor could be a more effective therapeutic approach for Hsp90 inhibitor-resistant MDR cells via down-regulation of HSF1/Hsps, mut p53 and P-gp. PMID:26416354

  10. Synergistic combination of gemcitabine and dietary molecule induces apoptosis in pancreatic cancer cells and down regulates PKM2 expression.

    Directory of Open Access Journals (Sweden)

    Archana Pandita

    Full Text Available Gemcitabine, an effective agent in treatment of cancer of pancreas, has undergone failures in many instances after multiple cycles of therapy due to emergence of drug resistance. Combination of dietary compounds with clinically validated drugs has emerged as an effective therapeutic approach to treat pancreatic tumors, refractory to gemcitabine therapy. In order to optimize a possible synergistic combination of Gemcitabine (GCB with dietary molecules, Betuilnic acid (BA and Thymoquinone (TQ, stand-alone IC50 dose of GCB, BA and TQ was calculated for pancreatic cancer cell lines. Fixed IC50 dose ratio of the dietary molecules in combination with reduced IC50 dose of GCB was tested on GCB resistant PANC-1 and sensitive MIA PaCa-2 cells for synergism, additive response and antagonism, using calcusyn. Combination index (CI revealed that pre-treatment of BA and TQ along with GCB synergistically inhibited the cancer cell proliferation in in-vitro experiments. Pyruvate kinase (PK M2 isoform, a promising target involved in cancer cell metabolism, showed down-regulation in presence of TQ or BA in combination with GCB. GCB with BA acted preferentially on tumor mitochondria and triggered mitochondrial permeability transition. Pre-exposure of the cell lines, MIA PaCa-2 and PANC-1, to TQ in combination with GCB induced apoptosis. Thus, the effectiveness of BA or TQ in combination with GCB to inhibit cell proliferation, induce apoptosis and down-regulate the expression of PKM2, reflects promise in pancreatic cancer treatment.

  11. Rapamycin up-regulates triglycerides in hepatocytes by down-regulating Prox1.

    Science.gov (United States)

    Kwon, Sora; Jeon, Ji-Sook; Kim, Su Bin; Hong, Young-Kwon; Ahn, Curie; Sung, Jung-Suk; Choi, Inho

    2016-02-27

    Although the prolonged use of rapamycin may cause unwanted side effects such as hyperlipidemia, the underlying mechanism remains unknown. Prox1 is a transcription factor responsible for the development of several tissues including lymphatics and liver. There is growing evidences that Prox1 participates in metabolism in addition to embryogenesis. However, whether Prox1 is directly related to lipid metabolism is currently unknown. HepG2 human hepatoma cells were treated with rapamycin and total lipids were analyzed by thin layer chromatography. The effect of rapamycin on the expression of Prox1 was determined by western blotting. To investigate the role of Prox1 in triglycerides regulation, siRNA and overexpression system were employed. Rapamycin was injected into mice for 2 weeks and total lipids and proteins in liver were measured by thin layer chromatography and western blot analysis, respectively. Rapamycin up-regulated the amount of triglyceride and down-regulated the expression of Prox1 in HepG2 cells by reducing protein half-life but did not affect its transcript. The loss-of-function of Prox1 was coincident with the increase of triglycerides in HepG2 cells treated with rapamycin. The up-regulation of triglycerides by rapamycin in HepG2 cells reverted to normal levels by the compensation of Prox1 using the overexpression system. Rapamycin also down-regulated Prox1 expression but increased triglycerides in mouse liver. This study suggests that rapamycin can increase the amount of triglycerides by down-regulating Prox1 expression in hepatocytes, which means that the mammalian target of rapamycin (mTOR) signaling is important for the regulation of triglycerides by maintaining Prox1 expression.

  12. CD4+ NKG2D+ T cells induce NKG2D down-regulation in natural killer cells in CD86-RAE-1ε transgenic mice

    Science.gov (United States)

    Lin, Zhijie; Wang, Changrong; Xia, Haizui; Liu, Weiguang; Xiao, Weiming; Qian, Li; Jia, Xiaoqin; Ding, Yanbing; Ji, Mingchun; Gong, Weijuan

    2014-01-01

    The binding of NKG2D to its ligands strengthens the cross-talk between natural killer (NK) cells and dendritic cells, particularly at early stages, before the initiation of the adaptive immune response. We found that retinoic acid early transcript-1ε (RAE-1ε), one of the ligands of NKG2D, was persistently expressed on antigen-presenting cells in a transgenic mouse model (pCD86-RAE-1ε). By contrast, NKG2D expression on NK cells, NKG2D-dependent cytotoxicity and tumour rejection, and dextran sodium sulphate-induced colitis were all down-regulated in this mouse model. The down-regulation of NKG2D on NK cells was reversed by stimulation with poly (I:C). The ectopic expression of RAE-1ε on dendritic cells maintained NKG2D expression levels and stimulated the activity of NK cells ex vivo, but the higher frequency of CD4+ NKG2D+ T cells in transgenic mice led to the down-regulation of NKG2D on NK cells in vivo. Hence, high levels of RAE-1ε expression on antigen-presenting cells would be expected to induce the down-regulation of NK cell activation by a regulatory T-cell subset. PMID:24708417

  13. BMP6 down-regulates GDNF expression through SMAD1/5 and ERK1/2 signaling pathways in human granulosa-lutein cells.

    Science.gov (United States)

    Zhang, Xin-Yue; Chang, Hsun-Ming; Taylor, Elizabeth L; Leung, Peter C K; Liu, Rui-Zhi

    2018-05-09

    Bone morphogenetic protein 6 (BMP6) is a critical regulator of follicular development that is expressed in mammalian oocytes and granulosa cells. Glial cell line-derived neurotrophic factor (GDNF) is an intraovarian neurotrophic factor that plays an essential role in regulating mammalian oocyte maturation. The aim of this study was to investigate the effect of BMP6 on the regulation of GDNF expression and the potential underlying mechanisms. We used an established immortalized human granulosa cell line (SVOG cells) and primary human granulosa-lutein cells as in vitro cell models. Our results showed that BMP6 significantly down-regulated the expression of GDNF in both SVOG and primary human granulosa-lutein cells. Using dual inhibition approaches (kinase receptor inhibitor and small interfering RNA knockdown), our results showed that both ALK2 and ALK3 are involved in BMP6-induced down-regulation of GDNF. In addition, BMP6 induced the phosphorylation of SMAD1/5/8 and ERK1/2 but not AKT or p38. Among three downstream mediators, both SMAD1 and SMAD5 are involved in BMP6-induced down-regulation of GDNF. Moreover, concomitant knockdown of endogenous SMAD4 and inhibition of ERK1/2 activity completely reversed BMP6-induced down-regulation of GDNF, indicating that both SMAD and ERK1/2 signaling pathways are required for the regulatory effect of BMP6 on GDNF expression. Our findings suggest an additional role for an intrafollicular growth factor in regulating follicular function through their paracrine interactions in human granulosa cells.

  14. Down-regulated miR-448 relieves spinal cord ischemia/reperfusion injury by up-regulating SIRT1

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2018-03-01

    Full Text Available MicroRNAs play a crucial role in the progression of spinal cord ischemia/reperfusion injury (SCII. The role of miR-448 and SIRT1 in SCII was investigated in this study, to provide further insights into prevention and improvement of this disorder. In this study, expressions of miR-448 and SIRT1 protein were determined by qRT-PCR and western blot, respectively. Flow cytometry was used to analyze cell apoptosis. The endogenous expression of genes was modulated by recombinant plasmids and cell transfection. Dual-luciferase reporter assay was performed to determine the interaction between miR-448 and SIRT1. The Basso, Beattie, and Bresnahan score was used to measure the hind-limb function of rat. The spinal cord ischemia reperfusion injury model of adult rats was developed by abdominal aorta clamping, and the nerve function evaluation was completed by motor deficit index score. In SCII tissues and cells treated with hypoxia, miR-448 was up-regulated while SIRT1 was down-regulated. Hypoxia treatment reduced the expression of SIRT1 through up-regulating miR-448 in nerve cells. Up-regulation of miR-448 induced by hypoxia promoted apoptosis of nerve cells through down-regulating SIRT1. Down-regulated miR-448 improved neurological function and hind-limb motor function of rats with SCII by up-regulating SIRT1. Down-regulated miR-448 inhibited apoptosis of nerve cells and improved neurological function by up-regulating SIRT1, which contributes to relieving SCII.

  15. Curcumin induces down-regulation of EZH2 expression through the MAPK pathway in MDA-MB-435 human breast cancer cells.

    Science.gov (United States)

    Hua, Wen-Feng; Fu, Yong-Shui; Liao, Yi-Ji; Xia, Wen-Jie; Chen, Yang-Chao; Zeng, Yi-Xin; Kung, Hsiang-Fu; Xie, Dan

    2010-07-10

    Curcumin, a natural compound isolated from turmeric, may inhibit cell proliferation in various tumor cells through a mechanism that is not fully understood. The enhancer of zeste homolog 2 (EZH2) gene is overexpressed in human breast cancers with poor prognosis. In this study, we observed a dose- and time-dependent down-regulation of expression of EZH2 by curcumin that correlates with decreased proliferation in the MDA-MB-435 breast cancer cell line. The curcumin treatment resulted in an accumulation of cells in the G(1) phase of the cell cycle. Further investigation revealed that curcumin-induced down-regulation of EZH2 through stimulation of three major members of the mitogen-activated protein kinase (MAPK) pathway: c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38 kinase. These data suggest that an underlying mechanism of the MAPK pathway mediates the down-regulation of EZH2, thus contributing to the anti-proliferative effects of curcumin against breast cancer. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Kelsey; Amaya, Moushimi [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States); Mueller, Claudius [Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA (United States); Roberts, Brian [Leidos Health Life Sciences, 5202 Presidents Court, Suite 110, Frederick, MD (United States); Kehn-Hall, Kylene; Bailey, Charles [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States); Petricoin, Emanuel [Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA (United States); Narayanan, Aarthi, E-mail: anaraya1@gmu.edu [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States)

    2014-11-15

    New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses. - Highlights: • VEEV infection activated multiple components of the ERK signaling cascade. • Inhibition of ERK activation using Ag-126 inhibited VEEV multiplication. • Activation of ERK by Ceramide C6 increased infectious titers of TC-83. • Ag-126 inhibited virulent strains of all New World alphaviruses. • Ag-126 treatment increased percent survival of infected cells.

  17. Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells

    International Nuclear Information System (INIS)

    Voss, Kelsey; Amaya, Moushimi; Mueller, Claudius; Roberts, Brian; Kehn-Hall, Kylene; Bailey, Charles; Petricoin, Emanuel; Narayanan, Aarthi

    2014-01-01

    New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses. - Highlights: • VEEV infection activated multiple components of the ERK signaling cascade. • Inhibition of ERK activation using Ag-126 inhibited VEEV multiplication. • Activation of ERK by Ceramide C6 increased infectious titers of TC-83. • Ag-126 inhibited virulent strains of all New World alphaviruses. • Ag-126 treatment increased percent survival of infected cells

  18. [Impact of siRNA-mediated down-regulation of CD147 on human breast cancer cells].

    Science.gov (United States)

    Li, Zhenqian; Li, Daoming; Li, Jiangwei; Huang, Pei; Qin, Hui

    2015-10-01

    To investigate the influence of siRNA-mediated down-regulation of CD147 on growth, proliferation and movement of human breast cancer cell line MDA-MB-231. The protein expression of CD147, MMP-2 and TIMP-2 of the MDA-MB-231 cells were analyzed by ABC. Lentiviral expression vector of CD147 gene was constructed and transfected into MDA-MB-231 cells. RT-PCR and Western blot were used to detect the mRNA and protein level changes of CD147 genes to identify the optimal time point, followed by detection of changes of mRNA and protein expression of MMP-2 and TIMP-2 genes. CCK-8 reagent method and cell scratch test were used to detect the proliferation and migration change of MDA-MB-231 cells. The nude mouse model of breast cancer by hypodermic injection with MDA-MB-231 cells was established to document the effect of CD147 siRNA on the tumor transplants. After transfection of lentiviral expression vector of CD147 gene, protein of CD147, MMP-2 and TIMP-2 were weakly or negative expressed, significantly weaker than those of control group (P CD147 and MMP-2 were 96.03% ± 0.84% and 96.03% ± 0.84%, respectively. Both CD147 mRNA and MMP-2 mRNA expression were down-regulated (P 0.05). No less than 2 days after transfection, cell growth of MDA-MB-231 cell line was found significantly inhibited (P CD147 led to reduction of volume and mass of nude mouses. The growth of the carcinoma transplant was inhibited upon siRNA-mediated down-regulation of CD147 (P CD147 may alter the MMP-2/TIMP-2 balance in MDA-MB-231 cells. CD147 gene silencing inhibits the proliferation and migration of MDA-MB-231 cells and the growth of carcinoma transplants in nude mice.

  19. Amino acid limitation induces down-regulation of WNT5a at transcriptional level

    International Nuclear Information System (INIS)

    Wang Zuguang; Chen Hong

    2009-01-01

    An aberrant WNT signaling contributes to the development and progression of multiple cancers. WNT5a is one of the WNT signaling molecules. This study was designed to test the hypothesis that amino acid deprivation induces changes in the WNT signaling pathway in colon cancer cells. Results showed that targets of the amino acid response pathway, ATF3 and p21, were induced in the human colon cancer cell line SW480 during amino acid limitation. There was a significant decrease in the WNT5a mRNA level following amino acid deprivation. The down-regulation of WNT5a mRNA by amino acid deprivation is not due to mRNA destabilization. There is a reduction of nuclear β-catenin protein level by amino acid limitation. Under amino acid limitation, phosphorylation of ERK1/2 was increased and the blockage of ERK1/2 by the inhibitor U0126 partially restored WNT5a mRNA level. In conclusion, amino acid limitation in colon cancer cells induces phosphorylation of ERK1/2, which then down-regulates WNT5a expression.

  20. Lycopene inhibits regulator of calcineurin 1-mediated apoptosis by reducing oxidative stress and down-regulating Nucling in neuronal cells.

    Science.gov (United States)

    Lim, Seiyoung; Hwang, Sinwoo; Yu, Ji Hoon; Lim, Joo Weon; Kim, Hyeyoung

    2017-05-01

    Regulator of calcineurin 1 (RCAN1) is located on the Down syndrome critical region (DSCR) locus in human chromosome 21. Oxidative stress and overexpression of RCAN1 are implicated in neuronal impairment in Down's syndrome (DS) and Alzheimer's disease (AD). Serum level of lycopene, an antioxidant pigment, is low in DS and AD patients, which may be related to neuronal damage. The present study is to investigate whether lycopene inhibits apoptosis by reducing ROS levels, NF-κB activation, expression of the apoptosis regulator Nucling, cell viability, and indices of apoptosis (cytochrome c release, caspase-3 activation) in RCAN1-overexpressing neuronal cells. Cells transfected with either pcDNA or RCAN1 were treated with or without lycopene. Lycopene decreased intracellular and mitochondrial ROS levels, NF-κB activity, and Nucling expression while it reversed decrease in mitochondrial membrane potential, mitochondrial respiration, and glycolytic function in RCAN1-overexpressing cells. Lycopene inhibited cell death, DNA fragmentation, caspase-3 activation, and cytochrome c release in RCAN1-overexpressing cells. Lycopene inhibits RCAN1-mediated apoptosis by reducing ROS levels and by inhibiting NF-κB activation, Nucling induction, and the increase in apoptotic indices in neuronal cells. Consumption of lycopene-rich foods may prevent oxidative stress-associated neuronal damage in some pathologic conditions such as DS or AD. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion

    International Nuclear Information System (INIS)

    Huang, Er-Wen; Xue, Sheng-Jiang; Li, Xiao-Yan; Xu, Suo-Wen; Cheng, Jian-Ding; Zheng, Jin-Xiang; Shi, He; Lv, Guo-Li; Li, Zhi-Gang; Li, Yue; Liu, Chang-Hui; Chen, Xiao-Hui; Liu, Hong; Li, Jie; Liu, Chao

    2014-01-01

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma

  2. EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Er-Wen [Guangzhou Institute of Forensic Science, Guangzhou (China); Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Xue, Sheng-Jiang [Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Li, Xiao-Yan [Department of Pharmacy, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Xu, Suo-Wen [Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou (China); Cheng, Jian-Ding; Zheng, Jin-Xiang [Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Shi, He; Lv, Guo-Li; Li, Zhi-Gang; Li, Yue; Liu, Chang-Hui; Chen, Xiao-Hui; Liu, Hong [Guangzhou Institute of Forensic Science, Guangzhou (China); Li, Jie, E-mail: mdlijie@sina.com [Department of Anaesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China); Liu, Chao, E-mail: liuchaogaj@21cn.com [Guangzhou Institute of Forensic Science, Guangzhou (China)

    2014-05-02

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma.

  3. Endotoxin-induced basal respiration alterations of renal HK-2 cells: A sign of pathologic metabolism down-regulation

    Energy Technology Data Exchange (ETDEWEB)

    Quoilin, C., E-mail: cquoilin@ulg.ac.be [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium); Mouithys-Mickalad, A. [Center of Oxygen Research and Development, Department of Chemistry, University of Liege, 4000 Liege (Belgium); Duranteau, J. [Department of Anaesthesia and Surgical ICU, CHU Bicetre, University Paris XI Sud, 94275 Le Kremlin Bicetre (France); Gallez, B. [Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Universite catholique de Louvain, 1200 Brussels (Belgium); Hoebeke, M. [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer A HK-2 cells model of inflammation-induced acute kidney injury. Black-Right-Pointing-Pointer Two oximetry methods: high resolution respirometry and ESR spectroscopy. Black-Right-Pointing-Pointer Oxygen consumption rates of renal cells decrease when treated with LPS. Black-Right-Pointing-Pointer Cells do not recover normal respiration when the LPS treatment is removed. Black-Right-Pointing-Pointer This basal respiration alteration is a sign of pathologic metabolism down-regulation. -- Abstract: To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) both by high-resolution respirometry and electron spin resonance spectroscopy. These two complementary methods have shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.

  4. SOX2 expression is associated with a cancer stem cell state and down-regulation of CDX2 in colorectal cancer

    International Nuclear Information System (INIS)

    Lundberg, Ida V.; Edin, Sofia; Eklöf, Vincy; Öberg, Åke; Palmqvist, Richard; Wikberg, Maria L.

    2016-01-01

    To improve current treatment strategies for patients with aggressive colorectal cancer (CRC), the molecular understanding of subgroups of CRC with poor prognosis is of vast importance. SOX2 positive tumors have been associated with a poor patient outcome, but the functional role of SOX2 in CRC patient prognosis is still unclear. An in vitro cell culture model expressing SOX2 was used to investigate the functional role of SOX2 in CRC. In vitro findings were verified using RNA from fresh frozen tumor tissue or immunohistochemistry on formalin fixed paraffin embedded (FFPE) tumor tissue from a cohort of 445 CRC patients. Using our in vitro model, we found that SOX2 expressing cells displayed several characteristics of cancer stem cells; such as a decreased proliferative rate, a spheroid growth pattern, and increased expression of stem cell markers CD24 and CD44. Cells expressing SOX2 also showed down-regulated expression of the intestinal epithelial marker CDX2. We next evaluated CDX2 expression in our patient cohort. CDX2 down-regulation was more often found in right sided tumors of high grade and high stage. Furthermore, a decreased expression of CDX2 was closely linked to MSI, CIMP-high as well as BRAF mutated tumors. A decreased expression of CDX2 was also, in a stepwise manner, strongly correlated to a poor patient prognosis. When looking at SOX2 expression in relation to CDX2, we found that SOX2 expressing tumors more often displayed a down-regulated expression of CDX2. In addition, SOX2 expressing tumors with a down-regulated CDX2 expression had a worse patient prognosis compared to those with retained CDX2 expression. Our results indicate that SOX2 expression induces a cellular stem cell state in human CRC with a decreased expression of CDX2. Furthermore, a down-regulated expression of CDX2 results in a poor patient prognosis in CRC and at least part of the prognostic importance of SOX2 is mediated through CDX2 down-regulation. The online version of this

  5. Lycium barbarum L. Polysaccharide (LBP Reduces Glucose Uptake via Down-Regulation of SGLT-1 in Caco2 Cell

    Directory of Open Access Journals (Sweden)

    Huizhen Cai

    2017-02-01

    Full Text Available Lycium barbarum L. polysaccharide (LBP is prepared from Lycium barbarum L. (L. barbarum, which is a traditional Chinese medicine. LPB has been shown to have hypoglycemic effects. In order to gain some mechanistic insights on the hypoglycemic effects of LBP, we investigated the uptake of LBP and its effect on glucose absorption in the human intestinal epithelial cell line Caco2 cell. The uptake of LBP through Caco2 cell monolayer was time-dependent and was inhibited by phloridzin, a competitive inhibitor of SGLT-1. LPB decreased the absorption of glucose in Caco2 cell, and down-regulated the expression of SGLT-1. These results suggest that LBP might be transported across the human intestinal epithelium through SGLT-1 and it inhibits glucose uptake via down-regulating SGLT-1.

  6. Activin A, B and AB decrease progesterone production by down-regulating StAR in human granulosa cells.

    Science.gov (United States)

    Chang, Hsun-Ming; Cheng, Jung-Chien; Huang, He-Feng; Shi, Feng-Tao; Leung, Peter C K

    2015-09-05

    Activins are homo- or heterodimers of inhibin β subunits that play important roles in the reproductive system. Our previous work has shown that activins A (βAβA), B (βBβB) and AB (βAβB) induce aromatase/estradiol, but suppress StAR/progesterone production in human granulosa-lutein cells. However, the underlying molecular determinants of these effects have not been examined. In this continuing study, we used immortalized human granulosa cells (SVOG) to investigate the effects of activins in regulating StAR/progesterone and the potential mechanisms of action. In SVOG cells, activins A, B and AB produced comparable down-regulation of StAR expression and progesterone production. In addition, all three activin isoforms induced equivalent phosphorylation of both SMAD2 and SMAD3. Importantly, the activin-induced down-regulation of StAR, increase in SMAD2/3 phosphorylation, and decrease in progesterone were abolished by the TGF-β type I receptor inhibitor SB431542. Interestingly, the small interfering RNA-mediated knockdown of ALK4 but not ALK5 reversed the activin-induced suppression of StAR. Furthermore, the knockdown of SMAD4 or SMAD2 but not SMAD3 abolished the inhibitory effects of all three activin isoforms on StAR expression. These results provide evidence that activins A, B and AB down-regulate StAR expression and decrease progesterone production in human granulosa cells, likely via an ALK4-mediated SMAD2/SMAD4-dependent pathway. Our findings provide important insights into the molecular mechanisms underlying the regulatory effects of activins on human granulosa cell steroidogenesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Sex-lethal enables germline stem cell differentiation by down-regulating Nanos protein levels during Drosophila oogenesis.

    Science.gov (United States)

    Chau, Johnnie; Kulnane, Laura Shapiro; Salz, Helen K

    2012-06-12

    Drosophila ovarian germ cells require Sex-lethal (Sxl) to exit from the stem cell state and to enter the differentiation pathway. Sxl encodes a female-specific RNA binding protein and in somatic cells serves as the developmental switch gene for somatic sex determination and X-chromosome dosage compensation. None of the known Sxl target genes are required for germline differentiation, leaving open the question of how Sxl promotes the transition from stem cell to committed daughter cell. We address the mechanism by which Sxl regulates this transition through the identification of nanos as one of its target genes. Previous studies have shown that Nanos protein is necessary for GSC self-renewal and is rapidly down-regulated in the daughter cells fated to differentiate in the adult ovary. We find that this dynamic expression pattern is limited to female germ cells and is under Sxl control. In the absence of Sxl, or in male germ cells, Nanos protein is continuously expressed. Furthermore, this female-specific expression pattern is dependent on the presence of canonical Sxl binding sites located in the nanos 3' untranslated region. These results, combined with the observation that nanos RNA associates with the Sxl protein in ovarian extracts and loss and gain of function studies, suggest that Sxl enables the switch from germline stem cell to committed daughter cell by posttranscriptional down-regulation of nanos expression. These findings connect sexual identity to the stem cell self-renewal/differentiation decision and highlight the importance of posttranscriptional gene regulatory networks in controlling stem cell behavior.

  8. MicroRNA-Mediated Down-Regulation of Apoptosis Signal-Regulating Kinase 1 (ASK1) Attenuates the Apoptosis of Human Mesenchymal Stem Cells (MSCs) Transplanted into Infarcted Heart.

    Science.gov (United States)

    Lee, Chang Youn; Shin, Sunhye; Lee, Jiyun; Seo, Hyang-Hee; Lim, Kyu Hee; Kim, Hyemin; Choi, Jung-Won; Kim, Sang Woo; Lee, Seahyung; Lim, Soyeon; Hwang, Ki-Chul

    2016-10-20

    Stem cell therapy using adult stem cells, such as mesenchymal stem cells (MSCs) has produced some promising results in treating the damaged heart. However, the low survival rate of MSCs after transplantation is still one of the crucial factors that limit the therapeutic effect of stem cells. In the damaged heart, oxidative stress due to reactive oxygen species (ROS) production can cause the death of transplanted MSCs. Apoptosis signal-regulating kinase 1 (ASK1) has been implicated in the development of oxidative stress-related pathologic conditions. Thus, we hypothesized that down-regulation of ASK1 in human MSCs (hMSCs) might attenuate the post-transplantation death of MSCs. To test this hypothesis, we screened microRNAs (miRNAs) based on a miRNA-target prediction database and empirical data and investigated the anti-apoptotic effect of selected miRNAs on human adipose-derived stem cells (hASCs) and on rat myocardial infarction (MI) models. Our data indicated that miRNA-301a most significantly suppressed ASK1 expression in hASCs. Apoptosis-related genes were significantly down-regulated in miRNA-301a-enriched hASCs exposed to hypoxic conditions. Taken together, these data show that miRNA-mediated down-regulation of ASK1 protects MSCs during post-transplantation, leading to an increase in the efficacy of MSC-based cell therapy.

  9. MicroRNA-Mediated Down-Regulation of Apoptosis Signal-Regulating Kinase 1 (ASK1 Attenuates the Apoptosis of Human Mesenchymal Stem Cells (MSCs Transplanted into Infarcted Heart

    Directory of Open Access Journals (Sweden)

    Chang Youn Lee

    2016-10-01

    Full Text Available Stem cell therapy using adult stem cells, such as mesenchymal stem cells (MSCs has produced some promising results in treating the damaged heart. However, the low survival rate of MSCs after transplantation is still one of the crucial factors that limit the therapeutic effect of stem cells. In the damaged heart, oxidative stress due to reactive oxygen species (ROS production can cause the death of transplanted MSCs. Apoptosis signal-regulating kinase 1 (ASK1 has been implicated in the development of oxidative stress-related pathologic conditions. Thus, we hypothesized that down-regulation of ASK1 in human MSCs (hMSCs might attenuate the post-transplantation death of MSCs. To test this hypothesis, we screened microRNAs (miRNAs based on a miRNA-target prediction database and empirical data and investigated the anti-apoptotic effect of selected miRNAs on human adipose-derived stem cells (hASCs and on rat myocardial infarction (MI models. Our data indicated that miRNA-301a most significantly suppressed ASK1 expression in hASCs. Apoptosis-related genes were significantly down-regulated in miRNA-301a-enriched hASCs exposed to hypoxic conditions. Taken together, these data show that miRNA-mediated down-regulation of ASK1 protects MSCs during post-transplantation, leading to an increase in the efficacy of MSC-based cell therapy.

  10. IL-10-produced by human transitional B-cells down-regulates CD86 expression on B-cells leading to inhibition of CD4+T-cell responses.

    Science.gov (United States)

    Nova-Lamperti, Estefania; Fanelli, Giorgia; Becker, Pablo D; Chana, Prabhjoat; Elgueta, Raul; Dodd, Philippa C; Lord, Graham M; Lombardi, Giovanna; Hernandez-Fuentes, Maria P

    2016-01-22

    A novel subset of human regulatory B-cells has recently been described. They arise from within the transitional B-cell subpopulation and are characterised by the production of IL-10. They appear to be of significant importance in regulating T-cell immunity in vivo. Despite this important function, the molecular mechanisms by which they control T-cell activation are incompletely defined. Here we show that transitional B-cells produced more IL-10 and expressed higher levels of IL-10 receptor after CD40 engagement compared to other B-cell subsets. Furthermore, under this stimulatory condition, CD86 expressed by transitional B-cells was down regulated and T-cell proliferation was reduced. We provide evidence to demonstrate that the down-regulation of CD86 expression by transitional B-cells was due to the autocrine effect of IL-10, which in turn leads to decreased T-cell proliferation and TNF-α production. This analysis was further extended to peripheral B-cells in kidney transplant recipients. We observed that B-cells from patients tolerant to the graft maintained higher IL-10 production after CD40 ligation, which correlates with lower CD86 expression compared to patients with chronic rejection. Hence, the results obtained in this study shed light on a new alternative mechanism by which transitional B-cells inhibit T-cell proliferation and cytokine production.

  11. IL-10-produced by human transitional B-cells down-regulates CD86 expression on B-cells leading to inhibition of CD4+T-cell responses

    Science.gov (United States)

    Nova-Lamperti, Estefania; Fanelli, Giorgia; Becker, Pablo D.; Chana, Prabhjoat; Elgueta, Raul; Dodd, Philippa C.; Lord, Graham M.; Lombardi, Giovanna; Hernandez-Fuentes, Maria P.

    2016-01-01

    A novel subset of human regulatory B-cells has recently been described. They arise from within the transitional B-cell subpopulation and are characterised by the production of IL-10. They appear to be of significant importance in regulating T-cell immunity in vivo. Despite this important function, the molecular mechanisms by which they control T-cell activation are incompletely defined. Here we show that transitional B-cells produced more IL-10 and expressed higher levels of IL-10 receptor after CD40 engagement compared to other B-cell subsets. Furthermore, under this stimulatory condition, CD86 expressed by transitional B-cells was down regulated and T-cell proliferation was reduced. We provide evidence to demonstrate that the down-regulation of CD86 expression by transitional B-cells was due to the autocrine effect of IL-10, which in turn leads to decreased T-cell proliferation and TNF-α production. This analysis was further extended to peripheral B-cells in kidney transplant recipients. We observed that B-cells from patients tolerant to the graft maintained higher IL-10 production after CD40 ligation, which correlates with lower CD86 expression compared to patients with chronic rejection. Hence, the results obtained in this study shed light on a new alternative mechanism by which transitional B-cells inhibit T-cell proliferation and cytokine production. PMID:26795594

  12. [Lentivirus-mediated shRNA silencing of LAMP2A inhibits the proliferation of multiple myeloma cells].

    Science.gov (United States)

    Li, Lixuan; Li, Jia

    2015-05-01

    To study the effects of lentivirus-mediated short hairpin RNA (shRNA) silencing of lysosome-associated membrane protein type 2A (LAMP2A) expression on the proliferation of multiple myeloma cells. The constructed shRNA lentiviral vector was applied to infect human multiple myeloma cell line MM.1S, and stable expression cell line was obtained by puromycin screening. Western blotting was used to verify the inhibitory effect on LAMP2A protein expression. MTT assay was conducted to detect the effect of knocked-down LAMP2A on MM.1S cell proliferation, and the anti-tumor potency of suberoylanilide hydroxamic acid (SAHA) against the obtained MM.1S LAMP2A(shRNA) stable cell line. Lactate assay was performed to observe the impact of low LAMP2A expression on cell glycolysis. The stable cell line with low LAMP2A expression were obtained with the constructed human LAMP2A-shRNA lentiviral vector. Down-regulation of LAMP2A expression significantly inhibited MM.1S cell proliferation and enhanced the anti-tumor activity of SAHA. Interestingly, decreased LAMP2A expression also inhibited MM.1S cell lactic acid secretion. Down-regulation of LAMP2A expression could inhibit cell proliferation in multiple myeloma cells.

  13. LIN28 expression in malignant germ cell tumors down-regulates let-7 and increases oncogene levels

    Science.gov (United States)

    Murray, Matthew J.; Saini, Harpreet K.; Siegler, Charlotte A.; Hanning, Jennifer E.; Barker, Emily M.; van Dongen, Stijn; Ward, Dawn M.; Raby, Katie L.; Groves, Ian J.; Scarpini, Cinzia G.; Pett, Mark R.; Thornton, Claire M.; Enright, Anton J.; Nicholson, James C.; Coleman, Nicholas

    2013-01-01

    Despite their clinico-pathologic heterogeneity, malignant germ-cell-tumors (GCTs) share molecular abnormalities that are likely to be functionally important. In this study, we investigated the potential significance of down-regulation of the let-7 family of tumor-suppressor microRNAs in malignant-GCTs. Microarray results from pediatric and adult samples (n=45) showed that LIN28, the negative-regulator of let-7 biogenesis, was abundant in malignant-GCTs, regardless of patient age, tumor site or histologic subtype. Indeed, a strong negative-correlation existed between LIN28 and let-7 levels in specimens with matched datasets. Low let-7 levels were biologically significant, since the sequence complementary to the 2-7nt common let-7 seed ‘GAGGUA’ was enriched in the 3′untranslated regions of mRNAs up-regulated in pediatric and adult malignant-GCTs, compared with normal gonads (a mixture of germ cells and somatic cells). We identified 27 mRNA targets of let-7 that were up-regulated in malignant-GCT cells, confirming significant negative-correlations with let-7 levels. Among 16 mRNAs examined in a largely independent set of specimens by qRT-PCR, we defined negative-associations with let-7e levels for six oncogenes, including MYCN, AURKB, CCNF, RRM2, MKI67 and C12orf5 (when including normal control tissues). Importantly, LIN28 depletion in malignant-GCT cells restored let-7 levels and repressed all of these oncogenic let-7 mRNA targets, with LIN28 levels correlating with cell proliferation and MYCN levels. Conversely, ectopic expression of let-7e was sufficient to reduce proliferation and down-regulate MYCN, AURKB and LIN28, the latter via a double-negative feedback loop. We concluded that the LIN28/let-7 pathway has a critical pathobiological role in malignant-GCTs and therefore offers a promising target for therapeutic intervention. PMID:23774216

  14. Micro-RNA-128 (miRNA-128) down-regulation in glioblastoma targets ARP5 (ANGPTL6), Bmi-1 and E2F-3a, key regulators of brain cell proliferation.

    Science.gov (United States)

    Cui, J G; Zhao, Y; Sethi, P; Li, Y Y; Mahta, A; Culicchia, F; Lukiw, W J

    2010-07-01

    High density micro-RNA (miRNA) arrays, fluorescent-reporter miRNA assay and Northern miRNA dot-blot analysis show that a brain-enriched miRNA-128 is significantly down-regulated in glioblastoma multiforme (GBM) and in GBM cell lines when compared to age-matched controls. The down-regulation of miRNA-128 was found to inversely correlate with WHO tumor grade. Three bioinformatics-verified miRNA-128 targets, angiopoietin-related growth factor protein 5 (ARP5; ANGPTL6), a transcription suppressor that promotes stem cell renewal and inhibits the expression of known tumor suppressor genes involved in senescence and differentiation, Bmi-1, and a transcription factor critical for the control of cell-cycle progression, E2F-3a, were found to be up-regulated. Addition of exogenous miRNA-128 to CRL-1690 and CRL-2610 GBM cell lines (a) restored 'homeostatic' ARP5 (ANGPTL6), Bmi-1 and E2F-3a expression, and (b) significantly decreased the proliferation of CRL-1690 and CRL-2610 cell lines. Our data suggests that down-regulation of miRNA-128 may contribute to glioma and GBM, in part, by coordinately up-regulating ARP5 (ANGPTL6), Bmi-1 and E2F-3a, resulting in the proliferation of undifferentiated GBM cells.

  15. AS1411-Induced Growth Inhibition of Glioma Cells by Up-Regulation of p53 and Down-Regulation of Bcl-2 and Akt1 via Nucleolin.

    Directory of Open Access Journals (Sweden)

    Ye Cheng

    Full Text Available AS1411 binds nucleolin (NCL and is the first oligodeoxynucleotide aptamer to reach phase I and II clinical trials for the treatment of several cancers. However, the mechanisms by which AS1411 targets and kills glioma cells and tissues remain unclear. Here we report that AS1411 induces cell apoptosis and cycle arrest, and inhibits cell viability by up-regulation of p53 and down-regulation of Bcl-2 and Akt1 in human glioma cells. NCL was overexpressed in both nucleus and cytoplasm in human glioma U87, U251 and SHG44 cells compared to normal human astrocytes (NHA. AS1411 bound NCL and inhibited the proliferation of glioma cells but not NHA, which was accompanied with up-regulation of p53 and down-regulation of Bcl-2 and Akt1. Moreover, AS1411 treatment resulted in the G2/M cell cycle arrest in glioma cells, which was however abolished by overexpression of NCL. Further, AS1411 induced cell apoptosis, which was prevented by silencing of p53 and overexpression of Bcl-2. In addition, AS1411 inhibited the migration and invasion of glioma cells in an Akt1-dependent manner. Importantly, AS1411 inhibited the growth of glioma xenograft and prolonged the survival time of glioma tumor-bearing mice. These results revealed a promising treatment of glioma by oligodeoxynucleotide aptamer.

  16. DMBT1 expression is down-regulated in breast cancer

    DEFF Research Database (Denmark)

    Braidotti, P; Nuciforo, P G; Mollenhauer, J

    2004-01-01

    and hyperplastic mammary cells positive with DMBTh12 were also MCM5-positive. CONCLUSIONS: The redistribution and up-regulation of DMBT1 in normal and hyperplastic tissues flanking malignant tumours and its down-regulation in carcinomas suggests a potential role in breast cancer. Moreover, the concomitant......BACKGROUND: We studied the expression of DMBT1 (deleted in malignant brain tumor 1), a putative tumor suppressor gene, in normal, proliferative, and malignant breast epithelium and its possible relation to cell cycle. METHODS: Sections from 17 benign lesions and 55 carcinomas were immunostained...... expression was down-regulated in the cancerous lesions compared to the normal and/or hyperplastic epithelium adjacent to carcinomas (3/55 positive carcinomas versus 33/42 positive normal/hyperplastic epithelia; p = 0.0001). In 72% of cases RT-PCR confirmed immunohistochemical results. Most of normal...

  17. Monomethylfumarate affects polarization of monocyte-derived dendritic cells resulting in down-regulated Th1 lymphocyte responses

    DEFF Research Database (Denmark)

    Litjens, Nicolle H R; Rademaker, Mirjam; Ravensbergen, Bep

    2004-01-01

    Psoriasis vulgaris, a type-1 cytokine-mediated chronic skin disease, can be treated successfully with fumaric acid esters (FAE). Beneficial effects of this medication coincided with decreased production of IFN-gamma. Since dendritic cells (DC) regulate the differentiation of T helper (Th) cells......% of that by the respective Th cells cocultured with control DC. IL-4 production by primed, but not naive Th cells cocultured with MMF-DC was decreased as compared to cocultures with control DC. IL-10 production by naive and primed Th cells cocultured with MMF-DC and control DC did not differ. In addition, MMF inhibited LPS......-induced NF-kappaB activation in DC. Together, beneficial effects of FAE in psoriasis involve modulation of DC polarization by MMF such that these cells down-regulate IFN-gamma production by Th cells....

  18. A novel neuron-enriched protein SDIM1 is down regulated in Alzheimer's brains and attenuates cell death induced by DNAJB4 over-expression in neuro-progenitor cells

    Directory of Open Access Journals (Sweden)

    Lei Joy X

    2011-01-01

    Full Text Available Abstract Background Molecular changes in multiple biological processes contribute to the development of chronic neurodegeneration such as late onset Alzheimer's disease (LOAD. To discover how these changes are reflected at the level of gene expression, we used a subtractive transcription-based amplification of mRNA procedure to identify novel genes that have altered expression levels in the brains of Alzheimer's disease (AD patients. Among the genes altered in expression level in AD brains was a transcript encoding a novel protein, SDIM1, that contains 146 amino acids, including a typical signal peptide and two transmembrane domains. Here we examined its biochemical properties and putative roles in neuroprotection/neurodegeneration. Results QRT-PCR analysis of additional AD and control post-mortem human brains showed that the SDIM1 transcript was indeed significantly down regulated in all AD brains. SDIM1 is more abundant in NT2 neurons than astrocytes and present throughout the cytoplasm and neural processes, but not in the nuclei. In NT2 neurons, it is highly responsive to stress conditions mimicking insults that may cause neurodegeneration in AD brains. For example, SDIM1 was significantly down regulated 2 h after oxygen-glucose deprivation (OGD, though had recovered 16 h later, and also appeared significantly up regulated compared to untreated NT2 neurons. Overexpression of SDIM1 in neuro-progenitor cells improved cells' ability to survive after injurious insults and its downregulation accelerated cell death induced by OGD. Yeast two-hybrid screening and co-immunoprecipitation approaches revealed, both in vitro and in vivo, an interaction between SDIM1 and DNAJB4, a heat shock protein hsp40 homolog, recently known as an enhancer of apoptosis that also interacts with the mu opioid receptor in human brain. Overexpression of DNAJB4 alone significantly reduced cell viability and SDIM1 co-overexpression was capable of attenuating the cell death

  19. Expression of DIAPH1 is up-regulated in colorectal cancer and its down-regulation strongly reduces the metastatic capacity of colon carcinoma cells.

    Science.gov (United States)

    Lin, Yuan-Na; Izbicki, Jakob R; König, Alexandra; Habermann, Jens K; Blechner, Christine; Lange, Tobias; Schumacher, Udo; Windhorst, Sabine

    2014-04-01

    In most cases, metastatic colorectal cancer is not curable, thus new approaches are necessary to identify novel targets for colorectal cancer therapy. Actin-binding-proteins (ABPs) directly regulate motility of metastasising tumor cells, and for cortactin an association with colon cancer metastasis has been already shown. However, as its depletion only incompletely inhibits metastasis, additional, more suitable cellular targets have to be identified. Here we analyzed expression of the ABPs, DIAPH1, VASP, N-WASP, and fascin in comparison with cortactin and found that, besides cortactin, DIAPH1 was expressed with the highest frequency (63%) in colorectal cancer. As well as cortactin, DIAPH1 was not detectable in normal colon tissue and expression of both proteins was positively correlated with metastasis of colorectal cancer. To analyse the mechanistic role of DIAPH1 for metastasis of colon carcinoma cells in comparison with cortactin, expression of the proteins was stably down-regulated in the human colon carcinoma cell lines HT-29, HROC-24 and HCT-116. Analysis of metastasis of colon carcinoma cells in SCID mice revealed that depletion of DIAPH1 reduced metastasis 60-fold and depletion of cortactin 16-fold as compared with control cells. Most likely the stronger effect of DIAPH1 depletion on colon cancer metastasis is due to the fact that in vitro knock down of DIAPH1 impaired all steps of metastasis; adhesion, invasion and migration while down-regulation of cortactin only reduced adhesion and invasion. This very strong reducing effect of DIAPH1 depletion on colon carcinoma cell metastasis makes the protein a promising therapeutic target for individualized colorectal cancer therapy. © 2013 UICC.

  20. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    Energy Technology Data Exchange (ETDEWEB)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Chung, Young Chul [Department of Food Science and Culinary, International University of Korea, Jinju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression.

  1. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    International Nuclear Information System (INIS)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-01-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression

  2. Down-regulation of telomerase activity in DLD-1 human colorectal adenocarcinoma cells by tocotrienol

    International Nuclear Information System (INIS)

    Eitsuka, Takahiro; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2006-01-01

    As high telomerase activity is detected in most cancer cells, inhibition of telomerase by drug or dietary food components is a new strategy for cancer prevention. Here, we investigated the inhibitory effect of vitamin E, with particular emphasis on tocotrienol (unsaturated vitamin E), on human telomerase in cell-culture study. As results, tocotrienol inhibited telomerase activity of DLD-1 human colorectal adenocarcinoma cells in time- and dose-dependent manner, interestingly, with δ-tocotrienol exhibiting the highest inhibitory activity. Tocotrienol inhibited protein kinase C activity, resulting in down-regulation of c-myc and human telomerase reverse transcriptase (hTERT) expression, thereby reducing telomerase activity. In contrast to tocotrienol, tocopherol showed very weak telomerase inhibition. These results provide novel evidence for First time indicating that tocotrienol acts as a potent candidate regulator of telomerase and supporting the anti-proliferative function of tocotrienol

  3. Klotho down-regulates Egr-1 by inhibiting TGF-β1/Smad3 signaling in high glucose treated human mesangial cells

    International Nuclear Information System (INIS)

    Li, Yang; Hu, Fang; Xue, Meng; Jia, Yi-Jie; Zheng, Zong-Ji; Wang, Ling; Guan, Mei-Ping; Xue, Yao-Ming

    2017-01-01

    Diabetic kidney disease (DKD) has become the leading cause of end-stage renal disease worldwide and is associated with glomerular mesangial cell (MC) proliferation and excessive extracellular matrix (ECM) production. Klotho can attenuate renal fibrosis in part by inhibiting TGF-β1/Smad3 signaling in DKD. Early growth response factor 1 (Egr-1) has been shown to play a key role in renal fibrosis in part by facilitating the formation of a positive feedback loop involving TGF-β1. However, whether Klotho down-regulates Egr-1 by inhibiting TGF-β1/Smad3 signaling in DKD is unclear. In the present study, we assessed human MCs that were incubated under high-glucose conditions to mimic diabetes. Then, we transfected the cells with Klotho plasmid or siRNA to overexpress or knock down Klotho gene and protein expression. Klotho, Egr-1, fibronectin (FN), collagen type I (Col I), Smad3 and phosphorylated Smad3 (p-Smad3) gene and protein expression levels were determined by RT-qPCR and western blotting respectively. High glucose time-dependently down-regulated Klotho mRNA and protein expression in cultured human MCs. pcDNA3.1-Klotho transfection-mediated Klotho overexpression down-regulated Egr-1, FN and Col I expression and the p-Smad3/Smad3 ratio in human MCs. Conversely, siRNA-mediated Klotho silencing up-regulated Egr-1, FN, and Col I expression and the p-Smad3/Smad3 ratio. Moreover, the effects of si-Klotho on Egr-1 expression were abolished by the TGF-β1 inhibitor SB-431542. Klotho overexpression can prevent mesangial ECM production in high-glucose-treated human MCs, an effect that has been partially attributed to Egr-1 down-regulation facilitated by TGF-β1/Smad3 signaling inhibition. - Highlights: • High glucose time-dependently down-regulated Klotho mRNA and protein expression in cultured human MCs. • Klotho overexpression down-regulated Egr-1 and prevented mesangial ECM production in high-glucose-treated human MCs. • Klotho down-regulated Egr-1 by inhibiting

  4. Ethanol extracts of black pepper or turmeric down-regulated SIRT1 protein expression in Daudi culture cells.

    Science.gov (United States)

    Nishimura, Yuri; Kitagishi, Yasuko; Yoshida, Hitomi; Okumura, Naoko; Matsuda, Satoru

    2011-01-01

    SIRT1 is a mammalian candidate molecule involved in longevity and diverse metabolic processes. The present study aimed to determine the effects of certain herbs and spices on SIRT1 expression. Human cell lines Daudi, Jurkat, U937 and K562 were cultured in RPMI-1640. Herb and spice powders were prepared and the supernatants were collected. RT-PCR was used to quantify the expression level of the gene. Protein samples were then analyzed by Western blotting. Western blotting revealed the down-regulation of SIRT1 protein expression in Daudi cells treated with extracts of black pepper or turmeric. On the other hand, the effect on the SIRT1 gene expression examined by reverse transcription polymerase chain reaction was unaltered. In conclusion, component(s) of certain herbs and spices may induce the down-regulation of SIRT1 protein.

  5. Francisella tularensis elicits IL-10 via a PGE₂-inducible factor, to drive macrophage MARCH1 expression and class II down-regulation.

    Directory of Open Access Journals (Sweden)

    Danielle Hunt

    Full Text Available Francisella tularensis is a bacterial pathogen that uses host-derived PGE₂ to subvert the host's adaptive immune responses in multiple ways. Francisella-induced PGE₂ acts directly on CD4 T cells to blunt production of IFN-γ. Francisella-induced PGE₂ can also elicit production of a >10 kDa soluble host factor termed FTMØSN (F. tularensismacrophage supernatant, which acts on IFN-γ pre-activated MØ to down-regulate MHC class II expression via a ubiquitin-dependent mechanism, blocking antigen presentation to CD4 T cells. Here, we report that FTMØSN-induced down-regulation of MØ class II is the result of the induction of MARCH1, and that MØ expressing MARCH1 "resistant" class II molecules are resistant to FTMØSN-induced class II down-regulation. Since PGE₂ can induce IL-10 production and IL-10 is the only reported cytokine able to induce MARCH1 expression in monocytes and dendritic cells, these findings suggested that IL-10 is the active factor in FTMØSN. However, use of IL-10 knockout MØ established that IL-10 is not the active factor in FTMØSN, but rather that Francisella-elicited PGE₂ drives production of a >10 kDa host factor distinct from IL-10. This factor then drives MØ IL-10 production to induce MARCH1 expression and the resultant class II down-regulation. Since many human pathogens such as Salmonella typhi, Mycobacterium tuberculosis and Legionella pneumophila also induce production of host PGE₂, these results suggest that a yet-to-be-identified PGE₂-inducible host factor capable of inducing IL-10 is central to the immune evasion mechanisms of multiple important human pathogens.

  6. Down-Regulation of p53 by Double-Stranded RNA Modulates the Antiviral Response

    Science.gov (United States)

    Marques, Joao T.; Rebouillat, Dominique; Ramana, Chilakamarti V.; Murakami, Junko; Hill, Jason E.; Gudkov, Andrei; Silverman, Robert H.; Stark, George R.; Williams, Bryan R. G.

    2005-01-01

    p53 has been well characterized as a tumor suppressor gene, but its role in antiviral defense remains unclear. A recent report has demonstrated that p53 can be induced by interferons and is activated after vesicular stomatitis virus (VSV) infection. We observed that different nononcogenic viruses, including encephalomyocarditis virus (EMCV) and human parainfluenza virus type 3 (HPIV3), induced down-regulation of p53 in infected cells. Double-stranded RNA (dsRNA) and a mutant vaccinia virus lacking the dsRNA binding protein E3L can also induce this effect, indicating that dsRNA formed during viral infection is likely the trigger for down-regulation of p53. The mechanism of down-regulation of p53 by dsRNA relies on translation inhibition mediated by the PKR and RNase L pathways. In the absence of p53, the replication of both EMCV and HPIV3 was retarded, whereas, conversely, VSV replication was enhanced. Cell cycle analysis indicated that wild-type (WT) but not p53 knockout (KO) fibroblasts undergo an early-G1 arrest following dsRNA treatment. Moreover, in WT cells the onset of dsRNA-induced apoptosis begins after p53 levels are down-regulated, whereas p53 KO cells, which lack the early-G1 arrest, rapidly undergo apoptosis. Hence, our data suggest that the down-regulation of p53 facilitates apoptosis, thereby limiting viral replication. PMID:16103161

  7. SKP2 siRNA inhibits the degradation of P27kip1 and down-regulates the expression of MRP in HL-60/A cells.

    Science.gov (United States)

    Xiao, Jie; Yin, Songmei; Li, Yiqing; Xie, Shuangfeng; Nie, Danian; Ma, Liping; Wang, Xiuju; Wu, Yudan; Feng, Jianhong

    2009-08-01

    S-phase kinase-associated protein 2 (SKP2) gene is a tumor suppressor gene, and is involved in the ubiquitin-mediated degradation of P27kip1. SKP2 and P27kip1 affect the proceeding and prognosis of leukemia through regulating the proliferation, apoptosis and differentiation of leukemia cells. In this study, we explored the mechanism of reversing of HL-60/A drug resistance through SKP2 down-regulation. HL-60/A cells were nucleofected by Amaxa Nucleofector System with SKP2 siRNA. The gene and protein expression levels of Skp2, P27kip1, and multi-drug resistance associated protein (MRP) were determined by reverse transcription-polymerase chain reaction and western blot analysis, respectively. The cell cycle was analyzed by flow cytometry. The 50% inhibitory concentration value was calculated using cytotoxic analysis according to the death rate of these two kinds of cells under different concentrations of chemotherapeutics to compare the sensitivity of the cells. HL-60/A cells showed multi-drug resistance phenotype characteristic by cross-resistance to adriamycin, daunorubicin, and arabinosylcytosine, due to the expression of MRP. We found that the expression of SKP2 was higher in HL-60/A cells than in HL-60 cells, but the expression of P27kip1 was lower. The expression of SKP2 in HL-60/A cells nucleofected by SKP2 siRNA was down-regulated whereas the protein level of P27kip1 was up-regulated. Compared with the MRP expression level in the control group (nucleofected by control siRNA), the mRNA and protein expression levels of MRP in HL-60/A cells nucleofected by SKP2 siRNA were lower, and the latter cells were more sensitive to adriamycin, daunorubicin, and arabinosylcytosine. Down-regulating the SKP2 expression and arresting cells in the G0/G1 phase improve drug sensitivity of leukemia cells with down-regulated MRP expression.

  8. Cyclic mechanical stretch down-regulates cathelicidin antimicrobial peptide expression and activates a pro-inflammatory response in human bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Harpa Karadottir

    2015-12-01

    Full Text Available Mechanical ventilation (MV of patients can cause damage to bronchoalveolar epithelium, leading to a sterile inflammatory response, infection and in severe cases sepsis. Limited knowledge is available on the effects of MV on the innate immune defense system in the human lung. In this study, we demonstrate that cyclic stretch of the human bronchial epithelial cell lines VA10 and BCi NS 1.1 leads to down-regulation of cathelicidin antimicrobial peptide (CAMP gene expression. We show that treatment of VA10 cells with vitamin D3 and/or 4-phenyl butyric acid counteracted cyclic stretch mediated down-regulation of CAMP mRNA and protein expression (LL-37. Further, we observed an increase in pro-inflammatory responses in the VA10 cell line subjected to cyclic stretch. The mRNA expression of the genes encoding pro-inflammatory cytokines IL-8 and IL-1β was increased after cyclic stretching, where as a decrease in gene expression of chemokines IP-10 and RANTES was observed. Cyclic stretch enhanced oxidative stress in the VA10 cells. The mRNA expression of toll-like receptor (TLR 3, TLR5 and TLR8 was reduced, while the gene expression of TLR2 was increased in VA10 cells after cyclic stretch. In conclusion, our in vitro results indicate that cyclic stretch may differentially modulate innate immunity by down-regulation of antimicrobial peptide expression and increase in pro-inflammatory responses.

  9. Down-regulation of Wild-type p53-induced Phosphatase 1 (Wip1) Plays a Critical Role in Regulating Several p53-dependent Functions in Premature Senescent Tumor Cells*

    Science.gov (United States)

    Crescenzi, Elvira; Raia, Zelinda; Pacifico, Francesco; Mellone, Stefano; Moscato, Fortunato; Palumbo, Giuseppe; Leonardi, Antonio

    2013-01-01

    Premature or drug-induced senescence is a major cellular response to chemotherapy in solid tumors. The senescent phenotype develops slowly and is associated with chronic DNA damage response. We found that expression of wild-type p53-induced phosphatase 1 (Wip1) is markedly down-regulated during persistent DNA damage and after drug release during the acquisition of the senescent phenotype in carcinoma cells. We demonstrate that down-regulation of Wip1 is required for maintenance of permanent G2 arrest. In fact, we show that forced expression of Wip1 in premature senescent tumor cells induces inappropriate re-initiation of mitosis, uncontrolled polyploid progression, and cell death by mitotic failure. Most of the effects of Wip1 may be attributed to its ability to dephosphorylate p53 at Ser15 and to inhibit DNA damage response. However, we also uncover a regulatory pathway whereby suppression of p53 Ser15 phosphorylation is associated with enhanced phosphorylation at Ser46, increased p53 protein levels, and induction of Noxa expression. On the whole, our data indicate that down-regulation of Wip1 expression during premature senescence plays a pivotal role in regulating several p53-dependent aspects of the senescent phenotype. PMID:23612976

  10. MicroRNA-187, down-regulated in clear cell renal cell carcinoma and associated with lower survival, inhibits cell growth and migration though targeting B7-H3

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jun [Foshan Maternal and Child Health Care Hospital, Foshan (China); Lei, Ting [Zhongshan People’s Hospital, Zhongshan (China); Xu, Congjie [Department of Urology, Pepole’s Hospital of Hainan Province, Haikou (China); Li, Huan; Ma, Wenmin; Yang, Yunxia; Fan, Shuming [Foshan Maternal and Child Health Care Hospital, Foshan (China); Liu, Yuchen, E-mail: s_ycliu1@stu.edu.cn [Anhui Medical University, Hefei (China)

    2013-08-23

    Highlights: •miR-187 is down-regulated in clear cell renal cell carcinoma (ccRCC). •Down-regulation of miR-187 is associated with poor outcomes in patients with ccRCC. •miR-187 inhibits cell growth and migration though targeting B7-H3 in ccRCC. -- Abstract: Aberrantly expressed microRNAs (miRNAs) are frequently associated with the aggressive malignant behavior of human cancers, including clear cell renal cell carcinoma (ccRCC). Based on the preliminary deep sequencing data, we hypothesized that miR-187 may play an important role in ccRCC development. In this study, we found that miR-187 was down-regulated in both tumor tissue and plasma of ccRCC patients. Lower miR-187 expression levels were associated with higher tumor grade and stage. All patients with high miR-187 expression survived 5 years, while with low miR-187 expression, only 42% survived. Suppressed in vitro proliferation, inhibited in vivo tumor growth, and decreased motility were observed in cells treated with the miR-187 expression vector. Further studies showed that B7 homolog 3 (B7-H3) is a direct target of miR-187. Over-expression of miR-187 decreased B7-H3 mRNA level and repressed B7-H3-3′-UTR reporter activity. Knockdown of B7-H3 using siRNA resulted in similar phenotype changes as that observed for overexpression of miR-187. Our data suggest that miR-187 is emerging as a novel player in the disease state of ccRCC. miR-187 plays a tumor suppressor role in ccRCC.

  11. MicroRNA-187, down-regulated in clear cell renal cell carcinoma and associated with lower survival, inhibits cell growth and migration though targeting B7-H3

    International Nuclear Information System (INIS)

    Zhao, Jun; Lei, Ting; Xu, Congjie; Li, Huan; Ma, Wenmin; Yang, Yunxia; Fan, Shuming; Liu, Yuchen

    2013-01-01

    Highlights: •miR-187 is down-regulated in clear cell renal cell carcinoma (ccRCC). •Down-regulation of miR-187 is associated with poor outcomes in patients with ccRCC. •miR-187 inhibits cell growth and migration though targeting B7-H3 in ccRCC. -- Abstract: Aberrantly expressed microRNAs (miRNAs) are frequently associated with the aggressive malignant behavior of human cancers, including clear cell renal cell carcinoma (ccRCC). Based on the preliminary deep sequencing data, we hypothesized that miR-187 may play an important role in ccRCC development. In this study, we found that miR-187 was down-regulated in both tumor tissue and plasma of ccRCC patients. Lower miR-187 expression levels were associated with higher tumor grade and stage. All patients with high miR-187 expression survived 5 years, while with low miR-187 expression, only 42% survived. Suppressed in vitro proliferation, inhibited in vivo tumor growth, and decreased motility were observed in cells treated with the miR-187 expression vector. Further studies showed that B7 homolog 3 (B7-H3) is a direct target of miR-187. Over-expression of miR-187 decreased B7-H3 mRNA level and repressed B7-H3-3′-UTR reporter activity. Knockdown of B7-H3 using siRNA resulted in similar phenotype changes as that observed for overexpression of miR-187. Our data suggest that miR-187 is emerging as a novel player in the disease state of ccRCC. miR-187 plays a tumor suppressor role in ccRCC

  12. Protein kinase B/Akt1 inhibits autophagy by down-regulating UVRAG expression

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wonseok; Ju, Ji-hyun; Lee, Kyung-min; Nam, KeeSoo; Oh, Sunhwa [Department of Life Science, College of Natural Science, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Shin, Incheol, E-mail: incheol@hanyang.ac.kr [Department of Life Science, College of Natural Science, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2013-02-01

    Autophagy, or autophagocytosis, is a selective intracellular degradative process involving the cell's own lysosomal apparatus. An essential component in cell development, homeostasis, repair and resistance to stress, autophagy may result in either cell death or survival. The targeted region of the cell is sequestered within a membrane structure, the autophagosome, for regulation of the catabolic process. A key factor in both autophagosome formation and autophagosome maturation is a protein encoded by the ultraviolet irradiation resistance-associated gene (UVRAG). Conversely, the serine/threonine-specific protein kinase B (PKB, also known as Akt), which regulates survival in various cancers, inhibits autophagy through mTOR activation. We found that Akt1 may also directly inhibit autophagy by down-regulating UVRAG both in a 293T transient transfection system and breast cancer cells stably expressing Akt1. The UVRAG with mutations at putative Akt1-phosphorylation sites were still inhibited by Akt1, and dominant-negative Akt1 also inhibited UVRAG expression, suggesting that Akt1 down-regulates UVRAG by a kinase activity-independent mechanism. We showed that Akt1 overexpression in MDA-MB-231 breast cancer cells down-regulated UVRAG transcription. Cells over-expressing Akt1 were more resistant than control cells to ultraviolet light-induced autophagy and exhibited the associated reduction in cell viability. Levels of the autophagosome indicator protein LC3B-II and mRFP-GFP-LC3 were reduced in cells that over-expressing Akt1. Inhibiting Akt1 by siRNA or reintroducing UVRAG gene rescued the level of LC3B-II in UV-irradiation. Altogether, these data suggest that Akt1 may inhibit autophagy by decreasing UVRAG expression, which also sensitizes cancer cells to UV irradiation.

  13. Steroidogenesis and early response gene expression in MA-10 Leydig tumor cells following heterologous receptor down-regulation and cellular desensitization

    Directory of Open Access Journals (Sweden)

    Tsuey-Ming Chen

    2016-03-01

    Full Text Available The Leydig tumor cell line, MA-10, expresses the luteinizing hormone receptor, a G protein-coupled receptor that, when activated with luteinizing hormone or chorionic gonadotropin (CG, stimulates cAMP production and subsequent steroidogenesis, notably progesterone. These cells also respond to epidermal growth factor (EGF and phorbol esters with increased steroid biosynthesis. In order to probe the intracellular pathways along with heterologous receptor down-regulation and cellular desensitization, cells were preincubated with EGF or phorbol esters and then challenged with CG, EGF, dibutryl-cyclic AMP, and a phorbol ester. Relative receptor numbers, steroid biosynthesis, and expression of the early response genes, JUNB and c-FOS, were measured. It was found that in all cases but one receptor down-regulation and decreased progesterone production were closely coupled under the conditions used; the exception involved preincubation of the cells with EGF followed by addition of CG where the CG-mediated stimulation of steroidogenesis was considerably lower than the level of receptor down-regulation. In a number of instances JUNB and c-FOS expression paralleled the decreases in receptor number and progesterone production, while in some cases these early response genes were affected little if at all by the changes in receptor number. This finding may indicate that even low levels of activated signaling kinases, e.g. protein kinase A, protein kinase C, or receptor tyrosine kinase, may suffice to yield good expression of JUNB and c-FOS, or it may suggest alternative pathways for regulating expression of these two early response genes.

  14. miR-24-mediated down-regulation of H2AX suppresses DNA repair in terminally differentiated blood cells

    Science.gov (United States)

    Lal, Ashish; Pan, Yunfeng; Navarro, Francisco; Dykxhoorn, Derek M.; Moreau, Lisa; Meire, Eti; Bentwich, Zvi; Lieberman, Judy; Chowdhury, Dipanjan

    2010-01-01

    Terminally differentiated cells have reduced capacity to repair double strand breaks (DSB), but the molecular mechanism behind this down-regulation is unclear. Here we find that miR-24 is consistently up-regulated during post-mitotic differentiation of hematopoietic cell lines and regulates the histone variant H2AX, a key DSB repair protein that activates cell cycle checkpoint proteins and retains DSB repair factors at DSB foci. The H2AX 3’UTR contains conserved miR-24 binding sites regulated by miR-24. Both H2AX mRNA and protein are substantially reduced during hematopoietic cell terminal differentiation by miR-24 up-regulation both in in vitro differentiated cells and primary human blood cells. miR-24 suppression of H2AX renders cells hypersensitive to γ-irradiation and genotoxic drugs. Antagonizing miR-24 in differentiating cells protects them from DNA damage-induced cell death, while transfecting miR-24 mimics in dividing cells increases chromosomal breaks and unrepaired DNA damage and reduces viability in response to DNA damage. This DNA repair phenotype can be fully rescued by over-expressing miR-24-insensitive H2AX. Therefore, miR-24 up-regulation in post-replicative cells reduces H2AX and thereby renders them highly vulnerable to DNA damage. PMID:19377482

  15. Andrographolide down-regulates hypoxia-inducible factor-1{alpha} in human non-small cell lung cancer A549 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hui-Hsuan [School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Tsai, Chia-Wen [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Chou, Fen-Pi [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Wang, Chau-Jong [Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Hsuan, Shu-Wen [Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, No.89, Wen Hwa 1st St., Rende Shiang, Tainan County 717, Taiwan (China); Wang, Cheng-Kun [E-Chyun Dermatology Clinic, No.70, Sec. 3, Jhonghua E. Rd., East District, Tainan, Taiwan (China); Chen, Jing-Hsien [Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, No.89, Wen Hwa 1st St., Rende Shiang, Tainan County 717, Taiwan (China)

    2011-02-01

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to inhibit non-small cell lung cancer (NSCLC) A549 cell migration and invasion via down-regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Here we demonstrated that Andro inhibited the expression of hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) in A549 cells. HIF-1{alpha} plays an important role in tumor growth, angiogenesis and lymph node metastasis of NSCLC. The Andro-induced decrease of cellular protein level of HIF-1{alpha} was correlated with a rapid ubiquitin-dependent degradation of HIF-1{alpha}, and was accompanied by increased expressions of hydroxyl-HIF-1{alpha} and prolyl hydroxylase (PHD2), and a later decrease of vascular endothelial growth factor (VEGF) upon the treatment of Andro. The Andro-inhibited VEGF expression appeared to be a consequence of HIF-1{alpha} inactivation, because its DNA binding activity was suppressed by Andro. Molecular data showed that all these effects of Andro might be mediated via TGF{beta}1/PHD2/HIF-1{alpha} pathway, as demonstrated by the transfection of TGF{beta}1 overexpression vector and PHD2 siRNA, and the usage of a pharmacological MG132 inhibitor. Furthermore, we elucidated the involvement of Andro in HIF-1{alpha} transduced VEGF expression in A549 cells and other NSCLC cell lines. In conclusion, these results highlighted the potential effects of Andro, which may be developed as a chemotherapeutic or an anti-angiogenesis agent for NSCLC in the future.

  16. Andrographolide down-regulates hypoxia-inducible factor-1α in human non-small cell lung cancer A549 cells

    International Nuclear Information System (INIS)

    Lin, Hui-Hsuan; Tsai, Chia-Wen; Chou, Fen-Pi; Wang, Chau-Jong; Hsuan, Shu-Wen; Wang, Cheng-Kun; Chen, Jing-Hsien

    2011-01-01

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to inhibit non-small cell lung cancer (NSCLC) A549 cell migration and invasion via down-regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Here we demonstrated that Andro inhibited the expression of hypoxia-inducible factor-1α (HIF-1α) in A549 cells. HIF-1α plays an important role in tumor growth, angiogenesis and lymph node metastasis of NSCLC. The Andro-induced decrease of cellular protein level of HIF-1α was correlated with a rapid ubiquitin-dependent degradation of HIF-1α, and was accompanied by increased expressions of hydroxyl-HIF-1α and prolyl hydroxylase (PHD2), and a later decrease of vascular endothelial growth factor (VEGF) upon the treatment of Andro. The Andro-inhibited VEGF expression appeared to be a consequence of HIF-1α inactivation, because its DNA binding activity was suppressed by Andro. Molecular data showed that all these effects of Andro might be mediated via TGFβ1/PHD2/HIF-1α pathway, as demonstrated by the transfection of TGFβ1 overexpression vector and PHD2 siRNA, and the usage of a pharmacological MG132 inhibitor. Furthermore, we elucidated the involvement of Andro in HIF-1α transduced VEGF expression in A549 cells and other NSCLC cell lines. In conclusion, these results highlighted the potential effects of Andro, which may be developed as a chemotherapeutic or an anti-angiogenesis agent for NSCLC in the future.

  17. Nutlin-3 down-regulates retinoblastoma protein expression and inhibits muscle cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Erica M. [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Niu, MengMeng; Bergholz, Johann [Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China); Jim Xiao, Zhi-Xiong, E-mail: jxiao@bu.edu [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China)

    2015-05-29

    The p53 tumor suppressor gene plays a critical role in regulation of proliferation, cell death and differentiation. The MDM2 oncoprotein is a major negative regulator for p53 by binding to and targeting p53 for proteasome-mediated degradation. The small molecule inhibitor, nutlin-3, disrupts MDM2-p53 interaction resulting in stabilization and activation of p53 protein. We have previously shown that nutlin-3 activates p53, leading to MDM2 accumulation as concomitant of reduced retinoblastoma (Rb) protein stability. It is well known that Rb is important in muscle development and myoblast differentiation and that rhabdomyosarcoma (RMS), or cancer of the skeletal muscle, typically harbors MDM2 amplification. In this study, we show that nutlin-3 inhibited myoblast proliferation and effectively prevented myoblast differentiation, as evidenced by lack of expression of muscle differentiation markers including myogenin and myosin heavy chain (MyHC), as well as a failure to form multinucleated myotubes, which were associated with dramatic increases in MDM2 expression and decrease in Rb protein levels. These results indicate that nutlin-3 can effectively inhibit muscle cell differentiation. - Highlights: • Nutlin-3 inhibits myoblast proliferation and prevents differentiation into myotubes. • Nutlin-3 increases MDM2 expression and down-regulates Rb protein levels. • This study has implication in nutlin-3 treatment of rhabdomyosarcomas.

  18. microRNA-145 promotes differentiation in human urothelial carcinoma through down-regulation of syndecan-1

    International Nuclear Information System (INIS)

    Fujii, Tomomi; Shimada, Keiji; Tatsumi, Yoshihiro; Hatakeyama, Kinta; Obayashi, Chiho; Fujimoto, Kiyohide; Konishi, Noboru

    2015-01-01

    A new molecular marker of carcinoma in the urinary bladder is needed as a diagnostic tool or as a therapeutic target. Potential markers include microRNAs (miRNAs), which are short, low molecular weight RNAs 19–24 nt long that regulate genes associated with cell proliferation, differentiation, and development in various cancers. In this study, we investigated the molecular mechanisms by which miR-145 promotes survival of urothelial carcinoma cells and differentiation into multiple lineages. We found miR-145 to regulate expression of syndecan-1, a heparin sulfate proteoglycan. Cell proliferation in the human urothelial carcinoma cell lines T24 and KU7 was assessed by MTS assay. Cellular senescence and apoptosis were measured by senescence-associated β-galactosidase (SA-β-gal) and TUNEL assay, respectively. Quantitative RT-PCR was used to measure mRNA expression of various genes, including syndecan-1, stem cell factors, and markers of differentiation into squamous, glandular, or neuroendocrine cells. Overexpression of miR-145 induced cell senescence, and thus significantly inhibited cell proliferation in T24 and KU7 cells. Syndecan-1 expression diminished, whereas stem cell markers such as SOX2, NANOG, OCT4, and E2F3 increased. miR-145 also up-regulated markers of differentiation into squamous (p63, TP63, and CK5), glandular (MUC-1, MUC-2, and MUC-5 AC), and neuroendocrine cells (NSE and UCHL-1). Finally, expression of miR-145 was down-regulated in high-grade urothelial carcinomas, but not in low-grade tumors. Results indicate that miR-145 suppresses syndecan-1 and, by this mechanism, up-regulates stem cell factors and induces cell senescence and differentiation. We propose that miR-145 may confer stem cell-like properties on urothelial carcinoma cells and thus facilitate differentiation into multiple cell types. The online version of this article (doi:10.1186/s12885-015-1846-0) contains supplementary material, which is available to authorized users

  19. DMBT1 expression is down-regulated in breast cancer

    International Nuclear Information System (INIS)

    Braidotti, P; Pietra, GG; Nuciforo, PG; Mollenhauer, J; Poustka, A; Pellegrini, C; Moro, A; Bulfamante, G; Coggi, G; Bosari, S

    2004-01-01

    We studied the expression of DMBT1 (deleted in malignant brain tumor 1), a putative tumor suppressor gene, in normal, proliferative, and malignant breast epithelium and its possible relation to cell cycle. Sections from 17 benign lesions and 55 carcinomas were immunostained with anti DMBT1 antibody (DMBTh12) and sections from 36 samples, were double-stained also with anti MCM5, one of the 6 pre-replicative complex proteins with cell proliferation-licensing functions. DMBT1 gene expression at mRNA level was assessed by RT-PCR in frozen tissues samples from 39 patients. Normal glands and hyperplastic epithelium in benign lesions displayed a luminal polarized DMBTh12 immunoreactivity. Normal and hyperplastic epithelium adjacent to carcinomas showed a loss of polarization, with immunostaining present in basal and perinuclear cytoplasmic compartments. DMBT1 protein expression was down-regulated in the cancerous lesions compared to the normal and/or hyperplastic epithelium adjacent to carcinomas (3/55 positive carcinomas versus 33/42 positive normal/hyperplastic epithelia; p = 0.0001). In 72% of cases RT-PCR confirmed immunohistochemical results. Most of normal and hyperplastic mammary cells positive with DMBTh12 were also MCM5-positive. The redistribution and up-regulation of DMBT1 in normal and hyperplastic tissues flanking malignant tumours and its down-regulation in carcinomas suggests a potential role in breast cancer. Moreover, the concomitant expression of DMTB1 and MCM5 suggests its possible association with the cell-cycle regulation

  20. Differential Regulation of cGMP Signaling in Human Melanoma Cells at Altered Gravity: Simulated Microgravity Down-Regulates Cancer-Related Gene Expression and Motility

    Science.gov (United States)

    Ivanova, Krassimira; Eiermann, Peter; Tsiockas, Wasiliki; Hemmersbach, Ruth; Gerzer, Rupert

    2018-03-01

    Altered gravity is known to affect cellular function by changes in gene expression and cellular signaling. The intracellular signaling molecule cyclic guanosine-3',5'-monophosphate (cGMP), a product of guanylyl cyclases (GC), e.g., the nitric oxide (NO)-sensitive soluble GC (sGC) or natriuretic peptide-activated GC (GC-A/GC-B), is involved in melanocyte response to environmental stress. NO-sGC-cGMP signaling is operational in human melanocytes and non-metastatic melanoma cells, whereas up-regulated expression of GC-A/GC-B and inducible NO synthase (iNOS) are found in metastatic melanoma cells, the deadliest skin cancer. Here, we investigated the effects of altered gravity on the mRNA expression of NOS isoforms, sGC, GC-A/GC-B and multidrug resistance-associated proteins 4/5 (MRP4/MRP5) as selective cGMP exporters in human melanoma cells with different metastatic potential and pigmentation. A specific centrifuge (DLR, Cologne Germany) was used to generate hypergravity (5 g for 24 h) and a fast-rotating 2-D clinostat (60 rpm) to simulate microgravity values ≤ 0.012 g for 24 h. The results demonstrate that hypergravity up-regulates the endothelial NOS-sGC-MRP4/MRP5 pathway in non-metastatic melanoma cells, but down-regulates it in simulated microgravity when compared to 1 g. Additionally, the suppression of sGC expression and activity has been suggested to correlate inversely to tumor aggressiveness. Finally, hypergravity is ineffective in highly metastatic melanoma cells, whereas simulated microgravity down-regulates predominantly the expression of the cancer-related genes iNOS and GC-A/GC-B (shown additionally on protein levels) as well as motility in comparison to 1 g. The results suggest that future studies in real microgravity can benefit from considering GC-cGMP signaling as possible factor for melanocyte transformation.

  1. Prolonged oxidative stress down-regulates Early B cell factor 1 with inhibition of its tumor suppressive function against cholangiocarcinoma genesis

    Directory of Open Access Journals (Sweden)

    Napat Armartmuntree

    2018-04-01

    Full Text Available Early B cell factor 1 (EBF1 is a transcription factor involved in the differentiation of several stem cell lineages and it is a negative regulator of estrogen receptors. EBF1 is down-regulated in many tumors, and is believed to play suppressive roles in cancer promotion and progression. However, the functional roles of EBF1 in carcinogenesis are unclear. Liver fluke-infection-associated cholangiocarcinoma (CCA is an oxidative stress-driven cancer of bile duct epithelium. In this study, we investigated EBF1 expression in tissues from CCA patients, CCA cell lines (KKU-213, KKU-214 and KKU-156, cholangiocyte (MMNK1 and its oxidative stress-resistant (ox-MMNK1-L cell lines. The formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG was used as an oxidative stress marker. Our results revealed that EBF1 expression was suppressed in cancer cells compared with the individual normal bile duct cells at tumor adjacent areas of CCA tissues. CCA patients with low EBF1 expression and high formation of 8-oxodG were shown to correlate with poor survival. Moreover, EBF1 was suppressed in the oxidative stress-resistant cell line and all of CCA cell lines compared to the cholangiocyte cell line. This suggests that prolonged oxidative stress suppressed EBF1 expression and the reduced EBF1 level may facilitate CCA genesis. To elucidate the significance of EBF1 suppression in CCA genesis, EBF1 expression of the MMNK1 cell line was down-regulated by siRNA technique, and its effects on stem cell properties (CD133 and Oct3/4 expressions, tumorigenic properties (cell proliferation, wound healing and cell migration, estrogen responsive gene (TFF1, estrogen-stimulated wound healing, and cell migration were examined. The results showed that CD133, Oct3/4 and TFF1 expression levels, wound healing, and cell migration of EBF1 knockdown-MMNK1 cells were significantly increased. Also, cell migration of EBF1-knockdown cells was significantly enhanced after 17

  2. Inhibition of disheveled-2 resensitizes cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Ke; Gu, Xiuhui [School of Basic Medical Sciences, Chengdu Medical College, Chengdu (China); Liu, Jing; Zeng, Guodan; Peng, Liaotian; Huang, Houyi; Jiang, Mengju [School of Biomedical Sciences, Chengdu Medical College, Chengdu (China); Yang, Ping; Li, Minhui [School of Basic Medical Sciences, Chengdu Medical College, Chengdu (China); Yang, Yuhan; Wang, Yuanyuan [School of Biomedical Sciences, Chengdu Medical College, Chengdu (China); Peng, Quekun, E-mail: pengquekun@163.com [School of Biomedical Sciences, Chengdu Medical College, Chengdu (China); Zhu, Li, E-mail: 1968403299@qq.com [Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Chengdu Medical College, Chengdu (China); Zhang, Kun, E-mail: zhangkunyyo@163.com [School of Biomedical Sciences, Chengdu Medical College, Chengdu (China)

    2016-09-10

    Cisplatin (CDDP) is currently recommended as the front-line chemotherapeutic agent for lung cancer. However, the resistance to cisplatin is widespread in patients with advanced lung cancer, and the molecular mechanism of such resistance remains incompletely understood. Disheveled (DVL), a key mediator of Wnt/β-catenin, has been linked to cancer progression, while the role of DVL in cancer drug resistance is not clear. Here, we found that DVL2 was over-expressed in cisplatin-resistant human lung cancer cells A549/CDDP compared to the parental A549 cells. Inhibition of DVL2 by its inhibitor (3289-8625) or shDVL2 resensitized A549/CDDP cells to cisplatin. In addition, over-expression of DVL2 in A549 cells increased the protein levels of BCRP, MRP4, and Survivin, which are known to be associated with chemoresistance, while inhibition of DVL2 in A549/CDDP cells decreased these protein levels, and reduced the accumulation and nuclear translocation of β-catenin. In addition, shβ-catenin abolished the DVL2-induced the expression of BCRP, MRP4, and Survivin. Furthermore, our data showed that GSK3β/β-catenin signals were aberrantly activated by DVL2, and inactivation of GSK3β reversed the shDVL2-induced down-regulation of β-catenin. Taken together, these results suggested that inhibition of DVL2 can sensitize cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling and inhibiting BCRP, MRP4, and Survivin expression. It promises a new strategy to chemosensitize cisplatin-induced cytotoxicity in lung cancer. - Highlights: • Inhibition of DVL2 chemosensitizes resistant lung cancer to cisplatin. • DVL2 positively regulated the expression of BCRP, MRP4 and Survivin. • β-catenin mediated the DVL2-induced expression. • DVL2 increased the accumulation and nuclear translocation of β-catenin. • DVL2 up-regulated β-catenin via inhibiting GSK3β.

  3. Inhibition of disheveled-2 resensitizes cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling

    International Nuclear Information System (INIS)

    Luo, Ke; Gu, Xiuhui; Liu, Jing; Zeng, Guodan; Peng, Liaotian; Huang, Houyi; Jiang, Mengju; Yang, Ping; Li, Minhui; Yang, Yuhan; Wang, Yuanyuan; Peng, Quekun; Zhu, Li; Zhang, Kun

    2016-01-01

    Cisplatin (CDDP) is currently recommended as the front-line chemotherapeutic agent for lung cancer. However, the resistance to cisplatin is widespread in patients with advanced lung cancer, and the molecular mechanism of such resistance remains incompletely understood. Disheveled (DVL), a key mediator of Wnt/β-catenin, has been linked to cancer progression, while the role of DVL in cancer drug resistance is not clear. Here, we found that DVL2 was over-expressed in cisplatin-resistant human lung cancer cells A549/CDDP compared to the parental A549 cells. Inhibition of DVL2 by its inhibitor (3289-8625) or shDVL2 resensitized A549/CDDP cells to cisplatin. In addition, over-expression of DVL2 in A549 cells increased the protein levels of BCRP, MRP4, and Survivin, which are known to be associated with chemoresistance, while inhibition of DVL2 in A549/CDDP cells decreased these protein levels, and reduced the accumulation and nuclear translocation of β-catenin. In addition, shβ-catenin abolished the DVL2-induced the expression of BCRP, MRP4, and Survivin. Furthermore, our data showed that GSK3β/β-catenin signals were aberrantly activated by DVL2, and inactivation of GSK3β reversed the shDVL2-induced down-regulation of β-catenin. Taken together, these results suggested that inhibition of DVL2 can sensitize cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling and inhibiting BCRP, MRP4, and Survivin expression. It promises a new strategy to chemosensitize cisplatin-induced cytotoxicity in lung cancer. - Highlights: • Inhibition of DVL2 chemosensitizes resistant lung cancer to cisplatin. • DVL2 positively regulated the expression of BCRP, MRP4 and Survivin. • β-catenin mediated the DVL2-induced expression. • DVL2 increased the accumulation and nuclear translocation of β-catenin. • DVL2 up-regulated β-catenin via inhibiting GSK3β.

  4. 2-Triazenoazaindoles: α novel class of triazenes inducing transcriptional down-regulation of EGFR and HER-2 in human pancreatic cancer cells.

    Science.gov (United States)

    Kreutzer, Jan N; Salvador, Alessia; Diana, Patrizia; Cirrincione, Girolamo; Vedaldi, Daniela; Litchfield, David W; Issinger, Olaf-Georg; Guerra, Barbara

    2012-04-01

    Pancreatic cancer is a complex malignancy arising from the accumulation of genetic and epigenetic defects in the affected cells. Standard chemotherapy for patients with advanced disease shows only modest effects and is associated with considerable toxicity. Overexpression or aberrant activation of members of the epidermal growth factor receptor tyrosine kinase family, which includes EGFR and HER-2, occurs frequently and is associated with multiple drug resistance and decreased patient survival. In this study, we have investigated the therapeutic potential of AS104, a novel compound of the triazene class, with potential inhibitory effects on EGFR. We found that treatment of cells with AS104 causes significant reduction of cell growth and metabolic activity in four human pancreatic cancer cell lines. Furthermore, we show that the AS104-mediated induction of apoptotic cell death is associated with stimulation of autophagy in a dose-dependent manner. Treatment of cells with AS104 results in significant down-regulation of EGFR and HER-2 expression and activity and subsequent inhibition of downstream signaling proteins. Quantitative RT-PCR analysis and assays with proteasome inhibitors revealed that AS104 regulates the expression of EGFR and HER-2 at the transcriptional level. These findings provide for the first time experimental evidence for efficacy of AS104 in the simultaneous transcriptional repression of EGFR and HER-2 genes and suggest that AS104 may have therapeutic potential in the treatment of pancreatic cancers that express high levels of the aforementioned receptor tyrosine kinases.

  5. 2-Triazenoazaindoles: A novel class of triazenes inducing transcriptional down-regulation of EGFR and HER-2 in human pancreatic cancer cells

    Science.gov (United States)

    KREUTZER, JAN N.; SALVADOR, ALESSIA; DIANA, PATRIZIA; CIRRINCIONE, GIROLAMO; VEDALDI, DANIELA; LITCHFIELD, DAVID W.; ISSINGER, OLAF-GEORG; GUERRA, BARBARA

    2012-01-01

    Pancreatic cancer is a complex malignancy arising from the accumulation of genetic and epigenetic defects in the affected cells. Standard chemotherapy for patients with advanced disease shows only modest effects and is associated with considerable toxicity. Overexpression or aberrant activation of members of the epidermal growth factor receptor tyrosine kinase family, which includes EGFR and HER-2, occurs frequently and is associated with multiple drug resistance and decreased patient survival. In this study, we have investigated the therapeutic potential of AS104, a novel compound of the triazene class, with potential inhibitory effects on EGFR. We found that treatment of cells with AS104 causes significant reduction of cell growth and metabolic activity in four human pancreatic cancer cell lines. Furthermore, we show that the AS104-mediated induction of apoptotic cell death is associated with stimulation of autophagy in a dose-dependent manner. Treatment of cells with AS104 results in significant down-regulation of EGFR and HER-2 expression and activity and subsequent inhibition of downstream signaling proteins. Quantitative RT-PCR analysis and assays with proteasome inhibitors revealed that AS104 regulates the expression of EGFR and HER-2 at the transcriptional level. These findings provide for the first time experimental evidence for efficacy of AS104 in the simultaneous transcriptional repression of EGFR and HER-2 genes and suggest that AS104 may have therapeutic potential in the treatment of pancreatic cancers that express high levels of the aforementioned receptor tyrosine kinases. PMID:22134789

  6. Circumvention of Mcl-1-dependent drug resistance by simultaneous Chk1 and MEK1/2 inhibition in human multiple myeloma cells.

    Science.gov (United States)

    Pei, Xin-Yan; Dai, Yun; Felthousen, Jessica; Chen, Shuang; Takabatake, Yukie; Zhou, Liang; Youssefian, Leena E; Sanderson, Michael W; Bodie, Wesley W; Kramer, Lora B; Orlowski, Robert Z; Grant, Steven

    2014-01-01

    The anti-apoptotic protein Mcl-1 plays a major role in multiple myeloma (MM) cell survival as well as bortezomib- and microenvironmental forms of drug resistance in this disease. Consequently, there is a critical need for strategies capable of targeting Mcl-1-dependent drug resistance in MM. The present results indicate that a regimen combining Chk1 with MEK1/2 inhibitors effectively kills cells displaying multiple forms of drug resistance stemming from Mcl-1 up-regulation in association with direct transcriptional Mcl-1 down-regulation and indirect disabling of Mcl-1 anti-apoptotic function through Bim up-regulation and increased Bim/Mcl-1 binding. These actions release Bak from Mcl-1, accompanied by Bak/Bax activation. Analogous events were observed in both drug-naïve and acquired bortezomib-resistant MM cells displaying increased Mcl-1 but diminished Bim expression, or cells ectopically expressing Mcl-1. Moreover, concomitant Chk1 and MEK1/2 inhibition blocked Mcl-1 up-regulation induced by IL-6/IGF-1 or co-culture with stromal cells, effectively overcoming microenvironment-related drug resistance. Finally, this regimen down-regulated Mcl-1 and robustly killed primary CD138+ MM cells, but not normal hematopoietic cells. Together, these findings provide novel evidence that this targeted combination strategy could be effective in the setting of multiple forms of Mcl-1-related drug resistance in MM.

  7. Circumvention of Mcl-1-dependent drug resistance by simultaneous Chk1 and MEK1/2 inhibition in human multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Xin-Yan Pei

    Full Text Available The anti-apoptotic protein Mcl-1 plays a major role in multiple myeloma (MM cell survival as well as bortezomib- and microenvironmental forms of drug resistance in this disease. Consequently, there is a critical need for strategies capable of targeting Mcl-1-dependent drug resistance in MM. The present results indicate that a regimen combining Chk1 with MEK1/2 inhibitors effectively kills cells displaying multiple forms of drug resistance stemming from Mcl-1 up-regulation in association with direct transcriptional Mcl-1 down-regulation and indirect disabling of Mcl-1 anti-apoptotic function through Bim up-regulation and increased Bim/Mcl-1 binding. These actions release Bak from Mcl-1, accompanied by Bak/Bax activation. Analogous events were observed in both drug-naïve and acquired bortezomib-resistant MM cells displaying increased Mcl-1 but diminished Bim expression, or cells ectopically expressing Mcl-1. Moreover, concomitant Chk1 and MEK1/2 inhibition blocked Mcl-1 up-regulation induced by IL-6/IGF-1 or co-culture with stromal cells, effectively overcoming microenvironment-related drug resistance. Finally, this regimen down-regulated Mcl-1 and robustly killed primary CD138+ MM cells, but not normal hematopoietic cells. Together, these findings provide novel evidence that this targeted combination strategy could be effective in the setting of multiple forms of Mcl-1-related drug resistance in MM.

  8. Aspirin down Regulates Hepcidin by Inhibiting NF-κB and IL6/JAK2/STAT3 Pathways in BV-2 Microglial Cells Treated with Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Wan-Ying Li

    2016-12-01

    Full Text Available Aspirin down regulates transferrin receptor 1 (TfR1 and up regulates ferroportin 1 (Fpn1 and ferritin expression in BV-2 microglial cells treated without lipopolysaccharides (LPS, as well as down regulates hepcidin and interleukin 6 (IL-6 in cells treated with LPS. However, the relevant mechanisms are unknown. Here, we investigate the effects of aspirin on expression of hepcidin and iron regulatory protein 1 (IRP1, phosphorylation of Janus kinase 2 (JAK2, signal transducer and activator of transcription 3 (STAT3 and P65 (nuclear factor-κB, and the production of nitric oxide (NO in BV-2 microglial cells treated with and without LPS. We demonstrated that aspirin inhibited hepcidin mRNA as well as NO production in cells treated with LPS, but not in cells without LPS, suppresses IL-6, JAK2, STAT3, and P65 (nuclear factor-κB phosphorylation and has no effect on IRP1 in cells treated with or without LPS. These findings provide evidence that aspirin down regulates hepcidin by inhibiting IL6/JAK2/STAT3 and P65 (nuclear factor-κB pathways in the cells under inflammatory conditions, and imply that an aspirin-induced reduction in TfR1 and an increase in ferritin are not associated with IRP1 and NO.

  9. Putative tumour-suppressor gene DAB2 is frequently down regulated by promoter hypermethylation in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Tong, Joanna H; Lo, Kwok W; To, Ka F; Ng, David C; Chau, Shuk L; So, Ken K; Leung, Patrick P; Lee, Tin L; Lung, Raymond W; Chan, Michael W; Chan, Anthony W

    2010-01-01

    Human Disabled-2 (DAB2), is a multi-function signalling molecule that it is frequently down-regulated in human cancers. We aimed to investigate the possible tumour suppressor effect of DAB2 in nasopharyngeal carcinoma (NPC). We studied the expression of DAB2 in NPC cell lines, xenografts and primary tumour samples. The status of promoter methylation was assessed by methylation specific PCR and bisulfite sequencing. The functional role of DAB2 in NPC was investigated by re-introducing DAB2 expression into NPC cell line C666-1. Decrease or absent of DAB2 transcript was observed in NPC cell lines and xenografts. Loss of DAB2 protein expression was seen in 72% (33/46) of primary NPC as demonstrated by immunohistochemistry. Aberrant DAB2 promoter methylation was detected in 65.2% (30/46) of primary NPC samples by methylation specific PCR. Treatment of the DAB2 negative NPC cell line C666-1 with 5-aza-2'-deoxycytidine resulted in restoration of DAB2 expression in a dose-dependent manner. Overexpression of DAB2 in NPC cell line C666-1 resulted in reduced growth rate and 35% reduction in anchorage-dependent colony formation, and inhibition of serum-induced c-Fos expression compared to vector-transfected controls. Over expression of DAB2 resulted in alterations of multiple pathways as demonstrated by expression profiling and functional network analysis, which confirmed the role of DAB2 as an adaptor molecule involved in multiple receptor-mediated signalling pathways. We report the frequent down regulation of DAB2 in NPC and the promoter hypermethylation contributes to the loss of expression of DAB2. This is the first study demonstrating frequent DAB2 promoter hypermethylation in human cancer. Our functional studies support the putative tumour suppressor effect of DAB2 in NPC cells

  10. [Effect of down-regulation of HE4 gene expression on biologic behavior of ovarian cancer cells].

    Science.gov (United States)

    Zhou, Lei; Xiao, Ran; Chen, Ying; Zhang, Jing; Lu, Ren-quan; Guo, Lin

    2013-10-01

    To investigate the effects of HE4 gene knockdown on the proliferation, adhesion and invasion of the ovarian cancer cells SKOV3. The knockdown of HE4 gene was performed by RNAi technology. The recombinant plasmids (pSUPER-HE4 shDNAs) were constructed and transfected into human ovarian cancer cells SKOV3. HE4 expression was then identified by real-time PCR and Western blot analysis. The invasion and adhesion ability of transduced cells were determined. In addition, cell proliferation and growth were analyzed by colonies formation assay. Knockdown of HE4 was achieved, and further confirmed by real-time PCR and Western blot. The proliferation of HE4-down-regulated cells was not affected, but the invasion ability of the transfected cells was reduced (P cells.

  11. miR-146a down-regulation alleviates H2O2-induced cytotoxicity of PC12 cells by regulating MCL1/JAK/STAT pathway : miR-146a down-regulation relieves H2O2-induced PC12 cells cytotoxicity by MCL1/JAK/STAT.

    Science.gov (United States)

    Yang, Xuecheng; Mao, Xin; Ding, Xuemei; Guan, Fengju; Jia, Yuefeng; Luo, Lei; Li, Bin; Tan, Hailin; Cao, Caixia

    2018-02-26

    Oxidative stress and miRNAs have been confirmed to play an important role in neurological diseases. The study aimed to explore the underlying effect and mechanisms of miR-146a in H 2 O 2 -induced injury of PC12 cells. Here, PC12 cells were stimulated with 200 μM of H 2 O 2 to construct oxidative injury model. Cell injury was evaluated on the basis of the changes in cell viability, migration, invasion, apoptosis, and DNA damage. Results revealed that miR-146a expression was up-regulated in H 2 O 2 -induced PC12 cells. Functional analysis showed that down-regulation of miR-146a alleviated H 2 O 2 -induced cytotoxicity in PC12 cells. Dual-luciferase reporter and western blot assay verified that MCL1 was a direct target gene of miR-146a. Moreover, anti-miR-146a-mediated suppression on cell cytotoxicity was abated following MCL1 knockdown in H 2 O 2 -induced PC12 cells. Furthermore, MCL1 activated JAK/STAT signaling pathway and MCL1 overexpression attenuated H 2 O 2 -induced cytotoxicity in PC12 cells by JAK/STAT signaling pathway. In conclusion, this study suggested that suppression of miR-146a abated H 2 O 2 -induced cytotoxicity in PC12 cells via regulating MCL1/JAK/STAT pathway.

  12. Down-regulation of hTERT and Cyclin D1 transcription via PI3K/Akt and TGF-β pathways in MCF-7 Cancer cells with PX-866 and Raloxifene

    Energy Technology Data Exchange (ETDEWEB)

    Peek, Gregory W. [Department of Biology, University of Alabama at Birmingham, Birmingham, AL (United States); Tollefsbol, Trygve O., E-mail: trygve@uab.edu [Department of Biology, University of Alabama at Birmingham, Birmingham, AL (United States); Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL (United States); Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL (United States); Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL (United States); Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL (United States)

    2016-05-15

    Human telomerase reverse transcriptase (hTERT) is the catalytic and limiting component of telomerase and also a transcription factor. It is critical to the integrity of the ends of linear chromosomes and to the regulation, extent and rate of cell cycle progression in multicellular eukaryotes. The level of hTERT expression is essential to a wide range of bodily functions and to avoidance of disease conditions, such as cancer, that are mediated in part by aberrant level and regulation of cell cycle proliferation. Value of a gene in regulation depends on its ability to both receive input from multiple sources and transmit signals to multiple effectors. The expression of hTERT and the progression of the cell cycle have been shown to be regulated by an extensive network of gene products and signaling pathways, including the PI3K/Akt and TGF-β pathways. The PI3K inhibitor PX-866 and the competitive estrogen receptor ligand raloxifene have been shown to modify progression of those pathways and, in combination, to decrease proliferation of estrogen receptor positive (ER+) MCF-7 breast cancer cells. We found that combinations of modulators of those pathways decreased not only hTERT transcription but also transcription of additional essential cell cycle regulators such as Cyclin D1. By evaluating known expression profile signatures for TGF-β pathway diversions, we confirmed additional genes such as heparin-binding epidermal growth factor-like growth factor (HB EGF) by which those pathways and their perturbations may also modify cell cycle progression. - Highlights: • PX-866 and raloxifene affect the PI3K/Akt and TGF-β pathways. • PX-866 and raloxifene down-regulate genes up-regulated in cancer. • PX-866 and raloxifene decrease transcription of hTERT and Cyclin D1. • Pathological transcription signatures can identify new defense mechanisms.

  13. MicroRNA-205 suppresses the oral carcinoma oncogenic activity via down-regulation of Axin-2 in KB human oral cancer cell.

    Science.gov (United States)

    Kim, Jae-Sung; Park, Sun-Young; Lee, Seul Ah; Park, Min-Gyeong; Yu, Sun-Kyoung; Lee, Myoung-Hwa; Park, Mi-Ra; Kim, Su-Gwan; Oh, Ji-Su; Lee, Sook-Young; Kim, Chun Sung; Kim, Heung-Joong; Chun, Hong Sung; Kim, Jin-Soo; Moon, Sung-Min; Kim, Do Kyung

    2014-02-01

    MicroRNA (miRNA) is a small noncoding RNA molecule, 19-25 nucleotides in length, which regulates several pathways including cell development, cell proliferation, carcinogenesis, apoptosis, etc. In this study, the over-expression of microRNA-205 (miR-205) increased the number of apoptotic cells by at least 4 times compared to the control. In addition, over-expressed miRNA in KB oral cancer cells triggered apoptosis via the caspase cascade, including the cleavage of caspase-9, caspase-7, caspase-3, and PARP. Flow cytometry showed that apoptotic cell death was increased significantly by 35.33% in KB oral cancer cells with over-expressed miR-205 compared to the control. The microarray data showed that axis inhibitor protein 2 (Axin2) was down-regulated in KB oral cancer cells transfected with miR-205. In addition, Axin2 was down-regulated by approximately 50% by over-expressed miR-205 at both the mRNA and protein levels. Interestingly, Axin2 was up-regulated in KB oral cancer compared to human normal oral keratinocytes. Furthermore, the cell cytotoxicity and apoptotic population of KB oral cancer cells were increased significantly after Axin2 siRNA transfection. These results suggest that Axin2 is might be as potential oncogene in KB oral cancer cells. The luciferase assay showed that over-expressed miR-205 in KB oral cancer cells suppressed AXIN2 expression through an interaction with its own binding site at AXIN2 3'UTR (64-92). These results suggest that miR-205 is a novel anti-oncogenic miRNA in KB oral cancer cells, and may have potential applications in oral cancer therapy.

  14. Salinomycin enhances cisplatin-induced cytotoxicity in human lung cancer cells via down-regulation of AKT-dependent thymidylate synthase expression.

    Science.gov (United States)

    Ko, Jen-Chung; Zheng, Hao-Yu; Chen, Wen-Ching; Peng, Yi-Shuan; Wu, Chia-Hung; Wei, Chia-Li; Chen, Jyh-Cheng; Lin, Yun-Wei

    2016-12-15

    Salinomycin, a polyether antibiotic, acts as a highly selective potassium ionophore and has anticancer activity on various cancer cell lines. Cisplatin has been proved as chemotherapy drug for advanced human non-small cell lung cancer (NSCLC). Thymidylate synthase (TS) is a key enzyme in the pyrimidine salvage pathway, and increased expression of TS is thought to be associated with resistance to cisplatin. In this study, we showed that salinomycin (0.5-2μg/mL) treatment down-regulating of TS expression in an AKT inactivation manner in two NSCLC cell lines, human lung adenocarcinoma A549 and squamous cell carcinoma H1703 cells. Knockdown of TS using small interfering RNA (siRNA) or inhibiting AKT activity with PI3K inhibitor LY294002 enhanced the cytotoxicity and cell growth inhibition of salinomycin. A combination of cisplatin and salinomycin resulted in synergistic enhancement of cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced activation of phospho-AKT, and TS expression. Overexpression of a constitutive active AKT (AKT-CA) expression vector reversed the salinomycin and cisplatin-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in salinomycin and cisplatin cotreated cells. Our findings suggested that the down-regulation of AKT-mediated TS expression by salinomycin enhanced the cisplatin-induced cytotoxicity in NSCLC cells. These results may provide a rationale to combine salinomycin with cisplatin for lung cancer treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Down-regulation of cellular FLICE-inhibitory protein (Long Form contributes to apoptosis induced by Hsp90 inhibition in human lung cancer cells

    Directory of Open Access Journals (Sweden)

    Wang Qilin

    2012-12-01

    Full Text Available Abstract Background Cellular FLICE-Inhibitory Protein (long form, c-FLIPL is a critical negative regulator of death receptor-mediated apoptosis. Overexpression of c-FLIPL has been reported in many cancer cell lines and is associated with chemoresistance. In contrast, down-regulation of c-FLIP may drive cancer cells into cellular apoptosis. This study aims to demonstrate that inhibition of the heat shock protein 90 (Hsp90 either by inhibitors geldanamycin/17-N-Allylamino-17-demethoxygeldanamycin (GA/17-AAG or siRNA technique in human lung cancer cells induces c-FLIPL degradation and cellular apoptosis through C-terminus of Hsp70-interacting protein (CHIP-mediated mechanisms. Methods Calu-1 and H157 cell lines (including H157-c-FLIPL overexpressing c-FLIPL and control cell H157-lacZ were treated with 17-AAG and the cell lysates were prepared to detect the given proteins by Western Blot and the cell survival was assayed by SRB assay. CHIP and Hsp90 α/β proteins were knocked down by siRNA technique. CHIP and c-FLIPL plasmids were transfected into cells and immunoprecipitation experiments were performed to testify the interactions between c-FLIPL, CHIP and Hsp90. Results c-FLIPL down-regulation induced by 17-AAG can be reversed with the proteasome inhibitor MG132, which suggested that c-FLIPL degradation is mediated by a ubiquitin-proteasome system. Inhibition of Hsp90α/β reduced c-FLIPL level, whereas knocking down CHIP expression with siRNA technique inhibited c-FLIPL degradation. Furthermore, c-FLIPL and CHIP were co-precipitated in the IP complexes. In addition, overexpression of c-FLIPL can rescue cancer cells from apoptosis. When 17-AAG was combined with an anti-cancer agent celecoxib(CCB, c-FLIPL level declined further and there was a higher degree of caspase activation. Conclusion We have elucidated c-FLIPL degradation contributes to apoptosis induced by Hsp90 inhibition, suggesting c-FLIP and Hsp90 may be the promising combined targets

  16. Down-regulation of HSP40 gene family following OCT4B1 suppression in human tumor cell lines

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Mirzaei

    2016-02-01

    Full Text Available Objective(s: The OCT4B1, as one of OCT4 variants, is expressed in cancer cell lines and tissues more than other variants and plays an important role in apoptosis and stress (heat shock protein pathways. The present study was designed to determine the effects of OCT4B1 silencing on expressional profile of HSP40 gene family expression in three different human tumor cell lines. Materials and Methods: The OCT4B1 expression was suppressed by specific siRNA transfection in AGS (gastric adenocarcinoma, 5637 (bladder tumor and U-87MG (brain tumor cell lines employing Lipofectamine reagent. Real-time PCR array technique was employed for RNA qualification. The fold changes were calculated using RT2 Profiler PCR array data analysis software version 3.5. Results: Our results indicated that fifteen genes (from 36 studied genes were down-regulated and two genes (DNAJC11 and DNAJC5B were up-regulated in all three studied tumor cell lines by approximately more than two folds. The result of other studied genes (19 genes showed different expressional pattern (up or down-expression based on tumor cell lines. Conclusion: According to the findings of the present study, we may suggest that there is a direct correlation between OCT4B1 expression in tumor cell lines (and tissues and HSP40 family gene expressions to escape from apoptosis and cancer expansion.

  17. MiR-128b is down-regulated in gastric cancer and negatively ...

    Indian Academy of Sciences (India)

    2016-02-04

    Feb 4, 2016 ... found that miR-128b expression was down-regulated in tissues from 18 GC patients and 3 carcinoma cell lines. ... study reported that miRNA-128 promoted cell proliferation ... ed with 10% fetal bovine serum (Hyclone, Logan,.

  18. Triptolide inhibits transcription of hTERT through down-regulation of transcription factor specificity protein 1 in primary effusion lymphoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Long, Cong; Wang, Jingchao [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Guo, Wei [Department of Pathology and Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Wang, Huan; Wang, Chao; Liu, Yu [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Sun, Xiaoping, E-mail: xsun6@whu.edu.cn [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); State Key Laboratory of Virology, Wuhan University, Wuhan, 430072 (China)

    2016-01-01

    Primary effusion lymphoma (PEL) is a rare and aggressive non-Hodgkin's lymphoma. Human telomerase reverse transcriptase (hTERT), a key component responsible for the regulation of telomerase activity, plays important roles in cellular immortalization and cancer development. Triptolide purified from Tripterygium extracts displays a broad-spectrum bioactivity profile, including immunosuppressive, anti-inflammatory, and anti-tumor. In this study, it is investigated whether triptolide reduces hTERT expression and suppresses its activity in PEL cells. The mRNA and protein levels of hTERT were examined by real time-PCR and Western blotting, respectively. The activity of hTERT promoter was determined by Dual luciferase reporter assay. Our results demonstrated that triptolide decreased expression of hTERT at both mRNA and protein levels. Further gene sequence analysis indicated that the activity of hTERT promoter was suppressed by triptolide. Triptolide also reduced the half-time of hTERT. Additionally, triptolide inhibited the expression of transcription factor specificity protein 1(Sp1) in PEL cells. Furthermore, knock-down of Sp1 by using specific shRNAs resulted in down-regulation of hTERT transcription and protein expression levels. Inhibition of Sp1 by specific shRNAs enhanced triptolide-induced cell growth inhibition and apoptosis. Collectively, our results demonstrate that the inhibitory effect of triptolide on hTERT transcription is possibly mediated by inhibition of transcription factor Sp1 in PEL cells. - Highlights: • Triptolide reduces expression of hTERT by decreasing its transcription level. • Triptolide reduces promoter activity and stability of hTERT. • Triptolide down-regulates expression of Sp1. • Special Sp1 shRNAs inhibit transcription and protein expression of hTERT. • Triptolide and Sp1 shRNA2 induce cell proliferation inhibition and apoptosis.

  19. Protein Kinase C-{delta} mediates down-regulation of heterogeneous nuclear ribonucleoprotein K protein: involvement in apoptosis induction

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng-Hou [NO.3 People' s Hospital affiliated to Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 201900 (China); The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Wu, Ying-Li [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Zhao, Meng [Institute of Health Science, SJTU-SM/Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai (China); Liu, Chuan-Xu; Wang, Li-Shun [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Chen, Guo-Qiang, E-mail: chengq@shsmu.edu.cn [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Institute of Health Science, SJTU-SM/Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai (China)

    2009-11-15

    We reported previously that NSC606985, a camptothecin analogue, induces apoptosis of acute myeloid leukemia (AML) cells through proteolytic activation of protein kinase C delta ({Delta}PKC-{delta}). By subcellular proteome analysis, heterogeneous nuclear ribonucleoprotein K (hnRNP K) was identified as being significantly down-regulated in NSC606985-treated leukemic NB4 cells. HnRNP K, a docking protein for DNA, RNA, and transcriptional or translational molecules, is implicated in a host of processes involving the regulation of gene expression. However, the molecular mechanisms of hnRNP K reduction and its roles during apoptosis are still not understood. In the present study, we found that, following the appearance of the {Delta}PKC-{delta}, hnRNP K protein was significantly down-regulated in NSC606985, doxorubicin, arsenic trioxide and ultraviolet-induced apoptosis. We further provided evidence that {Delta}PKC-{delta} mediated the down-regulation of hnRNP K protein during apoptosis: PKC-{delta} inhibitor could rescue the reduction of hnRNP K; hnRNP K failed to be decreased in PKC-{delta}-deficient apoptotic KG1a cells; conditional induction of {Delta}PKC-{delta} in U937T cells directly down-regulated hnRNP K protein. Moreover, the proteasome inhibitor also inhibited the down-regulation of hnRNP K protein by apoptosis inducer and the conditional expression of {Delta}PKC-{delta}. More intriguingly, the suppression of hnRNP K with siRNA transfection significantly induced apoptosis. To our knowledge, this is the first demonstration that proteolytically activated PKC-{delta} down-regulates hnRNP K protein in a proteasome-dependent manner, which plays an important role in apoptosis induction.

  20. Neural cell adhesion molecule-180-mediated homophilic binding induces epidermal growth factor receptor (EGFR) down-regulation and uncouples the inhibitory function of EGFR in neurite outgrowth

    DEFF Research Database (Denmark)

    Povlsen, Gro Klitgaard; Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    The neural cell adhesion molecule (NCAM) plays important roles in neuronal development, regeneration, and synaptic plasticity. NCAM homophilic binding mediates cell adhesion and induces intracellular signals, in which the fibroblast growth factor receptor plays a prominent role. Recent studies...... this NCAM-180-induced EGFR down-regulation involves increased EGFR ubiquitination and lysosomal EGFR degradation. Furthermore, NCAM-180-mediated EGFR down-regulation requires NCAM homophilic binding and interactions of the cytoplasmic domain of NCAM-180 with intracellular interaction partners, but does...

  1. Regulation of hTERT by BCR-ABL at multiple levels in K562 cells

    International Nuclear Information System (INIS)

    Chai, Juin Hsien; Zhang, Yong; Tan, Wei Han; Chng, Wee Joo; Li, Baojie; Wang, Xueying

    2011-01-01

    The cytogenetic characteristic of Chronic Myeloid Leukemia (CML) is the formation of the Philadelphia chromosome gene product, BCR-ABL. Given that BCR-ABL is the specific target of Gleevec in CML treatment, we investigated the regulation of the catalytic component of telomerase, hTERT, by BCR-ABL at multiple levels in K562 cells. Molecular techniques such as over expression, knockdown, real-time PCR, immunoprecipitation, western blotting, reporter assay, confocal microscopy, telomerase assays and microarray were used to suggest that hTERT expression and activity is modulated by BCR-ABL at multiple levels. Our results suggest that BCR-ABL plays an important role in regulating hTERT in K562 (BCR-ABL positive human leukemia) cells. When Gleevec inhibited the tyrosine kinase activity of BCR-ABL, phosphorylation of hTERT was downregulated, therefore suggesting a positive correlation between BCR-ABL and hTERT. Gleevec treatment inhibited hTERT at mRNA level and significantly reduced telomerase activity (TA) in K562 cells, but not in HL60 or Jurkat cells (BCR-ABL negative cells). We also demonstrated that the transcription factor STAT5a plays a critical role in hTERT gene regulation in K562 cells. Knockdown of STAT5a, but not STAT5b, resulted in a marked downregulation of hTERT mRNA level, TA and hTERT protein level in K562 cells. Furthermore, translocation of hTERT from nucleoli to nucleoplasm was observed in K562 cells induced by Gleevec. Our data reveal that BCR-ABL can regulate TA at multiple levels, including transcription, post-translational level, and proper localization. Thus, suppression of cell growth and induction of apoptosis by Gleevec treatment may be partially due to TA inhibition. Additionally, we have identified STAT5a as critical mediator of the hTERT gene expression in BCR-ABL positive CML cells, suggesting that targeting STAT5a may be a promising therapeutic strategy for BCR-ABL positive CML patients

  2. Long-term load duration induces N-cadherin down-regulation and loss of cell phenotype of nucleus pulposus cells in a disc bioreactor culture.

    Science.gov (United States)

    Li, Pei; Zhang, Ruijie; Wang, Liyuan; Gan, Yibo; Xu, Yuan; Song, Lei; Luo, Lei; Zhao, Chen; Zhang, Chengmin; Ouyang, Bin; Tu, Bing; Zhou, Qiang

    2017-04-30

    Long-term exposure to a mechanical load causes degenerative changes in the disc nucleus pulposus (NP) tissue. A previous study demonstrated that N-cadherin (N-CDH)-mediated signalling can preserve the NP cell phenotype. However, N-CDH expression and the resulting phenotype alteration in NP cells under mechanical compression remain unclear. The present study investigated the effects of the compressive duration on N-CDH expression and on the phenotype of NP cells in an ex vivo disc organ culture. Porcine discs were organ cultured in a self-developed mechanically active bioreactor for 7 days. The discs were subjected to different dynamic compression durations (1 and 8 h at a magnitude of 0.4 MPa and frequency of 1.0 Hz) once per day. Discs that were not compressed were used as controls. The results showed that long-term compression duration (8 h) significantly down-regulated the expression of N-CDH and NP-specific molecule markers (Brachyury, Laminin, Glypican-3 and Keratin 19), attenuated Alcian Blue staining intensity, decreased glycosaminoglycan (GAG) and hydroxyproline (HYP) contents and decreased matrix macromolecule (aggrecan and collagen II) expression compared with the short-term compression duration (1 h). Taken together, these findings demonstrate that long-term load duration can induce N-CDH down-regulation, loss of normal cell phenotype and result in attenuation of NP-related matrix synthesis in NP cells. © 2017 The Author(s).

  3. Curcumin exhibits anti-tumor effect and attenuates cellular migration via Slit-2 mediated down-regulation of SDF-1 and CXCR4 in endometrial adenocarcinoma cells.

    Science.gov (United States)

    Sirohi, Vijay Kumar; Popli, Pooja; Sankhwar, Pushplata; Kaushal, Jyoti Bala; Gupta, Kanchan; Manohar, Murli; Dwivedi, Anila

    2017-06-01

    Although curcumin shows anti-proliferative and anti-inflammatory activities in various cancers, the effect of curcumin on cellular migration in endometrial adenocarcinoma cells remains to be understood. The current investigation was aimed to explore the anti-proliferative and anti-migratory effects of curcumin and its mechanism of action in endometrial cancer cells. Our in-vitro and in-vivo experimental studies showed that curcumin inhibited the proliferation of endometrial cancer cells and suppressed the tumor growth in Ishikawa xenograft mouse model. Curcumin induced ROS-mediated apoptosis in endometrial cancer cells. Curcumin suppressed the migration rate of Ishikawa and Hec-1B cells as analyzed by scratch wound assay. In transwell migration studies, knock down of Slit-2 reversed the anti-migratory effect of curcumin in these cell lines. Curcumin significantly up-regulated the expression of Slit-2 in Ishikawa, Hec-1B and primary endometrial cancer cells while it down-regulated the expression of stromal cell-derived factor-1 (SDF-1) and CXCR4 which in turn, suppressed the expression of matrix metallopeptidases (MMP) 2 and 9, thus attenuating the migration of endometrial cancer cells. In summary, we have demonstrated that curcumin has inhibitory effect on cellular migration via Slit-2 mediated down-regulation of CXCR4, SDF-1, and MMP2/MMP9 in endometrial carcinoma cells. These findings helped explore the role of Slit-2 in endometrial cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Inhibition of disheveled-2 resensitizes cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling.

    Science.gov (United States)

    Luo, Ke; Gu, Xiuhui; Liu, Jing; Zeng, Guodan; Peng, Liaotian; Huang, Houyi; Jiang, Mengju; Yang, Ping; Li, Minhui; Yang, Yuhan; Wang, Yuanyuan; Peng, Quekun; Zhu, Li; Zhang, Kun

    2016-09-10

    Cisplatin (CDDP) is currently recommended as the front-line chemotherapeutic agent for lung cancer. However, the resistance to cisplatin is widespread in patients with advanced lung cancer, and the molecular mechanism of such resistance remains incompletely understood. Disheveled (DVL), a key mediator of Wnt/β-catenin, has been linked to cancer progression, while the role of DVL in cancer drug resistance is not clear. Here, we found that DVL2 was over-expressed in cisplatin-resistant human lung cancer cells A549/CDDP compared to the parental A549 cells. Inhibition of DVL2 by its inhibitor (3289-8625) or shDVL2 resensitized A549/CDDP cells to cisplatin. In addition, over-expression of DVL2 in A549 cells increased the protein levels of BCRP, MRP4, and Survivin, which are known to be associated with chemoresistance, while inhibition of DVL2 in A549/CDDP cells decreased these protein levels, and reduced the accumulation and nuclear translocation of β-catenin. In addition, shβ-catenin abolished the DVL2-induced the expression of BCRP, MRP4, and Survivin. Furthermore, our data showed that GSK3β/β-catenin signals were aberrantly activated by DVL2, and inactivation of GSK3β reversed the shDVL2-induced down-regulation of β-catenin. Taken together, these results suggested that inhibition of DVL2 can sensitize cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling and inhibiting BCRP, MRP4, and Survivin expression. It promises a new strategy to chemosensitize cisplatin-induced cytotoxicity in lung cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Caveolin-1 down-regulation is required for Wnt5a-Frizzled 2 signalling in Ha-RasV12 -induced cell transformation.

    Science.gov (United States)

    Lin, Hsiu-Kuan; Lin, Hsi-Hui; Chiou, Yu-Wei; Wu, Ching-Lung; Chiu, Wen-Tai; Tang, Ming-Jer

    2018-05-01

    Caveolin-1 (Cav1) is down-regulated during MK4 (MDCK cells harbouring inducible Ha-Ras V12 gene) transformation by Ha-Ras V12 . Cav1 overexpression abrogates the Ha-Ras V12 -driven transformation of MK4 cells; however, the targeted down-regulation of Cav1 is not sufficient to mimic this transformation. Cav1-silenced cells, including MK4/shCav1 cells and MDCK/shCav1 cells, showed an increased cell area and discontinuous junction-related proteins staining. Cellular and mechanical transformations were completed when MDCK/shCav1 cells were treated with medium conditioned by MK4 cells treated with IPTG (MK4+I-CM) but not with medium conditioned by MK4 cells. Nanoparticle tracking analysis showed that Ha-Ras V12 -inducing MK4 cells increased exosome-like microvesicles release compared with their normal counterparts. The cellular and mechanical transformation activities of MK4+I-CM were abolished after heat treatment and exosome depletion and were copied by exosomes derived from MK4+I-CM (MK4+I-EXs). Wnt5a, a downstream product of Ha-Ras V12 , was markedly secreted by MK4+I-CM and MK4+I-EXs. Suppression of Wnt5a expression and secretion using the porcupine inhibitor C59 or Wnt5a siRNA inhibited the Ha-Ras V12 - and MK4+I-CM-induced transformation of MK4 cells and MDCK/shCav1 cells, respectively. Cav1 down-regulation, either by Ha-Ras V12 or targeted shRNA, increased frizzled-2 (Fzd2) protein levels without affecting its mRNA levels, suggesting a novel role of Cav1 in negatively regulating Fzd2 expression. Additionally, silencing Cav1 facilitated the internalization of MK4+I-EXs in MDCK cells. These data suggest that Cav1-dependent repression of Fzd2 and exosome uptake is potentially relevant to its antitransformation activity, which hinders the activation of Ha-Ras V12 -Wnt5a-Stat3 pathway. Altogether, these results suggest that both decreasing Cav1 and increasing exosomal Wnt5a must be implemented during Ha-Ras V12 -driven cell transformation. © 2018 The Authors

  6. Down-regulation of the Antisense Mitochondrial Non-coding RNAs (ncRNAs) Is a Unique Vulnerability of Cancer Cells and a Potential Target for Cancer Therapy*

    Science.gov (United States)

    Vidaurre, Soledad; Fitzpatrick, Christopher; Burzio, Verónica A.; Briones, Macarena; Villota, Claudio; Villegas, Jaime; Echenique, Javiera; Oliveira-Cruz, Luciana; Araya, Mariela; Borgna, Vincenzo; Socías, Teresa; Lopez, Constanza; Avila, Rodolfo; Burzio, Luis O.

    2014-01-01

    Hallmarks of cancer are fundamental principles involved in cancer progression. We propose an additional generalized hallmark of malignant transformation corresponding to the differential expression of a family of mitochondrial ncRNAs (ncmtRNAs) that comprises sense and antisense members, all of which contain stem-loop structures. Normal proliferating cells express sense (SncmtRNA) and antisense (ASncmtRNA) transcripts. In contrast, the ASncmtRNAs are down-regulated in tumor cells regardless of tissue of origin. Here we show that knockdown of the low copy number of the ASncmtRNAs in several tumor cell lines induces cell death by apoptosis without affecting the viability of normal cells. In addition, knockdown of ASncmtRNAs potentiates apoptotic cell death by inhibiting survivin expression, a member of the inhibitor of apoptosis (IAP) family. Down-regulation of survivin is at the translational level and is probably mediated by microRNAs generated by dicing of the double-stranded stem of the ASncmtRNAs, as suggested by evidence presented here, in which the ASncmtRNAs are bound to Dicer and knockdown of the ASncmtRNAs reduces reporter luciferase activity in a vector carrying the 3′-UTR of survivin mRNA. Taken together, down-regulation of the ASncmtRNAs constitutes a vulnerability or Achilles' heel of cancer cells, suggesting that the ASncmtRNAs are promising targets for cancer therapy. PMID:25100722

  7. VEGF selectively induces Down syndrome critical region 1 gene expression in endothelial cells: a mechanism for feedback regulation of angiogenesis?

    International Nuclear Information System (INIS)

    Yao, Y.-G; Duh, Elia J.

    2004-01-01

    The Down syndrome critical region 1 (DSCR1) gene (also known as MCIP1, Adapt78) encodes a regulatory protein that binds to calcineurin catalytic A subunit and acts as a regulator of the calcineurin-mediated signaling pathway. We show in this study that DSCR1 is greatly induced in endothelial cells in response to VEGF, TNF-α, and A23187 treatment, and that this up-regulation is inhibited by inhibitors of the calcineurin-NFAT (nuclear factor of activated T cells) signaling pathway as well as by PKC inhibition and a Ca 2+ chelator. We hypothesized that the up-regulation of DSCR1 gene expression in endothelial cells could act as an endogenous feedback inhibitor for angiogenesis by regulating the calcineurin-NFAT signaling pathway. Our transient transfection analyses confirm that the overexpression of DSCR1 abrogates the up-regulation of reporter gene expression driven by both the cyclooxygenase 2 and DSCR1 promoters in response to stimulators. Our results indicate that DSCR1 up-regulation may represent a potential molecular mechanism underlying the regulation of angiogenic genes activated by the calcineurin-NFAT signaling pathway in endothelial cells

  8. TGFβ1-induced down-regulation of microRNA-138 contributes to epithelial-mesenchymal transition in primary lung cancer cells.

    Science.gov (United States)

    Zhang, Fang; Li, Tiepeng; Han, Lu; Qin, Peng; Wu, Zhao; Xu, Benling; Gao, Quanli; Song, Yongping

    2018-02-19

    The existence of cancer stem cells within the tumor could lead to cancer therapy resistance. TGFβ1 is considered as one of the most powerful players in the generation of CSCs through induction of epithelial-mesenchymal transition in different types of cancer including lung cancer, however, the detailed mechanisms by which TGFβ1 contribute to EMT induction and CSC maintenance remains unclear. Here, we showed primary lung cancer cells treated by TGFβ1 exhibit mesenchymal features, including morphology and expression of mesenchymal marker in a time-dependent manner. We also observed long-term TGFβ1 exposure leads to an enrichment of a sub-population of CD44 + CD90 + cells which represent CSCs in lung cancer cells. Moreover, the differential expression microRNAs between CSCs and non-CSCs were identified using next-generation sequencing to screen key miRNAs which might contribute to TGFβ1-induced EMT and CSCs generation. Among those differentially expressed miRNAs, the expression of microRNA-138 was time-dependently down-regulated by TGFβ1 treatment. We further demonstrated primary lung cancer cells, in which we knockdown the expression of miR-138, exhibit mesenchymal phenotypes and stem cell properties. Taken together, these findings indicate TGFβ1-induced down-regulation of microRNA-138 contributes to EMT in primary lung cancer cells, and suggest that miR-138 might serve as a potential therapeutic target. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. BTG2 Is Down-Regulated and Inhibits Cancer Stem Cell-Like Features of Side Population Cells in Hepatocellular Carcinoma.

    Science.gov (United States)

    Huang, Chen-Song; Zhai, Jing-Ming; Zhu, Xiao-Xu; Cai, Jian-Peng; Chen, Wei; Li, Jian-Hui; Yin, Xiao-Yu

    2017-12-01

    Our previous study found that B cell translocation gene 2 (BTG2) was hyper-methylated and down-regulated in side population (SP) cells of hepatocellular carcinoma (HCC) cell line. However, its clinical significances and biological impacts on HCC SP cells remained unclear. To investigate the prognostic value of BTG2 gene in HCC and its influences on cancer stem cells (CSCs)-like traits of HCC cell line SP cells. BTG2 expression in human HCC and adjacent non-cancerous tissues was detected by immunohistochemical staining and quantitative real-time PCR, and also obtained from GEO and TCGA data. Its prognostic values were assessed. Its biological influences on HCC cell line SP cells were evaluated using cell viability, cell cycle, plate clone-forming assay, and chemoresistance in vitro and tumorigenicity in vivo. BTG2 expression was significantly suppressed in human HCC compared to adjacent non-cancerous tissues. BTG2 expression was correlated with TNM stage, tumor size and vascular invasion. Lower expression of BTG2 was associated with poorer overall survival and disease-free survival. In vitro, overexpression of BTG2 substantially suppressed cell proliferation and accumulation of HCC cell line SP cells in G0/G1 phase. Colony formation ability was markedly suppressed by BTG2 overexpression. Moreover, sensitivity of HCC cell line SP cells to 5-fluorouracil was substantially increased by overexpression of BTG2. Furthermore, tumorigenicity of HCC cell line SP cells transfected with BTG2 plasmids was significantly reduced in vivo. BTG2 gene could regulate the CSC-like traits of HCC cell line SP cells, and it represented as a molecular prognostic marker for HCC.

  10. A viral microRNA down-regulates multiple cell cycle genes through mRNA 5'UTRs.

    Directory of Open Access Journals (Sweden)

    Finn Grey

    2010-06-01

    Full Text Available Global gene expression data combined with bioinformatic analysis provides strong evidence that mammalian miRNAs mediate repression of gene expression primarily through binding sites within the 3' untranslated region (UTR. Using RNA induced silencing complex immunoprecipitation (RISC-IP techniques we have identified multiple cellular targets for a human cytomegalovirus (HCMV miRNA, miR-US25-1. Strikingly, this miRNA binds target sites primarily within 5'UTRs, mediating significant reduction in gene expression. Intriguingly, many of the genes targeted by miR-US25-1 are associated with cell cycle control, including cyclin E2, BRCC3, EID1, MAPRE2, and CD147, suggesting that miR-US25-1 is targeting genes within a related pathway. Deletion of miR-US25-1 from HCMV results in over expression of cyclin E2 in the context of viral infection. Our studies demonstrate that a viral miRNA mediates translational repression of multiple cellular genes by targeting mRNA 5'UTRs.

  11. BAFF induces spleen CD4+ T cell proliferation by down-regulating phosphorylation of FOXO3A and activates cyclin D2 and D3 expression

    International Nuclear Information System (INIS)

    Ji, Fang; Chen, Rongjing; Liu, Baojun; Zhang, Xiaoping; Han, Junli; Wang, Haining; Shen, Gang; Tao, Jiang

    2012-01-01

    Highlights: ► Firstly analyze the mechanism of BAFF and anti-CD3 co-stimulation on purified mouse splenic CD4 + T cells. ► Carrying out siRNA technology to study FOXO3A protein function. ► Helpful to understand the T cell especially CD4 + T cell‘s role in immunological reaction. -- Abstract: The TNF ligand family member “B cell-activating factor belonging to the TNF family” (BAFF, also called BLyS, TALL-1, zTNF-4, and THANK) is an important survival factor for B and T cells. In this study, we show that BAFF is able to induce CD4 + spleen T cell proliferation when co-stimulated with anti-CD3. Expression of phosphorylated FOXO3A was notably down-regulated and cyclins D2 and D3 were up-regulated and higher in the CD4 + T cells when treated with BAFF and anti-CD3, as assessed by Western blotting. Furthermore, after FOXO3A was knocked down, expression of cyclin D1 was unchanged, compared with control group levels, but the expression of cyclins D2 and D3 increased, compared with the control group. In conclusion, our results suggest that BAFF induced CD4 + spleen T cell proliferation by down-regulating the phosphorylation of FOXO3A and then activating cyclin D2 and D3 expression, leading to CD4 + T cell proliferation.

  12. Senescence-related functional nuclear barrier by down-regulation of nucleo-cytoplasmic trafficking gene expression

    International Nuclear Information System (INIS)

    Kim, Sung Young; Ryu, Sung Jin; Ahn, Hong Ju; Choi, Hae Ri; Kang, Hyun Tae; Park, Sang Chul

    2010-01-01

    One of the characteristic natures of senescent cells is the hypo- or irresponsiveness not only to growth factors but also to apoptotic stress. In the present study, we confirmed the inhibition of nuclear translocation of activated p-ERK1/2 and NF-kB p50 in response to growth stimuli or LPS in the senescent human diploid fibroblasts. In order to elucidate the underlying mechanism for the senescence-associated hypo-responsiveness, we carried out the comparison study for gene expression profiles through microarray analysis. In consequence, we observed the vast reduction in expression of nucleo-cytoplasmic trafficking genes in senescent cells, when compared with those in young cells. Expression levels of several nucleoporins, karyopherin α, karyopherin β, Ran, and Ran-regulating factors were confirmed to be down-regulated in senescent HDFs by using RT-PCR and Western blot methods. Taken together, these data suggest the operation of certain senescence-associated functional nuclear barriers by down-regulation of the nucleo-cytoplasmic trafficking genes in the senescent cells.

  13. Senescence-related functional nuclear barrier by down-regulation of nucleo-cytoplasmic trafficking gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Young; Ryu, Sung Jin; Ahn, Hong Ju; Choi, Hae Ri; Kang, Hyun Tae [Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, Institute on Aging, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Park, Sang Chul, E-mail: scpark@snu.ac.kr [Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, Institute on Aging, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of)

    2010-01-01

    One of the characteristic natures of senescent cells is the hypo- or irresponsiveness not only to growth factors but also to apoptotic stress. In the present study, we confirmed the inhibition of nuclear translocation of activated p-ERK1/2 and NF-kB p50 in response to growth stimuli or LPS in the senescent human diploid fibroblasts. In order to elucidate the underlying mechanism for the senescence-associated hypo-responsiveness, we carried out the comparison study for gene expression profiles through microarray analysis. In consequence, we observed the vast reduction in expression of nucleo-cytoplasmic trafficking genes in senescent cells, when compared with those in young cells. Expression levels of several nucleoporins, karyopherin {alpha}, karyopherin {beta}, Ran, and Ran-regulating factors were confirmed to be down-regulated in senescent HDFs by using RT-PCR and Western blot methods. Taken together, these data suggest the operation of certain senescence-associated functional nuclear barriers by down-regulation of the nucleo-cytoplasmic trafficking genes in the senescent cells.

  14. Nickel induces transcriptional down-regulation of DNA repair pathways in tumorigenic and non-tumorigenic lung cells.

    Science.gov (United States)

    Scanlon, Susan E; Scanlon, Christine D; Hegan, Denise C; Sulkowski, Parker L; Glazer, Peter M

    2017-06-01

    The heavy metal nickel is a known carcinogen, and occupational exposure to nickel compounds has been implicated in human lung and nasal cancers. Unlike many other environmental carcinogens, however, nickel does not directly induce DNA mutagenesis, and the mechanism of nickel-related carcinogenesis remains incompletely understood. Cellular nickel exposure leads to signaling pathway activation, transcriptional changes and epigenetic remodeling, processes also impacted by hypoxia, which itself promotes tumor growth without causing direct DNA damage. One of the mechanisms by which hypoxia contributes to tumor growth is the generation of genomic instability via down-regulation of high-fidelity DNA repair pathways. Here, we find that nickel exposure similarly leads to down-regulation of DNA repair proteins involved in homology-dependent DNA double-strand break repair (HDR) and mismatch repair (MMR) in tumorigenic and non-tumorigenic human lung cells. Functionally, nickel induces a defect in HDR capacity, as determined by plasmid-based host cell reactivation assays, persistence of ionizing radiation-induced DNA double-strand breaks and cellular hypersensitivity to ionizing radiation. Mechanistically, we find that nickel, in contrast to the metalloid arsenic, acutely induces transcriptional repression of HDR and MMR genes as part of a global transcriptional pattern similar to that seen with hypoxia. Finally, we find that exposure to low-dose nickel reduces the activity of the MLH1 promoter, but only arsenic leads to long-term MLH1 promoter silencing. Together, our data elucidate novel mechanisms of heavy metal carcinogenesis and contribute to our understanding of the influence of the microenvironment on the regulation of DNA repair pathways. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Down-regulation of the antisense mitochondrial non-coding RNAs (ncRNAs) is a unique vulnerability of cancer cells and a potential target for cancer therapy.

    Science.gov (United States)

    Vidaurre, Soledad; Fitzpatrick, Christopher; Burzio, Verónica A; Briones, Macarena; Villota, Claudio; Villegas, Jaime; Echenique, Javiera; Oliveira-Cruz, Luciana; Araya, Mariela; Borgna, Vincenzo; Socías, Teresa; Lopez, Constanza; Avila, Rodolfo; Burzio, Luis O

    2014-09-26

    Hallmarks of cancer are fundamental principles involved in cancer progression. We propose an additional generalized hallmark of malignant transformation corresponding to the differential expression of a family of mitochondrial ncRNAs (ncmtRNAs) that comprises sense and antisense members, all of which contain stem-loop structures. Normal proliferating cells express sense (SncmtRNA) and antisense (ASncmtRNA) transcripts. In contrast, the ASncmtRNAs are down-regulated in tumor cells regardless of tissue of origin. Here we show that knockdown of the low copy number of the ASncmtRNAs in several tumor cell lines induces cell death by apoptosis without affecting the viability of normal cells. In addition, knockdown of ASncmtRNAs potentiates apoptotic cell death by inhibiting survivin expression, a member of the inhibitor of apoptosis (IAP) family. Down-regulation of survivin is at the translational level and is probably mediated by microRNAs generated by dicing of the double-stranded stem of the ASncmtRNAs, as suggested by evidence presented here, in which the ASncmtRNAs are bound to Dicer and knockdown of the ASncmtRNAs reduces reporter luciferase activity in a vector carrying the 3'-UTR of survivin mRNA. Taken together, down-regulation of the ASncmtRNAs constitutes a vulnerability or Achilles' heel of cancer cells, suggesting that the ASncmtRNAs are promising targets for cancer therapy. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. The herpes simplex virus receptor nectin-1 is down-regulated after trans-interaction with glycoprotein D

    International Nuclear Information System (INIS)

    Stiles, Katie M.; Milne, Richard S.B.; Cohen, Gary H.; Eisenberg, Roselyn J.; Krummenacher, Claude

    2008-01-01

    During herpes simplex virus (HSV) entry, membrane fusion occurs either on the cell surface or after virus endocytosis. In both cases, binding of glycoprotein D (gD) to a receptor such as nectin-1 or HVEM is required. In this study, we co-cultured cells expressing gD with nectin-1 expressing cells to investigate the effects of gD on nectin-1 at cell contacts. After overnight co-cultures with gD expressing cells, there was a down-regulation of nectin-1 in B78H1-C10, SY5Y, A431 and HeLa cells, which HSV enters by endocytosis. In contrast, on Vero cells, which HSV enters at the plasma membrane, nectin-1 was not down-regulated. Further analysis of B78H1-derived cells showed that nectin-1 down-regulation corresponds to the ability of gD to bind nectin-1 and is achieved by internalization and low-pH-dependent degradation of nectin-1. Moreover, gD is necessary for virion internalization in B78H1 cells expressing nectin-1. These data suggest that the determinants of gD-mediated internalization of nectin-1 may direct HSV to an endocytic pathway during entry

  17. Berberine diminishes side population and down-regulates stem cell-associated genes in the pancreatic cancer cell lines PANC-1 and MIA PaCa-2.

    Science.gov (United States)

    Park, S H; Sung, J H; Chung, N

    2014-09-01

    Cancer stem cells play an important role in metastasis and the relapse of drug resistant cancers. Side-population (SP) cells are capable of effluxing Hoechst 33342 dye and are referred to as cancer stem cells. We investigated the effect of berberine on pancreatic cancer stem cells of PANC-1 and MIA PaCa-2. For both cell lines, the proportions of SP cells in the presence of berberine were investigated and compared to the proportions in the presence of gemcitabine, a standard pancreatic anti-cancer drug. The proportions of SP cells in the PANC-1 and MIA PaCa-2 cell lines were about 9 and PANC-1 decreased to 5.7 ± 2.0 and 6.8 ± 0.8%, respectively, which compares to the control proportion of (9.7 ± 1.7). After berberine and gemcitabine treatment of PANC-1, of the four stem cell-associated genes (SOX2, POU5F1, NANOG, and NOTCH1), all but NOTCH1 were down-regulated. Unfortunately, the effect of berberine and gemcitabine treatments on MIA PaCa-2 SP cells could not be clearly observed because SP cells represented only a very small proportion of MIA PaCa-2 cells. However, SOX2, POU5F1, and NANOG genes were shown to be effectively down-regulated in the MIA PaCa-2 cell line as a whole. Taken together, these results indicate that berberine is as effective at targeting pancreatic cancer cell lines as gemcitabine. Therefore, we believe that POU5F1, SOX2, and NANOG can serve as potential markers, and berberine may be an effective anti-cancer agent when targeting human pancreatic cancer cells and/or their cancer stem cells.

  18. Quinacrine induces apoptosis in human leukemia K562 cells via p38 MAPK-elicited BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression

    International Nuclear Information System (INIS)

    Changchien, Jung-Jung; Chen, Ying-Jung; Huang, Chia-Hui; Cheng, Tian-Lu; Lin, Shinne-Ren; Chang, Long-Sen

    2015-01-01

    Although previous studies have revealed the anti-cancer activity of quinacrine, its effect on leukemia is not clearly resolved. We sought to explore the cytotoxic effect and mechanism of quinacrine action in human leukemia K562 cells. Quinacrine induced K562 cell apoptosis accompanied with ROS generation, mitochondrial depolarization, and down-regulation of BCL2L1 and BCL2. Upon exposure to quinacrine, ROS-mediated p38 MAPK activation and ERK inactivation were observed in K562 cells. Quinacrine-induced cell death and mitochondrial depolarization were suppressed by the p38MAPK inhibitor SB202190 and constitutively active MEK1 over-expression. Activation of p38 MAPK was shown to promote BCL2 degradation. Further, ERK inactivation suppressed c-Jun-mediated transcriptional expression of BCL2L1. Over-expression of BCL2L1 and BCL2 attenuated quinacrine-evoked mitochondrial depolarization and rescued the viability of quinacrine-treated cells. Taken together, our data indicate that quinacrine-induced K562 cell apoptosis is mediated through mitochondrial alterations triggered by p38 MAPK-mediated BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression. - Highlights: • Quinacrine induces K562 cell apoptosis via down-regulation of BCL2 and BCL2L1. • Quinacrine induces p38 MAPK activation and ERK inactivation in K562 cells. • Quinacrine elicits p38 MAPK-mediated BCL2 down-regulation. • Quinacrine suppresses ERK/c-Jun-mediated BCL2L1 expression

  19. Transmembrane neural cell-adhesion molecule (NCAM), but not glycosyl-phosphatidylinositol-anchored NCAM, down-regulates secretion of matrix metalloproteinases

    DEFF Research Database (Denmark)

    Edvardsen, K; Chen, W; Rucklidge, G

    1993-01-01

    proteinases, and proteinase inhibitors all participate in the construction, maintenance, and remodeling of extracellular matrix by cells. The neural cell-adhesion molecule (NCAM)-negative rat glioma cell line BT4Cn secretes substantial amounts of metalloproteinases, as compared with its NCAM-positive mother......During embryogenesis interactions between cells and extracellular matrix play a central role in the modulation of cell motility, growth, and differentiation. Modulation of matrix structure is therefore crucial during development; extracellular matrix ligands, their receptors, extracellular...... cell line BT4C. We have transfected the BT4Cn cell line with cDNAs encoding the human NCAM-B and -C isoforms. We report here that the expression of transmembrane NCAM-B, but not of glycosyl-phosphatidylinositol-linked NCAM-C, induces a down-regulation of 92-kDa gelatinase (matrix metalloproteinase 9...

  20. Down-regulation of LRP1B in colon cancer promoted the growth and migration of cancer cells.

    Science.gov (United States)

    Wang, Zhiqiang; Sun, Peng; Gao, Chun; Chen, Ji; Li, Jun; Chen, Zhonghao; Xu, Ming; Shao, Jun; Zhang, Yunpeng; Xie, Jiang

    2017-08-01

    Aberrant activation of beta-catenin/TCF signaling is one of the hallmarks of colon cancer. It is of great interest to study the mechanism for the regulation of beta-catenin/TCF signaling. In this study, it was found that LRP1B was down-regulated in colon cancer tissues and inhibited the growth, migration and metastasis of colon cancer cells. The molecular mechanism study revealed that LRP1B interacted with DVL2, inhibited the interaction between DVL2 and Axin, and negatively regulated beta-catenin/TCF signaling. Taken together, our study demonstrated the suppressive roles of LRP1B in the progression of colon cancer, implicating that restoring the function of LRP1B would be a promising strategy for the treatment of colon cancer. Copyright © 2017. Published by Elsevier Inc.

  1. HCV core protein-induced down-regulation of microRNA-152 promoted aberrant proliferation by regulating Wnt1 in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Shifeng Huang

    Full Text Available Hepatitis C virus (HCV has been reported to regulate cellular microRNAs (miRNAs. The HCV core protein is considered to be a potential oncoprotein in HCV-related hepatocellular carcinoma (HCV-HCC, but HCV core-regulated miRNAs are largely unknown. Our preliminary experiments revealed significant down-regulation of microRNA-152 (miR-152 by HCV core protein in HepG2 cells. Through target gene prediction softwares, Wnt1 was predicted to be a potential target of miR-152. The present study was initiated to investigate whether miR-152 is aberrantly regulated by the HCV core protein, and involved in the regulation of the aberrant proliferation of HCV-HCC cells.MiR-152 levels were examined by stem-loop real-time RT-PCR (SLqRT-PCR. Cell proliferation was analyzed by MTT and colony formation assay. Cell cycle analysis was performed by flow cytometry. Luciferase reporter assay was conducted to confirm miRNA-target association. Wnt1 expression was determined by real-time qPCR and Western blotting.HCV core protein significantly suppressed miR-152 expression, and led to significant Wnt1 up-regulation with a concomitant aberrantly promoted proliferation. Moreover, we validated that miR-152 inhibition promoted, while miR-152 mimics inhibited cell proliferation. Using, qRT-PCR and western blot, Wnt1 was demonstrated to be regulated by miR-152. Luciferase activity assay showed that while miR-152 mimics significantly reduced the luciferase activity by 83.76% (P<0.0001, miR-152 inhibitor showed no effect on luciferase reporter. Most notably, salvage expression of miR-152 after Ad-HCV core infection for 24 h almost totally reversed the proliferation-promoting effect of the HCV core protein, and meanwhile, reduced the expression of both Wnt1 mRNA and protein to basal levels.These findings provide important evidence that the reduced miR-152 expression by HCV core protein can indirectly lose an inhibitory effect on Wnt1, which might, at least partially lead to cell

  2. Synergism between the mTOR inhibitor rapamycin and FAK down-regulation in the treatment of acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Pei-Jie Shi

    2016-02-01

    Full Text Available Abstract Background Acute lymphoblastic leukemia (ALL is an aggressive malignant disorder of lymphoid progenitor cells in both children and adults. Although improvements in contemporary therapy and development of new treatment strategies have led to dramatic increases in the cure rate in children with ALL, the relapse rate remains high and the prognosis of relapsed childhood ALL is poor. Molecularly targeted therapies have emerged as the leading treatments in cancer therapy. Multi-cytotoxic drug regimens have achieved success, yet many studies addressing targeted therapies have focused on only one single agent. In this study, we attempted to investigate whether the effect of the mammalian target of rapamycin (mTOR inhibitor rapamycin is synergistic with the effect of focal adhesion kinase (FAK down-regulation in the treatment of ALL. Methods The effect of rapamycin combined with FAK down-regulation on cell proliferation, the cell cycle, and apoptosis was investigated in the human precursor B acute lymphoblastic leukemia cells REH and on survival time and leukemia progression in a non-obese diabetic/severe combined immunodeficiency (NOD/SCID mouse model. Results When combined with FAK down-regulation, rapamycin-induced suppression of cell proliferation, G0/G1 cell cycle arrest, and apoptosis were significantly enhanced. In addition, REH cell-injected NOD/SCID mice treated with rapamycin and a short-hairpin RNA (shRNA to down-regulate FAK had significantly longer survival times and slower leukemia progression compared with mice injected with REH-empty vector cells and treated with rapamycin. Moreover, the B-cell CLL/lymphoma-2 (BCL-2 gene family was shown to be involved in the enhancement, by combined treatment, of REH cell apoptosis. Conclusions FAK down-regulation enhanced the in vitro and in vivo inhibitory effects of rapamycin on REH cell growth, indicating that the simultaneous targeting of mTOR- and FAK-related pathways might offer a novel

  3. Nanocurcumin-Mediated Down-Regulation of Telomerase Via Stimulating TGFβ1 Signaling Pathway in Hepatocellular Carcinoma Cells

    Science.gov (United States)

    Shariati, Molood; Hajigholami, Samira; Veisi Malekshahi, Ziba; Entezari, Maliheh; Bodaghabadi, Narges; Sadeghizadeh, Majid

    2017-10-10

    Curcumin, extracted from turmeric, represents enormous potential to serve as an anticancer agent. Telomerase is viewed as a prominent molecular target of curcumin, and Transforming growth factor-β1 (TGFβ1) has proven to be a major inhibitory signaling pathway for telomerase activity. In the current study, we aimed to explore suppressive effects of nanocurcumin on telomerase expression through TGFβ1 pathway in a hepatocellular carcinoma cell line (Huh7). MTT assay was used to determine the effect of nonocurcumin on viability of Huh7 cells. RT-PCR was used to analyze the gene expression patterns. MTT assay revealed that nanocurcumin acts in a dose- and time-dependent manner to diminish the cell viability. RT-PCR analysis indicated that nanocurcumin results in augmentation of TGFβ1 72 hours post treatment and leads to the reduction of telomerase expression 48 and 72 hours post exposure. Also, up-regulation of Smad3 and E2F1 and down-regulation of Smad7 confirmed the effect of nanocurcumin on intermediate components of TGFβ1 pathway. Furthermore, transfection of the proximal promoter of telomerase triggered a significant reduction in luciferase activity. The data from the present study lead us to develop a deeper understanding of the mechanisms underlying nanocurcumin-mediated regulation of telomerase expression, thereby presenting a new perspective to the landscape of using nanocurcumin as a cancer-oriented therapeutic agent.

  4. miR-214 down-regulates ARL2 and suppresses growth and invasion of cervical cancer cells

    International Nuclear Information System (INIS)

    Peng, Ruiqing; Men, Jianlong; Ma, Rui; Wang, Qian; Wang, Yang; Sun, Ying; Ren, Jing

    2017-01-01

    Increasing evidence has shown that miRNAs are implicated in carcinogenesis and can function as oncogenes or tumor suppressor genes in human cancers. In this study, we confirmed that miR-214 is frequently down-regulated in cervical cancer compared with normal cervical tissues. Ectopic expression of miR-214 suppressed proliferation, migration and invasion of HeLa and C33A cervical cancer cells. Bioinformatics analysis revealed that ADP ribosylation factor like 2 (ARL2) was a potential target of miR-214 and was remarkably up-regulated in cervical cancer. Knockdown of ARL2 markedly inhibited cervical cancer cell proliferation, migration and invasion, similarly to over-expression of miR-214, indicating that ARL2 may function as an oncogene in cervical cancer. In conclusion, our study revealed that miR-214 acts as a tumor suppressor via inhibiting proliferation, migration and invasion of cervical cancer cells through targeting ARL2, and that both miR-214 and ARL2 may serve as prognostic or therapeutic targets for cervical cancer. - Highlights: • miR-214 targets ARL2. • ARL2 maybe an oncogene in cervical cancer. • ARL2 rescues miR-214.

  5. Interaction between C/EBPβ and Tax down-regulates human T-cell leukemia virus type I transcription

    International Nuclear Information System (INIS)

    Hivin, P.; Gaudray, G.; Devaux, C.; Mesnard, J.-M.

    2004-01-01

    The human T-cell leukemia virus type I (HTLV-I) Tax protein trans-activates viral transcription through three imperfect tandem repeats of a 21-bp sequence called Tax-responsive element (TxRE). Tax regulates transcription via direct interaction with some members of the activating transcription factor/CRE-binding protein (ATF/CREB) family including CREM, CREB, and CREB-2. By interacting with their ZIP domain, Tax stimulates the binding of these cellular factors to the CRE-like sequence present in the TxREs. Recent observations have shown that CCAAT/enhancer binding protein β (C/EBPβ) forms stable complexes on the CRE site in the presence of CREB-2. Given that C/EBPβ has also been found to interact with Tax, we analyzed the effects of C/EBPβ on viral Tax-dependent transcription. We show here that C/EBPβ represses viral transcription and that Tax is no more able to form a stable complex with CREB-2 on the TxRE site in the presence of C/EBPβ. We also analyzed the physical interactions between Tax and C/EBPβ and found that the central region of C/EBPβ, excluding its ZIP domain, is required for direct interaction with Tax. It is the first time that Tax is described to interact with a basic leucine-zipper (bZIP) factor without recognizing its ZIP domain. Although unexpected, this result explains why C/EBPβ would be unable to form a stable complex with Tax on the TxRE site and could then down-regulate viral transcription. Lastly, we found that C/EBPβ was able to inhibit Tax expression in vivo from an infectious HTLV-I molecular clone. In conclusion, we propose that during cell activation events, which stimulate the Tax synthesis, C/EBPβ may down-regulate the level of HTLV-I expression to escape the cytotoxic-T-lymphocyte response

  6. DZNep, inhibitor of S-adenosylhomocysteine hydrolase, down-regulates expression of SETDB1 H3K9me3 HMTase in human lung cancer cells.

    Science.gov (United States)

    Lee, Ju-Kyung; Kim, Keun-Cheol

    2013-09-06

    3-Deazaneplanocin A (DZNep), an epigenetic anticancer drug, leads to the indirect suppression of S-adenosyl methionine-dependent cellular methylations by inhibiting S-adenosyl homocystein (AdoHcy) hydrolase. Although it is well known that DZNep targets the degradation of EZH2 protein, H3K27me3 HMTase, there are still uncertainties about the regulation of other types of HMTases during cell death. In this study, we describe that SETDB1 gene expression was regulated by DZNep treatment in human lung cancer cells. We confirm that DZNep induced growth inhibition and increased the dead cell population of lung cancer cells. DZNep treatment affected histone methylations, including H3K27me3 and H3K9me3, but not H3K4me3. Reduced levels of H3K27me3 and H3K9me3 were related with the decreased EZH2 and SETDB1 proteins. Real time PCR analysis showed that SETDB1 gene expression was decreased by DZNep treatment, but no effect was observed for EZH2 gene expression. We cloned the promoter region of SETDB1 and SUV39H1 genes, and performed luciferase assays. The promoter activity of SETDB1 gene was down regulated by DZNep treatment, whereas no effect on SUV39H1 promoter activity was observed. In conclusion, we suggest that DZNep regulates not only on H3K27me3 HMTase EZH2, but also H3K9 HMTase SETDB1 gene expression at the transcription level, implicating that the mechanism of action of DZNep targets multiple HMTases during the death of lung cancer cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. BAFF induces spleen CD4{sup +} T cell proliferation by down-regulating phosphorylation of FOXO3A and activates cyclin D2 and D3 expression

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Fang; Chen, Rongjing [Department of Orthodontics, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Liu, Baojun [Laboratory of Lung, Inflammation and Cancers, Huashan Hospital, Fudan University, Shanghai (China); Zhang, Xiaoping [Department of Nuclear Medicine, Shanghai 10th People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Han, Junli; Wang, Haining [Department of General Dentistry, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Shen, Gang [Department of Orthodontics, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Tao, Jiang, E-mail: taojiang2012@yahoo.cn [Department of General Dentistry, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Firstly analyze the mechanism of BAFF and anti-CD3 co-stimulation on purified mouse splenic CD4{sup +} T cells. Black-Right-Pointing-Pointer Carrying out siRNA technology to study FOXO3A protein function. Black-Right-Pointing-Pointer Helpful to understand the T cell especially CD4{sup +} T cell's role in immunological reaction. -- Abstract: The TNF ligand family member 'B cell-activating factor belonging to the TNF family' (BAFF, also called BLyS, TALL-1, zTNF-4, and THANK) is an important survival factor for B and T cells. In this study, we show that BAFF is able to induce CD4{sup +} spleen T cell proliferation when co-stimulated with anti-CD3. Expression of phosphorylated FOXO3A was notably down-regulated and cyclins D2 and D3 were up-regulated and higher in the CD4{sup +} T cells when treated with BAFF and anti-CD3, as assessed by Western blotting. Furthermore, after FOXO3A was knocked down, expression of cyclin D1 was unchanged, compared with control group levels, but the expression of cyclins D2 and D3 increased, compared with the control group. In conclusion, our results suggest that BAFF induced CD4{sup +} spleen T cell proliferation by down-regulating the phosphorylation of FOXO3A and then activating cyclin D2 and D3 expression, leading to CD4{sup +} T cell proliferation.

  8. MiR-29b inhibits collagen maturation in hepatic stellate cells through down-regulating the expression of HSP47 and lysyl oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yifei; Ghazwani, Mohammed; Li, Jiang [Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Sun, Ming; Stolz, Donna B. [Department of Cell Biology and Physiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261 (United States); He, Fengtian [Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038 (China); Fan, Jie [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Xie, Wen [Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Li, Song, E-mail: sol4@pitt.edu [Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2014-04-18

    Highlights: • Enhanced HSP47 and LOX expression is associated with decreased miR-29b level in liver fibrosis. • miR-29b down-regulates HSP47 and LOX expression. • The suppression of HSP47 and LOX by miR-29b is mediated by putative sites at their 3′-UTRs. • miR-29b inhibits extracellular LOX activity and collagen maturation. - Abstract: Altered expression of miR-29b is implicated in the pathogenesis and progression of liver fibrosis. We and others previously demonstrated that miR-29b down-regulates the expression of several extracellular-matrix (ECM) genes including Col 1A1, Col 3A1 and Elastin via directly targeting their 3′-UTRs. However, whether or not miR-29b plays a role in the post-translational regulation of ECM biosynthesis has not been reported. Heat shock protein 47 (HSP47) and lysyl oxidase (LOX) are known to be essential for ECM maturation. In this study we have demonstrated that expression of HSP47 and LOX was significantly up-regulated in culture-activated primary rat hepatic stellate cells (HSCs), TGF-β stimulated LX-2 cells and liver tissue of CCl{sub 4}-treated mice, which was accompanied by a decrease of miR-29b level. In addition, over-expression of miR-29b in LX-2 cells resulted in significant inhibition on HSP47 and LOX expression. Mechanistically, miR-29b inhibited the expression of a reporter gene that contains the respective full-length 3′-UTR from HSP47 and LOX gene, and this inhibitory effect was abolished by the deletion of a putative miR-29b targeting sequence from the 3′-UTRs. Transfection of LX-2 cells with miR-29b led to abnormal collagen structure as shown by electron-microscopy, presumably through down-regulation of the expression of molecules involved in ECM maturation including HSP47 and LOX. These results demonstrated that miR-29b is involved in regulating the post-translational processing of ECM and fibril formation.

  9. MiR-29b inhibits collagen maturation in hepatic stellate cells through down-regulating the expression of HSP47 and lysyl oxidase

    International Nuclear Information System (INIS)

    Zhang, Yifei; Ghazwani, Mohammed; Li, Jiang; Sun, Ming; Stolz, Donna B.; He, Fengtian; Fan, Jie; Xie, Wen; Li, Song

    2014-01-01

    Highlights: • Enhanced HSP47 and LOX expression is associated with decreased miR-29b level in liver fibrosis. • miR-29b down-regulates HSP47 and LOX expression. • The suppression of HSP47 and LOX by miR-29b is mediated by putative sites at their 3′-UTRs. • miR-29b inhibits extracellular LOX activity and collagen maturation. - Abstract: Altered expression of miR-29b is implicated in the pathogenesis and progression of liver fibrosis. We and others previously demonstrated that miR-29b down-regulates the expression of several extracellular-matrix (ECM) genes including Col 1A1, Col 3A1 and Elastin via directly targeting their 3′-UTRs. However, whether or not miR-29b plays a role in the post-translational regulation of ECM biosynthesis has not been reported. Heat shock protein 47 (HSP47) and lysyl oxidase (LOX) are known to be essential for ECM maturation. In this study we have demonstrated that expression of HSP47 and LOX was significantly up-regulated in culture-activated primary rat hepatic stellate cells (HSCs), TGF-β stimulated LX-2 cells and liver tissue of CCl 4 -treated mice, which was accompanied by a decrease of miR-29b level. In addition, over-expression of miR-29b in LX-2 cells resulted in significant inhibition on HSP47 and LOX expression. Mechanistically, miR-29b inhibited the expression of a reporter gene that contains the respective full-length 3′-UTR from HSP47 and LOX gene, and this inhibitory effect was abolished by the deletion of a putative miR-29b targeting sequence from the 3′-UTRs. Transfection of LX-2 cells with miR-29b led to abnormal collagen structure as shown by electron-microscopy, presumably through down-regulation of the expression of molecules involved in ECM maturation including HSP47 and LOX. These results demonstrated that miR-29b is involved in regulating the post-translational processing of ECM and fibril formation

  10. Analysis of HP1α regulation in human breast cancer cells

    DEFF Research Database (Denmark)

    Thomsen, Rune; Christensen, Dennis B; Rosborg, Sanne

    2011-01-01

    The three mammalian HP1 proteins, HP1α/CBX5, HP1β/CBX1, and HPγ/CBX3, are involved in chromatin packing and gene regulation. The HP1α protein is down-regulated in invasive compared to non-invasive breast cancer cells and HP1α is a suppressor of cell migration and invasion. In this report, we...... examined the background for HP1α protein down-regulation in invasive breast cancer cells. We identified a strict correlation between HP1α down-regulation at the protein level and the mRNA level. The HP1α mRNA down-regulation in invasive cancer cells was not caused by mRNA destabilization. Chromatin...... immunoprecipitation analysis of the HP1α gene showed a decrease in the histone mark for transcriptional activity H3-K36 tri-methylation and RNA polymerase II in invasive breast cancer cells which correlated with a decreased abundance of basal transcription factors at the HP1α promoter. E2F transcription factors...

  11. Differentiation, distribution and gammadelta T cell-driven regulation of IL-22-producing T cells in tuberculosis.

    Directory of Open Access Journals (Sweden)

    Shuyu Yao

    2010-02-01

    Full Text Available Differentiation, distribution and immune regulation of human IL-22-producing T cells in infections remain unknown. Here, we demonstrated in a nonhuman primate model that M. tuberculosis infection resulted in apparent increases in numbers of T cells capable of producing IL-22 de novo without in vitro Ag stimulation, and drove distribution of these cells more dramatically in lungs than in blood and lymphoid tissues. Consistently, IL-22-producing T cells were visualized in situ in lung tuberculosis (TB granulomas by confocal microscopy and immunohistochemistry, indicating that mature IL-22-producing T cells were present in TB granuloma. Surprisingly, phosphoantigen HMBPP activation of Vgamma2Vdelta2 T cells down-regulated the capability of T cells to produce IL-22 de novo in lymphocytes from blood, lung/BAL fluid, spleen and lymph node. Up-regulation of IFNgamma-producing Vgamma2Vdelta2 T effector cells after HMBPP stimulation coincided with the down-regulated capacity of these T cells to produce IL-22 de novo. Importantly, anti-IFNgamma neutralizing Ab treatment reversed the HMBPP-mediated down-regulation effect on IL-22-producing T cells, suggesting that Vgamma2Vdelta2 T-cell-driven IFNgamma-networking function was the mechanism underlying the HMBPP-mediated down-regulation of the capability of T cells to produce IL-22. These novel findings raise the possibility to ultimately investigate the function of IL-22 producing T cells and to target Vgamma2Vdelta2 T cells for balancing potentially hyper-activating IL-22-producing T cells in severe TB.

  12. Specific down-regulation of XIAP with RNA interference enhances the sensitivity of canine tumor cell-lines to TRAIL and doxorubicin

    Directory of Open Access Journals (Sweden)

    Rothuizen Jan

    2006-09-01

    Full Text Available Abstract Background Apoptosis resistance occurs in various tumors. The anti-apoptotic XIAP protein is responsible for inhibiting apoptosis by reducing caspase-3 activation. Our aim is to evaluate whether RNA inhibition against XIAP increases the sensitivity of canine cell-lines for chemotherapeutics such as TRAIL and doxorubicin. We used small interfering RNA's (siRNA directed against XIAP in three cell-lines derived from bile-duct epithelia (BDE, mammary carcinoma (P114, and osteosarcoma (D17. These cell-lines represent frequently occurring canine cancers and are highly comparable to their human counterparts. XIAP down-regulation was measured by means of quantitative PCR (Q-PCR and Western blotting. The XIAP depleted cells were treated with a serial dilution of TRAIL or doxorubicin and compared to mock- and nonsense-treated controls. Viability was measured with a MTT assay. Results All XIAP siRNA treated cell-lines showed a mRNA down-regulation over 80 percent. Western blot analysis confirmed mRNA measurements. No compensatory effect of IAP family members was seen in XIAP depleted cells. The sensitivity of XIAP depleted cells for TRAIL was highest in BDE cells with an increase in the ED50 of 14-fold, compared to mock- and nonsense-treated controls. The sensitivity of P114 and D17 cell-lines increased six- and five-fold, respectively. Doxorubicin treatment in XIAP depleted cells increased sensitivity in BDE cells more than eight-fold, whereas P114 and D17 cell-lines showed an increase in sensitivity of three- and five-fold, respectively. Conclusion XIAP directed siRNA's have a strong sensitizing effect on TRAIL-reduced cell-viability and a smaller but significant effect with the DNA damaging drug doxorubicin. The increase in efficacy of chemotherapeutics with XIAP depletion provides the rationale for the use of XIAP siRNA's in insensitive canine tumors.

  13. Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase pathway

    International Nuclear Information System (INIS)

    Zhou, Xiuping; Meng, Qingming; Xu, Xuebin; Zhi, Tongle; Shi, Qiong; Wang, Yong; Yu, Rutong

    2012-01-01

    Highlights: ► The expression levels of Bex2 markedly increased in glioma tissues. ► Bex2 over-expression promoted cell proliferation, while its down-regulation inhibited cell growth. ► Bex2 down-regulation promoted cell apoptosis via JNK/c-Jun signaling pathway. -- Abstract: The function of Bex2, a member of the Brain Expressed X-linked gene family, in glioma is controversial and its mechanism is largely unknown. We report here that Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase (JNK) pathway. The expression level of Bex2 is markedly increased in glioma tissues. We observed that Bex2 over-expression promotes cell proliferation, while down-regulation of Bex2 inhibits cell growth. Furthermore, Bex2 down-regulation promotes cell apoptosis and activates the JNK pathway; these effects were abolished by administration of the JNK specific inhibitor, (SP600125). Thus, Bex2 may be an important player during the development of glioma.

  14. eEF-2 Phosphorylation Down-Regulates P-Glycoprotein Over-Expression in Rat Brain Microvessel Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Xing Hua Tang

    Full Text Available We investigated whether glutamate, NMDA receptors, and eukaryote elongation factor-2 kinase (eEF-2K/eEF-2 regulate P-glycoprotein expression, and the effects of the eEF-2K inhibitor NH125 on the expression of P-glycoprotein in rat brain microvessel endothelial cells (RBMECs.Cortex was obtained from newborn Wistar rat brains. After surface vessels and meninges were removed, the pellet containing microvessels was resuspended and incubated at 37°C in culture medium. Cell viability was assessed by the MTT assay. RBMECs were identified by immunohistochemistry with anti-vWF. P-glycoprotein, phospho-eEF-2, and eEF-2 expression were determined by western blot analysis. Mdr1a gene expression was analyzed by RT-PCR.Mdr1a mRNA, P-glycoprotein and phospho-eEF-2 expression increased in L-glutamate stimulated RBMECs. P-glycoprotein and phospho-eEF-2 expression were down-regulated after NH125 treatment in L-glutamate stimulated RBMECs.eEF-2K/eEF-2 should have played an important role in the regulation of P-glycoprotein expression in RBMECs. eEF-2K inhibitor NH125 could serve as an efficacious anti-multidrug resistant agent.

  15. Knock-down of NDRG2 sensitizes cervical cancer Hela cells to cisplatin through suppressing Bcl-2 expression

    International Nuclear Information System (INIS)

    Liu, Junye; Guo, Guozhen; Yang, Le; Zhang, Jian; Zhang, Jing; Chen, Yongbin; Li, Kangchu; Li, Yurong; Li, Yan; Yao, Libo

    2012-01-01

    NDRG2, a member of N-Myc downstream regulated gene family, plays some roles in cellular stress, cell differentiation and tumor suppression. We have found that NDRG2 expression in cervical cancer Hela cells increases significantly upon stimulation with cisplatin, the most popular chemotherapeutic agent currently used for the treatment of advanced cervical cancer. This interesting phenomenon drove us to evaluate the role of NDRG2 in chemosensitivity of Hela cells. In the present study, RNA interference was employed to down-regulate NDRG2 expression in Hela cells. RT-PCR and Western blot were used to detect expression of NDRG2, Bcl-2 and Bax in cancer cells. Real-time PCR was applied to detect miR-15b and miR-16 expression levels. Drug sensitivity was determined with MTT assay. Cell cloning efficiency was evaluated by Colony-forming assay. Apoptotic cells were detected with annexin V staining and flow cytometry. In vitro drug sensitivity assay revealed that suppression of NDRG2 could sensitize Hela cells to cisplatin. Down-regulation of NDRG2 didn’t influence the colony-forming ability but promoted cisplatin-induced apoptosis of Hela cells. Inhibition of NDRG2 in Hela cells was accompanied by decreased Bcl-2 protein level. However, Bcl-2 mRNA level was not changed in Hela cells with down-regulation of NDRG2. Further study indicated that miR-15b and miR-16, two microRNAs targetting Bcl-2, were significantly up-regulated in NDRG2-suppressed Hela cells. These data suggested that down-regulation of NDRG2 could enhance sensitivity of Hela cells to cisplatin through inhibiting Bcl-2 protein expression, which might be mediated by up-regulating miR-15b and miR-16

  16. Down-regulation of Akt by methanol extracts of Impatiens balsamina L. promotes apoptosis in human oral squamous cell carcinoma cell lines.

    Science.gov (United States)

    Shin, Ji-Ae; Ryu, Mi Heon; Kwon, Ki-Han; Choi, BuYoung; Cho, Sung-Dae

    2015-07-01

    The apoptotic activity of methanol extracts of Impatiens balsamina L. (MEIB) and related mechanisms in human oral squamous cell carcinoma (OSCC) cells have been systematically investigated. The effects of MEIB on human OSCC cell lines were investigated using trypan blue exclusion assay, MTS assay, Western blot, 4'-6-diamidino-2-phenylindole (DAPI) staining, Live/Dead assay, Immunohistochemistry, reverse transcription-polymerase chain reaction, and promoter assay. MEIB decreased cell viability and induced apoptosis in HSC-4 cells. Higher levels of p-Akt expression were observed in OSCC than in normal oral mucosa (NOM), and it correlated with poor survival of the patients. MEIB dephosphorylated p-Akt and decreased Akt expression through proteasome-dependent degradation. LY294002 (PI3K inhibitor) decreased p-Akt and Akt, resulting in enhancing MEIB-induced apoptosis. MEIB down-regulated the expression level of survivin protein at the transcriptional level and YM155 (survivin inhibitor) decreased survivin, which facilitated MEIB-induced apoptosis. MEIB and LY294002 significantly increased Bax, thereby inducing the conformational change, mitochondrial translocation, and oligomerization. In addition, MEIB-induced growth inhibition and apoptosis in OSC-20, another human OSCC cells were mediated by regulating Akt and it downstream targets, survivin and Bax. These results suggest that MEIB may serve as a potential drug candidate for the treatment of human OSCC. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. NOX4-mediated ROS production induces apoptotic cell death via down-regulation of c-FLIP and Mcl-1 expression in combined treatment with thioridazine and curcumin

    Directory of Open Access Journals (Sweden)

    Seung Un Seo

    2017-10-01

    Full Text Available Thioridazine is known to have anti-tumor effects by inhibiting PI3K/Akt signaling, which is an important signaling pathway in cell survival. However, thioridazine alone does not induce apoptosis in head and neck squamous cell carcinoma (AMC-HN4, human breast carcinoma (MDA-MB231, and human glioma (U87MG cells. Therefore, we investigated whether combined treatment with thioridazine and curcumin induces apoptosis. Combined treatment with thioridazine and curcumin markedly induced apoptosis in cancer cells without inducing apoptosis in human normal mesangial cells and human normal umbilical vein cells (EA.hy926. We found that combined treatment with thioridazine and curcumin had synergistic effects in AMC-HN4 cells. Among apoptosis-related proteins, thioridazine plus curcumin induced down-regulation of c-FLIP and Mcl-1 expression at the post-translational levels in a proteasome-dependent manner. Augmentation of proteasome activity was related to the up-regulation of proteasome subunit alpha 5 (PSMA5 expression in curcumin plus thioridazine-treated cells. Combined treatment with curcumin and thioridazine produced intracellular ROS in a NOX4-dependent manner, and ROS-mediated activation of Nrf2/ARE signaling played a critical role in the up-regulation of PSMA5 expression. Furthermore, ectopic expression of c-FLIP and Mcl-1 inhibited apoptosis in thioridazine and curcumin-treated cells. Therefore, we demonstrated that thioridazine plus curcumin induces proteasome activity by up-regulating PSMA5 expression via NOX4-mediated ROS production and that down-regulation of c-FLIP and Mcl-1 expression post-translationally is involved in apoptosis.

  18. PPARγ activation abolishes LDL-induced proliferation of human aortic smooth muscle cells via SOD-mediated down-regulation of superoxide

    International Nuclear Information System (INIS)

    Heo, Kyung-Sun; Kim, Dong-Uk; Ryoo, Sungwoo; Nam, Miyoung; Baek, Seung Tae; Kim, Lila; Park, Song-Kyu; Myung, Chang-Seon; Hoe, Kwang-Lae

    2007-01-01

    Native LDL would be a mitogenic and chemotactic stimulus of VSMC proliferation and differentiation in the atherosclerotic lesion where endothelial disruption occurred. In previous studies, our group investigated the molecular mechanisms by which LDL induces IL-8 production and by which PPARα activation abolishes LDL effects in human aortic SMCs (hAoSMCs). Herein is the first report of PPARγ activation by troglitazone (TG) exerting its inhibitory effects on LDL-induced cell proliferation via generation not of H 2 O 2 , but of O2?-, and the subsequent activation of Erk1/2 in hAoSMCs. Moreover, in this study TG abolished the LDL-accelerated G 1 -S progression to control levels via down-regulation of active cyclinD1/CDK4 and cyclinE/CDK2 complexes and up-regulation of p21 Cip1 expression. TG exerted its anti-proliferative effects through the up-regulation of basal superoxide dismutase (SOD) expression. This data suggests that the regulation of O2?- is located at the crossroads between LDL signaling and cell proliferation

  19. Down-regulation of glutaminase C in human hepatocarcinoma cell by diphenylarsinic acid, a degradation product of chemical warfare agents

    International Nuclear Information System (INIS)

    Kita, Kayoko; Suzuki, Toshihide; Ochi, Takafumi

    2007-01-01

    In a poisonous incident in Kamisu, Japan, it is understood that diphenylarsinic acid (DPAA) was a critical contaminant of ground water. Most patients showed dysfunction of the central nervous system. To understand the overall mechanism of DPAA toxicity and to gain some insight into the application of a remedy specific for intoxication, the molecular target must be clarified. As an approach, a high throughput analysis of cell proteins in cultured human hepatocarcinoma HpG2 exposed to DPAA was performed by two-dimensional electrophoresis (2-DE). Four proteins, which were up- and down-regulated by exposure of cultured HepG2 cells to DPAA, were identified. They were chaperonin containing TCP-1 (CCT) beta subunit, aldehyde dehydrogenase 1 (ALDH1), ribosomal protein P0 and glutaminase C (GAC). Of these, GAC was the only protein that was down-regulated by DPAA exposure, and cellular expression levels were reduced by DPAA in a concentration- and time-dependent manner. Decrease in cellular GAC levels was accompanied by decreased activity of the enzyme, phosphate-activated glutaminase (PAG). Decreased expression of GAC by DPAA was also observed in human cervical carcinoma HeLa and neuroblastoma SH-SY5Y cells. By contrast, no significant changes in GAC protein expression were observed when cells were incubated with arsenite [iAs (III)] and trivalent dimethylarsinous acid [DMA (III)]. In the central nervous system, GAC plays a role in the production of the neurotransmitter glutamic acid. Selective inhibition of GAC expression by DPAA may be a cause of dysfunction of glutamatergic neuronal transmission and the resultant neurological impairments

  20. Down-regulation of glutaminase C in human hepatocarcinoma cell by diphenylarsinic acid, a degradation product of chemical warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Kayoko [Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Sagamiko-chou, Sagamihara, Kanagawa 229-0195 (Japan); Suzuki, Toshihide [Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Sagamiko-chou, Sagamihara, Kanagawa 229-0195 (Japan); Ochi, Takafumi [Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Sagamiko-chou, Sagamihara, Kanagawa 229-0195 (Japan)

    2007-05-01

    In a poisonous incident in Kamisu, Japan, it is understood that diphenylarsinic acid (DPAA) was a critical contaminant of ground water. Most patients showed dysfunction of the central nervous system. To understand the overall mechanism of DPAA toxicity and to gain some insight into the application of a remedy specific for intoxication, the molecular target must be clarified. As an approach, a high throughput analysis of cell proteins in cultured human hepatocarcinoma HpG2 exposed to DPAA was performed by two-dimensional electrophoresis (2-DE). Four proteins, which were up- and down-regulated by exposure of cultured HepG2 cells to DPAA, were identified. They were chaperonin containing TCP-1 (CCT) beta subunit, aldehyde dehydrogenase 1 (ALDH1), ribosomal protein P0 and glutaminase C (GAC). Of these, GAC was the only protein that was down-regulated by DPAA exposure, and cellular expression levels were reduced by DPAA in a concentration- and time-dependent manner. Decrease in cellular GAC levels was accompanied by decreased activity of the enzyme, phosphate-activated glutaminase (PAG). Decreased expression of GAC by DPAA was also observed in human cervical carcinoma HeLa and neuroblastoma SH-SY5Y cells. By contrast, no significant changes in GAC protein expression were observed when cells were incubated with arsenite [iAs (III)] and trivalent dimethylarsinous acid [DMA (III)]. In the central nervous system, GAC plays a role in the production of the neurotransmitter glutamic acid. Selective inhibition of GAC expression by DPAA may be a cause of dysfunction of glutamatergic neuronal transmission and the resultant neurological impairments.

  1. TGF-β1 regulation of estrogen production in mature rat Leydig cells.

    Directory of Open Access Journals (Sweden)

    Man-Li Liu

    Full Text Available BACKGROUND: Besides androgens, estrogens produced in Leydig cells are also crucial for mammalian germ cell differentiation. Transforming growth factor-β1 (TGF-β1 is now known to have multiple effects on regulation of Leydig cell function. The objective of the present study is to determine whether TGF-β1 regulates estradiol (E2 synthesis in adult rat Leydig cells and then to assess the impact of TGF-β1 on Cx43-based gap junctional intercellular communication (GJIC between Leydig cells. METHODOLOGY/PRINCIPAL FINDINGS: Primary cultured Leydig cells were incubated in the presence of recombinant TGF-β1 and the production of E2 as well as testosterone (T were measured by RIA. The activity of P450arom was addressed by the tritiated water release assay and the expression of Cyp19 gene was evaluated by Western blotting and real time RT-PCR. The expression of Cx43 and GJIC were investigated with immunofluorescence and fluorescence recovery after photo-bleaching (FRAP, respectively. Results from this study show that TGF-β1 down-regulates the level of E2 secretion and the activity of P450arom in a dose-dependent manner in adult Leydig cells. In addition, the expression of Cx43 and GJIC was closely related to the regulation of E2 and TGF-β1, and E2 treatment in turn restored the inhibition of TGF-β1 on GJIC. CONCLUSIONS: Our results indicate, for the first time in adult rat Leydig cells, that TGF-β1 suppresses P450arom activity, as well as the expression of the Cyp19 gene, and that depression of E2 secretion leads to down-regulation of Cx43-based GJIC between Leydig cells.

  2. Comparison of loads for wind turbine down-regulation strategies

    DEFF Research Database (Denmark)

    Zhu, Jiangsheng; Ma, Kuichao; N. Soltani, Mohsen

    2017-01-01

    For wind farm active power setpoint tracking, both farm level and turbine level down regulation strategies should to be optimized. Several down regulation strategies are chosen to analyse the wind turbine load performance according to different wind speed and power reference. In this paper we...... suggest appropriate down regulation strategy to control wind turbine for active power reference tracking. we compare four different control strategies, namely Const-Ω, Const-λ, Max-Ω and Min-Ct and discuss the loads on main components and downwind speed by presenting analysis of several wind scenarios...

  3. B1-induced caspase-independent apoptosis in MCF-7 cells is mediated by down-regulation of Bcl-2 via p53 binding to P2 promoter TATA box

    International Nuclear Information System (INIS)

    Liang Xin; Xu Ke; Xu Yufang; Liu Jianwen; Qian Xuhong

    2011-01-01

    The Bcl-2 family contains a panel of proteins which are conserved regulators of apoptosis in mammalian cells, like the anti-apoptotic protein Bcl-2. According to its significant role in altering susceptibility to apoptosis, the deciphering of the mechanism of Bcl-2 expression modulation may be crucial for identifying therapeutics strategies for cancer. Treatment with naphthalimide-based DNA intercalators, including M2-A and R16, generally leads to a decrease in Bcl-2 intracellular amounts. Whereas the interest for these chemotherapeutics is accompanied by advances in the fundamental understanding of their anticancer properties, the molecular mechanism underlying changes in Bcl-2 expression remains poorly understood. We report here that p53 contributes to Bcl-2 down-regulation induced by B1, a novel naphthalimide-based DNA intercalating agent. Indeed, the decrease in Bcl-2 protein levels observed during B1-induced apoptosis was correlated to the decrease in mRNA levels, as a result of the inhibition of Bcl-2 transcription and promoter activity. In this context, we evaluated p53 contribution in the Bcl-2 transcriptional down-regulation. We found a significant increase of p53 binding to P 2 promoter TATA box in MCF7 cells by chromatin immunoprecipitation. These data suggest that B1-induced caspase-independent apoptosis in MCF-7 cells is associated with the activation of p53 and the down-regulation of Bcl-2. Our study strengthens the links between p53 and Bcl-2 at a transcriptional level, upon naphthalimide-based DNA intercalator treatment. - Research highlights: → B1 induced apoptosis in MCF-7 cells, following a transcriptional decrease in Bcl-2. → B1 treatment triggered p53 activation and leads to a p53-dependent down-regulation of Bcl-2. → B1 induced significant increase of p53 binding to Bcl-2 P 2 promoter TATA box.

  4. NOX4-mediated ROS production induces apoptotic cell death via down-regulation of c-FLIP and Mcl-1 expression in combined treatment with thioridazine and curcumin.

    Science.gov (United States)

    Seo, Seung Un; Kim, Tae Hwan; Kim, Dong Eun; Min, Kyoung-Jin; Kwon, Taeg Kyu

    2017-10-01

    Thioridazine is known to have anti-tumor effects by inhibiting PI3K/Akt signaling, which is an important signaling pathway in cell survival. However, thioridazine alone does not induce apoptosis in head and neck squamous cell carcinoma (AMC-HN4), human breast carcinoma (MDA-MB231), and human glioma (U87MG) cells. Therefore, we investigated whether combined treatment with thioridazine and curcumin induces apoptosis. Combined treatment with thioridazine and curcumin markedly induced apoptosis in cancer cells without inducing apoptosis in human normal mesangial cells and human normal umbilical vein cells (EA.hy926). We found that combined treatment with thioridazine and curcumin had synergistic effects in AMC-HN4 cells. Among apoptosis-related proteins, thioridazine plus curcumin induced down-regulation of c-FLIP and Mcl-1 expression at the post-translational levels in a proteasome-dependent manner. Augmentation of proteasome activity was related to the up-regulation of proteasome subunit alpha 5 (PSMA5) expression in curcumin plus thioridazine-treated cells. Combined treatment with curcumin and thioridazine produced intracellular ROS in a NOX4-dependent manner, and ROS-mediated activation of Nrf2/ARE signaling played a critical role in the up-regulation of PSMA5 expression. Furthermore, ectopic expression of c-FLIP and Mcl-1 inhibited apoptosis in thioridazine and curcumin-treated cells. Therefore, we demonstrated that thioridazine plus curcumin induces proteasome activity by up-regulating PSMA5 expression via NOX4-mediated ROS production and that down-regulation of c-FLIP and Mcl-1 expression post-translationally is involved in apoptosis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Inhibition of Ubc13-mediated Ubiquitination by GPS2 Regulates Multiple Stages of B Cell Development.

    Science.gov (United States)

    Lentucci, Claudia; Belkina, Anna C; Cederquist, Carly T; Chan, Michelle; Johnson, Holly E; Prasad, Sherry; Lopacinski, Amanda; Nikolajczyk, Barbara S; Monti, Stefano; Snyder-Cappione, Jennifer; Tanasa, Bogdan; Cardamone, M Dafne; Perissi, Valentina

    2017-02-17

    Non-proteolytic ubiquitin signaling mediated by Lys 63 ubiquitin chains plays a critical role in multiple pathways that are key to the development and activation of immune cells. Our previous work indicates that GPS2 (G-protein Pathway Suppressor 2) is a multifunctional protein regulating TNFα signaling and lipid metabolism in the adipose tissue through modulation of Lys 63 ubiquitination events. However, the full extent of GPS2-mediated regulation of ubiquitination and the underlying molecular mechanisms are unknown. Here, we report that GPS2 is required for restricting the activation of TLR and BCR signaling pathways and the AKT/FOXO1 pathway in immune cells based on direct inhibition of Ubc13 enzymatic activity. Relevance of this regulatory strategy is confirmed in vivo by B cell-targeted deletion of GPS2, resulting in developmental defects at multiple stages of B cell differentiation. Together, these findings reveal that GPS2 genomic and non-genomic functions are critical for the development and cellular homeostasis of B cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. miR-133b down-regulates ABCC1 and enhances the sensitivity of CRC to anti-tumor drugs.

    Science.gov (United States)

    Chen, Miao; Li, Daojiang; Gong, Ni; Wu, Hao; Su, Chen; Xie, Canbin; Xiang, Hong; Lin, Changwei; Li, Xiaorong

    2017-08-08

    Multidrug resistance (MDR) is the main cause of failed chemotherapy treatments. Therefore, preventing MDR is pivotal in treating colorectal cancer (CRC). In a previous study miR-133b was shown to be a tumor suppressor. Additionally, in CRC cells transfected with miR-133b, ATP-binding cassette (ABC) subfamily C member 1(ABCC1) was shown to be significantly down regulated. Whether miR-133b also enhances the chemosensitivity of drugs used to treat CRC by targeting ABCC1 is still unclear. Here, we utilized flow cytometry and high-performance liquid chromatography (HPLC) analysis to identify the ability of miR-133b to reserve MDR in CRC. We then used a dual-luciferase reporter assay to validate that miR-133b targets ABCC1. Further in vivo experiments were designed to validate the method in which miR-133b reversed MDR in CRC cells. The results demonstrated that the level of miR-133b was down-regulated and the expression of ABCC1 was up-regulated in drug-resistant CRC cells compared to non-drug-resistant CRC cells. The restoration of miR-133b expression in CRC drug-resistant cells in vitro resulted in reduced IC50s to chemotherapeutic drugs, significantly induced G1 accumulation, inhibited growth and promoted necrosis in combination with either 5-fluorouracil (5-FU) or vincristine (VCR), and decreased the expression of ABCC1. The dual-luciferase assay demonstrated that miR-133b directly targets ABCC1. The combination of agomiRNA-133b with chemotherapeutic drugs in vivo inhibited tumor growth induced by CRC drug-resistant cells. A xenograft from the in vivo model resulted in up-regulated levels of miR-133b and down-regulated levels of ABCC1. Therefore, miR-133b enhances the chemosensitivity of CRC cells to anti-tumor drugs by directly down-regulating ABCC1. This discovery provides a therapeutic strategy in which miR-133b is used as a potential sensitizer for drug-resistant CRC.

  7. Static compression down-regulates N-cadherin expression and facilitates loss of cell phenotype of nucleus pulposus cells in a disc perfusion culture.

    Science.gov (United States)

    Zhou, Haibo; Shi, Jianmin; Zhang, Chao; Li, Pei

    2018-02-28

    Mechanical compression often induces degenerative changes of disc nucleus pulposus (NP) tissue. It has been indicated that N-cadherin (N-CDH)-mediated signaling helps to preserve the NP cell phenotype. However, N-CDH expression and the resulting NP-specific phenotype alteration under the static compression and dynamic compression remain unclear. To study the effects of static compression and dynamic compression on N-CDH expression and NP-specific phenotype in an in vitro disc organ culture. Porcine discs were organ cultured in a self-developed mechanically active bioreactor for 7 days and subjected to static or dynamic compression (0.4 MPa for 2 h once per day). The noncompressed discs were used as controls. Compared with the dynamic compression, static compression significantly down-regulated the expression of N-CDH and NP-specific markers (laminin, brachyury, and keratin 19); decreased the Alcian Blue staining intensity, glycosaminoglycan and hydroxyproline contents; and declined the matrix macromolecule (aggrecan and collagen II) expression. Compared with the dynamic compression, static compression causes N-CDH down-regulation, loss of NP-specific phenotype, and the resulting decrease in NP matrix synthesis. © 2018 The Author(s).

  8. Dihydromyricetin induces mitochondria-mediated apoptosis in HepG2 cells through down-regulation of the Akt/Bad pathway.

    Science.gov (United States)

    Zhang, Zhuangwei; Zhang, Huiqin; Chen, Shiyong; Xu, Yan; Yao, Anjun; Liao, Qi; Han, Liyuan; Zou, Zuquan; Zhang, Xiaohong

    2017-02-01

    The plant flavonol dihydromyricetin (DHM) was reported to induce apoptosis in human hepatocarcinoma HepG2 cells. This study was undertaken to elucidate the underlying molecular mechanism of action of DHM. In the study, DHM down-regulated Akt expression and its phosphorylation at Ser473, up-regulated the levels of mitochondrial proapoptotic proteins Bax and Bad, and inhibited the phosphorylation of Bad at Ser136 and Ser112. It also inhibited the expression of the antiapoptotic protein Bcl-2 and enhanced the cleavage and activation of caspase-3 as well as the degradation of its downstream target poly(ADP-ribose) polymerase. Our results for the first time suggest that DHM-induced apoptosis in HepG2 cells may come about by the inhibition of the Akt/Bad signaling pathway and stimulation of the mitochondrial apoptotic pathway. Dihydromyricetin may be a promising therapeutic medication for hepatocellular carcinoma. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. VMP1 related autophagy and apoptosis in colorectal cancer cells: VMP1 regulates cell death

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Qinyi [Department of Ultrasonograph, Changshu No. 2 People’s Hospital, Changshu (China); Zhou, Hao; Chen, Yan [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China); Shen, Chenglong [Department of General Surgery, Changshu No. 2 People’s Hospital, Changshu (China); He, Songbing; Zhao, Hua; Wang, Liang [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China); Wan, Daiwei, E-mail: 372710369@qq.com [Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou (China); Gu, Wen, E-mail: 505339704@qq.com [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China)

    2014-01-17

    Highlights: •This research confirmed VMP1 as a regulator of autophagy in colorectal cancer cell lines. •We proved the pro-survival role of VMP1-mediated autophagy in colorectal cancer cell lines. •We found the interaction between VMP1 and BECLIN1 also existing in colorectal cancer cell lines. -- Abstract: Vacuole membrane protein 1 (VMP1) is an autophagy-related protein and identified as a key regulator of autophagy in recent years. In pancreatic cell lines, VMP1-dependent autophagy has been linked to positive regulation of apoptosis. However, there are no published reports on the role of VMP1 in autophagy and apoptosis in colorectal cancers. Therefore, to address this gap of knowledge, we decided to interrogate regulation of autophagy and apoptosis by VMP1. We have studied the induction of autophagy by starvation and rapamycin treatment in colorectal cell lines using electron microscopy, immunofluorescence, and immunoblotting. We found that starvation-induced autophagy correlated with an increase in VMP1 expression, that VMP1 interacted with BECLIN1, and that siRNA mediated down-regulation of VMP1-reduced autophagy. Next, we examined the relationship between VMP1-dependent autophagy and apoptosis and found that VMP1 down-regulation sensitizes cells to apoptosis and that agents that induce apoptosis down-regulate VMP1. In conclusion, similar to its reported role in other cell types, VMP1 is an important regulator of autophagy in colorectal cell lines. However, in contrast to its role in pancreatic cell lines, in colorectal cancer cells, VMP1-dependent autophagy appears to be pro-survival rather than pro-cell death.

  10. Down-regulated βIII-tubulin Expression Can Reverse Paclitaxel Resistance in A549/Taxol Cells Lines

    Directory of Open Access Journals (Sweden)

    Yinling ZHUO

    2014-08-01

    Full Text Available Background and objective Chemotherapy drug resistance is the primary causes of death in patients with pulmonary carcinoma which make tumor recurrence or metastasis. β-tubulin is the main cell targets of anti-microtubule drug. Increased expression of βIII-tubulin has been implicated in non-small cell lung cancer (NSCLC cell lines. To explore the relationship among the expression level of βIII-tubulin and the sensitivity of A549/Taxolcell lines to Taxol and cell cycles and cell apoptosis by RNA interference-mediated inhibition of βIII-tubulin in A549/Taxol cells. Methods Three pairs of siRNA targetd βIII-tubulin were designed and prepared, which were transfected into A549/Taxol cells using LipofectamineTM 2000. We detected the expression of βIII-tubulin mRNA using Real-time fluorescence qRT-PCR. Tedhen we selected the most efficient siRNA by the expression of βIII-tubulin mRNA in transfected group. βIII-tubulin protein level were mesured by Western blot. The taxol sensitivity in transfected group were evaluated by MTT assay. And the cell apoptosis and cell cycles were determined by flow cytometry. Results βIII-tubulin mRNA levels in A549/Taxol cells were significantly decreased in transfected grop by Real-time qRT-PCR than control groups. And βIII-tubulin siRNA-1 sequence showed the highest transfection efficiency, which was (87.73±4.87% (P<0.01; Western blot results showed that the expressional level of BIII tublin protein was significantly down-reulated in the transfectant cells than thant in the control cells. By MTT assay, we showed that the inhibition ratio of Taxol to A549/Taxol cells transfeced was higher than that of control group (51.77±4.60% (P<0.01. The early apoptosis rate of A549/Taxol cells in transfected group were significantly higher than that of control group (P<0.01; G2-M content in taxol group obviously increased than untreated samples by the cell cycle (P<0.05. Conclusion βIII-tubulin down-regulated significantly

  11. miR-338-3p Is Down-Regulated by Hepatitis B Virus X and Inhibits Cell Proliferation by Targeting the 3′-UTR Region of CyclinD1

    Directory of Open Access Journals (Sweden)

    Xiaoyu Fu

    2012-07-01

    Full Text Available Hepatitis B virus X protein (HBx is recognized as an oncogene in hepatocellular carcinoma (HCC. HBx regulates microRNA expression, including down-regulating miR-338-3p in LO2 cells. Here, we investigated miR-338-3p function in HBx-mediated hepatocarcinogenesis. In 23 HBV-infected HCC clinical patient tumor and adjacent non-tumor control tissues, 17 and 19 tumors expressed HBx mRNA and protein, respectively. When considered as a group, HBV-infected HCC tumors had lower miR-338-3p expression than controls; however, miR-338-3p was only significantly down-regulated in HBx-positive tumors, indicating that HBx inversely correlated with miR-338-3p. Functional characterization of miR-338-3p indicated that miR-338-3p mimics inhibited cell proliferation by inducing cell cycle arrest at the G1/S phase as assessed by EdU and cell cycle assays in HBx-expressing LO2 cells. CyclinD1, containing two putative miR-338-3p targets, was confirmed as a direct target using 3′-UTR luciferase reporter assays from cells transfected with mutated binding sites. Mutating the 2397–2403 nt binding site conferred the greatest resistance to miR-338-3p suppression of CyclinD1, indicating that miR-338-3p suppresses CyclinD1 at this site. Overall, this study demonstrates that miR-338-3p inhibits proliferation by regulating CyclinD1, and HBx down-regulates miR-338-3p in HCC. This newly identified miR-338-3p/CyclinD1 interaction provides novel insights into HBx-mediated hepatocarcinogenesis and may facilitate therapeutic development against HCC.

  12. The Cell Surface Estrogen Receptor, G Protein- Coupled Receptor 30 (GPR30, is Markedly Down Regulated During Breast Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Indira Poola

    2008-01-01

    Full Text Available Background: GPR30 is a cell surface estrogen receptor that has been shown to mediate a number of non-genomic rapid effects of estrogen and appear to balance the signaling of estrogen and growth factors. In addition, progestins appear to use GPR30 for their actions. Therefore, GPR30 could play a critical role in hormonal regulation of breast epithelial cell integrity. Deregulation of the events mediated by GPR30 could contribute to tumorigenesis.Methods: To understand the role of GPR30 in the deregulation of estrogen signaling processes during breast carcinogenesis, we have undertaken this study to investigate its expression at mRNA levels in tumor tissues and their matched normal tissues. We compared its expression at mRNA levels by RT quantitative real-time PCR relative to GAPDH in ERα”—positive (n = 54 and ERα”—negative (n = 45 breast cancer tissues to their matched normal tissues.Results: We report here, for the first time, that GPR30 mRNA levels were significantly down-regulated in cancer tissues in comparison with their matched normal tissues (p 0.0001 by two sided paired t-test. The GPR30 expression levels were significantly lower in tumor tissues from patients (n = 29 who had lymph node metastasis in comparison with tumors from patients (n = 53 who were negative for lymph node metastasis (two sample t-test, p 0.02, but no association was found with ERα, PR and other tumor characteristics.Conclusions: Down-regulation of GPR30 could contribute to breast tumorigenesis and lymph node metastasis.

  13. Promoter hypermethylation-induced transcriptional down-regulation of the gene MYCT1 in laryngeal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Yang, Min; Li, Wei; Liu, Yi-Ying; Fu, Shuang; Qiu, Guang-Bin; Sun, Kai-Lai; Fu, Wei-Neng

    2012-01-01

    MYCT1, previously named MTLC, is a novel candidate tumor suppressor gene. MYCT1 was cloned from laryngeal squamous cell cancer (LSCC) and has been found to be down-regulated in LSCC; however, the regulatory details have not been fully elucidated. Here, we sought to investigate the methylation status of the CpG islands of MYCT1 and mRNA levels by bisulfite-specific PCR (BSP) based on sequencing restriction enzyme digestion, reverse transcription and real-time quantitative polymerase chain reaction (RQ-PCR). The function of specific sites in the proximal promoter of MYCT1 in LSCC was measured by transient transfection, luciferase assays, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP). The results suggested hypermethylation of 12 CpG sites of the promoter in both laryngeal cancer tissues and the laryngeal cancer line Hep-2 cell. The hypermethylation of the site CGCG (−695 to −692), which has been identified as the c-Myc binding site, was identified in laryngeal cancer tissues (59/73) compared to paired mucosa (13/73); in addition, statistical analysis revealed that the methylation status of this site significantly correlated with cancer cell differentiation(p < 0.01). The mRNA level of MYCT1 increased in Hep-2 cells treated with 5-aza-C (p < 0.01). The luciferase activity from mutant transfectants pGL3-MYCT1m (−852/+12, mut-695-C > A, mut-693-C > G) was significantly reduced compared with the wild type pGL3-MYCT1 (−852/+12), while the luciferase activity from wild transfectants pGL3-MYCT1 (−852/+12) rose after 5-aza treatment in Hep-2 cells. Finally, EMSA and ChIP confirmed that the methylation of the CGCG (−695 to −692) site prevented c-Myc from binding of the site and demethylation treatment of the 5′ flanking region of MYCT1 by 5-aza induced the increased occupation of the core promoter by c-Myc (p < 0.01). In summary, this study concluded that hypermethylation contributed to the transcriptional down-regulation

  14. Down-Regulation of Neuropathy Target Esterase in Preeclampsia Placenta Inhibits Human Trophoblast Cell Invasion via Modulating MMP-9 Levels

    Directory of Open Access Journals (Sweden)

    Ting Zhong

    2018-02-01

    Full Text Available Background/Aims: Neuropathy target esterase (NTE, also known as neurotoxic esterase is proven to deacylate phosphatidylcholine (PC to glycerophosphocholine as a phospholipase B. Recently; studies showed that artificial phosphatidylserine/PC microvesicles can induce preeclampsia (PE-like changes in pregnant mice. However, it is unclear whether NTE plays a key role in the pathology of PE, a pregnancy-related disease, which was characterized by deficient trophoblast invasion and reduced trophoblast-mediated remodeling of spiral arteries. The aim of this study was to investigate the expression pattern of NTE in the placenta from women with PE and normal pregnancy, and the molecular mechanism of NTE involved in the development of PE. Methods: NTE expression levels in placentas from 20 pregnant women with PE and 20 healthy pregnant women were detected using quantitative PCR and immunohistochemistry staining. The effect of NTE on trophoblast migration and invasion and the underlying mechanisms were examined in HTR-8/SVneo cell lines by transfection method. Results: NTE mRNA and protein expression levels were significantly decreased in preeclamptic placentas than normal control. Over-expression of NTE in HTR-8/SVneo cells significantly promoted trophoblast cells migration and invasion and was associated with increased MMP-9 levels. Conversely, shRNA-mediated down-regulation of NTE markedly inhibited the cell migration and invasion. In addition, silencing NTE reduced the MMP-9 activity and phosphorylated Erk1/2 and AKT levels. Conclusions: Our results suggest that the decreased NTE may contribute to the development of PE through impairing trophoblast invasion by down-regulating MMP-9 via the Erk1/2 and AKT signaling pathway.

  15. Celecoxib Down-Regulates the Hypoxia-Induced Expression of HIF-1α and VEGF Through the PI3K/AKT Pathway in Retinal Pigment Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Yi-zhou Sun

    2017-12-01

    Full Text Available Background/Aims: The goal of this study was to detect the expression of hypoxia-inducible factor 1α (HIF-1α and vascular endothelial growth factor (VEGF in human retinal pigmented epithelial (RPE cells treated with celecoxib, a selective cyclooxygenase-2 (COX-2 inhibitor, under hypoxic and normoxic conditions and to explore the signaling mechanism involved in regulating the hypoxia-induced expression of HIF-1α and VEGF in RPE cells. Methods: D407 cells were cultured in normoxic or hypoxic conditions, with or without celecoxib or a PI3K inhibitor (LY294002. The anti-proliferative effect of celecoxib was assessed using the MTT assay. RT-PCR, Western blotting and ELISA were performed to detect the levels of PI3K, phosphorylated AKT (p-AKT, HIF-1α, VEGF and COX-2. Results: Celecoxib inhibited the proliferation of RPE cells in a dose-dependent manner. Celecoxib suppressed the expression of VEGF at both the mRNA and protein levels and decreased HIF-1α protein expression. HIF-1α activation was regulated by the PI3K/AKT pathway. The celecoxib-induced down-regulation of HIF-1α and VEGF required the suppression of the hypoxia-induced PI3K/AKT pathway. However, the down-regulation of COX-2 did not occur in cells treated with celecoxib. Conclusions: The antiangiogenic effects of celecoxib in RPE cells under hypoxic conditions resulted from the inhibition of HIF-1α and VEGF expression, which may be partly mediated by a COX-2-independent, PI3K/AKT-dependent pathway.

  16. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhaojing [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China); Xu, Yonghong [Institute of Ophthalmological Research, Department of Ophthalmology, Renmin Hospital of Wuhan University, 430060 Wuhan (China); Meng, Xiangning [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Watari, Fumio [Department of Biomedical, Dental Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586 (Japan); Liu, Hudan, E-mail: hudanliu@hust.edu.cn [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China); Chen, Xiao, E-mail: mornsmile@yahoo.com [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China)

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.

  17. LW-214, a newly synthesized flavonoid, induces intrinsic apoptosis pathway by down-regulating Trx-1 in MCF-7 human breast cells.

    Science.gov (United States)

    Pan, Di; Li, Wei; Miao, Hanchi; Yao, Jing; Li, Zhiyu; Wei, Libin; Zhao, Li; Guo, Qinglong

    2014-02-15

    In this study, the anticancer effect of LW-214, a newly synthesized flavonoid, against MCF-7 human breast cancer cells and the underlying mechanisms were investigated. LW-214 triggered the mitochondrial apoptotic pathway by increasing Bax/Bcl-2 ratio, loss of mitochondrial membrane potential (ΔΨm) and caspase-9 activation, degradation of poly (ADP-ribose) polymerase (PARP), cytochrome c (Cyt c) release and apoptosis-inducing factor (AIF) transposition. Further research revealed that both the reactive oxygen species (ROS) generation and the apoptosis signal regulating kinase 1 (ASK1) activation by LW-214 were induced by down-regulating the thioredoxin-1 (Trx-1) expression. The ROS elevation and ASK1 activation induced a sustained phosphorylation of c-Jun N-terminal kinase (JNK), while SP600125, as known as JNK inhibitor, almost reversed LW-214-induced apoptosis in MCF-7 cells. Overexpression of Trx-1 in MCF-7 cells attenuated LW-214-mediated apoptosis as well as the JNK activation and reversed the expression of mitochondrial apoptosis-related protein. Accordingly, the in vivo study showed that LW-214 exhibited a potential antitumor effect in BALB/c species mice inoculated MCF-7 tumor with low systemic toxicity, and the mechanism was the same as in vitro study. Taken together, these findings indicated that LW-214 may down-regulated Trx-1 function, causing intracellular ROS generation and releasing the ASK1, and lead to JNK activation, which consequently induced the mitochondrial apoptosis in vitro and in vivo. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Fisetin Enhances the Cytotoxicity of Gemcitabine by Down-regulating ERK-MYC in MiaPaca-2 Human Pancreatic Cancer Cells.

    Science.gov (United States)

    Kim, Nayoung; Kang, Min-Jung; Lee, Sang Hyub; Son, Jun Hyuk; Lee, Ji Eun; Paik, Woo Hyun; Ryu, Ji Kon; Kim, Yong-Tae

    2018-06-01

    Pancreatic cancer is a highly lethal malignancy with a poor prognosis. This study was set up to investigate the combined effect of gemcitabine and fisetin, a natural flavonoid from plants, on human pancreatic cancer cells. Meterials and Methods: Cytotoxic effect of fisetin in combination with gemcitabine on MiaPaca-2 cells was evaluated by the MTT assay, caspase 3/7 assay and propidium iodide/Annexin V. Extracellular signal-regulated kinase (ERK)-v-myc avian myelocytomatosis viral oncogene homolog (MYC) pathway was investigated by western blotting and quantitative real-time polymerase chain reaction. Combination treatment with fisetin and gemcitabine inhibited the proliferation of pancreatic cancer cells within 72 h and induced apoptosis, as indicated by activation of caspase 3/7. Fisetin down-regulated ERK at the protein and mRNA levels, and reduced ERK-induced MYC instability at the protein level. Fisetin sensitized human pancreatic cancer cells to gemcitabine-induced cytotoxicity through inhibition of ERK-MYC signaling. These results suggest that the combination of fisetin and gemcitabine could be developed as a novel potent therapeutic. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. Down-regulation of mTOR leads to up-regulation of osteoprotegerin in bone marrow cells

    International Nuclear Information System (INIS)

    Mogi, Makio; Kondo, Ayami

    2009-01-01

    Osteoprotegerin (OPG)/osteoclastogenesis inhibitory factor regulates bone mass by inhibiting osteoclastic bone resorption. mTOR, which is the mammalian target of rapamycin, is a kinase and central regulator of cell growth, proliferation, and survival. By using Rapamycin, we studied whether mTOR pathway is associated with OPG protein production in the mouse bone marrow-derived stromal cell line ST2. Rapamycin markedly increased the level of soluble OPG in ST2 cells. This antibiotic treatment resulted in the suppression of phosphorylation of mTOR. Rapamycin had no effects on the proliferation, differentiation, or apoptosis of the cells. Treatment with bone morphogenetic protein-4, which can induce OPG protein in ST2 cells, also resulted in a decrease in the density of the phospho-mTOR-band, suggesting that the suppression of the phospho-mTOR pathway is necessary for OPG production in ST2 cells. Thus, suitable suppression of mTOR phosphorylation is a necessary requirement for OPG production in bone marrow stromal cells.

  20. The CD3 gamma leucine-based receptor-sorting motif is required for efficient ligand-mediated TCR down-regulation

    DEFF Research Database (Denmark)

    von Essen, Marina; Menné, Charlotte; Nielsen, Bodil L

    2002-01-01

    . The other pathway is dependent on protein kinase C (PKC)-mediated activation of the CD3 gamma di-leucine-based receptor-sorting motif. Previous studies have failed to demonstrate a connection between ligand- and PKC-induced TCR down-regulation. Thus, although an apparent paradox, the dogma has been...... that ligand- and PKC-induced TCR down-regulations are not interrelated. By analyses of a newly developed CD3 gamma-negative T cell variant, freshly isolated and PHA-activated PBMC, and a mouse T cell line, we challenged this dogma and demonstrate in this work that PKC activation and the CD3 gamma di...

  1. Emotion Regulation in Children with Down Syndrome.

    Science.gov (United States)

    Smith, Maureen C.; Walden, Tedra A.

    This study presents a preliminary exploration of emotion regulation in a sample of 20 children (ages 3-18 years) with Down Syndrome. Three aspects of emotion regulation (modulation, organization, flexibility) were predicted from emotion variables (affect intensity, affective expression, and autonomy-curiosity and motivation) in backward regression…

  2. CD44 staining of cancer stem-like cells is influenced by down-regulation of CD44 variant isoforms and up-regulation of the standard CD44 isoform in the population of cells that have undergone epithelial-to-mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Adrian Biddle

    Full Text Available CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumours, and we have previously demonstrated the existence of two different CD44(high cancer stem-like cell populations in squamous cell carcinoma, one having undergone epithelial-to-mesenchymal transition and the other maintaining an epithelial phenotype. Alternative splicing of CD44 variant exons generates a great many isoforms, and it is not known which isoforms are expressed on the surface of the two different cancer stem-like cell phenotypes. Here, we demonstrate that cancer stem-like cells with an epithelial phenotype predominantly express isoforms containing the variant exons, whereas the cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition down-regulate these variant isoforms and up-regulate expression of the standard CD44 isoform that contains no variant exons. In addition, we find that enzymatic treatments used to dissociate cells from tissue culture or fresh tumour specimens cause destruction of variant CD44 isoforms at the cell surface whereas expression of the standard CD44 isoform is preserved. This results in enrichment within the CD44(high population of cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition and depletion from the CD44(high population of cancer stem-like cells that maintain an epithelial phenotype, and therefore greatly effects the characteristics of any cancer stem-like cell population isolated based on expression of CD44. As well as effecting the CD44(high population, enzymatic treatment also reduces the percentage of the total epithelial cancer cell population staining CD44-positive, with potential implications for studies that aim to use CD44-positive staining as a prognostic indicator. Analyses of the properties of cancer stem-like cells are largely dependent on the ability to accurately identify and assay these populations. It is therefore critical that

  3. Down-regulation of tricarboxylic acid (TCA) cycle genes blocks progression through the first mitotic division in Caenorhabditis elegans embryos.

    Science.gov (United States)

    Rahman, Mohammad M; Rosu, Simona; Joseph-Strauss, Daphna; Cohen-Fix, Orna

    2014-02-18

    The cell cycle is a highly regulated process that enables the accurate transmission of chromosomes to daughter cells. Here we uncover a previously unknown link between the tricarboxylic acid (TCA) cycle and cell cycle progression in the Caenorhabditis elegans early embryo. We found that down-regulation of TCA cycle components, including citrate synthase, malate dehydrogenase, and aconitase, resulted in a one-cell stage arrest before entry into mitosis: pronuclear meeting occurred normally, but nuclear envelope breakdown, centrosome separation, and chromosome condensation did not take place. Mitotic entry is controlled by the cyclin B-cyclin-dependent kinase 1 (Cdk1) complex, and the inhibitory phosphorylation of Cdk1 must be removed in order for the complex to be active. We found that following down-regulation of the TCA cycle, cyclin B levels were normal but CDK-1 remained inhibitory-phosphorylated in one-cell stage-arrested embryos, indicative of a G2-like arrest. Moreover, this was not due to an indirect effect caused by checkpoint activation by DNA damage or replication defects. These observations suggest that CDK-1 activation in the C. elegans one-cell embryo is sensitive to the metabolic state of the cell, and that down-regulation of the TCA cycle prevents the removal of CDK-1 inhibitory phosphorylation. The TCA cycle was previously shown to be necessary for the development of the early embryo in mammals, but the molecular processes affected were not known. Our study demonstrates a link between the TCA cycle and a specific cell cycle transition in the one-cell stage embryo.

  4. BMP15 suppresses progesterone production by down-regulating StAR via ALK3 in human granulosa cells.

    Science.gov (United States)

    Chang, Hsun-Ming; Cheng, Jung-Chien; Klausen, Christian; Leung, Peter C K

    2013-12-01

    In addition to somatic cell-derived growth factors, oocyte-derived growth differentiation factor (GDF)9 and bone morphogenetic protein (BMP)15 play essential roles in female fertility. However, few studies have investigated their effects on human ovarian steroidogenesis, and fewer still have examined their differential effects or underlying molecular determinants. In the present study, we used immortalized human granulosa cells (SVOG) and human granulosa cell tumor cells (KGN) to compare the effects of GDF9 and BMP15 on steroidogenic enzyme expression and investigate potential mechanisms of action. In SVOG cells, neither GDF9 nor BMP15 affects the mRNA levels of P450 side-chain cleavage enzyme or 3β-hydroxysteroid dehydrogenase. However, treatment with BMP15, but not GDF9, significantly decreases steroidogenic acute regulatory protein (StAR) mRNA and protein levels as well as progesterone production. These suppressive effects, along with the induction of Sma and Mad-related protein (SMAD)1/5/8 phosphorylation, are attenuated by cotreatment with 2 different BMP type I receptor inhibitors (dorsomorphin and DMH-1). Furthermore, depletion of activin receptor-like kinase (ALK)3 using small interfering RNA reverses the effects of BMP15 on SMAD1/5/8 phosphorylation and StAR expression. Similarly, knockdown of ALK3 abolishes BMP15-induced SMAD1/5/8 phosphorylation in KGN cells. These results provide evidence that oocyte-derived BMP15 down-regulates StAR expression and decreases progesterone production in human granulosa cells, likely via ALK3-mediated SMAD1/5/8 signaling. Our findings suggest that oocyte may play a critical role in the regulation of progesterone to prevent premature luteinization during the late stage of follicle development.

  5. Enterococcus faecalis Infection and Reactive Oxygen Species Down-Regulates the miR-17-92 Cluster in Gastric Adenocarcinoma Cell Culture

    Directory of Open Access Journals (Sweden)

    Jesper A. B. Strickertsson

    2014-08-01

    Full Text Available Chronic inflammation due to bacterial overgrowth of the stomach predisposes to the development of gastric cancer and is also associated with high levels of reactive oxygen species (ROS. In recent years increasing attention has been drawn to microRNAs (miRNAs due to their role in the pathogenesis of many human diseases including gastric cancer. Here we studied the impact of infection by the gram-positive bacteria Enterococcus faecalis (E. faecalis on global miRNA expression as well as the effect of ROS on selected miRNAs. Human gastric adenocarcinoma cell line MKN74 was infected with living E. faecalis for 24 h or for 5 days or with E. faecalis lysate for 5 days. The miRNA expression was examined by microarray analysis using Affymetrix GeneChip miRNA Arrays. To test the effect of ROS, MKN74 cells were treated with 100 mM tert-Butyl hydroperoxide (TBHP. Following 5 days of E. faecalis infection we found 91 differentially expressed miRNAs in response to living bacteria and 2 miRNAs responded to E. faecalis lysate. We verified the down-regulation of the miR-17-92 and miR-106-363 clusters and of other miRNAs involved in the oxidative stress-response by qRT-PCR. We conclude that only infection by living E. faecalis bacteria caused a significant global response in miRNA expression in the MKN74 cell culture. E. faecalis infection as well as ROS stimulation down-regulated the expression of the miR-17-92 cluster. We believe that these changes could reflect a general response of gastric epithelial cells to bacterial infections.

  6. DHT selectively reverses Smad3-mediated/TGF-beta-induced responses through transcriptional down-regulation of Smad3 in prostate epithelial cells.

    Science.gov (United States)

    Song, Kyung; Wang, Hui; Krebs, Tracy L; Wang, Bingcheng; Kelley, Thomas J; Danielpour, David

    2010-10-01

    Androgens suppress TGF-β responses in the prostate through mechanisms that are not fully explored. We have recently reported that 5α-dihydrotestosterone (DHT) suppresses the ability of TGF-β to inhibit proliferation and induce apoptosis of prostatic epithelial cells and provided evidence that such suppression was fueled by transcriptional down-regulation of TGF-β receptor II (ΤβRII). We now show that androgen receptor (AR) activated by DHT suppresses the TGF-β-induced phosphorylation of Sma- and Mad-related protein (Smad)3 in LNCaP cells overexpressing TβRII under the control of a cytomegalovirus promoter, which is not regulated by DHT, suggesting that transcriptional repression of TβRII alone does not fully account for the impact of DHT on TGF-β responses. Instead, we demonstrate that such suppression occurs through loss of total Smad3, resulting from transcriptional suppression of Smad3. We provide evidence that DHT down-regulates the promoter activity of Smad3 in various prostate cancer cell lines, including NRP-154+AR, DU145+AR, LNCaP, and VCaP, at least partly through androgen-dependent inactivation of Sp1. Moreover, we show that overexpression of Smad3 reverses the ability of DHT to protect against TGF-β-induced apoptosis in NRP-154+AR, supporting our model that loss of Smad3 by DHT is involved in the protection against TGF-β-induced apoptosis. Together, these findings suggest that deregulated/enhanced expression and activation of AR in prostate carcinomas may intercept the tumor suppressor function of TGF-β through transcriptional suppression of Smad3, thereby providing new mechanistic insight into the development of castration-resistant prostate cancer.

  7. Vitex rotundifolia Fruit Suppresses the Proliferation of Human Colorectal Cancer Cells through Down-regulation of Cyclin D1 and CDK4 via Proteasomal-Dependent Degradation and Transcriptional Inhibition.

    Science.gov (United States)

    Song, Hun Min; Park, Gwang Hun; Park, Su Bin; Kim, Hyun-Seok; Son, Ho-Jun; Um, Yurry; Jeong, Jin Boo

    2018-01-01

    Viticis Fructus (VF) as the dried fruit from Vitex rotundifolia L. used as a traditional medicine for treating inflammation, headache, migraine, chronic bronchitis, eye pain, and gastrointestinal infections has been reported to have antiproliferative effects against various cancer cells, including breast, lung and colorectal cancer cells. However, the molecular mechanisms by which VF mediates the inhibitory effect of the proliferation of cancer cells have not been elucidated in detail. In this study, we investigated the molecular mechanism of VF on the down-regulation of cyclin D1 and CDK4 level associated with cancer cell proliferation. VF suppressed the proliferation of human colorectal cancer cell lines such as HCT116 and SW480. VF induced decrease in cyclin D1 and CDK4 in both protein and mRNA levels. However, the protein levels of cyclin D1 and CDK4 were decreased by VF at an earlier time than the change of mRNA levels; rather it suppressed the expression of cyclin D1 and CDK4 via the proteasomal degradation. In cyclin D1 and CDK4 degradation, we found that Thr286 phosphorylation of cyclin D1 plays a pivotal role in VF-mediated cyclin D1 degradation. Subsequent experiments with several kinase inhibitors suggest that VF-mediated degradation of cyclin D1 may be dependent on GSK3[Formula: see text] and VF-mediated degradation of CDK4 is dependent on ERK1/2, p38 and GSK3[Formula: see text]. In the transcriptional regulation of cyclin D1 and CDK4, we found that VF inhibited Wnt activation associated with cyclin D1 transcriptional regulation through TCF4 down-regulation. In addition, VF treatment down-regulated c-myc expression associated CDK4 transcriptional regulation. Our results suggest that VF has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.

  8. The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways.

    Science.gov (United States)

    Youns, Mаhmoud; Abdel Halim Hegazy, Wael

    2017-01-01

    Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2), colorectal (Caco-2) and pancreatic (Suit-2) cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes.

  9. The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Mаhmoud Youns

    Full Text Available Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2, colorectal (Caco-2 and pancreatic (Suit-2 cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes.

  10. The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways

    Science.gov (United States)

    Youns, Mаhmoud; Abdel Halim Hegazy, Wael

    2017-01-01

    Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2), colorectal (Caco-2) and pancreatic (Suit-2) cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes. PMID:28052097

  11. MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma.

    Science.gov (United States)

    Chen, Jiamin; Feilotter, Harriet E; Paré, Geneviève C; Zhang, Xiao; Pemberton, Joshua G W; Garady, Cherif; Lai, Dulcie; Yang, Xiaolong; Tron, Victor A

    2010-05-01

    Cutaneous melanoma is an aggressive form of human skin cancer characterized by high metastatic potential and poor prognosis. To better understand the role of microRNAs (miRNAs) in melanoma, the expression of 470 miRNAs was profiled in tissue samples from benign nevi and metastatic melanomas. We identified 31 miRNAs that were differentially expressed (13 up-regulated and 18 down-regulated) in metastatic melanomas relative to benign nevi. Notably, miR-193b was significantly down-regulated in the melanoma tissues examined. To understand the role of miR-193b in melanoma, functional studies were undertaken. Overexpression of miR-193b in melanoma cell lines repressed cell proliferation. Gene expression profiling identified 314 genes down-regulated by overexpression of miR-193b in Malme-3M cells. Eighteen of these down-regulated genes, including cyclin D1 (CCND1), were also identified as putative miR-193b targets by TargetScan. Overexpression of miR-193b in Malme-3M cells down-regulated CCND1 mRNA and protein by > or = 50%. A luciferase reporter assay confirmed that miR-193b directly regulates CCND1 by binding to the 3'untranslated region of CCND1 mRNA. These studies indicate that miR-193b represses cell proliferation and regulates CCND1 expression and suggest that dysregulation of miR-193b may play an important role in melanoma development.

  12. Foxa1 reduces lipid accumulation in human hepatocytes and is down-regulated in nonalcoholic fatty liver.

    Directory of Open Access Journals (Sweden)

    Marta Moya

    Full Text Available Triglyceride accumulation in nonalcoholic fatty liver (NAFL results from unbalanced lipid metabolism which, in the liver, is controlled by several transcription factors. The Foxa subfamily of winged helix/forkhead box (Fox transcription factors comprises three members which play important roles in controlling both metabolism and homeostasis through the regulation of multiple target genes in the liver, pancreas and adipose tissue. In the mouse liver, Foxa2 is repressed by insulin and mediates fasting responses. Unlike Foxa2 however, the role of Foxa1 in the liver has not yet been investigated in detail. In this study, we evaluate the role of Foxa1 in two human liver cell models, primary cultured hepatocytes and HepG2 cells, by adenoviral infection. Moreover, human and rat livers were analyzed to determine Foxa1 regulation in NAFL. Results demonstrate that Foxa1 is a potent inhibitor of hepatic triglyceride synthesis, accumulation and secretion by repressing the expression of multiple target genes of these pathways (e.g., GPAM, DGAT2, MTP, APOB. Moreover, Foxa1 represses the fatty acid transporter protein FATP2 and lowers fatty acid uptake. Foxa1 also increases the breakdown of fatty acids by inducing peroxisomal fatty acid β-oxidation and ketone body synthesis. Finally, Foxa1 is able to largely up-regulate UCP1, thereby dissipating energy and consistently decreasing the mitochondria membrane potential. We also report that human and rat NAFL have a reduced Foxa1 expression, possibly through a protein kinase C-dependent pathway. We conclude that Foxa1 is an antisteatotic factor that coordinately tunes several lipid metabolic pathways to block triglyceride accumulation in hepatocytes. However, Foxa1 is down-regulated in human and rat NAFL and, therefore, increasing Foxa1 levels could protect from steatosis. Altogether, we suggest that Foxa1 could be a novel therapeutic target for NAFL disease and insulin resistance.

  13. Model of the regulation of the rate of multiplication of the stem cells of the bone marrow. [X radiation, gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, G P; Monichev, A Ya

    1975-01-01

    A mathematical model of regulation of the rate of multiplication of the stem cells of the bone marrow has been constructed and investigated. Two possible variants of regulation of the proliferative activity of the irradiated stem cells are compared: at the level of tissue and subtissue units. Comparison of the results of modeling with the results of experimental investigations supports the latter mechanism of regulation of the proliferation of the stem cells.

  14. pH-responsive artemisinin derivatives and lipid nanoparticle formulations inhibit growth of breast cancer cells in vitro and induce down-regulation of HER family members.

    Directory of Open Access Journals (Sweden)

    Yitong J Zhang

    Full Text Available Artemisinin (ART dimers show potent anti-proliferative activities against breast cancer cells. To facilitate their clinical development, novel pH-responsive artemisinin dimers were synthesized for liposomal nanoparticle formulations. A new ART dimer was designed to become increasingly water-soluble as pH declines. The new artemisinin dimer piperazine derivatives (ADPs remained tightly associated with liposomal nanoparticles (NPs at neutral pH but were efficiently released at acidic pH's that are known to exist within solid tumors and organelles such as endosomes and lysosomes. ADPs incorporated into nanoparticles down regulated the anti-apoptotic protein, survivin, and cyclin D1 when incubated at low concentrations with breast cancer cell lines. We demonstrate for the first time, for any ART derivative, that ADP NPs can down regulate the oncogenic protein HER2, and its counterpart, HER3 in a HER2+ cell line. We also show that the wild type epidermal growth factor receptor (EGFR or HER1 declines in a triple negative breast cancer (TNBC cell line in response to ADP NPs. The declines in these proteins are achieved at concentrations of NP109 at or below 1 µM. Furthermore, the new artemisinin derivatives showed improved cell-proliferation inhibition effects compared to known dimer derivatives.

  15. Budesonide suppresses pulmonary antibacterial host defense by down-regulating cathelicidin-related antimicrobial peptide in allergic inflammation mice and in lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Wang Peng

    2013-02-01

    Full Text Available Abstract Background Glucocorticoids are widely regarded as the most effective treatment for asthma. However, the direct impact of glucocorticoids on the innate immune system and antibacterial host defense during asthma remain unclear. Understanding the mechanisms underlying this process is critical to the clinical application of glucocorticoids for asthma therapy. After sensitization and challenge with ovalbumin (OVA, BALB/c mice were treated with inhaled budesonide and infected with Pseudomonas aeruginosa (P. aeruginosa. The number of viable bacteria in enflamed lungs was evaluated, and levels of interleukin-4 (IL-4 and interferon-γ (IFN-γ in serum were measured. A lung epithelial cell line was pretreated with budesonide. Levels of cathelicidin-related antimicrobial peptide (CRAMP were measured by immunohistochemistry and western blot analysis. Intracellular bacteria were observed in lung epithelial cells. Results Inhaled budesonide enhanced lung infection in allergic mice exposed to P. aeruginosa and increased the number of viable bacteria in lung tissue. Higher levels of IL-4 and lower levels of IFN-γ were observed in the serum. Budesonide decreased the expression of CRAMP, increased the number of internalized P. aeruginosa in OVA-challenged mice and in lung epithelial cell lines. These data indicate that inhaled budesonide can suppress pulmonary antibacterial host defense by down-regulating CRAMP in allergic inflammation mice and in cells in vitro. Conclusions Inhaled budesonide suppressed pulmonary antibacterial host defense in an asthmatic mouse model and in lung epithelium cells in vitro. This effect was dependent on the down-regulation of CRAMP.

  16. Wnt/β-catenin signaling regulates cancer stem cells in lung cancer A549 cells

    International Nuclear Information System (INIS)

    Teng, Ying; Wang, Xiuwen; Wang, Yawei; Ma, Daoxin

    2010-01-01

    Wnt/β-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that β-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of β-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking down the expression of β-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/β-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.

  17. TGF-β1 stimulates migration of type II endometrial cancer cells by down-regulating PTEN via activation of SMAD and ERK1/2 signaling pathways.

    Science.gov (United States)

    Xiong, Siyuan; Cheng, Jung-Chien; Klausen, Christian; Zhao, Jianfang; Leung, Peter C K

    2016-09-20

    PTEN acts as a tumor suppressor primarily by antagonizing the PI3K/AKT signaling pathway. PTEN is frequently mutated in human cancers; however, in type II endometrial cancers its mutation rate is very low. Overexpression of TGF-β1 and its receptors has been reported to correlate with metastasis of human cancers and reduced survival rates. Although TGF-β1 has been shown to regulate PTEN expression through various mechanisms, it is not yet known if the same is true in type II endometrial cancer. In the present study, we show that treatment with TGF-β1 stimulates the migration of two type II endometrial cancer cell lines, KLE and HEC-50. In addition, TGF-β1 treatment down-regulates both mRNA and protein levels of PTEN. Overexpression of PTEN or inhibition of PI3K abolishes TGF-β1-stimulated cell migration. TGF-β1 induces SMAD2/3 phosphorylation and knockdown of common SMAD4 inhibits the suppressive effects of TGF-β1 on PTEN mRNA and protein. Interestingly, TGF-β1 induces ERK1/2 phosphorylation and pre-treatment with a MEK inhibitor attenuates the suppression of PTEN protein, but not mRNA, by TGF-β1. This study provides important insights into the molecular mechanisms mediating TGF-β1-induced down-regulation of PTEN and demonstrates an important role of PTEN in the regulation of type II endometrial cancer cell migration.

  18. MiR-217 is down-regulated in psoriasis and promotes keratinocyte differentiation via targeting GRHL2

    International Nuclear Information System (INIS)

    Zhu, Haigang; Hou, Liyue; Liu, Jingjing; Li, Zhiming

    2016-01-01

    MiR-217 is a well-known tumor suppressor, and its down-regulation has been shown in a wide range of solid and leukaemic cancers. However, the biological role of miR-217 in psoriasis pathogenesis, especially in keratinocyte hyperproliferation and differentiation, is not clearly understood. In this study, we found the expression of miR-217 was markedly down-regulated in psoriasis keratinocytes of psoriatic patients. In addition, overexpression of miR-217 inhibited the proliferation and promoted the differentiation of primary human keratinocytes. On the contrary, inhibition of endogenous miR-217 increased cell proliferation and delayed differentiation. Furthermore, Grainyhead-like 2 (GRHL2) was identified as a direct target of miR-217 by luciferase reporter assay. The expression of miR-217 and GRHL2 was inversely correlated in both transfected keratinocytes and in psoriasis lesional skin. Moreover, knocking down GRHL2 expression by siRNA enhanced keratinocyte differentiation. Taken together, our results demonstrate a role for miR-217 in the regulation of keratinocyte differentiation, partially through the regulation of GRHL2. - Highlights: • miR-217 is down-regulated in psoriasis skin lesions. • miR-217 inhibits the proliferation and promotes differentiation of keratinocytes. • GRHL2 is a novel target of miR-217 in keratinocytes. • GRHL2 is up-regulated and inversely correlated with miR-217 in psoriasis skin lesions.

  19. MiR-217 is down-regulated in psoriasis and promotes keratinocyte differentiation via targeting GRHL2

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Haigang; Hou, Liyue; Liu, Jingjing; Li, Zhiming, E-mail: lizm_1001@sina.com

    2016-02-26

    MiR-217 is a well-known tumor suppressor, and its down-regulation has been shown in a wide range of solid and leukaemic cancers. However, the biological role of miR-217 in psoriasis pathogenesis, especially in keratinocyte hyperproliferation and differentiation, is not clearly understood. In this study, we found the expression of miR-217 was markedly down-regulated in psoriasis keratinocytes of psoriatic patients. In addition, overexpression of miR-217 inhibited the proliferation and promoted the differentiation of primary human keratinocytes. On the contrary, inhibition of endogenous miR-217 increased cell proliferation and delayed differentiation. Furthermore, Grainyhead-like 2 (GRHL2) was identified as a direct target of miR-217 by luciferase reporter assay. The expression of miR-217 and GRHL2 was inversely correlated in both transfected keratinocytes and in psoriasis lesional skin. Moreover, knocking down GRHL2 expression by siRNA enhanced keratinocyte differentiation. Taken together, our results demonstrate a role for miR-217 in the regulation of keratinocyte differentiation, partially through the regulation of GRHL2. - Highlights: • miR-217 is down-regulated in psoriasis skin lesions. • miR-217 inhibits the proliferation and promotes differentiation of keratinocytes. • GRHL2 is a novel target of miR-217 in keratinocytes. • GRHL2 is up-regulated and inversely correlated with miR-217 in psoriasis skin lesions.

  20. Multiple intracellular signaling pathways orchestrate adipocytic differentiation of human bone marrow stromal stem cells

    DEFF Research Database (Denmark)

    Ayesh Hafez Ali, Dalia; Abuelreich, Sarah; Alkeraishan, Nora

    2018-01-01

    during adipocyte differentiation of human bone marrow stromal (mesenchymal) stem cells (hMSCs) and identified 2,589 up-regulated and 2,583 down-regulated mRNA transcripts. Pathway analysis on the up-regulated gene list untraveled enrichment in multiple signaling pathways including insulin receptor......Bone marrow adipocyte formation plays a role in bone homeostasis and whole body energy metabolism. However, the transcriptional landscape and signaling pathways associated with adipocyte lineage commitment and maturation are not fully delineated. Thus, we performed global gene expression profiling...... signaling, focal Adhesion, metapathway biotransformation, a number of metabolic pathways e.g. selenium metabolism, Benzo(a)pyrene metabolism, fatty acid, triacylglycerol, ketone body metabolism, tryptophan metabolism, and catalytic cycle of mammalian flavin-containing monooxygenase (FMOs). On the other hand...

  1. Down-regulation of SFRP1 as a putative tumor suppressor gene can contribute to human hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Huang, Jian; Zhang, Yun-Li; Teng, Xiao-Mei; Lin, Yun; Zheng, Da-Li; Yang, Peng-Yuan; Han, Ze-Guang

    2007-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers in the world. SFRP1 (the secreted frizzled-related protein 1), a putative tumor suppressor gene mapped onto chromosome 8p12-p11.1, the frequent loss of heterozygosity (LOH) region in human HCC, encodes a Wingless-type (Wnt) signaling antagonist and is frequently inactivated by promoter methylation in many human cancers. However, whether the down-regulation of SFRP1 can contribute to hepatocarcinogenesis still remains unclear. We investigated the expression of SFRP1 through real time RT-PCR and immunohistochemistry staining. The cell growth and colony formation were observed as the overexpression and knockdown of SFRP1. The DNA methylation status within SFRP1 promoter was analyzed through methylation-specific PCR or bisulphate-treated DNA sequencing assays. Loss of heterozygosity was here detected with microsatellite markers. SFRP1 was significantly down-regulated in 76.1% (35/46) HCC specimens at mRNA level and in 30% (30/100) HCCs indicated by immunohistochemistry staining, as compared to adjacent non-cancerous livers. The overexpression of SFRP1 can significantly inhibit the cell growth and colony formation of YY-8103, SMMC7721, and Hep3B cells. The RNA interference against the constitutional SFRP1 in the offspring SMMC7721 cells, which were stably transfected by ectopic SFRP1, can markedly promote cell growth of these cells. LOH of both microsatellite markers D8S532 and D8SAC016868 flanking the gene locus was found in 13% (6 of 46 HCCs) and 6.5% (3 of 46 HCCs) of the informative cases, respectively, where 5 of 8 HCC specimens with LOH showed the down-regulation of SFRP1. DNA hypermethylation within SFRP1 promoter was identified in two of three HCC specimens without SFRP1 expression. Moreover, the DNA methylation of SFRP1 promoter was significantly reduced, along with the re-expression of the gene, in those HCC cell lines, Bel7404, QGY7701, and MHCC-H, as treated by DAC. Our data suggested that the

  2. Down-regulation of a calmodulin-related gene during transformation of human mammary epithelial cells

    International Nuclear Information System (INIS)

    Yaswen, P.; Smoll, A.; Stampfer, M.R.; Peehl, D.M.; Trask, D.K.; Sager, R.

    1990-01-01

    A human cDNA library obtained from cultured normal mammary epithelial cells (HMECs) was searched by subtractive hybridization for genes whose decrease in expression might be relevant to epithelial transformation. One clone identified by this procedure corresponded to a 1.4 kilobase mRNA, designated NB-1, whose expression was decreased >50-fold in HMECs tumorigenically transformed in vitro after exposure to benzo[α]pyrene and Kirsten sarcoma virus. Sequence analysis of NB-1 cDNA revealed an open reading frame with a high degree of homology to calmodulin. NB-1 expression could be demonstrated by polymerase chain reaction amplification in normal breast, prostate, cervix, and epidermal tissues. The presence of NB-1 transcripts was variable in primary breast carcinoma tissues and undetectable in tumor-derived cell lines of breast, prostate, or other origins. NB-1 mRNA expression could be down-regulated in cultured HMECs by exposure to reconstituted extracellular matrix material, while exposure to transforming growth factor type β increased its relative abundance. The protein encoded by NB-1 may have Ca 2 plus binding properties and perform functions similar to those of authentic calmodulin. Its possible roles in differentiation and/or suppression of tumorigenicity in epithelial tissues remain to be examined

  3. Down-regulation of Cell Surface Cyclic AMP Receptors and Desensitization of Cyclic AMP-stimulated Adenylate Cyclase by Cyclic AMP in Dictyostelium discoideum. Kinetics and Concentration Dependence

    NARCIS (Netherlands)

    Haastert, Peter J.M. van

    1987-01-01

    cAMP binds to Dictyostelium discoideum surface receptors and induces a transient activation of adenylate cyclase, which is followed by desensitization. cAMP also induces a loss of detectable surface receptors (down-regulation). Cells were incubated with constant cAMP concentrations, washed free of

  4. The cardiac copper chaperone proteins Sco1 and CCS are up-regulated, but Cox 1 and Cox4 are down-regulated, by copper deficiency.

    Science.gov (United States)

    Getz, Jean; Lin, Dingbo; Medeiros, Denis M

    2011-10-01

    Copper is ferried in a cell complexed to chaperone proteins, and in the heart much copper is required for cytochrome c oxidase (Cox). It is not completely understood how copper status affects the levels of these proteins. Here we determined if dietary copper deficiency could up- or down-regulate select copper chaperone proteins and Cox subunits 1 and 4 in cardiac tissue of rats. Sixteen weanling male Long-Evans rats were randomized into treatment groups, one group receiving a copper-deficient diet (CCS, Sco1, Ctr1, Cox17, Cox1, and Cox4 by SDS-PAGE and Western blotting. No changes were observed in the concentrations of CTR1 and Cox17 between copper-adequate and copper-deficient rats. CCS and Sco1 were up-regulated and Cox1 and Cox4 were both down-regulated as a result of copper deficiency. These data suggest that select chaperone proteins and may be up-regulated, and Cox1 and 4 down-regulated, by a dietary copper deficiency, whereas others appear not to be affected by copper status.

  5. Down-regulation of transcription of the proapoptotic gene BNip3 in cultured astrocytes by murine coronavirus infection

    International Nuclear Information System (INIS)

    Cai Yingyun; Liu Yin; Yu Dongdong; Zhang Xuming

    2003-01-01

    Murine coronavirus mouse hepatitis virus (MHV) causes encephalitis and demyelination in the central nervous system of susceptible rodents. Astrocytes are the major target for MHV persistence. However, the mechanisms by which astrocytes survive MHV infection and permit viral persistence are not known. Here we performed DNA microarray analysis on differential gene expression in astrocyte DBT cells by MHV infection and found that the mRNA of the proapoptotic gene BNip3 was significantly decreased following MHV infection. This finding was further confirmed by quantitative reverse transcription-polymerase chain reaction, Western blot analysis, and BNip3-promoter-luciferase reporter system. Interestingly, infection with live and ultraviolet light-inactivated viruses equally repressed BNip3 expression, indicating that the down-regulation of BNip3 expression does not require virus replication and is mediated during cell entry. Furthermore, treatment of cells with chloroquine, which blocks the acidification of endosomes, significantly inhibited the repression of the BNip3 promoter activity induced by the acidic pH-dependent MHV mutant OBLV60, which enters cells via endocytosis, indicating that the down-regulation of BNip3 expression is mediated by fusion between viral envelope and cell membranes during entry. Deletion analysis showed that the sequence between nucleotides 262 and 550 of the 588-base-pair BNip3 promoter is necessary and sufficient for driving the BNip3 expression and that it contains signals that are responsible for MHV-induced down-regulation of BNip3 expression in DBT cells. These results may provide insights into the mechanisms by which MHV evades host antiviral defense and promotes cell survival, thereby allowing its persistence in the host astrocytes

  6. Curcumin Promoted the Apoptosis of Cisplain-resistant Human Lung Carcinoma Cells A549/DDP through Down-regulating miR-186*

    Directory of Open Access Journals (Sweden)

    Jian ZHANG

    2010-04-01

    Full Text Available Background and objective Curcumin, a natural compound, is derived from the rthizom of Curcuma longa. In vitro and in vivo preclinical studies have shown its anti-inflammatory, antioxidant, anticancer activities and so on. miR-186*, which was found by microarray technology, was highly expressed in lung carcinoma cells A549/DDP. The aim of this study is to illustrate whether Curcumin could promote the apoptosis of A549/DDP cells through regulating the expression of miR-186*. Methods An oligonucleotide microarray chip was used to profile microRNA (miRNA expressions in A549/DDP cells treated with and without Curcumin. The significantly differentially expressed miRNA, which was selected from microarray chip, validated by quantitative real-time PCR. Ultimately, the remarkably expressed miRNA modulated the apoptosis assaying by flow cytometry expriments and the survival rate was measured by MTT method. Results The microarray chip results demonstrated: Curcumin altered the expression level of miRNAs compared with untreated control in A549/DDP cell line, miR-186* was significantly down-regulated after Curcumin treatment, which confirmed by quantitative real-time PCR. Downregulation of miR-186* expression by curcumin elevated the apoptosis, and the survival rate of A549/DDP cells decreased; but up-regulation of miR-186* expression by transfection its mimics restrained the apoptosis, the survival rate of A549/DDP cells increased, which were assayed by flow cytometry expriments and MTT method. Conclusion Modulation of miRNAs expression may be an important mechanism underlying the biological roles of Curcumin.

  7. Cisplatin and ultra-violet-C synergistically down-regulate receptor tyrosine kinases in human colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Kawaguchi Junji

    2012-07-01

    Full Text Available Abstract Background Platinum-containing anti-cancer drugs such as cisplatin are widely used for patients with various types of cancers, however, resistance to cisplatin is observed in some cases. Whereas we have recently reported that high dose UV-C (200 J/m² induces colorectal cancer cell proliferation by desensitization of EGFR, which leads oncogenic signaling in these cells, in this study we investigated the combination effect of low dose cisplatin (10 μM and low dose UV-C (10 J/m² on cell growth and apoptosis in several human colorectal cancer cells, SW480, DLD-1, HT29 and HCT116. Results The combination inhibited cell cycle and colony formation, while either cisplatin or UV-C alone had little effect. The combination also induced apoptosis in these cells. In addition, the combination caused the downregulation of EGFR and HER2. Moreover, UV-C alone caused the transient internalization of the EGFR, but with time EGFR recycled back to the cell surface, while cisplatin did not affect its localization. Surprisingly, the combination caused persistent internalization of the EGFR, which results in the lasting downregulation of the EGFR. Conclusions The combination of low dose cisplatin and low dose UV-C synergistically exerted anti-cancer effect by down-regulating RTK, such as EGFR and HER2. These findings may provide a novel strategy for the treatment of patients with colorectal cancer.

  8. miR-181a regulates multiple pathways in hypopharyngeal ...

    African Journals Online (AJOL)

    Expression of four pathway reporters were significantly increased (p53/DNA damage, TGFβ, MAPK/ERK and MAPK/JNK), while expression of two pathway reporters were decreased (Wnt and NFkB) upon miR-181a down-regulation. Notch, Myc/Max, hypoxia and cell cycle/pRB-E2F pathways were not significantly affected ...

  9. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    International Nuclear Information System (INIS)

    Guo, Hongsheng; Wu, Fenping; Wang, Yan; Yan, Chong; Su, Wenmei

    2014-01-01

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management

  10. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hongsheng [Department of Histology and Embryology, Guangdong Medical College, Dongguan 523808, Guangdong (China); Wu, Fenping [The 7th People’s Hospital of Chengdu, Chengdu 610041, Sichuan (China); Wang, Yan [The Second School of Clinical Medicine, Guangdong Medical College, Dongguan 523808, Guangdong (China); Yan, Chong [School of Pharmacy, Guangdong Medical College, Dongguan 523808, Guangdong (China); Su, Wenmei, E-mail: wenmeisutg@126.com [Oncology of Affiliated Hospital Guangdong Medical College, Zhanjiang 524000, Guangdong (China)

    2014-08-08

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management.

  11. Inhibition of p70S6K2 down-regulates Hedgehog/GLI pathway in non-small cell lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Kotani Hidehito

    2009-07-01

    Full Text Available Abstract Background The Hedgehog (HH pathway promotes tumorigenesis in a diversity of cancers. Activation of the HH signaling pathway is caused by overexpression of HH ligands or mutations in the components of the HH/GLI1 cascade, which lead to increased transactivation of GLI transcription factors. Although negative kinase regulators that antagonize the activity of GLI transcription factors have been reported, including GSK3β, PKA and CK1s, little is known regarding positive kinase regulators that are suitable for use on cancer therapeutic targets. The present study attempted to identify kinases whose silencing inhibits HH/GLI signalling in non-small cell lung cancer (NSCLC. Results To find positive kinase regulators in the HH pathway, kinome-wide siRNA screening was performed in a NSCLC cell line, A549, harboring the GLI regulatory reporter gene. This showed that p70S6K2-silencing remarkably reduced GLI reporter gene activity. The decrease in the activity of the HH pathway caused by p70S6K2-inhibition was accompanied by significant reduction in cell viability. We next investigated the mechanism for p70S6K2-mediated inhibition of GLI1 transcription by hypothesizing that GSK3β, a negative regulator of the HH pathway, is activated upon p70S6K2-silencing. We found that phosphorylated-GSK3β (Ser9 was reduced by p70S6K2-silencing, causing a decreased level of GLI1 protein. Finally, to further confirm the involvement of p70S6K2 in GLI1 signaling, down-regulation in GLI-mediated transcription by PI3KCA-inhibition was confirmed, establishing the pivotal role of the PI3K/p70S6K2 pathway in GLI1 cascade regulation. Conclusion We report herein that inhibition of p70S6K2, known as a downstream effector of the PI3K pathway, remarkably decreases GLI-mediated transactivation in NSCLC by reducing phosphorylated-GSK3β followed by GLI1 degradation. These results infer that p70S6K2 is a potential therapeutic target for NSCLC with hyperactivated HH/GLI pathway.

  12. Regulation of semaphorin 4D expression and cell proliferation of ovarian cancer by ERalpha and ERbeta

    Directory of Open Access Journals (Sweden)

    Y. Liu

    Full Text Available Ovarian cancer is one of the most common malignancies in women. Semaphorin 4D (sema 4D is involved in the progress of multiple cancers. In the presence of estrogen-like ligands, estrogen receptors (ERα and ERβ participate in the progress of breast and ovarian cancers by transcriptional regulation. The aim of the study was to investigate the role of sema 4D and elucidate the regulatory pattern of ERα and ERβ on sema 4D expression in ovarian cancers. Sema 4D levels were up-regulated in ovarian cancer SKOV-3 cells. Patients with malignant ovarian cancers had significantly higher sema 4D levels than controls, suggesting an oncogene role of sema 4D in ovarian cancer. ERα expressions were up-regulated in SKOV-3 cells compared with normal ovarian IOSE80 epithelial cells. Conversely, down-regulation of ERβ was observed in SKOV-3 cells. Forced over-expression of ERα and ERβ in SKOV-3 cells was manipulated to establish ERα+ and ERβ+ SKOV-3 cell lines. Incubation of ERα+ SKOV-3 cells with ERs agonist 17β-estradiol (E2 significantly enhanced sema 4D expression and rate of cell proliferation. Incubated with E2, ERβ+ SKOV-3 cells showed lower sema 4D expression and cell proliferation. Blocking ERα and ERβ activities with ICI182-780 inhibitor, sema 4D expressions and cell proliferation of ERα+ and ERβ+ SKOV-3 cells were recovered to control levels. Taken together, the data showed that sema 4D expression was positively correlated with the progress of ovarian cancer. ERα positively regulated sema 4D expression and accelerated cell proliferation. ERβ negatively regulated sema 4D expression and inhibited cell multiplication.

  13. Down-regulation of SMT3A gene expression in association with DNA synthesis induction after X-ray irradiation in nevoid basal cell carcinoma syndrome (NBCCS) cells

    International Nuclear Information System (INIS)

    Sugaya, Shigeru; Nakanishi, Hiroshi; Tanzawa, Hideki; Sugita, Katsuo; Kita, Kazuko; Suzuki, Nobuo

    2005-01-01

    Fibroblast cells derived from nevoid basal carcinoma syndrome (NBCCS) patients show increased levels of DNA synthesis after X-ray irradiation. Genes, whose expression is modulated in association with the DNA synthesis induction, were searched by using PCR-based mRNA differential display analysis in one of the NBCCS cell lines, NBCCS1 cells. Decreased levels of SMT3A gene expression were found in X-ray-irradiated NBCCS1 cells. This decrease was also shown by RT-PCR analysis in another cell line, NBCCS3 cells. In addition to NBCCS cells, normal fibroblast cells showed the DNA synthesis induction after X-ray irradiation when they were treated with antisense oligonucleotides (AO) for SMT3A. However, treatment of normal fibroblasts with the random oligonucleotides (RO) resulted in decreased levels of DNA synthesis after X-ray irradiation. Thus, down-regulation of SMT3A gene expression may be involved in the DNA synthesis induction after X-ray irradiation in the NBCCS cells at least tested

  14. Down-regulation of SMT3A gene expression in association with DNA synthesis induction after X-ray irradiation in nevoid basal cell carcinoma syndrome (NBCCS) cells

    Energy Technology Data Exchange (ETDEWEB)

    Sugaya, Shigeru [Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Nakanishi, Hiroshi [Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Tanzawa, Hideki [Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Sugita, Katsuo [Department of Clinical Medicine, Faculty of Education, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522 (Japan); Kita, Kazuko [Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Suzuki, Nobuo [Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan)]. E-mail: nobuo@faculty.chiba-u.jp

    2005-10-15

    Fibroblast cells derived from nevoid basal carcinoma syndrome (NBCCS) patients show increased levels of DNA synthesis after X-ray irradiation. Genes, whose expression is modulated in association with the DNA synthesis induction, were searched by using PCR-based mRNA differential display analysis in one of the NBCCS cell lines, NBCCS1 cells. Decreased levels of SMT3A gene expression were found in X-ray-irradiated NBCCS1 cells. This decrease was also shown by RT-PCR analysis in another cell line, NBCCS3 cells. In addition to NBCCS cells, normal fibroblast cells showed the DNA synthesis induction after X-ray irradiation when they were treated with antisense oligonucleotides (AO) for SMT3A. However, treatment of normal fibroblasts with the random oligonucleotides (RO) resulted in decreased levels of DNA synthesis after X-ray irradiation. Thus, down-regulation of SMT3A gene expression may be involved in the DNA synthesis induction after X-ray irradiation in the NBCCS cells at least tested.

  15. IL-13 promotes collagen accumulation in Crohn's disease fibrosis by down-regulation of fibroblast MMP synthesis: a role for innate lymphoid cells?

    Directory of Open Access Journals (Sweden)

    Jennifer R Bailey

    Full Text Available BACKGROUND: Fibrosis is a serious consequence of Crohn's disease (CD, often necessitating surgical resection. We examined the hypothesis that IL-13 may promote collagen accumulation within the CD muscle microenvironment. METHODS: Factors potentially modulating collagen deposition were examined in intestinal tissue samples from fibrotic (f CD and compared with cancer control (C, ulcerative colitis (UC and uninvolved (u CD. Mechanisms attributable to IL-13 were analysed using cell lines derived from uninvolved muscle tissue and tissue explants. RESULTS: In fCD muscle extracts, collagen synthesis was significantly increased compared to other groups, but MMP-2 was not co-ordinately increased. IL-13 transcripts were highest in fCD muscle compared to muscle from other groups. IL-13 receptor (R α1 was expressed by intestinal muscle smooth muscle, nerve and KIR(+ cells. Fibroblasts from intestinal muscle expressed Rα1, phosphorylated STAT6 in response to IL-13, and subsequently down-regulated MMP-2 and TNF-α-induced MMP-1 and MMP-9 synthesis. Cells with the phenotype KIR(+CD45(+CD56(+/-CD3(- were significantly increased in fCD muscle compared to all other groups, expressed Rα1 and membrane IL-13, and transcribed high levels of IL-13. In explanted CD muscle, these cells did not phosphorylate STAT6 in response to exogenous IL-13. CONCLUSIONS: The data indicate that in fibrotic intestinal muscle of Crohn's patients, the IL-13 pathway is stimulated, involving a novel population of infiltrating IL-13Rα1(+, KIR(+ innate lymphoid cells, producing IL-13 which inhibits fibroblast MMP synthesis. Consequently, matrix degradation is down-regulated and this leads to excessive collagen deposition.

  16. Nicotine affects rat Leydig cell function in vivo and vitro via down-regulating some key steroidogenic enzyme expressions.

    Science.gov (United States)

    Guo, Xiaoling; Wang, Huang; Wu, Xiaolong; Chen, Xianwu; Chen, Yong; Guo, Jingjing; Li, Xiaoheng; Lian, Qingquan; Ge, Ren-Shan

    2017-12-01

    Nicotine is consumed largely as a component of cigarettes and has a potential effect on pubertal development of Leydig cells in males. To investigate its effects, 49-day-old male Sprague Dawley rats received intraperitoneal injections of nicotine (0.5 or 1 mg/kg/day) for 2 weeks and immature Leydig cells were isolated from the testes of 35-day-old rats and treated with nicotine (0.05-50 μM). Serum hormones, Leydig cell number and related gene expression levels after in vivo treatment were determined and medium androgen levels were measured and cell cycle, apoptosis, mitochondrial membrane potential (△Ψm), and reactive oxygen species (ROS) of Leydig cells after in vitro treatment were measured. In vivo exposure to nicotine lowered serum luteinizing hormone, follicle stimulating hormone, and testosterone levels and reduced Leydig cell number and gene expression levels. Nicotine in vitro inhibited androgen production in Leydig cells by downregulating the expression levels of P450 cholesterol side cleavage enzyme, 3β-hydroxysteroid dehydrogenase 1, and steroidogenic factor 1 at different concentration ranges. In conclusion, nicotine disrupts Leydig cell steroidogenesis during puberty possibly via down-regulating some key steroidogenic enzyme expressions. Copyright © 2017. Published by Elsevier Ltd.

  17. Petiveria alliacea extracts uses multiple mechanisms to inhibit growth of human and mouse tumoral cells

    Directory of Open Access Journals (Sweden)

    Kaur Punit

    2008-11-01

    Full Text Available Abstract Background There is ethnopharmacological evidence that Petiveria alliacea can have antitumor activity; however, the mechanism of its cytotoxic activity is not well understood. We assessed multiple in vitro biological activities of an ethyl acetate soluble plant fraction over several tumor cell lines. Methods Tumor cell lines were evaluated using the following tests: trypan blue exclusion test, MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide], flow cytometry, cytoskeleton organization analysis, cell cycle, mitochondria membrane depolarization, clonogenicity test, DNA fragmentation test and differential protein expression by HPLC-Chip/MS analysis. F4 fraction characterization was made by HPLC-MS. Results Petiveria alliacea fraction characterized by de-replication was found to alter actin cytoskeleton organization, induce G2 cell cycle arrest and cause apoptotic cell death in a mitochondria independent way. In addition, we found down regulation of cytoskeleton, chaperone, signal transduction proteins, and proteins involved in metabolic pathways. Finally up regulation of proteins involved in translation and intracellular degradation was also observed. Conclusion The results of this study indicate that Petiveria alliacea exerts multiple biological activities in vitro consistent with cytotoxicity. Further studies in animal models are needed but Petiveria alliacea appears to be a good candidate to be used as an antitumor agent.

  18. Petiveria alliacea extracts uses multiple mechanisms to inhibit growth of human and mouse tumoral cells.

    Science.gov (United States)

    Urueña, Claudia; Cifuentes, Claudia; Castañeda, Diana; Arango, Amparo; Kaur, Punit; Asea, Alexzander; Fiorentino, Susana

    2008-11-18

    There is ethnopharmacological evidence that Petiveria alliacea can have antitumor activity; however, the mechanism of its cytotoxic activity is not well understood. We assessed multiple in vitro biological activities of an ethyl acetate soluble plant fraction over several tumor cell lines. Tumor cell lines were evaluated using the following tests: trypan blue exclusion test, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide], flow cytometry, cytoskeleton organization analysis, cell cycle, mitochondria membrane depolarization, clonogenicity test, DNA fragmentation test and differential protein expression by HPLC-Chip/MS analysis. F4 fraction characterization was made by HPLC-MS. Petiveria alliacea fraction characterized by de-replication was found to alter actin cytoskeleton organization, induce G2 cell cycle arrest and cause apoptotic cell death in a mitochondria independent way. In addition, we found down regulation of cytoskeleton, chaperone, signal transduction proteins, and proteins involved in metabolic pathways. Finally up regulation of proteins involved in translation and intracellular degradation was also observed. The results of this study indicate that Petiveria alliacea exerts multiple biological activities in vitro consistent with cytotoxicity. Further studies in animal models are needed but Petiveria alliacea appears to be a good candidate to be used as an antitumor agent.

  19. [Knock-down of ZEB1 inhibits the proliferation, invasion and migration of gastric cancer cells].

    Science.gov (United States)

    Chen, Dengyu; Chu, Yifan; Zheng, Qingwei; Xu, Zhiben; Zhou, Ping; Li, Sheng

    2017-08-01

    Objective To down-regulate the expression of zinc-finger E-box binding homeobox 1 (ZEB1) gene by shRNA, and investigate its effect on invasion, migration and proliferation, as well as the related gene expressions of lncRNA HOTAIR and E-cadherin in human gastric cancer BGC823 cells. Methods RNA interfering (RNAi) was used to knock down ZEB1 in gastric cancer BGC823 cells. The recombinant plasmid shZEB1 was constructed and transfected into the gastric cancer BGC823 cells by Lipofectamine TM 2000, and the stably transfected cells were isolated by G418 selection and limited dilution. The expression of ZEB1 mRNA and protein was detected by real-time quantitative PCR and Western blot analysis. Cell proliferation was determined by MTT assay, and the invasion and migration abilities of BGC823 cells were monitored by Transwell TM invasion assay and wound healing assay, respectively. The expressions of lncRNA HOTAIR and E-cadherin mRNA were detected by real-time quantitative PCR. Results After ZEB1 expression was successfully down-regulated in BGC823 cells by siRNA, the proliferation, invasion and migration rates in shZEB1 transfection group were significantly lower than those in control group; meanwhile, the expression of lncRNA HOTAIR was reduced and E-cadherin expression was enhanced. Conclusion Knock-down of ZEB1 expression by RNA interference can decease lncRNA HOTAIR expression and restrain cell proliferation, invasion and migration in gastric cancer BGC823 cells.

  20. Down-regulation of PRKCB1 expression in Han Chinese patients with subsyndromal symptomatic depression.

    Science.gov (United States)

    Guo, Xiaoyun; Li, Zezhi; Zhang, Chen; Yi, Zhenghui; Li, Haozhe; Cao, Lan; Yuan, Chengmei; Hong, Wu; Wu, Zhiguo; Peng, Daihui; Chen, Jun; Xia, Weiping; Zhao, Guoqing; Wang, Fan; Yu, Shunying; Cui, Donghong; Xu, Yifeng; Golam, Chowdhury M I; Smith, Alicia K; Wang, Tong; Fang, Yiru

    2015-10-01

    Subsyndromal symptomatic depression (SSD) is a common disease with significant social dysfunction. However, SSD is still not well understood and the pathophysiology of it remains unclear. We classified 48 candidate genes for SSD according to our previous study into clusters and pathways using DAVID Bioinformatics Functional Annotation Tool. We further replicated the result by using real-time Quantitative PCR (qPCR) studies to examine the expression of identified genes (i.e., STAT5b, PKCB1, ABL1 and NRAS) in another group of Han Chinese patients with SSD (n = 50). We further validated the result by examining PRKCB1 expression collected from MDD patients (n = 20). To test whether a deficit in PRKCB1 expression leads to dysregulation in PRKCB1 dependent transcript networks, we tested mRNA expression levels for the remaining 44 genes out of 48 genes in SSD patients. Finally, the power of discovery was improved by incorporating information from Quantitative Trait (eQTL) analysis. The results showed that the PRCKB1 gene expression in peripheral blood mononuclear cells (PBMC) was 33.3% down-regulated in SSD patients (n = 48, t = 3.202, p = 0.002), and a more dramatic (n = 17, 49%) down-regulation in MDD patients than control (n = 49, t = 2.114, p = 0.001). We also identified 37 genes that displayed a strong correlation with PRKCB1 mRNA expression levels in SSD patients. The expression of PRKCB1 was regulated by multiple single nucleotide polymorphisms (SNPs) both at the transcript level and exon level. In conclusion, we first found a significant decrease of PRCKB1 mRNA expression in SSD, suggesting PRKCB1 might be the candidate gene and biomarker for SSD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Inhibition of H3K9me2 Reduces Hair Cell Regeneration after Hair Cell Loss in the Zebrafish Lateral Line by Down-Regulating the Wnt and Fgf Signaling Pathways

    Science.gov (United States)

    Tang, Dongmei; Lin, Qin; He, Yingzi; Chai, Renjie; Li, Huawei

    2016-01-01

    The activation of neuromast (NM) supporting cell (SC) proliferation leads to hair cell (HC) regeneration in the zebrafish lateral line. Epigenetic mechanisms have been reported that regulate HC regeneration in the zebrafish lateral line, but the role of H3K9me2 in HC regeneration after HC loss remains poorly understood. In this study, we focused on the role of H3K9me2 in HC regeneration following neomycin-induced HC loss. To investigate the effects of H3K9me2 in HC regeneration, we took advantage of the G9a/GLP-specific inhibitor BIX01294 that significantly reduces the dimethylation of H3K9. We found that BIX01294 significantly reduced HC regeneration after neomycin-induced HC loss in the zebrafish lateral line. BIX01294 also significantly reduced the proliferation of NM cells and led to fewer SCs in the lateral line. In situ hybridization showed that BIX01294 significantly down-regulated the Wnt and Fgf signaling pathways, which resulted in reduced SC proliferation and HC regeneration in the NMs of the lateral line. Altogether, our results suggest that down-regulation of H3K9me2 significantly decreases HC regeneration after neomycin-induced HC loss through inactivation of the Wnt/β-catenin and Fgf signaling pathways. Thus H3K9me2 plays a critical role in HC regeneration. PMID:27303264

  2. Inhibition of H3K9me2 Reduces Hair Cell Regeneration after Hair Cell Loss in the Zebrafish Lateral Line by Down-Regulating the Wnt and Fgf Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Dongmei eTang

    2016-05-01

    Full Text Available The activation of neuromast supporting cell (SC proliferation leads to hair cell (HC regeneration in the zebrafish lateral line. Epigenetic mechanisms have been reported that regulate HC regeneration in the zebrafish lateral line, but the role of H3K9me2 in HC regeneration after HC loss remains poorly understood. In this study, we focused on the role of H3K9me2 in HC regeneration following neomycin-induced HC loss. To investigate the effects of H3K9me2 in HC regeneration, we took advantage of the G9a/GLP-specific inhibitor BIX01294 that significantly reduces the dimethylation of H3K9. We found that BIX01294 significantly reduced HC regeneration after neomycin-induced HC loss in the zebrafish lateral line. BIX01294 also significantly reduced the proliferation of neuromast cells and led to fewer SCs in the lateral line. In situ hybridization showed that BIX01294 significantly down-regulated the Wnt and Fgf signaling pathways, which resulted in reduced SC proliferation and HC regeneration in the neuromasts of the lateral line. Altogether, our results suggest that down-regulation of H3K9me2 significantly decreases HC regeneration after neomycin-induced HC loss through inactivation of the Wnt/β-catenin and Fgf signaling pathways. Thus H3K9me2 plays a critical role in HC regeneration.

  3. Nicotine induces cell proliferation in association with cyclin D1 up-regulation and inhibits cell differentiation in association with p53 regulation in a murine pre-osteoblastic cell line

    International Nuclear Information System (INIS)

    Sato, Tsuyoshi; Abe, Takahiro; Nakamoto, Norimichi; Tomaru, Yasuhisa; Koshikiya, Noboru; Nojima, Junya; Kokabu, Shoichiro; Sakata, Yasuaki; Kobayashi, Akio; Yoda, Tetsuya

    2008-01-01

    Recent studies have suggested that nicotine critically affects bone metabolism. Many studies have examined the effects of nicotine on proliferation and differentiation, but the underlying molecular mechanisms remain unclear. We examined cell cycle regulators involved in the proliferation and differentiation of MC3T3-E1 cells. Nicotine induced cell proliferation in association with p53 down-regulation and cyclin D1 up-regulation. In differentiated cells, nicotine reduced alkaline phosphatase activity and mineralized nodule formation in dose-dependent manners. Furthermore, p53 expression was sustained in nicotine-treated cells during differentiation. These findings indicate that nicotine promotes the cell cycle and inhibits differentiation in association with p53 regulation in pre-osteoblastic cells

  4. Overexpression of long intergenic noncoding RNA LINC00312 inhibits the invasion and migration of thyroid cancer cells by down-regulating microRNA-197-3p.

    Science.gov (United States)

    Liu, Kai; Huang, Wen; Yan, Dan-Qing; Luo, Qing; Min, Xiang

    2017-08-31

    The study evaluated the ability of long intergenic noncoding RNA LINC00312 (LINC00312) to influence the proliferation, invasion, and migration of thyroid cancer (TC) cells by regulating miRNA-197-3p. TC tissues and adjacent normal tissues were collected from 211 TC patients. K1 (papillary TC), SW579 (squamous TC), and 8505C (anaplastic TC) cell lines were assigned into a blank, negative control (NC), LINC00312 overexpression, miR-197-3p inhibitors, and LINC00312 overexpression + miR-197-3p mimics group. The expression of LINC00312, miR-197-3p , and p120 were measured using quantitative real-time PCR (qRT-PCR) and Western blotting. Cell proliferation was assessed via CCK8 assay, cell invasion through the scratch test, and cell migration via Transwell assay. In comparison with adjacent normal tissues, the expression of LINC00312 is down-regulated and the expression of miR-197-3p is up-regulated in TC tissues. The dual luciferase reporter gene assay confirmed that P120 is a target of miR-197-3p The expression of LINC00312 and p120 was higher in the LINC00312 overexpression group than in the blank and NV groups. However, the expression of miR-197-3p was lower in the LINC00312 overexpression group than in the blank and NC groups. The miR-197-3p inhibitors group had a higher expression of miR-197-3p , but a lower expression of p120 than the blank and NC groups. The LINC00312 overexpression and miR-197-3p inhibitor groups had reduced cell proliferation, invasion and migration than the blank and NC groups. These results indicate that a LINC00312 overexpression inhibits the proliferation, invasion, and migration of TC cells and that this can be achieved by down-regulating miR-197-3p . © 2017 The Author(s).

  5. UVA-mediated down-regulation of MMP-2 and MT1-MMP coincides with impaired angiogenic phenotype of human dermal endothelial cells

    International Nuclear Information System (INIS)

    Cauchard, Jean-Hubert; Robinet, Arnaud; Poitevin, Stephane; Bobichon, Helene; Maziere, Jean-Claude; Bellon, Georges; Hornebeck, William

    2006-01-01

    UVA irradiation, dose-dependently (5-20 J/cm 2 ), was shown to impair the morphogenic differentiation of human microvascular endothelial cells (HMECs) on Matrigel. Parallely, UVA down-regulated the expression of MMP-2 and MT1-MMP, both at the protein and the mRNA levels. On the contrary, the production of MMP-1 and TIMP-1 by HMECs increased following UVA treatment. The inhibitory effect of UVA on MMP expression and pseudotubes formation was mediated by UVA-generated singlet oxygen ( 1 O 2 ). The contribution of MT1-MMP, but not TIMP-1, to the regulation of HMECs' angiogenic phenotype following UVA irradiation was suggested using elastin-derived peptides and TIMP-1 blocking antibody, respectively

  6. Estrogen-Induced Maldevelopment of the Penis Involves Down-Regulation of Myosin Heavy Chain 11 (MYH11) Expression, a Biomarker for Smooth Muscle Cell Differentiation1

    Science.gov (United States)

    Okumu, L.A.; Bruinton, Sequoia; Braden, Tim D.; Simon, Liz; Goyal, Hari O.

    2012-01-01

    ABSTRACT Cavernous smooth muscle cells are essential components in penile erection. In this study, we investigated effects of estrogen exposure on biomarkers for smooth muscle cell differentiation in the penis. Neonatal rats received diethylstilbestrol (DES), with or without the estrogen receptor (ESR) antagonist ICI 182,780 (ICI) or the androgen receptor (AR) agonist dihydrotestosterone (DHT), from Postnatal Days 1 to 6. Tissues were collected at 7, 10, or 21 days of age. The smooth muscle cell biomarker MYH11 was studied in depth because microarray data showed it was significantly down-regulated, along with other biomarkers, in DES treatment. Quantitative real time-PCR and Western blot analyses showed 50%–80% reduction (P ≤ 0.05) in Myh11 expression in DES-treated rats compared to that in controls; and ICI and DHT coadministration mitigated the decrease. Temporally, from 7 to 21 days of age, Myh11 expression was onefold increased (P ≥ 0.05) in DES-treated rats versus threefold increased (P ≤ 0.001) in controls, implying the long-lasting inhibitory effect of DES on smooth muscle cell differentiation. Immunohistochemical localization of smooth muscle alpha actin, another biomarker for smooth muscle cell differentiation, showed fewer cavernous smooth muscle cells in DES-treated animals than in controls. Additionally, DES treatment significantly up-regulated Esr1 mRNA expression and suppressed the neonatal testosterone surge by 90%, which was mitigated by ICI coadministration but not by DHT coadministration. Collectively, results provided evidence that DES treatment in neonatal rats inhibited cavernous smooth muscle cell differentiation, as shown by down-regulation of MYH11 expression at the mRNA and protein levels and by reduced immunohistochemical staining of smooth muscle alpha actin. Both the ESR and the AR pathways probably mediate this effect. PMID:22976277

  7. CD3 gamma contains a phosphoserine-dependent di-leucine motif involved in down-regulation of the T cell receptor

    DEFF Research Database (Denmark)

    Dietrich, J; Hou, X; Wegener, A M

    1994-01-01

    -regulation of the TCR. Furthermore, analysis of a series of CD3 gamma truncation mutants indicated that in addition to S126 phosphorylation a motif C-terminal of S126 was required for TCR down-regulation. Point mutation analyses confirmed this observation and demonstrated that a membrane-proximal di-leucine motif (L131......, indicating that the TCR was down-regulated by endocytosis via clathrin coated pits. Based on the present results and previously published observations on intracellular receptor sorting, a general model for intracellular sorting of receptors containing di-leucine- or tyrosine-based motifs is proposed....

  8. Activated H-Ras regulates hematopoietic cell survival by modulating Survivin

    International Nuclear Information System (INIS)

    Fukuda, Seiji; Pelus, Louis M.

    2004-01-01

    Survivin expression and Ras activation are regulated by hematopoietic growth factors. We investigated whether activated Ras could circumvent growth factor-regulated Survivin expression and if a Ras/Survivin axis mediates growth factor independent survival and proliferation in hematopoietic cells. Survivin expression is up-regulated by IL-3 in Ba/F3 and CD34 + cells and inhibited by the Ras inhibitor, farnesylthiosalicylic acid. Over-expression of constitutively activated H-Ras (CA-Ras) in Ba/F3 cells blocked down-modulation of Survivin expression, G 0 /G 1 arrest, and apoptosis induced by IL-3 withdrawal, while dominant-negative (DN) H-Ras down-regulated Survivin. Survivin disruption by DN T34A Survivin blocked CA-Ras-induced IL-3-independent cell survival and proliferation; however, it did not affect CA-Ras-mediated enhancement of S-phase, indicating that the anti-apoptotic activity of CA-Ras is Survivin dependent while its S-phase enhancing effect is not. These results indicate that CA-Ras modulates Survivin expression independent of hematopoietic growth factors and that a CA-Ras/Survivin axis regulates survival and proliferation of transformed hematopoietic cells

  9. Internalization and down-regulation of the human epidermal growth factor receptor are regulated by the carboxyl-terminal tyrosines

    DEFF Research Database (Denmark)

    Helin, K; Beguinot, L

    1991-01-01

    with receptors in which 1, 2, or all 3 tyrosines were changed to phenylalanines. The triple point mutant EGF-R, expressed in NIH-3T3, exhibited low autophosphorylation in vivo, low biological and reduced kinase activities. Single and double point mutants were down-regulated, as well as wild type EGF......-R in response to EGF showing a half-life of about 1 h. Degradation of the triple point mutant, however, was impaired and resulted in a half-life of 4 h in the presence of EGF. EGF-dependent down-regulation of surface receptors was decreased in the triple point mutant EGF-R as was internalization and degradation...... of EGF. The specific rate of internalization of the triple point mutant was reduced. By contrast, intracellular processing of ligand previously internalized at 20 degrees C was similar between wild type and mutant receptors. Taken together the data indicate that the delay in degradation observed in cells...

  10. SIRT1 ameliorates oxidative stress induced neural cell death and is down-regulated in Parkinson's disease.

    Science.gov (United States)

    Singh, Preeti; Hanson, Peter S; Morris, Christopher M

    2017-06-02

    Sirtuins (SIRTs) are NAD + dependent lysine deacetylases which are conserved from bacteria to humans and have been associated with longevity and lifespan extension. SIRT1, the best studied mammalian SIRT is involved in many physiological and pathological processes and changes in SIRT1 have been implicated in neurodegenerative disorders, with SIRT1 having a suggested protective role in Parkinson's disease. In this study, we determined the effect of SIRT1 on cell survival and α-synuclein aggregate formation in SH-SY5Y cells following oxidative stress. Over-expression of SIRT1 protected SH-SY5Y cells from toxin induced cell death and the protection conferred by SIRT1 was partially independent of its deacetylase activity, which was associated with the repression of NF-кB and cPARP expression. SIRT1 reduced the formation of α-synuclein aggregates but showed minimal co-localisation with α-synuclein. In post-mortem brain tissue obtained from patients with Parkinson's disease, Parkinson's disease with dementia, dementia with Lewy bodies and Alzheimer's disease, the activity of SIRT1 was observed to be down-regulated. These findings suggests a negative effect of oxidative stress in neurodegenerative disorders and possibly explain the reduced activity of SIRT1 in neurodegenerative disorders. Our study shows that SIRT1 is a pro-survival protein that is downregulated under cellular stress.

  11. Bottom-up and top-down emotion generation: implications for emotion regulation

    Science.gov (United States)

    Misra, Supriya; Prasad, Aditya K.; Pereira, Sean C.; Gross, James J.

    2012-01-01

    Emotion regulation plays a crucial role in adaptive functioning and mounting evidence suggests that some emotion regulation strategies are often more effective than others. However, little attention has been paid to the different ways emotions can be generated: from the ‘bottom-up’ (in response to inherently emotional perceptual properties of the stimulus) or ‘top-down’ (in response to cognitive evaluations). Based on a process priming principle, we hypothesized that mode of emotion generation would interact with subsequent emotion regulation. Specifically, we predicted that top-down emotions would be more successfully regulated by a top-down regulation strategy than bottom-up emotions. To test this hypothesis, we induced bottom-up and top-down emotions, and asked participants to decrease the negative impact of these emotions using cognitive reappraisal. We observed the predicted interaction between generation and regulation in two measures of emotional responding. As measured by self-reported affect, cognitive reappraisal was more successful on top-down generated emotions than bottom-up generated emotions. Neurally, reappraisal of bottom-up generated emotions resulted in a paradoxical increase of amygdala activity. This interaction between mode of emotion generation and subsequent regulation should be taken into account when comparing of the efficacy of different types of emotion regulation, as well as when reappraisal is used to treat different types of clinical disorders. PMID:21296865

  12. Dengue virus-induced regulation of the host cell translational machinery

    Directory of Open Access Journals (Sweden)

    C.S.A. Villas-Bôas

    2009-11-01

    Full Text Available Dengue virus (DV-induced changes in the host cell protein synthesis machinery are not well understood. We investigated the transcriptional changes related to initiation of protein synthesis. The human hepatoma cell line, HepG2, was infected with DV serotype 2 for 1 h at a multiplicity of infection of one. RNA was extracted after 6, 24 and 48 h. Microarray results showed that 36.5% of the translation factors related to initiation of protein synthesis had significant differential expression (Z-score ≥ ±2.0. Confirmation was obtained by quantitative real-time reverse transcription-PCR. Of the genes involved in the activation of mRNA for cap-dependent translation (eIF4 factors, eIF4A, eIF4G1 and eIF4B were up-regulated while the negative regulator of translation eIF4E-BP3 was down-regulated. This activation was transient since at 24 h post-infection levels were not significantly different from control cells. However, at 48 h post-infection, eIF4A, eIF4E, eIF4G1, eIF4G3, eIF4B, and eIF4E-BP3 were down-regulated, suggesting that cap-dependent translation could be inhibited during the progression of infection. To test this hypothesis, phosphorylation of p70S6K and 4E-BP1, which induce cap-dependent protein synthesis, was assayed. Both proteins remained phosphorylated when assayed at 6 h after infection, while infection induced dephosphorylation of p70S6K and 4E-BP1 at 24 and 48 h of infection, respectively. Taken together, these results provide biological evidence suggesting that in HepG2 cells DV sustains activation of the cap-dependent machinery at early stages of infection, but progression of infection switches protein synthesis to a cap-independent process.

  13. Down regulation of the TCR complex CD3 ζ-chain on CD3+ T cells: a potential mechanism for helminth mediated immune modulation

    Directory of Open Access Journals (Sweden)

    Laura Jane Appleby

    2015-02-01

    Full Text Available The CD3ζ forms part of the T cell receptor (TCR where it plays an important role in coupling antigen recognition to several intracellular signal-transduction pathways leading to T cell effector functions. Down regulation of CD3ζ leads to impairment of immune responses including reduced cell proliferation and cytokine production. In experimental models helminth parasites have been shown to modulate immune responses directed against them and unrelated antigens, so called bystander antigens, but there is a lack of studies validating these observations in humans. This study focused on investigated the relationship between expression levels of the TCR CD3ζ chain with lymphocyte cell proliferation during human infection with the helminth parasite, Schistosoma haematobium which causes uro-genital schistosomiasis. Using flow cytometry, peripheral blood mononuclear cells (PBMCs from individuals naturally exposed to S. haematobium in rural Zimbabwe were phenotyped, and expression levels of CD3ζ on T cells were related to intensity of infection. In this population, parasite infection intensity was inversely related to CD3ζ expression levels (p<0.05, consistent with down-regulation of CD3ζ expression during helminth infection. Furthermore, PBMC proliferation was positively related to expression levels of CD3ζ (p<0.05 after allowing for confounding variables (host age, sex, infection level. CD3ζ expression levels had a differing relationship between immune correlates of susceptibility and immunity, measured by antibody responses, indicating a complex relationship between immune activation status and immunity. The relationships between the CD3ζ chain of the TCR and schistosome infection, PBMC proliferation and schistosome-specific antibody responses have not previously been reported, and these results may indicate a mechanism for the impaired T cell proliferative responses observed during human schistosome infection.

  14. ADAMTS9 is Silenced by Epigenetic Disruption in Colorectal Cancer and Inhibits Cell Growth and Metastasis by Regulating Akt/p53 Signaling

    Directory of Open Access Journals (Sweden)

    Ling Chen

    2017-11-01

    Full Text Available Background/Aims: ADAMTS (disintegrin-like and metalloproteinase with thrombospondin motifs proteins are extracellular zinc metalloproteinases that play an important role in extracellular matrix assembly and degradation, connective tissue structuring, angiogenesis, and cell migration. Multiple studies suggest that ADAMTS proteins (e.g. ADAMTS9 can act as tumor suppressors. In gastric, esophageal, and nasopharyngeal carcinomas ADAMTS9 is frequently down-regulated by promoter methylation. Whether ADAMTS9 can function as a tumor suppressor gene (TSG in colorectal cancer is still unclear. Methods: We performed immunohistochemistry, RT-PCR, and qRT-PCR, to examine the expression of ADAMTS9 in colorectal cancer cell lines and primary colorectal cancer tissues. Methylation-specific PCR was also carried out to investigate the promoter methylation status of ADAMTS9. We also explored the functions of ADAMTS9 in colorectal cancer cell lines through in vitro experiments. Results: ADAMTS9 expression was down-requlated or silenced in 83.3% (5/6 of colorectal cancer cell lines, and frequently repressed in 65.6% (21/32 of colorectal cancer tissues. Down-regulation of ADAMTS9 was partially due to promoter methylation. Exogenous expression of ADAMTS9 in colorectal cancer cell lines inhibited cell proliferation and migration through the regulation of cell cycle and apoptosis. In addition, ADAMTS9 prevented the activation of Akt, and its downstream targets in colorectal cancer cell lines. Conclusion: Our findings suggest ADAMTS9 is a TSG in colorectal cancer.

  15. Phosphorylation-dependent down-regulation of apolipoprotein A5 by insulin

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Maxine; Helleboid-Chapman, Audrey; Jakel, Heidelinde; Rommens, Corinne; Martin, Genevieve; Duran-Sandoval, Daniel; Staels, Bart; Rubin, Edward M.; Pennacchio, Len A.; Taskinen, Marja-Riitta; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2004-02-15

    The apolipoprotein A5 (APOA5) gene has been shown to be important in lowering plasma triglyceride levels. Since several studies have shown that hyperinsulinemia is associated with hypertriglyceridemia, we sought to determine whether APOA5 gene is regulated by insulin. We show here that cell and mouse treatments with insulin down-regulated APOA5 expression in a dose-dependent manner. Furthermore, we determined that insulin decreases APOA5 promoter activity and subsequent deletion analyses revealed an E-box-containing fragment. We showed that Upstream Stimulatory Factors, USF1/USF2, bind to the identified E-box in the APOA5 promoter. Moreover, in cotransfection studies, USF1 stimulates APOA5 promoter activity. The treatment with insulin reduces the binding of USF1/USF2 to APOA5 promoter. The inhibition of PI3K pathway with wortmannin abolished the insulin s effect on APOA5 gene transcription. Using oligoprecipitation method of USF from nuclear extracts, we demonstrated that phosphorylated USF1 failed to bind to APOA5 promoter. This indicates that the APOA5 gene transrepression by insulin involves a phosphorylation of USF through PI3K, that modulate their binding to APOA5 promoter and results in APOA5 down-regulation. The effect of exogenous hyperinsulinemia in healthy men shows a decrease of the plasma ApoAV level. These data suggest a potential mechanism involving APOA5 gene in hypertriglyceridemia associated with hyperinsulinemia.

  16. CD4 down regulation and raft dissociation by the non-depleting YTS177 antibody hinder murine T helper cell activities

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng-Jang [Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan (China); Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093 (United States); Lu, Chun-Hao [Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan (China); Chen, Li-Chen [Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan (China); Nguyen, Duc T. [Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093 (United States); Huang, Yi-Shu [Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan (China); Lin, Hsi-Hsien [Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan (China); Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Tao-Yuan, Taiwan (China); Department of Anatomic Pathology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan (China); Lin, Chun-Yen [Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan (China); Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Tao-Yuan, Taiwan (China); Department of Hepatogastroenterology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan (China); Kuo, Ming-Ling, E-mail: mingling@mail.cgu.edu.tw [Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan (China); Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan (China); Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Tao-Yuan, Taiwan (China)

    2016-05-13

    Non-depleting YTS177 anti-CD4 monoclonal antibody (MoAb) has been reported to lead to antigen-specific immunotolerance in allograft transplantation and autoimmune diabetes, as well as possibly to inhibition of allergic inflammation in mice. However, the molecular mechanisms underlying hyporesponsive T cell responses induced by YTS177 MoAb remain elusive. Herein, we demonstrate that the YTS177 MoAb increases the levels of anergy factors p27{sup kip1} and Cbl-b, inhibits IL-2 production, and impairs calcium mobilization in activated T cells in vitro. YTS177 MoAb suppresses OVA-driven proliferation of DO11.10 CD4{sup +} T cells in vivo as well. Mechanistically, YTS177 MoAb induces tolerance by causing CD4 down-regulation through clathrin-dependent and raft dissociation. The results obtained in this study lead us to propose novel protective or curative approaches to CD4 T cell-mediated diseases.

  17. CD4 down regulation and raft dissociation by the non-depleting YTS177 antibody hinder murine T helper cell activities

    International Nuclear Information System (INIS)

    Wu, Cheng-Jang; Lu, Chun-Hao; Chen, Li-Chen; Nguyen, Duc T.; Huang, Yi-Shu; Lin, Hsi-Hsien; Lin, Chun-Yen; Kuo, Ming-Ling

    2016-01-01

    Non-depleting YTS177 anti-CD4 monoclonal antibody (MoAb) has been reported to lead to antigen-specific immunotolerance in allograft transplantation and autoimmune diabetes, as well as possibly to inhibition of allergic inflammation in mice. However, the molecular mechanisms underlying hyporesponsive T cell responses induced by YTS177 MoAb remain elusive. Herein, we demonstrate that the YTS177 MoAb increases the levels of anergy factors p27"k"i"p"1 and Cbl-b, inhibits IL-2 production, and impairs calcium mobilization in activated T cells in vitro. YTS177 MoAb suppresses OVA-driven proliferation of DO11.10 CD4"+ T cells in vivo as well. Mechanistically, YTS177 MoAb induces tolerance by causing CD4 down-regulation through clathrin-dependent and raft dissociation. The results obtained in this study lead us to propose novel protective or curative approaches to CD4 T cell-mediated diseases.

  18. The transcription factor FOXO4 is down-regulated and inhibits tumor proliferation and metastasis in gastric cancer

    International Nuclear Information System (INIS)

    Su, Linna; Liu, Xiangqiang; Chai, Na; Lv, Lifen; Wang, Rui; Li, Xiaosa; Nie, Yongzhan; Shi, Yongquan; Fan, Daiming

    2014-01-01

    FOXO4, a member of the FOXO family of transcription factors, is currently the focus of intense study. Its role and function in gastric cancer have not been fully elucidated. The present study was aimed to investigate the expression profile of FOXO4 in gastric cancer and the effect of FOXO4 on cancer cell growth and metastasis. Immunohistochemistry, Western blotting and qRT-PCR were performed to detect the FOXO4 expression in gastric cancer cells and tissues. Cell biological assays, subcutaneous tumorigenicity and tail vein metastatic assay in combination with lentivirus construction were performed to detect the impact of FOXO4 to gastric cancer in proliferation and metastasis in vitro and in vivo. Confocal and qRT-PCR were performed to explore the mechanisms. We found that the expression of FOXO4 was decreased significantly in most gastric cancer tissues and in various human gastric cancer cell lines. Up-regulating FOXO4 inhibited the growth and metastasis of gastric cancer cell lines in vitro and led to dramatic attenuation of tumor growth, and liver and lung metastasis in vivo, whereas down-regulating FOXO4 with specific siRNAs promoted the growth and metastasis of gastric cancer cell lines. Furthermore, we found that up-regulating FOXO4 could induce significant G1 arrest and S phase reduction and down-regulation of the expression of vimentin. Our data suggest that loss of FOXO4 expression contributes to gastric cancer growth and metastasis, and it may serve as a potential therapeutic target for gastric cancer

  19. The down-regulation of the mitogenic fibrinogen receptor (MFR) in serum-containing medium does not occur in defined medium.

    Science.gov (United States)

    Levesque, J P; Hatzfeld, A; Domart, I; Hatzfeld, J

    1990-02-01

    Normal human hemopoietic cells such as early bone marrow progenitors, or lymphoma-derived cell lines such as Raji or JM cells, possess a low-affinity receptor specific for fibrinogen. This receptor triggers a mitogenic effect. It differs from the glycoprotein IIb-IIIa which is involved in fibrinogen-induced platelet aggregation. We demonstrate here that this mitogenic fibrinogen receptor (MFR) can be internalized or reexpressed, depending on culture conditions. Internalization was temperature-dependent. At 37 degrees C in the presence of cycloheximide or actinomycin D, the half-life of cell surface MFRs was 2 h, independent of receptor occupancy. Binding of fibrinogen to the MFR resulted in a down-regulation which was fibrinogen dose-dependent. This occurred in serum-supplemented medium but not in defined medium supplemented with fatty acids. Reexpression of MFRs could be induced in 28 to 42 h by serum removal. The down-regulation of mitogenic receptors in plasma or serum could explain why normal cells do not proliferate in the peripheral blood.

  20. Down-regulation of histamine-induced endothelial cell activation as potential anti-atherosclerotic activity of peptides from Spirulina maxima.

    Science.gov (United States)

    Vo, Thanh-Sang; Kim, Se-Kwon

    2013-10-09

    Histamine, a potent inflammatory mediator, has been known to cause the pathogenesis of atherosclerosis. In this sense, two bioactive peptides P1 (LDAVNR; 686Da) and P2 (MMLDF; 655Da) purified from gastric enzymatic hydrolysate of Spirulina maxima were examined for their protective effects against early atherosclerotic responses induced by histamine in EA.hy926 endothelial cells. Interestingly, both P1 and P2 exhibited inhibitory activities on the production and expression of IL-6 and MCP-1. Furthermore, P1 and P2 inhibited the production of adhesion molecules including P-selectin and E-selectin, and thus reducing in vitro cell adhesion of monocyte onto endothelial cells. In addition, the production of intracellular reactive oxygen species was observed to reduce in the presence of P1 or P2. Notably, the inhibitory activities of P1 and P2 were found due to down-regulating Egr-1 expression via histamine receptor and PKCδ-dependent MAPKs activation pathway. These results suggest that peptides P1 and P2 from S. maxima are effective to suppress histamine-induced endothelial cell activation that may contribute to the prevention of early atherosclerosis. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Autoimmune Regulator (AIRE) Is Expressed in Spermatogenic Cells, and It Altered the Expression of Several Nucleic-Acid-Binding and Cytoskeletal Proteins in Germ Cell 1 Spermatogonial (GC1-spg) Cells.

    Science.gov (United States)

    Radhakrishnan, Karthika; Bhagya, Kongattu P; Kumar, Anil Tr; Devi, Anandavalli N; Sengottaiyan, Jeeva; Kumar, Pradeep G

    2016-08-01

    Autoimmune regulator (AIRE) is a gene associated with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). AIRE is expressed heavily in the thymic epithelial cells and is involved in maintaining self-tolerance through regulating the expression of tissue-specific antigens. The testes are the most predominant extrathymic location where a heavy expression of AIRE is reported. Homozygous Aire-deficient male mice were infertile, possibly due to impaired spermatogenesis, deregulated germ cell apoptosis, or autoimmunity. We report that AIRE is expressed in the testes of neonatal, adolescent, and adult mice. AIRE expression was detected in glial cell derived neurotrophic factor receptor alpha (GFRα)(+) (spermatogonia), GFRα(-)/synaptonemal complex protein (SCP3)(+) (meiotic), and GFRα(-)/Phosphoglycerate kinase 2 (PGK2)(+) (postmeiotic) germ cells in mouse testes. GC1-spg, a germ-cell-derived cell line, did not express AIRE. Retinoic acid induced AIRE expression in GC1-spg cells. Ectopic expression of AIRE in GC1-spg cells using label-free LC-MS/MS identified a total of 371 proteins that were differentially expressed. 100 proteins were up-regulated, and 271 proteins were down-regulated. Data are available via ProteomeXchange with identifier PXD002511. Functional analysis of the differentially expressed proteins showed increased levels of various nucleic-acid-binding proteins and transcription factors and a decreased level of various cytoskeletal and structural proteins in the AIRE overexpressing cells as compared with the empty vector-transfected controls. The transcripts of a select set of the up-regulated proteins were also elevated. However, there was no corresponding decrease in the mRNA levels of the down-regulated set of proteins. Molecular function network analysis indicated that AIRE influenced gene expression in GC1-spg cells by acting at multiple levels, including transcription, translation, RNA processing, protein transport, protein

  2. Down-regulation of parathyroid hormone (PTH) receptors in cultured bone cells is associated with agonist-specific intracellular processing of PTH-receptor complexes.

    Science.gov (United States)

    Teitelbaum, A P; Silve, C M; Nyiredy, K O; Arnaud, C D

    1986-02-01

    Exposure of cultured embryonic chicken bone cells to the PTH agonists bovine (b) PTH-(1-34) and [8Nle, 18Nle, 34Tyr]bPTH-(1-34)amide [bPTH-(1-34)A] reduces the subsequent cAMP response to the hormone and decreases the specific binding of 125I-labeled PTH to these cultures. To determine whether PTH receptor down-regulation in cultured bone cells is mediated by cellular internalization of PTH-receptor complexes, we measured the uptake of [125I]bPTH-(1-34) into an acid-resistant compartment. Uptake of radioactivity into this compartment was inhibited by incubating cells at 4 C with phenylarsineoxide and unlabeled bPTH-(1-34). Tracer uptake into the acid-resistant compartment at any time was directly proportional to total cell binding at 22 C. Thus, it is likely that PTH-receptor complexes are internalized by bone cells. This mechanism may explain the loss of cell surface receptors after PTH pretreatment. To determine whether internalized PTH-receptor complexes are reinserted into the plasma membrane, we measured PTH binding and PTH stimulation of cAMP production after cells were exposed to monensin, a known inhibitor of receptor recycling. Monensin (25 microM) had no effect on PTH receptor number or affinity and did not alter PTH-stimulated cAMP accumulation. However, monensin (25 microM) incubated with cells pretreated with various concentrations of bPTH-(1-34) for 1 h potentiated the effect of the hormone to reduce subsequent [125I]bPTH-(1-34) binding and PTH-stimulated cAMP accumulation by more than 2 orders of magnitude. Chloroquine also potentiated PTH-induced down-regulation of PTH receptors. By contrast, neither agent influenced PTH binding or PTH-stimulated cAMP production in cells pretreated with the antagonist bPTH-(3-34)A. Thus, monensin potentiated PTH receptor loss only in cells pretreated with PTH agonists, indicating that antagonist-occupied receptors may be processed differently from agonist-occupied receptors in bone cells. The data further suggest

  3. Hepatitis C virus core protein induces dysfunction of liver sinusoidal endothelial cell by down-regulation of silent information regulator 1.

    Science.gov (United States)

    Sun, Li-Jie; Yu, Jian-Wu; Shi, Yu-Guang; Zhang, Xiao-Yu; Shu, Meng-Ni; Chen, Mo-Yang

    2018-05-01

    . HCV core protein may down-regulate the activity and the expression of SIRT1 of LSEC, then decreasing synthesis of adiponectin and the expression of AdipoR2, thus inducing contraction of LSEC and hepatic sinusoidal capillarization and increasing oxidative stress, ultimately cause hepatic stellate cell (HSC) activation. Treatment with SIRT1 activator restored the function of LSEC and inhibited the activation of HSC. © 2018 Wiley Periodicals, Inc.

  4. Transforming growth factor alpha (TGFα regulates granulosa cell tumor (GCT cell proliferation and migration through activation of multiple pathways.

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    Full Text Available Granulosa cell tumors (GCTs are the most common ovarian estrogen producing tumors, leading to symptoms of excessive estrogen such as endometrial hyperplasia and endometrial adenocarcinoma. These tumors have malignant potential and often recur. The etiology of GCT is unknown. TGFα is a potent mitogen for many different cells. However, its function in GCT initiation, progression and metastasis has not been determined. The present study aims to determine whether TGFα plays a role in the growth of GCT cells. KGN cells, which are derived from an invasive GCT and have many features of normal granulosa cells, were used as the cellular model. Immunohistochemistry, Western blot and RT-PCR results showed that the ErbB family of receptors is expressed in human GCT tissues and GCT cell lines. RT-PCR results also indicated that TGFα and EGF are expressed in the human granulosa cells and the GCT cell lines, suggesting that TGFα might regulate GCT cell function in an autocrine/paracrine manner. TGFα stimulated KGN cell DNA synthesis, cell proliferation, cell viability, cell cycle progression, and cell migration. TGFα rapidly activated EGFR/PI3K/Akt and mTOR pathways, as indicated by rapid phosphorylation of Akt, TSC2, Rictor, mTOR, P70S6K and S6 proteins following TGFα treatment. TGFα also rapidly activated the EGFR/MEK/ERK pathway, and P38 MAPK pathways, as indicated by the rapid phosphorylation of EGFR, MEK, ERK1/2, P38, and CREB after TGFα treatment. Whereas TGFα triggered a transient activation of Akt, it induced a sustained activation of ERK1/2 in KGN cells. Long-term treatment of KGN cells with TGFα resulted in a significant increase in cyclin D2 and a decrease in p27/Kip1, two critical regulators of granulosa cell proliferation and granulosa cell tumorigenesis. In conclusion, TGFα, via multiple signaling pathways, regulates KGN cell proliferation and migration and may play an important role in the growth and metastasis of GCTs.

  5. Thrombospondin-2 promotes prostate cancer bone metastasis by the up-regulation of matrix metalloproteinase-2 through down-regulating miR-376c expression

    Directory of Open Access Journals (Sweden)

    Po-Chun Chen

    2017-01-01

    Full Text Available Abstract Background Thrombospondin-2 (TSP-2 is a secreted matricellular glycoprotein that is found to mediate cell-to-extracellular matrix attachment and participates in many physiological and pathological processes. The expression profile of TSP-2 on tumors is controversial, and it up-regulates in some cancers, whereas it down-regulates in others, suggesting that the functional role of TSP-2 on tumors is still uncertain. Methods The expression of TSP-2 on prostate cancer progression was determined in the tissue array by the immunohistochemistry. The molecular mechanism of TSP-2 on prostate cancer (PCa metastasis was investigated through pharmaceutical inhibitors, siRNAs, and miRNAs analyses. The role of TSP-2 on PCa metastasis in vivo was verified through xenograft in vivo imaging system. Results Based on the gene expression omnibus database and immunohistochemistry, we found that TSP-2 increased with the progression of PCa, especially in metastatic PCa and is correlated with the matrix metalloproteinase-2 (MMP-2 expression. Additionally, through binding to CD36 and integrin ανβ3, TSP-2 increased cell migration and MMP-2 expression. With inhibition of p38, ERK, and JNK, the TSP-2-induced cell migration and MMP-2 expression were abolished, indicating that the TSP-2’s effect on PCa is MAPK dependent. Moreover, the microRNA-376c (miR-376c was significantly decreased by the TSP-2 treatment. Furthermore, the TSP-2-induced MMP-2 expression and the subsequent cell motility were suppressed upon miR-376c mimic stimulation. On the other hand, the animal studies revealed that the bone metastasis was abolished when TSP-2 was stably knocked down in PCa cells. Conclusions Taken together, our results indicate that TSP-2 enhances the migration of PCa cells by increasing MMP-2 expression through down-regulation of miR-376c expression. Therefore, TSP-2 may represent a promising new target for treating PCa.

  6. MicroRNA-148b is frequently down-regulated in gastric cancer and acts as a tumor suppressor by inhibiting cell proliferation

    Directory of Open Access Journals (Sweden)

    Jiang Li

    2011-01-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are involved in cancer development and progression, acting as tumor suppressors or oncogenes. Our previous studies have revealed that miR-148a and miR-152 are significantly down-regulated in gastrointestinal cancers. Interestingly, miR-148b has the same "seed sequences" as miR-148a and miR-152. Although aberrant expression of miR-148b has been observed in several types of cancer, its pathophysiologic role and relevance to tumorigenesis are still largely unknown. The purpose of this study was to elucidate the molecular mechanisms by which miR-148b acts as a tumor suppressor in gastric cancer. Results We showed significant down-regulation of miR-148b in 106 gastric cancer tissues and four gastric cancer cell lines, compared with their non-tumor counterparts by real-time RT-PCR. In situ hybridization of ten cases confirmed an overt decrease in the level of miR-148b in gastric cancer tissues. Moreover, the expression of miR-148b was demonstrated to be associated with tumor size (P = 0.027 by a Mann-Whitney U test. We also found that miR-148b could inhibit cell proliferation in vitro by MTT assay, growth curves and an anchorage-independent growth assay in MGC-803, SGC-7901, BGC-823 and AGS cells. An experiment in nude mice revealed that miR-148b could suppress tumorigenicity in vivo. Using a luciferase activity assay and western blot, CCKBR was identified as a target of miR-148b in cells. Moreover, an obvious inverse correlation was observed between the expression of CCKBR protein and miR-148b in 49 pairs of tissues (P = 0.002, Spearman's correlation. Conclusions These findings provide important evidence that miR-148b targets CCKBR and is significant in suppressing gastric cancer cell growth. Maybe miR-148b would become a potential biomarker and therapeutic target against gastric cancer.

  7. PGE2 maintains self-renewal of human adult stem cells via EP2-mediated autocrine signaling and its production is regulated by cell-to-cell contact.

    Science.gov (United States)

    Lee, Byung-Chul; Kim, Hyung-Sik; Shin, Tae-Hoon; Kang, Insung; Lee, Jin Young; Kim, Jae-Jun; Kang, Hyun Kyoung; Seo, Yoojin; Lee, Seunghee; Yu, Kyung-Rok; Choi, Soon Won; Kang, Kyung-Sun

    2016-05-27

    Mesenchymal stem cells (MSCs) possess unique immunomodulatory abilities. Many studies have elucidated the clinical efficacy and underlying mechanisms of MSCs in immune disorders. Although immunoregulatory factors, such as Prostaglandin E2 (PGE2), and their mechanisms of action on immune cells have been revealed, their effects on MSCs and regulation of their production by the culture environment are less clear. Therefore, we investigated the autocrine effect of PGE2 on human adult stem cells from cord blood or adipose tissue, and the regulation of its production by cell-to-cell contact, followed by the determination of its immunomodulatory properties. MSCs were treated with specific inhibitors to suppress PGE2 secretion, and proliferation was assessed. PGE2 exerted an autocrine regulatory function in MSCs by triggering E-Prostanoid (EP) 2 receptor. Inhibiting PGE2 production led to growth arrest, whereas addition of MSC-derived PGE2 restored proliferation. The level of PGE2 production from an equivalent number of MSCs was down-regulated via gap junctional intercellular communication. This cell contact-mediated decrease in PGE2 secretion down-regulated the suppressive effect of MSCs on immune cells. In conclusion, PGE2 produced by MSCs contributes to maintenance of self-renewal capacity through EP2 in an autocrine manner, and PGE2 secretion is down-regulated by cell-to-cell contact, attenuating its immunomodulatory potency.

  8. Long non-coding RNA TUG1 inhibits apoptosis and inflammatory response in LPS-treated H9c2 cells by down-regulation of miR-29b.

    Science.gov (United States)

    Zhang, Haifang; Li, Hui; Ge, Ang; Guo, Enyu; Liu, Shuxia; Zhang, Lijuan

    2018-05-01

    Myocarditis is an important cause for cardiovascular morbidity and mortality in children and adults. The lncRNA taurine up-regulated gene 1 (TUG1) plays important roles in cell apoptosis and inflammation in tumor and liver injury. The present study aimed to investigate the role of TUG1 in LPS-injured H9c2 cells and explore the underlying molecular mechanism. H9c2 cells were stimulated with LPS to induce inflammatory injury. The expression of TUG1 was altered by transient transfections. Cell viability and apoptotic cell rates were detected by CCK-8 assay and flow cytometry assay, respectively. Inflammatory response was determined by detecting levels of inflammatory cytokines using qRT-PCR and ELISA. Furthermore, western blot analysis was conducted to assess the expression levels of core factors related with apoptosis and activations of NF-κB and JAK/STAT signaling pathways. LPS exposure reduced cell viability but enhanced cell apoptosis and inflammation in H9c2 cells. Moreover, TUG1 expression was down-regulated in LPS-injured H9c2 cells. TUG1 overexpression attenuated LPS-induced injuries in H9c2 cells, evidenced by augmented cell viability, declined apoptotic cell rates and decreased levels of pro-apoptotic factors and inflammatory cytokines. Inversely, TUG1 inhibition exerted the opposite effects. More importantly, TUG1 negatively modulated the expression of miR-29b and miR-29b mimic blocked the effect of TUG1 overexpression on cell viability, apoptosis, inflammation and inactivation of NF-κB and JAK/STAT signaling pathways in LPS-stimulated H9c2 cells. This study demonstrated that TUG1 played the anti-apoptotic and anti-inflammatory roles in LPS-injured H9c2 cells via down-regulating miR-29b and inhibiting NF-κB and JAK/STAT pathways. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Down-regulation of inflammatory mediator synthesis and infiltration of inflammatory cells by MMP-3 in experimentally induced rat pulpitis.

    Science.gov (United States)

    Takimoto, Koyo; Kawashima, Nobuyuki; Suzuki, Noriyuki; Koizumi, Yu; Yamamoto, Mioko; Nakashima, Misako; Suda, Hideaki

    2014-09-01

    Matrix metalloproteinase (MMP)-3 is a member of the MMP family that degrades the extracellular matrix. Application of MMP-3 to injured pulp tissue induces angiogenesis and wound healing, but its anti-inflammatory effects are still unclear. Here, we evaluated the anti-inflammatory functions of MMP-3 in vitro and in vivo. Nitric oxide and inflammatory mediator synthesis in macrophages activated by lipopolysaccharide (LPS) was measured in the presence or absence of MMP-3. The mouse Mmp3 (mMmp3) expression vector containing full length cDNA sequence of mMmp3 or cDNA sequence of mMmp3 missing the signal peptide and pro-peptide regions was transfected to RAW264, a mouse macrophage cell line, and NO synthesis and inflammatory mediator expression were evaluated. Pulpal inflammation was histologically and immunohistochemically evaluated in a rat model of incisor pulpitis induced by the application of LPS for 9 hours in the presence or absence of MMP-3. NO and pro-inflammatory mediator synthesis promoted by LPS was significantly down-regulated by MMP-3 in vitro. The full length of mMmp3 down-regulated the LPS-induced NO synthesis and chemical mediator mRNA expression, however the mMmp3 missing the signal peptide failed to block the NO synthesis induced by LPS. The numbers of major histocompatibility complex class II+ and CD68+ cells, which infiltrated into the rat incisor pulp tissues in response to the topical application of LPS, were significantly decreased by the application of MMP-3 in vivo. These results indicate that MMP-3 possesses anti-inflammatory functions, suggesting its potential utility as an anti-inflammatory agent for pulpal inflammation. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Mycophenolic acid inhibits migration and invasion of gastric cancer cells via multiple molecular pathways.

    Directory of Open Access Journals (Sweden)

    Boying Dun

    Full Text Available Mycophenolic acid (MPA is the metabolized product and active element of mycophenolate mofetil (MMF that has been widely used for the prevention of acute graft rejection. MPA potently inhibits inosine monophosphate dehydrogenase (IMPDH that is up-regulated in many tumors and MPA is known to inhibit cancer cell proliferation as well as fibroblast and endothelial cell migration. In this study, we demonstrated for the first time MPA's antimigratory and anti-invasion abilities of MPA-sensitive AGS (gastric cancer cells. Genome-wide expression analyses using Illumina whole genome microarrays identified 50 genes with ≥2 fold changes and 15 genes with > 4 fold alterations and multiple molecular pathways implicated in cell migration. Real-time RT-PCR analyses of selected genes also confirmed the expression differences. Furthermore, targeted proteomic analyses identified several proteins altered by MPA treatment. Our results indicate that MPA modulates gastric cancer cell migration through down-regulation of a large number of genes (PRKCA, DOCK1, INF2, HSPA5, LRP8 and PDGFRA and proteins (PRKCA, AKT, SRC, CD147 and MMP1 with promigratory functions as well as up-regulation of a number of genes with antimigratory functions (ATF3, SMAD3, CITED2 and CEAMCAM1. However, a few genes that may promote migration (CYR61 and NOS3 were up-regulated. Therefore, MPA's overall antimigratory role on cancer cells reflects a balance between promigratory and antimigratory signals influenced by MPA treatment.

  11. Cytotoxicity of diacetoxyscirpenol is associated with apoptosis by activation of caspase-8 and interruption of cell cycle progression by down-regulation of cdk4 and cyclin B1 in human Jurkat T cells

    International Nuclear Information System (INIS)

    Jun, Do Youn; Kim, Jun Seok; Park, Hae Sun; Song, Woo Sun; Bae, Young Seuk; Kim, Young Ho

    2007-01-01

    To understand the mechanism underlying T-cell toxicity of diacetoxyscirpenol (DAS) from Fusarium sambucinum, its apoptogenic as well as growth retardation activity was investigated in human Jurkat T cells. Exposure to DAS (0.01-0.15 μM) caused apoptotic DNA fragmentation along with caspase-8 activation, Bid cleavage, mitochondrial cytochrome c release, activation of caspase-9 and caspase-3, and PARP degradation, without any alteration in the levels of Fas or FasL. Under these conditions, necrosis was not accompanied. The cytotoxicity of DAS was not blocked by the anti-Fas neutralizing antibody ZB-4. Although the DAS-induced apoptotic events were completely prevented by overexpression of Bcl-xL, the cells overexpressing Bcl-xL were unable to divide in the presence of DAS, resulting from the failure of cell cycle progression possibly due to down-regulation in the protein levels of cdk4 and cyclin B1. The DAS-mediated apoptosis and activation of caspase-8, -9, and -3 were abrogated by either pan-caspase inhibitor (z-VAD-fmk) or caspase-8 inhibitor (z-IETD-fmk). While the DAS-mediated apoptosis and activation of caspase-9 and caspase-3 were slightly suppressed by the mitochondrial permeability transition pore inhibitor (CsA), both caspase-8 activation and Bid cleavage were not affected by CsA. The activated normal peripheral T cells possessed a similar susceptibility to the cytotoxicity of DAS. These results demonstrate that the T-cell toxicity of DAS is attributable to not only apoptosis initiated by caspase-8 activation and subsequent mitochondrion-dependent or -independent activation of caspase cascades, which can be regulated by Bcl-xL, but also interruption of cell cycle progression caused by down-regulation of cdk4 and cyclin B1 proteins

  12. Significant Down-Regulation of “Biological Adhesion” Genes in Porcine Oocytes after IVM

    Directory of Open Access Journals (Sweden)

    Joanna Budna

    2017-12-01

    Full Text Available Proper maturation of the mammalian oocyte is a compound processes determining successful monospermic fertilization, however the number of fully mature porcine oocytes is still unsatisfactory. Since oocytes’ maturation and fertilization involve cellular adhesion and membranous contact, the aim was to investigate cell adhesion ontology group in porcine oocytes. The oocytes were collected from ovaries of 45 pubertal crossbred Landrace gilts and subjected to two BCB tests. After the first test, only granulosa cell-free BCB+ oocytes were directly exposed to microarray assays and RT-qPCR (“before IVM” group, or first in vitro matured and then if classified as BCB+ passed to molecular analyses (“after IVM” group. As a result, we have discovered substantial down-regulation of genes involved in adhesion processes, such as: organization of actin cytoskeleton, migration, proliferation, differentiation, apoptosis, survival or angiogenesis in porcine oocytes after IVM, compared to oocytes analyzed before IVM. In conclusion, we found that biological adhesion may be recognized as the process involved in porcine oocytes’ successful IVM. Down-regulation of genes included in this ontology group in immature oocytes after IVM points to their unique function in oocyte’s achievement of fully mature stages. Thus, results indicated new molecular markers involved in porcine oocyte IVM, displaying essential roles in biological adhesion processes.

  13. Hypoxia disrupts the Fanconi anemia pathway and sensitizes cells to chemotherapy through regulation of UBE2T

    International Nuclear Information System (INIS)

    Ramaekers, Chantal H.M.A.; Beucken, Twan van den; Meng, Alice; Kassam, Shaqil; Thoms, John; Bristow, Robert G.; Wouters, Bradly G.

    2011-01-01

    Background and purpose: Hypoxia is a common feature of the microenvironment of solid tumors which has been shown to promote malignancy and poor patient outcome through multiple mechanisms. The association of hypoxia with more aggressive disease may be due in part to recently identified links between hypoxia and genetic instability. For example, hypoxia has been demonstrated to impede DNA repair by down-regulating the homologous recombination protein RAD51. Here we investigated hypoxic regulation of UBE2T, a ubiquitin ligase required in the Fanconi anemia (FA) DNA repair pathway. Materials and methods: We analysed UBE2T expression by microarray, quantitative PCR and western blot analysis in a panel of cancer cell lines as a function of oxygen concentration. The importance of this regulation was assessed by measuring cell survival in response to DNA damaging agents under normoxia or hypoxia. Finally, HIF dependency was determined using knockdown cell lines and RCC4 cells which constitutively express HIF1α. Results: Hypoxia results in rapid and potent reductions in mRNA levels of UBE2T in a panel of cancer cell lines. Reduced UBE2T mRNA expression is HIF independent and was not due to changes in mRNA or protein stability, but rather reflected reduced promoter activity. Exposure of tumor cells to hypoxia greatly increased their sensitivity to treatment with the interstrand crosslinking (ICL) agent mitomycin C. Conclusions: Exposure to hypoxic conditions down-regulates UBE2T expression which correlates with an increased sensitivity to crosslinking agents consistent with a defective Fanconi anemia pathway. This pathway can potentially be exploited to target hypoxic cells in tumors.

  14. Staphylococcus aureus Quorum Regulator SarA Targeted Compound, 2-[(Methylaminomethyl]phenol Inhibits Biofilm and Down-Regulates Virulence Genes

    Directory of Open Access Journals (Sweden)

    P. Balamurugan

    2017-07-01

    Full Text Available Staphylococcus aureus is a widely acknowledged Gram-positive pathogen for forming biofilm and virulence gene expressions by quorum sensing (QS, a cell to cell communication process. The quorum regulator SarA of S. aureus up-regulates the expression of many virulence factors including biofilm formation to mediate pathogenesis and evasion of the host immune system in the late phases of growth. Thus, inhibiting the production or blocking SarA protein might influence the down-regulation of biofilm and virulence factors. In this context, here we have synthesized 2-[(Methylaminomethyl]phenol, which was specifically targeted toward the quorum regulator SarA through in silico approach in our previous study. The molecule has been evaluated in vitro to validate its antibiofilm activity against clinical S. aureus strains. In addition, antivirulence properties of the inhibitor were confirmed with the observation of a significant reduction in the expression of representative virulence genes like fnbA, hla and hld that are governed under S. aureus QS. Interestingly, the SarA targeted inhibitor showed negligible antimicrobial activity and markedly reduced the minimum inhibitory concentration of conventional antibiotics when used in combination making it a more attractive lead for further clinical tests.

  15. Involvement of SIRT1 in hypoxic down-regulation of c-Myc and β-catenin and hypoxic preconditioning effect of polyphenols

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Kyung-Soo [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Research Center for Ischemic Tissue regeneration, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Park, Jun-Ik [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Kim, Mi-Ju; Kim, Hak-Bong; Lee, Jae-Won [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Research Center for Ischemic Tissue regeneration, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Dao, Trong Tuan; Oh, Won Keun [BK21 Project Team, College of Pharmacy, Chosun University, Gwangju (Korea, Republic of); Kang, Chi-Dug, E-mail: kcdshbw@pusan.ac.kr [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Kim, Sun-Hee, E-mail: ksh7738@pusan.ac.kr [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Research Center for Ischemic Tissue regeneration, Pusan National University School of Medicine, Yangsan (Korea, Republic of)

    2012-03-01

    SIRT1 has been found to function as a Class III deacetylase that affects the acetylation status of histones and other important cellular nonhistone proteins involved in various cellular pathways including stress responses and apoptosis. In this study, we investigated the role of SIRT1 signaling in the hypoxic down-regulations of c-Myc and β-catenin and hypoxic preconditioning effect of the red wine polyphenols such as piceatannol, myricetin, quercetin and resveratrol. We found that the expression of SIRT1 was significantly increased in hypoxia-exposed or hypoxic preconditioned HepG2 cells, which was closely associated with the up-regulation of HIF-1α and down-regulation of c-Myc and β-catenin expression via deacetylation of these proteins. In addition, blockade of SIRT1 activation using siRNA or amurensin G, a new potent SIRT1 inhibitor, abolished hypoxia-induced HIF-1α expression but increased c-Myc and β-catenin expression. SIRT1 was also found to stabilize HIF-1α protein and destabilize c-Myc, β-catenin and PHD2 under hypoxia. We also found that myricetin, quercetin, piceatannol and resveratrol up-regulated HIF-1α and down-regulated c-Myc, PHD2 and β-catenin expressions via SIRT1 activation, in a manner that mimics hypoxic preconditioning. This study provides new insights of the molecular mechanisms of hypoxic preconditioning and suggests that polyphenolic SIRT1 activators could be used to mimic hypoxic/ischemic preconditioning. -- Graphical abstract: Polyphenols mimicked hypoxic preconditioning by up-regulating HIF-1α and SIRT1 and down-regulating c-Myc, PHD2, and β-catenin. HepG2 cells were pretreated with the indicated doses of myricetin (MYR; A), quercetin (QUR; B), or piceatannol (PIC; C) for 4 h and then exposed to hypoxia for 4 h. Levels of HIF-1α, SIRT1, c-Myc, β-catenin, and PHD2 were determined by western blot analysis. The data are representative of three individual experiments. Highlights: ► SIRT1 expression is increased in hypoxia

  16. Involvement of SIRT1 in hypoxic down-regulation of c-Myc and β-catenin and hypoxic preconditioning effect of polyphenols

    International Nuclear Information System (INIS)

    Hong, Kyung-Soo; Park, Jun-Ik; Kim, Mi-Ju; Kim, Hak-Bong; Lee, Jae-Won; Dao, Trong Tuan; Oh, Won Keun; Kang, Chi-Dug; Kim, Sun-Hee

    2012-01-01

    SIRT1 has been found to function as a Class III deacetylase that affects the acetylation status of histones and other important cellular nonhistone proteins involved in various cellular pathways including stress responses and apoptosis. In this study, we investigated the role of SIRT1 signaling in the hypoxic down-regulations of c-Myc and β-catenin and hypoxic preconditioning effect of the red wine polyphenols such as piceatannol, myricetin, quercetin and resveratrol. We found that the expression of SIRT1 was significantly increased in hypoxia-exposed or hypoxic preconditioned HepG2 cells, which was closely associated with the up-regulation of HIF-1α and down-regulation of c-Myc and β-catenin expression via deacetylation of these proteins. In addition, blockade of SIRT1 activation using siRNA or amurensin G, a new potent SIRT1 inhibitor, abolished hypoxia-induced HIF-1α expression but increased c-Myc and β-catenin expression. SIRT1 was also found to stabilize HIF-1α protein and destabilize c-Myc, β-catenin and PHD2 under hypoxia. We also found that myricetin, quercetin, piceatannol and resveratrol up-regulated HIF-1α and down-regulated c-Myc, PHD2 and β-catenin expressions via SIRT1 activation, in a manner that mimics hypoxic preconditioning. This study provides new insights of the molecular mechanisms of hypoxic preconditioning and suggests that polyphenolic SIRT1 activators could be used to mimic hypoxic/ischemic preconditioning. -- Graphical abstract: Polyphenols mimicked hypoxic preconditioning by up-regulating HIF-1α and SIRT1 and down-regulating c-Myc, PHD2, and β-catenin. HepG2 cells were pretreated with the indicated doses of myricetin (MYR; A), quercetin (QUR; B), or piceatannol (PIC; C) for 4 h and then exposed to hypoxia for 4 h. Levels of HIF-1α, SIRT1, c-Myc, β-catenin, and PHD2 were determined by western blot analysis. The data are representative of three individual experiments. Highlights: ► SIRT1 expression is increased in hypoxia

  17. ANGUSTIFOLIA mediates one of the multiple SCRAMBLED signaling pathways regulating cell growth pattern in Arabidopsis thaliana.

    Science.gov (United States)

    Kwak, Su-Hwan; Song, Sang-Kee; Lee, Myeong Min; Schiefelbein, John

    2015-09-25

    In Arabidopsis thaliana, an atypical leucine-rich repeat receptor-like kinase, SCRAMBLED (SCM), is required for multiple developmental processes including root epidermal cell fate determination, silique dehiscence, inflorescence growth, ovule morphogenesis, and tissue morphology. Previous work suggested that SCM regulates these multiple pathways using distinct mechanisms via interactions with specific downstream factors. ANGUSTIFOLIA (AN) is known to regulate cell and tissue morphogenesis by influencing cortical microtubule arrangement, and recently, the AN protein was reported to interact with the SCM protein. Therefore, we examined whether AN might be responsible for mediating some of the SCM-dependent phenotypes. We discovered that both scm and an mutant lines cause an abnormal spiral or twisting growth of roots, but only the scm mutant affected root epidermal patterning. The siliques of the an and scm mutants also exhibited spiral growth, as previously reported, but only the scm mutant altered silique dehiscence. Interestingly, we discovered that the spiral growth of roots and siliques of the scm mutant is rescued by a truncated SCM protein that lacks its kinase domain, and that a juxtamembrane domain of SCM was sufficient for AN binding in the yeast two-hybrid analysis. These results suggest that the AN protein is one of the critical downstream factors of SCM pathways specifically responsible for mediating its effects on cell/tissue morphogenesis through cortical microtubule arrangement. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The influence of emotion down-regulation on the expectation of sexual reward.

    Science.gov (United States)

    Brom, Mirte; Laan, Ellen; Everaerd, Walter; Spinhoven, Philip; Cousijn, Janna; Both, Stephanie

    2015-05-01

    Emotion regulation research has shown successful altering of unwanted aversive emotional reactions. Cognitive strategies can also regulate expectations of reward arising from conditioned stimuli. However, less is known about the efficacy of such strategies with expectations elicited by conditioned appetitive sexual stimuli, and possible sex differences therein. In the present study it was examined whether a cognitive strategy (attentional deployment) could successfully down-regulate sexual arousal elicited by sexual reward-conditioned cues in men and women. A differential conditioning paradigm was applied, with genital vibrostimulation as unconditioned stimulus (US) and sexually relevant pictures as conditional stimuli (CSs). Evidence was found for emotion down-regulation to effect extinction of conditioned sexual responding in men. In women, the emotion down-regulatory strategy resulted in attenuated conditioned approach tendencies towards the CSs. The findings support that top-down modulation may indeed influence conditioned sexual responses. This knowledge may have implications for treating disturbances in sexual appetitive responses. Copyright © 2015. Published by Elsevier Ltd.

  19. mRNA-binding protein TIA-1 reduces cytokine expression in human endometrial stromal cells and is down-regulated in ectopic endometrium.

    Science.gov (United States)

    Karalok, Hakan Mete; Aydin, Ebru; Saglam, Ozlen; Torun, Aysenur; Guzeloglu-Kayisli, Ozlem; Lalioti, Maria D; Kristiansson, Helena; Duke, Cindy M P; Choe, Gina; Flannery, Clare; Kallen, Caleb B; Seli, Emre

    2014-12-01

    Cytokines and growth factors play important roles in endometrial function and the pathogenesis of endometriosis. mRNAs encoding cytokines and growth factors undergo rapid turnover; primarily mediated by adenosine- and uridine-rich elements (AREs) located in their 3'-untranslated regions. T-cell intracellular antigen (TIA-1), an mRNA-binding protein, binds to AREs in target transcripts, leading to decreased gene expression. The purpose of this article was to determine whether TIA-1 plays a role in the regulation of endometrial cytokine and growth factor expression during the normal menstrual cycle and whether TIA-1 expression is altered in women with endometriosis. Eutopic endometrial tissue obtained from women without endometriosis (n = 30) and eutopic and ectopic endometrial tissues from women with endometriosis (n = 17) were immunostained for TIA-1. Staining intensities were evaluated by histological scores (HSCOREs). The regulation of endometrial TIA-1 expression by immune factors and steroid hormones was studied by treating primary cultured human endometrial stromal cells (HESCs) with vehicle, lipopolysaccharide, TNF-α, IL-6, estradiol, or progesterone, followed by protein blot analyses. HESCs were engineered to over- or underexpress TIA-1 to test whether TIA-1 regulates IL-6 or TNF-α expression in these cells. We found that TIA-1 is expressed in endometrial stromal and glandular cells throughout the menstrual cycle and that this expression is significantly higher in the perimenstrual phase. In women with endometriosis, TIA-1 expression in eutopic and ectopic endometrium was reduced compared with TIA-1 expression in eutopic endometrium of unaffected control women. Lipopolysaccharide and TNF-α increased TIA-1 expression in HESCs in vitro, whereas IL-6 or steroid hormones had no effect. In HESCs, down-regulation of TIA-1 resulted in elevated IL-6 and TNF-α expression, whereas TIA-1 overexpression resulted in decreased IL-6 and TNF-α expression. Endometrial

  20. Down-regulation of ABCG2, a urate exporter, by parathyroid hormone enhances urate accumulation in secondary hyperparathyroidism.

    Science.gov (United States)

    Sugimoto, Ryusei; Watanabe, Hiroshi; Ikegami, Komei; Enoki, Yuki; Imafuku, Tadashi; Sakaguchi, Yoshiaki; Murata, Michiya; Nishida, Kento; Miyamura, Shigeyuki; Ishima, Yu; Tanaka, Motoko; Matsushita, Kazutaka; Komaba, Hirotaka; Fukagawa, Masafumi; Otagiri, Masaki; Maruyama, Toru

    2017-03-01

    Hyperuricemia occurs with increasing frequency among patients with hyperparathyroidism. However, the molecular mechanism by which the serum parathyroid hormone (PTH) affects serum urate levels remains unknown. This was studied in uremic rats with secondary hyperparathyroidism where serum urate levels were found to be increased and urate excretion in the intestine and kidney decreased, presumably due to down-regulation of the expression of the urate exporter ABCG2 in intestinal and renal epithelial membranes. These effects were prevented by administration of the calcimimetic cinacalcet, a PTH suppressor, suggesting that PTH may down-regulate ABCG2 expression. This was directly tested in intestinal Caco-2 cells where the expression of ABCG2 on the plasma membrane was down-regulated by PTH (1-34) while its mRNA level remained unchanged. Interestingly, an inactive PTH derivative (13-34) had no effect, suggesting that a posttranscriptional regulatory system acts through the PTH receptor to regulate ABCG2 plasma membrane expression. As found in an animal study, additional clinical investigations showed that treatment with cinacalcet resulted in significant reductions in serum urate levels together with decreases in PTH levels in patients with secondary hyperparathyroidism undergoing dialysis. Thus, PTH down-regulates ABCG2 expression on the plasma membrane to suppress intestinal and renal urate excretion, and the effects of PTH can be prevented by cinacalcet treatment. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  1. Knock-down of miR-221 and miR-222 in the radiosensitization of breast cancer cells

    International Nuclear Information System (INIS)

    Zhang Chunzhi; Kang Chunsheng; Cao Yongzhen; Pu Peiyu; Lu Zhonghong; Du Yue

    2009-01-01

    Objective: To investigate the radiosensitizing effect of knock-down of miR-221 miR-222 on MCF-7 human breast cancer cells and explore the possible mechanism. Methods: Antisense oligonucleotides of miR-221 and miR-222 (AS-miR-221 and AS-miR-222), mediated by lipofectamine, were transfected to MCF-7 cells to knock down miR-221 and miR-222, Northern blotting was conducted to detect the expression of miR-221 and miR-222 in transfected cells. The cell apoptosis was detected by flow cytometry and Caspase-3 and Caspase-7 activity assay. Clonogenic assay was used to measure the sensitizing enhancement ratio. Target genes of miR-221 and miR-222 relevant to radio-sensitivity were searched using bioinformatics analysis. The targeted protein expression was determined by Western blot analysis. Results: The expression of miR-221 and miR-222 in the AS-miR-221/222 cells determined by Northern blotting was significantly reduced. Compared with the control group, the cell apoptosis and mitotic cell death after the radiation were significantly higher in AS-miR-221/222 cells. The sensitizing enhancement ratio was 1.87. Based on bioinformatics analysis, PTEN was a target gene of miR-221 and miR-222 which could enhance the radiosensitivity of MCF-7 cells. In AS-miR-221/222 cells, the expression of PTEN was up-regulated while pAkt down-regulated. Conclusions: AS-miR-221 and AS-miR-222 may enhance the radiosensitivity of MCF-7 breast cancer cells by up-regulating the expression of PTEN. (authors)

  2. Metformin Causes G1-Phase Arrest via Down-Regulation of MiR-221 and Enhances TRAIL Sensitivity through DR5 Up-Regulation in Pancreatic Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Ryoichi Tanaka

    Full Text Available Although many chemotherapeutic strategies against cancer have been developed, pancreatic cancer is one of the most aggressive and intractable types of malignancies. Therefore, new strategies and anti-cancer agents are necessary to treat this disease. Metformin is a widely used drug for type-2 diabetes, and is also known as a promising candidate anti-cancer agent from recent studies in vitro and in vivo. However, the mechanisms of metformin's anti-cancer effects have not been elucidated. We demonstrated that metformin suppressed the expression of miR-221, one of the most well-known oncogenic microRNAs, in human pancreatic cancer PANC-1 cells. Moreover, we showed that the down-regulation of miR-221 by metformin caused G1-phase arrest via the up-regulation of p27, one of the direct targets of miR-221. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL is also a promising agent for cancer treatment. While recent studies showed that treatment with only TRAIL was not effective against pancreatic cancer cells, the present data showed that metformin sensitized p53-mutated pancreatic cancer cells to TRAIL. Metformin induced the expressions of death receptor 5 (DR5, a receptor for TRAIL, and Bim with a pro-apoptotic function in the downstream of TRAIL-DR5 pathway. We suggest that the up-regulation of these proteins may contribute to sensitization of TRAIL-induced apoptosis. The combination therapy of metformin and TRAIL could therefore be effective in the treatment of pancreatic cancer.

  3. Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus.

    Science.gov (United States)

    Nebauer, Sergio G; Renau-Morata, Begoña; Guardiola, José Luis; Molina, Rosa-Victoria

    2011-02-01

    Photosynthesis down-regulation due to an imbalance between sources and sinks in Citrus leaves could be mediated by excessive accumulation of carbohydrates. However, there is limited understanding of the physiological role of soluble and insoluble carbohydrates in photosynthesis regulation and the elements triggering the down-regulation process. In this work, the role of non-structural carbohydrates in the regulation of photosynthesis under a broad spectrum of source-sink relationships has been investigated in the Salustiana sweet orange. Soluble sugar and starch accumulation in leaves, induced by girdling experiments, did not induce down-regulation of the photosynthetic rate in the presence of sinks (fruits). The leaf-to-fruit ratio did not modulate photosynthesis but allocation of photoassimilates to the fruits. The lack of strong sink activity led to a decrease in the photosynthetic rate and starch accumulation in leaves. However, photosynthesis down-regulation due to an excess of total soluble sugars or starch was discarded because photosynthesis and stomatal conductance reduction occurred prior to any significant accumulation of these carbohydrates. Gas exchange and fluorescence parameters suggested biochemical limitations to photosynthesis. In addition, the expression of carbon metabolism-related genes was altered within 24 h when strong sinks were removed. Sucrose synthesis and export genes were inhibited, whereas the expression of ADP-glucose pyrophosphorylase was increased to cope with the excess of assimilates. In conclusion, changes in starch and soluble sugar turnover, but not sugar content per se, could provide the signal for photosynthesis regulation. In these conditions, non-stomatal limitations strongly inhibited the photosynthetic rate prior to any significant increase in carbohydrate levels.

  4. Atherosclerosis-Associated Endothelial Cell Apoptosis by MiR-429-Mediated Down Regulation of Bcl-2

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2015-10-01

    -associated endothelial cell apoptosis may result from down regulation of Bcl-2, through increased miR-429 that binds and suppresses translation of Bcl-2 mRNA.

  5. Red Xylem and Higher Lignin Extractability by Down-Regulating a Cinnamyl Alcohol Dehydrogenase in Poplar.

    Science.gov (United States)

    Baucher, M.; Chabbert, B.; Pilate, G.; Van Doorsselaere, J.; Tollier, M. T.; Petit-Conil, M.; Cornu, D.; Monties, B.; Van Montagu, M.; Inze, D.; Jouanin, L.; Boerjan, W.

    1996-12-01

    Cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in the biosynthesis of the lignin precursors, the monolignols. We have down-regulated CAD in transgenic poplar (Populus tremula X Populus alba) by both antisense and co-suppression strategies. Several antisense and sense CAD transgenic poplars had an approximately 70% reduced CAD activity that was associated with a red coloration of the xylem tissue. Neither the lignin amount nor the lignin monomeric composition (syringyl/guaiacyl) were significantly modified. However, phloroglucinol-HCl staining was different in the down-regulated CAD plants, suggesting changes in the number of aldehyde units in the lignin. Furthermore, the reactivity of the cell wall toward alkali treatment was altered: a lower amount of lignin was found in the insoluble, saponified residue and more lignin could be precipitated from the soluble alkali fraction. Moreover, large amounts of phenolic compounds, vanillin and especially syringaldehyde, were detected in the soluble alkali fraction of the CAD down-regulated poplars. Alkaline pulping experiments on 3-month-old trees showed a reduction of the kappa number without affecting the degree of cellulose degradation. These results indicate that reducing the CAD activity in trees might be a valuable strategy to optimize certain processes of the wood industry, especially those of the pulp and paper industry.

  6. HA117 endows HL60 cells with a stem-like signature by inhibiting the degradation of DNMT1 via its ability to down-regulate expression of the GGL domain of RGS6.

    Directory of Open Access Journals (Sweden)

    Shuangshuang Li

    Full Text Available All-trans retinoic acid (ATRA induces complete remission in almost all patients with acute promyelocytic leukemia (APL via its ability to induce the in vivo differentiation of APL blasts. However, prolonged ATRA treatment can result in drug resistance. In previous studies, we generated a multi-drug-resistant HL60/ATRA cell line and found it to contain a new drug resistance-related gene segment, HA117. In this study, we demonstrate that ATRA induces multi-drug-resistant subpopulations of HL60 cells with a putative stem-like signature by up-regulating the expression of the new gene segment HA117. Western blot analysis and quantitative real-time PCR demonstrated that HA117 causes alternative splicing of regulator of G-protein signaling 6 (RGS6 and down-regulation of the expression of the GGL domain of RGS6, which plays an important role in DNA methyltransferase 1 (DNMT1 degradation. Moreover, DNMT1 expression was increased in multi-drug resistance HL60/ATRA cells. Knockdown of HA117 restored expression of the GGL domain and blocked DNMT1 expression. Moreover, resistant cells displayed a putative stem-like signature with increased expression of cancer steam cell markers CD133 and CD123. The stem cell marker, Nanog, was significantly up-regulated. In conclusion, our study shows that HA117 potentially promotes the stem-like signature of the HL60/ATRA cell line by inhibiting by the ubiquitination and degradation of DNMT1 and by down-regulating the expression of the GGL domain of RGS6. These results throw light on the cellular events associated with the ATRA-induced multi-drug resistance phenotype in acute leukemia.

  7. Decreased cell survival and DNA repair capacity after UVC irradiation in association with down-regulation of GRP78/BiP in human RSa cells

    International Nuclear Information System (INIS)

    Zhai Ling; Kita, Kazuko; Wano, Chieko; Wu Yuping; Sugaya, Shigeru; Suzuki, Nobuo

    2005-01-01

    In contrast to extensive studies on the roles of molecular chaperones, such as heat shock proteins, there are only a few reports about the roles of GRP78/BiP, an endoplasmic reticulum (ER) stress-induced molecular chaperone, in mammalian cell responses to DNA-damaging stresses. To investigate whether GRP78/BiP is involved in resistance to a DNA-damaging agent, UVC (principally 254 nm in wavelength), we established human cells with down-regulation of GRP78/BiP by transfection of human RSa cells with antisense cDNA for GRP78/BiP. We found that the transfected cells showed higher sensitivity to UVC-induced cell death than control cells transfected with the vector alone. In the antisense-cDNA transfected cells, the removal capacities of the two major types of UVC-damaged DNA (thymine dimers and (6-4) photoproducts) in vivo and DNA synthesis activity of whole cell extracts to repair UVC-irradiated plasmids in vitro were remarkably decreased compared with those in the control cells. Furthermore, the antisense-cDNA transfected cells also showed slightly higher sensitivity to cisplatin-induced cell death than the control cells. Cisplatin-induced DNA damage is primarily repaired by nucleotide excision repair, like UVC-induced DNA damage. The present results suggest that GRP78/BiP plays a protective role against UVC-induced cell death possibly via nucleotide excision repair, at least in the human RSa cells tested

  8. Down-regulation of GRP78 is associated with the sensitivity of chemotherapy to VP-16 in small cell lung cancer NCI-H446 cells

    International Nuclear Information System (INIS)

    Wang, Yingyan; Wang, Wei; Wang, Siyan; Wang, Jiarui; Shao, Shujuan; Wang, Qi

    2008-01-01

    Chemotherapy resistance remains a major obstacle for the treatment of small cell lung cancer (SCLC). Glucose-regulated protein 78 (GRP78), an endoplasmic reticulum chaperone, plays a critical role in chemotherapy resistance in some cancers. However, whether the suppression of the chaperone can enhance the sensitivity of chemotherapy in SCLC is still unclear. The SCLC NCI-H446 cells were divided into three groups: BAPTA-AM→A23187-treated group, A23187-treated group and control-group. Immunofluorescence, western blot and RT-PCR were used to assess the expression of GRP78 at both protein and mRNA levels. Cell apoptosis and the cell cycle distributions of the cells were analyzed by flow cytometry in order to evaluate the therapeutic sensitivity to VP-16. The expression of GRP78 at both protein and mRNA levels in the BAPTA-AM→A23187-treated cells dramatically decreased as compared to that in both A23187-treated and control groups. After treatment by VP-16, the percentage of apoptotic cells in BAPTA-AM→A23187-treated cells were: 33.4 ± 1.01%, 48.2 ± 1.77%, 53.0 ± 1.43%, 56.5 ± 2.13%, respectively, corresponding to the concentrations of BAPTA-AM 10, 15, 25, 40 μM, which was statistically significant high in comparison with the A23187-treated group and untreated-group (7.18 ± 1.03% and 27.8 ± 1.45%, respectively, p < 0.05). The results from analysis of cell cycle distribution showed that there was a significantly decreased in G 1 phase and a dramatically increased in S phase for the BAPTA-AM→A23187-treated cells as compared with the untreated cells. BAPTA-AM is a strong inhibitor of GRP78 in the NCI-H446 cell line, the down-regulation of GRP78 can significantly increase the sensitivity to VP-16. The suppression of GRP78 may offer a new surrogated therapeutic approach to the clinical management of lung cancer

  9. Induction of apoptosis in renal cell carcinoma by reactive oxygen species: involvement of extracellular signal-regulated kinase 1/2, p38delta/gamma, cyclooxygenase-2 down-regulation, and translocation of apoptosis-inducing factor.

    LENUS (Irish Health Repository)

    Ambrose, Monica

    2012-02-03

    Renal cell carcinoma (RCC) is the most common malignancy of the kidney. Unfortunately, RCCs are highly refractory to conventional chemotherapy, radiation therapy, and even immunotherapy. Thus, novel therapeutic targets need to be sought for the successful treatment of RCCs. We now report that 6-anilino-5,8-quinolinequinone (LY83583), an inhibitor of cyclic GMP production, induced growth arrest and apoptosis of the RCC cell line 786-0. It did not prove deleterious to normal renal epithelial cells, an important aspect of chemotherapy. To address the cellular mechanism(s), we used both genetic and pharmacological approaches. LY83583 induced a time- and dose-dependent increase in RCC apoptosis through dephosphorylation of mitogen-activated protein kinase kinase 1\\/2 and its downstream extracellular signal-regulated kinases (ERK) 1 and -2. In addition, we observed a decrease in Elk-1 phosphorylation and cyclooxygenase-2 (COX-2) down-regulation. We were surprised that we failed to observe an increase in either c-Jun NH(2)-terminal kinase or p38alpha and -beta mitogen-activated protein kinase activation. In contradiction, reintroduction of p38delta by stable transfection or overexpression of p38gamma dominant negative abrogated the apoptotic effect. Cell death was associated with a decrease and increase in Bcl-x(L) and Bax expression, respectively, as well as release of cytochrome c and translocation of apoptosis-inducing factor. These events were associated with an increase in reactive oxygen species formation. The antioxidant N-acetyl l-cysteine, however, opposed LY83583-mediated mitochondrial dysfunction, ERK1\\/2 inactivation, COX-2 down-regulation, and apoptosis. In conclusion, our results suggest that LY83583 may represent a novel therapeutic agent for the treatment of RCC, which remains highly refractory to antineoplastic agents. Our data provide a molecular basis for the anticancer activity of LY83583.

  10. Down-Regulation of p53 by Double-Stranded RNA Modulates the Antiviral Response

    OpenAIRE

    Marques, Joao T.; Rebouillat, Dominique; Ramana, Chilakamarti V.; Murakami, Junko; Hill, Jason E.; Gudkov, Andrei; Silverman, Robert H.; Stark, George R.; Williams, Bryan R. G.

    2005-01-01

    p53 has been well characterized as a tumor suppressor gene, but its role in antiviral defense remains unclear. A recent report has demonstrated that p53 can be induced by interferons and is activated after vesicular stomatitis virus (VSV) infection. We observed that different nononcogenic viruses, including encephalomyocarditis virus (EMCV) and human parainfluenza virus type 3 (HPIV3), induced down-regulation of p53 in infected cells. Double-stranded RNA (dsRNA) and a mutant vaccinia virus la...

  11. Paroxetine prevented the down-regulation of astrocytic L-Glu transporters in neuroinflammation

    Directory of Open Access Journals (Sweden)

    Koki Fujimori

    2015-01-01

    Full Text Available The extracellular L-glutamate (L-Glu concentration is elevated in neuroinflammation, thereby causing excitotoxicity. One of the mechanisms is down-regulation of astrocyte L-Glu transporters. Some antidepressants have anti-inflammatory effects. We therefore investigated effects of various antidepressants on the down-regulation of astrocyte L-Glu transporters in the in vitro neuroinflammation model. Among these antidepressants, only paroxetine was effective. We previously demonstrated that the down-regulation of astrocyte L-Glu transporters was caused by L-Glu released from activated microglia. We here clarified that only paroxetine inhibited L-Glu release from microglia. This is the novel action of paroxetine, which may bring advantages on the therapy of neuroinflammation.

  12. MiR-34a regulates the invasive capacity of canine osteosarcoma cell lines.

    Science.gov (United States)

    Lopez, Cecilia M; Yu, Peter Y; Zhang, Xiaoli; Yilmaz, Ayse Selen; London, Cheryl A; Fenger, Joelle M

    2018-01-01

    Osteosarcoma (OSA) is the most common bone tumor in children and dogs; however, no substantial improvement in clinical outcome has occurred in either species over the past 30 years. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a fundamental role in cancer. The purpose of this study was to investigate the potential contribution of miR-34a loss to the biology of canine OSA, a well-established spontaneous model of the human disease. RT-qPCR demonstrated that miR-34a expression levels were significantly reduced in primary canine OSA tumors and canine OSA cell lines as compared to normal canine osteoblasts. In canine OSA cell lines stably transduced with empty vector or pre-miR-34a lentiviral constructs, overexpression of miR-34a inhibited cellular invasion and migration but had no effect on cell proliferation or cell cycle distribution. Transcriptional profiling of canine OSA8 cells possessing enforced miR-34a expression demonstrated dysregulation of numerous genes, including significant down-regulation of multiple putative targets of miR-34a. Moreover, gene ontology analysis of down-regulated miR-34a target genes showed enrichment of several biological processes related to cell invasion and motility. Lastly, we validated changes in miR-34a putative target gene expression, including decreased expression of KLF4, SEM3A, and VEGFA transcripts in canine OSA cells overexpressing miR-34a and identified KLF4 and VEGFA as direct target genes of miR-34a. Concordant with these data, primary canine OSA tumor tissues demonstrated increased expression levels of putative miR-34a target genes. These data demonstrate that miR-34a contributes to invasion and migration in canine OSA cells and suggest that loss of miR-34a may promote a pattern of gene expression contributing to the metastatic phenotype in canine OSA.

  13. MiR-34a regulates the invasive capacity of canine osteosarcoma cell lines.

    Directory of Open Access Journals (Sweden)

    Cecilia M Lopez

    Full Text Available Osteosarcoma (OSA is the most common bone tumor in children and dogs; however, no substantial improvement in clinical outcome has occurred in either species over the past 30 years. MicroRNAs (miRNAs are small non-coding RNAs that regulate gene expression and play a fundamental role in cancer. The purpose of this study was to investigate the potential contribution of miR-34a loss to the biology of canine OSA, a well-established spontaneous model of the human disease.RT-qPCR demonstrated that miR-34a expression levels were significantly reduced in primary canine OSA tumors and canine OSA cell lines as compared to normal canine osteoblasts. In canine OSA cell lines stably transduced with empty vector or pre-miR-34a lentiviral constructs, overexpression of miR-34a inhibited cellular invasion and migration but had no effect on cell proliferation or cell cycle distribution. Transcriptional profiling of canine OSA8 cells possessing enforced miR-34a expression demonstrated dysregulation of numerous genes, including significant down-regulation of multiple putative targets of miR-34a. Moreover, gene ontology analysis of down-regulated miR-34a target genes showed enrichment of several biological processes related to cell invasion and motility. Lastly, we validated changes in miR-34a putative target gene expression, including decreased expression of KLF4, SEM3A, and VEGFA transcripts in canine OSA cells overexpressing miR-34a and identified KLF4 and VEGFA as direct target genes of miR-34a. Concordant with these data, primary canine OSA tumor tissues demonstrated increased expression levels of putative miR-34a target genes.These data demonstrate that miR-34a contributes to invasion and migration in canine OSA cells and suggest that loss of miR-34a may promote a pattern of gene expression contributing to the metastatic phenotype in canine OSA.

  14. E-cadherin and beta-catenin are down-regulated in prostatic bone metastases.

    Science.gov (United States)

    Bryden, A A G; Hoyland, J A; Freemont, A J; Clarke, N W; Schembri Wismayer, D; George, N J R

    2002-03-01

    To determine the E-cadherin and beta-catenin expression phenotype in untreated primary prostate cancer and corresponding bone metastases. Paired bone metastasis and primary prostate specimens were obtained from 14 men with untreated metastatic prostate carcinoma. The tumours were histologically graded by an independent pathologist. Expression of mRNA for E-cadherin and beta-catenin was detected within the tumour cells using in-situ hybridization with a 35S-labelled cDNA probe. The expression of E-cadherin and beta-catenin were graded as uniform, heterogeneous or negative. The mRNA for E-cadherin was expressed in 13 of 14 primary carcinomas and 11 bone metastases; beta-catenin was expressed by 13 and nine, respectively. Of the primary tumours, nine expressed E-cadherin and beta-catenin uniformly; in contrast, all metastases had down-regulated E-cadherin and/or beta-catenin. The down-regulation of E-cadherin and beta-catenin are a feature of the metastatic phenotype, which may be a significant factor in the genesis of bone metastases. However, this does not appear to be reflected in the expression of these molecules in the primary tumours.

  15. An RNA-binding protein, Qki5, regulates embryonic neural stem cells through pre-mRNA processing in cell adhesion signaling.

    Science.gov (United States)

    Hayakawa-Yano, Yoshika; Suyama, Satoshi; Nogami, Masahiro; Yugami, Masato; Koya, Ikuko; Furukawa, Takako; Zhou, Li; Abe, Manabu; Sakimura, Kenji; Takebayashi, Hirohide; Nakanishi, Atsushi; Okano, Hideyuki; Yano, Masato

    2017-09-15

    Cell type-specific transcriptomes are enabled by the action of multiple regulators, which are frequently expressed within restricted tissue regions. In the present study, we identify one such regulator, Quaking 5 (Qki5), as an RNA-binding protein (RNABP) that is expressed in early embryonic neural stem cells and subsequently down-regulated during neurogenesis. mRNA sequencing analysis in neural stem cell culture indicates that Qki proteins play supporting roles in the neural stem cell transcriptome and various forms of mRNA processing that may result from regionally restricted expression and subcellular localization. Also, our in utero electroporation gain-of-function study suggests that the nuclear-type Qki isoform Qki5 supports the neural stem cell state. We next performed in vivo transcriptome-wide protein-RNA interaction mapping to search for direct targets of Qki5 and elucidate how Qki5 regulates neural stem cell function. Combined with our transcriptome analysis, this mapping analysis yielded a bona fide map of Qki5-RNA interaction at single-nucleotide resolution, the identification of 892 Qki5 direct target genes, and an accurate Qki5-dependent alternative splicing rule in the developing brain. Last, our target gene list provides the first compelling evidence that Qki5 is associated with specific biological events; namely, cell-cell adhesion. This prediction was confirmed by histological analysis of mice in which Qki proteins were genetically ablated, which revealed disruption of the apical surface of the lateral wall in the developing brain. These data collectively indicate that Qki5 regulates communication between neural stem cells by mediating numerous RNA processing events and suggest new links between splicing regulation and neural stem cell states. © 2017 Hayakawa-Yano et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Parathyroid hormone contributes to the down-regulation of cytochrome P450 3A through the cAMP/PI3K/PKC/PKA/NF-κB signaling pathway in secondary hyperparathyroidism.

    Science.gov (United States)

    Watanabe, Hiroshi; Sugimoto, Ryusei; Ikegami, Komei; Enoki, Yuki; Imafuku, Tadashi; Fujimura, Rui; Bi, Jing; Nishida, Kento; Sakaguchi, Yoshiaki; Murata, Michiya; Maeda, Hitoshi; Hirata, Kenshiro; Jingami, Sachiko; Ishima, Yu; Tanaka, Motoko; Matsushita, Kazutaka; Komaba, Hirotaka; Fukagawa, Masafumi; Otagiri, Masaki; Maruyama, Toru

    2017-12-01

    Chronic kidney disease (CKD), which affects, not only renal clearance, but also non-renal clearance, is accompanied by a decline in renal function. Although it has been suggested that humoral factors, such as uremic toxins that accumulate in the body under CKD conditions, could be involved in the changes associated with non-renal drug clearance, the overall process is not completely understood. In this study, we report on the role of parathyroid hormone (PTH), a middle molecule uremic toxin, on the expression of drug metabolizing or transporting proteins using rats with secondary hyperparathyroidism (SHPT) as models. In SHPT rats, hepatic and intestinal CYP3A expression was suppressed, but the changes were recovered by the administration of the calcimimetic cinacalcet, a PTH suppressor. Under the same experimental conditions, a pharmacokinetic study using orally administered midazolam, a substrate for CYP3A, showed that the AUC was increased by 5 times in SHPT rats, but that was partially recovered by a cinacalcet treatment. This was directly tested in rat primary hepatocytes and intestinal Caco-2 cells where the expression of the CYP3A protein was down-regulated by PTH (1-34). In Caco-2 cells, PTH (1-34) down-regulated the expression of CYP3A mRNA, but an inactive PTH derivative (13-34) had no effect. 8-Bromo-cyclic adenosine monophosphate, a membrane-permeable cAMP analog, reduced mRNA expression of CYP3A whereas the inhibitors of PI3K, NF-κB, PKC and PKA reversed the PTH-induced CYP3A down-regulation. These results suggest that PTH down-regulates CYP3A through multiple signaling pathways, including the PI3K/PKC/PKA/NF-κB pathway after the elevation of intracellular cAMP, and the effect of PTH can be prevented by cinacalcet treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Galectin-1 is expressed in early-type neural progenitor cells and down-regulates neurogenesis in the adult hippocampus

    Directory of Open Access Journals (Sweden)

    Imaizumi Yoichi

    2011-01-01

    Full Text Available Abstract Background In the adult mammalian brain, neural stem cells (NSCs proliferate in the dentate gyrus (DG of the hippocampus and generate new neurons throughout life. A multimodal protein, Galectin-1, is expressed in neural progenitor cells (NPCs and implicated in the proliferation of the NPCs in the DG. However, little is known about its detailed expression profile in the NPCs and functions in adult neurogenesis in the DG. Results Our immunohistochemical and morphological analysis showed that Galectin-1 was expressed in the type 1 and 2a cells, which are putative NSCs, in the subgranular zone (SGZ of the adult mouse DG. To study Galectin-1's function in adult hippocampal neurogenesis, we made galectin-1 knock-out mice on the C57BL6 background and characterized the effects on neurogenesis. In the SGZ of the galectin-1 knock-out mice, increased numbers of type 1 cells, DCX-positive immature progenitors, and NeuN-positive newborn neurons were observed. Using triple-labeling immunohistochemistry and morphological analyses, we found that the proliferation of the type-1 cells was increased in the SGZ of the galectin-1 knock-out mice, and we propose that this proliferation is the mechanism for the net increase in the adult neurogenesis in these knock-out mice DG. Conclusions Galectin-1 is expressed in the neural stem cells and down-regulates neurogenesis in the adult hippocampus.

  18. PCI-24781 down-regulates EZH2 expression and then promotes glioma apoptosis by suppressing the PIK3K/Akt/mTOR pathway.

    Science.gov (United States)

    Zhang, Wei; Lv, Shengqing; Liu, Jun; Zang, Zhenle; Yin, Junyi; An, Ning; Yang, Hui; Song, Yechun

    2014-10-01

    PCI-24781 is a novel histone deacetylase inhibitor that inhibits tumor proliferation and promotes cell apoptosis. However, it is unclear whether PCI-24781 inhibits Enhancer of Zeste 2 (EZH2) expression in malignant gliomas. In this work, three glioma cell lines were incubated with various concentrations of PCI-24781 (0, 0.25, 0.5, 1, 2.5 and 5 μM) and analyzed for cell proliferation by the MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay and colony formation, and cell cycle and apoptosis were assessed by flow cytometry. The expression of EZH2 and apoptosis-related proteins was assessed by western blotting. Malignant glioma cells were also transfected with EZH2 siRNA to examine how PCI-24781 suppresses tumor cells. EZH2 was highly expressed in the three glioma cell lines. Incubation with PCI-24781 reduced cell proliferation and increased cell apoptosis by down-regulating EZH2 in a concentration-dependent manner. These effects were simulated by EZH2 siRNA. In addition, PCI-24781 or EZH2 siRNA accelerated cell apoptosis by down-regulating the expression of AKT, mTOR, p70 ribosomal protein S6 kinase (p70s6k), glycogen synthase kinase 3A and B (GSK3a/b) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1). These data suggest that PCI-24781 may be a promising therapeutic agent for treating gliomas by down-regulating EZH2 which promotes cell apoptosis by suppressing the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of the rapamycin (mTOR) pathway.

  19. Enterococcus faecalis Infection and Reactive Oxygen Species Down-Regulates the miR-17-92 Cluster in Gastric Adenocarcinoma Cell Culture

    DEFF Research Database (Denmark)

    Strickertsson, Jesper A B; Rasmussen, Lene Juel; Friis-Hansen, Lennart

    2014-01-01

    Chronic inflammation due to bacterial overgrowth of the stomach predisposes to the development of gastric cancer and is also associated with high levels of reactive oxygen species (ROS). In recent years increasing attention has been drawn to microRNAs (miRNAs) due to their role in the pathogenesis...... of many human diseases including gastric cancer. Here we studied the impact of infection by the gram-positive bacteria Enterococcus faecalis (E. faecalis) on global miRNA expression as well as the effect of ROS on selected miRNAs. Human gastric adenocarcinoma cell line MKN74 was infected with living E...... by living E. faecalis bacteria caused a significant global response in miRNA expression in the MKN74 cell culture. E. faecalis infection as well as ROS stimulation down-regulated the expression of the miR-17-92 cluster. We believe that these changes could reflect a general response of gastric epithelial...

  20. Down regulation of macrophage IFNGR1 exacerbates systemic L. monocytogenes infection.

    Directory of Open Access Journals (Sweden)

    Emily M Eshleman

    2017-05-01

    Full Text Available Interferons (IFNs target macrophages to regulate inflammation and resistance to microbial infections. The type II IFN (IFNγ acts on a cell surface receptor (IFNGR to promote gene expression that enhance macrophage inflammatory and anti-microbial activity. Type I IFNs can dampen macrophage responsiveness to IFNγ and are associated with increased susceptibility to numerous bacterial infections. The precise mechanisms responsible for these effects remain unclear. Type I IFNs silence macrophage ifngr1 transcription and thus reduce cell surface expression of IFNGR1. To test how these events might impact macrophage activation and host resistance during bacterial infection, we developed transgenic mice that express a functional FLAG-tagged IFNGR1 (fGR1 driven by a macrophage-specific promoter. Macrophages from fGR1 mice expressed physiologic levels of cell surface IFNGR1 at steady state and responded equivalently to WT C57Bl/6 macrophages when treated with IFNγ alone. However, fGR1 macrophages retained cell surface IFNGR1 and showed enhanced responsiveness to IFNγ in the presence of type I IFNs. When fGR1 mice were infected with the bacterium Listeria monocytogenes their resistance was significantly increased, despite normal type I and II IFN production. Enhanced resistance was dependent on IFNγ and associated with increased macrophage activation and antimicrobial function. These results argue that down regulation of myeloid cell IFNGR1 is an important mechanism by which type I IFNs suppress inflammatory and anti-bacterial functions of macrophages.

  1. hCLP46 regulates U937 cell proliferation via Notch signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wenzhan; Du, Jie; Chu, Qiaoyun [College of Life Science, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Youxin [School of Public Health and Family Medicine, Capital Medical University, Beijing 100069 (China); Liu, Lixin [College of Life Science, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Song, Manshu [School of Public Health and Family Medicine, Capital Medical University, Beijing 100069 (China); Wang, Wei, E-mail: wei6014@yahoo.com [College of Life Science, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); School of Public Health and Family Medicine, Capital Medical University, Beijing 100069 (China)

    2011-04-29

    Highlights: {yields} Knock down of hCLP46 by RNAi impairs mammalian Notch signaling. {yields} hCLP46 affects neither cell surface Notch1 expression nor ligand-receptor binding. {yields} Knock down of hCLP46 inhibits U937 cell-growth by up-regulation of CDKN1B. -- Abstract: Human CAP10-like protein 46 kDa (hCLP46) is the homolog of Rumi, which is the first identified protein O-glucosyltransferase that modifies Notch receptor in Drosophila. Dysregulation of hCLP46 occurs in many hematologic diseases, but the role of hCLP46 remains unclear. Knockdown of hCLP46 by RNA interference resulted in decreased protein levels of endogenous Notch1, Notch intracellular domain (NICD) and Notch target gene Hes-1, suggesting the impairment of the Notch signaling. However, neither cell surface Notch expression nor ligand binding activities were affected. In addition, down-regulated expression of hCLP46 inhibited the proliferation of U937 cells, which was correlated with increased cyclin-dependent kinase inhibitor (CDKI) CDKN1B (p27) and decreased phosphorylation of retinoblastoma (RB) protein. We showed that lack of hCLP46 results in impaired ligand induced Notch activation in mammalian cell, and hCLP46 regulates the proliferation of U937 cell through CDKI-RB signaling pathway, which may be important for the pathogenesis of leukemia.

  2. Agitation down-regulates immunoglobulin binding protein EibG expression in Shiga toxin-producing Escherichia coli (STEC.

    Directory of Open Access Journals (Sweden)

    Thorsten Kuczius

    Full Text Available Shiga toxin (Stx-producing Escherichia coli (STEC carrying eibG synthesize Escherichia coli immunoglobulin binding protein (EibG. EibG nonspecifically binds to immunoglobulins and tends to aggregate in multimers but is poorly expressed in wild-type strains. To study synthesis of the proteins and their regulation in the pathogens, we identified natural growth conditions that increased EibG synthesis. EibG proteins as well as corresponding mRNA were highly expressed under static growth conditions while shearing stress created by agitation during growth repressed protein synthesis. Further regulation effects were driven by reduced oxygen tension, and pH up-regulated EibG expression, but to a lesser extent than growth conditions while decreased temperature down-regulated EibG. Bacteria with increased EibG expression during static growth conditions showed a distinct phenotype with chain formation and biofilm generation, which disappeared with motion. High and low EibG expression was reversible indicating a process with up- and down-regulation of the protein expression. Our findings indicate that shear stress represses EibG expression and might reduce bacterial attachments to cells and surfaces.

  3. Lamprey Prohibitin2 Arrest G2/M Phase Transition of HeLa Cells through Down-regulating Expression and Phosphorylation Level of Cell Cycle Proteins.

    Science.gov (United States)

    Shi, Ying; Guo, Sicheng; Wang, Ying; Liu, Xin; Li, Qingwei; Li, Tiesong

    2018-03-02

    Prohibitin 2(PHB2) is a member of the SFPH trans-membrane family proteins. It is a highly conserved and functionally diverse protein that plays an important role in preserving the structure and function of the mitochondria. In this study, the lamprey PHB2 gene was expressed in HeLa cells to investigate its effect on cell proliferation. The effect of Lm-PHB2 on the proliferation of HeLa cells was determined by treating the cells with pure Lm-PHB2 protein followed by MTT assay. Using the synchronization method with APC-BrdU and PI double staining revealed rLm-PHB2 treatment induced the decrease of both S phase and G0/G1 phase and then increase of G2/M phase. Similarly, cells transfected with pEGFP-N1-Lm-PHB2 also exhibited remarkable reduction in proliferation. Western blot and quantitative real-time PCR(qRT-PCR) assays suggested that Lm-PHB2 caused cell cycle arrest in HeLa cells through inhibition of CDC25C and CCNB1 expression. According to our western blot analysis, Lm-PHB2 was also found to reduce the expression level of Wee1 and PLK1 and the phosphorylation level of CCNB1, CDC25C and CDK1 in HeLa cells. Lamprey prohibitin 2 could arrest G2/M phase transition of HeLa cells through down-regulating expression and phosphorylation level of cell cycle proteins.

  4. Down-regulation of rat kidney calcitonin receptors by salmon calcitonin infusion evidence by autoradiography

    International Nuclear Information System (INIS)

    Bouizar, Z.; Rostene, W.H.; Milhaud, G.

    1987-01-01

    In treating age-related osteoporosis and Paget disease of bone, it is of major importance to avoid an escape phenomenon that would reduce effectiveness of the treatment. The factors involved in the loss of therapeutic efficacy with administration of large pharmacological doses of the hormone require special consideration. Down-regulation of the hormone receptors could account for the escape phenomenon. Specific binding sites for salmon calcitonin (sCT) were characterized and localized by autoradiography on rat kidney sections incubated with 125 I-labeled sCT. Autoradiograms demonstrated a heterogeneous distribution of 125 I-labeled sCT binding sites in the kidney, with high densities in both the superficial layer of the cortex and the outer medulla. Infusion of different doses of unlabeled sCT by means of Alzet minipumps for 7 days produced rapid changes in plasma calcium, phosphate, and magnesium levels, which were no longer observed after 2 or 6 days of treatment. Besides, infusion of high doses of sCT induced down-regulation of renal sCT binding sites located mainly in the medulla, where calcitonin (CT) has been shown to exert it physiological effects on water and ion reabsorption. These data suggest that the resistance to high doses of sCT often observed during long-term treatment of patients may be the consequence of not only bone-cell desensitization but also down-regulation of CT-sensitive kidney receptor sites

  5. Transcriptional profiling of ErbB signalling in mammary luminal epithelial cells - interplay of ErbB and IGF1 signalling through IGFBP3 regulation

    International Nuclear Information System (INIS)

    Worthington, Jenny; Bertani, Mariana; Chan, Hong-Lin; Gerrits, Bertran; Timms, John F

    2010-01-01

    Members of the ErbB family of growth factor receptors are intricately linked with epithelial cell biology, development and tumourigenesis; however, the mechanisms involved in their downstream signalling are poorly understood. Indeed, it is unclear how signal specificity is achieved and the relative contribution each receptor has to specific gene expression. Gene expression profiling of a human mammary luminal epithelial cell model of ErbB2-overexpression was carried out using cDNA microarrays with a common RNA reference approach to examine long-term overlapping and differential responses to EGF and heregulin beta1 treatment in the context of ErbB2 overexpression. Altered gene expression was validated using quantitative real time PCR and/or immunoblotting. One gene of interest was targeted for further characterisation, where the effects of siRNA-mediated silencing on IGF1-dependent signalling and cellular phenotype were examined and compared to the effects of loss of ErbB2 expression. 775 genes were differentially expressed and clustered in terms of their growth factor responsiveness. As well as identifying uncharacterized genes as novel targets of ErbB2-dependent signalling, ErbB2 overexpression augmented the induction of multiple genes involved in proliferation (e.g. MYC, MAP2K1, MAP2K3), autocrine growth factor signalling (VEGF, PDGF) and adhesion/cytoskeletal regulation (ZYX, THBS1, VCL, CNN3, ITGA2, ITGA3, NEDD9, TAGLN), linking them to the hyper-poliferative and altered adhesive phenotype of the ErbB2-overexpressing cells. We also report ErbB2-dependent down-regulation of multiple interferon-stimulated genes that may permit ErbB2-overexpressing cells to resist the anti-proliferative action of interferons. Finally, IGFBP3 was unique in its pattern of regulation and we further investigated a possible role for IGFBP3 down-regulation in ErbB2-dependent transformation through suppressed IGF1 signalling. We show that IGF1-dependent signalling and proliferation were

  6. Reversal of islet GIP receptor down-regulation and resistance to GIP by reducing hyperglycemia in the Zucker rat

    International Nuclear Information System (INIS)

    Piteau, Shalea; Olver, Amy; Kim, Su-Jin; Winter, Kyle; Pospisilik, John Andrew; Lynn, Francis; Manhart, Susanne; Demuth, Hans-Ulrich; Speck, Madeleine; Pederson, Raymond A.; McIntosh, Christopher H.S.

    2007-01-01

    In type 2 diabetes (T2DM) β-cell responsiveness to glucose-dependent insulinotropic polypeptide (GIP) is reduced. In a model of T2DM, the VDF Zucker rat, GIP receptor mRNA and protein levels were shown to be down-regulated. Possible restoration of responsiveness to GIP in Zucker rats by reducing hyperglycemia has been examined. ZDF rats with extreme hyperglycemia demonstrated greater islet GIP receptor mRNA down-regulation (94.3 ± 3.8%) than ZF rats (48.8 ± 22.8%). GIP receptor mRNA levels in ZDF rats returned to 83.0 ± 17.9% of lean following normalization of hyperglycemia by phlorizin treatment and pancreas perfusions demonstrated markedly improved GIP responsiveness. Treatment of VDF rats with a DP IV inhibitor (P32/98) resulted in improved glucose tolerance and restored sensitivity to GIP in isolated pancreata. These findings support the proposal that GIP receptor down-regulation in rodent T2DM is secondary to chronic hyperglycemia and that normalization of glycemia can restore GIP sensitivity

  7. N-wasp is essential for the negative regulation of B cell receptor signaling.

    Directory of Open Access Journals (Sweden)

    Chaohong Liu

    2013-11-01

    Full Text Available Negative regulation of receptor signaling is essential for controlling cell activation and differentiation. In B-lymphocytes, the down-regulation of B-cell antigen receptor (BCR signaling is critical for suppressing the activation of self-reactive B cells; however, the mechanism underlying the negative regulation of signaling remains elusive. Using genetically manipulated mouse models and total internal reflection fluorescence microscopy, we demonstrate that neuronal Wiskott-Aldrich syndrome protein (N-WASP, which is coexpressed with WASP in all immune cells, is a critical negative regulator of B-cell signaling. B-cell-specific N-WASP gene deletion causes enhanced and prolonged BCR signaling and elevated levels of autoantibodies in the mouse serum. The increased signaling in N-WASP knockout B cells is concurrent with increased accumulation of F-actin at the B-cell surface, enhanced B-cell spreading on the antigen-presenting membrane, delayed B-cell contraction, inhibition in the merger of signaling active BCR microclusters into signaling inactive central clusters, and a blockage of BCR internalization. Upon BCR activation, WASP is activated first, followed by N-WASP in mouse and human primary B cells. The activation of N-WASP is suppressed by Bruton's tyrosine kinase-induced WASP activation, and is restored by the activation of SH2 domain-containing inositol 5-phosphatase that inhibits WASP activation. Our results reveal a new mechanism for the negative regulation of BCR signaling and broadly suggest an actin-mediated mechanism for signaling down-regulation.

  8. Surface mu heavy chain signals down-regulation of the V(D)J-recombinase machinery in the absence of surrogate light chain components.

    Science.gov (United States)

    Galler, Gunther R; Mundt, Cornelia; Parker, Mathew; Pelanda, Roberta; Mårtensson, Inga-Lill; Winkler, Thomas H

    2004-06-07

    Early B cell development is characterized by stepwise, ordered rearrangement of the immunoglobulin (Ig) heavy (HC) and light (LC) chain genes. Only one of the two alleles of these genes is used to produce a receptor, a phenomenon referred to as allelic exclusion. It has been suggested that pre-B cell receptor (pre-BCR) signals are responsible for down-regulation of the VDJH-recombinase machinery (Rag1, Rag2, and terminal deoxynucleotidyl transferase [TdT]), thereby preventing further rearrangement on the second HC allele. Using a mouse model, we show that expression of an inducible muHC transgene in Rag2-/- pro-B cells induces down-regulation of the following: (a) TdT protein, (b) a transgenic green fluorescent protein reporter reflecting endogenous Rag2 expression, and (c) Rag1 primary transcripts. Similar effects were also observed in the absence of surrogate LC (SLC) components, but not in the absence of the signaling subunit Ig-alpha. Furthermore, in wild-type mice and in mice lacking either lambda5, VpreB1/2, or the entire SLC, the TdT protein is down-regulated in muHC+LC- pre-B cells. Surprisingly, muHC without LC is expressed on the surface of pro-/pre-B cells from lambda5-/-, VpreB1-/-VpreB2-/-, and SLC-/- mice. Thus, SLC or LC is not required for muHC cell surface expression and signaling in these cells. Therefore, these findings offer an explanation for the occurrence of HC allelic exclusion in mice lacking SLC components.

  9. Wind Turbine Down-regulation Strategy for Minimum Wake Deficit

    DEFF Research Database (Denmark)

    Ma, Kuichao; Zhu, Jiangsheng; N. Soltani, Mohsen

    2017-01-01

    Down-regulation mode of wind turbine is commonly used no matter for the reserve power for supporting ancillary service to the grid, power optimization in wind farm or reducing power loss in the fault condition. It is also a method to protect faulty turbine. A down-regulation strategy based...... on minimum wake deficit is proposed in this paper, for the power improvement of the downwind turbine in low and medium wind speed region. The main idea is to operate turbine work at an appropriate operating point through rotor speed and torque control. The effectiveness of the strategy is verified...... by comparing with maximum rotor speed strategy. The result shows that the proposed strategy can improve the power of downwind turbine effectively....

  10. Nontranscriptional regulation of SYK by the coactivator OCA-B is required at multiple stages of B cell development.

    Science.gov (United States)

    Siegel, Rachael; Kim, Unkyu; Patke, Alina; Yu, Xin; Ren, Xiaodi; Tarakhovsky, Alexander; Roeder, Robert G

    2006-05-19

    OCA-B was originally identified as a nuclear transcriptional coactivator that is essential for antigen-driven immune responses. The later identification of a membrane bound, myristoylated form of OCA-B suggested additional, unique functions in B cell signaling pathways. This study has shown that OCA-B also functions in the pre-B1-to-pre-B2 cell transition and, most surprisingly, that it directly interacts with SYK, a tyrosine kinase critical for pre-BCR and BCR signaling. This unprecedented type of interaction-a transcriptional coactivator with a signaling kinase-occurs in the cytoplasm and directly regulates SYK stability. This study indicates that OCA-B is required for pre-BCR and BCR signaling at multiple stages of B cell development through its nontranscriptional regulation of SYK. Combined with the deregulation of OCA-B target genes, this may help explain the multitude of defects observed in B cell development and immune responses of Oca-b-/- mice.

  11. Down-regulation of Connexin43 expression reveals the involvement of caveolin-1 containing lipid rafts in human U251 glioblastoma cell invasion.

    Science.gov (United States)

    Strale, Pierre-Olivier; Clarhaut, Jonathan; Lamiche, Coralie; Cronier, Laurent; Mesnil, Marc; Defamie, Norah

    2012-11-01

    Glioblastoma cells are characterized by high proliferation and invasive capacities. Tumor development has been associated with a decrease of gap-junctional intercellular communication, but the concrete involvement of gap junction proteins, connexins, remains elusive since they are also suspected to promote cell invasion. In order to better understand how connexins control the glioma cell phenotype, we studied the consequences of inhibiting the intrinsic expression of the major astrocytic connexin, Connexin43, in human U251 glioblastoma cells by the shRNA strategy. The induced down-regulation of Cx43 expression has various effects on the U251 cells such as increased clonogenicity, angiogenesis and decreased adhesion on specific extracellular matrix proteins. We demonstrate that the invasion capacity measured in vitro and ex vivo correlates with Cx43 expression level. For the first time in a cancer cell context, our work demonstrates that Cx43 cofractionates, colocalizes and coimmunoprecipitates with a lipid raft marker, caveolin-1 and that this interaction is inversely correlated to the level of Cx43. This localization of Cx43 in these lipid raft microdomains regulates both homo- and heterocellular gap junctional communications (respectively between U251 cells, or between U251 cells and astrocytes). Moreover, the adhesive and invasive capacities are not dependent, in our model, on Cav-1 expression level. Our results tend to show that heterocellular gap junctional communication between cancer and stroma cells may affect the behavior of the tumor cells. Altogether, our data demonstrate that Cx43 controls the tumor phenotype of glioblastoma U251 cells and in particular, invasion capacity, through its localization in lipid rafts containing Cav-1. Copyright © 2011 Wiley Periodicals, Inc.

  12. siRNA - Mediated LRP/LR knock-down reduces cellular viability of malignant melanoma cells through the activation of apoptotic caspases.

    Science.gov (United States)

    Rebelo, Thalia M; Vania, Leila; Ferreira, Eloise; Weiss, Stefan F T

    2018-07-01

    The 37 kDa/67 kDa laminin receptor (LRP/LR) is over-expressed in tumor cells and has been implicated in several tumourigenic processes such as metastasis and telomerase activation, however, more importantly the focus of the present study is on the maintenance of cellular viability and the evasion of apoptosis. The aim of the study was to investigate the role of LRP/LR on the cellular viability of early (A375) and late stage (A375SM) malignant melanoma cells. Flow cytometry and western blot analysis revealed that A375SM cells contain more cell-surface and total LRP/LR levels in comparison to the A375 cells, respectively. In order to determine the effect of LRP/LR on cell viability and apoptosis, LRP was down-regulated via siRNA technology. MTT assays revealed that LRP knock-down led to significant reductions in the viability of A375 and A375SM cells. Confocal microscopy indicated nuclear morphological changes suggestive of apoptotic induction in both cell lines and Annexin-V FITC/PI assays confirmed this observation. Additionally, caspase-3 activity assays revealed that apoptosis was induced in both cell lines after siRNA-mediated down-regulation of LRP. Caspase-8 and -9 activity assays suggested that post LRP knock-down; A375 cells undergo apoptosis solely via the extrinsic pathway, while A375SM cells undergo apoptosis via the intrinsic pathway. siRNAs mediated LRP knock-down might represent a powerful alternative therapeutic strategy for the treatment of malignant melanoma through the induction of apoptosis. Copyright © 2018. Published by Elsevier Inc.

  13. MiR-7 triggers cell cycle arrest at the G1/S transition by targeting multiple genes including Skp2 and Psme3.

    Directory of Open Access Journals (Sweden)

    Noelia Sanchez

    Full Text Available MiR-7 acts as a tumour suppressor in many cancers and abrogates proliferation of CHO cells in culture. In this study we demonstrate that miR-7 targets key regulators of the G1 to S phase transition, including Skp2 and Psme3, to promote increased levels of p27(KIP and temporary growth arrest of CHO cells in the G1 phase. Simultaneously, the down-regulation of DNA repair-specific proteins via miR-7 including Rad54L, and pro-apoptotic regulators such as p53, combined with the up-regulation of anti-apoptotic factors like p-Akt, promoted cell survival while arrested in G1. Thus miR-7 can co-ordinate the levels of multiple genes and proteins to influence G1 to S phase transition and the apoptotic response in order to maintain cellular homeostasis. This work provides further mechanistic insight into the role of miR-7 as a regulator of cell growth in times of cellular stress.

  14. Knock-down of hypoxia-induced carbonic anhydrases IX and XII radiosensitizes tumor cells by increasing intracellular acidosis

    Energy Technology Data Exchange (ETDEWEB)

    Doyen, Jérome [Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284, University of Nice Sophia-Antipolis,, Nice (France); Department of Radiation Oncology, Centre Antoine-Lacassagne, Nice (France); Parks, Scott K. [Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284, University of Nice Sophia-Antipolis,, Nice (France); Marcié, Serge [Department of Radiation Oncology, Centre Antoine-Lacassagne, Nice (France); Pouysségur, Jacques [Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284, University of Nice Sophia-Antipolis,, Nice (France); Centre Scientifique de Monaco (Monaco); Chiche, Johanna, E-mail: chiche@unice.fr [Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284, University of Nice Sophia-Antipolis,, Nice (France)

    2013-01-07

    The relationship between acidosis within the tumor microenvironment and radioresistance of hypoxic tumor cells remains unclear. Previously we reported that hypoxia-induced carbonic anhydrases (CA) IX and CAXII constitute a robust intracellular pH (pH{sub i})-regulating system that confers a survival advantage on hypoxic human colon carcinoma LS174Tr cells in acidic microenvironments. Here we investigate the role of acidosis, CAIX and CAXII knock-down in combination with ionizing radiation. Fibroblasts cells (-/+ CAIX) and LS174Tr cells (inducible knock-down for ca9/ca12) were analyzed for cell cycle phase distribution and survival after irradiation in extracellular pH{sub o} manipulations and hypoxia (1% O{sub 2}) exposure. Radiotherapy was used to target ca9/ca12-silenced LS174Tr tumors grown in nude mice. We found that diminishing the pH{sub i}-regulating capacity of fibroblasts through inhibition of Na{sup +}/H{sup +} exchanger 1 sensitize cells to radiation-induced cell death. Secondly, the pH{sub i}-regulating function of CAIX plays a key protective role in irradiated fibroblasts in an acidic environment as accompanied by a reduced number of cells in the radiosensitive phases of the cell cycle. Thirdly, we demonstrate that irradiation of LS174Tr spheroids, silenced for either ca9 or both ca9/ca12, showed a respective 50 and 75% increase in cell death as a result of a decrease in cell number in the radioresistant S phase and a disruption of CA-mediated pH{sub i} regulation. Finally, LS174Tr tumor progression was strongly decreased when ca9/ca12 silencing was combined with irradiation in vivo. These findings highlight the combinatory use of radiotherapy with targeting of the pH{sub i}-regulating CAs as an anti-cancer strategy.

  15. BRAFV600E negatively regulates the AKT pathway in melanoma cell lines.

    Science.gov (United States)

    Chen, Brenden; Tardell, Christine; Higgins, Brian; Packman, Kathryn; Boylan, John F; Niu, Huifeng

    2012-01-01

    Cross-feedback activation of MAPK and AKT pathways is implicated as a resistance mechanism for cancer therapeutic agents targeting either RAF/MEK or PI3K/AKT/mTOR. It is thus important to have a better understanding of the molecular resistance mechanisms to improve patient survival benefit from these agents. Here we show that BRAFV600E is a negative regulator of the AKT pathway. Expression of BRAFV600E in NIH3T3 cells significantly suppresses MEK inhibitor (RG7167) or mTORC1 inhibitor (rapamycin) induced AKT phosphorylation (pAKT) and downstream signal activation. Treatment-induced pAKT elevation is found in BRAF wild type melanoma cells but not in a subset of melanoma cell lines harboring BRAFV600E. Knock-down of BRAFV600E in these melanoma cells elevates basal pAKT and downstream signals, whereas knock-down of CRAF, MEK1/2 or ERK1/2 or treatment with a BRAF inhibitor have no impact on pAKT. Mechanistically, we show that BRAFV600E interacts with rictor complex (mTORC2) and regulates pAKT through mTORC2. BRAFV600E is identified in mTORC2 after immunoprecipitation of rictor. Knock-down of rictor abrogates BRAFV600E depletion induced pAKT. Knock-down of BRAFV600E enhances cellular enzyme activity of mTORC2. Aberrant activation of AKT pathway by PTEN loss appears to override the negative impact of BRAFV600E on pAKT. Taken together, our findings suggest that in a subset of BRAFV600E melanoma cells, BRAFV600E negatively regulates AKT pathway in a rictor-dependent, MEK/ERK and BRAF kinase-independent manner. Our study reveals a novel molecular mechanism underlying the regulation of feedback loops between the MAPK and AKT pathways.

  16. BRAFV600E negatively regulates the AKT pathway in melanoma cell lines.

    Directory of Open Access Journals (Sweden)

    Brenden Chen

    Full Text Available Cross-feedback activation of MAPK and AKT pathways is implicated as a resistance mechanism for cancer therapeutic agents targeting either RAF/MEK or PI3K/AKT/mTOR. It is thus important to have a better understanding of the molecular resistance mechanisms to improve patient survival benefit from these agents. Here we show that BRAFV600E is a negative regulator of the AKT pathway. Expression of BRAFV600E in NIH3T3 cells significantly suppresses MEK inhibitor (RG7167 or mTORC1 inhibitor (rapamycin induced AKT phosphorylation (pAKT and downstream signal activation. Treatment-induced pAKT elevation is found in BRAF wild type melanoma cells but not in a subset of melanoma cell lines harboring BRAFV600E. Knock-down of BRAFV600E in these melanoma cells elevates basal pAKT and downstream signals, whereas knock-down of CRAF, MEK1/2 or ERK1/2 or treatment with a BRAF inhibitor have no impact on pAKT. Mechanistically, we show that BRAFV600E interacts with rictor complex (mTORC2 and regulates pAKT through mTORC2. BRAFV600E is identified in mTORC2 after immunoprecipitation of rictor. Knock-down of rictor abrogates BRAFV600E depletion induced pAKT. Knock-down of BRAFV600E enhances cellular enzyme activity of mTORC2. Aberrant activation of AKT pathway by PTEN loss appears to override the negative impact of BRAFV600E on pAKT. Taken together, our findings suggest that in a subset of BRAFV600E melanoma cells, BRAFV600E negatively regulates AKT pathway in a rictor-dependent, MEK/ERK and BRAF kinase-independent manner. Our study reveals a novel molecular mechanism underlying the regulation of feedback loops between the MAPK and AKT pathways.

  17. Ionizing radiation: down regulation of 'atm' by 2 Deoxy-D-Glucose: a dose and time dependent study

    International Nuclear Information System (INIS)

    Lahiri, S.S.; Saxena, N.; Hambarde, S.

    2014-01-01

    Exposure to Ionizing Radiation (IR) cause cell death, but it also help in radio-sensitization of cancer cells, by causing oxidative stress and DNA damage, primarily by double strand breaks. Ataxia telangiectasia mutated (atm) gene is involved in DNA double strand breaks, sensory and repair pathways. Therefore, inhibition of its expression, can lead to useful radio-sensitization of cancerous cells. Metabolic inhibitor 2-Deoxy-D-Glucose (2-DG) block glycolysis and modulates protein glycosylation (2-DG). This cause sensitization of cancer cells to radiation, which help in effective reduction in the essential dose of therapeutic ionizing radiation required for the treatment of cancer. The transcription factor Sp-1 involved, is also down-regulated by 2-DG. We have studied the effect of 2-DG at varied concentrations, applied at different pre, simultaneous as well as post irradiation time intervals with 2 Gy, 5 Gy or 10 Gy (lethal dose) of ionizing radiations. Expressions of 'atm' gene in response to the drug and/or IR of different doses were studied. Response was studied at different post irradiation time intervals, in the levels of mRNA, protein and cell survival. It was observed that exposure of human glioma cells (BMG1) to 2 Gy, 5 Gy or 10 Gy of IR alone, had differential and dose dependent effect on 'atm' expression. The 'atm' level was significantly down regulated by 2-DG, in non-irradiated as well as gamma ray irradiated cells. It was observed that BMG1 cells when treated with 2-DG and exposed to irradiation, there was no net significant alteration (normalcy was restored) in the expression level of 'atm'. It was also observed that the extent of down-regulation by pre-treatment with 2-DG, was greater than post-treatment. This work has great significance in the application of clinically relevant low dose radiotherapy for the treatment of cancer. (author)

  18. Curcumin significantly enhances dual PI3K/Akt and mTOR inhibitor NVP-BEZ235-induced apoptosis in human renal carcinoma Caki cells through down-regulation of p53-dependent Bcl-2 expression and inhibition of Mcl-1 protein stability.

    Directory of Open Access Journals (Sweden)

    Bo Ram Seo

    Full Text Available The PI3K/Akt and mTOR signaling pathways are important for cell survival and growth, and they are highly activated in cancer cells compared with normal cells. Therefore, these signaling pathways are targets for inducing cancer cell death. The dual PI3K/Akt and mTOR inhibitor NVP-BEZ235 completely inhibited both signaling pathways. However, NVP-BEZ235 had no effect on cell death in human renal carcinoma Caki cells. We tested whether combined treatment with natural compounds and NVP-BEZ235 could induce cell death. Among several chemopreventive agents, curcumin, a natural biologically active compound that is extracted from the rhizomes of Curcuma species, markedly induced apoptosis in NVP-BEZ235-treated cells. Co-treatment with curcumin and NVP-BEZ235 led to the down-regulation of Mcl-1 protein expression but not mRNA expression. Ectopic expression of Mcl-1 completely inhibited curcumin plus NVP-NEZ235-induced apoptosis. Furthermore, the down-regulation of Bcl-2 was involved in curcumin plus NVP-BEZ235-induced apoptosis. Curcumin or NVP-BEZ235 alone did not change Bcl-2 mRNA or protein expression, but co-treatment reduced Bcl-2 mRNA and protein expression. Combined treatment with NVP-BEZ235 and curcumin reduced Bcl-2 expression in wild-type p53 HCT116 human colon carcinoma cells but not p53-null HCT116 cells. Moreover, Bcl-2 expression was completely reversed by treatment with pifithrin-α, a p53-specific inhibitor. Ectopic expression of Bcl-2 also inhibited apoptosis in NVP-BE235 plus curcumin-treated cells. In contrast, NVP-BEZ235 combined with curcumin did not have a synergistic effect on normal human skin fibroblasts and normal human mesangial cells. Taken together, combined treatment with NVP-BEZ235 and curcumin induces apoptosis through p53-dependent Bcl-2 mRNA down-regulation at the transcriptional level and Mcl-1 protein down-regulation at the post-transcriptional level.

  19. SOX15 regulates proliferation and migration of endometrial cancer cells.

    Science.gov (United States)

    Rui, Xiaohui; Xu, Yun; Jiang, Xiping; Guo, Caixia; Jiang, Jingting

    2017-10-31

    The study aimed to investigate the effects of Sry-like high mobility group box 15 ( SOX15 ) on proliferation and migration of endometrial cancer (EC) cells. Immunohistochemistry (IHC) was applied to determine the expression of SOX15 in EC tissues and adjacent tissues. We used cell transfection method to construct the HEC-1-A and Ishikawa cell lines with stable overexpression and low expression SOX15 Reverse-transcription quantitative real-time PCR (RT-qPCR) and Western blot were performed to examine expression of SOX15 mRNA and SOX15 protein, respectively. By conducting a series of cell proliferation assay and migration assay, we analyzed the influence of SOX15 overexpression or low expression on EC cell proliferation and migration. The expression of SOX15 mRNA and protein in EC tissues was significantly lower than that in adjacent tissues. After lentivirus-transfecting SOX15 , the expression level of SOX15 mRNA and protein was significantly increased in cells of SOX15 group, and decreased in sh- SOX15 group. Overexpression of SOX15 could suppress cell proliferation, while down-regulation of SOX15 increased cell proliferation. Flow cytometry results indicated that overexpression of SOX15 induced the ratio of cell-cycle arrest in G 1 stage. In addition, Transwell migration assay results showed that SOX15 overexpression significantly inhibited cell migration, and also down-regulation of SOX15 promoted the migration. As a whole, SOX15 could regulate the proliferation and migration of EC cells and up- regulation of SOX15 could be valuable for EC treatment. © 2017 The Author(s).

  20. Methyl jasmonate abolishes the migration, invasion and angiogenesis of gastric cancer cells through down-regulation of matrix metalloproteinase 14

    International Nuclear Information System (INIS)

    Zheng, Liduan; Li, Dan; Xiang, Xuan; Tong, Ling; Qi, Meng; Pu, Jiarui; Huang, Kai; Tong, Qiangsong

    2013-01-01

    Recent evidence indicates that methyl jasmonate (MJ), a plant stress hormone, exhibits anti-cancer activity on human cancer cells. The aim of this study is to determine whether sub-cytotoxic MJ can abolish the migration, invasion and angiogenesis gastric cancer cells. Human gastric cancer cell lines SGC-7901 and MKN-45 were treated with diverse concentrations of MJ. Cell viability, proliferation, migration, invasion and angiogenesis capabilities of cancer cells were measured by MTT colorimetry, EdU incorporation, scratch assay, matrigel invasion assay, and tube formation assay. Gene expression was detected by western blot and real-time quantitative RT-PCR. Binding of transcription factor on gene promoter was detected by chromatin immunoprecipitation. Sub-cytotoxic (0.05 to 0.2 mM) MJ attenuated the migration, invasion and angiogenesis, but not the cell viability or proliferation, of gastric cancer cells in a time- and dose-dependent manner, with down-regulation of matrix metalloproteinase 14 (MMP-14) and its downstream gene vascular endothelial growth factor. Restoration of MMP-14 expression rescued the SGC-7901 and MKN-45 cells from sub-cytotoxic MJ-inhibited migration, invasion and angiogenesis. In addition, sub-cytotoxic MJ decreased the specificity protein 1 (Sp1) expression and binding on MMP-14 promoter, while restoration of Sp1 expression rescued the cancer cells from sub-cytotoxic MJ-mediated defects in MMP-14 expression, migration, invasion and angiogenesis. Sub-cytotoxic MJ attenuates the MMP-14 expression via decreasing the Sp1 expression and binding on MMP-14 promoter, thus inhibiting the migration, invasion and angiogenesis of gastric cancer cells

  1. Hsa-miR-875-5p exerts tumor suppressor function through down-regulation of EGFR in colorectal carcinoma (CRC).

    Science.gov (United States)

    Zhang, Tiening; Cai, Xun; Li, Qi; Xue, Peng; Chen, Zhixiao; Dong, Xiao; Xue, Ying

    2016-07-05

    Hsa-miRNA-875-5p (miR-875-5p) has recently been discovered to have anticancer efficacy in different organs. However, the role of miR-875-5p on colorectal carcinoma (CRC) is still ambiguous. In this study, we investigated the role of miR-875-5p on the development of CRC. The results indicated that miR-875-5p was significantly down-regulated in primary tumor tissues and very low levels were found in CRC cell lines. Ectopic expression of miR-875-5p in CRC cell lines significantly suppressed cell growth as evidenced by cell viability assay, colony formation assay and BrdU staining, through inhibition of cyclin D1, cyclin D2, CDK4 and up-regulation of p57(Kip2) and p21(Waf1/Cip1). In addition, miR-875-5p induced apoptosis, as indicated by concomitantly with up-regulation of key apoptosis protein cleaved caspase-3, and down-regulation of anti-apoptosis protein Bcl2. Moreover, miR-875-5p inhibited cellular migration and invasiveness through inhibition of matrix metalloproteinases (MMP)-7 and MMP-9. Further, oncogene EGFR was revealed to be a putative target of miR-875-5p, which was inversely correlated with miR-875-5p expression in CRC. Taken together, our results demonstrated that miR-875-5p played a pivotal role on CRC through inhibiting cell proliferation, migration, invasion, and promoting apoptosis by targeting oncogenic EGFR.

  2. Structural Characterization of Lignin in Wild-Type versus COMT Down-Regulated Switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Reichel [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA (United States); BioEnergy Science Center, Oak Ridge, TN (United States); Pu, Yunqiao, E-mail: yunqiao.pu@ipst.gatech.edu [BioEnergy Science Center, Oak Ridge, TN (United States); Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA (United States); Jiang, Nan [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA (United States); BioEnergy Science Center, Oak Ridge, TN (United States); Fu, Chunxiang [Forage Improvement Division, The Samuel Roberts Noble Foundation, Ardmore, OK (United States); Wang, Zeng-Yu [BioEnergy Science Center, Oak Ridge, TN (United States); Forage Improvement Division, The Samuel Roberts Noble Foundation, Ardmore, OK (United States); Ragauskas, Arthur, E-mail: yunqiao.pu@ipst.gatech.edu [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA (United States); BioEnergy Science Center, Oak Ridge, TN (United States)

    2014-01-20

    This study examined the chemical structural characteristics of cellulolytic enzyme lignin isolated from switchgrass focusing on comparisons between wild-type control and caffeic acid 3-O-methyltransferase (COMT) down-regulated transgenic line. Nuclear magnetic resonance techniques including {sup 13}C, {sup 31}P, and two-dimensional {sup 13}C-{sup 1}H heteronuclear single quantum coherence as well as gel permeation chromatography were employed. Compared to the wild-type, the COMT down-regulated transgenic switchgrass lignin demonstrated a decrease in syringyl (S):guaiacyl (G) ratio and p-coumarate:ferulate ratio, an increase in relative abundance of phenylcoumaran unit, and a comparable content of total free phenolic OH groups along with formation of benzodioxane unit. In addition, COMT down-regulation had no significant effects on the lignin molecular weights during its biosynthesis process.

  3. Flavonoids from Theobroma cacao down-regulate inflammatory mediators.

    Science.gov (United States)

    Ramiro, Emma; Franch, Angels; Castellote, Cristina; Pérez-Cano, Francisco; Permanyer, Joan; Izquierdo-Pulido, Maria; Castell, Margarida

    2005-11-02

    In the present study, we report the effects of a cocoa extract on the secretion and RNA expression of various proinflammatory mediators by macrophages. Monocyte chemoattractant protein 1 and tumor necrosis factor alpha (TNFalpha) were significantly and dose-dependently diminished by cocoa extract, and this effect was higher than that produced by equivalent concentrations of epicatechin but was lower than that produced by isoquercitrin. Interestingly, cocoa extract added prior to cell activation resulted in a significantly greater inhibition of TNFalpha secretion. Both cocoa extract and epicatechin decreased TNFalpha, interleukin (IL) 1alpha, and IL-6 mRNA expression, suggesting that their inhibitory effect on cytokine secretion is produced, in part, at the transcriptional level. Cocoa extract also significantly decreased NO secretion in a dose-dependent manner and with a greater effect than that produced by epicatechin. In conclusion, our study shows that cocoa flavonoids not only inhibit NO release from macrophages but also down-regulate inflammatory cytokines and chemokines.

  4. Stathmin Mediates Hepatocyte Resistance to Death from Oxidative Stress by down Regulating JNK

    Science.gov (United States)

    Zhao, Enpeng; Amir, Muhammad; Lin, Yu; Czaja, Mark J.

    2014-01-01

    Stathmin 1 performs a critical function in cell proliferation by regulating microtubule polymerization. This proliferative function is thought to explain the frequent overexpression of stathmin in human cancer and its correlation with a bad prognosis. Whether stathmin also functions in cell death pathways is unclear. Stathmin regulates microtubules in part by binding free tubulin, a process inhibited by stathmin phosphorylation from kinases including c-Jun N-terminal kinase (JNK). The involvement of JNK activation both in stathmin phosphorylation, and in hepatocellular resistance to oxidative stress, led to an examination of the role of stathmin/JNK crosstalk in oxidant-induced hepatocyte death. Oxidative stress from menadione-generated superoxide induced JNK-dependent stathmin phosphorylation at Ser-16, Ser-25 and Ser-38 in hepatocytes. A stathmin knockdown sensitized hepatocytes to both apoptotic and necrotic cell death from menadione without altering levels of oxidant generation. The absence of stathmin during oxidative stress led to JNK overactivation that was the mechanism of cell death as a concomitant knockdown of JNK1 or JNK2 blocked death. Hepatocyte death from JNK overactivation was mediated by the effects of JNK on mitochondria. Mitochondrial outer membrane permeabilization occurred in stathmin knockdown cells at low concentrations of menadione that triggered apoptosis, whereas mitochondrial β-oxidation and ATP homeostasis were compromised at higher, necrotic menadione concentrations. Stathmin therefore mediates hepatocyte resistance to death from oxidative stress by down regulating JNK and maintaining mitochondrial integrity. These findings demonstrate a new mechanism by which stathmin promotes cell survival and potentially tumor growth. PMID:25285524

  5. Stathmin mediates hepatocyte resistance to death from oxidative stress by down regulating JNK.

    Directory of Open Access Journals (Sweden)

    Enpeng Zhao

    Full Text Available Stathmin 1 performs a critical function in cell proliferation by regulating microtubule polymerization. This proliferative function is thought to explain the frequent overexpression of stathmin in human cancer and its correlation with a bad prognosis. Whether stathmin also functions in cell death pathways is unclear. Stathmin regulates microtubules in part by binding free tubulin, a process inhibited by stathmin phosphorylation from kinases including c-Jun N-terminal kinase (JNK. The involvement of JNK activation both in stathmin phosphorylation, and in hepatocellular resistance to oxidative stress, led to an examination of the role of stathmin/JNK crosstalk in oxidant-induced hepatocyte death. Oxidative stress from menadione-generated superoxide induced JNK-dependent stathmin phosphorylation at Ser-16, Ser-25 and Ser-38 in hepatocytes. A stathmin knockdown sensitized hepatocytes to both apoptotic and necrotic cell death from menadione without altering levels of oxidant generation. The absence of stathmin during oxidative stress led to JNK overactivation that was the mechanism of cell death as a concomitant knockdown of JNK1 or JNK2 blocked death. Hepatocyte death from JNK overactivation was mediated by the effects of JNK on mitochondria. Mitochondrial outer membrane permeabilization occurred in stathmin knockdown cells at low concentrations of menadione that triggered apoptosis, whereas mitochondrial β-oxidation and ATP homeostasis were compromised at higher, necrotic menadione concentrations. Stathmin therefore mediates hepatocyte resistance to death from oxidative stress by down regulating JNK and maintaining mitochondrial integrity. These findings demonstrate a new mechanism by which stathmin promotes cell survival and potentially tumor growth.

  6. Mechanisms Down-Regulating Sprouty1, a Growth Inhibitor in Prostate Cancer

    National Research Council Canada - National Science Library

    Kwabi-Addo, Bernard

    2006-01-01

    .... I have demonstrated that Sprouty1 is down-regulated in human prostate cancer (PCa). The purpose of the present study is to characterize the molecular mechanisms regulating Sprouty1 expression in the human PCa. Results...

  7. Down-regulation of S100C is associated with bladder cancer progression and poor survival

    DEFF Research Database (Denmark)

    Memon, Ashfaque Ahmed; Sorensen, Boe Sandahl; Meldgaard, Peter

    2005-01-01

    cancer biopsy samples obtained from 88 patients followed for a median of 23 months (range, 1-97 months). RESULTS: We found a significantly lower mRNA expression of S100C in connective tissue invasive tumors (T1, P = 0.0030) and muscle invasive tumors [(T2-T4), P ...PURPOSE: The goal of this study was to identify proteins down-regulated during bladder cancer progression. EXPERIMENTAL DESIGN: By using comparative proteome analysis and measurement of mRNA, we found a significant down-regulation of S100C, a member of the S100 family of proteins, in T24 (grade 3......) as compared with RT4 (grade 1) bladder cancer cell lines. Moreover, quantification of the mRNA level revealed that decreased expression of the protein reflects a low level of transcription of the S100C gene. Based on this observation, we quantified the S100C mRNA expression level with real-time PCR in bladder...

  8. Calycosin Inhibits the Migration and Invasion of Human Breast Cancer Cells by Down-Regulation of Foxp3 Expression

    Directory of Open Access Journals (Sweden)

    Shuangxi Li

    2017-12-01

    Full Text Available Background/Aims: Calycosin, a phytoestrogenic compound, has recently emerged as a promising antitumor drug. It has been shown that calycosin suppresses growth and induces apoptosis of breast cancer cells. However, the effect of calycosin on migration and invasion of breast cancer cells and the underlying molecular mechanisms have not been elucidated. Methods: Human breast cancer cells MCF-7 and T47D were treated with, or without, different doses (0, 6.25, 12.5, 25, 50, 100 or 150 μM of calycosin, and the viability of different groups was determined by MTT assay. Next, the inhibitory effect of higher doses (50, 100 or 150 μM of calycosin on migration and invasion of the two cell lines was determined by wound healing and transwell assay. The relative expression levels of forkhead box P3 (Foxp3, vascular endothelial growth factor (VEGF and matrix metalloproteinase-9 (MMP-9 in MCF-7 and T47D cells were determined by quantitative RT-PCR and Western blot. Results: Treatment with lower doses (6.25 or 12.5 μM promoted proliferation of breast cancer cells, but with higher doses significantly reduced the viability of MCF-7 and T47D cells. Furthermore, higher doses of calycosin were found to inhibit migration and invasion of the two cell lines in a dose-dependent manner. Additionally, treatment with a higher dose of calycosin significantly reduced the expression levels of Foxp3, followed by down-regulation of VEGF and MMP-9 in both MCF-7 and T47D breast cancer cells. Conclusion: Treatment with a higher dose of calycosin tends to reduce migration and invasion capacity of human breast cancer cells, by targeting Foxp3-mediated VEGF and MMP-9 expression.

  9. Extracellular creatine regulates creatine transport in rat and human muscle cells.

    OpenAIRE

    Loike, J D; Zalutsky, D L; Kaback, E; Miranda, A F; Silverstein, S C

    1988-01-01

    Muscle cells do not synthesize creatine; they take up exogenous creatine by specific Na+-dependent plasma membrane transporters. We found that extracellular creatine regulates the level of expression of these creatine transporters in L6 rat muscle cells. L6 myoblasts maintained for 24 hr in medium containing 1 mM creatine exhibited 1/3rd of the creatine transport activity of cells maintained for 24 hr in medium without creatine. Down-regulation of creatine transport was partially reversed whe...

  10. Effects of short-hairpin RNA-inhibited {beta}-catenin expression on the growth of human multiple myeloma cells in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Wenqing, E-mail: liangwenqing_1234@126.com [Department of Orthopaedics, Shaoxing People' s Hospital, 568 Zhongxing North Road, Shaoxing 312000 (China); Yang, Chengwei [Department of Spinal Surgery, Lanzhou General Hospital, Lanzhou Military Area Command, 333 Nanbinhe Road, Lanzhou 730050 (China); Qian, Yu [Department of Orthopaedics, Shaoxing People' s Hospital, 568 Zhongxing North Road, Shaoxing 312000 (China); Fu, Qiang, E-mail: chyygklwq@hotmail.com [Department of Orthopaedics, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433 (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer {beta}-Catenin expression were markedly down-regulated by CTNNB1 shRNA. Black-Right-Pointing-Pointer CTNNB1 shRNA could inhibit the proliferation of RPMI8226 cells. Black-Right-Pointing-Pointer Significantly profound apoptotic cell death in CTNNB1 shRNA cells. Black-Right-Pointing-Pointer In vivo, CTNNB1 silence led to a growth inhibition of myeloma growth. Black-Right-Pointing-Pointer c-myc and {beta}-catenin in the expression cells of cleaved caspase-3 were increased. -- Abstract: Multiple myeloma (MM) is thrombogenic as a consequence of multiple hemostatic effects. Overexpression of {beta}-catenin has been observed in several types of malignant tumors, including MM. However, the relationship between {beta}-catenin expression and MM remains unclear. In the present study, RNA interference was used to inhibit {beta}-catenin expression in RPMI8226 cells. RT-PCR and Western blotting analyses showed that {beta}-catenin mRNA and protein expression were markedly down-regulated by CTNNB1 shRNA. Western blotting showed that the protein levels of cyclin D1 and glutamine synthetase were downregulated and supported the transcriptional regulatory function of {beta}-catenin. The MTT assay showed that CTNNB1 shRNA could have significant inhibitory effects on the proliferation of RPMI8226 cells. The TOPflash reporter assay demonstrated significant downregulation after CTNNB1 shRNA transfection in RPMI8226 cells. Flow cytometric analyses also showed significantly profound apoptosis in CTNNB1 shRNA cells. We found CTNNB1 silence led to growth inhibition of MM growth in vivo. Immunohistochemical analyses showed that c-myc and {beta}-catenin were reduced in CTNNB1 shRNA tumor tissues, but that expression of cleaved caspase-3 was increased. These results show that {beta}-catenin could be a new therapeutic agent that targets the biology of MM cells.

  11. A Rhodium(III) Complex as an Inhibitor of Neural Precursor Cell Expressed, Developmentally Down-Regulated 8-Activating Enzyme with in Vivo Activity against Inflammatory Bowel Disease.

    Science.gov (United States)

    Zhong, Hai-Jing; Wang, Wanhe; Kang, Tian-Shu; Yan, Hui; Yang, Yali; Xu, Lipeng; Wang, Yuqiang; Ma, Dik-Lung; Leung, Chung-Hang

    2017-01-12

    We report herein the identification of the rhodium(III) complex [Rh(phq) 2 (MOPIP)] + (1) as a potent and selective ATP-competitive neural precursor cell expressed, developmentally down-regulated 8 (NEDD8)-activating enzyme (NAE) inhibitor. Structure-activity relationship analysis indicated that the overall organometallic design of complex 1 was important for anti-inflammatory activity. Complex 1 showed promising anti-inflammatory activity in vivo for the potential treatment of inflammatory bowel disease.

  12. Cannabinoids synergize with carfilzomib, reducing multiple myeloma cells viability and migration.

    Science.gov (United States)

    Nabissi, Massimo; Morelli, Maria Beatrice; Offidani, Massimo; Amantini, Consuelo; Gentili, Silvia; Soriani, Alessandra; Cardinali, Claudio; Leoni, Pietro; Santoni, Giorgio

    2016-11-22

    Several studies showed a potential anti-tumor role for cannabinoids, by modulating cell signaling pathways involved in cancer cell proliferation, chemo-resistance and migration. Cannabidiol (CBD) was previously noted in multiple myeloma (MM), both alone and in synergy with the proteasome inhibitor bortezomib, to induce cell death. In other type of human cancers, the combination of CBD with Δ9-tetrahydrocannabinol (THC) was found to act synergistically with other chemotherapeutic drugs suggesting their use in combination therapy. In the current study, we evaluated the effects of THC alone and in combination with CBD in MM cell lines. We found that CBD and THC, mainly in combination, were able to reduce cell viability by inducing autophagic-dependent necrosis. Moreover, we showed that the CBD-THC combination was able to reduce MM cells migration by down-regulating expression of the chemokine receptor CXCR4 and of the CD147 plasma membrane glycoprotein. Furthermore, since the immuno-proteasome is considered a new target in MM and also since carfilzomib (CFZ) is a new promising immuno-proteasome inhibitor that creates irreversible adducts with the β5i subunit of immuno-proteasome, we evaluated the effect of CBD and THC in regulating the expression of the β5i subunit and their effect in combination with CFZ. Herein, we also found that the CBD and THC combination is able to reduce expression of the β5i subunit as well as to act in synergy with CFZ to increase MM cell death and inhibits cell migration. In summary, these results proved that this combination exerts strong anti-myeloma activities.

  13. Inhibition of c-Jun N-terminal kinase sensitizes tumor cells to flavonoid-induced apoptosis through down-regulation of JunD

    International Nuclear Information System (INIS)

    Kook, Sung-Ho; Son, Young-Ok; Jang, Yong-Suk; Lee, Kyung-Yeol; Lee, Seung-Ah; Kim, Beom-Soo; Lee, Hyun-Jeong; Lee, Jeong-Chae

    2008-01-01

    Reduction of susceptibility to apoptosis signals is a crucial step in carcinogenesis. Therefore, sensitization of tumor cells to apoptosis is a promising therapeutic strategy. c-Jun NH 2 -terminal kinase (JNK) has been implicated in stress-induced apoptosis. However, many studies also emphasize the role of JNK on cell survival, although its mechanisms are not completely understood. Previously, we found that inhibition of JNK activity promotes flavonoid-mediated apoptosis of human osteosarcoma cells. We thus determined whether inhibition of JNK sensitizes tumor cells to a bioflavonoid-induced apoptosis, and whether this effect of JNK is a general effect. As the results, quercetin and genistein as well as a flavonoid fraction induced apoptosis of tumor cells, which was further accelerated by specific JNK inhibitor, SP600125 or by small interfering RNA specific to JNK1/2. This effect was specific to types of cells because it was further apparent in tumorigenic cell lines. Inhibition of JNK by SP600125 also reduced flavonoid-stimulated nuclear induction of JunD which was known to have protective role in apoptosis, whereas JNK inhibition alone had little effect on apoptosis. The flavonoid-induced apoptosis of tumor cells was significantly enhanced by transfecting them with antisense JunD oligonucleotides. These results suggest that inhibition of JNK facilitates flavonoid-induced apoptosis through down-regulation of JunD, which is further sensitive to tumor cells. Therefore, combination with a specific JNK inhibitor further enhances the anti-cancer and chemopreventive potential of bio-flavonoids

  14. Melittin induces PTCH1 expression by down-regulating MeCP2 in human hepatocellular carcinoma SMMC-7721 cells

    International Nuclear Information System (INIS)

    Wu, Xiaoqin; Zhao, Bin; Cheng, Yahui; Yang, Yang; Huang, Cheng; Meng, Xiaoming; Wu, Baoming; Zhang, Lei; Lv, Xiongwen; Li, Jun

    2015-01-01

    Hepatocellular carcinoma (HCC) has a high mortality rate worldwide and still remains to be a noticeable public health problem. Therefore, new remedies are urgently needed. Melittin, a major component of bee venom, is known to suppress cell growth in various cancers including HCC. However, the mechanism of the anticancer effect of melittin on HCC has not been fully elucidated. It has been reported that Methyl-CpG binding protein 2 (MeCP2) plays a key role in tumor proliferation, apoptosis, migration and invasion. In the present study, we found the high expression of MeCP2 in human HCC tissues and in the SMMC-7721 cell line. MeCP2 silencing inhibited cell proliferation, while over-expression of MeCP2 promoted cell growth in SMMC-7721 cells. It indicates that MeCP2 may be an attractive target for human HCC. We further found that melittin could inhibit cell proliferation by reducing MeCP2 expression in vitro. Interestingly, the inhibitory effect of melittin on cell proliferation was due to a delay in G 0 /G 1 cell cycle progression, without influencing cell apoptosis. Next, we investigated the potential molecular mechanisms and found that MeCP2 could modulate Shh signaling in SMMC-7721 cells. Further study indicates that melittin may induce the demethylation of PTCH1 promoter, resulting in the increased expression of PTCH1. Furthermore, the expression of Shh and GLI1 was significantly lowered upon treatment of melittin. These results suggest that melittin can block Shh signaling in vitro. In short, these results indicate that melittin inhibits cell proliferation by down-regulating MeCP2 through Shh signaling in SMMC-7721 cells. - Highlights: • MeCP2 plays a key role in the proliferation of human HCC cells. • Melittin reduces MeCP2 expression in vitro. • Melittin induces G 0 /G 1 cell cycle arrest in SMMC-7721 cells. • MeCP2 modulates the Shh signaling pathway in SMMC-7721 cells. • Melittin blocks the Shh signaling pathway in SMMC-7721 cells.

  15. Resolvin D1 Protects Lipopolysaccharide-induced Acute Kidney Injury by Down-regulating Nuclear Factor-kappa B Signal and Inhibiting Apoptosis

    Directory of Open Access Journals (Sweden)

    Yu-Liang Zhao

    2016-01-01

    Conclusion: In LPS-induced AKI, RvD1 could decrease TNF-α level, ameliorate kidney pathological injury, protect kidney function, and improve animal survival by down-regulating NF-κB inflammatory signal as well as inhibiting renal cell apoptosis.

  16. Multiple upstream modules regulate zebrafish myf5 expression

    Directory of Open Access Journals (Sweden)

    Weng Chih-Wei

    2007-01-01

    Full Text Available Abstract Background Myf5 is one member of the basic helix-loop-helix family of transcription factors, and it functions as a myogenic factor that is important for the specification and differentiation of muscle cells. The expression of myf5 is somite- and stage-dependent during embryogenesis through a delicate regulation. However, this complex regulatory mechanism of myf5 is not clearly understood. Results We isolated a 156-kb bacterial artificial chromosome clone that includes an upstream 80-kb region and a downstream 70-kb region of zebrafish myf5 and generated a transgenic line carrying this 156-kb segment fused to a green fluorescent protein (GFP reporter gene. We find strong GFP expression in the most rostral somite and in the presomitic mesoderm during segmentation stages, similar to endogenous myf5 expression. Later, the GFP signals persist in caudal somites near the tail bud but are down-regulated in the older, rostral somites. During the pharyngula period, we detect GFP signals in pectoral fin buds, dorsal rostral myotomes, hypaxial myotomes, and inferior oblique and superior oblique muscles, a pattern that also corresponds well with endogenous myf5 transcripts. To characterize the specific upstream cis-elements that regulate this complex and dynamic expression pattern, we also generated several transgenic lines that harbor various lengths within the upstream 80-kb segment. We find that (1 the -80 kb/-9977 segment contains a fin and cranial muscle element and a notochord repressor; (2 the -9977/-6213 segment contains a strong repressive element that does not include the notochord-specific repressor; (3 the -6212/-2938 segment contains tissue-specific elements for bone and spinal cord; (4 the -2937/-291 segment contains an eye enhancer, and the -2937/-2457 segment is required for notochord and myocyte expression; and (5 the -290/-1 segment is responsible for basal transcription in somites and the presomitic mesoderm. Conclusion We suggest

  17. Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar

    Science.gov (United States)

    Steven L. Voelker; Barbara Lachenbruch; Frederick C. Meinzer; Michael Jourdes; Chanyoung Ki; Ann M. Patten; Laurence B. Davin; Norman G. Lewis; Gerald A. Tuskan; Lee Gunter; Stephen R. Decker; Michael J. Selig; Robert Sykes; Michael E. Himmel; Peter Kitin; Olga Shevchenko; Steven H. Strauss

    2010-01-01

    Transgenic down-regulation of the Pt4CL1 gene family encoding 4-coumarate:coenzyme A ligase (4CL) has been reported as a means for reducing lignin content in cell walls and increasing overall growth rates, thereby improving feedstock quality for paper and bioethanol production. Using hybrid poplar (Populus tremula...

  18. Leucine zipper, down regulated in cancer-1 gene expression in prostate cancer

    Science.gov (United States)

    Salemi, Michele; Barone, Nunziata; La Vignera, Sandro; Condorelli, Rosita A.; Recupero, Domenico; Galia, Antonio; Fraggetta, Filippo; Aiello, Anna Maria; Pepe, Pietro; Castiglione, Roberto; Vicari, Enzo; Calogero, Aldo E.

    2016-01-01

    Numerous genetic alterations have been implicated in the development of prostate cancer (PCa). DNA and protein microarrays have enabled the identification of genes associated with apoptosis, which is important in PCa development. Despite the molecular mechanisms are not entirely understood, inhibition of apoptosis is a critical pathophysiological factor that contributes to the onset and progression of PCa. Leucine zipper, down-regulated in cancer 1 (LDOC-1) is a known regulator of the nuclear factor (NF)-mediated pathway of apoptosis through the inhibition of NF-κB. The present study investigated the expression of the LDOC-1 gene in LNCaP, PC-3, PNT1A and PNT2 prostate cell lines by reverse transcription-quantitative polymerase chain reaction. In addition LDOC-1 protein expression in normal prostate tissues and PCa was studied by immunohistochemistry. LDOC-1 messenger RNA resulted overexpressed in LNCaP and PC-3 PCa cell lines compared with the two normal prostate cell lines PNT1A and PNT2. The results of immunohistochemistry demonstrated a positive cytoplasmic LDOC-1 staining in all PCa and normal prostate samples, whereas no nuclear staining was observed in any sample. Furthermore, a more intense signal was evidenced in PCa samples. LDOC-1 gene overexpression in PCa suggests an activity of LDOC-1 in PCa cell lines. PMID:27698860

  19. Escin Ia suppresses the metastasis of triple-negative breast cancer by inhibiting epithelial-mesenchymal transition via down-regulating LOXL2 expression.

    Science.gov (United States)

    Wang, Yuhui; Xu, Xiaotian; Zhao, Peng; Tong, Bei; Wei, Zhifeng; Dai, Yue

    2016-04-26

    The saponin fraction of Aesculus chinensis Bunge fruits (SFAC) could inhibit the invasion and migration of MDA-MB-231 cells. Among which, escin Ia showed more potent inhibition of the invasion than other five main saponin constituents. It selectively reduced the expression of LOXL2 mRNA and promoted the expression of E-cadherin mRNA, and prevented the EMT process of MDA-MB-231 cells and TNF-α/TGF-β-stimulated MCF-7 cells. Moreover, it reduced the LOXL2 level in MDA-MB-231 cells but not in MCF-7 cells. When MCF-7 cells were stimulated with TNF-α/TGF-β, transfected with LOXL2 or treated with hypoxia, escin Ia down-regulated the level of LOXL2 in MCF-7 cells. Meanwhile, escin Ia suppressed the EMT process in LOXL2-transfected or hypoxia-treated MCF-7 cells. Of interest, escin Ia did not alter the level of HIF-1α in hypoxia-induced MCF-7 cells. In TNBC xenograft mice, the metastasis and EMT of MDA-MB-231 cells were suppressed by escin Ia. In conclusion, escin Ia was the main active ingredient of SFAC for the anti-TNBC metastasis activity, and its action mechanisms involved inhibition of EMT process by down-regulating LOXL2 expression.

  20. Down-regulation of POLYGALACTURONASE1 alters firmness, tensile strength and water loss in apple (Malus x domestica) fruit.

    Science.gov (United States)

    Atkinson, Ross G; Sutherland, Paul W; Johnston, Sarah L; Gunaseelan, Kularajathevan; Hallett, Ian C; Mitra, Deepali; Brummell, David A; Schröder, Roswitha; Johnston, Jason W; Schaffer, Robert J

    2012-08-02

    While there is now a significant body of research correlating apple (Malus x domestica) fruit softening with the cell wall hydrolase ENDO-POLYGALACTURONASE1 (PG1), there is currently little knowledge of its physiological effects in planta. This study examined the effect of down regulation of PG1 expression in 'Royal Gala' apples, a cultivar that typically has high levels of PG1, and softens during fruit ripening. PG1-suppressed 'Royal Gala' apples harvested from multiple seasons were firmer than controls after ripening, and intercellular adhesion was higher. Cell wall analyses indicated changes in yield and composition of pectin, and a higher molecular weight distribution of CDTA-soluble pectin. Structural analyses revealed more ruptured cells and free juice in pulled apart sections, suggesting improved integrity of intercellular connections and consequent cell rupture due to failure of the primary cell walls under stress. PG1-suppressed lines also had reduced expansion of cells in the hypodermis of ripe apples, resulting in more densely packed cells in this layer. This change in morphology appears to be linked with reduced transpirational water loss in the fruit. These findings confirm PG1's role in apple fruit softening and suggests that this is achieved in part by reducing cellular adhesion. This is consistent with previous studies carried out in strawberry but not with those performed in tomato. In apple PG1 also appears to influence other fruit texture characters such as juiciness and water loss.

  1. Demethoxycurcumin inhibited human epithelia ovarian cancer cells' growth via up-regulating miR-551a.

    Science.gov (United States)

    Du, Zhenhua; Sha, Xianqun

    2017-03-01

    Curcumin is a natural agent that has ability to dampen tumor cells' growth. However, the natural form of curcumin is prone to degrade and unstable in vitro. Here, we demonstrated that demethoxycurcumin (a curcumin-related demethoxy compound) could inhibit cell proliferation and induce apoptosis of ovarian cancer cells. Moreover, IRS2/PI3K/Akt axis was inactivated in cells treated with demethoxycurcumin. Quantitative real-time reverse transcription polymerase chain reaction demonstrated that miR-551a was down-regulated in ovarian cancer tissues and ovarian cancer cell lines. Over-expression of miR-551a inhibited cell proliferation and induced apoptosis of ovarian cancer cells, whereas down-regulation of miR-551a exerted the opposite function. Luciferase assays confirmed that there was a binding site of miR-551a in IRS2, and we found that miR-551a exerted tumor-suppressive function by targeting IRS2 in ovarian cancer cells. Remarkably, miR-551a was up-regulated in the cells treated with demethoxycurcumin, and demethoxycurcumin suppressed IRS2 by restoration of miR-551a. In conclusion, demethoxycurcumin hindered ovarian cancer cells' malignant progress via up-regulating miR-551a.

  2. HIF-1α inhibition blocks the cross talk between multiple myeloma plasma cells and tumor microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Borsi, Enrica, E-mail: enrica.borsi2@unibo.it [Department of Experimental Diagnostic and Specialty Medicine (DIMES), “L. and A. Seràgnoli”, Bologna University School of Medicine, S. Orsola' s University Hospital (Italy); Perrone, Giulia [Fondazione IRCCS Istituto Nazionale dei Tumori, Hematology Department, Via Venezian 1, 20133 Milano (Italy); Terragna, Carolina; Martello, Marina; Zamagni, Elena; Tacchetti, Paola; Pantani, Lucia; Brioli, Annamaria; Dico, Angela Flores; Zannetti, Beatrice Anna; Rocchi, Serena; Cavo, Michele [Department of Experimental Diagnostic and Specialty Medicine (DIMES), “L. and A. Seràgnoli”, Bologna University School of Medicine, S. Orsola' s University Hospital (Italy)

    2014-11-01

    Multiple myeloma (MM) is a malignant disorder of post-germinal center B cells, characterized by the clonal proliferation of malignant plasma cells (PCs) within the bone marrow (BM). The reciprocal and complex interactions that take place between the different compartments of BM and the MM cells result in tumor growth, angiogenesis, bone disease, and drug resistance. Given the importance of the BM microenvironment in MM pathogenesis, we investigated the possible involvement of Hypoxia-Inducible transcription Factor-1 alpha (HIF-1α) in the PCs-bone marrow stromal cells interplay. To test this hypothesis, we used EZN-2968, a 3rd generation antisense oligonucleotide against HIF-1α, to inhibit HIF-1α functions. Herein, we provide evidence that the interaction between MM cells and BM stromal cells is drastically reduced upon HIF-1α down-modulation. Notably, we showed that upon exposure to HIF-1α inhibitor, neither the incubation with IL-6 nor the co-culture with BM stromal cells were able to revert the anti-proliferative effect induced by EZN-2968. Moreover, we observed a down-modulation of cytokine-induced signaling cascades and a reduction of MM cells adhesion capability to the extracellular matrix proteins in EZN-2968-treated samples. Taken together, these results strongly support the concept that HIF-1α plays a critical role in the interactions between bone BM cells and PCs in Multiple Myeloma. - Highlights: • HIF-1α inhibition induces a mild apoptotic cell death. • Down-modulation of cytokine-induced signaling cascades upon HIF-1α inhibition. • Reduced interaction between MM cells and BMSCs upon HIF-1α down-modulation. • Reduced PCs adhesion to the extracellular matrix protein induced by EZN-2968. • HIF-1α inhibition may be an attractive therapeutic strategy for Multiple Myeloma.

  3. Lung Myofibroblasts Are Characterized by Down-Regulated Cyclooxygenase-2 and Its Main Metabolite, Prostaglandin E2

    Science.gov (United States)

    Gabasa, Marta; Royo, Dolores; Molina-Molina, Maria; Roca-Ferrer, Jordi; Pujols, Laura; Picado, Cesar

    2013-01-01

    Background Prostaglandin E2 (PGE2), the main metabolite of cyclooxygenase (COX), is a well-known anti-fibrotic agent. Moreover, myofibroblasts expressing α-smooth muscle actin (α-SMA), fibroblast expansion and epithelial-mesenchymal transition (EMT) are critical to the pathogenesis of idiopathic pulmonary fibrosis (IPF). Our aim was to investigate the expression of COX-2 and PGE2 in human lung myofibroblasts and establish whether fibroblast-myofibroblast transition (FMT) and EMT are associated with COX-2 and PGE2 down-regulation. Methods Fibroblasts obtained from IPF patients (n = 6) and patients undergoing spontaneous pneumothorax (control, n = 6) and alveolar epithelial cell line A549 were incubated with TGF-β1 and FMT and EMT markers were evaluated. COX-2 and α-SMA expression, PGE2 secretion and cell proliferation were measured after IL-1β and PGE2 incubation. Results Myofibroblasts from both control and IPF fibroblast cultures stimulated with IL-1β showed no COX-2 expression. IPF fibroblasts showed increased myofibroblast population and reduced COX-2 expression in response to IL-1β. TGF-β1 increased the number of myofibroblasts in a time-dependent manner. In contrast, TGF-β1 induced slight COX-2 expression at 4 h (without increase in myofibroblasts) and 24 h, but not at 72 h. Both IPF and control cultures incubated with TGF-β1 for 72 h showed diminished COX-2 induction, PGE2 secretion and α-SMA expression after IL-1β addition. The latter decreased proliferation in fibroblasts but not in myofibroblasts. A549 cells incubated with TGF-β1 for 72 h showed down-regulated COX-2 expression and low basal PGE2 secretion in response to IL-1β. Immuno-histochemical analysis of IPF lung tissue showed no COX-2 immuno-reactivity in myofibroblast foci. Conclusions Myofibroblasts are associated with COX-2 down-regulation and reduced PGE2 production, which could be crucial in IPF development and progression. PMID:23755232

  4. Mel-18 negatively regulates stem cell-like properties through downregulation of miR-21 in gastric cancer.

    Science.gov (United States)

    Wang, Xiao-Feng; Zhang, Xiao-Wei; Hua, Rui-Xi; Du, Yi-Qun; Huang, Ming-Zhu; Liu, Yong; Cheng, Yu Fang; Guo, Wei-Jian

    2016-09-27

    Mel-18, a polycomb group protein, has been reported to act as a tumor suppressor and be down-regulated in several human cancers including gastric cancer. It was also found that Mel-18 negatively regulates self-renewal of hematopoietic stem cells and breast cancer stem cells (CSCs). This study aimed to clarify its role in gastric CSCs and explore the mechanisms. We found that low-expression of Mel-18 was correlated with poor prognosis and negatively correlated with overexpression of stem cell markers Oct4, Sox2, and Gli1 in 101 gastric cancer tissues. Mel-18 was down-regulated in cultured spheroid cells, which possess CSCs, and overexpression of Mel-18 inhibits cells sphere-forming ability and tumor growth in vivo. Besides, Mel-18 was lower-expressed in ovary metastatic lesions compared with that in primary lesions of gastric cancer, and Mel-18 overexpression inhibited the migration ability of gastric cancer cells. Interestingly, overexpression of Mel-18 resulted in down-regulation of miR-21 in gastric cancer cells and the expression of Mel-18 was negatively correlated with the expression of miR-21 in gastric cancer tissues. Furthermore, miR-21 overexpression partially restored sphere-forming ability, migration potential and chemo-resistance in Mel-18 overexpressing gastric cancer cells. These results suggests Mel-18 negatively regulates stem cell-like properties through downregulation of miR-21 in gastric cancer cells.

  5. hZip2 and hZip3 zinc transporters are down regulated in human prostate adenocarcinomatous glands

    Directory of Open Access Journals (Sweden)

    Franklin Renty B

    2007-06-01

    Full Text Available Abstract Background The normal human prostate glandular epithelium has the unique function of accumulating high levels of zinc. In prostate cancer this capability is lost as an early event in the development of the malignant cells. The mechanism and factors responsible for the ability of the normal epithelial cells to accumulate zinc and the loss of this capability in the malignant cells need to be identified. We previously reported that Zip1 is an important zinc uptake transporter in prostate cells and is down regulated in the malignant cells in situ along with the depletion of zinc levels. In this report we investigated the expression of two other Zip family zinc transporters, Zip2 and Zip3 in malignant versus nonmalignant (normal and BPH glands. Zip2 and Zip3 relative protein levels were determined by immunohistochemistry analysis of human prostate tissue sections. Results Normal and BPH glandular epithelium consistently exhibited the strong presence of both Zip 2 and Zip3; whereas both transporters consistently were essentially non-detectable in the malignant glands. This represents the first report of the expression of Zip3 in human prostate tissue; and more importantly, reveals that ZiP2 and Zip3 are down regulated in malignant cells in situ as we also had demonstrated for Zip1. Zip2 and Zip3 transporter proteins were localized predominantly at the apical cell membrane, which is in contrast to the Zip1 localization at the basolateral membrane. Zip2 and Zip3 seemingly are associated with the re-uptake of zinc from prostatic fluid. Conclusion These results coupled with previous reports implicate Zip2 and Zip3 along with Zip1 as important zinc uptake transporters involved in the unique ability of prostate cells to accumulate high cellular zinc levels. Zip1 is important for the extraction of zinc from circulation as the primary source of cellular zinc. Zip 2 and Zip3 appear to be important for retention of the zinc in the cellular compartment

  6. Loss of TET1 facilitates DLD1 colon cancer cell migration via H3K27me3-mediated down-regulation of E-cadherin.

    Science.gov (United States)

    Zhou, Zhen; Zhang, Hong-Sheng; Liu, Yang; Zhang, Zhong-Guo; Du, Guang-Yuan; Li, Hu; Yu, Xiao-Ying; Huang, Ying-Hui

    2018-02-01

    Epigenetic modifications such as histone modifications and cytosine hydroxymethylation are linked to tumorigenesis. Loss of 5-hydroxymethylcytosine (5 hmC) by ten-eleven translocation 1 (TET1) down-regulation facilitates tumor initiation and development. However, the mechanisms by which loss of TET1 knockdown promotes malignancy development remains unclear. Here, we report that TET1 knockdown induced epithelial-mesenchymal transition (EMT) and increased cancer cell growth, migration, and invasion in DLD1 cells. Loss of TET1 increased EZH2 expression and reduced UTX-1 expression, thus increasing histone H3K27 tri-methylation causing repression of the target gene E-cadherin. Ectopic expression of the H3K27 demethylase UTX-1 or EZH2 depletion both impeded EZH2 binding caused a loss of H3K27 methylation at epithelial gene E-cadherin promoter, thereby suppressing EMT and tumor invasion in shTET1 cells. Conversely, UTX-1 depletion and ectopic expression of EZH2 enhanced EMT and tumor metastasis in DLD1 cells. These findings provide insight into the regulation of TET1 and E-cadherin and identify EZH2 as a critical mediator of E-cadherin repression and tumor progression. © 2017 Wiley Periodicals, Inc.

  7. Impressic acid from Acanthopanax koreanum, possesses matrix metalloproteinase-13 down-regulating capacity and protects cartilage destruction.

    Science.gov (United States)

    Lim, Hyun; Min, Dong Suk; Yun, Han Eul; Kim, Kil Tae; Sun, Ya Nan; Dat, Le Duc; Kim, Young Ho; Kim, Hyun Pyo

    2017-09-14

    Acanthopanax koreanum (Araliaceae) has been used in traditional medicine for enhancing vitality, rheumatism, and bone-related pains. But its activity on cartilage protection has not been known yet. Matrix metalloproteinase (MMP)-13 has an important role in degrading cartilage materials under pathologic conditions such as arthritis. The present study was designed to find the inhibitory activity of impressic acid on MMP-13 expression and cartilage protective action. 70% ethanol extract of Acanthopanax koreanum leaves and impressic acid, a major constituent isolated from the same plant materials, were examined on MMP-13 down-regulating capacity in IL-1β-treated human chondrocyte cell line (SW1353) and rabbit cartilage explants. In IL-1β-treated SW1353 cells, impressic acid significantly and concentration-dependently inhibited MMP-13 expression at 0.5-10μM. Impressic acid was found to be able to inhibit MMP-13 expression by blocking the phosphorylation of signal transducer and activator of transcription-1/-2 (STAT-1/-2) and activation of c-Jun and c-Fos among the cellular signaling pathways involved. Further, impressic acid was found to inhibit the expression of MMP-13 mRNA (47.7% inhibition at 10μM), glycosaminoglycan release (42.2% reduction at 10μM) and proteoglycan loss in IL-1-treated rabbit cartilage explants culture. In addition, a total of 21 lupane-type triterpenoids structurally-related to impressic acid were isolated from the same plant materials and their suppressive activities against MMP-13 expression were also examined. Among these derivatives, compounds 2, 3, 16, and 18 clearly down-regulated MMP-13 expression. However, impressic acid was more potent than these derivatives in down-regulating MMP-13 expression. Impressic acid, its related triterpenoids, and A. koreanum extract have potential as therapeutic agents to prevent cartilage degradation by inhibiting matrix protein degradation. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  8. Overexpression of microRNA-132 enhances the radiosensitivity of cervical cancer cells by down-regulating Bmi-1.

    Science.gov (United States)

    Liu, Gui-Feng; Zhang, Shu-Hua; Li, Xue-Feng; Cao, Li-Yan; Fu, Zhan-Zhao; Yu, Shao-Nan

    2017-10-06

    We examined the effects of microRNA-132 (miR-132) on Bmi-1 expression and radiosensitivity in HeLa, SiHa, and C33A cervical cancer (CC) cells and 104 CC patients. MiR-132 expression was decreased and Bmi-1 expression was increased in tumor tissues compared to adjacent normal tissues and in radiotherapy-resistant patients compared to radiotherapy-sensitive patients. MiR-132 expression and Bmi-1 mRNA expression were also negatively correlated in tumor tissues. HeLa, SiHa, and C33A cells were divided into blank, miR-132 negative control (NC), miR-132 inhibitor, miR-132 mimics, siBmi-1, and miR-132 inhibitor + siBmi-1 groups, after which expression of miR-132 and Bmi-1, and the interaction between them and cell survival, proliferation, and apoptosis were examined. Bmi-1 was confirmed as a target of miRNA-132. Survival was higher and apoptosis lower in the miR-132 inhibitor group than the blank group after various doses of radiation. By contrast, survival was lower and apoptosis higher in the miRNA-132 mimics and siBmi-1 groups than in the blank group. Moreover, miR-132 expression increased and Bmi-1 mRNA expression decreased in each group at radiation doses of 6 and 8 Gy. Finally, co-administration of radiotherapy and exogenous miR-132 inhibited the growth of HeLa cell transplant-induced tumors in nude mice more effectively than radiotherapy alone. These results suggest overexpression of miR-132 enhances the radiosensitivity of CC cells by down-regulating Bmi-1 and that miR-132 may be a useful new target for the treatment of CC.

  9. Down-regulation of the cyprinid herpesvirus-3 annotated genes in cultured cells maintained at restrictive high temperature.

    Science.gov (United States)

    Ilouze, Maya; Dishon, Arnon; Kotler, Moshe

    2012-10-01

    Cyprinid herpesvirus-3 (CyHV-3) is a member of the Alloherpesviridae, in the order Herpesvirales. It causes a fatal disease in carp and koi fish. The disease is seasonal and is active when water temperatures ranges from 18 to 28 °C. Little is known about how and where the virus is preserved between the permissive seasons. The hallmark of the herpesviruses is their ability to become latent, persisting in the host in an apparently inactive state for varying periods of time. Hence, it could be expected that CyHV-3 enter a latent period. CyHV-3 has so far been shown to persist in fish maintained under restrictive temperatures, while shifting the fish to permissive conditions reactivates the virus. Previously, we demonstrated that cultured cells infected with CyHV-3 at 22 °C and subsequently transferred to a restrictive temperature of 30 °C preserve the virus for 30 days. The present report shows that cultured carp cells maintained and exposed to CyHV-3 at 30 °C are abortively infected; that is, autonomous viral DNA synthesis is hampered and the viral genome is not multiplied. Under these conditions, 91 of the 156 viral annotated ORFs were initially transcribed. These transcripts were down-regulated and gradually shut off over 18 days post-infection, while two viral transcripts encoded by ORFs 114 and 115 were preserved in the infected cells for 18 days p.i. These experiments, carried out in cultured cells, suggest that fish could be infected at a high non-permissive temperature and harbor the viral genome without producing viral particles. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. BAG3 down-modulation reduces anaplastic thyroid tumor growth by enhancing proteasome-mediated degradation of BRAF protein.

    Science.gov (United States)

    Chiappetta, Gennaro; Basile, Anna; Arra, Claudio; Califano, Daniela; Pasquinelli, Rosa; Barbieri, Antonio; De Simone, Veronica; Rea, Domenica; Giudice, Aldo; Pezzullo, Luciano; De Laurenzi, Vincenzo; Botti, Gerardo; Losito, Simona; Conforti, Daniela; Turco, Maria Caterina

    2012-01-01

    Anaplastic thyroid tumors (ATC) express high levels of BAG3, a member of the BAG family of cochaperone proteins that is involved in regulating cell apoptosis through multiple mechanisms. The objective of the study was the investigation of the influence of B-cell lymphoma-2-associated athanogene 3 (BAG3) on ATC growth. We investigated the effects of BAG3 down-modulation, obtained by using a specific small interfering RNA, on in vitro and in vivo growth of the human ATC cell line 8505C. Because BRAF protein plays an important role in ATC cell growth, we analyzed the effects of BAG3 down-modulation on BRAF protein levels. Furthermore, by using a proteasome inhibitor, we verified whether BAG3-mediated regulation of BRAF levels involved a proteasome-dependent mechanism. BAG3 down-modulation significantly inhibits ATC growth in vitro and in vivo. BAG3 coimmunoprecipitates with BRAF protein, and its down-modulation results in a significant reduction of BRAF protein levels, which can be reverted by incubation with the proteasome inhibitor MG132. BAG3 protein sustains ATC growth in vitro and in vivo. The underlying molecular mechanism appears to rely on BAG3 binding to BRAF, thus protecting it from proteasome-dependent degradation. These results are in line with the reported ability of BAG3 to interfere with the proteasomal delivery of a number of other client proteins.

  11. Mechanisms of transcriptional regulation and prognostic significance of activated leukocyte cell adhesion molecule in cancer

    Directory of Open Access Journals (Sweden)

    Chen Hairu

    2010-10-01

    Full Text Available Abstract Background Activated leukocyte cell adhesion molecule (ALCAM is implicated in the prognosis of multiple cancers with low level expression associated with metastasis and early death in breast cancer. Despite this significance, mechanisms that regulate ALCAM gene expression and ALCAM's role in adhesion of pre-metastatic circulating tumor cells have not been defined. We studied ALCAM expression in 20 tumor cell lines by real-time PCR, western blot and immunochemistry. Epigenetic alterations of the ALCAM promoter were assessed using methylation-specific PCR and bisulfite sequencing. ALCAM's role in adhesion of tumor cells to the vascular wall was studied in isolated perfused lungs. Results A common site for transcription initiation of the ALCAM gene was identified and the ALCAM promoter sequenced. The promoter contains multiple cis-active elements including a functional p65 NF-κB motif, and it harbors an extensive array of CpG residues highly methylated exclusively in ALCAM-negative tumor cells. These CpG residues were modestly demethylated after 5-aza-2-deoxycytidine treatment. Restoration of high-level ALCAM expression using an ALCAM cDNA increased clustering of MDA-MB-435 tumor cells perfused through the pulmonary vasculature of ventilated rat lungs. Anti-ALCAM antibodies reduced the number of intravascular tumor cell clusters. Conclusion Our data suggests that loss of ALCAM expression, due in part to DNA methylation of extensive segments of the promoter, significantly impairs the ability of circulating tumor cells to adhere to each other, and may therefore promote metastasis. These findings offer insight into the mechanisms for down-regulation of ALCAM gene expression in tumor cells, and for the positive prognostic value of high-level ALCAM in breast cancer.

  12. miR-22 regulates cell invasion, migration and proliferation in vitro through inhibiting CD147 expression in tongue squamous cell carcinoma.

    Science.gov (United States)

    Qiu, Kaifeng; Huang, Zixian; Huang, Zhiquan; He, Zhichao; You, Siping

    2016-06-01

    Tongue squamous cell carcinoma (TSCC) is the most common type of head and neck squamous cell carcinoma (HNSCC) in China, and its survival rate remains unsatisfactory. miR-22 has been identified as a tumor suppressor in many human cancers, and high expression of CD147 occurs in many tumors. The aim of the present study was to investigate the expression and function of miR-22 in TSCC and its relationship with the expression of CD147. TCA8113 cells were transiently transfected with a miR-22 mimic/inhibitor. Subsequently, a validation with Real-time RT-PCR was performed to analyze the miR-22 expression level, and a CCK-8 proliferation assay and transwell migration and invasion assays were carried out. Cotransfections using As-miR-22/si-CD147 mRNA or a miR-22/CD147 overexpression vector were applied, and we investigated the biological effects on cotranscribed TCA8113 cells. qRT-PCR confirmed that miR-22 or As-miR-22 were successfully transfected into TCA8113 cells. Suppressing miR-22 resulted in a promotion of cell proliferation and motility and an up-regulation of CD147 in TCA8113 cells in vitro. In contrast, increasing miR-22 inhibited cell proliferation and motility and down-regulated CD147. Furthermore, the reduction or overexpression of CD147 can reverse the promoting or suppressive effects of miR-22, respectively. The down-expression of miR-22 can regulate cell growth and motility in TSCC cells, which indicates that miR-22 acts as a tumor suppressor in TSCC. Additionally, CD147 is subsequently up-regulated when miR-22 inhibited. Taken together, the findings of this research defined a novel relationship between the down-regulation of miR-22 and the up-regulation of CD147 and demonstrated that CD147 is a downstream factor of miR-22. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion.

    Directory of Open Access Journals (Sweden)

    Marie Lundholm

    Full Text Available Tumor-derived exosomes, which are nanometer-sized extracellular vesicles of endosomal origin, have emerged as promoters of tumor immune evasion but their role in prostate cancer (PC progression is poorly understood. In this study, we investigated the ability of prostate tumor-derived exosomes to downregulate NKG2D expression on natural killer (NK and CD8+ T cells. NKG2D is an activating cytotoxicity receptor whose aberrant loss in cancer plays an important role in immune suppression. Using flow cytometry, we found that exosomes produced by human PC cells express ligands for NKG2D on their surface. The NKG2D ligand-expressing prostate tumor-derived exosomes selectively induced downregulation of NKG2D on NK and CD8+ T cells in a dose-dependent manner, leading to impaired cytotoxic function in vitro. Consistent with these findings, patients with castration-resistant PC (CRPC showed a significant decrease in surface NKG2D expression on circulating NK and CD8+ T cells compared to healthy individuals. Tumor-derived exosomes are likely involved in this NKG2D downregulation, since incubation of healthy lymphocytes with exosomes isolated from serum or plasma of CRPC patients triggered downregulation of NKG2D expression in effector lymphocytes. These data suggest prostate tumor-derived exosomes as down-regulators of the NKG2D-mediated cytotoxic response in PC patients, thus promoting immune suppression and tumor escape.

  14. FLASH knockdown sensitizes cells to Fas-mediated apoptosis via down-regulation of the anti-apoptotic proteins, MCL-1 and Cflip short.

    Directory of Open Access Journals (Sweden)

    Song Chen

    Full Text Available FLASH (FLICE-associated huge protein or CASP8AP2 is a large multifunctional protein that is involved in many cellular processes associated with cell death and survival. It has been reported to promote apoptosis, but we show here that depletion of FLASH in HT1080 cells by siRNA interference can also accelerate the process. As shown previously, depletion of FLASH halts growth by down-regulating histone biosynthesis and arrests the cell cycle in S-phase. FLASH knockdown followed by stimulating the cells with Fas ligand or anti-Fas antibodies was found to be associated with a more rapid cleavage of PARP, accelerated activation of caspase-8 and the executioner caspase-3 and rapid progression to cellular disintegration. As is the case for most anti-apoptotic proteins, FLASH was degraded soon after the onset of apoptosis. Depletion of FLASH also resulted in the reduced intracellular levels of the anti-apoptotic proteins, MCL-1 and the short isoform of cFLIP. FLASH knockdown in HT1080 mutant cells defective in p53 did not significantly accelerate Fas mediated apoptosis indicating that the effect was dependent on functional p53. Collectively, these results suggest that under some circumstances, FLASH suppresses apoptosis.

  15. Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPα (signal regulatory protein-α on phagocytes

    Directory of Open Access Journals (Sweden)

    Reichert Fanny

    2011-03-01

    Full Text Available Abstract Background Traumatic injury to axons produces breakdown of axons and myelin at the site of the lesion and then further distal to this where Wallerian degeneration develops. The rapid removal of degenerated myelin by phagocytosis is advantageous for repair since molecules in myelin impede regeneration of severed axons. Thus, revealing mechanisms that regulate myelin phagocytosis by macrophages and microglia is important. We hypothesize that myelin regulates its own phagocytosis by simultaneous activation and down-regulation of microglial and macrophage responses. Activation follows myelin binding to receptors that mediate its phagocytosis (e.g. complement receptor-3, which has been previously studied. Down-regulation, which we test here, follows binding of myelin CD47 to the immune inhibitory receptor SIRPα (signal regulatory protein-α on macrophages and microglia. Methods CD47 and SIRPα expression was studied by confocal immunofluorescence microscopy, and myelin phagocytosis by ELISA. Results We first document that myelin, oligodendrocytes and Schwann cells express CD47 without SIRPα and further confirm that microglia and macrophages express both CD47 and SIRPα. Thus, CD47 on myelin can bind to and subsequently activate SIRPα on phagocytes, a prerequisite for CD47/SIRPα-dependent down-regulation of CD47+/+ myelin phagocytosis by itself. We then demonstrate that phagocytosis of CD47+/+ myelin is augmented when binding between myelin CD47 and SIRPα on phagocytes is blocked by mAbs against CD47 and SIRPα, indicating that down-regulation of phagocytosis indeed depends on CD47-SIRPα binding. Further, phagocytosis in serum-free medium of CD47+/+ myelin is augmented after knocking down SIRPα levels (SIRPα-KD in phagocytes by lentiviral infection with SIRPα-shRNA, whereas phagocytosis of myelin that lacks CD47 (CD47-/- is not. Thus, myelin CD47 produces SIRPα-dependent down-regulation of CD47+/+ myelin phagocytosis in phagocytes

  16. Asclepiasterol, a novel C21 steroidal glycoside derived from Asclepias curassavica, reverses tumor multidrug resistance by down-regulating P-glycoprotein expression.

    Science.gov (United States)

    Yuan, Wei-Qi; Zhang, Rong-Rong; Wang, Jun; Ma, Yan; Li, Wen-Xue; Jiang, Ren-Wang; Cai, Shao-Hui

    2016-05-24

    Multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) is a major cause of cancer therapy failure. In this study, we identified a novel C21 steroidal glycoside, asclepiasterol, capable of reversing P-gp-mediated MDR. Asclepiasterol (2.5 and 5.0μM) enhanced the cytotoxity of P-gp substrate anticancer drugs in MCF-7/ADR and HepG-2/ADM cells. MDR cells were more responsive to paclitaxel in the presence of asclepiasterol, and colony formation of MDR cells was only reduced upon treatment with a combination of asclepiasterol and doxorubicin. Consistent with these findings, asclepiasterol treatment increased the intracellular accumulation of doxorubicin and rhodamine 123 (Rh123) in MDR cells. Asclepiasterol decreased expression of P-gp protein without stimulating or suppressing MDR1 mRNA levels. Asclepiasterol-mediated P-gp suppression caused inhibition of ERK1/2 phosphorylation in two MDR cell types, and EGF, an activator of the MAPK/ERK pathway, reversed the P-gp down-regulation, implicating the MAPK/ERK pathway in asclepiasterol-mediated P-gp down-regulation. These results suggest that asclepiasterol could be developed as a modulator for reversing P-gp-mediated MDR in P-gp-overexpressing cancer variants.

  17. miR-130b targets NKD2 and regulates the Wnt signaling to promote proliferation and inhibit apoptosis in osteosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi [Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Jilin University (China); Li, Youjun, E-mail: liyoujunn@126.com [Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Jilin University (China); Wang, Nan; Yang, Lifeng; Zhao, Wei; Zeng, Xiandong [Central Hospital Affiliated to Shenyang Medical College (China)

    2016-03-18

    miR-130b was significantly up-regulated in osteosarcoma (OS) cells. Naked cuticle homolog 2 (NKD2) inhibited tumor growth and metastasis in OS by suppressing Wnt signaling. We used three miRNA target analysis tools to identify potential targets of miR-130b, and found that NKD2 is a potential target of miR-130b. Based on these findings, we hypothesize that miR-130b might target NKD2 and regulate the Wnt signaling to promote OS growth. We detected the expression of miR-130b and NKD2 mRNA and protein by quantitative Real-Time PCR (qRT-PCR) and western blot assays, respectively, and found up-regulation of miR-130b and down-regulation of NKD2 mRNA and protein exist in OS cell lines. MTT and flow cytometry assays showed that miR-130b inhibitors inhibit proliferation and promote apoptosis in OS cells. Furthermore, we showed that NKD2 is a direct target of miR-130b, and miR-130b regulated proliferation and apoptosis of OS cells by targeting NKD2. We further investigated whether miR-130b and NKD2 regulate OS cell proliferation and apoptosis by inhibiting Wnt signaling, and the results confirmed our speculation that miR-130b targets NKD2 and regulates the Wnt signaling to promote proliferation and inhibit apoptosis of OS cells. These findings will offer new clues for OS development and progression, and novel potential therapeutic targets for OS. - Highlights: • miR-130b is up-regulated and NKD2 is down-regulated in osteosarcoma cell lines. • Down-regulation of miR-130b inhibits proliferation of osteosarcoma cells. • Down-regulation of miR-130b promotes apoptosis of osteosarcoma cells. • miR-130b directly targets NKD2. • NKD2 regulates OS cell proliferation and apoptosis by inhibiting the Wnt signaling.

  18. miR-130b targets NKD2 and regulates the Wnt signaling to promote proliferation and inhibit apoptosis in osteosarcoma cells

    International Nuclear Information System (INIS)

    Li, Zhi; Li, Youjun; Wang, Nan; Yang, Lifeng; Zhao, Wei; Zeng, Xiandong

    2016-01-01

    miR-130b was significantly up-regulated in osteosarcoma (OS) cells. Naked cuticle homolog 2 (NKD2) inhibited tumor growth and metastasis in OS by suppressing Wnt signaling. We used three miRNA target analysis tools to identify potential targets of miR-130b, and found that NKD2 is a potential target of miR-130b. Based on these findings, we hypothesize that miR-130b might target NKD2 and regulate the Wnt signaling to promote OS growth. We detected the expression of miR-130b and NKD2 mRNA and protein by quantitative Real-Time PCR (qRT-PCR) and western blot assays, respectively, and found up-regulation of miR-130b and down-regulation of NKD2 mRNA and protein exist in OS cell lines. MTT and flow cytometry assays showed that miR-130b inhibitors inhibit proliferation and promote apoptosis in OS cells. Furthermore, we showed that NKD2 is a direct target of miR-130b, and miR-130b regulated proliferation and apoptosis of OS cells by targeting NKD2. We further investigated whether miR-130b and NKD2 regulate OS cell proliferation and apoptosis by inhibiting Wnt signaling, and the results confirmed our speculation that miR-130b targets NKD2 and regulates the Wnt signaling to promote proliferation and inhibit apoptosis of OS cells. These findings will offer new clues for OS development and progression, and novel potential therapeutic targets for OS. - Highlights: • miR-130b is up-regulated and NKD2 is down-regulated in osteosarcoma cell lines. • Down-regulation of miR-130b inhibits proliferation of osteosarcoma cells. • Down-regulation of miR-130b promotes apoptosis of osteosarcoma cells. • miR-130b directly targets NKD2. • NKD2 regulates OS cell proliferation and apoptosis by inhibiting the Wnt signaling.

  19. Abnormal Cell Properties and Down-Regulated FAK-Src Complex Signaling in B Lymphoblasts of Autistic Subjects

    Science.gov (United States)

    Wei, Hongen; Malik, Mazhar; Sheikh, Ashfaq M.; Merz, George; Ted Brown, W.; Li, Xiaohong

    2011-01-01

    Recent studies suggest that one of the major pathways to the pathogenesis of autism is reduced cell migration. Focal adhesion kinase (FAK) has an important role in neural migration, dendritic morphological characteristics, axonal branching, and synapse formation. The FAK-Src complex, activated by upstream reelin and integrin β1, can initiate a cascade of phosphorylation events to trigger multiple intracellular pathways, including mitogen-activated protein kinase–extracellular signal–regulated kinase and phosphatidylinositol 3-kinase–Akt signaling. In this study, by using B lymphoblasts as a model, we tested whether integrin β1 and FAK-Src signaling are abnormally regulated in autism and whether abnormal FAK-Src signaling leads to defects in B-lymphoblast adhesion, migration, proliferation, and IgG production. To our knowledge, for the first time, we show that protein expression levels of both integrin β1 and FAK are significantly decreased in autistic lymphoblasts and that Src protein expression and the phosphorylation of an active site (Y416) are also significantly decreased. We also found that lymphoblasts from autistic subjects exhibit significantly decreased migration, increased adhesion properties, and an impaired capacity for IgG production. The overexpression of FAK in autistic lymphoblasts countered the adhesion and migration defects. In addition, we demonstrate that FAK mediates its effect through the activation of Src, phosphatidylinositol 3-kinase–Akt, and mitogen-activated protein kinase signaling cascades and that paxillin is also likely involved in the regulation of adhesion and migration in autistic lymphoblasts. PMID:21703394

  20. miR-297 modulates multidrug resistance in human colorectal carcinoma by down-regulating MRP-2.

    Science.gov (United States)

    Xu, Ke; Liang, Xin; Shen, Ke; Cui, Daling; Zheng, Yuanhong; Xu, Jianhua; Fan, Zhongze; Qiu, Yanyan; Li, Qi; Ni, Lei; Liu, Jianwen

    2012-09-01

    Colorectal carcinoma is a frequent cause of cancer-related death in men and women. miRNAs (microRNAs) are endogenous small non-coding RNAs that regulate gene expression negatively at the post-transcriptional level. In the present study we investigated the possible role of microRNAs in the development of MDR (multidrug resistance) in colorectal carcinoma cells. We analysed miRNA expression levels between MDR colorectal carcinoma cell line HCT116/L-OHP cells and their parent cell line HCT116 using a miRNA microarray. miR-297 showed lower expression in HCT116/L-OHP cells compared with its parental cells. MRP-2 (MDR-associated protein 2) is an important MDR protein in platinum-drug-resistance cells and is a predicted target of miR-297. Additionally miR-297 was down-regulated in a panel of human colorectal carcinoma tissues and negatively correlated with expression levels of MRP-2. Furthermore, we found that ectopic expression of miR-297 in MDR colorectal carcinoma cells reduced MRP-2 protein level and sensitized these cells to anti-cancer drugs in vitro and in vivo. Taken together, our findings suggest that miR-297 could play a role in the development of MDR in colorectal carcinoma cells, at least in part by modulation of MRP-2.

  1. Modeling the effector - regulatory T cell cross-regulation reveals the intrinsic character of relapses in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Torrealdea Javier

    2011-07-01

    Full Text Available Abstract Background The relapsing-remitting dynamics is a hallmark of autoimmune diseases such as Multiple Sclerosis (MS. Although current understanding of both cellular and molecular mechanisms involved in the pathogenesis of autoimmune diseases is significant, how their activity generates this prototypical dynamics is not understood yet. In order to gain insight about the mechanisms that drive these relapsing-remitting dynamics, we developed a computational model using such biological knowledge. We hypothesized that the relapsing dynamics in autoimmunity can arise through the failure in the mechanisms controlling cross-regulation between regulatory and effector T cells with the interplay of stochastic events (e.g. failure in central tolerance, activation by pathogens that are able to trigger the immune system. Results The model represents five concepts: central tolerance (T-cell generation by the thymus, T-cell activation, T-cell memory, cross-regulation (negative feedback between regulatory and effector T-cells and tissue damage. We enriched the model with reversible and irreversible tissue damage, which aims to provide a comprehensible link between autoimmune activity and clinical relapses and active lesions in the magnetic resonances studies in patients with Multiple Sclerosis. Our analysis shows that the weakness in this negative feedback between effector and regulatory T-cells, allows the immune system to generate the characteristic relapsing-remitting dynamics of autoimmune diseases, without the need of additional environmental triggers. The simulations show that the timing at which relapses appear is highly unpredictable. We also introduced targeted perturbations into the model that mimicked immunotherapies that modulate effector and regulatory populations. The effects of such therapies happened to be highly dependent on the timing and/or dose, and on the underlying dynamic of the immune system. Conclusion The relapsing dynamic in MS

  2. Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase.

    Science.gov (United States)

    Chen, Lei; Auh, Chung-Kyoon; Dowling, Paul; Bell, Jeremey; Chen, Fang; Hopkins, Andrew; Dixon, Richard A; Wang, Zeng-Yu

    2003-11-01

    Lignification of cell walls during plant development has been identified as the major factor limiting forage digestibility and concomitantly animal productivity. cDNA sequences encoding a key lignin biosynthetic enzyme, cinnamyl alcohol dehydrogenase (CAD), were cloned from the widely grown monocotyledonous forage species tall fescue (Festuca arundinacea Schreb.). Recombinant tall fescue CAD expressed in E. coli exhibited the highest V(max)/K(m) values when coniferaldehyde and sinapaldehyde were used as substrates. Transgenic tall fescue plants carrying either sense or antisense CAD gene constructs were obtained by microprojectile bombardment of single genotype-derived embryogenic suspension cells. Severely reduced levels of mRNA transcripts and significantly reduced CAD enzymatic activities were found in two transgenic plants carrying sense and antisense CAD transgenes, respectively. These CAD down-regulated transgenic lines had significantly decreased lignin content and altered ratios of syringyl (S) to guaiacyl (G), G to p-hydroxyphenyl (H) and S to H units. No significant changes in cellulose, hemicellulose, neutral sugar composition, p-coumaric acid and ferulic acid levels were observed in the transgenic plants. Increases of in vitro dry matter digestibility of 7.2-9.5% were achieved in the CAD down-regulated lines, thus providing a novel germplasm to be used for the development of grass cultivars with improved forage quality.

  3. Galectin-3-independent Down-regulation of GABABR1 due to Treatment with Korean Herbal Extract HAD-B Reduces Proliferation of Human Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kim Kyung-Hee

    2012-09-01

    Full Text Available Objectives: Many efforts have shown multi-oncologic roles of galectin-3 for cell proliferation, angiogenesis, and apoptosis. However, the mechanisms by which galectin-3 is involved in cell proliferation are not yet fully understood, especially in human colon cancer cells. Methods: To cluster genes showing positively or negatively correlated expression with galectin-3, we employed human colon cancer cell lines, SNU-61, SNU-81, SNU-769B, SNU-C4 and SNU-C5 in high-throughput gene expression profiling. Gene and protein expression levels were determined by using real-time quantitative polymerase chain reaction (PCR and western blot analysis, respectively. The proliferation rate of human colon cancer cells was measured by using a 3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide (MTT assay. Results: Expression of γ-aminobutyric acid B receptor 1 (GABABR1 showed a positive correlation with galectin-3 at both the transcriptional and the translational levels. Downregulation of galectin-3 decreased not only GABABR1 expression but also the proliferation rate of human colon cancer cells. However, Korean herbal extract, HangAmDan-B (HAD-B, decreased expression of GABABR1 without any expressional change of galectin-3, and offset γ-aminobutyric acid (GABA-enhanced human colon cancer cell proliferation. Conclusions: Our present study confirmed that GABABR1 expression was regulated by galectin-3. HAD-B induced galectin-3-independent down-regulation of GABABR1, which resulted in a decreased proliferation of human colon cancer cells. The therapeutic effect of HAD-B for the treatment of human colon cancer needs to be further validated.

  4. miR-208-3p promotes hepatocellular carcinoma cell proliferation and invasion through regulating ARID2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Peng; Wu, Dingguo; You, Yu; Sun, Jing; Lu, Lele; Tan, Jiaxing; Bie, Ping, E-mail: bieping2010@163.com

    2015-08-15

    MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at post-transcriptional level. miRNA dysregulation plays a causal role in cancer progression. In this study, miR-208-3p was highly expressed and directly repressed ARID2 expression. As a result, ARID2 expression in hepatocellular carcinoma (HCC) was decreased. In vitro, miR-208-3p down-regulation and ARID2 over-expression elicited similar inhibitory effects on HCC cell proliferation and invasion. In vivo test results revealed that miR-208-3p down-regulation inhibited HCC tumorigenesis in Hep3B cells. Moreover, ARID2 was possibly a downstream element of transforming growth factor beta1 (TGFβ1)/miR-208-3p/ARID2 regulatory pathway. These findings suggested that miR-208-3p up-regulation is associated with HCC cell progression and may provide a new target for liver cancer treatment. - Highlights: • miR-208-3p was highly expressed and directly repressed the expression of ARID2 in HCC. • miR-208-3p contributed to HCC cell progression both in vitro and in vivo. • Over-expression of ARID2 inhibited the HCC cell proliferation and invasion. • Restoration of ARID2 partly reversed the the effect of miR-208-3p down-regulation on HCC cells. • Newly regulatory pathway: miR-208-3p mediated the repression of ARID2 by TGFβ1 in HCC cells.

  5. Melittin induces PTCH1 expression by down-regulating MeCP2 in human hepatocellular carcinoma SMMC-7721 cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaoqin; Zhao, Bin; Cheng, Yahui; Yang, Yang; Huang, Cheng; Meng, Xiaoming; Wu, Baoming; Zhang, Lei; Lv, Xiongwen; Li, Jun, E-mail: xqwu01@foxmail.com

    2015-10-01

    Hepatocellular carcinoma (HCC) has a high mortality rate worldwide and still remains to be a noticeable public health problem. Therefore, new remedies are urgently needed. Melittin, a major component of bee venom, is known to suppress cell growth in various cancers including HCC. However, the mechanism of the anticancer effect of melittin on HCC has not been fully elucidated. It has been reported that Methyl-CpG binding protein 2 (MeCP2) plays a key role in tumor proliferation, apoptosis, migration and invasion. In the present study, we found the high expression of MeCP2 in human HCC tissues and in the SMMC-7721 cell line. MeCP2 silencing inhibited cell proliferation, while over-expression of MeCP2 promoted cell growth in SMMC-7721 cells. It indicates that MeCP2 may be an attractive target for human HCC. We further found that melittin could inhibit cell proliferation by reducing MeCP2 expression in vitro. Interestingly, the inhibitory effect of melittin on cell proliferation was due to a delay in G{sub 0}/G{sub 1} cell cycle progression, without influencing cell apoptosis. Next, we investigated the potential molecular mechanisms and found that MeCP2 could modulate Shh signaling in SMMC-7721 cells. Further study indicates that melittin may induce the demethylation of PTCH1 promoter, resulting in the increased expression of PTCH1. Furthermore, the expression of Shh and GLI1 was significantly lowered upon treatment of melittin. These results suggest that melittin can block Shh signaling in vitro. In short, these results indicate that melittin inhibits cell proliferation by down-regulating MeCP2 through Shh signaling in SMMC-7721 cells. - Highlights: • MeCP2 plays a key role in the proliferation of human HCC cells. • Melittin reduces MeCP2 expression in vitro. • Melittin induces G{sub 0}/G{sub 1} cell cycle arrest in SMMC-7721 cells. • MeCP2 modulates the Shh signaling pathway in SMMC-7721 cells. • Melittin blocks the Shh signaling pathway in SMMC-7721 cells.

  6. Let-7 microRNAs are developmentally regulated in circulating human erythroid cells

    Directory of Open Access Journals (Sweden)

    Reed Christopher

    2009-11-01

    Full Text Available Abstract Background MicroRNAs are ~22nt-long small non-coding RNAs that negatively regulate protein expression through mRNA degradation or translational repression in eukaryotic cells. Based upon their importance in regulating development and terminal differentiation in model systems, erythrocyte microRNA profiles were examined at birth and in adults to determine if changes in their abundance coincide with the developmental phenomenon of hemoglobin switching. Methods Expression profiling of microRNA was performed using total RNA from four adult peripheral blood samples compared to four cord blood samples after depletion of plasma, platelets, and nucleated cells. Labeled RNAs were hybridized to custom spotted arrays containing 474 human microRNA species (miRBase release 9.1. Total RNA from Epstein-Barr virus (EBV-transformed lymphoblastoid cell lines provided a hybridization reference for all samples to generate microRNA abundance profile for each sample. Results Among 206 detected miRNAs, 79% of the microRNAs were present at equivalent levels in both cord and adult cells. By comparison, 37 microRNAs were up-regulated and 4 microRNAs were down-regulated in adult erythroid cells (fold change > 2; p let-7 miRNA family consistently demonstrated increased abundance in the adult samples by array-based analyses that were confirmed by quantitative PCR (4.5 to 18.4 fold increases in 6 of 8 let-7 miRNA. Profiling studies of messenger RNA (mRNA in these cells additionally demonstrated down-regulation of ten let-7 target genes in the adult cells. Conclusion These data suggest that a consistent pattern of up-regulation among let-7 miRNA in circulating erythroid cells occurs in association with hemoglobin switching during the fetal-to-adult developmental transition in humans.

  7. Induction of autophagy by Imatinib sequesters Bcr-Abl in autophagosomes and down-regulates Bcr-Abl protein.

    LENUS (Irish Health Repository)

    Elzinga, Baukje M

    2013-06-01

    Chronic Myeloid Leukemia (CML) is a disease of hematopoietic stem cells which harbor the chimeric gene Bcr-Abl. Expression levels of this constitutively active tyrosine kinase are critical for response to tyrosine kinase inhibitor treatment and also disease progression, yet the regulation of protein stability is poorly understood. We have previously demonstrated that imatinib can induce autophagy in Bcr-Abl expressing cells. Autophagy has been associated with the clearance of large macromolecular signaling complexes and abnormal proteins, however, the contribution of autophagy to the turnover of Bcr-Abl protein in imatinib treated cells is unknown. In this study, we show that following imatinib treatment, Bcr-Abl is sequestered into vesicular structures that co-localize with the autophagy marker LC3 or GABARAP. This association is inhibited by siRNA mediated knockdown of autophagy regulators (Beclin 1\\/ATG7). Pharmacological inhibition of autophagy also reduced Bcr-Abl\\/LC3 co-localization in both K562 and CML patient cells. Bcr-Abl protein expression was reduced with imatinib treatment. Inhibition of both autophagy and proteasome activity in imatinib treated cells was required to restore Bcr-Abl protein levels to those of untreated cells. This ability to down-regulate Bcr-Abl protein levels through the induction of autophagy may be an additional and important feature of the activity of imatinib.

  8. Amniotic Fluid Cells Proliferation in Normal and Down Syndrome Subjects

    Directory of Open Access Journals (Sweden)

    Honcea Adina

    2016-02-01

    Full Text Available Down Syndrome/Trisomy 21 is the most common chromosomal anomaly, and it represents the most common congenital cause of infants’ intellectual disability. Subjects with this syndrome are affected by degenerative processes caused by accelerated aging or unknown ethyologies. In recent years, accumulating evidence revealed increased potential of amniotic fluid-derived stem cells to be used in regenerative therapy. Our aim was to assess differences in immunophenotype, cell morphology and proliferation of amniotic fluid cells from normal and Down Syndrome pregnancies using a quantitative cytometry approach. Results revealed the emergence of a population of small sized cells in Down Syndrome derived amniotic fluid cells that are readily visible upon microscopic inspection. Hence, the fluorescence–based quantitative image cytometry determinations showed a tendency of decrease in both cell and nuclei size in trisomy, with no significant modification in nuclei circularity, as measured following actin cytoskeleton and nuclei labeling. The propensity of Ki67 positive cells was found to be increased in Down Syndrome derived cells (48.92% as compared to normal specimens (28.68%. However, cells in S and G2/M cell cycle phases decreased from 32.91% to 4.49% in diseased cells. Further studies are devoted to understanding the molecular basis of the observed differences in the proliferation ability of Down Syndrome amniotic cells, in order to evaluate the potential therapeutic effect of amniotic fluid stem cells for tissue regeneration in subjects with trisomy and to find correlations between amniotic cells phenotype and patient prognosis.

  9. H-ferritin-regulated microRNAs modulate gene expression in K562 cells.

    Directory of Open Access Journals (Sweden)

    Flavia Biamonte

    Full Text Available In a previous study, we showed that the silencing of the heavy subunit (FHC offerritin, the central iron storage molecule in the cell, is accompanied by a modification in global gene expression. In this work, we explored whether different FHC amounts might modulate miRNA expression levels in K562 cells and studied the impact of miRNAs in gene expression profile modifications. To this aim, we performed a miRNA-mRNA integrative analysis in K562 silenced for FHC (K562shFHC comparing it with K562 transduced with scrambled RNA (K562shRNA. Four miRNAs, namely hsa-let-7g, hsa-let-7f, hsa-let-7i and hsa-miR-125b, were significantly up-regulated in silenced cells. The remarkable down-regulation of these miRNAs, following FHC expression rescue, supports a specific relation between FHC silencing and miRNA-modulation. The integration of target predictions with miRNA and gene expression profiles led to the identification of a regulatory network which includes the miRNAs up-regulated by FHC silencing, as well as91 down-regulated putative target genes. These genes were further classified in 9 networks; the highest scoring network, "Cell Death and Survival, Hematological System Development and Function, Hematopoiesis", is composed by 18 focus molecules including RAF1 and ERK1/2. We confirmed that, following FHC silencing, ERK1/2 phosphorylation is severely impaired and that RAF1 mRNA is significantly down-regulated. Taken all together, our data indicate that, in our experimental model, FHC silencing may affect RAF1/pERK1/2 levels through the modulation of a specific set of miRNAs and add new insights in to the relationship among iron homeostasis and miRNAs.

  10. SENP1 attenuates the liver fibrosis through down-regulating the expression of SMAD2.

    Science.gov (United States)

    Wu, Linshi; Qiu, Weiqing; Sun, Jianhua; Wang, Jian

    2018-01-01

    To investigate whether SENP1 could play a regulating role in the liver fibrosis process, the Sprague-Dawley (SD) rats were used to establish the liver fibrosis rat models by intraperitoneally injecting with 1 ml/kg of 10% CCl 4 , while the control normal rats were injected with olive oil. Then confirmation experiments to verify the successful establishment of these models were conducted by detecting the cellular and lobular architecture, and liver function indexes using hematoxylin-eosin staining, Masson's trichrome staining and microplate method, respectively. In addition, the expression levels of fibrosis markers including collagen I, collagen III, α-SMA and TGF-β1 were inspected using quantitative real-time PCR (qRT-PCR), as well as SMAD2. Subsequently, the relative mRNA and protein level of SENP1 was also determined via qRT-PCR and western blot analysis. Next, the HSC-T6 cells of SENP1 knock-down were constructed and used to test the relative protein expression levels of α-SMA and SMAD2 in these cells. The results of hematoxylin-eosin staining, Masson's trichrome staining and microplate method turned out that the rat liver fibrosis models were constructed successfully, which was further confirmed by the increased expression of collagen I, collagen III, α-SMA and TGF-β1 in mRNA and protein level, as well as SMAD2. Then the expression of SENP1 was overexpressed in the rat liver fibrosis models induced by CCl 4 and the TGF-β1 treatment could increase the protein expression level of collagen I, collagen III and α-SMA. Lastly, the SENP1 knockdown HSC-T6 cells were successfully constructed, while the silence of SENP1 down-regulated the protein expression of α-SMA and SMAD2. In conclusion, this study provided a new regulation mechanism about the liver fibrosis process. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Down-regulation of MicroRNAs 222/221 in Acute Myelogenous Leukemia with Deranged Core-Binding Factor Subunits

    Directory of Open Access Journals (Sweden)

    Matteo Brioschi

    2010-11-01

    Full Text Available Core-binding factor leukemia (CBFL is a subgroup of acutemyeloid leukemia (AML characterized by genetic mutations involving the subunits of the core-binding factor (CBF. The leukemogenesis model for CBFL posits that one, or more, gene mutations inducing increased cell proliferation and/or inhibition of apoptosis cooperate with CBF mutations for leukemia development. One of the most commonmutations associated with CBF mutations involves the KIT receptor. A high expression of KIT is a hallmark of a high proportion of CBFL. Previous studies indicate that microRNA (MIR 222/221 targets the 3′ untranslated region of the KIT messenger RNA and our observation that AML1 can bind the MIR-222/221 promoter, we hypothesized that MIR-222/221 represents the link between CBF and KIT. Here, we show that MIR-222/221 expression is upregulated after myeloid differentiation of normal bone marrow AC133+ stem progenitor cells. CBFL blasts with either t(8;21 or inv(16 CBF rearrangements with high expression levels of KIT (CD117 display a significantly lower level of MIR-222/221 expression than non-CBFL blasts. Consistently, we found that the t(8;21 AML1-MTG8 fusion protein binds the MIR-222/221 promoter and induces transcriptional repression of a MIR-222/221-LUC reporter. Because of the highly conserved sequence homology, we demonstrated concomitant MIR-222/221 down-regulation and KIT up-regulation in the 32D/WT1 mouse cell model carrying the AML1-MTG16 fusion protein. This study provides the first hint that CBFL-associated fusion proteins may lead to up-regulation of the KIT receptor by down-regulating MIR-222/221, thus explaining the concomitant occurrence of CBF genetic rearrangements and overexpression of wild type or mutant KIT in AML.

  12. Down-regulation of POLYGALACTURONASE1 alters firmness, tensile strength and water loss in apple (Malus x domestica fruit

    Directory of Open Access Journals (Sweden)

    Atkinson Ross G

    2012-08-01

    Full Text Available Abstract Background While there is now a significant body of research correlating apple (Malus x domestica fruit softening with the cell wall hydrolase ENDO-POLYGALACTURONASE1 (PG1, there is currently little knowledge of its physiological effects in planta. This study examined the effect of down regulation of PG1 expression in ‘Royal Gala’ apples, a cultivar that typically has high levels of PG1, and softens during fruit ripening. Results PG1-suppressed ‘Royal Gala’ apples harvested from multiple seasons were firmer than controls after ripening, and intercellular adhesion was higher. Cell wall analyses indicated changes in yield and composition of pectin, and a higher molecular weight distribution of CDTA-soluble pectin. Structural analyses revealed more ruptured cells and free juice in pulled apart sections, suggesting improved integrity of intercellular connections and consequent cell rupture due to failure of the primary cell walls under stress. PG1-suppressed lines also had reduced expansion of cells in the hypodermis of ripe apples, resulting in more densely packed cells in this layer. This change in morphology appears to be linked with reduced transpirational water loss in the fruit. Conclusions These findings confirm PG1’s role in apple fruit softening and suggests that this is achieved in part by reducing cellular adhesion. This is consistent with previous studies carried out in strawberry but not with those performed in tomato. In apple PG1 also appears to influence other fruit texture characters such as juiciness and water loss.

  13. Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis.

    Science.gov (United States)

    Breiteneder-Geleff, S.; Matsui, K.; Soleiman, A.; Meraner, P.; Poczewski, H.; Kalt, R.; Schaffner, G.; Kerjaschki, D.

    1997-01-01

    Puromycin aminonucleoside nephrosis (PAN), a rat model of human minimal change nephropathy, is characterized by extensive flattening of glomerular epithelial cell (podocyte) foot processes and by severe proteinuria. For comparison of expression of glomerular membrane proteins of normal and PAN rats, a membrane protein fraction of isolated rat glomeruli was prepared and monoclonal antibodies were raised against it. An IgG-secreting clone designated LF3 was selected that specifically immunolabeled podocytes of normal but not of PAN rats. The antigen of LF3 IgG was identified as a 43-kd glycoprotein. Molecular cloning of its cDNA was performed in a delta gt11 expression library prepared from mRNA of isolated rat glomeruli. The predicted amino acid sequence indicated a 166-amino-acid integral membrane protein with a single membrane-spanning domain, two potential phosphorylation sites in its short cytoplasmic tail, and six potential O-glycosylation sites in the large ectodomain. High amino acid sequence identities were found to membrane glycoproteins of rat lung and bone and mouse thymus epithelial cells as well as to a phorbol-ester-induced protein in a mouse osteoblast cell line and to a canine influenza C virus receptor. In PAN, expression of this 43-kd protein was selectively reduced to < 30%, as determined by quantitative immunogold electron microscopy, immunoblotting, and Northern blotting. These data provide evidence that transcription of the 43-kd transmembrane podocyte glycoprotein is specifically down-regulated in PAN. To indicate that this protein could be associated with transformation of arborized foot processes to flat feet (Latin, pes planus) we have called it podoplanin. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 10 Figure 12 Figure 13 Figure 14 Figure 15 PMID:9327748

  14. Synergistic Effect of Subtoxic-dose Cisplatin and TRAIL to Mediate Apoptosis by Down-regulating Decoy Receptor 2 and Up-regulating Caspase-8, Caspase-9 and Bax Expression on NCI-H460 and A549 Cells

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhang

    2013-05-01

    Full Text Available Objective(s: Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL can selectively induce apoptosis in tumor cells, more than half of tumors including non-small cell lung cancer (NSCLC exhibit TRAIL-resistance. The purpose of this study was to determine whether subtoxic-dose cisplatin and TRAIL could synergistically enhance apoptosis on NSCLC cells and investigate its underlying mechanisms. Materials and Methods:NCI-H460 and A549 cells were treated with TRAIL alone, cisplatin alone or combination treatment in this study. The cytotoxicity was evaluated according to Sulforhodamine B assay, and apoptosis was examined using Hoechst 33342 staining and flow cytometry. The mRNA and protein levels of TRAIL receptors and apoptotic proteins including caspase-8, caspase-9, Bcl-2 and Bax were determined by RT-PCR and Western blotting, respectively. Results:Our results showed that NCI-H460 cells were sensitive to TRAIL, whereas A549 cells were resistant. However, subtoxic-dose cisplatin could enhance the both cells to TRAIL-mediated cell proliferation inhibition and apoptosis. The underlying mechanisms might be associated with the down-regulation of DcR2 and up-regulation of Caspase-8, Caspase-9 and Bax. Conclusion:Subtoxic-dose cisplatin could enhance both TRAIL- sensitive and TRAIL- resistant NSCLC cells to TRAIL-mediated apoptosis. These findings motivated further studies to evaluate such a combinatory therapeutic strategy against NSCLC in the animal models.

  15. Glucose Regulates Cyclin D2 Expression in Quiescent and Replicating Pancreatic β-Cells Through Glycolysis and Calcium Channels

    Science.gov (United States)

    Salpeter, Seth J.; Klochendler, Agnes; Weinberg-Corem, Noa; Porat, Shay; Granot, Zvi; Shapiro, A. M. James; Magnuson, Mark A.; Eden, Amir; Grimsby, Joseph; Glaser, Benjamin

    2011-01-01

    Understanding the molecular triggers of pancreatic β-cell proliferation may facilitate the development of regenerative therapies for diabetes. Genetic studies have demonstrated an important role for cyclin D2 in β-cell proliferation and mass homeostasis, but its specific function in β-cell division and mechanism of regulation remain unclear. Here, we report that cyclin D2 is present at high levels in the nucleus of quiescent β-cells in vivo. The major regulator of cyclin D2 expression is glucose, acting via glycolysis and calcium channels in the β-cell to control cyclin D2 mRNA levels. Furthermore, cyclin D2 mRNA is down-regulated during S-G2-M phases of each β-cell division, via a mechanism that is also affected by glucose metabolism. Thus, glucose metabolism maintains high levels of nuclear cyclin D2 in quiescent β-cells and modulates the down-regulation of cyclin D2 in replicating β-cells. These data challenge the standard model for regulation of cyclin D2 during the cell division cycle and suggest cyclin D2 as a molecular link between glucose levels and β-cell replication. PMID:21521747

  16. BRAF activated non-coding RNA (BANCR) promoting gastric cancer cells proliferation via regulation of NF-κB1

    International Nuclear Information System (INIS)

    Zhang, Zhi-Xin; Liu, Zhi-Qiang; Jiang, Biao; Lu, Xin-Yang; Ning, Xiao-Fei; Yuan, Chuan-Tao; Wang, Ai-Liang

    2015-01-01

    Background and objective: Long non-coding RNA, BANCR, has been demonstrated to contribute to the proliferation and migration of tumors. However, its molecular mechanism underlying gastric cancer is still unknown. In present study, we investigated whether BANCR was involved in the development of gastric cancer cells via regulation of NF-κB1. Methods: Human gastric cancer tissues were isolated as well as human gastric cell lines MGC803 and BGC823 were cultured to investigate the role of BANCR in gastric cancer. Results: BANCR expression was significantly up-regulated in gastric tumor tissues and gastric cell lines. Down-regulation of BANCR inhibited gastric cancer cell growth and promoted cell apoptosis, and it also contributed to a significant decrease of NF-κB1 (P50/105) expression and 3′UTR of NF-κB1 activity. Overexpression of NF-κB1 reversed the effect of BANCR on cancer cell growth and apoptosis. MiroRNA-9 (miR-9) targeted NF-κB1, and miR-9 inhibitor also reversed the effects of BANCR on gastric cancer cell growth and apoptosis. Conclusion: BANCR was highly expressed both in gastric tumor tissues and in cancer cells. NF-κB1 and miR-9 were involved in the role of BANCR in gastric cancer cell growth and apoptosis. - Highlights: • BANCR up-regulated in gastric cancer (GC) tissues and cell lines MGC803 and BGC823. • Down-regulation of BANCR inhibited GC cell growth and promoted cell apoptosis. • Down-regulation of BANCR contributed to decreased 3′UTR of NF-κB1 and its expression. • Overexpressed NF-κB1 reversed the effect of BANCR on GC cell growth. • miR-9 inhibitor reversed the effect of BANCR on cancer GC cell growth

  17. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response

    International Nuclear Information System (INIS)

    Soto, Armando; DelRaso, Nicholas J.; Schlager, John J.; Chan, Victor T.

    2008-01-01

    Renal toxicity can commonly occur after exposure to xenobiotics, pharmaceutical agents or environmental pollutants. Changes in the gene expression in kidney parenchymal cells that precede and/or accompany renal injury may be hallmark critical events in the onset of pathologic changes of renal functions. Over the last several years, transcriptomic analysis has evolved to enable simultaneous analysis of the expression profiles of tens of thousands of genes in response to various endogenous and exogenous stimuli. In this study, we investigated gene expression changes in the kidney after acute exposure to a nephrotoxin, D-serine, which targets the proximal tubule of the kidney. Male F-344 rats injected intraperitoneally with a single dose of D-serine (5, 20, 50, 200 or 500 mg/kg), and gene expression profiles in the kidney were determined using the Affymetrix RAE230A gene arrays at 96 h post-dosing. D-Serine treatment resulted in the up- and down-regulation of 1158 and 749 genes, respectively, over the entire dose range based on the intersection of the results of t-test, p < 0.01 over two consecutive doses, and ANOVA with Bonferonni correction for multiple testing. Interestingly, both the up-and down-regulated genes show a unified dose response pattern as revealed in the self-organized map clustering analysis using the expression profiles of the 1907 differentially expressed genes as input data. There appears to be minimal changes in the expression level of these genes in the dose range of 5-50 mg/kg, while the most prominent changes were observed at the highest doses tested, i.e. 200 and 500 mg/kg. Pathway analysis of the differentially expressed genes showed perturbation of a large number of biological processes/pathways after D-serine exposure. Among the up-regulated pathways are actin cytoskeleton biogenesis and organization, apoptosis, cell cycle regulation, chromatin assembly, excision repair of damaged DNA, DNA replication and packaging, protein biosynthesis

  18. Molecular conservation of estrogen-response associated with cell cycle regulation, hormonal carcinogenesis and cancer in zebrafish and human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Govindarajan Kunde R

    2011-05-01

    Full Text Available Abstract Background The zebrafish is recognized as a versatile cancer and drug screening model. However, it is not known whether the estrogen-responsive genes and signaling pathways that are involved in estrogen-dependent carcinogenesis and human cancer are operating in zebrafish. In order to determine the potential of zebrafish model for estrogen-related cancer research, we investigated the molecular conservation of estrogen responses operating in both zebrafish and human cancer cell lines. Methods Microarray experiment was performed on zebrafish exposed to estrogen (17β-estradiol; a classified carcinogen and an anti-estrogen (ICI 182,780. Zebrafish estrogen-responsive genes sensitive to both estrogen and anti-estrogen were identified and validated using real-time PCR. Human homolog mapping and knowledge-based data mining were performed on zebrafish estrogen responsive genes followed by estrogen receptor binding site analysis and comparative transcriptome analysis with estrogen-responsive human cancer cell lines (MCF7, T47D and Ishikawa. Results Our transcriptome analysis captured multiple estrogen-responsive genes and signaling pathways that increased cell proliferation, promoted DNA damage and genome instability, and decreased tumor suppressing effects, suggesting a common mechanism for estrogen-induced carcinogenesis. Comparative analysis revealed a core set of conserved estrogen-responsive genes that demonstrate enrichment of estrogen receptor binding sites and cell cycle signaling pathways. Knowledge-based and network analysis led us to propose that the mechanism involving estrogen-activated estrogen receptor mediated down-regulation of human homolog HES1 followed by up-regulation cell cycle-related genes (human homologs E2F4, CDK2, CCNA, CCNB, CCNE, is highly conserved, and this mechanism may involve novel crosstalk with basal AHR. We also identified mitotic roles of polo-like kinase as a conserved signaling pathway with multiple entry

  19. An Integrated Cell Purification and Genomics Strategy Reveals Multiple Regulators of Pancreas Development

    Science.gov (United States)

    Benitez, Cecil M.; Qu, Kun; Sugiyama, Takuya; Pauerstein, Philip T.; Liu, Yinghua; Tsai, Jennifer; Gu, Xueying; Ghodasara, Amar; Arda, H. Efsun; Zhang, Jiajing; Dekker, Joseph D.; Tucker, Haley O.; Chang, Howard Y.; Kim, Seung K.

    2014-01-01

    The regulatory logic underlying global transcriptional programs controlling development of visceral organs like the pancreas remains undiscovered. Here, we profiled gene expression in 12 purified populations of fetal and adult pancreatic epithelial cells representing crucial progenitor cell subsets, and their endocrine or exocrine progeny. Using probabilistic models to decode the general programs organizing gene expression, we identified co-expressed gene sets in cell subsets that revealed patterns and processes governing progenitor cell development, lineage specification, and endocrine cell maturation. Purification of Neurog3 mutant cells and module network analysis linked established regulators such as Neurog3 to unrecognized gene targets and roles in pancreas development. Iterative module network analysis nominated and prioritized transcriptional regulators, including diabetes risk genes. Functional validation of a subset of candidate regulators with corresponding mutant mice revealed that the transcription factors Etv1, Prdm16, Runx1t1 and Bcl11a are essential for pancreas development. Our integrated approach provides a unique framework for identifying regulatory genes and functional gene sets underlying pancreas development and associated diseases such as diabetes mellitus. PMID:25330008

  20. An integrated cell purification and genomics strategy reveals multiple regulators of pancreas development.

    Directory of Open Access Journals (Sweden)

    Cecil M Benitez

    2014-10-01

    Full Text Available The regulatory logic underlying global transcriptional programs controlling development of visceral organs like the pancreas remains undiscovered. Here, we profiled gene expression in 12 purified populations of fetal and adult pancreatic epithelial cells representing crucial progenitor cell subsets, and their endocrine or exocrine progeny. Using probabilistic models to decode the general programs organizing gene expression, we identified co-expressed gene sets in cell subsets that revealed patterns and processes governing progenitor cell development, lineage specification, and endocrine cell maturation. Purification of Neurog3 mutant cells and module network analysis linked established regulators such as Neurog3 to unrecognized gene targets and roles in pancreas development. Iterative module network analysis nominated and prioritized transcriptional regulators, including diabetes risk genes. Functional validation of a subset of candidate regulators with corresponding mutant mice revealed that the transcription factors Etv1, Prdm16, Runx1t1 and Bcl11a are essential for pancreas development. Our integrated approach provides a unique framework for identifying regulatory genes and functional gene sets underlying pancreas development and associated diseases such as diabetes mellitus.

  1. Chlamydia trachomatis In Vivo to In Vitro Transition Reveals Mechanisms of Phase Variation and Down-Regulation of Virulence Factors.

    Directory of Open Access Journals (Sweden)

    Vítor Borges

    Full Text Available Research on the obligate intracellular bacterium Chlamydia trachomatis demands culture in cell-lines, but the adaptive process behind the in vivo to in vitro transition is not understood. We assessed the genomic and transcriptomic dynamics underlying C. trachomatis in vitro adaptation of strains representing the three disease groups (ocular, epithelial-genital and lymphogranuloma venereum propagated in epithelial cells over multiple passages. We found genetic features potentially underlying phase variation mechanisms mediating the regulation of a lipid A biosynthesis enzyme (CT533/LpxC, and the functionality of the cytotoxin (CT166 through an ON/OFF mechanism. We detected inactivating mutations in CT713/porB, a scenario suggesting metabolic adaptation to the available carbon source. CT135 was inactivated in a tropism-specific manner, with CT135-negative clones emerging for all epithelial-genital populations (but not for LGV and ocular populations and rapidly increasing in frequency (~23% mutants per 10 passages. RNA-sequencing analyses revealed that a deletion event involving CT135 impacted the expression of multiple virulence factors, namely effectors known to play a role in the C. trachomatis host-cell invasion or subversion (e.g., CT456/Tarp, CT694, CT875/TepP and CT868/ChlaDub1. This reflects a scenario of attenuation of C. trachomatis virulence in vitro, which may take place independently or in a cumulative fashion with the also observed down-regulation of plasmid-related virulence factors. This issue may be relevant on behalf of the recent advances in Chlamydia mutagenesis and transformation where culture propagation for selecting mutants/transformants is mandatory. Finally, there was an increase in the growth rate for all strains, reflecting gradual fitness enhancement over time. In general, these data shed light on the adaptive process underlying the C. trachomatis in vivo to in vitro transition, and indicates that it would be prudent to

  2. Culture supernatants of oral cancer cells induce impaired IFN-α production of pDCs partly through the down-regulation of TLR-9 expression.

    Science.gov (United States)

    Han, Nannan; Zhang, Zun; Jv, Houyu; Hu, Jingzhou; Ruan, Min; Zhang, Chenping

    2018-06-05

    The aim of the present study was to investigate whether tumor-derived supernatants down-regulate the immune function of plasmacytoid dendritic cells (pDCs) in oral cancer and the potential molecular mechanisms of this effect. Immunohistochemistry (IHC) and flow cytometry were used to detect tumor-infiltrating and peripheral blood pDCs. MTS and flow cytometry were employed to evaluate the immune response of CD4 + T cells. Real-time PCR and ELISA assays were used to identify TLR-7 and TLR-9 expression, IFN-α production and tumor-secreted soluble cytokines. The proportion of pDCs (0.121%±0.043%) was significantly higher in Oral squamous cell carcinoma (OSCC) samples than in normal tissue (0.023%±0.016%) (P = 0.021). TLR9 mRNA was significantly lower in tumor-infiltrating pDCs and positively correlated to low IFN-α production (r = 0.956; Poral cancer cells negatively regulated TLR9 mRNA expression and the subsequent IFN-α production of pDCs, which inhibited the immune response of CD4 + T cells. The neutralizing antibodies blocking assay showed that the specific inhibitory effect of pDC functionality was associated with the soluble fraction of the oral cancer environment, which is mainly mediated by IL-10 and TGF-β cooperation. Tumor-derived supernatants may impair the function of tumor-infiltrating pDCs, which subsequently decreases the immune response of CD4 + T cells in human oral cancer through TGF-β- and IL-10- dependent mechanisms. Careful manipulation of these impaired pDCs may help develop an important alternative immunotherapy for the treatment of oral cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Minocycline down-regulates topical mucosal inflammation during the application of microbicide candidates.

    Directory of Open Access Journals (Sweden)

    Liangzhu Li

    Full Text Available An effective anti-human immunodeficiency virus-1 (HIV-1 microbicide should exert its action in the absence of causing aberrant activation of topical immunity that will increase the risk of HIV acquisition. In the present study, we demonstrated that the vaginal application of cellulose sulfate (CS gel induced topical mucosal inflammatory responses; the addition of minocycline to CS gel could significantly attenuate the inflammation in a mice model. The combined gel of CS plus minocycline not only reduced the production of inflammatory cytokines in cervicovaginal lavages (CVLs, also down-regulated the activation of CD4+ T cells and the recruitment of other immune cells including HIV target cells into vaginal tissues. Furthermore, an In vitro HIV-1 pseudovirus infection inhibition assay showed that the combined gel decreased the infection efficacy of different subtypes of HIV-1 pseudoviruses compared with that of CS gel alone. These results implicate that minocycline could be integrated into microbicide formulation to suppress the aberrant activation of topical mucosal immunity and enhance the safety profile during the application of microbicides.

  4. Activation of Adenosine Receptor A2A Increases HSC Proliferation and Inhibits Death and Senescence by Down-regulation of p53 and Rb

    Directory of Open Access Journals (Sweden)

    Md. Kaimul eAhsan

    2014-04-01

    Full Text Available Background & Aims: During fibrosis hepatic stellate cells (HSC undergo activation, proliferation and senescence but the regulation of these important processes is poorly understood. The adenosine A2A receptor (A2A is known to be present on HSC, and its activation results in liver fibrosis. In this study, we tested if A2A has a role in the regulation of HSC proliferation, apoptosis, senescence, and the relevant molecular mechanism.Methods: The ability of adenosine to regulate p53 and Rb protein levels, proliferation, apoptosis and senescence was tested in the human HSC cell line LX-2 and rat primary HSC.Results: Adenosine receptor activation down-regulates p53 and Rb protein levels, increases BrdU incorporation and increases cell survival in LX-2 cells and in primary rat HSC. These effects of NECA were reproduced by an adenosine A2A receptor specific agonist (CGS21680 and blocked by a specific antagonist (ZM241385. By day twenty-one of culture primary rat HSC entered senescence and expressed -gal which was significantly inhibited by NECA. Furthermore, NECA induced down regulation of p53 and Rb and Rac1, and decreased phosphorylation of p44-42 MAP Kinase in LX-2 cells and primary rat HSC. These effects were reproduced by the cAMP analog 8-Bromo-cAMP, and the adenylyl cyclase activator forskolin, and were blocked by PKA inhibitors.Conclusions: These results demonstrate that A2A receptor regulates a number of HSC fate decisions and induces greater HSC proliferation, reduces apoptosis and senescence by decreasing p53 and Rb through cAMP-PKA/Rac1/p38 MAPK pathway. This provides a mechanism for adenosine induced HSC regulation and liver fibrosis.

  5. NFBD1/MDC1 participates in the regulation of G2/M transition in mammalian cells

    International Nuclear Information System (INIS)

    Bu, Youquan; Suenaga, Yusuke; Okoshi, Rintaro; Sang, Meixiang; Kubo, Natsumi; Song, Fangzhou; Nakagawara, Akira; Ozaki, Toshinori

    2010-01-01

    NFBD1/MDC1 is a large nuclear protein involved in the early cellular response to DNA damage. Upon DNA damage, NFBD1 has an ability to facilitate the efficient DNA repair. In the present study, we have found that, in addition to DNA damage response, NFBD1 plays a critical role in the regulation of G2/M transition. Expression study using synchronized HeLa cells demonstrated that, like the mitotic kinase Plk1, NFBD1 expression level is maximal in G2/M-phase of the cell cycle. siRNA-mediated knockdown of NFBD1 resulted in G2/M arrest as well as simultaneous apoptosis in association with a significant increase in the amounts of γH2AX and pro-apoptotic p73. Since a remarkable down-regulation of mitotic phospho-histone H3 was detectable in NFBD1-knocked down cells, it is likely that knocking down of NFBD1 inhibits G2/M transition. Taken together, our present findings suggest that NFBD1 has a pivotal role in the regulation of proper mitotic entry.

  6. BDNF val66met Polymorphism Impairs Hippocampal Long-Term Depression by Down-Regulation of 5-HT3 Receptors

    Directory of Open Access Journals (Sweden)

    Rui Hao

    2017-10-01

    Full Text Available Brain-derived neurotrophic factor (BDNF is a key regulator of neuronal plasticity and cognitive functions. BDNF val66met polymorphism, a human single-nucleotide polymorphism (SNP in the pro-domain of BDNF gene, is associated with deficits in activity-dependent BDNF secretion and hippocampus-dependent memory. However, the underlying mechanism remains unclear. Here we show that in the BDNFMet/Met mouse line mimicking the human SNP, BDNF expression in the hippocampus was decreased. There was a reduction in the total number of cells in hippocampal CA1 region, while hippocampal expression of mRNAs for NR2a, 2b, GluR1, 2 and GABAARβ3 subunits were up-regulated. Although basal glutamatergic neurotransmission was unaltered, hippocampal long-term depression (LTD induced by low-frequency stimulation was impaired, which was partially rescued by exogenous application of BDNF. Interestingly, 5-HT3a receptors were down-regulated in the hippocampus of BDNFMet/Met mice, whereas 5-HT2c receptors were up-regulated. Moreover, impaired LTD in BDNFMet/Met mice was reversed by 5-HT3aR agonist. Thus, these observations indicate that BDNF val66met polymorphism changes hippocampal synaptic plasticity via down-regulation of 5-HT3a receptors, which may underlie cognition dysfunction of Met allele carriers.

  7. Quantitative Impact of Plasma Clearance and Down-regulation on GLP-1 Receptor Molecular Imaging.

    Science.gov (United States)

    Zhang, Liang; Thurber, Greg M

    2016-02-01

    Quantitative molecular imaging of beta cell mass (BCM) would enable early detection and treatment monitoring of type 1 diabetes. The glucagon-like peptide-1 (GLP-1) receptor is an attractive target due to its beta cell specificity and cell surface location. We quantitatively investigated the impact of plasma clearance and receptor internalization on targeting efficiency in healthy B6 mice. Four exenatide-based probes were synthesized that varied in molecular weight, binding affinity, and plasma clearance. The GLP-1 receptor internalization rate and in vivo receptor expression were quantified. Receptor internalization (54,000 receptors/cell in vivo) decreased significantly within minutes, reducing the benefit of a slower-clearing agent. The multimers and albumin binding probes had higher kidney and liver uptake, respectively. Slow plasma clearance is beneficial for GLP-1 receptor peptide therapeutics. However, for exendin-based imaging of islets, down-regulation of the GLP-1 receptor and non-specific background uptake result in a higher target-to-background ratio for fast-clearing agents.

  8. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction.

    Science.gov (United States)

    Yan, Meiping; Zhang, Xinhua; Chen, Ao; Gu, Wei; Liu, Jie; Ren, Xiaojiao; Zhang, Jianping; Wu, Xiaoxiong; Place, Aaron T; Minshall, Richard D; Liu, Guoquan

    2017-11-01

    Intercellular adhesion molecule-1 (ICAM-1) mediates the firm adhesion of leukocytes to endothelial cells and initiates subsequent signaling that promotes their transendothelial migration (TEM). Vascular endothelial (VE)-cadherin plays a critical role in endothelial cell-cell adhesion, thereby controlling endothelial permeability and leukocyte transmigration. This study aimed to determine the molecular signaling events that originate from the ICAM-1-mediated firm adhesion of neutrophils that regulate VE-cadherin's role as a negative regulator of leukocyte transmigration. We observed that ICAM-1 interacts with Src homology domain 2-containing phosphatase-2 (SHP-2), and SHP-2 down-regulation via silencing of small interfering RNA in endothelial cells enhanced neutrophil adhesion to endothelial cells but inhibited neutrophil transmigration. We also found that VE-cadherin associated with the ICAM-1-SHP-2 complex. Moreover, whereas the activation of ICAM-1 leads to VE-cadherin dissociation from ICAM-1 and VE-cadherin association with actin, SHP-2 down-regulation prevented ICAM-1-VE-cadherin association and promoted VE-cadherin-actin association. Furthermore, SHP-2 down-regulation in vivo promoted LPS-induced neutrophil recruitment in mouse lung but delayed neutrophil extravasation. These results suggest that SHP-2- via association with ICAM-1-mediates ICAM-1-induced Src activation and modulates VE-cadherin switching association with ICAM-1 or actin, thereby negatively regulating neutrophil adhesion to endothelial cells and enhancing their TEM.-Yan, M., Zhang, X., Chen, A., Gu, W., Liu, J., Ren, X., Zhang, J., Wu, X., Place, A. T., Minshall, R. D., Liu, G. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction. © FASEB.

  9. Hath1 inhibits proliferation of colon cancer cells probably through up-regulating expression of Muc2 and p27 and down-regulating expression of cyclin D1.

    Science.gov (United States)

    Zhu, Dai-Hua; Niu, Bai-Lin; Du, Hui-Min; Ren, Ke; Sun, Jian-Ming; Gong, Jian-Ping

    2012-01-01

    Previous studies showed that Math1 homologous to human Hath1 can cause mouse goblet cells to differentiate. In this context it is important that the majority of colon cancers have few goblet cells. In the present study, the potential role of Hath1 in colon carcinogenesis was investigated. Sections of paraffin-embedded tissues were used to investigate the goblet cell population of normal colon mucosa, mucosa adjacent colon cancer and colon cancer samples from 48 patients. Hath1 and Muc2 expression in these samples were tested by immunohistochemistry, quantitative real-time reverse transcription -PCR and Western blotting. After the recombinant plasmid, pcDNA3.1(+)-Hath1 had been transfected into HT29 colon cancer cells, three clones were selected randomly to test the levels of Hath1 mRNA, Muc2 mRNA, Hath1, Muc2, cyclin D1 and p27 by quantitative real-time reverse transcription-PCR and Western blotting. Moreover, the proliferative ability of HT29 cells introduced with Hath1 was assessed by means of colony formation assay and xenografting. Expression of Hath1, Muc2, cyclin D1 and p27 in the xenograft tumors was also detected by Western blotting. No goblet cells were to be found in colon cancer and levels of Hath1 mRNA and Hath1, Muc2 mRNA and Muc2 were significantly down-regulated. Hath1 could decrease cyclin D1, increase p27 and Muc2 in HT29 cells and inhibit their proliferation. Hath1 may be an anti-oncogene in colon carcinogenesis.

  10. Retinoic acid signalling in thymocytes regulates T cell development

    DEFF Research Database (Denmark)

    Wendland, Kerstin; Sitnik, Katarzyna Maria; Kotarsky, Knut

    in the regulatory regions of targetgenes. RA has been reported to play a direct role in regulating multiple aspects of peripheralT cell responses1, but whether endogenous RA signalling occurs in developingthymocytes and the potential impact of such signals in regulating T cell developmentremains unclear. To address......RARα. This blocks RA signalling in developing thymocytes from the DN3/4 stageonwards and thus allows us to study the role of RA in T cell development...

  11. Frequent down-regulation of ABC transporter genes in prostate cancer

    International Nuclear Information System (INIS)

    Demidenko, Rita; Razanauskas, Deividas; Daniunaite, Kristina; Lazutka, Juozas Rimantas; Jankevicius, Feliksas; Jarmalaite, Sonata

    2015-01-01

    ATP-binding cassette (ABC) transporters are transmembrane proteins responsible for the efflux of a wide variety of substrates, including steroid metabolites, through the cellular membranes. For better characterization of the role of ABC transporters in prostate cancer (PCa) development, the profile of ABC transporter gene expression was analyzed in PCa and noncancerous prostate tissues (NPT). TaqMan Low Density Array (TLDA) human ABC transporter plates were used for the gene expression profiling in 10 PCa and 6 NPT specimens. ABCB1 transcript level was evaluated in a larger set of PCa cases (N = 78) and NPT (N = 15) by real-time PCR, the same PCa cases were assessed for the gene promoter hypermethylation by methylation-specific PCR. Expression of eight ABC transporter genes (ABCA8, ABCB1, ABCC6, ABCC9, ABCC10, ABCD2, ABCG2, and ABCG4) was significantly down-regulated in PCa as compared to NPT, and only two genes (ABCC4 and ABCG1) were up-regulated. Down-regulation of ABC transporter genes was prevalent in the TMPRSS2-ERG-negative cases. A detailed analysis of ABCB1 expression confirmed TLDA results: a reduced level of the transcript was identified in PCa in comparison to NPT (p = 0.048). Moreover, the TMPRSS2-ERG-negative PCa cases showed significantly lower expression of ABCB1 in comparison to NPT (p = 0.003) or the fusion-positive tumors (p = 0.002). Promoter methylation of ABCB1 predominantly occurred in PCa and was rarely detected in NPT (p < 0.001). The study suggests frequent down-regulation of the ABC transporter genes in PCa, especially in the TMPRSS2-ERG-negative tumors. The online version of this article (doi:10.1186/s12885-015-1689-8) contains supplementary material, which is available to authorized users

  12. Five Conditions Commonly Used to Down-regulate Tor Complex 1 Generate Different Physiological Situations Exhibiting Distinct Requirements and Outcomes*

    Science.gov (United States)

    Tate, Jennifer J.; Cooper, Terrance G.

    2013-01-01

    Five different physiological conditions have been used interchangeably to establish the sequence of molecular events needed to achieve nitrogen-responsive down-regulation of TorC1 and its subsequent regulation of downstream reporters: nitrogen starvation, methionine sulfoximine (Msx) addition, nitrogen limitation, rapamycin addition, and leucine starvation. Therefore, we tested a specific underlying assumption upon which the interpretation of data generated by these five experimental perturbations is premised. It is that they generate physiologically equivalent outcomes with respect to TorC1, i.e. its down-regulation as reflected by TorC1 reporter responses. We tested this assumption by performing head-to-head comparisons of the requirements for each condition to achieve a common outcome for a downstream proxy of TorC1 inactivation, nuclear Gln3 localization. We demonstrate that the five conditions for down-regulating TorC1 do not elicit physiologically equivalent outcomes. Four of the methods exhibit hierarchical Sit4 and PP2A phosphatase requirements to elicit nuclear Gln3-Myc13 localization. Rapamycin treatment required Sit4 and PP2A. Nitrogen limitation and short-term nitrogen starvation required only Sit4. G1 arrest-correlated, long-term nitrogen starvation and Msx treatment required neither PP2A nor Sit4. Starving cells of leucine or treating them with leucyl-tRNA synthetase inhibitors did not elicit nuclear Gln3-Myc13 localization. These data indicate that the five commonly used nitrogen-related conditions of down-regulating TorC1 are not physiologically equivalent and minimally involve partially differing regulatory mechanisms. Further, identical requirements for Msx treatment and long-term nitrogen starvation raise the possibility that their effects are achieved through a common regulatory pathway with glutamine, a glutamate or glutamine metabolite level as the sensed metabolic signal. PMID:23935103

  13. MicroRNA-mediated down-regulation of NKG2D ligands contributes to glioma immune escape.

    Science.gov (United States)

    Codo, Paula; Weller, Michael; Meister, Gunter; Szabo, Emese; Steinle, Alexander; Wolter, Marietta; Reifenberger, Guido; Roth, Patrick

    2014-09-15

    Malignant gliomas are intrinsic brain tumors with a dismal prognosis. They are well-adapted to hypoxic conditions and poorly immunogenic. NKG2D is one of the major activating receptors of natural killer (NK) cells and binds to several ligands (NKG2DL). Here we evaluated the impact of miRNA on the expression of NKG2DL in glioma cells including stem-like glioma cells. Three of the candidate miRNA predicted to target NKG2DL were expressed in various glioma cell lines as well as in glioblastomas in vivo: miR-20a, miR-93 and miR-106b. LNA inhibitor-mediated miRNA silencing up-regulated cell surface NKG2DL expression, which translated into increased susceptibility to NK cell-mediated lysis. This effect was reversed by neutralizing NKG2D antibodies, confirming that enhanced lysis upon miRNA silencing was mediated through the NKG2D system. Hypoxia, a hallmark of glioblastomas in vivo, down-regulated the expression of NKG2DL on glioma cells, associated with reduced susceptibility to NK cell-mediated lysis. This process, however, was not mediated through any of the examined miRNA. Accordingly, both hypoxia and the expression of miRNA targeting NKG2DL may contribute to the immune evasion of glioma cells at the level of the NKG2D recognition pathway. Targeting miRNA may therefore represent a novel approach to increase the immunogenicity of glioblastoma.

  14. Ku70 acetylation and modulation of c-Myc/ATF4/CHOP signaling axis by SIRT1 inhibition lead to sensitization of HepG2 cells to TRAIL through induction of DR5 and down-regulation of c-FLIP

    DEFF Research Database (Denmark)

    Kim, Mi-Ju; Hong, Kyung-Soo; Kim, Hak-Bong

    2013-01-01

    In this study, we investigated the role of c-Myc/ATF4/CHOP signaling pathway in sensitization of human hepatoma HepG2 cells to TRAIL. Knockdown of SIRT1 or treatment with SIRT1 inhibitor caused the up-regulation of DR5 and down-regulation of c-FLIP through modulation of c-Myc/ATF4/CHOP pathway, a...

  15. Regulation of cell proliferation and apoptosis in neuroblastoma cells by ccp1, a FGF2 downstream gene

    Directory of Open Access Journals (Sweden)

    Inman Gareth J

    2010-11-01

    Full Text Available Abstract Background Coiled-coil domain containing 115 (Ccdc115 or coiled coil protein-1 (ccp1 was previously identified as a downstream gene of Fibroblast Growth Factor 2 (FGF2 highly expressed in embryonic and adult brain. However, its function has not been characterised to date. Here we hypothesized that ccp1 may be a downstream effecter of FGF2, promoting cell proliferation and protecting from apoptosis. Methods Forced ccp1 expression in mouse embryonic fibroblast (MEF and neuroblastoma SK-N-SH cell line, as well as down-regulation of ccp1 expression by siRNA in NIH3T3, was used to characterize the role of ccp1. Results Ccp1 over-expression increased cell proliferation, whereas down-regulation of ccp1 expression reduced it. Ccp1 was able to increase cell proliferation in the absence of serum. Furthermore, ccp1 reduced apoptosis upon withdrawal of serum in SK-N-SH. The mitogen-activated protein kinase (MAPK or ERK Kinase (MEK inhibitor, U0126, only partially inhibited the ccp1-dependent BrdU incorporation, indicating that other signaling pathway may be involved in ccp1-induced cell proliferation. Induction of Sprouty (SPRY upon FGF2 treatment was accelerated in ccp1 over-expressing cells. Conclusions All together, the results showed that ccp1 regulates cell number by promoting proliferation and suppressing cell death. FGF2 was shown to enhance the effects of ccp1, however, it is likely that other mitogenic factors present in the serum can also enhance the effects. Whether these effects are mediated by FGF2 influencing the ccp1 function or by increasing the ccp1 expression level is still unclear. At least some of the proliferative regulation by ccp1 is mediated by MAPK, however other signaling pathways are likely to be involved.

  16. Melatonin and vitamin D3 synergistically down-regulate Akt and MDM2 leading to TGFβ-1-dependent growth inhibition of breast cancer cells.

    Science.gov (United States)

    Proietti, Sara; Cucina, Alessandra; D'Anselmi, Fabrizio; Dinicola, Simona; Pasqualato, Alessia; Lisi, Elisabetta; Bizzarri, Mariano

    2011-03-01

    Melatonin and vitamin D3 inhibit breast cancer cell growth and induce apoptosis, but they have never been combined as a breast cancer treatment. Therefore, we investigated whether their association could lead to an enhanced anticancer activity. In MCF-7 breast cancer cells, melatonin together with vitamin D3, induced a synergistic proliferative inhibition, with an almost complete cell growth arrest at 144 hr. Cell growth blockade is associated to an activation of the TGFβ-1 pathway, leading to increased TGFβ-1, Smad4 and phosphorylated-Smad3 levels. Concomitantly, melatonin and D3, alone or in combination, caused a significant reduction in Akt phosphorylation and MDM2 values, with a consequent increase of p53/MDM2 ratio. These effects were completely suppressed by adding a monoclonal anti-TGFβ-1 antibody to the culture medium. Taken together, these results indicate that cytostatic effects triggered by melatonin and D3 are likely related to a complex TGFβ-1-dependent mechanism, involving down-regulation of both MDM2 and Akt-phosphorylation. © 2010 The Authors. Journal of Pineal Research © 2010 John Wiley & Sons A/S.

  17. Resistin promotes tumor metastasis by down-regulation of miR-519d through the AMPK/p38 signaling pathway in human chondrosarcoma cells

    Science.gov (United States)

    Huang, Ho-Ning; Hung, Chih-Hung; Hsu, Chin-Jung; Fong, Yi-Chin; Hsu, Horng-Chaung; Huang, Yuan-Li; Tang, Chih-Hsin

    2015-01-01

    Resistin is a recently discovered adipocyte-secreting adipokine, which may play a critical role in modulating cancer pathogenesis. Chondrosarcoma is a highly malignant tumor known to frequently metastasize; however, the role of resistin in the metastasis of human chondrosarcoma is largely unknown. Here, we found that the expression of resistin was higher in chondrosarcoma biopsy tissues than in normal cartilage. Moreover, treatment with resistin increased matrix metalloproteinase (MMP)-2 expression and promoted cell migration in human chondrosarcoma cells. Co-transfection with microRNA (miR)-519d mimic resulted in reversed resistin-mediated cell migration and MMP-2 expression. Additionally, AMP-activated protein kinase (AMPK) and p38 inhibitors or siRNAs reduced the resistin-increased cell migration and miR-519d suppression, and inhibition of resistin expression resulted in suppression of MMP-2 expression and lung metastasis in vivo. Taken together, our results indicate that resistin promotes chondrosarcoma metastasis and MMP-2 expression through activation of the AMPK/p38 signaling pathway and down-regulation of miR-519d expression. Therefore, resistin may represent a potential novel molecular therapeutic target in chondrosarcoma metastasis. PMID:25404641

  18. Genetic Regulation of Bone and Cells by Electromagnetic Stimulation Fields and Uses Thereof

    Science.gov (United States)

    Goodwin, Thomas J. (Inventor); Shackelford, Linda C. (Inventor)

    2018-01-01

    The present invention provides methods to modify the genetic regulation of mammalian tissue, bone, cells or any combination thereof by preferential activation, up-regulation and/or down-regulation. The method comprises steps of tuning the predetermined profiles of one or more time-varying stimulation fields by manipulating the B-Field magnitude, rising slew rate, rise time, falling slew rate, fall time, frequency, wavelength, and duty cycle, and exposing mammalian cells or tissues to one or more tuned time-varying stimulation fields with predetermined profiles. Examples of mammalian cells or tissues are chondrocytes, osteoblasts, osteocytes, osteoclasts, nucleus pulposus, associated tissue, or any combination. The resulted modification on gene regulation of these cells, tissues or bones may promote the retention, repair of and reduction of compromised mammalian cartilage, bone, and associated tissue.

  19. Proteomic-based identification of multiple pathways underlying n-butylidenephthalide-induced apoptosis in LNCaP human prostate cancer cells.

    Science.gov (United States)

    Pang, Cheng-Yoong; Chiu, Sheng-Chun; Harn, Horng-Jyh; Zhai, Wei-Jun; Lin, Shinn-Zong; Yang, Hsueh-Hui

    2013-09-01

    Although numerous studies have shown the cancer-preventive properties of butylidenephthalide (BP), there is little report of BP affecting human prostate cancer cells. In the present study, proteomic-based approaches were used to elucidate the anticancer mechanism of BP in LNCaP human prostate cancer cells. BP treatment decreased the viability of LNCaP human prostate cancer cells in a concentration- and time-dependent manner, which was correlated with G0/G1 phase cell cycle arrest. Increased cell cycle arrest was associated with a decrease in the level of CCND1, CDK2, and PCNA proteins and an increase in the level of CDKN2A, CDKN1A, and SFN proteins. Proteomic studies revealed that among 48 differentially expressed proteins, 25 proteins were down-regulated and 23 proteins were up-regulated and these proteins fall into one large protein protein interaction network. Among these proteins, FAS, AIFM1, BIK, CYCS, SFN, PPP2R1A, CALR, HSPA5, DDIT3, and ERN1 are apoptosis and endoplasmic reticulum (ER) stress associated proteins. Proteomic data suggested that multiple signaling pathways including FAS-dependent pathway, mitochondrial pathway, and ER stress pathway are involved in the apoptosis induced by BP. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Impact of transient down-regulation of DREAM in human embryonic stem cell pluripotency

    Directory of Open Access Journals (Sweden)

    A. Fontán-Lozano

    2016-05-01

    Full Text Available Little is known about the functions of downstream regulatory element antagonist modulator (DREAM in embryonic stem cells (ESCs. However, DREAM interacts with cAMP response element-binding protein (CREB in a Ca2+-dependent manner, preventing CREB binding protein (CBP recruitment. Furthermore, CREB and CBP are involved in maintaining ESC self-renewal and pluripotency. However, a previous knockout study revealed the protective function of DREAM depletion in brain aging degeneration and that aging is accompanied by a progressive decline in stem cells (SCs function. Interestingly, we found that DREAM is expressed in different cell types, including human ESCs (hESCs, human adipose-derived stromal cells (hASCs, human bone marrow-derived stromal cells (hBMSCs, and human newborn foreskin fibroblasts (hFFs, and that transitory inhibition of DREAM in hESCs reduces their pluripotency, increasing differentiation. We stipulate that these changes are partly mediated by increased CREB transcriptional activity. Overall, our data indicates that DREAM acts in the regulation of hESC pluripotency and could be a target to promote or prevent differentiation in embryonic cells.

  1. Selective Androgen Receptor Down-Regulators (SARDs): A New Prostate Cancer Therapy

    National Research Council Canada - National Science Library

    Bhattacharyya, Rumi S

    2007-01-01

    The androgen receptor (AR) plays a key role in the development and progression of prostate cancer Targeting the AR for down-regulation would be a useful strategy for treating prostate cancer, especially hormone-refractory...

  2. Cyanide-induced death of dopaminergic cells is mediated by uncoupling protein-2 up-regulation and reduced Bcl-2 expression

    International Nuclear Information System (INIS)

    Zhang, X.; Li, L.; Zhang, L.; Borowitz, J.L.; Isom, G.E.

    2009-01-01

    Cyanide is a potent inhibitor of mitochondrial oxidative metabolism and produces mitochondria-mediated death of dopaminergic neurons and sublethal intoxications that are associated with a Parkinson-like syndrome. Cyanide toxicity is enhanced when mitochondrial uncoupling is stimulated following up-regulation of uncoupling protein-2 (UCP-2). In this study, the role of a pro-survival protein, Bcl-2, in cyanide-mediated cell death was determined in a rat dopaminergic immortalized mesencephalic cell line (N27 cells). Following pharmacological up-regulation of UCP-2 by treatment with Wy14,643, cyanide reduced cellular Bcl-2 expression by increasing proteasomal degradation of the protein. The increased turnover of Bcl-2 was mediated by an increase of oxidative stress following UCP-2 up-regulation. The oxidative stress involved depletion of mitochondrial glutathione (mtGSH) and increased H 2 O 2 generation. Repletion of mtGSH by loading cells with glutathione ethyl ester reduced H 2 O 2 generation and in turn blocked the cyanide-induced decrease of Bcl-2. To determine if UCP-2 mediated the response, RNAi knock down was conducted. The RNAi decreased cyanide-induced depletion of mtGSH, reduced H 2 O 2 accumulation, and inhibited down-regulation of Bcl-2, thus blocking cell death. To confirm the role of Bcl-2 down-regulation in the cell death, it was shown that over-expression of Bcl-2 by cDNA transfection attenuated the enhancement of cyanide toxicity after UCP-2 up-regulation. It was concluded that UCP-2 up-regulation sensitizes cells to cyanide by increasing cellular oxidative stress, leading to an increase of Bcl-2 degradation. Then the reduced Bcl-2 levels sensitize the cells to cyanide-mediated cell death.

  3. RNA interference targeting CD147 inhibits the proliferation, invasiveness, and metastatic activity of thyroid carcinoma cells by down-regulating glycolysis

    Science.gov (United States)

    Huang, Peng; Chang, Shi; Jiang, Xiaolin; Su, Juan; Dong, Chao; Liu, Xu; Yuan, Zhengtai; Zhang, Zhipeng; Liao, Huijun

    2015-01-01

    A high rate of glycolytic flux, even in the presence of oxygen, is a key metabolic hallmark of cancer cells. Lactate, the end product of glycolysis, decreases the extracellular pH and contributes to the proliferation, invasiveness and metastasis of tumor cells. CD147 play a crucial role in tumorigenicity, invasion and metastasis; and CD147 also interacts strongly and specifically with monocarboxylate transporter1 (MCT1) that mediates the transport of lactate. The objective of this study was to determine whether CD147 is involved, via its association with MCT1 to transport lactate, in glycolysis, contributing to the progression of thyroid carcinoma. The expression levels of CD147 in surgical specimens of normal thyroid, nodular goiter (NG), well-differentiated thyroid carcinoma (WDTC), and undifferentiated thyroid carcinoma (UDTC) were determined using immunohistochemical techniques. The effects of CD147 silencing on cell proliferation, invasiveness, metastasis, co-localization with MCT1, glycolysis rate and extracellular pH of thyroid cancer cells (WRO and FRO cell lines) were measured after CD147 was knocked-down using siRNA targeting CD147. Immunohistochemical analysis of thyroid carcinoma (TC) tissues revealed significant increases in signal for CD147 compared with normal tissue or NG, while UDTC expressed remarkably higher levels of CD147 compared with WDTC. Furthermore, silencing of CD147 in TC cells clearly abrogated the expression of MCT1 and its co-localization with CD147 and dramatically decreased both the glycolysis rate and extracellular pH. Thus, cell proliferation, invasiveness, and metastasis were all significantly decreased by siRNA. These results demonstrate in vitro that the expression of CD147 correlates with the degree of dedifferentiation of thyroid cancer, and show that CD147 interacts with MCT1 to regulate tumor cell glycolysis, resulting in the progression of thyroid carcinoma. PMID:25755717

  4. Tissue-specific down-regulation of RIPK 2 in Mycobacterium leprae-infected nu/nu mice

    Directory of Open Access Journals (Sweden)

    Gue-Tae Chae

    1992-01-01

    Full Text Available RIPK 2 is adapter molecule in the signal pathway involved in Toll-like receptors. However, there has been no reported association between receptor-interacting serine/threonine kinase 2 (RIPK 2 expression and the infectious diseases involving mycobacterial infection. This study found that its expression was down-regulated in the footpads and skin but was up-regulated in the liver of Mycobacterium leprae-infected nu/nu mice compared with those of the M. leprae non-infected nu/nu mice. It was observed that the interlukin-12p40 and interferon-γ genes involved in the susceptibility of M. leprae were down-regulated in the skin but were up-regulated in the liver. Overall, this suggests that regulation of RIPK 2 expression is tissue-specifically associated with M. leprae infection.

  5. Effect of oxaliplatin on the survival rate of human Y79 cells after down-regulation of Mcl-1

    Directory of Open Access Journals (Sweden)

    Lu Zhou

    2017-12-01

    Full Text Available AIM: To study the effect of oxaliplatin on the survival rate of Y79 after down-regulation of Mcl-1 by SiRNA. METHODS: Y79 cells were cultured in RPMI1640. The cultured cells were stimulated with 0.25μmol/L of oxaliplatin. The expression of Mcl-1 protein was detected by Western blot after 6, 16 and 24h respectively. Cells in logarithmic phase were collected and used for single-cell suspension. Then they were transfected with empty plasmid, Mcl-1-homo-991, Mcl-1-homo-1114 and Mcl-1-homo-1235. After 6h, fluorescence microscope was used to observe the transfection efficiency and the optimal one was selected. The cells were divided into Group A and transfected with empty plasmids. The cells transfected with Mcl-1 were divided into Group B and Group C. Group A and Group C were treated with 0.25μmol/L oxaliplatin for stimulating induction, and the apoptotic rate was compared after 24h.RESULTS: The expression of Mcl-1 in Y79 stimulated by oxaliplatin was the most after 24h of culture. Mcl-1-homo-991 significantly inhibited the expression of Mcl-1 in Y79 after transfection. There was no significant difference in the apoptosis rate in Group A(11.1%±1.2%and in the control group(6.1%±0.6%(P>0.05. The apoptotic rate of Group C(49.2%±2.7%was significantly higher than that of Group B(20.8%±1.9%. At the same time, the apoptotic rates of these two groups were significantly higher than those of Group A and control group, the difference was statistically significant(PCONCLUSION:Downregulation of Mcl-1 by siRNA can reduce the drug resistance of Y79, thereby enhancing the apoptosis of Y79, and reducing the survival rate of Y79.

  6. Interferon-β induced microRNA-129-5p down-regulates HPV-18 E6 and E7 viral gene expression by targeting SP1 in cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Jiarong Zhang

    Full Text Available Infection by human papillomavirus (HPV can cause cervical intraepithelial neoplasia (CIN and cancer. Down-regulation of E6 and E7 expression may be responsible for the positive clinical outcomes observed with IFN treatment, but the molecular basis has not been well determined. As miRNAs play an important role in HPV induced cervical carcinogenesis, we hypothesize that IFN-β can regulate the expressions of specific miRNAs in cervical cancer cells, and that these miRNAs can mediate E6 and E7 expression, thus modulate their oncogenic potential. In this study, we found that miR-129-5p to be a candidate IFN-β inducible miRNA. MiR-129-5p levels gradually decrease with the development of cervical intraepithelial lesions. Manipulation of miR-129-5p expression in Hela cells modulates HPV-18 E6 and E7 viral gene expression. Exogenous miR-129-5p inhibits cell proliferation in Hela cells, promotes apoptosis and blocks cell cycle progression in Hela cells. SP1 is a direct target of miR-129-5p in Hela cells. This study is the first report of a cellular miRNA with anti-HPV activity and provides new insights into regulatory mechanisms between the HPV and the IFN system in host cells at the miRNA level.

  7. Regulation of CD93 cell surface expression by protein kinase C isoenzymes.

    Science.gov (United States)

    Ikewaki, Nobunao; Kulski, Jerzy K; Inoko, Hidetoshi

    2006-01-01

    Human CD93, also known as complement protein 1, q subcomponent, receptor (C1qRp), is selectively expressed by cells with a myeloid lineage, endothelial cells, platelets, and microglia and was originally reported to be involved in the complement protein 1, q subcomponent (C1q)-mediated enhancement of phagocytosis. The intracellular molecular events responsible for the regulation of its expression on the cell surface, however, have not been determined. In this study, the effect of protein kinases in the regulation of CD93 expression on the cell surface of a human monocyte-like cell line (U937), a human NK-like cell line (KHYG-1), and a human umbilical vein endothelial cell line (HUV-EC-C) was investigated using four types of protein kinase inhibitors, the classical protein kinase C (cPKC) inhibitor Go6976, the novel PKC (nPKC) inhibitor Rottlerin, the protein kinase A (PKA) inhibitor H-89 and the protein tyrosine kinase (PTK) inhibitor herbimycin A at their optimum concentrations for 24 hr. CD93 expression was analyzed using flow cytometry and glutaraldehyde-fixed cellular enzyme-linked immunoassay (EIA) techniques utilizing a CD93 monoclonal antibody (mAb), mNI-11, that was originally established in our laboratory as a CD93 detection probe. The nPKC inhibitor Rottlerin strongly down-regulated CD93 expression on the U937 cells in a dose-dependent manner, whereas the other inhibitors had little or no effect. CD93 expression was down-regulated by Go6976, but not by Rottlerin, in the KHYG-1 cells and by both Rottlerin and Go6976 in the HUV-EC-C cells. The PKC stimulator, phorbol myristate acetate (PMA), strongly up-regulated CD93 expression on the cell surface of all three cell-lines and induced interleukin-8 (IL-8) production by the U937 cells and interferon-gamma (IFN-gamma) production by the KHYG-1 cells. In addition, both Go6976 and Rottlerin inhibited the up-regulation of CD93 expression induced by PMA and IL-8 or IFN-gamma production in the respective cell

  8. Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA

    International Nuclear Information System (INIS)

    Jiang, Jiahua; Jedinak, Andrej; Sliva, Daniel

    2011-01-01

    Highlights: ► Ganodermanontriol (GDNT), a Ganoderma mushroom alcohol, inhibits growth of breast cancer cells. ► CDC20 is over-expressed in tumors but not in the tumor surrounding tissue in breast cancer patients. ► GDNT inhibits expression of CDC20 in breast cancer cells. ► GDNT inhibits cell adhesion, cell migration and cell invasion of breast cancer cells. ► GDNT inhibits secretion of uPA and down-regulates expression of uPAR in breast cancer cells. -- Abstract: Ganoderma lucidum is a medicinal mushroom that has been recognized by Traditional Chinese Medicine (TCM). Although some of the direct anticancer activities are attributed to the presence of triterpenes—ganoderic and lucidenic acids—the activity of other compounds remains elusive. Here we show that ganodermanontriol (GDNT), a Ganoderma alcohol, specifically suppressed proliferation (anchorage-dependent growth) and colony formation (anchorage-independent growth) of highly invasive human breast cancer cells MDA-MB-231. GDNT suppressed expression of the cell cycle regulatory protein CDC20, which is over-expressed in precancerous and breast cancer cells compared to normal mammary epithelial cells. Moreover, we found that CDC20 is over-expressed in tumors when compared to the tissue surrounding the tumor in specimens from breast cancer patients. GDNT also inhibited invasive behavior (cell adhesion, cell migration, and cell invasion) through the suppression of secretion of urokinase-plasminogen activator (uPA) and inhibited expression of uPA receptor. In conclusion, mushroom GDNT is a natural agent that has potential as a therapy for invasive breast cancers.

  9. Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiahua; Jedinak, Andrej [Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Sliva, Daniel, E-mail: dsliva@iuhealth.org [Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN (United States); Indiana University Simon Cancer Center, School of Medicine, Indiana University, Indianapolis, IN (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Ganodermanontriol (GDNT), a Ganoderma mushroom alcohol, inhibits growth of breast cancer cells. Black-Right-Pointing-Pointer CDC20 is over-expressed in tumors but not in the tumor surrounding tissue in breast cancer patients. Black-Right-Pointing-Pointer GDNT inhibits expression of CDC20 in breast cancer cells. Black-Right-Pointing-Pointer GDNT inhibits cell adhesion, cell migration and cell invasion of breast cancer cells. Black-Right-Pointing-Pointer GDNT inhibits secretion of uPA and down-regulates expression of uPAR in breast cancer cells. -- Abstract: Ganoderma lucidum is a medicinal mushroom that has been recognized by Traditional Chinese Medicine (TCM). Although some of the direct anticancer activities are attributed to the presence of triterpenes-ganoderic and lucidenic acids-the activity of other compounds remains elusive. Here we show that ganodermanontriol (GDNT), a Ganoderma alcohol, specifically suppressed proliferation (anchorage-dependent growth) and colony formation (anchorage-independent growth) of highly invasive human breast cancer cells MDA-MB-231. GDNT suppressed expression of the cell cycle regulatory protein CDC20, which is over-expressed in precancerous and breast cancer cells compared to normal mammary epithelial cells. Moreover, we found that CDC20 is over-expressed in tumors when compared to the tissue surrounding the tumor in specimens from breast cancer patients. GDNT also inhibited invasive behavior (cell adhesion, cell migration, and cell invasion) through the suppression of secretion of urokinase-plasminogen activator (uPA) and inhibited expression of uPA receptor. In conclusion, mushroom GDNT is a natural agent that has potential as a therapy for invasive breast cancers.

  10. Resveratrol Regulates Colorectal Cancer Cell Invasion by Modulation of Focal Adhesion Molecules.

    Science.gov (United States)

    Buhrmann, Constanze; Shayan, Parviz; Goel, Ajay; Shakibaei, Mehdi

    2017-09-27

    Resveratrol, a safe and multi-targeted agent, has been associated with suppression of survival, proliferation and metastasis of cancer, however, the underlying mechanisms for its anti-cancer activity, particularly on cellular signaling during cancer cell migration still remain poorly understood. We investigated the invasion response of two human colorectal cancer (CRC) cells (HCT116 and SW480) to resveratrol and studied the effect of specific pharmacological inhibitors, cytochalasin D (CytD) and focal adhesion kinase-inhibitor (FAK-I) on FAK, cell viability and migration in CRC. We found that resveratrol altered cell phenotype of both CRC cells, reduced cell viability and the results were comparable to FAK-I and CytD. These effects of resveratrol were associated with marked Sirt1 up-regulation, FAK down-regulation, inhibition of focal adhesion and potentiation of effects by combinatorial treatment of resveratrol and inhibitors. Interestingly, inhibition of FAK with FAK-I or treatment with CytD suppressed resveratrol-induced Sirt1 up-regulation and markedly down-regulated FAK expression. Resveratrol or combination treatment with inhibitors significantly activated caspase-3 and potentiated apoptosis. Moreover, resveratrol suppressed invasion and colony forming capacity, cell proliferation, β1-Integrin expression and activation of FAK of cells in alginate tumor microenvironment, similar to FAK-I or CytD. Finally, we demonstrated that resveratrol, FAK-I or CytD inhibited activation of NF-κB, suppressed NF-κB-dependent gene end-products involved in invasion, metastasis, and apoptosis; and these effects of resveratrol were potentiated by combination treatment with FAK-I or CytD. Our data illustrated that the anti-invasion effect of resveratrol by inhibition of FAK activity has a potential beneficial role in disease prevention and therapeutic management of CRC.

  11. Advanced glycation end products-modified proteins and oxidized LDL mediate down-regulation of leptin in mouse adipocytes via CD36

    International Nuclear Information System (INIS)

    Unno, Yuka; Sakai, Masakazu; Sakamoto, Yu-ichiro; Kuniyasu, Akihiko; Nakayama, Hitoshi; Nagai, Ryoji; Horiuchi, Seikoh

    2004-01-01

    Advanced glycation end products (AGE)-modified proteins as well as oxidized-LDL (Ox-LDL) undergo receptor-mediated endocytosis by CHO cells overexpressing CD36, a member of class B scavenger receptor family. The purpose of the present study was to examine the effects of glycolaldehyde-modified BSA (GA-BSA) as an AGE-ligand and Ox-LDL on leptin expression in adipocytes. GA-BSA decreased leptin expression at both protein and mRNA levels in 3T3-L1 adipocytes and mouse epididymal adipocytes. Ox-LDL showed a similar inhibitory effect on leptin expression in 3T3-L1 adipocytes, which effect was protected by N-acetylcysteine, a reactive oxygen species (ROS) inhibitor. Binding of 125 I-GA-BSA or 125 I-Ox-LDL to 3T3-L1 adipocytes and subsequent endocytic degradation were inhibited by a neutralizing anti-CD36 antibody. Furthermore, this antibody also suppressed Ox-LDL-induced leptin down-regulation. These results clarify that the interaction of GA-BSA and Ox-LDL with CD36 leads to down-regulation of leptin expression via ROS system(s) in 3T3-L1 adipocytes, suggesting that a potential link of AGE- and/or Ox-LDL-induced leptin down-regulation might be linked to insulin-sensitivity in metabolic syndrome

  12. Capture of microRNA-bound mRNAs identifies the tumor suppressor miR-34a as a regulator of growth factor signaling.

    Directory of Open Access Journals (Sweden)

    Ashish Lal

    2011-11-01

    Full Text Available A simple biochemical method to isolate mRNAs pulled down with a transfected, biotinylated microRNA was used to identify direct target genes of miR-34a, a tumor suppressor gene. The method reidentified most of the known miR-34a regulated genes expressed in K562 and HCT116 cancer cell lines. Transcripts for 982 genes were enriched in the pull-down with miR-34a in both cell lines. Despite this large number, validation experiments suggested that ~90% of the genes identified in both cell lines can be directly regulated by miR-34a. Thus miR-34a is capable of regulating hundreds of genes. The transcripts pulled down with miR-34a were highly enriched for their roles in growth factor signaling and cell cycle progression. These genes form a dense network of interacting gene products that regulate multiple signal transduction pathways that orchestrate the proliferative response to external growth stimuli. Multiple candidate miR-34a-regulated genes participate in RAS-RAF-MAPK signaling. Ectopic miR-34a expression reduced basal ERK and AKT phosphorylation and enhanced sensitivity to serum growth factor withdrawal, while cells genetically deficient in miR-34a were less sensitive. Fourteen new direct targets of miR-34a were experimentally validated, including genes that participate in growth factor signaling (ARAF and PIK3R2 as well as genes that regulate cell cycle progression at various phases of the cell cycle (cyclins D3 and G2, MCM2 and MCM5, PLK1 and SMAD4. Thus miR-34a tempers the proliferative and pro-survival effect of growth factor stimulation by interfering with growth factor signal transduction and downstream pathways required for cell division.

  13. Capture of microRNA-bound mRNAs identifies the tumor suppressor miR-34a as a regulator of growth factor signaling.

    Science.gov (United States)

    Lal, Ashish; Thomas, Marshall P; Altschuler, Gabriel; Navarro, Francisco; O'Day, Elizabeth; Li, Xiao Ling; Concepcion, Carla; Han, Yoon-Chi; Thiery, Jerome; Rajani, Danielle K; Deutsch, Aaron; Hofmann, Oliver; Ventura, Andrea; Hide, Winston; Lieberman, Judy

    2011-11-01

    A simple biochemical method to isolate mRNAs pulled down with a transfected, biotinylated microRNA was used to identify direct target genes of miR-34a, a tumor suppressor gene. The method reidentified most of the known miR-34a regulated genes expressed in K562 and HCT116 cancer cell lines. Transcripts for 982 genes were enriched in the pull-down with miR-34a in both cell lines. Despite this large number, validation experiments suggested that ~90% of the genes identified in both cell lines can be directly regulated by miR-34a. Thus miR-34a is capable of regulating hundreds of genes. The transcripts pulled down with miR-34a were highly enriched for their roles in growth factor signaling and cell cycle progression. These genes form a dense network of interacting gene products that regulate multiple signal transduction pathways that orchestrate the proliferative response to external growth stimuli. Multiple candidate miR-34a-regulated genes participate in RAS-RAF-MAPK signaling. Ectopic miR-34a expression reduced basal ERK and AKT phosphorylation and enhanced sensitivity to serum growth factor withdrawal, while cells genetically deficient in miR-34a were less sensitive. Fourteen new direct targets of miR-34a were experimentally validated, including genes that participate in growth factor signaling (ARAF and PIK3R2) as well as genes that regulate cell cycle progression at various phases of the cell cycle (cyclins D3 and G2, MCM2 and MCM5, PLK1 and SMAD4). Thus miR-34a tempers the proliferative and pro-survival effect of growth factor stimulation by interfering with growth factor signal transduction and downstream pathways required for cell division.

  14. Capture of MicroRNA–Bound mRNAs Identifies the Tumor Suppressor miR-34a as a Regulator of Growth Factor Signaling

    Science.gov (United States)

    O'Day, Elizabeth; Li, Xiao Ling; Concepcion, Carla; Han, Yoon-Chi; Thiery, Jerome; Rajani, Danielle K.; Deutsch, Aaron; Hofmann, Oliver; Ventura, Andrea; Hide, Winston; Lieberman, Judy

    2011-01-01

    A simple biochemical method to isolate mRNAs pulled down with a transfected, biotinylated microRNA was used to identify direct target genes of miR-34a, a tumor suppressor gene. The method reidentified most of the known miR-34a regulated genes expressed in K562 and HCT116 cancer cell lines. Transcripts for 982 genes were enriched in the pull-down with miR-34a in both cell lines. Despite this large number, validation experiments suggested that ∼90% of the genes identified in both cell lines can be directly regulated by miR-34a. Thus miR-34a is capable of regulating hundreds of genes. The transcripts pulled down with miR-34a were highly enriched for their roles in growth factor signaling and cell cycle progression. These genes form a dense network of interacting gene products that regulate multiple signal transduction pathways that orchestrate the proliferative response to external growth stimuli. Multiple candidate miR-34a–regulated genes participate in RAS-RAF-MAPK signaling. Ectopic miR-34a expression reduced basal ERK and AKT phosphorylation and enhanced sensitivity to serum growth factor withdrawal, while cells genetically deficient in miR-34a were less sensitive. Fourteen new direct targets of miR-34a were experimentally validated, including genes that participate in growth factor signaling (ARAF and PIK3R2) as well as genes that regulate cell cycle progression at various phases of the cell cycle (cyclins D3 and G2, MCM2 and MCM5, PLK1 and SMAD4). Thus miR-34a tempers the proliferative and pro-survival effect of growth factor stimulation by interfering with growth factor signal transduction and downstream pathways required for cell division. PMID:22102825

  15. Knock-Down of Endogenous Bornavirus-Like Nucleoprotein 1 Inhibits Cell Growth and Induces Apoptosis in Human Oligodendroglia Cells

    Directory of Open Access Journals (Sweden)

    Peng He

    2016-03-01

    Full Text Available Endogenous bornavirus-like nucleoprotein elements (EBLNs have been discovered in the genomes of various animals including humans, whose functions have been seldom studied. To explore the biological functions of human EBLNs, we constructed a lentiviral vector expressing a short-hairpin RNA against human EBLN1, which successfully inhibited EBLN1 expression by above 80% in infected human oligodendroglia cells (OL cells. We found that EBLN1 silencing suppressed cell proliferation, induced G2/M phase arrest, and promoted apoptosis in OL cells. Gene expression profiling demonstrated that 1067 genes were up-regulated, and 2004 were down-regulated after EBLN1 silencing. The top 10 most upregulated genes were PI3, RND3, BLZF1, SOD2, EPGN, SBSN, INSIG1, OSMR, CREB3L2, and MSMO1, and the top 10 most-downregulated genes were KRTAP2-4, FLRT2, DIDO1, FAT4, ESCO2, ZNF804A, SUV420H1, ZC3H4, YAE1D1, and NCOA5. Pathway analysis revealed that these differentially expressed genes were mainly involved in pathways related to the cell cycle, the mitogen-activated protein kinase pathway, p53 signaling, and apoptosis. The gene expression profiles were validated by using quantitative reverse transcription polymerase chain reaction (RT-PCR for detecting these 20 most-changed genes. Three genes closely related to glioma, RND3, OSMR, and CREB3L2, were significantly upregulated and might be the key factors in EBLN1 regulating the proliferation and apoptosis of OL cells. This study provides evidence that EBLN1 plays a key role in regulating cell life and death, thereby opening several avenues of investigation regarding EBLN1 in the future.

  16. Down-regulation of Pax6 is associated with abnormal differentiation of corneal epithelial cells in severe ocular surface diseases

    Science.gov (United States)

    Li, W; Chen, Y-T; Hayashida, Y; Blanco, G; Kheirkah, A; He, H; Chen, S-Y; Liu, C-Y; Tseng, SCG

    2010-01-01

    Pax6 is the universal master control gene for eye morphogenesis. Other than retina and lens, Pax6 also expressed in the ocular surface epithelium from early gestation until the postnatal stage, in which little is known about the function of Pax6. In this study, corneal pannus tissues from patients with ocular surface diseases such as Stevens–Johnson syndrome (SJS), chemical burn, aniridia and recurrent pterygium were investigated. Our results showed that normal ocular surface epithelial cells expressed Pax6. However, corneal pannus epithelial cells from the above patients showed a decline or absence of Pax6 expression, accompanied by a decline or absence of K12 keratin but an increase of K10 keratin and filaggrin expression. Pannus basal epithelial cells maintained nuclear p63 expression and showed activated proliferation, evidenced by positive Ki67 and K16 keratin staining. On 3T3 fibroblast feeder layers, Pax6 immunostaining was negative in clones generated from epithelial cells harvested from corneal pannus from SJS or aniridia, but positive in those from the normal limbal epithelium; whereas western blots showed that some epithelial clones expanded from pannus retained Pax6 expression. Transient transfection of an adenoviral vector carrying EGFP–Pax6 transgenes into these Pax6− clones increased both Pax6 and K12 keratin expression. These results indicate that Pax6 helps to maintain the normal corneal epithelial phenotype postnatally, and that down-regulation of Pax6 is associated with abnormal epidermal differentiation in severe ocular surface diseases. Reintroduction of activation of the Pax6 gene might be useful in treating squamous metaplasia of the ocular surface epithelium. PMID:18027901

  17. Cell death is induced by ciglitazone, a peroxisome proliferator-activated receptor γ (PPARγ) agonist, independently of PPARγ in human glioma cells.

    Science.gov (United States)

    Lee, Myoung Woo; Kim, Dae Seong; Kim, Hye Ryung; Kim, Hye Jin; Yang, Jin Mo; Ryu, Somi; Noh, Yoo Hun; Lee, Soo Hyun; Son, Meong Hi; Jung, Hye Lim; Yoo, Keon Hee; Koo, Hong Hoe; Sung, Ki Woong

    2012-01-06

    Peroxisome proliferator-activated receptor γ (PPARγ) regulates multiple signaling pathways, and its agonists induce apoptosis in various cancer cells. However, their role in cell death is unclear. In this study, the relationship between ciglitazone (CGZ) and PPARγ in CGZ-induced cell death was examined. At concentrations of greater than 30 μM, CGZ, a synthetic PPARγ agonist, activated caspase-3 and induced apoptosis in T98G cells. Treatment of T98G cells with less than 30 μM CGZ effectively induced cell death after pretreatment with 30 μM of the PPARγ antagonist GW9662, although GW9662 alone did not induce cell death. This cell death was also observed when cells were co-treated with CGZ and GW9662, but was not observed when cells were treated with CGZ prior to GW9662. In cells in which PPARγ was down-regulated cells by siRNA, lower concentrations of CGZ (death, although higher concentrations of CGZ (≥30 μM) were required to induce cell death in control T98G cells, indicating that CGZ effectively induces cell death in T98G cells independently of PPARγ. Treatment with GW9662 followed by CGZ resulted in a down-regulation of Akt activity and the loss of mitochondrial membrane potential (MMP), which was accompanied by a decrease in Bcl-2 expression and an increase in Bid cleavage. These data suggest that CGZ is capable of inducing apoptotic cell death independently of PPARγ in glioma cells, by down-regulating Akt activity and inducing MMP collapse. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Network Analysis for the Identification of Differentially Expressed Hub Genes Using Myogenin Knock-down Muscle Satellite Cells.

    Directory of Open Access Journals (Sweden)

    Adeel Malik

    Full Text Available Muscle, a multinucleate syncytium formed by the fusion of mononuclear myoblasts, arises from quiescent progenitors (satellite cells via activation of muscle-specific transcription factors (MyoD, Myf5, myogenin: MYOG, and MRF4. Subsequent to a decline in Pax7, induction in the expression of MYOG is a hallmark of myoblasts that have entered the differentiation phase following cell cycle withdrawal. It is evident that MYOG function cannot be compensated by any other myogenic regulatory factors (MRFs. Despite a plethora of information available regarding MYOG, the mechanism by which MYOG regulates muscle cell differentiation has not yet been identified. Using an RNA-Seq approach, analysis of MYOG knock-down muscle satellite cells (MSCs have shown that genes associated with cell cycle and division, DNA replication, and phosphate metabolism are differentially expressed. By constructing an interaction network of differentially expressed genes (DEGs using GeneMANIA, cadherin-associated protein (CTNNA2 was identified as the main hub gene in the network with highest node degree. Four functional clusters (modules or communities were identified in the network and the functional enrichment analysis revealed that genes included in these clusters significantly contribute to skeletal muscle development. To confirm this finding, in vitro studies revealed increased expression of CTNNA2 in MSCs on day 12 compared to day 10. Expression of CTNNA2 was decreased in MYOG knock-down cells. However, knocking down CTNNA2, which leads to increased expression of extracellular matrix (ECM genes (type I collagen α1 and type I collagen α2 along with myostatin (MSTN, was not found significantly affecting the expression of MYOG in C2C12 cells. We therefore propose that MYOG exerts its regulatory effects by acting upstream of CTNNA2, which in turn regulates the differentiation of C2C12 cells via interaction with ECM genes. Taken together, these findings highlight a new

  19. p38 MAPK-Mediated Bmi-1 Down-Regulation and Defective Proliferation in ATM-Deficient Neural Stem Cells Can Be Restored by Akt Activation

    Science.gov (United States)

    Kim, Jeesun; Hwangbo, Jeon; Wong, Paul K. Y.

    2011-01-01

    A-T (ataxia telangiectasia) is a genetic disease caused by a mutation in the Atm (A-T mutated) gene that leads to neurodegeneration. Despite an increase in the numbers of studies in this area in recent years, the mechanisms underlying neurodegeneration in human A-T are still poorly understood. Previous studies demonstrated that neural stem cells (NSCs) isolated from the subventricular zone (SVZ) of Atm -/- mouse brains show defective self-renewal and proliferation, which is accompanied by activation of chronic p38 mitogen-activated protein kinase (MAPK) and a lower level of the polycomb protein Bmi-1. However, the mechanism underlying Bmi-1 down-regulation and its relevance to defective proliferation in Atm-/- NSCs remained unclear. Here, we show that over-expression of Bmi-1 increases self-renewal and proliferation of Atm-/- NSCs to normal, indicating that defective proliferation in Atm-/- NSCs is a consequence of down-regulation of Bmi-1. We also demonstrate that epidermal growth factor (EGF)-induced Akt phosphorylation renders Bmi-1 resistant to the proteasomal degradation, leading to its stabilization and accumulation in the nucleus. However, inhibition of the Akt-dependent Bmi-1 stabilizing process by p38 MAPK signaling reduces the levels of Bmi-1. Treatment of the Atm-/- NSCs with a specific p38 MAPK inhibitor SB203580 extended Bmi-1 posttranscriptional turnover and H2A ubiquitination in Atm-/- NSCs. Our observations demonstrate the molecular basis underlying the impairment of self-renewal and proliferation in Atm-/- NSCs through the p38 MAPK-Akt-Bmi-1-p21 signaling pathway. PMID:21305053

  20. Down-regulation of vitamin D receptor in mammospheres: implications for vitamin D resistance in breast cancer and potential for combination therapy.

    Directory of Open Access Journals (Sweden)

    Shehla Pervin

    Full Text Available Vitamin D signaling in mammary cancer stem cells (MCSCs, which are implicated in the initiation and progression of breast cancer, is poorly understood. In this study, we examined vitamin D signaling in mammospheres which are enriched in MCSCs from established breast cancer cell lines. Breast cancer cells positive for aldehyde dehydrogenase (ALDH(+ had increased ability to form mammospheres compared to ALDH(- cells. These mammospheres expressed MCSC-specific markers and generated transplantable xenografts in nude mice. Vitamin D receptor (VDR was significantly down-regulated in mammospheres, as well as in ALDH(+ breast cancer cells. TN aggressive human breast tumors as well as transplantable xenografts obtained from SKBR3 expressed significantly lower levels of VDR but higher levels of CD44 expression. Snail was up-regulated in mammospheres isolated from breast cancer cells. Inhibition of VDR expression by siRNA led to a significant change in key EMT-specific transcription factors and increased the ability of these cells to form mammospheres. On the other hand, over-expression of VDR led to a down-regulation of Snail but increased expression of E-cad and significantly compromised the ability of cells to form mammospheres. Mammospheres were relatively insensitive to treatment with 1,25-dihydroxyvitamin D (1,25D, the active form of vitamin D, compared to more differentiated cancer cells grown in presence of serum. Treatment of H-Ras transformed HMLE(HRas cells with DETA NONOate, a nitric oxide (NO-donor led to induction of MAP-kinase phosphatase -1 (MKP-1 and dephosphorylation of ERK1/2 in the mammospheres. Combined treatment of these cells with 1,25D and a low-concentration of DETA NONOate led to a significant decrease in the overall size of mammospheres and reduced tumor volume in nude mice. Our findings therefore, suggest that combination therapy using 1,25D with drugs specifically targeting key survival pathways in MCSCs warrant testing in

  1. Down-regulation of vitamin D receptor in mammospheres: implications for vitamin D resistance in breast cancer and potential for combination therapy.

    Science.gov (United States)

    Pervin, Shehla; Hewison, Martin; Braga, Melissa; Tran, Lac; Chun, Rene; Karam, Amer; Chaudhuri, Gautam; Norris, Keith; Singh, Rajan

    2013-01-01

    Vitamin D signaling in mammary cancer stem cells (MCSCs), which are implicated in the initiation and progression of breast cancer, is poorly understood. In this study, we examined vitamin D signaling in mammospheres which are enriched in MCSCs from established breast cancer cell lines. Breast cancer cells positive for aldehyde dehydrogenase (ALDH(+)) had increased ability to form mammospheres compared to ALDH(-) cells. These mammospheres expressed MCSC-specific markers and generated transplantable xenografts in nude mice. Vitamin D receptor (VDR) was significantly down-regulated in mammospheres, as well as in ALDH(+) breast cancer cells. TN aggressive human breast tumors as well as transplantable xenografts obtained from SKBR3 expressed significantly lower levels of VDR but higher levels of CD44 expression. Snail was up-regulated in mammospheres isolated from breast cancer cells. Inhibition of VDR expression by siRNA led to a significant change in key EMT-specific transcription factors and increased the ability of these cells to form mammospheres. On the other hand, over-expression of VDR led to a down-regulation of Snail but increased expression of E-cad and significantly compromised the ability of cells to form mammospheres. Mammospheres were relatively insensitive to treatment with 1,25-dihydroxyvitamin D (1,25D), the active form of vitamin D, compared to more differentiated cancer cells grown in presence of serum. Treatment of H-Ras transformed HMLE(HRas) cells with DETA NONOate, a nitric oxide (NO)-donor led to induction of MAP-kinase phosphatase -1 (MKP-1) and dephosphorylation of ERK1/2 in the mammospheres. Combined treatment of these cells with 1,25D and a low-concentration of DETA NONOate led to a significant decrease in the overall size of mammospheres and reduced tumor volume in nude mice. Our findings therefore, suggest that combination therapy using 1,25D with drugs specifically targeting key survival pathways in MCSCs warrant testing in prospective

  2. Differential regulation of histamine- and bradykinin-stimulated phospholipase C in adrenal chromaffin cells: evidence for involvement of different protein kinase C isoforms.

    Science.gov (United States)

    Sena, C M; Rosário, L M; Parker, P J; Patel, V; Boarder, M R

    1996-03-01

    In this report we investigate the isoforms of protein kinase C (PKC) present in cultured adrenal chromaffin cells with respect to their modulation by treatment with phorbol ester and their possible differential involvement in the regulation of responses to histamine and bradykinin. The presence of individual isoforms of PKC was investigated by using eight isoform specific antisera, as a result of which PKC-alpha, epsilon, and zeta were identified. To characterize down-regulation of these enzymes, cells were incubated for 6-48 h with 1 microM phorbol myristate acetate (PMA). PKC-epsilon down-regulated more rapidly than PKC-alpha. At 12 h, PMA pretreatment, for example, PKC-epsilon was maximally down-regulated (23 +/- 4% of controls), whereas PKC-alpha was unchanged. PKC-alpha showed partial down-regulation by 24 h of PMA pretreatment. PKC-zeta did not down-regulate at any of the times tested. Translocation from cytosol to membrane in response to PMA was also more rapid for PKC-epsilon than for PKC-alpha. The accumulation of total 3H-inositol (poly) phosphates in response to bradykinin or histamine was essentially abolished by prior treatment with 10-min PMA treatment (1 microM). However, with 12-h exposure to PMA, the bradykinin response was restored to the level seen with no prior PMA exposure. The histamine response showed no recovery by 12 h of PMA, but showed partial recovery by 24 h of PMA pretreatment. These observations showed that the restoration of the response to bradykinin corresponds to the loss of PKC-epsilon, whereas the restoration of the histamine response corresponds to the loss of PKC-alpha. This picture was confirmed with further studies on cytosolic Ca2+. The results show that chromaffin cells exhibit an unusual pattern of down-regulation of PKC isoforms on prolonged exposure to PMA, and that there is a differential effect of exposure to PMA on the histamine and bradykinin responses, suggesting that different PLC-linked receptors in chromafin

  3. microRNA-34a-Mediated Down-Regulation of the Microglial-Enriched Triggering Receptor and Phagocytosis-Sensor TREM2 in Age-Related Macular Degeneration.

    Directory of Open Access Journals (Sweden)

    Surjyadipta Bhattacharjee

    Full Text Available The aggregation of Aβ42-peptides and the formation of drusen in age-related macular degeneration (AMD are due in part to the inability of homeostatic phagocytic mechanisms to clear self-aggregating Aβ42-peptides from the extracellular space. The triggering receptor expressed in myeloid/microglial cells-2 (TREM2, a trans-membrane-spanning, sensor-receptor of the immune-globulin/lectin-like gene superfamily is a critical component of Aβ42-peptide clearance. Here we report a significant deficit in TREM2 in AMD retina and in cytokine- or oxidatively-stressed microglial (MG cells. RT-PCR, miRNA-array, LED-Northern and Western blot studies indicated up-regulation of a microglial-enriched NF-кB-sensitive miRNA-34a coupled to a down-regulation of TREM2 in the same samples. Bioinformatics/transfection-luciferase reporter assays indicated that miRNA-34a targets the 299 nucleotide TREM2-mRNA-3'UTR, resulting in TREM2 down-regulation. C8B4-microglial cells challenged with Aβ42 were able to phagocytose these peptides, while miRNA-34a down-regulated both TREM2 and the ability of microglial-cells to phagocytose. Treatment of TNFα-stressed MG cells with phenyl-butyl nitrone (PBN, caffeic-acid phenethyl ester (CAPE, the NF-kB - [corrected] inhibitor/resveratrol analog CAY10512 or curcumin abrogated these responses. Incubation of anti-miRNA-34a (AM-34a normalized miRNA-34a abundance and restored TREM2 back to homeostatic levels. These data support five novel observations: (i that a ROS- and NF-kB - [corrected] sensitive, miRNA-34a-mediated modulation of TREM2 may in part regulate the phagocytic response; (ii that gene products encoded on two different chromosomes (miRNA-34a at chr1q36.22 and TREM2 at chr6p21.1 orchestrate a phagocytic-Aβ42-peptide clearance-system; (iii that this NF-kB-mediated-miRNA-34a-TREM2 mechanism is inducible from outside of the cell; (iv that when operating normally, this pathway can clear Aβ42 peptide monomers from the

  4. Cell-cycle regulation in green algae dividing by multiple fission

    Czech Academy of Sciences Publication Activity Database

    Bišová, Kateřina; Zachleder, Vilém

    2014-01-01

    Roč. 65, č. 10 (2014), s. 2585-2602 ISSN 0022-0957 R&D Projects: GA ČR M200201205; GA MŠk LH12145 Grant - others:Centre for Algal Biotechnologies (Algatech)(CZ) CZ.1.05/2.1.00/03.0110 Institutional support: RVO:61388971 Keywords : cell cycle * regulation * growth * light Subject RIV: EE - Microbiology, Virology Impact factor: 5.526, year: 2014

  5. Rapid male-specific regulatory divergence and down regulation of spermatogenesis genes in Drosophila species hybrids.

    Directory of Open Access Journals (Sweden)

    Jennifer Ferguson

    Full Text Available In most crosses between closely related species of Drosophila, the male hybrids are sterile and show postmeiotic abnormalities. A series of gene expression studies using genomic approaches have found significant down regulation of postmeiotic spermatogenesis genes in sterile male hybrids. These results have led some to suggest a direct relationship between down regulation in gene expression and hybrid sterility. An alternative explanation to a cause-and-effect relationship between misregulation of gene expression and male sterility is rapid divergence of male sex regulatory elements leading to incompatible interactions in an interspecies hybrid genome. To test the effect of regulatory divergence in spermatogenesis gene expression, we isolated 35 fertile D. simulans strains with D. mauritiana introgressions in either the X, second or third chromosome. We analyzed gene expression in these fertile hybrid strains for a subset of spermatogenesis genes previously reported as significantly under expressed in sterile hybrids relative to D. simulans. We found that fertile autosomal introgressions can cause levels of gene down regulation similar to that of sterile hybrids. We also found that X chromosome heterospecific introgressions cause significantly less gene down regulation than autosomal introgressions. Our results provide evidence that rapid male sex gene regulatory divergence can explain misexpression of spermatogenesis genes in hybrids.

  6. Endocrine gland derived-VEGF is down-regulated in human pituitary adenoma.

    Science.gov (United States)

    Raica, Marius; Coculescu, Mihail; Cimpean, Anca Maria; Ribatti, Domenico

    2010-10-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic molecule restricted to endocrine glands and, particularly, to steroid-secreting cells. The expression of EG-VEGF and its significance in human adenohypophysis in physiological and pathological conditions is still unknown. In this study, we investigated by immunohistochemistry the expression of EG-VEGF in 2 samples of normal adenohypophysis and 43 bioptic samples of pituitary adenoma. Moreover, the expression of growth hormone (GH), prolactin (PRL), follicle-stimulating hormone (FSH), luteinizing hormone (LH), thyroid-stimulating hormone (TSH) and adrenocorticoprophic hormone (ACTH) were also estimated. The results of this study for the first time demonstrate a down-regulation of EG-VEGF expression in human pituitary adenoma as compared to normal adenohypophysis, suggesting an impaired function of the neoplastic cells in terms of hormone release in the blood stream, as a consequence of impaired tumor angiogenesis in the tumor. On the basis of our data showing a marked decrease in the expression of EG-VEGF in pituitary adenoma, with the exception of LH-secreting adenomas, we suggest that LH might be involved in the induction of EG-VEGF secretion.

  7. Human immunodeficiency virus-like particles activate multiple types of immune cells

    International Nuclear Information System (INIS)

    Sailaja, Gangadhara; Skountzou, Ioanna; Quan, Fu-Shi; Compans, Richard W.; Kang, Sang-Moo

    2007-01-01

    The rapid spread of human immunodeficiency virus (HIV) worldwide makes it a high priority to develop an effective vaccine. Since live attenuated or inactivated HIV is not likely to be approved as a vaccine due to safety concerns, HIV virus like particles (VLPs) offer an attractive alternative because they are safe due to the lack of a viral genome. Although HIV VLPs have been shown to induce humoral and cellular immune responses, it is important to understand the mechanisms by which they induce such responses and to improve their immunogenicity. We generated HIV VLPs, and VLPs containing Flt3 ligand (FL), a dendritic cell growth factor, to target VLPs to dendritic cells, and investigated the roles of these VLPs in the initiation of adaptive immune responses in vitro and in vivo. We found that HIV-1 VLPs induced maturation of dendritic cells and monocyte/macrophage populations in vitro and in vivo, with enhanced expression of maturation markers and cytokines. Dendritic cells pulsed with VLPs induced activation of splenocytes resulting in increased production of cytokines. VLPs containing FL were found to increase dendritic cells and monocyte/macrophage populations in the spleen when administered to mice. Administration of VLPs induced acute activation of multiple types of cells including T and B cells as indicated by enhanced expression of the early activation marker CD69 and down-regulation of the homing receptor CD62L. VLPs containing FL were an effective form of antigen in activating immune cells via dendritic cells, and immunization with HIV VLPs containing FL resulted in enhanced T helper type 2-like immune responses

  8. Down-regulation of serum/glucocorticoid regulated kinase 1 in colorectal tumours is largely independent of promoter hypermethylation.

    Directory of Open Access Journals (Sweden)

    Francesca Lessi

    2010-11-01

    Full Text Available We have previously shown that serum/glucocorticoid regulated kinase 1 (SGK1 is down-regulated in colorectal cancers (CRC with respect to normal tissue. As hyper-methylation of promoter regions is a well-known mechanism of gene silencing in cancer, we tested whether the SGK1 promoter region was methylated in colonic tumour samples.We investigated the methylation profile of the two CpG islands present in the promoter region of SGK1 in a panel of 5 colorectal cancer cell lines by sequencing clones of bisulphite-treated DNA samples. We further confirmed our findings in a panel of 10 normal and 10 tumour colonic tissue samples of human origin. We observed CpG methylation only in the smaller and more distal CpG island in the promoter region of SGK1 in both normal and tumour samples of colonic origin. We further identified a single nucleotide polymorphism (SNP, rs1743963 which affects methylation of the corresponding CpG.Our results show that even though partial methylation of the promoter region of SGK1 is present, this does not account for the different expression levels seen between normal and tumour tissue.

  9. MADD knock-down enhances doxorubicin and TRAIL induced apoptosis in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Andrea Turner

    Full Text Available The Map kinase Activating Death Domain containing protein (MADD isoform of the IG20 gene is over-expressed in different types of cancer tissues and cell lines and it functions as a negative regulator of apoptosis. Therefore, we speculated that MADD might be over-expressed in human breast cancer tissues and that MADD knock-down might synergize with chemotherapeutic or TRAIL-induced apoptosis of breast cancer cells. Analyses of breast tissue microarrays revealed over-expression of MADD in ductal and invasive carcinomas relative to benign tissues. MADD knockdown resulted in enhanced spontaneous apoptosis in human breast cancer cell lines. Moreover, MADD knockdown followed by treatment with TRAIL or doxorubicin resulted in increased cell death compared to either treatment alone. Enhanced cell death was found to be secondary to increased caspase-8 activation. These data indicate that strategies to decrease MADD expression or function in breast cancer may be utilized to increase tumor cell sensitivity to TRAIL and doxorubicin induced apoptosis.

  10. Undifferentiated embryonic cell transcription factor 1 regulates ESC chromatin organization and gene expression

    DEFF Research Database (Denmark)

    Kooistra, Susanne M; van den Boom, Vincent; Thummer, Rajkumar P

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES...... cell chromatin structure. Using chromatin immunoprecipitation-on-chip analysis, we identified >1,700 UTF1 target genes that significantly overlap with previously identified Nanog, Oct4, Klf-4, c-Myc, and Rex1 targets. Gene expression profiling showed that UTF1 knock down results in increased expression...... of a large set of genes, including a significant number of UTF1 targets. UTF1 knock down (KD) ES cells are, irrespective of the increased expression of several self-renewal genes, Leukemia inhibitory factor (LIF) dependent. However, UTF1 KD ES cells are perturbed in their differentiation in response...

  11. Functional genomics analysis of vitamin D effects on CD4+ T cells in vivo in experimental autoimmune encephalomyelitis ‬

    KAUST Repository

    Zeitelhofer, Manuel; Adzemovic, Milena Z.; Gomez-Cabrero, David; Bergman, Petra; Hochmeister, Sonja; N'diaye, Marie; Paulson, Atul; Ruhrmann, Sabrina; Almgren, Malin; Tegner, Jesper; Ekströ m, Tomas J.; Guerreiro-Cacais, André Ortlieb; Jagodic, Maja

    2017-01-01

    Vitamin D exerts multiple immunomodulatory functions and has been implicated in the etiology and treatment of several autoimmune diseases, including multiple sclerosis (MS). We have previously reported that in juvenile/adolescent rats, vitamin D supplementation protects from experimental autoimmune encephalomyelitis (EAE), a model of MS. Here we demonstrate that this protective effect associates with decreased proliferation of CD4+ T cells and lower frequency of pathogenic T helper (Th) 17 cells. Using transcriptome, methylome, and pathway analyses in CD4+ T cells, we show that vitamin D affects multiple signaling and metabolic pathways critical for T-cell activation and differentiation into Th1 and Th17 subsets in vivo. Namely, Jak/Stat, Erk/Mapk, and Pi3K/Akt/mTor signaling pathway genes were down-regulated upon vitamin D supplementation. The protective effect associated with epigenetic mechanisms, such as (i) changed levels of enzymes involved in establishment and maintenance of epigenetic marks, i.e., DNA methylation and histone modifications; (ii) genome-wide reduction of DNA methylation, and (iii) up-regulation of noncoding RNAs, including microRNAs, with concomitant down-regulation of their protein-coding target RNAs involved in T-cell activation and differentiation. We further demonstrate that treatment of myelin-specific T cells with vitamin D reduces frequency of Th1 and Th17 cells, down-regulates genes in key signaling pathways and epigenetic machinery, and impairs their ability to transfer EAE. Finally, orthologs of nearly 50% of candidate MS risk genes and 40% of signature genes of myelin-reactive T cells in MS changed their expression in vivo in EAE upon supplementation, supporting the hypothesis that vitamin D may modulate risk for developing MS.

  12. Functional genomics analysis of vitamin D effects on CD4+ T cells in vivo in experimental autoimmune encephalomyelitis ‬

    KAUST Repository

    Zeitelhofer, Manuel

    2017-02-15

    Vitamin D exerts multiple immunomodulatory functions and has been implicated in the etiology and treatment of several autoimmune diseases, including multiple sclerosis (MS). We have previously reported that in juvenile/adolescent rats, vitamin D supplementation protects from experimental autoimmune encephalomyelitis (EAE), a model of MS. Here we demonstrate that this protective effect associates with decreased proliferation of CD4+ T cells and lower frequency of pathogenic T helper (Th) 17 cells. Using transcriptome, methylome, and pathway analyses in CD4+ T cells, we show that vitamin D affects multiple signaling and metabolic pathways critical for T-cell activation and differentiation into Th1 and Th17 subsets in vivo. Namely, Jak/Stat, Erk/Mapk, and Pi3K/Akt/mTor signaling pathway genes were down-regulated upon vitamin D supplementation. The protective effect associated with epigenetic mechanisms, such as (i) changed levels of enzymes involved in establishment and maintenance of epigenetic marks, i.e., DNA methylation and histone modifications; (ii) genome-wide reduction of DNA methylation, and (iii) up-regulation of noncoding RNAs, including microRNAs, with concomitant down-regulation of their protein-coding target RNAs involved in T-cell activation and differentiation. We further demonstrate that treatment of myelin-specific T cells with vitamin D reduces frequency of Th1 and Th17 cells, down-regulates genes in key signaling pathways and epigenetic machinery, and impairs their ability to transfer EAE. Finally, orthologs of nearly 50% of candidate MS risk genes and 40% of signature genes of myelin-reactive T cells in MS changed their expression in vivo in EAE upon supplementation, supporting the hypothesis that vitamin D may modulate risk for developing MS.

  13. Sterol synthesis and cell size distribution under oscillatory growth conditions in Saccharomyces cerevisiae scale-down cultivations.

    Science.gov (United States)

    Marbà-Ardébol, Anna-Maria; Bockisch, Anika; Neubauer, Peter; Junne, Stefan

    2018-02-01

    Physiological responses of yeast to oscillatory environments as they appear in the liquid phase in large-scale bioreactors have been the subject of past studies. So far, however, the impact on the sterol content and intracellular regulation remains to be investigated. Since oxygen is a cofactor in several reaction steps within sterol metabolism, changes in oxygen availability, as occurs in production-scale aerated bioreactors, might have an influence on the regulation and incorporation of free sterols into the cell lipid layer. Therefore, sterol and fatty acid synthesis in two- and three-compartment scale-down Saccharomyces cerevisiae cultivation were studied and compared with typical values obtained in homogeneous lab-scale cultivations. While cells were exposed to oscillating substrate and oxygen availability in the scale-down cultivations, growth was reduced and accumulation of carboxylic acids was increased. Sterol synthesis was elevated to ergosterol at the same time. The higher fluxes led to increased concentrations of esterified sterols. The cells thus seem to utilize the increased availability of precursors to fill their sterol reservoirs; however, this seems to be limited in the three-compartment reactor cultivation due to a prolonged exposure to oxygen limitation. Besides, a larger heterogeneity within the single-cell size distribution was observed under oscillatory growth conditions with three-dimensional holographic microscopy. Hence the impact of gradients is also observable at the morphological level. The consideration of such a single-cell-based analysis provides useful information about the homogeneity of responses among the population. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Molecular machinery of signal transduction and cell cycle regulation in Plasmodium

    OpenAIRE

    Koyama, Fernanda C.; Chakrabarti, Debopam; Garcia, Célia R.S.

    2009-01-01

    The regulation of the Plasmodium cell cycle is not understood. Although the Plasmodium falciparum genome is completely sequenced, about 60% of the predicted proteins share little or no sequence similarity with other eukaryotes. This feature impairs the identification of important proteins participating in the regulation of the cell cycle. There are several open questions that concern cell cycle progression in malaria parasites, including the mechanism by which multiple nuclear divisions is co...

  15. Cdc42 regulates epithelial cell polarity and cytoskeletal function during kidney tubule development

    DEFF Research Database (Denmark)

    Elias, Bertha C; Das, Amrita; Parekh, Diptiben V

    2015-01-01

    The Rho GTPase Cdc42 regulates key signaling pathways required for multiple cell functions, including maintenance of shape, polarity, proliferation, migration, differentiation and morphogenesis. Although previous studies have shown that Cdc42 is required for proper epithelial development and main......The Rho GTPase Cdc42 regulates key signaling pathways required for multiple cell functions, including maintenance of shape, polarity, proliferation, migration, differentiation and morphogenesis. Although previous studies have shown that Cdc42 is required for proper epithelial development...

  16. Matrix regulators in neural stem cell functions.

    Science.gov (United States)

    Wade, Anna; McKinney, Andrew; Phillips, Joanna J

    2014-08-01

    Neural stem/progenitor cells (NSPCs) reside within a complex and dynamic extracellular microenvironment, or niche. This niche regulates fundamental aspects of their behavior during normal neural development and repair. Precise yet dynamic regulation of NSPC self-renewal, migration, and differentiation is critical and must persist over the life of an organism. In this review, we summarize some of the major components of the NSPC niche and provide examples of how cues from the extracellular matrix regulate NSPC behaviors. We use proteoglycans to illustrate the many diverse roles of the niche in providing temporal and spatial regulation of cellular behavior. The NSPC niche is comprised of multiple components that include; soluble ligands, such as growth factors, morphogens, chemokines, and neurotransmitters, the extracellular matrix, and cellular components. As illustrated by proteoglycans, a major component of the extracellular matrix, the NSPC, niche provides temporal and spatial regulation of NSPC behaviors. The factors that control NSPC behavior are vital to understand as we attempt to modulate normal neural development and repair. Furthermore, an improved understanding of how these factors regulate cell proliferation, migration, and differentiation, crucial for malignancy, may reveal novel anti-tumor strategies. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Tip cells: master regulators of tubulogenesis?

    Science.gov (United States)

    Weavers, Helen; Skaer, Helen

    2014-07-01

    The normal development of an organ depends on the coordinated regulation of multiple cell activities. Focusing on tubulogenesis, we review the role of specialised cells or groups of cells that are selected from within tissue primordia and differentiate at the outgrowing tips or leading edge of developing tubules. Tip or leading cells develop distinctive patterns of gene expression that enable them to act both as sensors and transmitters of intercellular signalling. This enables them to explore the environment, respond to both tissue intrinsic signals and extrinsic cues from surrounding tissues and to regulate the behaviour of their neighbours, including the setting of cell fate, patterning cell division, inducing polarity and promoting cell movement and cell rearrangements by neighbour exchange. Tip cells are also able to transmit mechanical tension to promote tissue remodelling and, by interacting with the extracellular matrix, they can dictate migratory pathways and organ shape. Where separate tubular structures fuse to form networks, as in the airways of insects or the vascular system of vertebrates, specialised fusion tip cells act to interconnect disparate elements of the developing network. Finally, we consider their importance in the maturation of mature physiological function and in the development of disease. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. The emerging role of microRNA in regulation of endotoxin tolerance.

    LENUS (Irish Health Repository)

    Quinn, Edel M

    2012-05-01

    Endotoxin tolerance is a phenomenon where cells show reduced responsiveness toward repeated endotoxin stimulation. Regulation of tolerance occurs at multiple levels of the cell signaling cascade, and many of these levels are potentially regulated by miRNA, which are a class of small RNA that bind to mRNA to down-regulate gene expression at the post-transcriptional level. Roles have been identified for miR-146a, miR-221, miR-579, miR-125b, miR-155, let-7e, and miR-98 in regulating the TLR4 signaling pathway during the development of endotoxin tolerance at receptor, signaling pathway, and gene transcription and translational levels. miRNA represent exciting, new potential targets in attempts to exogenously modulate development of endotoxin tolerance.

  19. Down-regulation of DNA mismatch repair proteins in human and murine tumor spheroids: implications for multicellular resistance to alkylating agents.

    Science.gov (United States)

    Francia, Giulio; Green, Shane K; Bocci, Guido; Man, Shan; Emmenegger, Urban; Ebos, John M L; Weinerman, Adina; Shaked, Yuval; Kerbel, Robert S

    2005-10-01

    Similar to other anticancer agents, intrinsic or acquired resistance to DNA-damaging chemotherapeutics is a major obstacle for cancer therapy. Current strategies aimed at overcoming this problem are mostly based on the premise that tumor cells acquire heritable genetic mutations that contribute to drug resistance. Here, we present evidence for an epigenetic, tumor cell adhesion-mediated, and reversible form of drug resistance that is associated with a reduction of DNA mismatch repair proteins PMS2 and/or MLH1 as well as other members of this DNA repair process. Growth of human breast cancer, human melanoma, and murine EMT-6 breast cancer cell lines as multicellular spheroids in vitro, which is associated with increased resistance to many chemotherapeutic drugs, including alkylating agents, is shown to lead to a reproducible down-regulation of PMS2, MLH1, or, in some cases, both as well as MHS6, MSH3, and MSH2. The observed down-regulation is in part reversible by treatment of tumor spheroids with the DNA-demethylating agent, 5-azacytidine. Thus, treatment of EMT-6 mouse mammary carcinoma spheroids with 5-azacytidine resulted in reduced and/or disrupted cell-cell adhesion, which in turn sensitized tumor spheroids to cisplatin-mediated killing in vitro. Our results suggest that antiadhesive agents might sensitize tumor spheroids to alkylating agents in part by reversing or preventing reduced DNA mismatch repair activity and that the chemosensitization properties of 5-azacytidine may conceivably reflect its role as a potential antiadhesive agent as well as reversal agent for MLH1 gene silencing in human tumors.

  20. Oncogenic micro-RNAs and Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Cristina eGrange

    2014-03-01

    Full Text Available Tumor formation is a complex process that occurs in different steps and involves many cell types, including tumor cells, endothelial cells, and inflammatory cells, which interact to promote growth of the tumor mass and metastasization. Epigenetic alterations occurring in transformed cells result in de-regulation of miRNA expression (a class of small non-coding RNA that regulates multiple functions which contributes to tumorigenesis. The specific miRNAs, which have an aberrant expression in tumors, are defined as oncomiRNAs, and may be either over- or under-expressed, but down-regulation is most commonly observed.Renal cell carcinoma is a frequent form of urologic tumor, associated with an alteration of multiple signaling pathways. Many molecules involved in the progression of renal cell carcinomas, such as HIF, VEGF or mTOR, are possible targets of deregulated miRNAs. Within tumor mass, the cancer stem cell population is a fundamental component that promotes tumor growth. The cancer stem cell hypothesis postulates that cancer stem cells have the unique ability to self-renew and to maintain tumor growth and metastasis. Cancer stem cells present in renal cell carcinoma were shown to express the mesenchymal stem cell marker CD105 and to exhibit self-renewal and clonogenic properties, as well as the ability to generate serially transplantable tumors. The phenotype of cancer stem cell has been related to the potential to undergo the epithelial-mesenchymal transition, which has been linked to the expression pattern of tumorigenic miRNAs or down-regulation of anti-tumor miRNAs. In addition, the pattern of circulating miRNAs may allow discrimination between healthy and tumor patients. Therefore, a miRNA signature may be used as a tumor biomarker for cancer diagnosis, as well as to classify the risk of relapse and metastasis, and for a guide for therapy.

  1. The Cell Adhesion Molecule Necl-4/CADM4 Serves as a Novel Regulator for Contact Inhibition of Cell Movement and Proliferation.

    Directory of Open Access Journals (Sweden)

    Shota Yamana

    Full Text Available Contact inhibition of cell movement and proliferation is critical for proper organogenesis and tissue remodeling. We show here a novel regulatory mechanism for this contact inhibition using cultured vascular endothelial cells. When the cells were confluently cultured, Necl-4 was up-regulated and localized at cell-cell contact sites where it cis-interacted with the vascular endothelial growth factor (VEGF receptor. This interaction inhibited the tyrosine-phosphorylation of the VEGF receptor through protein-tyrosine phosphatase, non-receptor type 13 (PTPN13, eventually reducing cell movement and proliferation. When the cells were sparsely cultured, Necl-4 was down-regulated but accumulated at leading edges where it inhibited the activation of Rho-associated protein kinase through PTPN13, eventually facilitating the VEGF-induced activation of Rac1 and enhancing cell movement. Necl-4 further facilitated the activation of extracellular signal-regulated kinase 1/2, eventually enhancing cell proliferation. Thus, Necl-4 serves as a novel regulator for contact inhibition of cell movement and proliferation cooperatively with the VEGF receptor and PTPN13.

  2. Up-regulation of miR-146a contributes to the inhibition of invasion of pancreatic cancer cells

    Science.gov (United States)

    Li, Yiwei; VandenBoom, Timothy G.; Wang, Zhiwei; Kong, Dejuan; Ali, Shadan; Philip, Philip A.; Sarkar, Fazlul H.

    2009-01-01

    Pancreatic cancer (PC) is an aggressive malignancy with high mortality and is believed to be in part due to its highly invasive and metastatic behavior, which is associated with over-expression of EGFR and activation of NF-κB. Emerging evidence also suggest critical roles of microRNAs (miRNAs) in the regulation of various pathobiological processes including metastasis in PC and in other human malignancies. In the present study, we found lower expression of miR-146a in PC cells compared to normal human pancreatic duct epithelial (HPDE) cells. Interestingly, re-expression of miR-146a inhibited the invasive capacity of Colo357 and Panc-1 PC cells with concomitant down-regulation of EGFR and IRAK-1. Mechanistic studies including miR-146a re-expression, anti-miR-146 transfection, and EGFR knock-down experiment showed that there was a crosstalk between EGFR, MTA-2, IRAK-1, IκBα and NF-κB. Most importantly, we found that the treatment of PC cells with “natural agents” [3,3′-diinodolylmethane (DIM) or isoflavone] led to an increase in the expression of miR-146a and consequently down-regulated the expression of EGFR, MTA-2, IRAK-1 and NF-κB, resulting in the inhibition of invasion of Colo357 and Panc-1 cells. These results provide experimental evidence in support of the role of DIM and isoflavone as potential non-toxic agents as regulators of miRNA, which could be useful for the inhibition of cancer cell invasion and metastasis, and further suggesting that these agents could be important for designing novel targeted strategy for the treatment of PC. PMID:25242818

  3. SU-F-T-675: Down-Regulating the Expression of Cdc42 and Inhibition of Migration of A549 with Combined Treatment of Ionizing Radiation and Sevoflurane

    International Nuclear Information System (INIS)

    Feng, Y; Feng, J; Huang, Z

    2016-01-01

    Purpose: Cdc42 is involved in cell transformation, proliferation, invasion and metastasis of human cancer cells. Cdc42 overexpression has been reported in several types of cancers. This study investigated the combined treatment effects of ionizing radiation and sevoflurane on down-regulating Cdc42 expression and suppressing migration of human adenocarcinoma cell line A549. Methods: Samples of A549 cells with Cdc42 overexpression were created and Cdc42 expression was determined by Western blotting. Increase of migration speed by Cdc42-HA overexpression was confirmed with an initial in-vitro scratch assay. The cells grown in culture media were separated into 2 groups of 6 samples: one for the control and the other was treated with 4% sevoflurane for 5hrs prior to a single-fraction radiation of 4Gy using a 6MV beam. Cell migration speeds of the 2 groups were measured with an initial in-vitro scratch assay. The scratch was created with a pipette tip immediately after treatment and images at 4 post-treatment time points (0h, 3h, 6h, 12h) were acquired. The distance between the two separated sides at 0h was used as reference and subsequent changes of the distance over time was defined as the cell migration speed. Image processing and measurement were performed with an in-house software. The experiment was repeated three times independently to evaluate the repeatability and reliability. Statistical analysis was performed with SPSS 19.0. Results: Western blotting showed the treatment down-regulated Cdc42 overexpression. Quantitative analysis and two-tailed t-test showed that cell migration speed of the treated group was higher than the control group at all time points after treatment (p < 0.02). Conclusion: Combined treatment of 6MV photon and sevoflurane can cause the effects of down-regulating Cdc42 overexpression and decrease of migration speed of A549 cells which provides potential of clinical benefit for the cancer therapy. More investigation is needed to further

  4. SU-F-T-675: Down-Regulating the Expression of Cdc42 and Inhibition of Migration of A549 with Combined Treatment of Ionizing Radiation and Sevoflurane

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Y [East Carolina University, Greenville, NC (United States); Feng, J [Tianjin University, Tianjin (China); Huang, Z [East Carolina University, Greenville, NC (United States)

    2016-06-15

    Purpose: Cdc42 is involved in cell transformation, proliferation, invasion and metastasis of human cancer cells. Cdc42 overexpression has been reported in several types of cancers. This study investigated the combined treatment effects of ionizing radiation and sevoflurane on down-regulating Cdc42 expression and suppressing migration of human adenocarcinoma cell line A549. Methods: Samples of A549 cells with Cdc42 overexpression were created and Cdc42 expression was determined by Western blotting. Increase of migration speed by Cdc42-HA overexpression was confirmed with an initial in-vitro scratch assay. The cells grown in culture media were separated into 2 groups of 6 samples: one for the control and the other was treated with 4% sevoflurane for 5hrs prior to a single-fraction radiation of 4Gy using a 6MV beam. Cell migration speeds of the 2 groups were measured with an initial in-vitro scratch assay. The scratch was created with a pipette tip immediately after treatment and images at 4 post-treatment time points (0h, 3h, 6h, 12h) were acquired. The distance between the two separated sides at 0h was used as reference and subsequent changes of the distance over time was defined as the cell migration speed. Image processing and measurement were performed with an in-house software. The experiment was repeated three times independently to evaluate the repeatability and reliability. Statistical analysis was performed with SPSS 19.0. Results: Western blotting showed the treatment down-regulated Cdc42 overexpression. Quantitative analysis and two-tailed t-test showed that cell migration speed of the treated group was higher than the control group at all time points after treatment (p < 0.02). Conclusion: Combined treatment of 6MV photon and sevoflurane can cause the effects of down-regulating Cdc42 overexpression and decrease of migration speed of A549 cells which provides potential of clinical benefit for the cancer therapy. More investigation is needed to further

  5. Down-regulation of Gab1 inhibits cell proliferation and migration in hilar cholangiocarcinoma.

    Directory of Open Access Journals (Sweden)

    Haiquan Sang

    Full Text Available Hilar cholangiocarcinoma is a highly aggressive malignancy originating from the hilar biliary duct epithelium. Due to few effective comprehensive treatments, the prognosis of hilar cholangiocarcinoma is poor. In this study, immunohistochemistry was first used to detect and analyze the expression of Gab1, VEGFR-2, and MMP-9 in hilar cholangiocarcinoma solid tumors and the relationships to the clinical pathological features. Furthermore, Gab1 and VEGFR-2 siRNA were used to interfere the hilar cholangiocarcinoma cell line ICBD-1 and then detect the PI3K/Akt signaling pathway, MMP-9 levels and malignant biological behaviors of tumor cells. The data showed that 1. Gab1, VEGFR-2, and MMP-9 were highly expressed and positively correlated with each other in hilar cholangiocarcinoma tissues, which were related to lymph node metastasis and differentiation. 2. After Gab1 or VEGFR-2 siRNA interference, PI3K/Akt pathway activity and MMP-9 levels were decreased in ICBD-1 cells. At the same time, cell proliferation decreased, cell cycle arrested in G1 phase, apoptosis increased and invasion decreased. These results suggest that the expression of Gab1, VEGFR-2, and MMP-9 are significantly related to the malignant biological behavior of hilar cholangiocarcinoma. Gab1 regulates growth, apoptosis and invasion through the VEGFR-2/Gab1/PI3K/Akt signaling pathway in hilar cholangiocarcinoma cells and influences the invasion of tumor cells via MMP-9.

  6. Down-regulation of Gab1 inhibits cell proliferation and migration in hilar cholangiocarcinoma.

    Science.gov (United States)

    Sang, Haiquan; Li, Tingting; Li, Hangyu; Liu, Jingang

    2013-01-01

    Hilar cholangiocarcinoma is a highly aggressive malignancy originating from the hilar biliary duct epithelium. Due to few effective comprehensive treatments, the prognosis of hilar cholangiocarcinoma is poor. In this study, immunohistochemistry was first used to detect and analyze the expression of Gab1, VEGFR-2, and MMP-9 in hilar cholangiocarcinoma solid tumors and the relationships to the clinical pathological features. Furthermore, Gab1 and VEGFR-2 siRNA were used to interfere the hilar cholangiocarcinoma cell line ICBD-1 and then detect the PI3K/Akt signaling pathway, MMP-9 levels and malignant biological behaviors of tumor cells. The data showed that 1. Gab1, VEGFR-2, and MMP-9 were highly expressed and positively correlated with each other in hilar cholangiocarcinoma tissues, which were related to lymph node metastasis and differentiation. 2. After Gab1 or VEGFR-2 siRNA interference, PI3K/Akt pathway activity and MMP-9 levels were decreased in ICBD-1 cells. At the same time, cell proliferation decreased, cell cycle arrested in G1 phase, apoptosis increased and invasion decreased. These results suggest that the expression of Gab1, VEGFR-2, and MMP-9 are significantly related to the malignant biological behavior of hilar cholangiocarcinoma. Gab1 regulates growth, apoptosis and invasion through the VEGFR-2/Gab1/PI3K/Akt signaling pathway in hilar cholangiocarcinoma cells and influences the invasion of tumor cells via MMP-9.

  7. CAR-T cells are serial killers.

    Science.gov (United States)

    Davenport, Alexander J; Jenkins, Misty R; Ritchie, David S; Prince, H Miles; Trapani, Joseph A; Kershaw, Michael H; Darcy, Phillip K; Neeson, Paul J

    2015-12-01

    Chimeric antigen receptor (CAR) T cells have enjoyed unprecedented clinical success against haematological malignancies in recent years. However, several aspects of CAR T cell biology remain unknown. We recently compared CAR and T cell receptor (TCR)-based killing in the same effector cell and showed that CAR T cells can not only efficiently kill single tumor targets, they can also kill multiple tumor targets in a sequential manner. Single and serial killing events were not sustained long term due to CAR down-regulation after 20 hours.

  8. Transcriptional profiling of MEF2-regulated genes in human neural progenitor cells derived from embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Shing Fai Chan

    2015-03-01

    Full Text Available The myocyte enhancer factor 2 (MEF2 family of transcription factors is highly expressed in the brain and constitutes a key determinant of neuronal survival, differentiation, and synaptic plasticity. However, genome-wide transcriptional profiling of MEF2-regulated genes has not yet been fully elucidated, particularly at the neural stem cell stage. Here we report the results of microarray analysis comparing mRNAs isolated from human neural progenitor/stem cells (hNPCs derived from embryonic stem cells expressing a control vector versus progenitors expressing a constitutively-active form of MEF2 (MEF2CA, which increases MEF2 activity. Microarray experiments were performed using the Illumina Human HT-12 V4.0 expression beadchip (GEO#: GSE57184. By comparing vector-control cells to MEF2CA cells, microarray analysis identified 1880 unique genes that were differentially expressed. Among these genes, 1121 genes were up-regulated and 759 genes were down-regulated. Our results provide a valuable resource for identifying transcriptional targets of MEF2 in hNPCs.

  9. Tolerization with BLP down-regulates HMGB1 a critical mediator of sepsis-related lethality.

    LENUS (Irish Health Repository)

    Coffey, J Calvin

    2012-02-03

    Tolerization with bacterial lipoprotein (BLP) affords a significant survival benefit in sepsis. Given that high mobility group box protein-1 (HMGB1) is a recognized mediator of sepsis-related lethality, we determined if tolerization with BLP leads to alterations in HMGB1. In vitro, BLP tolerization led to a reduction in HMGB1 gene transcription. This was mirrored at the protein level, as HMGB1 protein expression and release were reduced significantly in BLP-tolerized human THP-1 monocytic cells. BLP tolerance in vivo led to a highly significant, long-term survival benefit following challenge with lethal dose BLP in C57BL\\/6 mice. This was associated with an attenuation of HMGB1 release into the circulation, as evidenced by negligible serum HMGB1 levels in BLP-tolerized mice. Moreover, HMGB1 levels in peritoneal macrophages from BLP-tolerized mice were reduced significantly. Hence, tolerization with BLP leads to a down-regulation of HMGB1 protein synthesis and release. The improved survival associated with BLP tolerance could thus be explained by a reduction in HMGB1, were the latter associated with lethality in BLP-related sepsis. In testing this hypothesis, it was noted that neutralization of HMGB1, using anti-HMGB1 antibodies, abrogated BLP-associated lethality almost completely. To conclude, tolerization with BLP leads to a down-regulation of HMGB1, thus offering a novel means of targeting the latter. HMGB1 is also a mediator of lethality in BLP-related sepsis.

  10. Regulated expression of the neural cell adhesion molecule L1 by specific patterns of neural impulses.

    Science.gov (United States)

    Itoh, K; Stevens, B; Schachner, M; Fields, R D

    1995-11-24

    Development of the mammalian nervous system is regulated by neural impulse activity, but the molecular mechanisms are not well understood. If cell recognition molecules [for example, L1 and the neural cell adhesion molecule (NCAM)] were influenced by specific patterns of impulse activity, cell-cell interactions controlling nervous system structure could be regulated by nervous system function at critical stages of development. Low-frequency electrical pulses delivered to mouse sensory neurons in culture (0.1 hertz for 5 days) down-regulated expression of L1 messenger RNA and protein (but not NCAM). Fasciculation of neurites, adhesion of neuroblastoma cells, and the number of Schwann cells on neurites was reduced after 0.1-hertz stimulation, but higher frequencies or stimulation after synaptogenesis were without effect.

  11. [PHI regulates histone methylation and acetylation in Burkitt lymphoma Daudi cell line].

    Science.gov (United States)

    Hong, Ling-Ling; Ma, Xu-Dong; Huang, Yi-Qun

    2011-02-01

    This study was purposed to investigate the effects of phenylhexyl isothiocyanate (PHI) on Burkitt lymphoma Daudi cell line and regulation of histone acetylation and methylation in Daudi cells, and to explore the potential mechanism. The apoptotic rate of Daudi cells treated with PHI was measured by flow cytometry, the changes of histone H3 and H4 acetylation, histone H3K9 and H3K4 methylation in Daudi cells treated with PHI were detected by Western blot. The results showed that PHI could induce apoptosis of Daudi cells, increased the acetylation level of H3 and H4, enhanced the methylation of H3K4, but reduced the methylation of H3K9. It is concluded that the PHI can up-regulate the acetylation level of histone H3 associated with transcription stimulation and the methylation of histone H3K4, down-regulate the methylation on histone H3K9 associated with transcription inhibition, promotes the apoptosis of Daudi cells. PHI may be a potential agent for target therapy of lymphoma.

  12. A Dual Role of P53 in Regulating Colistin-Induced Autophagy in PC-12 Cells

    Directory of Open Access Journals (Sweden)

    Ziyin Lu

    2017-10-01

    Full Text Available This study aimed to investigate the mechanism of p53 in regulating colistin-induced autophagy in PC-12 cells. Importantly, cells were treated with 125 μg/ml colistin for 12 and 24 h after transfection with p53 siRNA or recombinant plasmid. The hallmarks of autophagy and apoptosis were examined by real-time PCR and western blot, fluorescence/immunofluorescence microscopy, and electron microscopy. The results showed that silencing of p53 leads to down-regulation of Atg5 and beclin1 for 12 h while up-regulation at 24 h and up-regulation of p62 noted. The ratio of LC3-II/I and autophagic vacuoles were significantly increased at 24 h, but autophagy flux was blocked. The cleavage of caspase3 and PARP (poly ADP-ribose polymerase were enhanced, while PC-12-sip53 cells exposed to 3-MA showed down-regulation of apoptosis. By contrast, the expression of autophagy-related genes and protein reduced in p53 overexpressing cells following a time dependent manner. Meanwhile, there was an increase in the expression of activated caspase3 and PARP, condensed and fragmented nuclei were evident. Conclusively, the data supported that silencing of p53 promotes impaired autophagy, which acts as a pro-apoptotic induction factor in PC-12 cells treated with colistin for 24 h, and overexpression of p53 inhibits autophagy and accelerates apoptosis. Hence, it has been suggested that p53 could not act as a neuro-protective target in colistin-induced neurotoxicity.

  13. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Nilgun Gurbuz

    Full Text Available Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA, induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT, concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B- and 5-HT1D-mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification

  14. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Nilgun Gurbuz

    Full Text Available Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA, induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT, concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B- and 5-HT1D- mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification

  15. P02.04MICRORNA-MEDIATED DOWN-REGULATION OF NKG2D LIGAND EXPRESSION REDUCES GLIOMA CELL IMMUNOGENICITY

    Science.gov (United States)

    Codo, P.; Weller, M.; Meister, G.; Szabo, E.; Steinle, A.; Wolter, M.; Reifenberger, G.; Roth, P.

    2014-01-01

    Glioblastoma is a primary brain tumor with a dismal prognosis despite comprehensive therapeutic regimens. It is characterized by diffuse infiltration of the surrounding healthy brain tissue, well-adapted to hypoxic conditions and regarded as paradigmatic for tumor-associated immunosuppression. One of the major activating receptors of natural killer (NK) cells is NKG2D. It binds to at least 8 ligands (NKG2DL) which are induced after malignant transformation and cellular stress. Regulation of NKG2DL expression may be affected by endogenous RNA molecules known as microRNA (miRNA). Here, we aimed at characterizing the role of miRNA in the control of NKG2DL expression in glioma cells. We selected 6 miRNA that were described or predicted to target NKG2DL. Three of the miRNA candidates, miR-20a, miR-93 and miR-106b, were expressed in glioma cell lines and were also detected in glioblastoma tissue specimens. Silencing of these miRNA with locked nucleic acid (LNA) molecules resulted in an up-regulation of NKG2DL cell surface levels which translated into increased sensitivity to immune cell killing. This effect was reversed by neutralizing NKG2D antibodies, confirming that enhanced immune cell lysis upon miRNA silencing was mediated through the NKG2D system. We conclude that the expression of several miRNA may contribute to the immune escape of glioma cells at the level of the NKG2D system. Therapeutic targeting of miRNA that regulate NKG2DL levels may therefore represent a promising approach to allow for more potent immune responses against glioblastoma.

  16. OCA-B regulation of B-cell development and function.

    Science.gov (United States)

    Teitell, Michael A

    2003-10-01

    The transcriptional co-activator OCA-B [for Oct co-activator from B cells, also known as OBF-1 (OCT-binding factor-1) and Bob1] is not required for B-cell genesis but does regulate subsequent B-cell development and function. OCA-B deficient mice show strain-specific, partial blocks at multiple stages of B-cell maturation and a complete disruption of germinal center formation in all strains, causing humoral immune deficiency and susceptibility to infection. OCA-B probably exerts its effects through the regulation of octamer-motif controlled gene expression. The OCA-B gene encodes two proteins of distinct molecular weight, designated p34 and p35. The p34 isoform localizes in the nucleus, whereas the p35 isoform is myristoylated and is bound to the cytoplasmic membrane. p35 can traffic to the nucleus and probably activates octamer-dependent transcription, although this OCA-B isoform might regulate B cells through membrane-related signal transduction.

  17. The anti-apoptotic BAG3 protein is expressed in lung carcinomas and regulates small cell lung carcinoma (SCLC) tumor growth.

    Science.gov (United States)

    Chiappetta, Gennaro; Basile, Anna; Barbieri, Antonio; Falco, Antonia; Rosati, Alessandra; Festa, Michelina; Pasquinelli, Rosa; Califano, Daniela; Palma, Giuseppe; Costanzo, Raffaele; Barcaroli, Daniela; Capunzo, Mario; Franco, Renato; Rocco, Gaetano; Pascale, Maria; Turco, Maria Caterina; De Laurenzi, Vincenzo; Arra, Claudio

    2014-08-30

    BAG3, member the HSP70 co-chaperones family, has been shown to play a relevant role in the survival, growth and invasiveness of different tumor types. In this study, we investigate the expression of BAG3 in 66 specimens from different lung tumors and the role of this protein in small cell lung cancer (SCLC) tumor growth. Normal lung tissue did not express BAG3 while we detected the expression of BAG3 by immunohistochemistry in all the 13 squamous cell carcinomas, 13 adenocarcinomas and 4 large cell carcinomas. Furthermore, we detected BAG3 expression in 22 of the 36 SCLCs analyzed. The role on SCLC cell survival was determined by down-regulating BAG3 levels in two human SCLC cell lines, i.e. H69 and H446, in vitro and measuring cisplatin induced apoptosis. Indeed down-regulation of BAG3 determines increased cell death and sensitizes cells to cisplatin treatment. The effect of BAG3 down-regulation on tumor growth was also investigated in an in vivo xenograft model by treating mice with an adenovirus expressing a specific bag3 siRNA. Treatment with bag3 siRNA-Ad significantly reduced tumor growth and improved animal survival. In conclusion we show that a subset of SCLCs over express BAG3 that exerts an anti-apoptotic effect resulting in resistance to chemotherapy.

  18. Cell death is induced by ciglitazone, a peroxisome proliferator-activated receptor γ (PPARγ) agonist, independently of PPARγ in human glioma cells

    International Nuclear Information System (INIS)

    Lee, Myoung Woo; Kim, Dae Seong; Kim, Hye Ryung; Kim, Hye Jin; Yang, Jin Mo; Ryu, Somi; Noh, Yoo Hun; Lee, Soo Hyun; Son, Meong Hi; Jung, Hye Lim; Yoo, Keon Hee; Koo, Hong Hoe; Sung, Ki Woong

    2012-01-01

    Highlights: ► Greater than 30 μM ciglitazone induces cell death in glioma cells. ► Cell death by ciglitazone is independent of PPARγ in glioma cells. ► CGZ induces cell death by the loss of MMP via decreased Akt. -- Abstract: Peroxisome proliferator-activated receptor γ (PPARγ) regulates multiple signaling pathways, and its agonists induce apoptosis in various cancer cells. However, their role in cell death is unclear. In this study, the relationship between ciglitazone (CGZ) and PPARγ in CGZ-induced cell death was examined. At concentrations of greater than 30 μM, CGZ, a synthetic PPARγ agonist, activated caspase-3 and induced apoptosis in T98G cells. Treatment of T98G cells with less than 30 μM CGZ effectively induced cell death after pretreatment with 30 μM of the PPARγ antagonist GW9662, although GW9662 alone did not induce cell death. This cell death was also observed when cells were co-treated with CGZ and GW9662, but was not observed when cells were treated with CGZ prior to GW9662. In cells in which PPARγ was down-regulated cells by siRNA, lower concentrations of CGZ (<30 μM) were sufficient to induce cell death, although higher concentrations of CGZ (⩾30 μM) were required to induce cell death in control T98G cells, indicating that CGZ effectively induces cell death in T98G cells independently of PPARγ. Treatment with GW9662 followed by CGZ resulted in a down-regulation of Akt activity and the loss of mitochondrial membrane potential (MMP), which was accompanied by a decrease in Bcl-2 expression and an increase in Bid cleavage. These data suggest that CGZ is capable of inducing apoptotic cell death independently of PPARγ in glioma cells, by down-regulating Akt activity and inducing MMP collapse.

  19. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Huang, Xiaohua [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Biochemistry, College of Laboratory Medicine, Dalian Medical University, Dalian 116044 (China); An, Yue [Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Ren, Feng [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); He, Xiaowen; Schachner, Melitta [Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ (United States); Xiao, Zhicheng, E-mail: zhicheng.xiao@monash.edu [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); Ma, Keli, E-mail: makeli666@aliyun.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Li, Yali, E-mail: yalilipaper@gmail.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Anatomy, National University of Singapore, Singapore 119078 (Singapore)

    2013-10-25

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression.

  20. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    International Nuclear Information System (INIS)

    Li, Ying; Huang, Xiaohua; An, Yue; Ren, Feng; Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei; He, Xiaowen; Schachner, Melitta; Xiao, Zhicheng; Ma, Keli; Li, Yali

    2013-01-01

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression

  1. [Astragalus polysaccharide may increase sensitivity of cervical cancer HeLa cells to cisplatin by regulating cell autophagy].

    Science.gov (United States)

    Zhai, Qiu-Li; Hu, Xiang-Dan; Xiao, Jing; Yu, Dong-Qing

    2018-02-01

    This study aimed to investigate the possible sensitivity of Astragalus polysaccharides, in order to improve the chemosensitivity of cervical cancer HeLa cells to cisplatin by regulating the cell autophagy, and explore its possible mechanism. In this study, HeLa cells were divided into control group, cisplatin group, Astragalus polysaccharide group, and Astragalus polysaccharide combined with cisplatin group. MTT assay was used to detect the proliferation of cervical cancer HeLa cells. Flow cytometry was used to detect the apoptosis and cycle of HeLa cells in each experimental group. RT-PCR was used to detect the mRNA expression of autophagy-related proteins beclin1, LC3Ⅱ and p62. The expression levels of autophagy-related proteins beclin1, LC3Ⅱ, LC3Ⅰ and p62 were detected by WB method. MTT results showed that compared with the control group, the proliferation of HeLa cells was significantly inhibited in each administration group( P HeLa cells was significantly increased( P HeLa cells to cisplatin by regulating the cell autophagy. Its possible mechanism of action is correlated with the up-regulation of autophagy-related proteins beclin1, the promote the conversion from LC3Ⅰ to LC3Ⅱ, the down-regulation of labeled protein p62, and the enhancement of HeLa cell autophagic activity, thereby increasing the sensitivity of HeLa cells to cisplatin chemotherapy. Copyright© by the Chinese Pharmaceutical Association.

  2. Leucine zipper, down regulated in cancer-1 gene expression in prostate cancer

    OpenAIRE

    Salemi, Michele; Barone, Nunziata; La Vignera, Sandro; Condorelli, Rosita A.; Recupero, Domenico; Galia, Antonio; Fraggetta, Filippo; Aiello, Anna Maria; Pepe, Pietro; Castiglione, Roberto; Vicari, Enzo; Calogero, Aldo E.

    2016-01-01

    Numerous genetic alterations have been implicated in the development of prostate cancer (PCa). DNA and protein microarrays have enabled the identification of genes associated with apoptosis, which is important in PCa development. Despite the molecular mechanisms are not entirely understood, inhibition of apoptosis is a critical pathophysiological factor that contributes to the onset and progression of PCa. Leucine zipper, down-regulated in cancer 1 (LDOC-1) is a known regulator of the nuclear...

  3. Multiple Sclerosis

    Science.gov (United States)

    Multiple sclerosis (MS) is a nervous system disease that affects your brain and spinal cord. It damages the myelin sheath, the material that surrounds and protects your nerve cells. This damage slows down ...

  4. Dynamic ubiquitin signaling in cell cycle regulation.

    Science.gov (United States)

    Gilberto, Samuel; Peter, Matthias

    2017-08-07

    The cell division cycle is driven by a collection of enzymes that coordinate DNA duplication and separation, ensuring that genomic information is faithfully and perpetually maintained. The activity of the effector proteins that perform and coordinate these biological processes oscillates by regulated expression and/or posttranslational modifications. Ubiquitylation is a cardinal cellular modification and is long known for driving cell cycle transitions. In this review, we emphasize emerging concepts of how ubiquitylation brings the necessary dynamicity and plasticity that underlie the processes of DNA replication and mitosis. New studies, often focusing on the regulation of chromosomal proteins like DNA polymerases or kinetochore kinases, are demonstrating that ubiquitylation is a versatile modification that can be used to fine-tune these cell cycle events, frequently through processes that do not involve proteasomal degradation. Understanding how the increasing variety of identified ubiquitin signals are transduced will allow us to develop a deeper mechanistic perception of how the multiple factors come together to faithfully propagate genomic information. Here, we discuss these and additional conceptual challenges that are currently under study toward understanding how ubiquitin governs cell cycle regulation. © 2017 Gilberto and Peter.

  5. Human 3α-hydroxysteroid dehydrogenase type 3: structural clues of 5α-DHT reverse binding and enzyme down-regulation decreasing MCF7 cell growth.

    Science.gov (United States)

    Zhang, Bo; Hu, Xiao-Jian; Wang, Xiao-Qiang; Thériault, Jean-François; Zhu, Dao-Wei; Shang, Peng; Labrie, Fernand; Lin, Sheng-Xiang

    2016-04-15

    Human 3α-HSD3 (3α-hydroxysteroid dehydrogenase type 3) plays an essential role in the inactivation of the most potent androgen 5α-DHT (5α-dihydrotestosterone). The present study attempts to obtain the important structure of 3α-HSD3 in complex with 5α-DHT and to investigate the role of 3α-HSD3 in breast cancer cells. We report the crystal structure of human 3α-HSD3·NADP(+)·A-dione (5α-androstane-3,17-dione)/epi-ADT (epiandrosterone) complex, which was obtained by co-crystallization with 5α-DHT in the presence of NADP(+) Although 5α-DHT was introduced during the crystallization, oxidoreduction of 5α-DHT occurred. The locations of A-dione and epi-ADT were identified in the steroid-binding sites of two 3α-HSD3 molecules per crystal asymmetric unit. An overlay showed that A-dione and epi-ADT were oriented upside-down and flipped relative to each other, providing structural clues for 5α-DHT reverse binding in the enzyme with the generation of different products. Moreover, we report the crystal structure of the 3α-HSD3·NADP(+)·4-dione (4-androstene-3,17-dione) complex. When a specific siRNA (100 nM) was used to suppress 3α-HSD3 expression without interfering with 3α-HSD4, which shares a highly homologous active site, the 5α-DHT concentration increased, whereas MCF7 cell growth was suppressed. The present study provides structural clues for 5α-DHT reverse binding within 3α-HSD3, and demonstrates for the first time that down-regulation of 3α-HSD3 decreases MCF7 breast cancer cell growth. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  6. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  7. N-MYC DOWN-REGULATED-LIKE Proteins Regulate Meristem Initiation by Modulating Auxin Transport and MAX2 Expression

    OpenAIRE

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M.

    2013-01-01

    Background N-MYC DOWN-REGULATED-LIKE (NDL) proteins interact with the G? subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the presen...

  8. Overexpression of LncRNA AC067945.2 Down-Regulates Collagen Expression in Skin Fibroblasts and Possibly Correlates with the VEGF and Wnt Signalling Pathways.

    Science.gov (United States)

    Chen, Ling; Li, Jingyun; Li, Qian; Li, Xue; Gao, Yanli; Hua, Xiangdong; Zhou, Bei; Li, Jun

    2018-01-01

    Long non-coding RNAs (lncRNAs) are thought to play crucial roles in human diseases. However, the function of lncRNAs in hypertrophic scar formation remains poorly understood. Utilizing qRT-PCR, we explored the expression changes of AC067945.2. Overexpression of AC067945.2 in normal skin fibroblasts was performed by transient plasmid transfection. Western blot was used to check the proteins' expression changes. Cell Counting Kit-8 (CCK-8) assay and Annexin V/7-AAD staining were used to examine cell proliferation and apoptosis, respectively. mRNA-seq was applied to dissect the differentially expressed mRNAs in AC067945.2 overexpressed cells. We also performed ELISA to detect the VEGF secretion. AC067945.2 was down-regulated in hypertrophic scar tissues. Overexpression of AC067945.2 did not affect cell proliferation, but it mildly promoted early apoptosis in normal skin fibroblasts. Furthermore, AC067945.2 overexpression inhibited the expression of COL1A1, COL1A2, COL3A1 and α-SMA proteins. Transforming growth factor-β1 (TGF-β1) could inhibit the expression of AC067945.2. Based on mRNA-seq data, compared with mRNAs in the control group, 138 mRNAs were differentially expressed, including 14 up-regulated and 124 down-regulated transcripts, in the AC067945.2 overexpression group. Gene ontology and pathway analyses revealed that AC067945.2 overexpression was correlated with developmental processes, binding, extracellular region, and the vascular endothelial cell growth factor (VEGF) and Wnt signalling pathways. ELISA confirmed that AC067945.2 overexpression could repress VEGF secretion. Taken together, our data uncovered the functions of a novel lncRNA AC067945.2, which might help us understand the mechanisms regulated by AC067945.2 in the pathogenesis of hypertrophic scar formation. © 2018 The Author(s). Published by S. Karger AG, Basel.

  9. DYRK1A-mediated Cyclin D1 Degradation in Neural Stem Cells Contributes to the Neurogenic Cortical Defects in Down Syndrome

    Directory of Open Access Journals (Sweden)

    Sònia Najas

    2015-02-01

    Full Text Available Alterations in cerebral cortex connectivity lead to intellectual disability and in Down syndrome, this is associated with a deficit in cortical neurons that arises during prenatal development. However, the pathogenic mechanisms that cause this deficit have not yet been defined. Here we show that the human DYRK1A kinase on chromosome 21 tightly regulates the nuclear levels of Cyclin D1 in embryonic cortical stem (radial glia cells, and that a modest increase in DYRK1A protein in transgenic embryos lengthens the G1 phase in these progenitors. These alterations promote asymmetric proliferative divisions at the expense of neurogenic divisions, producing a deficit in cortical projection neurons that persists in postnatal stages. Moreover, radial glial progenitors in the Ts65Dn mouse model of Down syndrome have less Cyclin D1, and Dyrk1a is the triplicated gene that causes both early cortical neurogenic defects and decreased nuclear Cyclin D1 levels in this model. These data provide insights into the mechanisms that couple cell cycle regulation and neuron production in cortical neural stem cells, emphasizing that the deleterious effect of DYRK1A triplication in the formation of the cerebral cortex begins at the onset of neurogenesis, which is relevant to the search for early therapeutic interventions in Down syndrome.

  10. LncRNA, TUG1 regulates the oral squamous cell carcinoma progression possibly via interacting with Wnt/β-catenin signaling.

    Science.gov (United States)

    Liang, Shuang; Zhang, Songzi; Wang, Peng; Yang, Chao; Shang, Chen; Yang, Jianjun; Wang, Jun

    2017-04-15

    Oral squamous cell carcinoma (OSCC) is one the most common cancer affecting the head and neck region, and the molecular mechanisms underlying OSCC development is largely unknown. Long non-coding RNAs (lncRNAs) are emerging as key regulators in tumor development. The present study aimed to investigate the role of lncRNA, taurine upregulated gene 1 (TUG1) in OSCC development. The mRNA and protein expression levels were determined by qRT-PCR and western blotting; flow cytometry and ELISA experiments were employed to examine the cell apoptosis; CCK-8 assay, MTT assay, colony formation assay, and cell invasion assay was used to determine cell growth, cell proliferation and cell invasion, respectively. qRT-PCR results showed that TUG1 was up-regulated in both OSCC tissues and cell lines. The high expression level of TUG1 was significantly correlated with TNM stage, lymph node metastasis and tumor grade in OSCC patients. CCK-8 assay, MTT assay, colony formation assay, and cell invasion assay results showed that knock-down of TUG1 by siRNA transfection suppressed cell growth, cell proliferation, and cell invasion in OSCC cell lines (Tca8113 and TSCCA). The cell apoptosis was induced in Tca8113 and TSCCA cells transfected with TUG1 siRNA. In addition, knock-down of TUG1 in Tca8113 and TSCCA cells significantly suppressed the mRNA and protein expression levels of β-catenin, cyclin D1, and c-myc. Wnt/β-catenin pathway activator (LiCl) reversed the TUG1 knock-down effect on cell proliferation, cell invasion and cell apoptosis in Tca8113 and TSCCA cells. In summary, knock-down of TUG1 suppressed cell growth, proliferation and invasion, and also induced apoptosis of OSCC possibly via targeting Wnt/β-catenin signaling. Our data suggest that knock-down of TUG1 may represent a novel therapeutic target for the management of OSCC. Copyright © 2017. Published by Elsevier B.V.

  11. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    Science.gov (United States)

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M

    2013-01-01

    N-MYC down-regulated-like (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  12. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    Directory of Open Access Journals (Sweden)

    Yashwanti Mudgil

    Full Text Available N-MYC down-regulated-like (NDL proteins interact with the Gβ subunit (AGB1 of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development.Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem.NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  13. Differential expression of the klf6 tumor suppressor gene upon cell damaging treatments in cancer cells

    International Nuclear Information System (INIS)

    Gehrau, Ricardo C.; D'Astolfo, Diego S.; Andreoli, Veronica; Bocco, Jose L.; Koritschoner, Nicolas P.

    2011-01-01

    The mammalian Krueppel-like factor 6 (KLF6) is involved in critical roles such as growth-related signal transduction, cell proliferation and differentiation, development, apoptosis and angiogenesis. Also, KLF6 appears to be an emerging key factor during cancer development and progression. Its expression is thoroughly regulated by several cell-damaging stimuli. DNA damaging agents at lethal concentrations induce a p53-independent down-regulation of the klf6 gene. To investigate the impact of external stimuli on human klf6 gene expression, its mRNA level was analyzed using a cancer cell line profiling array system, consisting in an assortment of immobilized cDNAs from multiple cell lines treated with several cell-damaging agents at growth inhibitory concentrations (IC 50 ). Cell-damaging agents affected the klf6 expression in 62% of the cDNA samples, though the expression pattern was not dependent on the cell origin type. Interestingly, significant differences (p 50 concentrations of physical and chemical stimuli in a p53-dependent manner. Most of these agents are frequently used in cancer therapy. Induction of klf6 expression in the absence of functional p53 directly correlates with cell death triggered by these compounds, whereas it is down-regulated in p53+/+ cells. Hence, klf6 expression level could represent a valuable marker for the efficiency of cell death upon cancer treatment.

  14. Self-Regulation and Infant-Directed Singing in Infants with Down Syndrome.

    Science.gov (United States)

    de l'Etoile, Shannon K

    2015-01-01

    Infants learn how to regulate internal states and subsequent behavior through dyadic interactions with caregivers. During infant-directed (ID) singing, mothers help infants practice attentional control and arousal modulation, thus providing critical experience in self-regulation. Infants with Down syndrome are known to have attention deficits and delayed information processing as well as difficulty managing arousability, factors that may disrupt their efforts at self-regulation. The researcher explored responses to ID singing in infants with Down syndrome (DS) and compared them with those of typically developing (TD) infants. Behaviors measured included infant gaze and affect as indicators of self-regulation. Participants included 3- to 9-month-old infants with and without DS who were videotaped throughout a 2-minute face-to-face interaction during which their mothers sang to them any song(s) of their choosing. Infant behavior was then coded for percentage of time spent demonstrating a specific gaze or affect type. All infants displayed sustained gaze more than any other gaze type. TD infants demonstrated intermittent gaze significantly more often than infants with DS. Infant status had no effect on affect type, and all infants showed predominantly neutral affect. Findings suggest that ID singing effectively maintains infant attention for both TD infants and infants with DS. However, infants with DS may have difficulty shifting attention during ID singing as needed to adjust arousal levels and self-regulate. High levels of neutral affect for all infants imply that ID singing is likely to promote a calm, curious state, regardless of infant status. © the American Music Therapy Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Crosstalk between Bcl-2 family and Ras family small GTPases: potential cell fate regulation?

    International Nuclear Information System (INIS)

    Kang, Jia; Pervaiz, Shazib

    2013-01-01

    Cell fate regulation is a function of diverse cell signaling pathways that promote cell survival and or inhibit cell death execution. In this regard, the role of the Bcl-2 family in maintaining a tight balance between cell death and cell proliferation has been extensively studied. The conventional dogma links cell fate regulation by the Bcl-2 family to its effect on mitochondrial permeabilization and apoptosis amplification. However, recent evidence provide a novel mechanism for death regulation by the Bcl-2 family via modulating cellular redox metabolism. For example overexpression of Bcl-2 has been shown to contribute to a pro-oxidant intracellular milieu and down-regulation of cellular superoxide levels enhanced death sensitivity of Bcl-2 overexpressing cells. Interestingly, gene knockdown of the small GTPase Rac1 or pharmacological inhibition of its activity also reverted death phenotype in Bcl-2 expressing cells. This appears to be a function of an interaction between Bcl-2 and Rac1. Similar functional associations have been described between the Bcl-2 family and other members of the Ras superfamily. These interactions at the mitochondria provide novel opportunities for strategic therapeutic targeting of drug-resistant cancers.

  16. Down-regulation of triose phosphate isomerase in Vineristine-resistant gastric cancer SGC7901 cell line identified by immobilized pH gradient two-dimensional gel electrophoresis and mierosequencing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective:To exkplore new multidrug-resistance-related proteins in gastric SC7901 cells and clarify their mechanisms.Methods:Two-dimensional(2-D) polyacrylamide gel electrophoresis with immobilized pH gradients(IPG) was applied to compare the differential expression of multidrug-resistance-related proteins in gastric cancer SGC7901 cells and Vineristine-resistant SGC7901 cells (SGC7901/VCR) induced by vincristine sulfate.The 2-D gels were silver-stained.Then,preparative 2-D PAGE was performed.The differential proteins of PVDF membranes were cxcised and identified by N-terminal microsequencing.The mRNA expressions of differential proteins were detected in SGC 7901 cells and SGC7901/VCR cells by RT-PCR.Results:Approximatedly 680 protein sports were resolved on each 2-D gel by silver staining.Most protein spots showed no difference in composition,shape or density.25 proteins differed in abundance (6 higher in SGC7901/VCR cells;19 higher in 7901 cells);5 proteins were unique to one kind of cell or the othe(3 in SGC7901/VRC cells,2 in 7901 cells).One drug-resistance-related protein,which was down-regulated in SGC7901/VCR cells,was identified as trisephosphate isomerase(TPI),a glycolytic pathway enzyme.Conclusions:the results suggest that these differential proteins including TPI may be related to the Vincristine-resistant mechanism in human gastric cancer SGC7901/VCR cell line.

  17. Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate.

    Science.gov (United States)

    Chermnykh, Elina; Kalabusheva, Ekaterina; Vorotelyak, Ekaterina

    2018-03-27

    Epidermal stem cells reside within the specific anatomic location, called niche, which is a microenvironment that interacts with stem cells to regulate their fate. Regulation of many important processes, including maintenance of stem cell quiescence, self-renewal, and homeostasis, as well as the regulation of division and differentiation, are common functions of the stem cell niche. As it was shown in multiple studies, extracellular matrix (ECM) contributes a lot to stem cell niches in various tissues, including that of skin. In epidermis, ECM is represented, primarily, by a highly specialized ECM structure, basement membrane (BM), which separates the epidermal and dermal compartments. Epidermal stem cells contact with BM, but when they lose the contact and migrate to the overlying layers, they undergo terminal differentiation. When considering all of these factors, ECM is of fundamental importance in regulating epidermal stem cells maintenance, proper mobilization, and differentiation. Here, we summarize the remarkable progress that has recently been made in the research of ECM role in regulating epidermal stem cell fate, paying special attention to the hair follicle stem cell niche. We show that the destruction of ECM components impairs epidermal stem cell morphogenesis and homeostasis. A deep understanding of ECM molecular structure as well as the development of in vitro system for stem cell maintaining by ECM proteins may bring us to developing new approaches for regenerative medicine.

  18. Down-regulation of DNA mismatch repair enhances initiation and growth of neuroblastoma and brain tumour multicellular spheroids.

    Directory of Open Access Journals (Sweden)

    Samuel L Collins

    Full Text Available Multicellular tumour spheroid (MCTS cultures are excellent model systems for simulating the development and microenvironmental conditions of in vivo tumour growth. Many documented cell lines can generate differentiated MCTS when cultured in suspension or in a non-adhesive environment. While physiological and biochemical properties of MCTS have been extensively characterized, insight into the events and conditions responsible for initiation of these structures is lacking. MCTS are formed by only a small subpopulation of cells during surface-associated growth but the processes responsible for this differentiation are poorly understood and have not been previously studied experimentally. Analysis of gene expression within spheroids has provided clues but to date it is not known if the observed differences are a cause or consequence of MCTS growth. One mechanism linked to tumourigenesis in a number of cancers is genetic instability arising from impaired DNA mismatch repair (MMR. This study aimed to determine the role of MMR in MCTS initiation and development. Using surface-associated N2a and CHLA-02-ATRT culture systems we have investigated the impact of impaired MMR on MCTS growth. Analysis of the DNA MMR genes MLH1 and PMS2 revealed both to be significantly down-regulated at the mRNA level compared with non-spheroid-forming cells. By using small interfering RNA (siRNA against these genes we show that silencing of MLH1 and PMS2 enhances both MCTS initiation and subsequent expansion. This effect was prolonged over several passages following siRNA transfection. Down-regulation of DNA MMR can contribute to tumour initiation and progression in N2a and CHLA-02-ATRT MCTS models. Studies of surface-associated MCTS differentiation may have broader applications in studying events in the initiation of cancer foci.

  19. Genetically Determined Insulin Resistance is Characterized by Down-Regulation of Mitochondrial Oxidative Metabolism in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Kristensen, Jonas M; Skov, Vibe; Wojtaszewski, Jørgen

    2010-01-01

    Transcriptional profiling of skeletal muscle from patients with type 2 diabetes and high-risk individuals have demonstrated a co-ordinated down-regulation of oxidative phosphorylation (OxPhos) genes, suggesting a link between insulin resistance and mitochondrial dysfunction. However, whether...... mitochondrial dysfunction is a cause or consequence of insulin resistance remains to be clarified. In the present study, we tested the hypothesis that mitochondrial oxidative metabolism was down-regulated in skeletal muscle of patients with genetically determined insulin resistance. Skeletal muscle biopsies.......02), and complex V (ATP5B; p=0.005). Our data demonstrate that genetically determined insulin resistance is associated with a co-ordinated down-regulation of OxPhos components both at the transcriptional and translational level. These findings suggest that an impaired biological response to insulin in skeletal...

  20. CCN5 modulates the antiproliferative effect of heparin and regulates cell motility in vascular smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Castellot John J

    2003-11-01

    Full Text Available Abstract Background Vascular smooth muscle cell (VSMC hyperplasia plays an important role in both chronic and acute vascular pathologies including atherosclerosis and restenosis. Considerable work has focused on the mechanisms regulating VSMC proliferation and motility. Earlier work in our lab revealed a novel growth arrest-specific (gas gene induced in VSMC exposed to the antiproliferative agent heparin. This gene is a member of the CCN family and has been given the name CCN5. The objective of the present study is to elucidate the function of CCN5 protein and to explore its mechanism of action in VSMC. Results Using RNA interference (RNAi, we first demonstrate that CCN5 is required for the antiproliferative effect of heparin in VSMC. We also use this gene knockdown approach to show that CCN5 is an important negative regulator of motility. To explore the mechanism of action of CCN5 on VSMC motility, we use RNAi to demonstrate that knock down of CCN5 up regulates expression of matrix metalloproteinase-2 (MMP-2, an important stimulator of motility in VSMC. In addition, forced expression of CCN5 via adenovirus results in reduced MMP-2 activity, this also corroborates the gene knock down results. Finally, we show that loss of CCN5 expression in VSMC causes changes in VSMC morphology and cytoskeletal organization, including a reduction in the amount and macromolecular assembly of smooth muscle cell α-actin. Conclusions This work provides important new insights into the regulation of smooth muscle cell proliferation and motility by CCN5 and may aid the development of therapies for vascular diseases.

  1. Tetraspanin CD9 regulates cell contraction and actin arrangement via RhoA in human vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Michael J Herr

    Full Text Available The most prevalent cardiovascular diseases arise from alterations in vascular smooth muscle cell (VSMC morphology and function. Tetraspanin CD9 has been previously implicated in regulating vascular pathologies; however, insight into how CD9 may regulate adverse VSMC phenotypes has not been provided. We utilized a human model of aortic smooth muscle cells to understand the consequences of CD9 deficiency on VSMC phenotypes. Upon knocking down CD9, the cells developed an abnormally small and rounded morphology. We determined that this morphological change was due to a lack of typical parallel actin arrangement. We also found similar total RhoA but decreased GTP-bound (active RhoA levels in CD9 deficient cells. As a result, cells lacking a full complement of CD9 were less contractile than their control treated counterparts. Upon restoration of RhoA activity in the CD9 deficient cells, the phenotype was reversed and cell contraction was restored. Conversely, inhibition of RhoA activity in the control cells mimicked the CD9-deficient cell phenotype. Thus, alteration in CD9 expression was sufficient to profoundly disrupt cellular actin arrangement and endogenous cell contraction by interfering with RhoA signaling. This study provides insight into how CD9 may regulate previously described vascular smooth muscle cell pathophysiology.

  2. Niemann-Pick C1 like 1 gene expression is down-regulated by LXR activators in the intestine

    International Nuclear Information System (INIS)

    Duval, Caroline; Touche, Veronique; Tailleux, Anne; Fruchart, Jean-Charles; Fievet, Catherine; Clavey, Veronique; Staels, Bart; Lestavel, Sophie

    2006-01-01

    Niemann-Pick C1 like 1 (NPC1L1) is a protein critical for intestinal cholesterol absorption. The nuclear receptors peroxisome proliferator-activated receptor alpha (PPARα) and liver X receptors (LXRα and LXRβ) are major regulators of cholesterol homeostasis and their activation results in a reduced absorption of intestinal cholesterol. The goal of this study was to define the role of PPARα and LXR nuclear receptors in the regulation of NPC1L1 gene expression. We show that LXR activators down-regulate NPC1L1 mRNA levels in the human enterocyte cell line Caco-2/TC7, whereas PPARα ligands have no effect. Furthermore, NPC1L1 mRNA levels are decreased in vivo, in duodenum of mice treated with the LXR agonist T0901317. In conclusion, the present study identifies NPC1L1 as a novel LXR target gene further supporting a crucial role of LXR in intestinal cholesterol homeostasis

  3. Investigating microenvironmental regulation of human chordoma cell behaviour.

    Directory of Open Access Journals (Sweden)

    Priya Patel

    Full Text Available The tumour microenvironment is complex and composed of many different constituents, including matricellular proteins such as connective tissue growth factor (CCN2, and is characterized by gradients in oxygen levels. In various cancers, hypoxia and CCN2 promote stem and progenitor cell properties, and regulate the proliferation, migration and phenotype of cancer cells. Our study was aimed at investigating the effects of hypoxia and CCN2 on chordoma cells, using the human U-CH1 cell line. We demonstrate that under basal conditions, U-CH1 cells express multiple CCN family members including CCN1, CCN2, CCN3 and CCN5. Culture of U-CH1 cells in either hypoxia or in the presence of recombinant CCN2 peptide promoted progenitor cell-like characteristics specific to the notochordal tissue of origin. Specifically, hypoxia induced the most robust increase in progenitor-like characteristics in U-CH1 cells, including increased expression of the notochord-associated markers T, CD24, FOXA1, ACAN and CA12, increased cell growth and tumour-sphere formation, and a decrease in the percentage of vacuolated cells present in the heterogeneous population. Interestingly, the effects of recombinant CCN2 peptide on U-CH1 cells were more pronounced under normoxia than hypoxia, promoting increased expression of CCN1, CCN2, CCN3 and CCN5, the notochord-associated markers SOX5, SOX6, T, CD24, and FOXA1 as well as increased tumour-sphere formation. Overall, this study highlights the importance of multiple factors within the tumour microenvironment and how hypoxia and CCN2 may regulate human chordoma cell behaviour.

  4. The Liver X Receptor Ligand T0901317 Down-regulates APOA5 GeneExpression through Activation of SREBP-1c

    Energy Technology Data Exchange (ETDEWEB)

    Jakel, Heidelinde; Nowak, Maxime; Moitrot, Emanuelle; Dehondt, Helene; Hum, Dean W.; Pennacchio, Len A.; Fruchart-Najib, Jamila; Fruchart,Jean-Charles

    2004-07-23

    Alterations in the expression of the recently discovered apolipoprotein A5 gene strongly affect plasma triglyceride levels. In this study, we investigated the contribution of APOA5 to the liver X-receptor (LXR) ligand mediated effect on plasma triglyceride levels.Following treatment with the LXR ligand T0901317, we found that APOA5mRNA levels were decreased in hepatoma cell lines. The observation that no down-regulation of APOA5 promoter activity was obtained by LXR-retinoid X receptor (RXR) co-transfection prompted us to explore the possible involvement of the known LXR target gene SREBP-1c (sterol regulatory element-binding protein 1c). In fact, we found that co-transfection with the active form of SREBP-1c down-regulated APOA5promoter activity in a dose-dependent manner. We then scanned the human APOA5 promoter sequence and identified two putative E-box elements that were able to bind specifically SREBP-1c in gel-shift assays and were shown to be functional by mutation analysis. Subsequent suppression of SREBP-1 mRNA through small interfering RNA interference abolished the decrease of APOA5 mRNA in response to T0901317. Finally, administration of T0901317 to hAPOA5 transgenic mice revealed a significant decrease OF APOA5 mRNA in liver tissue and circulating apolipoprotein AV protein in plasma, confirming that the described down-regulation also occurs in vivo. Taken together, our results demonstrate that APOA5 gene expression is regulated by the LXR ligand T0901317 in a negative manner through SREBP-1c. These findings may provide a new mechanism responsible for the elevation of plasma triglyceride levels by LXR ligands and support the development of selective LXR agonists, not affecting SREBP-1c, as beneficial modulators of lipid metabolism.

  5. Protein kinase C signaling and cell cycle regulation

    Directory of Open Access Journals (Sweden)

    Adrian R Black

    2013-01-01

    Full Text Available A link between T cell proliferation and the protein kinase C (PKC family of serine/threonine kinases has been recognized for about thirty years. However, despite the wealth of information on PKC-mediated control of T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. The outcome of PKC activation is highly context-dependent, with the precise cell cycle target(s and overall effects determined by the specific isozyme involved, the timing of PKC activation, the cell type, and the signaling environment. Although PKCs can regulate all stages of the cell cycle, they appear to predominantly affect G0/G1 and G2. PKCs can modulate multiple cell cycle regulatory molecules, including cyclins, cyclin-dependent kinases (cdks, cdk inhibitors and cdc25 phosphatases; however, evidence points to Cip/Kip cdk inhibitors and D-type cyclins as key mediators of PKC-regulated cell cycle-specific effects. Several PKC isozymes can target Cip/Kip proteins to control G0/G1→S and/or G2→M transit, while effects on D-type cyclins regulate entry into and progression through G1. Analysis of PKC signaling in T cells has largely focused on its roles in T cell activation; thus, observed cell cycle effects are mainly positive. A prominent role is emerging for PKCθ, with non-redundant functions of other isozymes also described. Additional evidence points to PKCδ as a negative regulator of the cell cycle in these cells. As in other cell types, context-dependent effects of individual isozymes have been noted in T cells, and Cip/Kip cdk inhibitors and D-type cyclins appear to be major PKC targets. Future studies are anticipated to take advantage of the similarities between these various systems to enhance understanding of PKC-mediated cell cycle regulation in

  6. Coordinated learning of grid cell and place cell spatial and temporal properties: multiple scales, attention and oscillations.

    Science.gov (United States)

    Grossberg, Stephen; Pilly, Praveen K

    2014-02-05

    A neural model proposes how entorhinal grid cells and hippocampal place cells may develop as spatial categories in a hierarchy of self-organizing maps (SOMs). The model responds to realistic rat navigational trajectories by learning both grid cells with hexagonal grid firing fields of multiple spatial scales, and place cells with one or more firing fields, that match neurophysiological data about their development in juvenile rats. Both grid and place cells can develop by detecting, learning and remembering the most frequent and energetic co-occurrences of their inputs. The model's parsimonious properties include: similar ring attractor mechanisms process linear and angular path integration inputs that drive map learning; the same SOM mechanisms can learn grid cell and place cell receptive fields; and the learning of the dorsoventral organization of multiple spatial scale modules through medial entorhinal cortex to hippocampus (HC) may use mechanisms homologous to those for temporal learning through lateral entorhinal cortex to HC ('neural relativity'). The model clarifies how top-down HC-to-entorhinal attentional mechanisms may stabilize map learning, simulates how hippocampal inactivation may disrupt grid cells, and explains data about theta, beta and gamma oscillations. The article also compares the three main types of grid cell models in the light of recent data.

  7. Proteomic investigation into betulinic acid-induced apoptosis of human cervical cancer HeLa cells.

    Science.gov (United States)

    Xu, Tao; Pang, Qiuying; Zhou, Dong; Zhang, Aiqin; Luo, Shaman; Wang, Yang; Yan, Xiufeng

    2014-01-01

    Betulinic acid is a pentacyclic triterpenoid that exhibits anticancer functions in human cancer cells. This study provides evidence that betulinic acid is highly effective against the human cervical cancer cell line HeLa by inducing dose- and time-dependent apoptosis. The apoptotic process was further investigated using a proteomics approach to reveal protein expression changes in HeLa cells following betulinic acid treatment. Proteomic analysis revealed that there were six up- and thirty down-regulated proteins in betulinic acid-induced HeLa cells, and these proteins were then subjected to functional pathway analysis using multiple analysis software. UDP-glucose 6-dehydrogenase, 6-phosphogluconate dehydrogenase decarboxylating, chain A Horf6-a novel human peroxidase enzyme that involved in redox process, was found to be down-regulated during the apoptosis process of the oxidative stress response pathway. Consistent with our results at the protein level, an increase in intracellular reactive oxygen species was observed in betulinic acid-treated cells. The proteins glucose-regulated protein and cargo-selection protein TIP47, which are involved in the endoplasmic reticulum pathway, were up-regulated by betulinic acid treatment. Meanwhile, 14-3-3 family proteins, including 14-3-3β and 14-3-3ε, were down-regulated in response to betulinic acid treatment, which is consistent with the decrease in expression of the target genes 14-3-3β and 14-3-3ε. Furthermore, it was found that the antiapoptotic bcl-2 gene was down-regulated while the proapoptotic bax gene was up-regulated after betulinic acid treatment in HeLa cells. These results suggest that betulinic acid induces apoptosis of HeLa cells by triggering both the endoplasmic reticulum pathway and the ROS-mediated mitochondrial pathway.

  8. Protective Effects of Total Glucosides of Paeony on N-nitrosodiethylamine-induced Hepatocellular Carcinoma in Rats via Down-regulation of Regulatory B Cells.

    Science.gov (United States)

    Song, S S; Yuan, P F; Li, P P; Wu, H X; Ni, W J; Lu, J T; Wei, W

    2015-01-01

    Total glucoside of paeony (TGP), extracted from the root of Paeonia Lactiflora, has been known to show anti-inflammatory, anti-oxidative, hepato-protective and immuno-regulatory activities. The aim of this present study was to determine the anti-tumor effect of TGP against N-nitrosodiethylamine (DEN)-induced hepatocellular carcinoma (HCC) in rats, and to find the related mechanisms. Rat HCC model was established by intragastrically administrating with DEN (8 mg/kg). We found the number of tumor nodules and the index of liver and spleen were increased in the model group compared with the normal group, and was significantly decreased by TGP. Additionally, TGP obviously improved the hepatic pathological lesions induced by DEN, and decreased the elevated levels of serum alanine aminotransferase (ALT), glutamic oxalacetic transaminase (AST), alkaline phosphatase (ALP) and alpha fetoprotein (AFP) by DEN. Moreover, TGP decreased the level of B cell-activating factor (BAFF) and the proportion of IL-10-producing regulatory B cells (Bregs), and the decrease of BAFF by TGP is positively correlated to the decrease of IL-10-producing Bregs by TGP. These results suggest that TGP had a good therapeutic action on DEN-induced HCC rats, which might be due to its down-regulation of Bregs through reducing the level of BAFF.

  9. Impairment of circulating endothelial progenitors in Down syndrome

    Directory of Open Access Journals (Sweden)

    Costa Valerio

    2010-09-01

    Full Text Available Abstract Background Pathological angiogenesis represents a critical issue in the progression of many diseases. Down syndrome is postulated to be a systemic anti-angiogenesis disease model, possibly due to increased expression of anti-angiogenic regulators on chromosome 21. The aim of our study was to elucidate some features of circulating endothelial progenitor cells in the context of this syndrome. Methods Circulating endothelial progenitors of Down syndrome affected individuals were isolated, in vitro cultured and analyzed by confocal and transmission electron microscopy. ELISA was performed to measure SDF-1α plasma levels in Down syndrome and euploid individuals. Moreover, qRT-PCR was used to quantify expression levels of CXCL12 gene and of its receptor in progenitor cells. The functional impairment of Down progenitors was evaluated through their susceptibility to hydroperoxide-induced oxidative stress with BODIPY assay and the major vulnerability to the infection with human pathogens. The differential expression of crucial genes in Down progenitor cells was evaluated by microarray analysis. Results We detected a marked decrease of progenitors' number in young Down individuals compared to euploid, cell size increase and some major detrimental morphological changes. Moreover, Down syndrome patients also exhibited decreased SDF-1α plasma levels and their progenitors had a reduced expression of SDF-1α encoding gene and of its membrane receptor. We further demonstrated that their progenitor cells are more susceptible to hydroperoxide-induced oxidative stress and infection with Bartonella henselae. Further, we observed that most of the differentially expressed genes belong to angiogenesis, immune response and inflammation pathways, and that infected progenitors with trisomy 21 have a more pronounced perturbation of immune response genes than infected euploid cells. Conclusions Our data provide evidences for a reduced number and altered

  10. Dioscin enhances methotrexate absorption by down-regulating MDR1 in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan, E-mail: jlwang1979@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Wang, Changyuan, E-mail: wangcyuan@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Peng, Jinyong, E-mail: jinyongpeng2005@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Liu, Qi, E-mail: llaqii@yahoo.com.cn [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Meng, Qiang, E-mail: mengq531@yahoo.cn [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Sun, Huijun, E-mail: sunhuijun@hotmail.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Huo, Xiaokui, E-mail: huoxiaokui@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); and others

    2014-06-01

    The purpose of this study was to investigate the enhancing effect of dioscin on the absorption of methotrexate (MTX) and clarify the molecular mechanism involved in vivo and in vitro. Dioscin increased MTX chemosensitivity and transepithelial flux in the absorptive direction, significantly inhibiting multidrug resistance 1 (MDR1) mRNA and protein expression and MDR1 promoter and nuclear factor κ-B (NF-κB) activities in Caco-2 cells. Moreover, inhibitor κB-α (IκB-α) degradation was inhibited by dioscin. Dioscin enhanced the intracellular concentration of MTX by down-regulating MDR1 expression through a mechanism that involves NF-κB signaling pathway inhibition in Caco-2 cells. Dioscin strengthened MTX absorption by inhibiting MDR1 expression in rat intestine. In addition, even though MTX is absorbed into the enterocytes, there was no increase in toxicity observed, and that, in fact, decreased toxicity was seen. - Highlights: • Dioscin raised MTX concentration by inhibiting MDR1 in Caco-2 cells. • Dioscin suppresses MDR1 by inhibiting NF-κB signaling pathway in Caco-2 cells. • Dioscin can enhance MTX absorption via inhibiting MDR1 in vivo and in vitro. • Dioscin did not increase MTX-induced gastrointestinal mucosal toxicity.

  11. A Single-Cell Biochemistry Approach Reveals PAR Complex Dynamics during Cell Polarization.

    Science.gov (United States)

    Dickinson, Daniel J; Schwager, Francoise; Pintard, Lionel; Gotta, Monica; Goldstein, Bob

    2017-08-21

    Regulated protein-protein interactions are critical for cell signaling, differentiation, and development. For the study of dynamic regulation of protein interactions in vivo, there is a need for techniques that can yield time-resolved information and probe multiple protein binding partners simultaneously, using small amounts of starting material. Here we describe a single-cell protein interaction assay. Single-cell lysates are generated at defined time points and analyzed using single-molecule pull-down, yielding information about dynamic protein complex regulation in vivo. We established the utility of this approach by studying PAR polarity proteins, which mediate polarization of many animal cell types. We uncovered striking regulation of PAR complex composition and stoichiometry during Caenorhabditis elegans zygote polarization, which takes place in less than 20 min. PAR complex dynamics are linked to the cell cycle by Polo-like kinase 1 and govern the movement of PAR proteins to establish polarity. Our results demonstrate an approach to study dynamic biochemical events in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Molecular control of brain size: Regulators of neural stem cell life, death and beyond

    International Nuclear Information System (INIS)

    Joseph, Bertrand; Hermanson, Ola

    2010-01-01

    The proper development of the brain and other organs depends on multiple parameters, including strictly controlled expansion of specific progenitor pools. The regulation of such expansion events includes enzymatic activities that govern the correct number of specific cells to be generated via an orchestrated control of cell proliferation, cell cycle exit, differentiation, cell death etc. Certain proteins in turn exert direct control of these enzymatic activities and thus progenitor pool expansion and organ size. The members of the Cip/Kip family (p21Cip1/p27Kip1/p57Kip2) are well-known regulators of cell cycle exit that interact with and inhibit the activity of cyclin-CDK complexes, whereas members of the p53/p63/p73 family are traditionally associated with regulation of cell death. It has however become clear that the roles for these proteins are not as clear-cut as initially thought. In this review, we discuss the roles for proteins of the Cip/Kip and p53/p63/p73 families in the regulation of cell cycle control, differentiation, and death of neural stem cells. We suggest that these proteins act as molecular interfaces, or 'pilots', to assure the correct assembly of protein complexes with enzymatic activities at the right place at the right time, thereby regulating essential decisions in multiple cellular events.

  13. Molecular control of brain size: Regulators of neural stem cell life, death and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Bertrand [Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm (Sweden); Hermanson, Ola, E-mail: ola.hermanson@ki.se [Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, Stockholm (Sweden)

    2010-05-01

    The proper development of the brain and other organs depends on multiple parameters, including strictly controlled expansion of specific progenitor pools. The regulation of such expansion events includes enzymatic activities that govern the correct number of specific cells to be generated via an orchestrated control of cell proliferation, cell cycle exit, differentiation, cell death etc. Certain proteins in turn exert direct control of these enzymatic activities and thus progenitor pool expansion and organ size. The members of the Cip/Kip family (p21Cip1/p27Kip1/p57Kip2) are well-known regulators of cell cycle exit that interact with and inhibit the activity of cyclin-CDK complexes, whereas members of the p53/p63/p73 family are traditionally associated with regulation of cell death. It has however become clear that the roles for these proteins are not as clear-cut as initially thought. In this review, we discuss the roles for proteins of the Cip/Kip and p53/p63/p73 families in the regulation of cell cycle control, differentiation, and death of neural stem cells. We suggest that these proteins act as molecular interfaces, or 'pilots', to assure the correct assembly of protein complexes with enzymatic activities at the right place at the right time, thereby regulating essential decisions in multiple cellular events.

  14. IL-10 down-regulates the expression of survival associated gene hspX of Mycobacterium tuberculosis in murine macrophage

    Directory of Open Access Journals (Sweden)

    Babban Jee

    2017-07-01

    Full Text Available Mycobacterium tuberculosis (MTB adopts a special survival strategy to overcome the killing mechanism(s of host immune system. Amongst the many known factors, small heat shock protein 16.3 (sHSP16.3 of MTB encoded by gene hspX has been reported to be critical for the survival of MTB. In the present study, the effect of recombinant murine interferon-gamma (rmIFN-γ and recombinant murine interleukin-10 (rmIL-10 on the expression of gene hspX of MTB in murine macrophage RAW264.7 has been investigated. By real-time RT-PCR, it was observed that three increasing concentrations (5, 25 and 50 ng/ml of rmIFN-γ significantly up-regulated the expression of hspX whereas similar concentrations of rmIL-10 (5, 25 and 50 ng/ml significantly down-regulated the hspX expression. This effect was not only dependent on the concentration of the stimulus but this was time-dependent as well. A contrasting pattern of hspX expression was observed against combinations of two different concentrations of rmIFN-γ and rmIL-10. The study results suggest that rIL-10 mediated down-regulation of hspX expression, in the presence of low concentration of rIFN-γ, could be used as an important strategy to decrease the dormancy of MTB in its host and thus making MTB susceptible to the standard anti-mycobacterial therapy used for treating tuberculosis. However, as these are only preliminary results in the murine cell line model, this hypothesis needs to be first validated in human cell lines and subsequently in animal models mimicking the latent infection using clinical isolates of MTB before considering the development of modified regimens for humans.

  15. Down-regulation of E-cadherin and catenins in human pituitary growth hormone-producing adenomas.

    Science.gov (United States)

    Sano, Toshiaki; Rong, Qian Zhi; Kagawa, Noriko; Yamada, Shozo

    2004-01-01

    Growth hormone (GH)-producing pituitary adenomas can be ultrastructurally divided into two major types: densely granulated and sparsely granulated. The latter type of adenoma characteristically exhibits globular accumulations of cytokeratin filaments known as fibrous bodies, which are immunohistochemically identifiable as juxtanuclear dot-like immunoreactivity. We hypothesize that the formation of fibrous body might be related to dysfunction of adhesion molecules, because of the functional relationship between intermediate filaments and the cadherin-catenin complex and frequent observation of loss of cohesiveness of the adenoma cells. Our recent immunohistochemical study showed that expression of E-cadherin and its undercoat proteins, alpha-, beta- and gamma-catenin, in GH cell adenomas with prominent fibrous bodies was significantly reduced compared with GH cell adenomas without fibrous bodies and the normal adenohypophysial cells. Although no mutation of exon 3 of the beta-catenin gene was found in any GH cell adenomas with fibrous bodies, methylation-specific polymerase chain reaction analysis revealed that the E-cadherin promoter region was methylated in 37.5% of these adenomas, two of which displayed total methylation, but not in GH cell adenomas without fibrous bodies. We conclude that the decreased expression of the E-cadherin-catenin complex and methylation of the E-cadherin gene promoter region are events associated with the formation of fibrous bodies in GH cell adenomas. It remains to be clarified to explain the mechanism by which down-regulation of adhesion molecules is involved in the abnormal assembly of intermediate filaments.

  16. B Cells and Autoantibodies in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Anne-Katrin Pröbstel

    2015-07-01

    Full Text Available While over the past decades T cells have been considered key players in the pathogenesis of multiple sclerosis (MS, it has only recently become evident that B cells have a major contributing role. Our understanding of the role of B cells has evolved substantially following the clinical success of B cell-targeting therapies and increasing experimental evidence for significant B cell involvement. Rather than mere antibody-producing cells, it is becoming clear that they are team players with the capacity to prime and regulate T cells, and function both as pro- and anti-inflammatory mediators. However, despite tremendous efforts, the target antigen(s of B cells in MS have yet to be identified. The first part of this review summarizes the clinical evidence and results from animal studies pointing to the relevance of B cells in the pathogenesis of MS. The second part gives an overview of the currently known potential autoantigen targets. The third part recapitulates and critically appraises the currently available B cell-directed therapies.

  17. Differential expression of the klf6 tumor suppressor gene upon cell damaging treatments in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Gehrau, Ricardo C.; D' Astolfo, Diego S.; Andreoli, Veronica [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Bocco, Jose L., E-mail: jbocco@fcq.unc.edu.ar [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Koritschoner, Nicolas P. [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2011-02-10

    The mammalian Krueppel-like factor 6 (KLF6) is involved in critical roles such as growth-related signal transduction, cell proliferation and differentiation, development, apoptosis and angiogenesis. Also, KLF6 appears to be an emerging key factor during cancer development and progression. Its expression is thoroughly regulated by several cell-damaging stimuli. DNA damaging agents at lethal concentrations induce a p53-independent down-regulation of the klf6 gene. To investigate the impact of external stimuli on human klf6 gene expression, its mRNA level was analyzed using a cancer cell line profiling array system, consisting in an assortment of immobilized cDNAs from multiple cell lines treated with several cell-damaging agents at growth inhibitory concentrations (IC{sub 50}). Cell-damaging agents affected the klf6 expression in 62% of the cDNA samples, though the expression pattern was not dependent on the cell origin type. Interestingly, significant differences (p < 0.0001) in KLF6 mRNA levels were observed depending on the cellular p53 status upon cell damage. KLF6 expression was significantly increased in 63% of p53-deficient cells (122/195). Conversely, KLF6 mRNA level decreased nearly 4 fold in more than 70% of p53+/+ cells. In addition, klf6 gene promoter activity was down-regulated by DNA damaging agents in cells expressing the functional p53 protein whereas it was moderately increased in the absence of functional p53. Consistent results were obtained for the endogenous KLF6 protein level. Results indicate that human klf6 gene expression is responsive to external cell damage mediated by IC{sub 50} concentrations of physical and chemical stimuli in a p53-dependent manner. Most of these agents are frequently used in cancer therapy. Induction of klf6 expression in the absence of functional p53 directly correlates with cell death triggered by these compounds, whereas it is down-regulated in p53+/+ cells. Hence, klf6 expression level could represent a valuable

  18. MAPK Signal Transduction Pathway Regulation: A Novel Mechanism of Rat HSC-T6 Cell Apoptosis Induced by FUZHENGHUAYU Tablet

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2013-01-01

    Full Text Available FUZHENGHUAYU Tablets have been widely used in the treatment of liver fibrosis in China. Here, we investigate the apoptotic effect of FUZHENGHUAYU Tablet in rat liver stellate cell line HSC-T6. HSC-T6 cells were incubated with control serum or drug serum from rats fed with 0.9% NaCl or FUZHENGHUAYU Tablet, respectively. Cells exposed to drug serum showed higher proportions of early and late apoptotic cells than controls. The mRNA levels of collagens I and III, TGF-β1 and α-SMA were reduced by drug serum compared to control serum. Differentially expressed mRNAs and miRNAs were analyzed by microarray and sequencing, respectively. We identified 334 differentially expressed mRNAs and also 60 GOs and two pathways related to the mRNAs. Seventy-five differentially expressed miRNAs were down-regulated by drug serum and 1963 target genes were predicted. 134 GOs up-regulated in drug serum group were linked to miRNA targets, and drug serum also regulated 43 miRNA signal transduction pathways. Protein levels were evaluated by Western blot. Drug serum down-regulated (phospho-SAPK/JNK/(SAPK/JNK and up-regulated phospho-p38/p38 ratios. The study showed that FUZHENGHUAYU Tablet induced apoptosis in rat HSC-T6 cells possibly in part by activating p38 and inhibiting SAPK/JNK.

  19. Multiple Myeloma-Derived Exosomes Regulate the Functions of Mesenchymal Stem Cells Partially via Modulating miR-21 and miR-146a

    Directory of Open Access Journals (Sweden)

    Qian Cheng

    2017-01-01

    Full Text Available Exosomes derived from cancer cells can affect various functions of mesenchymal stem cells (MSCs via conveying microRNAs (miRs. miR-21 and miR-146a have been demonstrated to regulate MSC proliferation and transformation. Interleukin-6 (IL-6 secreted from transformed MSCs in turn favors the survival of multiple myeloma (MM cells. However, the effects of MM exosomes on MSC functions remain largely unclear. In this study, we investigated the effects of OPM2 (a MM cell line exosomes (OPM2-exo on regulating the proliferation, cancer-associated fibroblast (CAF transformation, and IL-6 secretion of MSCs and determined the role of miR-21 and miR-146a in these effects. We found that OPM2-exo harbored high levels of miR-21 and miR-146a and that OPM2-exo coculture significantly increased MSC proliferation with upregulation of miR-21 and miR-146a. Moreover, OPM2-exo induced CAF transformation of MSCs, which was evidenced by increased fibroblast-activated protein (FAP, α-smooth muscle actin (α-SMA, and stromal-derived factor 1 (SDF-1 expressions and IL-6 secretion. Inhibition of miR-21 or miR-146a reduced these effects of OPM2-exo on MSCs. In conclusion, MM could promote the proliferation, CAF transformation, and IL-6 secretion of MSCs partially through regulating miR21 and miR146a.

  20. Baicalin Protects against TNF-α-Induced Injury by Down-Regulating miR-191a That Targets the Tight Junction Protein ZO-1 in IEC-6 Cells.

    Science.gov (United States)

    Wang, Li; Zhang, Ren; Chen, Jian; Wu, Qihui; Kuang, Zaoyuan

    2017-04-01

    Tumor necrosis factor-alpha (TNF-α) plays an important role in the developing process of inflammatory bowel disease. Tight junction protein zonula occludens-1 (ZO-1), one of epithelial junctional proteins, maintains the permeability of intestinal barrier. The objective of this study was to investigate the mechanism of the protective effect of baicalin on TNF-α-induced injury and ZO-1 expression in intestinal epithelial cells (IECs). We found that baicalin pretreatment significantly improved cell viability and cell migration following TNF-α stimulation. miR-191a inhibitor increased the protective effect of baicalin on cell motility injured by TNF-α. In addition, miR-191a down-regulated the mRNA and protein level of its target gene ZO-1. TNF-α stimulation increased miR-191a expression, leading to the decline of ZO-1 mRNA and protein. Moreover, pretreatment with baicalin reversed TNF-α induced decrease of ZO-1 and increase of miR-191a, miR-191a inhibitor significantly enhanced ZO-1 protein expression restored by baicalin. These results indicate that baicalin exerts a protective effect on IEC-6 (rat small intestinal epithelial cells) cells against TNF-α-induced injury, which is at least partly via inhibiting the expression of miR-191a, thus increasing ZO-1 mRNA and protein levels.

  1. Differentially expressed miRNAs after GnRH treatment and their potential roles in FSH regulation in porcine anterior pituitary cell.

    Directory of Open Access Journals (Sweden)

    Rui-Song Ye

    Full Text Available Hypothalamic gonadotropin-releasing hormone (GnRH is a major regulator of follicle-stimulating hormone (FSH secretion in gonadotrope cell in the anterior pituitary gland. microRNAs (miRNAs are small RNA molecules that control gene expression by imperfect binding to the 3'-untranslated region (3'-UTR of mRNA at the post-transcriptional level. It has been proven that miRNAs play an important role in hormone response and/or regulation. However, little is known about miRNAs in the regulation of FSH secretion. In this study, primary anterior pituitary cells were treated with 100 nM GnRH. The supernatant of pituitary cell was collected for FSH determination by enzyme-linked immunosorbent assay (ELISA at 3 hours and 6 hours post GnRH treatment respectively. Results revealed that GnRH significantly promoted FSH secretion at 3 h and 6 h post-treatment by 1.40-fold and 1.80-fold, respectively. FSHβ mRNA at 6 h post GnRH treatment significantly increased by 1.60-fold. At 6 hours, cells were collected for miRNA expression profile analysis using MiRCURY LNA Array and quantitative PCR (qPCR. Consequently, 21 up-regulated and 10 down-regulated miRNAs were identified, and qPCR verification of 10 randomly selected miRNAs showed a strong correlation with microarray results. Chromosome location analysis indicated that 8 miRNAs were mapped to chromosome 12 and 4 miRNAs to chromosome X. Target and pathway analysis showed that some miRNAs may be associated with GnRH regulation pathways. In addition, In-depth analysis indicated that 10 up-regulated and 3 down-regulated miRNAs probably target FSHβ mRNA 3'-UTR directly, including miR-361-3p, a highly conserved X-linked miRNA. Most importantly, functional experimental results showed that miR-361-3p was involved in FSH secretion regulation, and up-regulated miR-361-3p expression inhibited FSH secretion, while down-regulated miR-361-3p expression promoted FSH secretion in pig pituitary cell model. These differentially

  2. Optimal experimental design in an epidermal growth factor receptor signalling and down-regulation model.

    Science.gov (United States)

    Casey, F P; Baird, D; Feng, Q; Gutenkunst, R N; Waterfall, J J; Myers, C R; Brown, K S; Cerione, R A; Sethna, J P

    2007-05-01

    We apply the methods of optimal experimental design to a differential equation model for epidermal growth factor receptor signalling, trafficking and down-regulation. The model incorporates the role of a recently discovered protein complex made up of the E3 ubiquitin ligase, Cbl, the guanine exchange factor (GEF), Cool-1 (beta -Pix) and the Rho family G protein Cdc42. The complex has been suggested to be important in disrupting receptor down-regulation. We demonstrate that the model interactions can accurately reproduce the experimental observations, that they can be used to make predictions with accompanying uncertainties, and that we can apply ideas of optimal experimental design to suggest new experiments that reduce the uncertainty on unmeasurable components of the system.

  3. Tamoxifen enhances erlotinib-induced cytotoxicity through down-regulating AKT-mediated thymidine phosphorylase expression in human non-small-cell lung cancer cells.

    Science.gov (United States)

    Ko, Jen-Chung; Chiu, Hsien-Chun; Syu, Jhan-Jhang; Jian, Yi-Jun; Chen, Chien-Yu; Jian, Yun-Ting; Huang, Yi-Jhen; Wo, Ting-Yu; Lin, Yun-Wei

    2014-03-01

    Tamoxifen is a triphenylethylene nonsteroidal estrogen receptor (ER) antagonist used worldwide as an adjuvant hormone therapeutic agent in the treatment of breast cancer. However, the molecular mechanism of tamoxifen-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Thymidine phosphorylase (TP) is an enzyme of the pyrimidine salvage pathway which is upregulated in cancers. In this study, tamoxifen treatment inhibited cell survival in two NSCLC cells, H520 and H1975. Treatment with tamoxifen decreased TP mRNA and protein levels through AKT inactivation. Furthermore, expression of constitutively active AKT (AKT-CA) vectors significantly rescued the decreased TP protein and mRNA levels in tamoxifen-treated NSCLC cells. In contrast, combination treatment with PI3K inhibitors (LY294002 or wortmannin) and tamoxifen further decreased the TP expression and cell viability of NSCLC cells. Knocking down TP expression by transfection with small interfering RNA of TP enhanced the cytotoxicity and cell growth inhibition of tamoxifen. Erlotinib (Tarceva, OSI-774), an orally available small molecular inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase, is approved for clinical treatment of NSCLC. Compared to a single agent alone, tamoxifen combined with erlotinib resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells, accompanied with reduced activation of phospho-AKT and phospho-ERK1/2, and reduced TP protein levels. These findings may have implications for the rational design of future drug regimens incorporating tamoxifen and erlotinib for the treatment of NSCLC. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Significance of adipose tissue-derived stem cells regulate CD4+ T cell immune in the treatment of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Yong-lin XIE

    2014-10-01

    Full Text Available Adipose tissue-derived stem cells (ADSCs are genetically engineered seed cells with immunomodulatory effects, widely used in the treatment of autoimmune diseases. This article focuses on the immunomodulatory effects of adipose tissue-derived stem cells on CD4+ T cell subsets, including T helper cell (Th 1, 2, 17 and regulatory T cell (Treg, and its clinical significance in the treatment of multiple sclerosis. doi: 10.3969/j.issn.1672-6731.2014.10.005

  5. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells.

    Science.gov (United States)

    Bele, Aditya; Mirza, Sameer; Zhang, Ying; Ahmad Mir, Riyaz; Lin, Simon; Kim, Jun Hyun; Gurumurthy, Channabasavaiah Basavaraju; West, William; Qiu, Fang; Band, Hamid; Band, Vimla

    2015-01-01

    The mammalian ortholog of Drosophila ecdysoneless (Ecd) gene product regulates Rb-E2F interaction and is required for cell cycle progression. Ecd is overexpressed in breast cancer and its overexpression predicts shorter survival in patients with ErbB2-positive tumors. Here, we demonstrate Ecd knock down (KD) in human mammary epithelial cells (hMECs) induces growth arrest, similar to the impact of Ecd Knock out (KO) in mouse embryonic fibroblasts. Furthermore, whole-genome mRNA expression analysis of control vs. Ecd KD in hMECs demonstrated that several of the top 40 genes that were down-regulated were E2F target genes. To address the role of Ecd in mammary oncogenesis, we overexpressed Ecd and/or mutant H-Ras in hTERT-immortalized hMECs. Cell cycle analyses revealed hMECs overexpressing Ecd+Ras showed incomplete arrest in G1 phase upon growth factor deprivation, and more rapid cell cycle progression in growth factor-containing medium. Analyses of cell migration, invasion, acinar structures in 3-D Matrigel and anchorage-independent growth demonstrated that Ecd+Ras-overexpressing cells exhibit substantially more dramatic transformed phenotype as compared to cells expressing vector, Ras or Ecd. Under conditions of nutrient deprivation, Ecd+Ras-overexpressing hMECs exhibited better survival, with substantial upregulation of the autophagy marker LC3 both at the mRNA and protein levels. Significantly, while hMECs expressing Ecd or mutant Ras alone did not form tumors in NOD/SCID mice, Ecd+Ras-overexpressing hMECs formed tumors, clearly demonstrating oncogenic cooperation between Ecd and mutant Ras. Collectively, we demonstrate an important co-oncogenic role of Ecd in the progression of mammary oncogenesis through promoting cell survival.

  6. MicroRNA-450a-3p represses cell proliferation and regulates embryo development by regulating Bub1 expression in mouse.

    Directory of Open Access Journals (Sweden)

    Min Luo

    Full Text Available Bub1 is a critical component of the spindle assembly checkpoint (SAC and closely linked to cell proliferation and differentiation. We previously found that spontaneous abortion embryos contained a low level of Bub1 protein but normal mRNA level, while the knockdown of Bub1 leads to abnormal numerical chromosomes in embryonic cells. Here, we investigated the mechanism through which governs the post-transcriptional regulation of Bub1 protein expression level. We first conducted bioinformatics analysis and identified eight putative miRNAs that may target Bub1. Luciferase reporter assay confirmed that miR-450a-3p can directly regulate Bub1 by binding to the 3'-untranslated region of Bub1 mRNA. We found that the overexpression of miR-450a-3p in mouse embryonic fibroblast (MEF cells down-regulated Bub1 protein level, repressed cell proliferation, increased apoptosis and restricted most cells in G1 phase of the cell cycle. Furthermore, when the fertilized eggs were microinjected with miR-450a-3p mimics, the cleavage of zygotes was effectively suppressed. Our results strongly suggest that an abnormally decreased Bub1 level regulated by miRNAs may be implicated in the pathogenesis of spontaneous miscarriage. Therefore, the blockade of miR-450a-3p may be explored as a novel therapeutic strategy for preventing spontaneous miscarriages.

  7. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Das, Amitabh, E-mail: amitabhdas.kn@gmail.com [Department of Bionanotechnology, Hanyang University, Seoul 133-791 (Korea, Republic of); Chai, Jin Choul, E-mail: jincchai@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Jung, Kyoung Hwa, E-mail: khjung2@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Das, Nando Dulal, E-mail: nando.hu@gmail.com [Clinical Research Centre, Inha University School of Medicine, Incheon 400-711 (Korea, Republic of); Kang, Sung Chul, E-mail: gujiju11@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Lee, Young Seek, E-mail: yslee@hanyang.ac.kr [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Seo, Hyemyung, E-mail: hseo@hanyang.ac.kr [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Chai, Young Gyu, E-mail: ygchai@hanyang.ac.kr [Department of Bionanotechnology, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of)

    2014-11-01

    JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53{sup −/−} NE-4Cs). We determined the effect of LPS as a model of inflammation in p53{sup −/−} NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53{sup −/−} NE-4Cs and in LPS-stimulated JMJD2A-kd p53{sup −/−} NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed. - Highlights: • Significant up-regulation of epigenetic modifier JMJD2A mRNA upon LPS treatment. • Inhibition of JMJD2A attenuated key inflammatory and tumourigenic genes. • Establishing IPA based functional genomics in JMJD2A-attenuated p53{sup

  8. Frequent down-regulation of ABC transporter genes in prostate cancer.

    Science.gov (United States)

    Demidenko, Rita; Razanauskas, Deividas; Daniunaite, Kristina; Lazutka, Juozas Rimantas; Jankevicius, Feliksas; Jarmalaite, Sonata

    2015-10-12

    ATP-binding cassette (ABC) transporters are transmembrane proteins responsible for the efflux of a wide variety of substrates, including steroid metabolites, through the cellular membranes. For better characterization of the role of ABC transporters in prostate cancer (PCa) development, the profile of ABC transporter gene expression was analyzed in PCa and noncancerous prostate tissues (NPT). TaqMan Low Density Array (TLDA) human ABC transporter plates were used for the gene expression profiling in 10 PCa and 6 NPT specimens. ABCB1 transcript level was evaluated in a larger set of PCa cases (N = 78) and NPT (N = 15) by real-time PCR, the same PCa cases were assessed for the gene promoter hypermethylation by methylation-specific PCR. Expression of eight ABC transporter genes (ABCA8, ABCB1, ABCC6, ABCC9, ABCC10, ABCD2, ABCG2, and ABCG4) was significantly down-regulated in PCa as compared to NPT, and only two genes (ABCC4 and ABCG1) were up-regulated. Down-regulation of ABC transporter genes was prevalent in the TMPRSS2-ERG-negative cases. A detailed analysis of ABCB1 expression confirmed TLDA results: a reduced level of the transcript was identified in PCa in comparison to NPT (p = 0.048). Moreover, the TMPRSS2-ERG-negative PCa cases showed significantly lower expression of ABCB1 in comparison to NPT (p = 0.003) or the fusion-positive tumors (p = 0.002). Promoter methylation of ABCB1 predominantly occurred in PCa and was rarely detected in NPT (p ABC transporter genes in PCa, especially in the TMPRSS2-ERG-negative tumors.

  9. Cytokinetically quiescent (G0/G1) human multiple myeloma cells are susceptible to simultaneous inhibition of Chk1 and MEK1/2.

    Science.gov (United States)

    Pei, Xin-Yan; Dai, Yun; Youssefian, Leena E; Chen, Shuang; Bodie, Wesley W; Takabatake, Yukie; Felthousen, Jessica; Almenara, Jorge A; Kramer, Lora B; Dent, Paul; Grant, Steven

    2011-11-10

    Effects of Chk1 and MEK1/2 inhibition were investigated in cytokinetically quiescent multiple myeloma (MM) and primary CD138(+) cells. Coexposure to the Chk1 and MEK1/2 inhibitors AZD7762 and selumetinib (AZD6244) robustly induced apoptosis in various MM cells and CD138(+) primary samples, but spared normal CD138(-) and CD34(+) cells. Furthermore, Chk1/MEK1/2 inhibitor treatment of asynchronized cells induced G(0)/G(1) arrest and increased apoptosis in all cell-cycle phases, including G(0)/G(1). To determine whether this regimen is active against quiescent G(0)/G(1) MM cells, cells were cultured in low-serum medium to enrich the G(0)/G(1) population. G(0)/G(1)-enriched cells exhibited diminished sensitivity to conventional agents (eg, Taxol and VP-16) but significantly increased susceptibility to Chk1 ± MEK1/2 inhibitors or Chk1 shRNA knock-down. These events were associated with increased γH2A.X expression/foci formation and Bim up-regulation, whereas Bim shRNA knock-down markedly attenuated lethality. Immunofluorescent analysis of G(0)/G(1)-enriched or primary MM cells demonstrated colocalization of activated caspase-3 and the quiescent (G(0)) marker statin, a nuclear envelope protein. Finally, Chk1/MEK1/2 inhibition increased cell death in the Hoechst-positive (Hst(+)), low pyronin Y (PY)-staining (2N Hst(+)/PY(-)) G(0) population and in sorted small side-population (SSP) MM cells. These findings provide evidence that cytokinetically quiescent MM cells are highly susceptible to simultaneous Chk1 and MEK1/2 inhibition.

  10. The Drosophila Perlecan gene trol regulates multiple signaling pathways in different developmental contexts

    Directory of Open Access Journals (Sweden)

    Perry Trinity L

    2007-11-01

    Full Text Available Abstract Background Heparan sulfate proteoglycans modulate signaling by a variety of growth factors. The mammalian proteoglycan Perlecan binds and regulates signaling by Sonic Hedgehog, Fibroblast Growth Factors (FGFs, Vascular Endothelial Growth Factor (VEGF and Platelet Derived Growth Factor (PDGF, among others, in contexts ranging from angiogenesis and cardiovascular development to cancer progression. The Drosophila Perlecan homolog trol has been shown to regulate the activity of Hedgehog and Branchless (an FGF homolog to control the onset of stem cell proliferation in the developing brain during first instar. Here we extend analysis of trol mutant phenotypes to show that trol is required for a variety of developmental events and modulates signaling by multiple growth factors in different situations. Results Different mutations in trol allow developmental progression to varying extents, suggesting that trol is involved in multiple cell-fate and patterning decisions. Analysis of the initiation of neuroblast proliferation at second instar demonstrated that trol regulates this event by modulating signaling by Hedgehog and Branchless, as it does during first instar. Trol protein is distributed over the surface of the larval brain, near the regulated neuroblasts that reside on the cortical surface. Mutations in trol also decrease the number of circulating plasmatocytes. This is likely to be due to decreased expression of pointed, the response gene for VEGF/PDGF signaling that is required for plasmatocyte proliferation. Trol is found on plasmatocytes, where it could regulate VEGF/PDGF signaling. Finally, we show that in second instar brains but not third instar brain lobes and eye discs, mutations in trol affect signaling by Decapentaplegic (a Transforming Growth Factor family member, Wingless (a Wnt growth factor and Hedgehog. Conclusion These studies extend the known functions of the Drosophila Perlecan homolog trol in both developmental and

  11. Defining the role of mesenchymal stromal cells on the regulation of matrix metalloproteinases in skeletal muscle cells

    International Nuclear Information System (INIS)

    Sassoli, Chiara; Nosi, Daniele; Tani, Alessia; Chellini, Flaminia; Mazzanti, Benedetta; Quercioli, Franco; Zecchi-Orlandini, Sandra; Formigli, Lucia

    2014-01-01

    Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the single muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7 + satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration. - Highlights: • MSC-CM contains paracrine factors that up-regulate MMP expression and function in different skeletal muscle cells. • MSC-CM promotes myoblast and satellite cell migration, proliferation and differentiation. • MSC-CM negatively interferes with fibroblast-myoblast transition in primary skeletal fibroblasts. • Paracrine factors from MSCs modulate the fibrotic response and improve the endogenous mechanisms of muscle regeneration

  12. Defining the role of mesenchymal stromal cells on the regulation of matrix metalloproteinases in skeletal muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Sassoli, Chiara; Nosi, Daniele; Tani, Alessia; Chellini, Flaminia [Dept. of Experimental and Clinical Medicine—Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy); Mazzanti, Benedetta [Dept. of Experimental and Clinical Medicine—Section of Haematology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy); Quercioli, Franco [CNR-National Institute of Optics (INO), Largo Enrico Fermi 6, 50125 Arcetri-Florence (Italy); Zecchi-Orlandini, Sandra [Dept. of Experimental and Clinical Medicine—Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy); Formigli, Lucia, E-mail: formigli@unifi.it [Dept. of Experimental and Clinical Medicine—Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy)

    2014-05-01

    Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the single muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7{sup +} satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration. - Highlights: • MSC-CM contains paracrine factors that up-regulate MMP expression and function in different skeletal muscle cells. • MSC-CM promotes myoblast and satellite cell migration, proliferation and differentiation. • MSC-CM negatively interferes with fibroblast-myoblast transition in primary skeletal fibroblasts. • Paracrine factors from MSCs modulate the fibrotic response and improve the endogenous mechanisms of muscle regeneration.

  13. Microenvironmental regulation of hematopoietic stem cells and its implications in leukemogenesis.

    Science.gov (United States)

    Seshadri, Madhav; Qu, Cheng-Kui

    2016-07-01

    Hematopoietic stem cells (HSCs) are a population of cells in the bone marrow which can self-renew, differentiate into late lineage progenitors, or remain quiescent. HSCs exist alongside several cell types in the bone marrow microenvironment that comprise the stem cell niche. These cells regulate HSC function and can contribute to leukemogenesis. In this review we will discuss recent advances in this field. In the vascular niche, arteriolar and sinusoidal zones appear to play distinct roles in HSC function. Endothelial cells modulate HSC function via Notch and other signaling pathways. In the endosteal niche multiple cell types regulate HSCs. Osteoblasts promote HSC quiescence via secreted factors and possibly physical interactions, whereas adipocytes may oppose HSC quiescence. The balance of these opposing factors depends on metabolic cues. Feedback from HSC-derived cells, including macrophages and megakaryocytes also appears to regulate HSC quiescence. Dysfunction of the bone marrow microenvironment, including mesenchymal stem cell-derived stromal cells and the sympathetic nervous system can induce or alter the progression of hematologic malignancies. Many cell types in the bone marrow microenvironment affect HSC function and contribute to malignancy. Further understanding how HSCs are regulated by the microenvironment has clinical implications for stem cell transplantation and other therapies for hematologic malignancies.

  14. Agonist-induced down-regulation of endogenous protein kinase c α through an endolysosomal mechanism.

    Science.gov (United States)

    Lum, Michelle A; Pundt, Krista E; Paluch, Benjamin E; Black, Adrian R; Black, Jennifer D

    2013-05-03

    Protein kinase C (PKC) isozymes undergo down-regulation upon sustained stimulation. Previous studies have pointed to the existence of both proteasome-dependent and -independent pathways of PKCα processing. Here we demonstrate that these down-regulation pathways are engaged in different subcellular compartments; proteasomal degradation occurs mainly at the plasma membrane, whereas non-proteasomal processing occurs in the perinuclear region. Using cholesterol depletion, pharmacological inhibitors, RNA interference, and dominant-negative mutants, we define the mechanisms involved in perinuclear accumulation of PKCα and identify the non-proteasomal mechanism mediating its degradation. We show that intracellular accumulation of PKCα involves at least two clathrin-independent, cholesterol/lipid raft-mediated pathways that do not require ubiquitination of the protein; one is dynamin-dependent and likely involves caveolae, whereas the other is dynamin- and small GTPase-independent. Internalized PKCα traffics through endosomes and is delivered to the lysosome for degradation. Supportive evidence includes (a) detection of the enzyme in EEA1-positive early endosomes, Rab7-positive late endosomes/multivesicular bodies, and LAMP1-positive lysosomes and (b) inhibition of its down-regulation by lysosome-disrupting agents and leupeptin. Only limited dephosphorylation of PKCα occurs during trafficking, with fully mature enzyme being the main target for lysosomal degradation. These studies define a novel and widespread mechanism of desensitization of PKCα signaling that involves endocytic trafficking and lysosome-mediated degradation of the mature, fully phosphorylated protein.

  15. Tight regulation between cell survival and programmed cell death in GBM stem-like cells by EGFR/GSK3b/PP2A signaling.

    Science.gov (United States)

    Gürsel, Demirkan B; Banu, Matei A; Berry, Nicholas; Marongiu, Roberta; Burkhardt, Jan-Karl; Kobylarz, Keith; Kaplitt, Michael G; Rafii, Shahin; Boockvar, John A

    2015-01-01

    Malignant gliomas represent one of the most aggressive forms of cancer, displaying high mortality rates and limited treatment options. Specific subpopulations of cells residing in the tumor niche with stem-like characteristics have been postulated to initiate and maintain neoplasticity while resisting conventional therapies. The study presented here aims to define the role of glycogen synthase kinase 3 beta (GSK3b) in patient-derived glioblastoma (GBM) stem-like cell (GSC) proliferation, apoptosis and invasion. To evaluate the potential role of GSK3b in GBM, protein profiles from 68 GBM patients and 20 normal brain samples were analyzed for EGFR-mediated PI3kinase/Akt and GSK3b signaling molecules including protein phosphatase 2A (PP2A). To better understand the function of GSK3b in GBM, GSCs were isolated from GBM patient samples. Blocking GSK3b phosphorylation at Serine 9 attenuated cell proliferation while concomitantly stimulating apoptosis through activation of Caspase-3 in patient-derived GSCs. Increasing GSK3b protein content resulted in the inhibition of cell proliferation, colony formation and stimulated programmed cell death. Depleting GSK3b in GSCs down regulated PP2A. Furthermore, knocking down PP2A or blocking its activity by okadaic acid inactivated GSK3b by increasing GSK3b phosphorylation at Serine 9. Our data suggests that GSK3b may function as a regulator of apoptosis and tumorigenesis in GSCs. Therapeutic approaches targeting GSK3b in glioblastoma stem-like cells may be a useful addition to our current therapeutic armamentarium.

  16. Protein arginine methyltransferase 5 regulates multiple signaling pathways to promote lung cancer cell proliferation

    International Nuclear Information System (INIS)

    Sheng, Xiumei; Wang, Zhengxin

    2016-01-01

    Protein arginine methyltransferase 5 (PRMT5) catalyzes the formation of symmetrical dimethylation of arginine residues in proteins. WD repeat domain 77 (WDR77), also known as p44, MEP50, or WD45, forms a stoichiometric complex with PRMT5. The PRMT5/p44 complex is required for cellular proliferation of lung and prostate epithelial cells during earlier stages of development and is re-activated during prostate and lung tumorigenesis. The molecular mechanisms by which PRMT5 and p44 promote cellular proliferation are unknown. Expression of PRMT5 and p44 in lung and prostate cancer cells was silenced and their target genes were identified. The regulation of target genes was validated in various cancer cells during lung development and tumorigenesis. Altered expression of target genes was achieved by ectopic cDNA expression and shRNA-mediated silencing. PRMT5 and p44 regulate expression of a specific set of genes encoding growth and anti-growth factors, including receptor tyrosine kinases and antiproliferative proteins. Genes whose expression was suppressed by PRMT5 and p44 encoded anti-growth factors and inhibited cell growth when ectopically expressed. In contrast, genes whose expression was enhanced by PRMT5 and p44 encoded growth factors and increased cell growth when expressed. Altered expression of target genes is associated with re-activation of PRMT5 and p44 during lung tumorigenesis. Our data provide the molecular basis by which PRMT5 and p44 regulate cell growth and lay a foundation for further investigation of their role in lung tumor initiation. The online version of this article (doi:10.1186/s12885-016-2632-3) contains supplementary material, which is available to authorized users

  17. RCC2 over-expression in tumor cells alters apoptosis and drug sensitivity by regulating Rac1 activation.

    Science.gov (United States)

    Wu, Nan; Ren, Dong; Li, Su; Ma, Wenli; Hu, Shaoyan; Jin, Yan; Xiao, Sheng

    2018-01-10

    Small GTP binding protein Rac1 is a component of NADPH oxidases and is essential for superoxide-induced cell death. Rac1 is activated by guanine nucleotide exchange factors (GEFs), and this activation can be blocked by regulator of chromosome condensation 2 (RCC2), which binds the switch regions of Rac1 to prevent access from GEFs. Three cancer cell lines with up- or down-regulation of RCC2 were used to evaluate cell proliferation, apoptosis, Rac1 signaling and sensitivity to a group of nine chemotherapeutic drugs. RCC2 expression in lung cancer and ovarian cancer were studied using immunochemistry stain of tumor tissue arrays. Forced RCC2 expression in tumor cells blocked spontaneous- or Staurosporine (STS)-induced apoptosis. In contrast, RCC2 knock down in these cells resulted in increased apoptosis to STS treatment. The protective activity of RCC2 on apoptosis was revoked by a constitutively activated Rac1, confirming a role of RCC2 in apoptosis by regulating Rac1. In an immunohistochemistry evaluation of tissue microarray, RCC2 was over-expressed in 88.3% of primary lung cancer and 65.2% of ovarian cancer as compared to non-neoplastic lung and ovarian tissues, respectively. Because chemotherapeutic drugs can kill tumor cells by activating Rac1/JNK pathway, we suspect that tumors with RCC2 overexpression would be more resistant to these drugs. Tumor cells with forced RCC2 expression indeed had significant difference in drug sensitivity compared to parental cells using a panel of common chemotherapeutic drugs. RCC2 regulates apoptosis by blocking Rac1 signaling. RCC2 expression in tumor can be a useful marker for predicting chemotherapeutic response.

  18. Up-regulation of OLR1 expression by TBC1D3 through activation of TNFα/NF-κB pathway promotes the migration of human breast cancer cells.

    Science.gov (United States)

    Wang, Bei; Zhao, Huzi; Zhao, Lei; Zhang, Yongchen; Wan, Qing; Shen, Yong; Bu, Xiaodong; Wan, Meiling; Shen, Chuanlu

    2017-11-01

    Metastatic spread of cancer cells is the most life-threatening aspect of breast cancer and involves multiple steps including cell migration. We recently found that the TBC1D3 oncogene promotes the migration of breast cancer cells, and its interaction with CaM enhances the effects of TBC1D3. However, little is known regarding the mechanism by which TBC1D3 induces the migration of cancer cells. Here, we demonstrated that TBC1D3 stimulated the expression of oxidized low density lipoprotein receptor 1 (OLR1), a stimulator of cell migration, in breast cancer cells at the transcriptional level. Depletion of OLR1 by siRNAs or down-regulation of OLR1 expression using pomalidomide, a TNFα inhibitor, significantly decreased TBC1D3-induced migration of these cells. Notably, TBC1D3 overexpression activated NF-κB, a major effector of TNFα signaling, while inhibition of TNFα signaling suppressed the effects of TBC1D3. Consistent with this, NF-κB inhibition using its specific inhibitor caffeic acid phenethyl ester decreased both TBC1D3-induced OLR1 expression and cell migration, suggesting a critical role for TNFα/NF-κB signaling in TBC1D3-induced migration of breast cancer cells. Mechanistically, TBC1D3 induced activation of this signaling pathway on multiple levels, including by increasing the release of TNFα, elevating the transcription of TNFR1, TRAF1, TRAF5 and TRAF6, and decreasing the degradation of TNFR1. In summary, these studies identify the TBC1D3 oncogene as a novel regulator of TNFα/NF-κB signaling that mediates this oncogene-induced migration of human breast cancer cells by up-regulating OLR1. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. 13-methyltetradecanoic acid exhibits anti-tumor activity on T-cell lymphomas in vitro and in vivo by down-regulating p-AKT and activating caspase-3.

    Directory of Open Access Journals (Sweden)

    Qingqing Cai

    Full Text Available 13-Methyltetradecanoic acid (13-MTD, a saturated branched-chain fatty acid purified from soy fermentation products, induces apoptosis in human cancer cells. We investigated the inhibitory effects and mechanism of action of 13-MTD on T-cell non-Hodgkin's lymphoma (T-NHL cell lines both in vitro and in vivo. Growth inhibition in response to 13-MTD was evaluated by the cell counting kit-8 (CCK-8 assay in three T-NHL cell lines (Jurkat, Hut78, EL4 cells. Flow cytometry analyses were used to monitor the cell cycle and apoptosis. Proteins involved in 13-MTD-induced apoptosis were examined in Jurkat cells by western blotting. We found that 13-MTD inhibited proliferation and induced the apoptosis of T-NHL cell lines. 13-MTD treatment also induced a concentration-dependent arrest of Jurkat cells in the G1-phase. During 13-MTD-induced apoptosis in Jurkat cells, the cleavage of caspase-3 and poly ADP-ribose polymerase (PARP, a caspase enzymolysis product were detected after incubation for 2 h, and increased after extending the incubation time. However, there was no change in the expression of Bcl-2 or c-myc proteins. The appearance of apoptotic Jurkat cells was accompanied by the inhibition of AKT and nuclear factor-kappa B (NF-κB phosphorylation. In addition, 13-MTD could also effectively inhibit the growth of T-NHL tumors in vivo in a xenograft model. The tumor inhibition rate in the experimental group was 40%. These data indicate that 13-MTD inhibits proliferation and induces apoptosis through the down-regulation of AKT phosphorylation followed by caspase activation, which may provide a new approach for treating T-cell lymphomas.

  20. Aldosterone down-regulates the slowly activated delayed rectifier potassium current in adult guinea pig cardiomyocytes.

    Science.gov (United States)

    Lv, Yankun; Bai, Song; Zhang, Hua; Zhang, Hongxue; Meng, Jing; Li, Li; Xu, Yanfang

    2015-12-01

    There is emerging evidence that the mineralocorticoid hormone aldosterone is associated with arrhythmias in cardiovascular disease. However, the effect of aldosterone on the slowly activated delayed rectifier potassium current (IK s ) remains poorly understood. The present study was designed to investigate the modulation of IK s by aldosterone. Adult guinea pigs were treated with aldosterone for 28 days via osmotic pumps. Standard glass microelectrode recordings and whole-cell patch-clamp techniques were used to record action potentials in papillary muscles and IK s in ventricular cardiomyocytes. The aldosterone-treated animals exhibited a prolongation of the QT interval and action potential duration with a higher incidence of early afterdepolarizations. Patch-clamp recordings showed a significant down-regulation of IK s density in the ventricular myocytes of these treated animals. These aldosterone-induced electrophysiological changes were fully prevented by a combined treatment with spironolactone, a mineralocorticoid receptor (MR) antagonist. In addition, in in vitro cultured ventricular cardiomyocytes, treatment with aldosterone (sustained exposure for 24 h) decreased the IK s density in a concentration-dependent manner. Furthermore, a significant corresponding reduction in the mRNA/protein expression of IKs channel pore and auxiliary subunits, KCNQ1 and KCNE1 was detected in ventricular tissue from the aldosterone-treated animals. Aldosterone down-regulates IK s by inhibiting the expression of KCNQ1 and KCNE1, thus delaying the ventricular repolarization. These results provide new insights into the mechanism underlying K(+) channel remodelling in heart disease and may explain the highly beneficial effects of MR antagonists in HF. © 2015 The British Pharmacological Society.

  1. Oral Administration of N-Acetyl-D Glucosamine Polymer Particles Down-Regulates Airway Allergic Responses

    National Research Council Canada - National Science Library

    Shibata, Yoshimi

    2006-01-01

    ... (IL-12, IL-18 and TNFo) that down-regulate allergic immune responses. We also found that administration of chitin particles resulted in less likely induce the production of IL-10 and prostaglandin E2 (PGE2...

  2. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells.

    Directory of Open Access Journals (Sweden)

    Laura Bordone

    2006-02-01

    Full Text Available Sir2 and insulin/IGF-1 are the major pathways that impinge upon aging in lower organisms. In Caenorhabditis elegans a possible genetic link between Sir2 and the insulin/IGF-1 pathway has been reported. Here we investigate such a link in mammals. We show that Sirt1 positively regulates insulin secretion in pancreatic beta cells. Sirt1 represses the uncoupling protein (UCP gene UCP2 by binding directly to the UCP2 promoter. In beta cell lines in which Sirt1 is reduced by SiRNA, UCP2 levels are elevated and insulin secretion is blunted. The up-regulation of UCP2 is associated with a failure of cells to increase ATP levels after glucose stimulation. Knockdown of UCP2 restores the ability to secrete insulin in cells with reduced Sirt1, showing that UCP2 causes the defect in glucose-stimulated insulin secretion. Food deprivation induces UCP2 in mouse pancreas, which may occur via a reduction in NAD (a derivative of niacin levels in the pancreas and down-regulation of Sirt1. Sirt1 knockout mice display constitutively high UCP2 expression. Our findings show that Sirt1 regulates UCP2 in beta cells to affect insulin secretion.

  3. TSA-induced DNMT1 down-regulation represses hTERT expression via recruiting CTCF into demethylated core promoter region of hTERT in HCT116.

    Science.gov (United States)

    Choi, Jee-Hye; Min, Na Young; Park, Jina; Kim, Jin Hong; Park, Soo Hyun; Ko, Young Jong; Kang, Yoonsung; Moon, Young Joon; Rhee, Sangmyung; Ham, Seung Wook; Park, Ae Ja; Lee, Kwang-Ho

    2010-01-01

    Trichostatin A (TSA), an inhibitor of histone deacetylase, is a well-known antitumor agent that effectively and selectively induces tumor growth arrest and apoptosis. Recently, it was reported that hTERT is one of the primary targets for TSA-induced apoptosis in cancer cells but the mechanism of which has not yet been elucidated. In the present study, to better understand the epigenetic regulation mechanism responsible for the repression of hTERT by TSA, we examined expression of hTERT in the HCT116 colon cancer cell line after treatment with TSA and performed site-specific CpG methylation analysis of the hTERT promoter. We found that TSA-induced the demethylation of site-specific CpGs on the promoter of hTERT, which was caused by down-regulation of DNA methyltransferase 1 (DNMT1). Among the demethylated region, the 31st-33rd CpGs contained a binding site for CTCF, an inhibitor of hTERT transcription. ChIP analysis revealed that TSA-induced demethylation of the 31st-33rd CpGs promoted CTCF binding on hTERT promoter, leading to repression of hTERT. Taken together, down-regulation of DNMT1 by TSA caused demethylation of a CTCF binding site on the hTERT promoter, the result of which was repression of hTERT via recruitment of CTCF to the promoter. Copyright 2009 Elsevier Inc. All rights reserved.

  4. Systematic identification of yeast cell cycle transcription factors using multiple data sources

    Directory of Open Access Journals (Sweden)

    Li Wen-Hsiung

    2008-12-01

    Full Text Available Abstract Background Eukaryotic cell cycle is a complex process and is precisely regulated at many levels. Many genes specific to the cell cycle are regulated transcriptionally and are expressed just before they are needed. To understand the cell cycle process, it is important to identify the cell cycle transcription factors (TFs that regulate the expression of cell cycle-regulated genes. Results We developed a method to identify cell cycle TFs in yeast by integrating current ChIP-chip, mutant, transcription factor binding site (TFBS, and cell cycle gene expression data. We identified 17 cell cycle TFs, 12 of which are known cell cycle TFs, while the remaining five (Ash1, Rlm1, Ste12, Stp1, Tec1 are putative novel cell cycle TFs. For each cell cycle TF, we assigned specific cell cycle phases in which the TF functions and identified the time lag for the TF to exert regulatory effects on its target genes. We also identified 178 novel cell cycle-regulated genes, among which 59 have unknown functions, but they may now be annotated as cell cycle-regulated genes. Most of our predictions are supported by previous experimental or computational studies. Furthermore, a high confidence TF-gene regulatory matrix is derived as a byproduct of our method. Each TF-gene regulatory relationship in this matrix is supported by at least three data sources: gene expression, TFBS, and ChIP-chip or/and mutant data. We show that our method performs better than four existing methods for identifying yeast cell cycle TFs. Finally, an application of our method to different cell cycle gene expression datasets suggests that our method is robust. Conclusion Our method is effective for identifying yeast cell cycle TFs and cell cycle-regulated genes. Many of our predictions are validated by the literature. Our study shows that integrating multiple data sources is a powerful approach to studying complex biological systems.

  5. Cdt1 revisited: complex and tight regulation during the cell cycle and consequences of deregulation in mammalian cells

    Directory of Open Access Journals (Sweden)

    Fujita Masatoshi

    2006-10-01

    Full Text Available Abstract In eukaryotic cells, replication of genomic DNA initiates from multiple replication origins distributed on multiple chromosomes. To ensure that each origin is activated precisely only once during each S phase, a system has evolved which features periodic assembly and disassembly of essential pre-replication complexes (pre-RCs at replication origins. The pre-RC assembly reaction involves the loading of a presumptive replicative helicase, the MCM2-7 complexes, onto chromatin by the origin recognition complex (ORC and two essential factors, CDC6 and Cdt1. The eukaryotic cell cycle is driven by the periodic activation and inactivation of cyclin-dependent kinases (Cdks and assembly of pre-RCs can only occur during the low Cdk activity period from late mitosis through G1 phase, with inappropriate re-assembly suppressed during S, G2, and M phases. It was originally suggested that inhibition of Cdt1 function after S phase in vertebrate cells is due to geminin binding and that Cdt1 hyperfunction resulting from Cdt1-geminin imbalance induces re-replication. However, recent progress has revealed that Cdt1 activity is more strictly regulated by two other mechanisms in addition to geminin: (1 functional and SCFSkp2-mediated proteolytic regulation through phosphorylation by Cdks; and (2 replication-coupled proteolysis mediated by the Cullin4-DDB1Cdt2 ubiquitin ligase and PCNA, an eukaryotic sliding clamp stimulating replicative DNA polymerases. The tight regulation implies that Cdt1 control is especially critical for the regulation of DNA replication in mammalian cells. Indeed, Cdt1 overexpression evokes chromosomal damage even without re-replication. Furthermore, deregulated Cdt1 induces chromosomal instability in normal human cells. Since Cdt1 is overexpressed in cancer cells, this could be a new molecular mechanism leading to carcinogenesis. In this review, recent insights into Cdt1 function and regulation in mammalian cells are discussed.

  6. CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors

    Science.gov (United States)

    Sugathan, Aarathi; Biagioli, Marta; Golzio, Christelle; Erdin, Serkan; Blumenthal, Ian; Manavalan, Poornima; Ragavendran, Ashok; Brand, Harrison; Lucente, Diane; Miles, Judith; Sheridan, Steven D.; Stortchevoi, Alexei; Kellis, Manolis; Haggarty, Stephen J.; Katsanis, Nicholas; Gusella, James F.; Talkowski, Michael E.

    2014-01-01

    Truncating mutations of chromodomain helicase DNA-binding protein 8 (CHD8), and of many other genes with diverse functions, are strong-effect risk factors for autism spectrum disorder (ASD), suggesting multiple mechanisms of pathogenesis. We explored the transcriptional networks that CHD8 regulates in neural progenitor cells (NPCs) by reducing its expression and then integrating transcriptome sequencing (RNA sequencing) with genome-wide CHD8 binding (ChIP sequencing). Suppressing CHD8 to levels comparable with the loss of a single allele caused altered expression of 1,756 genes, 64.9% of which were up-regulated. CHD8 showed widespread binding to chromatin, with 7,324 replicated sites that marked 5,658 genes. Integration of these data suggests that a limited array of direct regulatory effects of CHD8 produced a much larger network of secondary expression changes. Genes indirectly down-regulated (i.e., without CHD8-binding sites) reflect pathways involved in brain development, including synapse formation, neuron differentiation, cell adhesion, and axon guidance, whereas CHD8-bound genes are strongly associated with chromatin modification and transcriptional regulation. Genes associated with ASD were strongly enriched among indirectly down-regulated loci (P neurodevelopmental pathways in which many ASD-associated genes may converge on shared mechanisms of pathogenesis. PMID:25294932

  7. Down-regulation of p21 (CDKN1A/CIP1) is inversely associated with microsatellite instability and CpG island methylator phenotype (CIMP) in colorectal cancer.

    Science.gov (United States)

    Ogino, S; Kawasaki, T; Kirkner, G J; Ogawa, A; Dorfman, I; Loda, M; Fuchs, C S

    2006-10-01

    p21 (CDKN1A/CIP1/WAF1), one of the cyclin-dependent kinase inhibitors, plays a key role in regulating the cell cycle and is transcriptionally regulated by p53. Down-regulation of p21 is caused by TP53 mutations in colorectal cancer. CpG island methylator phenotype (CIMP) appears to be a distinct subtype of colorectal cancer with concordant methylation of multiple gene promoters and is associated with a high degree of microsatellite instability (MSI-H) and BRAF mutations. However, no study to date has evaluated the relationship between p21 expression and CIMP in colorectal cancer. The purpose of this study was to examine the inter-relationships between p21, p53, CIMP, MSI and KRAS/BRAF status in colorectal cancer. We utilized 737 relatively unbiased samples of colorectal cancers from two large prospective cohort studies. Using quantitative real-time PCR (MethyLight), we measured DNA methylation in five CIMP-specific gene promoters [CACNA1G, CDKN2A (p16/INK4A), CRABP1, MLH1 and NEUROG1]. CIMP-high (>or=4/5 methylated promoters) was diagnosed in 118 (16%) of the 737 tumours. We also assessed expression of p21 and p53 by immunohistochemistry. Among the 737 tumours, 371 (50%) showed p21 loss. Both p21 loss and p53 positivity were inversely associated with CIMP-high, MSI-H and BRAF mutations. The associations of p21 with these molecular features were still present after tumours were stratified by p53 status. In contrast, the associations of p53 positivity with the molecular features were no longer present after tumours were stratified by p21 status. When CIMP-high and non-CIMP-high tumours were stratified by MSI or KRAS/BRAF status, CIMP-high and MSI-H (but not BRAF mutations) were still inversely associated with p21 loss. In conclusion, down-regulation of p21 is inversely correlated with CIMP-high and MSI-H in colorectal cancer, independent of TP53 and BRAF status.

  8. Zeb1 Is a Potential Regulator of Six2 in the Proliferation, Apoptosis and Migration of Metanephric Mesenchyme Cells

    Directory of Open Access Journals (Sweden)

    Yuping Gu

    2016-08-01

    Full Text Available Nephron progenitor cells surround around the ureteric bud tips (UB and inductively interact with the UB to originate nephrons, the basic units of renal function. This process is determined by the internal balance between self-renewal and consumption of the nephron progenitor cells, which is depending on the complicated regulation networks. It has been reported that Zeb1 regulates the proliferation of mesenchymal cells in mouse embryos. However, the role of Zeb1 in nephrons generation is not clear, especially in metanephric mesenchyme (MM. Here, we detected cell proliferation, apoptosis and migration in MM cells by EdU assay, flow cytometry assay and wound healing assay, respectively. Meanwhile, Western and RT-PCR were used to measure the expression level of Zeb1 and Six2 in MM cells and developing kidney. Besides, the dual-luciferase assay was conducted to study the molecular relationship between Zeb1 and Six2. We found that knock-down of Zeb1 decreased cell proliferation, migration and promoted cell apoptosis in MM cells and Zeb1 overexpression leaded to the opposite data. Western-blot and RT-PCR results showed that knock-down of Zeb1 decreased the expression of Six2 in MM cells and Zeb1 overexpression contributed to the opposite results. Similarly, Zeb1 promoted Six2 promoter reporter activity in luciferase assays. However, double knock-down of Zeb1 and Six2 did not enhance the apoptosis of MM cells compared with control cells. Nevertheless, double silence of Zeb1 and Six2 repressed cell proliferation. In addition, we also found that Zeb1 and Six2 had an identical pattern in distinct developing phases of embryonic kidney. These results indicated that there may exist a complicated regulation network between Six2 and Zeb1. Together, we demonstrate Zeb1 promotes proliferation and apoptosis and inhibits the migration of MM cells, in association with Six2.

  9. Zeb1 Is a Potential Regulator of Six2 in the Proliferation, Apoptosis and Migration of Metanephric Mesenchyme Cells

    Science.gov (United States)

    Gu, Yuping; Zhao, Ya; Zhou, Yuru; Xie, Yajun; Ju, Pan; Long, Yaoshui; Liu, Jianing; Ni, Dongsheng; Cao, Fen; Lyu, Zhongshi; Mao, Zhaomin; Hao, Jin; Li, Yiman; Wan, Qianya; Kanyomse, Quist; Liu, Yamin; Ren, Die; Ning, Yating; Li, Xiaofeng; Zhou, Qin; Li, Bing

    2016-01-01

    Nephron progenitor cells surround around the ureteric bud tips (UB) and inductively interact with the UB to originate nephrons, the basic units of renal function. This process is determined by the internal balance between self-renewal and consumption of the nephron progenitor cells, which is depending on the complicated regulation networks. It has been reported that Zeb1 regulates the proliferation of mesenchymal cells in mouse embryos. However, the role of Zeb1 in nephrons generation is not clear, especially in metanephric mesenchyme (MM). Here, we detected cell proliferation, apoptosis and migration in MM cells by EdU assay, flow cytometry assay and wound healing assay, respectively. Meanwhile, Western and RT-PCR were used to measure the expression level of Zeb1 and Six2 in MM cells and developing kidney. Besides, the dual-luciferase assay was conducted to study the molecular relationship between Zeb1 and Six2. We found that knock-down of Zeb1 decreased cell proliferation, migration and promoted cell apoptosis in MM cells and Zeb1 overexpression leaded to the opposite data. Western-blot and RT-PCR results showed that knock-down of Zeb1 decreased the expression of Six2 in MM cells and Zeb1 overexpression contributed to the opposite results. Similarly, Zeb1 promoted Six2 promoter reporter activity in luciferase assays. However, double knock-down of Zeb1 and Six2 did not enhance the apoptosis of MM cells compared with control cells. Nevertheless, double silence of Zeb1 and Six2 repressed cell proliferation. In addition, we also found that Zeb1 and Six2 had an identical pattern in distinct developing phases of embryonic kidney. These results indicated that there may exist a complicated regulation network between Six2 and Zeb1. Together, we demonstrate Zeb1 promotes proliferation and apoptosis and inhibits the migration of MM cells, in association with Six2. PMID:27509493

  10. MMSET is dynamically regulated during cell-cycle progression and promotes normal DNA replication.

    Science.gov (United States)

    Evans, Debra L; Zhang, Haoxing; Ham, Hyoungjun; Pei, Huadong; Lee, SeungBaek; Kim, JungJin; Billadeau, Daniel D; Lou, Zhenkun

    2016-01-01

    The timely and precise duplication of cellular DNA is essential for maintaining genome integrity and is thus tightly-regulated. During mitosis and G1, the Origin Recognition Complex (ORC) binds to future replication origins, coordinating with multiple factors to load the minichromosome maintenance (MCM) complex onto future replication origins as part of the pre-replication complex (pre-RC). The pre-RC machinery, in turn, remains inactive until the subsequent S phase when it is required for replication fork formation, thereby initiating DNA replication. Multiple myeloma SET domain-containing protein (MMSET, a.k.a. WHSC1, NSD2) is a histone methyltransferase that is frequently overexpressed in aggressive cancers and is essential for normal human development. Several studies have suggested a role for MMSET in cell-cycle regulation; however, whether MMSET is itself regulated during cell-cycle progression has not been examined. In this study, we report that MMSET is degraded during S phase in a cullin-ring ligase 4-Cdt2 (CRL4(Cdt2)) and proteasome-dependent manner. Notably, we also report defects in DNA replication and a decreased association of pre-RC factors with chromatin in MMSET-depleted cells. Taken together, our results suggest a dynamic regulation of MMSET levels throughout the cell cycle, and further characterize the role of MMSET in DNA replication and cell-cycle progression.

  11. Ectodermal-neural cortex 1 down-regulates Nrf2 at the translational level.

    Directory of Open Access Journals (Sweden)

    Xiao-Jun Wang

    Full Text Available The transcription factor Nrf2 is the master regulator of a cellular defense mechanism against environmental insults. The Nrf2-mediated antioxidant response is accomplished by the transcription of a battery of genes that encode phase II detoxifying enzymes, xenobiotic transporters, and antioxidants. Coordinated expression of these genes is critical in protecting cells from toxic and carcinogenic insults and in maintaining cellular redox homeostasis. Activation of the Nrf2 pathway is primarily controlled by Kelch-like ECH-associated protein 1 (Keap1, which is a molecular switch that turns on or off the Nrf2 signaling pathway according to intracellular redox conditions. Here we report our finding of a novel Nrf2 suppressor ectodermal-neural cortex 1 (ENC1, which is a BTB-Kelch protein and belongs to the same family as Keap1. Transient expression of ENC1 reduced steady-state levels of Nrf2 and its downstream gene expression. Although ENC1 interacted with Keap1 indirectly, the ENC1-mediated down-regulation of Nrf2 was independent of Keap1. The negative effect of ENC1 on Nrf2 was not due to a change in the stability of Nrf2 because neither proteasomal nor lysosomal inhibitors had any effects. Overexpression of ENC1 did not result in a change in the level of Nrf2 mRNA, rather, it caused a decrease in the rate of Nrf2 protein synthesis. These results demonstrate that ENC1 functions as a negative regulator of Nrf2 through suppressing Nrf2 protein translation, which adds another level of complexity in controlling the Nrf2 signaling pathway.

  12. Regulation of DC development and DC-mediated T-cell immunity via CISH

    OpenAIRE

    Miah, Mohammad Alam; Bae, Yong-Soo

    2013-01-01

    Cytokine inducible SH2-containing protein (CISH) plays a crucial role in type 1 dendritic cell (DC) development as well as in the DC-mediated activation of cytotoxic T lymphocytes (CTLs). CISH expression at late DC developmental stages shuts down the proliferation of DC progenitors by negatively regulating signal transducer and activator of transcription 5 (STAT5) and facilitates the differentiation of DCs into potent stimulators of CTLs.

  13. Regulation of DC development and DC-mediated T-cell immunity via CISH.

    Science.gov (United States)

    Miah, Mohammad Alam; Bae, Yong-Soo

    2013-03-01

    Cytokine inducible SH2-containing protein (CISH) plays a crucial role in type 1 dendritic cell (DC) development as well as in the DC-mediated activation of cytotoxic T lymphocytes (CTLs). CISH expression at late DC developmental stages shuts down the proliferation of DC progenitors by negatively regulating signal transducer and activator of transcription 5 (STAT5) and facilitates the differentiation of DCs into potent stimulators of CTLs.

  14. Expression and regulation of the endogenous retrovirus 3 (ERV3 in Hodgkin’s lymphoma cells

    Directory of Open Access Journals (Sweden)

    Stefanie eKewitz

    2013-07-01

    Full Text Available Human endogenous retroviruses (ERV are an integral part of our genome. Expression of ERV is usually switched off but reactivation of ERV has been observed in varying human diseases including cancer. Recently, reactivation of ERV associated promoters in Hodgkin’s lymphoma (HL cells has been described. Despite relatively good prognosis, not all patients with HL can be cured with the established therapy and this therapy is associated with severe late side effects. Therefore, new targets are required for the development of future treatment strategies. Reactivated ERV might represent such target structures. Therefore, we asked which ERV loci are expressed in HL cells. Using DNA microarray analysis, we found no evidence for a general activation of ERV transcription in HL cells. In contrast, we observed down-regulation of ERV3, an ERV with potential tumor suppressor function, in HL cells in comparison to normal blood cells. Interestingly, ERV3 was also differentially expressed in published DNA microarray data from resting versus cycling B cells. Treatment of HL cells with the histone deacetylase inhibitor vorinostat strongly up-regulated ERV3 expression. In addition, we observed up-regulation in HL cells after treatment with hypoxia-mimetic cobalt(II chloride. Like vorinostat, cobalt(II chloride inhibited cell growth of HL cells. Our results suggest that cell cycle inhibition of HL cells is accompanied by up-regulation of ERV3.

  15. Cytoprotective effect exerted by geraniin in HepG2 cells is through microRNA mediated regulation of BACH-1 and HO-1.

    Science.gov (United States)

    Aayadi, Hoda; Mittal, Smriti P K; Deshpande, Anjali; Gore, Makarand; Ghaskadbi, Saroj S

    2017-11-01

    Geraniin, a hydrolysable tannin, used in traditional medicine in Southeast Asia, is known to exhibit various biological activities. As an antioxidant it is known to up-regulate phase II enzyme Heme oxygenase-1 (HO-1). However its mechanism is not clearly understood. Nuclear factor erythroid-derived 2 related factor 2 (Nrf-2) is transcriptionally up-regulated by Extracellular signal-regulated kinase (ERK) 1/2 and retained in nucleus due to inactivated Glycogen synthase kinase 3 beta (GSK-3β). Geraniin additionally down-regulates expression of microRNA 217 and 377 (miR-217 and miR-377) which target HO-1 mRNA. Expression of BTB and CNC homolog 1 (BACH-1), another regulator of HO-1, is also down-regulated by up-regulating microRNA 98 (miR-98), a negative regulator of BACH-1. Thus, geraniin up-regulates HO-1 expression both through activating its positive regulator Nrf-2 and by down-regulating its negative regulator BACH-1. Up-regulation of HO-1 also confers protection to HepG2 cells from tertiary butyl hydroperoxide (TBH) induced cytotoxicity. [BMB Reports 2017; 50(11): 560-565].

  16. Ezrin is down-regulated in diabetic kidney glomeruli and regulates actin reorganization and glucose uptake via GLUT1 in cultured podocytes.

    Science.gov (United States)

    Wasik, Anita A; Koskelainen, Susanna; Hyvönen, Mervi E; Musante, Luca; Lehtonen, Eero; Koskenniemi, Kerttu; Tienari, Jukka; Vaheri, Antti; Kerjaschki, Dontscho; Szalay, Csaba; Révész, Csaba; Varmanen, Pekka; Nyman, Tuula A; Hamar, Peter; Holthöfer, Harry; Lehtonen, Sanna

    2014-06-01

    Diabetic nephropathy is a complication of diabetes and a major cause of end-stage renal disease. To characterize the early pathophysiological mechanisms leading to glomerular podocyte injury in diabetic nephropathy, we performed quantitative proteomic profiling of glomeruli isolated from rats with streptozotocin-induced diabetes and controls. Fluorescence-based two-dimensional difference gel electrophoresis, coupled with mass spectrometry, identified 29 differentially expressed spots, including actin-binding protein ezrin and its interaction partner, NHERF2, which were down-regulated in the streptozotocin group. Knockdown of ezrin by siRNA in cultured podocytes increased glucose uptake compared with control siRNA-transfected cells, apparently by increasing translocation of glucose transporter GLUT1 to the plasma membrane. Knockdown of ezrin also induced actin remodeling under basal conditions, but reduced insulin-stimulated actin reorganization. Ezrin-dependent actin remodeling involved cofilin-1 that is essential for the turnover and reorganization of actin filaments. Phosphorylated, inactive cofilin-1 was up-regulated in diabetic glomeruli, suggesting altered actin dynamics. Furthermore, IHC analysis revealed reduced expression of ezrin in the podocytes of patients with diabetes. Our findings suggest that ezrin may play a role in the development of the renal complication in diabetes by regulating transport of glucose and organization of the actin cytoskeleton in podocytes. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Overexpression of hsa-miR-939 follows by NGFR down-regulation ...

    Indian Academy of Sciences (India)

    2017-02-11

    Feb 11, 2017 ... MiRNAs are novel regulators of signalling pathways that are candidates for regulation of neurotrophin ... factors are regulators of neurons survival, development and ... 2.2 Cell culture ..... 2009 A novel and universal method for.

  18. Down-regulation of microRNA-142-5p attenuates oxygen-glucose deprivation and reoxygenation-induced neuron injury through up-regulating Nrf2/ARE signaling pathway.

    Science.gov (United States)

    Wang, Ning; Zhang, Lingmin; Lu, Yang; Zhang, Mingxin; Zhang, Zhenni; Wang, Kui; Lv, Jianrui

    2017-05-01

    MicroRNAs (miRNAs) play vital roles in regulating neuron survival during cerebral ischemia/reperfusion injury. miR-142-5p is reported to be an important regulator of cellular survival. However, little is known about the role of miR-142-5p in regulating neuron survival during cerebral ischemia/reperfusion injury. In this study, we aimed to investigate the precise function and mechanism of miR-142-5p in the regulation of neuron ischemia/reperfusion injury using a cellular model of oxygen-glucose deprivation and reoxygenation (OGD/R)-induced injury in hippocampal neurons in vitro. We found that miR-142-5p was induced in hippocampal neurons with OGD/R treatment. The inhibition of miR-142-5p attenuated OGD/R-induced cell injury and oxidative stress, whereas the overexpression of miR-142-5p aggravated them. Nuclear factor erythroid 2-related factor 2 (Nrf2) was identified as a target gene of miR-142-5p. Moreover, miR-142-5p regulated Nrf2 expression and downstream signaling. Knockdown of Nrf2 abolished the protective effects of miR-142-5p suppression. In addition, we showed an inverse correlation relationship between miR-142-5p and Nrf2 in an in vivo model of middle cerebral artery occlusion in rats. Taken together, these results suggest that miR-142-5p contributes to OGD/R-induced cell injury and the down-regulation of miR-142-5p attenuates OGD/R-induced neuron injury through promoting Nrf2 expression. Our study provides a novel insight into understanding the molecular pathogenesis of cerebral ischemia/reperfusion injury and indicates a potential therapeutic target for the treatment of cerebral ischemia/reperfusion injury. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation

    Science.gov (United States)

    Andlauer, Till F. M.; Buck, Dorothea; Antony, Gisela; Bayas, Antonios; Bechmann, Lukas; Berthele, Achim; Chan, Andrew; Gasperi, Christiane; Gold, Ralf; Graetz, Christiane; Haas, Jürgen; Hecker, Michael; Infante-Duarte, Carmen; Knop, Matthias; Kümpfel, Tania; Limmroth, Volker; Linker, Ralf A.; Loleit, Verena; Luessi, Felix; Meuth, Sven G.; Mühlau, Mark; Nischwitz, Sandra; Paul, Friedemann; Pütz, Michael; Ruck, Tobias; Salmen, Anke; Stangel, Martin; Stellmann, Jan-Patrick; Stürner, Klarissa H.; Tackenberg, Björn; Then Bergh, Florian; Tumani, Hayrettin; Warnke, Clemens; Weber, Frank; Wiendl, Heinz; Wildemann, Brigitte; Zettl, Uwe K.; Ziemann, Ulf; Zipp, Frauke; Arloth, Janine; Weber, Peter; Radivojkov-Blagojevic, Milena; Scheinhardt, Markus O.; Dankowski, Theresa; Bettecken, Thomas; Lichtner, Peter; Czamara, Darina; Carrillo-Roa, Tania; Binder, Elisabeth B.; Berger, Klaus; Bertram, Lars; Franke, Andre; Gieger, Christian; Herms, Stefan; Homuth, Georg; Ising, Marcus; Jöckel, Karl-Heinz; Kacprowski, Tim; Kloiber, Stefan; Laudes, Matthias; Lieb, Wolfgang; Lill, Christina M.; Lucae, Susanne; Meitinger, Thomas; Moebus, Susanne; Müller-Nurasyid, Martina; Nöthen, Markus M.; Petersmann, Astrid; Rawal, Rajesh; Schminke, Ulf; Strauch, Konstantin; Völzke, Henry; Waldenberger, Melanie; Wellmann, Jürgen; Porcu, Eleonora; Mulas, Antonella; Pitzalis, Maristella; Sidore, Carlo; Zara, Ilenia; Cucca, Francesco; Zoledziewska, Magdalena; Ziegler, Andreas; Hemmer, Bernhard; Müller-Myhsok, Bertram

    2016-01-01

    We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis. PMID:27386562

  20. Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation.

    Science.gov (United States)

    Andlauer, Till F M; Buck, Dorothea; Antony, Gisela; Bayas, Antonios; Bechmann, Lukas; Berthele, Achim; Chan, Andrew; Gasperi, Christiane; Gold, Ralf; Graetz, Christiane; Haas, Jürgen; Hecker, Michael; Infante-Duarte, Carmen; Knop, Matthias; Kümpfel, Tania; Limmroth, Volker; Linker, Ralf A; Loleit, Verena; Luessi, Felix; Meuth, Sven G; Mühlau, Mark; Nischwitz, Sandra; Paul, Friedemann; Pütz, Michael; Ruck, Tobias; Salmen, Anke; Stangel, Martin; Stellmann, Jan-Patrick; Stürner, Klarissa H; Tackenberg, Björn; Then Bergh, Florian; Tumani, Hayrettin; Warnke, Clemens; Weber, Frank; Wiendl, Heinz; Wildemann, Brigitte; Zettl, Uwe K; Ziemann, Ulf; Zipp, Frauke; Arloth, Janine; Weber, Peter; Radivojkov-Blagojevic, Milena; Scheinhardt, Markus O; Dankowski, Theresa; Bettecken, Thomas; Lichtner, Peter; Czamara, Darina; Carrillo-Roa, Tania; Binder, Elisabeth B; Berger, Klaus; Bertram, Lars; Franke, Andre; Gieger, Christian; Herms, Stefan; Homuth, Georg; Ising, Marcus; Jöckel, Karl-Heinz; Kacprowski, Tim; Kloiber, Stefan; Laudes, Matthias; Lieb, Wolfgang; Lill, Christina M; Lucae, Susanne; Meitinger, Thomas; Moebus, Susanne; Müller-Nurasyid, Martina; Nöthen, Markus M; Petersmann, Astrid; Rawal, Rajesh; Schminke, Ulf; Strauch, Konstantin; Völzke, Henry; Waldenberger, Melanie; Wellmann, Jürgen; Porcu, Eleonora; Mulas, Antonella; Pitzalis, Maristella; Sidore, Carlo; Zara, Ilenia; Cucca, Francesco; Zoledziewska, Magdalena; Ziegler, Andreas; Hemmer, Bernhard; Müller-Myhsok, Bertram

    2016-06-01

    We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis.