WorldWideScience

Sample records for down-regulates multiple cell

  1. [HSP90 Inhibitor 17-AAG Inhibits Multiple Myeloma Cell Proliferation by Down-regulating Wnt/β-Catenin Signaling Pathway].

    Science.gov (United States)

    Chen, Kan-Kan; He, Zheng-Mei; Ding, Bang-He; Chen, Yue; Zhang, Li-Juan; Yu, Liang; Gao, Jian

    2016-02-01

    To investigate the inhibitory effect of HSP90 inhibitory 17-AAG on proliferation of multiple myeloma cells and its main mechanism. The multiple myeloma cells U266 were treated with 17-AAG of different concentrations (200, 400, 600 and 800 nmol/L) for 24, 48, and 72 hours respectively, then the proliferation rate, expression levels of β-catenin and C-MYC protein, as well as cell cycle of U266 cells were treated with 17-AAG and were detected by MTT method, Western blot and flow cytometry, respectively. The 17-AAG showed inhibitory effect on the proliferation of U266 cells in dose- and time-depetent manners (r = -0.518, P AAG displayed no inhibitory effect on proliferation of U266 cells (P > 0.05). The result of culturing U266 cells for 72 hours by 17-AAG of different concentrations showed that the more high of 17-AAG concentration, the more low level of β-catenin and C-MYC proteins (P AAG concentration, the more high of cell ratio in G1 phase (P AAG, the more long time of culture, the more high of cell ratio in G1 phase (P AAG can inhibit the proliferation of multiple myeloma cells, the down-regulation of Wnt/β-catenin signaling pathway and inhibition of HSP90 expression may be the main mechnisms of 17-AAG effect.

  2. A viral microRNA down-regulates multiple cell cycle genes through mRNA 5'UTRs.

    Directory of Open Access Journals (Sweden)

    Finn Grey

    2010-06-01

    Full Text Available Global gene expression data combined with bioinformatic analysis provides strong evidence that mammalian miRNAs mediate repression of gene expression primarily through binding sites within the 3' untranslated region (UTR. Using RNA induced silencing complex immunoprecipitation (RISC-IP techniques we have identified multiple cellular targets for a human cytomegalovirus (HCMV miRNA, miR-US25-1. Strikingly, this miRNA binds target sites primarily within 5'UTRs, mediating significant reduction in gene expression. Intriguingly, many of the genes targeted by miR-US25-1 are associated with cell cycle control, including cyclin E2, BRCC3, EID1, MAPRE2, and CD147, suggesting that miR-US25-1 is targeting genes within a related pathway. Deletion of miR-US25-1 from HCMV results in over expression of cyclin E2 in the context of viral infection. Our studies demonstrate that a viral miRNA mediates translational repression of multiple cellular genes by targeting mRNA 5'UTRs.

  3. TCR down-regulation controls T cell homeostasis

    DEFF Research Database (Denmark)

    Boding, Lasse; Bonefeld, Charlotte Menné; Nielsen, Bodil L

    2009-01-01

    TCR and cytokine receptor signaling play key roles in the complex homeostatic mechanisms that maintain a relative stable number of T cells throughout life. Despite the homeostatic mechanisms, a slow decline in naive T cells is typically observed with age. The CD3gamma di-leucine-based motif...... controls TCR down-regulation and plays a central role in fine-tuning TCR expression and signaling in T cells. In this study, we show that the age-associated decline of naive T cells is strongly accelerated in CD3gammaLLAA knock-in mice homozygous for a double leucine to alanine mutation in the CD3gamma di......-leucine-based motif, whereas the number of memory T cells is unaffected by the mutation. This results in premature T cell population senescence with a severe dominance of memory T cells and very few naive T cells in middle-aged to old CD3gamma mutant mice. The reduced number of naive T cells in CD3gamma mutant mice...

  4. Decorin is down-regulated in multiple myeloma and MGUS bone marrow plasma and inhibits HGF-induced myeloma plasma cell viability and migration

    DEFF Research Database (Denmark)

    Kristensen, Ida Bruun; Pedersen, Lise Mariager; Rø, Torstein Baade

    2013-01-01

    pathway in multiple myeloma (MM). METHODS: Decorin levels in paired peripheral blood and bone marrow plasma samples from healthy volunteers (HV) (n=23), and patients with monoclonal gammopathy of undetermined significance (MGUS) (n=41) and MM (n=19) were determined by ELISA. Further, the ability...

  5. Curcumin and emodin down-regulate TGF-β signaling pathway in human cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Pooja Chandrakant Thacker

    Full Text Available Cervical cancer is the major cause of cancer related deaths in women, especially in developing countries and Human Papilloma Virus infection in conjunction with multiple deregulated signaling pathways leads to cervical carcinogenesis. TGF-β signaling in later stages of cancer is known to induce epithelial to mesenchymal transition promoting tumor growth. Phytochemicals, curcumin and emodin, are effective as chemopreventive and chemotherapeutic compounds against several cancers including cervical cancer. The main objective of this work was to study the effect of curcumin and emodin on TGF-β signaling pathway and its functional relevance to growth, migration and invasion in two cervical cancer cell lines, SiHa and HeLa. Since TGF-β and Wnt/β-catenin signaling pathways are known to cross talk having common downstream targets, we analyzed the effect of TGF-β on β-catenin (an important player in Wnt/β-catenin signaling and also studied whether curcumin and emodin modulate them. We observed that curcumin and emodin effectively down regulate TGF-β signaling pathway by decreasing the expression of TGF-β Receptor II, P-Smad3 and Smad4, and also counterbalance the tumorigenic effects of TGF-β by inhibiting the TGF-β-induced migration and invasion. Expression of downstream effectors of TGF-β signaling pathway, cyclinD1, p21 and Pin1, was inhibited along with the down regulation of key mesenchymal markers (Snail and Slug upon curcumin and emodin treatment. Curcumin and emodin were also found to synergistically inhibit cell population and migration in SiHa and HeLa cells. Moreover, we found that TGF-β activates Wnt/β-catenin signaling pathway in HeLa cells, and curcumin and emodin down regulate the pathway by inhibiting β-catenin. Taken together our data provide a mechanistic basis for the use of curcumin and emodin in the treatment of cervical cancer.

  6. TCR down-regulation controls virus-specific CD8+ T cell responses

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte Menné; Haks, Mariëlle; Nielsen, Bodil

    2008-01-01

    in mice with a mutated CD3gamma di-leucine-based motif. The CD3gamma mutation did not impair early TCR signaling, nor did it compromise recruitment or proliferation of virus-specific T cells, but it increased the apoptosis rate of the activated T cells by increasing down-regulation of the antiapoptotic...

  7. Pu-erh Tea Inhibits Tumor Cell Growth by Down-Regulating Mutant p53

    Science.gov (United States)

    Zhao, Lanjun; Jia, Shuting; Tang, Wenru; Sheng, Jun; Luo, Ying

    2011-01-01

    Pu-erh tea is a kind of fermented tea with the incorporation of microorganisms’ metabolites. Unlike green tea, the chemical characteristics and bioactivities of Pu-erh tea are still not well understood. Using water extracts of Pu-erh tea, we analyzed the tumor cell growth inhibition activities on several genetically engineered mouse tumor cell lines. We found that at the concentration that did not affect wild type mouse embryo fibroblasts (MEFs) growth, Pu-erh tea extracts could inhibit tumor cell growth by down-regulated S phase and cause G1 or G2 arrest. Further study showed that Pu-erh tea extracts down-regulated the expression of mutant p53 in tumor cells at the protein level as well as mRNA level. The same concentration of Pu-erh tea solution did not cause p53 stabilization or activation of its downstream pathways in wild type cells. We also found that Pu-erh tea treatment could slightly down-regulate both HSP70 and HSP90 protein levels in tumor cells. These data revealed the action of Pu-erh tea on tumor cells and provided the possible mechanism for Pu-erh tea action, which explained its selectivity in inhibiting tumor cells without affecting wild type cells. Our data sheds light on the application of Pu-erh tea as an anti-tumor agent with low side effects. PMID:22174618

  8. Down-regulation of lipoprotein lipase increases glucose uptake in L6 muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Veronica; Saraff, Kumuda [Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262 (United States); Medh, Jheem D., E-mail: jheem.medh@csun.edu [Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262 (United States)

    2009-11-06

    Thiazolidinediones (TZDs) are synthetic hypoglycemic agents used to treat type 2 diabetes. TZDs target the peroxisome proliferator activated receptor-gamma (PPAR-{gamma}) and improve systemic insulin sensitivity. The contributions of specific tissues to TZD action, or the downstream effects of PPAR-{gamma} activation, are not very clear. We have used a rat skeletal muscle cell line (L6 cells) to demonstrate that TZDs directly target PPAR-{gamma} in muscle cells. TZD treatment resulted in a significant repression of lipoprotein lipase (LPL) expression in L6 cells. This repression correlated with an increase in glucose uptake. Down-regulation of LPL message and protein levels using siRNA resulted in a similar increase in insulin-dependent glucose uptake. Thus, LPL down-regulation improved insulin sensitivity independent of TZDs. This finding provides a novel method for the management of insulin resistance.

  9. SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation

    International Nuclear Information System (INIS)

    Wang, Jia-lei; Lu, Fan-zhen; Shen, Xiao-Yong; Wu, Yun; Zhao, Li-ting

    2014-01-01

    Highlights: • SAMHD1 expression level is down regulated in lung adenocarcinoma. • The promoter of SAMHD1 is methylated in lung adenocarcinoma. • Over expression of SAMHD1 inhibits the proliferation of lung cancer cells. - Abstract: The function of dNTP hydrolase SAMHD1 as a viral restriction factor to inhibit the replication of several viruses in human immune cells was well established. However, its regulation and function in lung cancer have been elusive. Here, we report that SAMHD1 is down regulated both on protein and mRNA levels in lung adenocarcinoma compared to adjacent normal tissue. We also found that SAMHD1 promoter is highly methylated in lung adenocarcinoma, which may inhibit its gene expression. Furthermore, over expression of the SAMHD1 reduces dNTP level and inhibits the proliferation of lung tumor cells. These results reveal the regulation and function of SAMHD1 in lung cancer, which is important for the proliferation of lung tumor cells

  10. TCR Down-Regulation Controls Virus-Specific CD8+ T Cell Responses

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte Menné; Haks, Mariëlle; Nielsen, Bodil

    2008-01-01

    The CD3gamma di-leucine-based motif plays a central role in TCR down-regulation. However, little is understood about the role of the CD3gamma di-leucine-based motif in physiological T cell responses. In this study, we show that the expansion in numbers of virus-specific CD8(+) T cells is impaired...... in mice with a mutated CD3gamma di-leucine-based motif. The CD3gamma mutation did not impair early TCR signaling, nor did it compromise recruitment or proliferation of virus-specific T cells, but it increased the apoptosis rate of the activated T cells by increasing down-regulation of the antiapoptotic...... molecule Bcl-2. This resulted in a 2-fold reduction in the clonal expansion of virus-specific CD8(+) T cells during the acute phase of vesicular stomatitis virus and lymphocytic choriomeningitis virus infections. These results identify an important role of CD3gamma-mediated TCR down-regulation in virus...

  11. Down-regulation of Wnt10a affects odontogenesis and proliferation in mesenchymal cells

    International Nuclear Information System (INIS)

    Liu, Yang; Han, Dong; Wang, Lei; Feng, Hailan

    2013-01-01

    Highlights: •Down-regulation of Wnt10a in dental mesenchymal cells impairs odontogenesis of reassociated tooth germs. •Dspp is down- and up-regulated after Wnt10a-knockdown and overexpression in dental mesenchymal cells. •Down-regulation of Wnt10a inhibits proliferation of dental mesenchymal cells. -- Abstract: The WNT10a mutation has been found in patients with abnormal odontogenesis. In mice, Wnt10a expression is found in the tooth germ, but its role has not yet been elucidated. We aimed to investigate the role of Wnt10a in odontogenesis. Mesenchymal cells of the first mandibular molar germ at the bell stage were isolated, transfected with Wnt10a SiRNA or plasmid, and reassociated with epithelial part of the molar germ. Scrambled SiRNA or empty vector was used in the control group. The reassociated tooth germs were transplanted into mice subrenal capsules. After gene modification, dental mesenchymal cells cultured in vitro were checked for cell proliferation and the expression of Dspp was examined. All 12 reassociated tooth germs in the control group resumed odontogenesis, while only 5 of 12 in the Wnt10a knockdown group developed into teeth. After Wnt10a knockdown, the mesenchymal cells cultured in vitro presented repressed proliferation. Wnt10a knockdown and overexpression led to both down- and up-regulation of Dspp. We conclude that the down-regulation of Wnt10a impairs odontogensis and cell proliferation, and that Wnt10a regulates Dspp expression in mesenchymal cells. These findings help to elucidate the mechanism of abnormal tooth development in patients with the WNT10A mutation

  12. N-methylhemeanthidine chloride, a novel Amaryllidaceae alkaloid, inhibits pancreatic cancer cell proliferation via down-regulating AKT activation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Guoli; Yao, Guangmin; Zhan, Guanqun; Hu, Yufeng [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China); Yue, Ming [Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Cheng, Ling; Liu, Yaping; Ye, Qi [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China); Qing, Guoliang [Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Zhang, Yonghui, E-mail: zhangyh@mails.tjmu.edu.cn [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China); Liu, Hudan, E-mail: hudanliu@hust.edu.cn [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China)

    2014-11-01

    We previously reported the isolation of a novel Amaryllidaceae alkaloid, N-methylhemeanthidine chloride (NMHC), from Zephyranthes candida, which exhibits potent cytotoxicity in a spectrum of tumor cells. However, the mechanism of action remains unclear. Using multiple cell lines derived from human pancreatic cancer, one of the most mortal and refractory human malignancies, we further studied the NMHC-mediated cytotoxicity and found that it induced drastic cytotoxicity in pancreatic cancer cells whereas an insignificant effect on a noncancerous cell line. The NMHC-mediated growth inhibition was more severe than the first-line chemotherapeutic agent gemcitabine, leading to cell cycle arrest, apoptotic death and decreased glycolysis. NMHC exerted its function through down-regulating AKT activation, and the ectopic expression of activated AKT rescued the growth inhibition. Consistently, NMHC injections in a pancreatic cancer xenograft model manifested the anti-tumor effect in vivo. Engrafted tumor cells underwent AKT attenuation and apoptotic death upon treatments. As such, we here demonstrate the AKT inhibition may be one of the mechanisms by which NMHC decreases tumor cell survival rate in vitro and in vivo. Our data thereby suggest that NMHC holds great promise as a potent chemotherapeutic agent against pancreatic cancer and sheds new light on obtaining such agents from natural products toward therapeutic purposes. - Highlights: • N-methylhemeanthidine chloride (NMHC) is a novel Amaryllidaceae alkaloid. • NMHC exhibits potent anti-neoplastic activity. • NMHC leads to cell cycle arrest, apoptotic death and decreased metabolism. • NMHC down-regulates the AKT signaling pathway.

  13. Down-regulation of Rab5 decreases characteristics associated with maintenance of cell transformation

    International Nuclear Information System (INIS)

    Silva, Patricio; Soto, Nicolás; Díaz, Jorge; Mendoza, Pablo; Díaz, Natalia; Quest, Andrew F.G.; Torres, Vicente A.

    2015-01-01

    The early endosomal protein Rab5 is highly expressed in tumor samples, although a causal relationship between Rab5 expression and cell transformation has not been established. Here, we report the functional effects of targeting endogenous Rab5 with specific shRNA sequences in different tumor cell lines. Rab5 down-regulation in B16-F10 cells decreased tumor formation by subcutaneous injection into C57/BL6 mice. Accordingly, Rab5 targeting in B16-F10 and A549, but not MDA-MB-231 cells was followed by decreased cell proliferation, increased apoptosis and decreased anchorage-independent growth. These findings suggest that Rab5 expression is required to maintain characteristics associated with cell transformation. - Highlights: • Rab5 is important to the maintenance of cell transformation characteristics. • Down-regulation of Rab5 decreases cell proliferation and increases apoptosis in different cancer cells. • Rab5 is required for anchorage-independent growth and tumorigenicity in-vivo

  14. Synergistic combination of gemcitabine and dietary molecule induces apoptosis in pancreatic cancer cells and down regulates PKM2 expression.

    Directory of Open Access Journals (Sweden)

    Archana Pandita

    Full Text Available Gemcitabine, an effective agent in treatment of cancer of pancreas, has undergone failures in many instances after multiple cycles of therapy due to emergence of drug resistance. Combination of dietary compounds with clinically validated drugs has emerged as an effective therapeutic approach to treat pancreatic tumors, refractory to gemcitabine therapy. In order to optimize a possible synergistic combination of Gemcitabine (GCB with dietary molecules, Betuilnic acid (BA and Thymoquinone (TQ, stand-alone IC50 dose of GCB, BA and TQ was calculated for pancreatic cancer cell lines. Fixed IC50 dose ratio of the dietary molecules in combination with reduced IC50 dose of GCB was tested on GCB resistant PANC-1 and sensitive MIA PaCa-2 cells for synergism, additive response and antagonism, using calcusyn. Combination index (CI revealed that pre-treatment of BA and TQ along with GCB synergistically inhibited the cancer cell proliferation in in-vitro experiments. Pyruvate kinase (PK M2 isoform, a promising target involved in cancer cell metabolism, showed down-regulation in presence of TQ or BA in combination with GCB. GCB with BA acted preferentially on tumor mitochondria and triggered mitochondrial permeability transition. Pre-exposure of the cell lines, MIA PaCa-2 and PANC-1, to TQ in combination with GCB induced apoptosis. Thus, the effectiveness of BA or TQ in combination with GCB to inhibit cell proliferation, induce apoptosis and down-regulate the expression of PKM2, reflects promise in pancreatic cancer treatment.

  15. Down-regulation of endothelin binding sites in rat vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Roubert, P.; Gillard, V.; Plas, P.; Chabrier, P.E.; Braquet, P.

    1990-01-01

    In cultured rat aortic smooth muscle cells, [ 125 I]endothelin (ET-1) bound to an apparent single class of high affinity recognition sites with a dissociation constant of 1.84 +/- 0.29 nmol/L and a maximum binding of 62 +/- 10.5 fmol/10(6) cells. The binding was not affected by calcium antagonists or vasoactive substances, including angiotensin II, arginine vasopressin, atrial natriuretic factor and bradykinin. Exposure of the cells to ET-1 (0.01 nmol/L to 10 nmol/L) resulted in an apparent dose-dependent reduction of the number of endothelin binding sites with no significant modification of its binding affinity. The time course of the down-regulation of ET-1 binding sites showed that this effect was present after 30 min incubation and persisted after 18 h. This indicates that down-regulation of ET-1 binding sites can modulate the activity of ET-1 and suggests a rapid internalization of ET-1 in vascular cells

  16. Cholesterol Down-Regulates BK Channels Stably Expressed in HEK 293 Cells

    Science.gov (United States)

    Deng, Xiu-Ling; Sun, Hai-Ying; Li, Gui-Rong

    2013-01-01

    Cholesterol is one of the major lipid components of the plasma membrane in mammalian cells and is involved in the regulation of a number of ion channels. The present study investigates how large conductance Ca2+-activated K+ (BK) channels are regulated by membrane cholesterol in BK-HEK 293 cells expressing both the α-subunit hKCa1.1 and the auxiliary β1-subunit or in hKCa1.1-HEK 293 cells expressing only the α-subunit hKCa1.1 using approaches of electrophysiology, molecular biology, and immunocytochemistry. Membrane cholesterol was depleted in these cells with methyl-β-cyclodextrin (MβCD), and enriched with cholesterol-saturated MβCD (MβCD-cholesterol) or low-density lipoprotein (LDL). We found that BK current density was decreased by cholesterol enrichment in BK-HEK 293 cells, with a reduced expression of KCa1.1 protein, but not the β1-subunit protein. This effect was fully countered by the proteasome inhibitor lactacystin or the lysosome function inhibitor bafilomycin A1. Interestingly, in hKCa1.1-HEK 293 cells, the current density was not affected by cholesterol enrichment, but directly decreased by MβCD, suggesting that the down-regulation of BK channels by cholesterol depends on the auxiliary β1-subunit. The reduced KCa1.1 channel protein expression was also observed in cultured human coronary artery smooth muscle cells with cholesterol enrichment using MβCD-cholesterol or LDL. These results demonstrate the novel information that cholesterol down-regulates BK channels by reducing KCa1.1 protein expression via increasing the channel protein degradation, and the effect is dependent on the auxiliary β1-subunit. PMID:24260325

  17. Down-regulation of telomerase activity in DLD-1 human colorectal adenocarcinoma cells by tocotrienol

    International Nuclear Information System (INIS)

    Eitsuka, Takahiro; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2006-01-01

    As high telomerase activity is detected in most cancer cells, inhibition of telomerase by drug or dietary food components is a new strategy for cancer prevention. Here, we investigated the inhibitory effect of vitamin E, with particular emphasis on tocotrienol (unsaturated vitamin E), on human telomerase in cell-culture study. As results, tocotrienol inhibited telomerase activity of DLD-1 human colorectal adenocarcinoma cells in time- and dose-dependent manner, interestingly, with δ-tocotrienol exhibiting the highest inhibitory activity. Tocotrienol inhibited protein kinase C activity, resulting in down-regulation of c-myc and human telomerase reverse transcriptase (hTERT) expression, thereby reducing telomerase activity. In contrast to tocotrienol, tocopherol showed very weak telomerase inhibition. These results provide novel evidence for First time indicating that tocotrienol acts as a potent candidate regulator of telomerase and supporting the anti-proliferative function of tocotrienol

  18. Coupled down-regulation of mTOR and telomerase activity during fluorouracil-induced apoptosis of hepatocarcinoma Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Xinxin; Jia, Fengqi; Wang, Weifeng; Guo, Xianling; Wu, Mengchao; Wei, Lixin [Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Hospital, Second Military Medical Universisty, 225 Changhai Road, Shanghai 200438 (China)

    2007-11-12

    Hepatocellular carcinoma (HCC) is the most invasive and frequently diagnosed malignancy and the second leading cause of cancer death in many regions of Asia. The PI3K/Akt/mTOR signal pathway is involved in multiple cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis. Up-regulation of telomerase activity is thought to be a critical step leading to cell transformation. This study investigated changes in mTOR pathway and telomerase activity in hepatocarcinoma cell line SMMC-7721 treated with chemotherapeutic agent 5-fluorouracil (5-Fu). We detected apoptosis of hepatocarcinoma cells by TUNEL assay. Telomerase activity, hTERT transcription level and p- p70 S6k was demonstrated by the telomeric repeat amplification protocol and silver staining assay, Dual-Luciferase Reporter Assay and Western blot analysis respectively. Treating SMMC-7721 cells with 5-Fu leads to apoptosis of the cells, and reduction in telomerase activity, as well as a dramatic reduction in the activated form of p70 S6 kinase, a mTOR substrate. The 5-Fu treatment nearly abolishes transcription of hTERT (the major component of telomerase) mRNA. Treating SMMC-7721 cells with Rapamycin, a specific mTOR inhibitor, significantly reduce hTERT protein level but did not affect hTERT transcription. 5-Fu and rapamycin were synergistic in regards to down-regulation of telomerase activity in hepatocarcinoma cells. These results suggest that chemotherapeutic agent 5-Fu may down-regulate telomerase activity at both transcriptional level and PI3K/Akt/mTOR pathway-dependent post-transcriptional level to facilitate hepatocellular carcinoma cell apoptosis.

  19. Coupled down-regulation of mTOR and telomerase activity during fluorouracil-induced apoptosis of hepatocarcinoma Cells

    International Nuclear Information System (INIS)

    Bu, Xinxin; Jia, Fengqi; Wang, Weifeng; Guo, Xianling; Wu, Mengchao; Wei, Lixin

    2007-01-01

    Hepatocellular carcinoma (HCC) is the most invasive and frequently diagnosed malignancy and the second leading cause of cancer death in many regions of Asia. The PI3K/Akt/mTOR signal pathway is involved in multiple cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis. Up-regulation of telomerase activity is thought to be a critical step leading to cell transformation. This study investigated changes in mTOR pathway and telomerase activity in hepatocarcinoma cell line SMMC-7721 treated with chemotherapeutic agent 5-fluorouracil (5-Fu). We detected apoptosis of hepatocarcinoma cells by TUNEL assay. Telomerase activity, hTERT transcription level and p- p70 S6k was demonstrated by the telomeric repeat amplification protocol and silver staining assay, Dual-Luciferase Reporter Assay and Western blot analysis respectively. Treating SMMC-7721 cells with 5-Fu leads to apoptosis of the cells, and reduction in telomerase activity, as well as a dramatic reduction in the activated form of p70 S6 kinase, a mTOR substrate. The 5-Fu treatment nearly abolishes transcription of hTERT (the major component of telomerase) mRNA. Treating SMMC-7721 cells with Rapamycin, a specific mTOR inhibitor, significantly reduce hTERT protein level but did not affect hTERT transcription. 5-Fu and rapamycin were synergistic in regards to down-regulation of telomerase activity in hepatocarcinoma cells. These results suggest that chemotherapeutic agent 5-Fu may down-regulate telomerase activity at both transcriptional level and PI3K/Akt/mTOR pathway-dependent post-transcriptional level to facilitate hepatocellular carcinoma cell apoptosis

  20. Coupled down-regulation of mTOR and telomerase activity during fluorouracil-induced apoptosis of hepatocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Wu Mengchao

    2007-11-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC is the most invasive and frequently diagnosed malignancy and the second leading cause of cancer death in many regions of Asia. The PI3K/Akt/mTOR signal pathway is involved in multiple cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis. Up-regulation of telomerase activity is thought to be a critical step leading to cell transformation. Methods This study investigated changes in mTOR pathway and telomerase activity in hepatocarcinoma cell line SMMC-7721 treated with chemotherapeutic agent 5-fluorouracil (5-Fu. We detected apoptosis of hepatocarcinoma cells by TUNEL assay. Telomerase activity, hTERT transcription level and p- p70 S6k was demonstrated by the telomeric repeat amplification protocol and silver staining assay, Dual-Luciferase Reporter Assay and Western blot analysis respectively. Results Treating SMMC-7721 cells with 5-Fu leads to apoptosis of the cells, and reduction in telomerase activity, as well as a dramatic reduction in the activated form of p70 S6 kinase, a mTOR substrate. The 5-Fu treatment nearly abolishes transcription of hTERT (the major component of telomerase mRNA. Treating SMMC-7721 cells with Rapamycin, a specific mTOR inhibitor, significantly reduce hTERT protein level but did not affect hTERT transcription. 5-Fu and rapamycin were synergistic in regards to down-regulation of telomerase activity in hepatocarcinoma cells. Conclusion These results suggest that chemotherapeutic agent 5-Fu may down-regulate telomerase activity at both transcriptional level and PI3K/Akt/mTOR pathway-dependent post-transcriptional level to facilitate hepatocellular carcinoma cell apoptosis.

  1. Znhit1 causes cell cycle arrest and down-regulates CDK6 expression

    International Nuclear Information System (INIS)

    Yang, Zhengmin; Cao, Yonghao; Zhu, Xiaoyan; Huang, Ying; Ding, Yuqiang; Liu, Xiaolong

    2009-01-01

    Cyclin-dependent kinase 6 (CDK6) is the key element of the D-type cyclin holoenzymes which has been found to function in the regulation of G1-phase of the cell cycle and is presumed to play important roles in T cell function. In this study, Znhit1, a member of a new zinc finger protein family defined by a conserved Zf-HIT domain, induced arrest in the G1-phase of the cell cycle in NIH/3T3 cells. Of the G1 cell cycle factors examined, the expression of CDK6 was found to be strongly down-regulated by Znhit1 via transcriptional repression. This effect may have correlations with the decreased acetylation level of histone H4 in the CDK6 promoter region. In addition, considering that CDK6 expression predominates in T cells, the negative regulatory role of Znhit1 in TCR-induced T cell proliferation was validated using transgenic mice. These findings identified Znhit1 as a CDK6 regulator that plays an important role in cell proliferation.

  2. Down-regulating overexpressed human Lon in cervical cancer suppresses cell proliferation and bioenergetics.

    Directory of Open Access Journals (Sweden)

    Xiaobo Nie

    Full Text Available The human mitochondrial ATP-dependent Lon protease functions in regulating the metabolism and quality control of proteins and mitochondrial DNA (mtDNA. However, the role of Lon in cancer is not well understood. Therefore, this study was undertaken to investigate the importance of Lon in cervical cancer cells from patients and in established cell lines. Microarray analysis from 30 cancer and 10 normal cervical tissues were analyzed by immunohistochemistry for Lon protein levels. The expression of Lon was also examined by immunoblotting 16 fresh cervical cancer tissues and their respective non-tumor cervical tissues. In all cases, Lon expression was significantly elevated in cervical carcinomas as compared to normal tissues. Augmented Lon expression in tissue microarrays did not vary between age, tumor-node-metastasis grades, or lymph node metastasis. Knocking down Lon in HeLa cervical cancer cells by lentivrial transduction resulted in a substantial decrease in both mRNA and protein levels. Such down-regulation of Lon expression significantly blocked HeLa cell proliferation. In addition, knocking down Lon resulted in decreased cellular bioenergetics as determined by measuring aerobic respiration and glycolysis using the Seahorse XF24 extracellular flux analyzer. Together, these data demonstrate that Lon plays a potential role in the oncogenesis of cervical cancer, and may be a useful biomarker and target in the treatment of cervical cancer. Lon; immunohistochemistry; cervical cancer; cell proliferation; cellular bioenergetics.

  3. microRNA-143 down-regulates Hexokinase 2 in colon cancer cells

    DEFF Research Database (Denmark)

    Gregersen, Lea Haarup; Jacobsen, Anders; Frankel, Lisa

    2012-01-01

    a significant enrichment of miR-143 seed sites in their 3' UTRs. Here we report the identification of Hexokinase 2 (HK2) as a direct target of miR-143. We show that re-introduction of miR-143 in the colon cancer cell line DLD-1 results in a decreased lactate secretion. CONCLUSION: We have identified...... and validated HK2 as a miR-143 target. Furthermore, our results indicate that miR-143 mediated down-regulation of HK2 affects glucose metabolism in colon cancer cells. We hypothesize that loss of miR-143-mediated repression of HK2 can promote glucose metabolism in cancer cells, contributing to the shift towards......ABSTRACT: BACKGROUND: MicroRNAs (miRNAs) are well recognized as gene regulators and have been implicated in the regulation of development as well as human diseases. miR-143 is located at a fragile site on chromosome 5 frequently deleted in cancer, and has been reported to be down...

  4. Down-regulation of a calmodulin-related gene during transformation of human mammary epithelial cells

    International Nuclear Information System (INIS)

    Yaswen, P.; Smoll, A.; Stampfer, M.R.; Peehl, D.M.; Trask, D.K.; Sager, R.

    1990-01-01

    A human cDNA library obtained from cultured normal mammary epithelial cells (HMECs) was searched by subtractive hybridization for genes whose decrease in expression might be relevant to epithelial transformation. One clone identified by this procedure corresponded to a 1.4 kilobase mRNA, designated NB-1, whose expression was decreased >50-fold in HMECs tumorigenically transformed in vitro after exposure to benzo[α]pyrene and Kirsten sarcoma virus. Sequence analysis of NB-1 cDNA revealed an open reading frame with a high degree of homology to calmodulin. NB-1 expression could be demonstrated by polymerase chain reaction amplification in normal breast, prostate, cervix, and epidermal tissues. The presence of NB-1 transcripts was variable in primary breast carcinoma tissues and undetectable in tumor-derived cell lines of breast, prostate, or other origins. NB-1 mRNA expression could be down-regulated in cultured HMECs by exposure to reconstituted extracellular matrix material, while exposure to transforming growth factor type β increased its relative abundance. The protein encoded by NB-1 may have Ca 2 plus binding properties and perform functions similar to those of authentic calmodulin. Its possible roles in differentiation and/or suppression of tumorigenicity in epithelial tissues remain to be examined

  5. Nutlin-3 down-regulates retinoblastoma protein expression and inhibits muscle cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Erica M. [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Niu, MengMeng; Bergholz, Johann [Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China); Jim Xiao, Zhi-Xiong, E-mail: jxiao@bu.edu [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China)

    2015-05-29

    The p53 tumor suppressor gene plays a critical role in regulation of proliferation, cell death and differentiation. The MDM2 oncoprotein is a major negative regulator for p53 by binding to and targeting p53 for proteasome-mediated degradation. The small molecule inhibitor, nutlin-3, disrupts MDM2-p53 interaction resulting in stabilization and activation of p53 protein. We have previously shown that nutlin-3 activates p53, leading to MDM2 accumulation as concomitant of reduced retinoblastoma (Rb) protein stability. It is well known that Rb is important in muscle development and myoblast differentiation and that rhabdomyosarcoma (RMS), or cancer of the skeletal muscle, typically harbors MDM2 amplification. In this study, we show that nutlin-3 inhibited myoblast proliferation and effectively prevented myoblast differentiation, as evidenced by lack of expression of muscle differentiation markers including myogenin and myosin heavy chain (MyHC), as well as a failure to form multinucleated myotubes, which were associated with dramatic increases in MDM2 expression and decrease in Rb protein levels. These results indicate that nutlin-3 can effectively inhibit muscle cell differentiation. - Highlights: • Nutlin-3 inhibits myoblast proliferation and prevents differentiation into myotubes. • Nutlin-3 increases MDM2 expression and down-regulates Rb protein levels. • This study has implication in nutlin-3 treatment of rhabdomyosarcomas.

  6. Multinuclear giant cell formation is enhanced by down-regulation of Wnt signaling in gastric cancer cell line, AGS

    International Nuclear Information System (INIS)

    Kim, Shi-Mun; Kim, Rockki; Ryu, Jae-Hyun; Jho, Eek-Hoon; Song, Ki-Joon; Jang, Shyh-Ing; Kee, Sun-Ho

    2005-01-01

    AGS cells, which were derived from malignant gastric adenocarcinoma tissue, lack E-cadherin-mediated cell adhesion but have a high level of nuclear β-catenin, which suggests altered Wnt signal. In addition, approximately 5% of AGS cells form multinuclear giant cells in the routine culture conditions, while taxol treatment causes most AGS cells to become giant cells. The observation of reduced nuclear β-catenin levels in giant cells induced by taxol treatment prompted us to investigate the relationship between Wnt signaling and giant cell formation. After overnight serum starvation, the shape of AGS cells became flattened, and this morphological change was accompanied by decrease in Myc expression and an increase in the giant cell population. Lithium chloride treatment, which inhibits GSK3β activity, reversed these serum starvation effects, which suggests an inverse relationship between Wnt signaling and giant cell formation. Furthermore, the down-regulation of Wnt signaling caused by the over-expression of ICAT, E-cadherin, and Axin enhanced giant cell formation. Therefore, down-regulation of Wnt signaling may be related to giant cell formation, which is considered to be a survival mechanism against induced cell death

  7. Epigenetic down-regulated DDX10 promotes cell proliferation through Akt/NF-κB pathway in ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Muhuizi; Bo, Qifang; Qi, Lixia, E-mail: lixiaqi_dph@sina.com

    2016-01-22

    Ovarian cancer contributes to the majority of ovarian cancer, while the molecular mechanisms remain elusive. Recently, some DEAD box protein 1 has been reported play a tumor suppressor role in ovarian cancer progression. However, the functions of DEAD box protein (DDX) members in ovarian cancer development remain largely unknown. In current study, we retrieved GEO databases and surprisingly found that DDX10 is significantly down-regulated in ovarian cancer tissues compared with normal ovary. These findings suggest that DDX10 might also play a suppressive role in ovarian cancer. We then validated the down-regulated expression pattern of DDX10 in fresh ovarian cancer tissues. Furthermore, both loss- and gain-functions assays reveal that the down-regulated DDX10 could promote ovarian cancer proliferation in vitro and the xenograft subcutaneous tumor formation assays confirmed these findings in vivo. In addition, we found that DDX10 is epigenetic silenced by miR-155-5p in ovarian cancer. Moreover, we further preliminary illustrated that down-regulated DDX10 promotes ovarian cancer cell proliferation through Akt/NF-κB pathway. Taken together, in current study, we found a novel tumor suppressor, DDX10, is epigenetic silenced by miR-155-5p in ovarian cancer, and the down-regulated expression pattern of DDX10 promotes ovarian cancer proliferation through Akt/NF-κB pathway. Our findings shed the light that DDX families might be a novel for ovarian cancer treatment. - Highlights: • A novel DEAD box protein, DDX10 is significantly down-regulated in ovarian cancer tissues. • Down-regulated DDX10 promotes ovarian cancer cell proliferation and growth both in vitro and in vivo. • miR-155-5p is highly expressed in ovarian cancer tissues and epigenetically targets DDX10. • DDX10 and miR-155-5p regulates Akt/p65 axis in ovarian cancer cells.

  8. Epigenetic down-regulated DDX10 promotes cell proliferation through Akt/NF-κB pathway in ovarian cancer

    International Nuclear Information System (INIS)

    Gai, Muhuizi; Bo, Qifang; Qi, Lixia

    2016-01-01

    Ovarian cancer contributes to the majority of ovarian cancer, while the molecular mechanisms remain elusive. Recently, some DEAD box protein 1 has been reported play a tumor suppressor role in ovarian cancer progression. However, the functions of DEAD box protein (DDX) members in ovarian cancer development remain largely unknown. In current study, we retrieved GEO databases and surprisingly found that DDX10 is significantly down-regulated in ovarian cancer tissues compared with normal ovary. These findings suggest that DDX10 might also play a suppressive role in ovarian cancer. We then validated the down-regulated expression pattern of DDX10 in fresh ovarian cancer tissues. Furthermore, both loss- and gain-functions assays reveal that the down-regulated DDX10 could promote ovarian cancer proliferation in vitro and the xenograft subcutaneous tumor formation assays confirmed these findings in vivo. In addition, we found that DDX10 is epigenetic silenced by miR-155-5p in ovarian cancer. Moreover, we further preliminary illustrated that down-regulated DDX10 promotes ovarian cancer cell proliferation through Akt/NF-κB pathway. Taken together, in current study, we found a novel tumor suppressor, DDX10, is epigenetic silenced by miR-155-5p in ovarian cancer, and the down-regulated expression pattern of DDX10 promotes ovarian cancer proliferation through Akt/NF-κB pathway. Our findings shed the light that DDX families might be a novel for ovarian cancer treatment. - Highlights: • A novel DEAD box protein, DDX10 is significantly down-regulated in ovarian cancer tissues. • Down-regulated DDX10 promotes ovarian cancer cell proliferation and growth both in vitro and in vivo. • miR-155-5p is highly expressed in ovarian cancer tissues and epigenetically targets DDX10. • DDX10 and miR-155-5p regulates Akt/p65 axis in ovarian cancer cells.

  9. Nucleolin down-regulation is involved in ADP-induced cell cycle arrest in S phase and cell apoptosis in vascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Wenmeng Wang

    Full Text Available High concentration of extracellular ADP has been reported to induce cell apoptosis, but the molecular mechanisms remain not fully elucidated. In this study, we found by serendipity that ADP treatment of human umbilical vein endothelial cells (HUVEC and human aortic endothelial cells (HAEC down-regulated the protein level of nucleolin in a dose- and time-dependent manner. ADP treatment did not decrease the transcript level of nucloelin, suggesting that ADP might induce nucleolin protein degradation. HUVEC and HAEC expressed ADP receptor P2Y13 receptor, but did not express P2Y1 or P2Y12 receptors. However, P2Y1, 12, 13 receptor antagonists MRS2179, PSB0739, MRS2211 did not inhibit ADP-induced down-regulation of nucleolin. Moreover, MRS2211 itself down-regulated nucleolin protein level. In addition, 2-MeSADP, an agonist for P2Y1, 12 and 13 receptors, did not down-regulate nucleolin protein. These results suggested that ADP-induced nucleolin down-regulation was not due to the activation of P2Y1, 12, or 13 receptors. We also found that ADP treatment induced cell cycle arrest in S phase, cell apoptosis and cell proliferation inhibition via nucleolin down-regulation. The over-expression of nucleolin by gene transfer partly reversed ADP-induced cell cycle arrest, cell apoptosis and cell proliferation inhibition. Furthermore, ADP sensitized HUVEC to cisplatin-induced cell death by the down-regulation of Bcl-2 expression. Taken together, we found, for the first time to our knowledge, a novel mechanism by which ADP regulates cell proliferation by induction of cell cycle arrest and cell apoptosis via targeting nucelolin.

  10. Lycium barbarum L. Polysaccharide (LBP Reduces Glucose Uptake via Down-Regulation of SGLT-1 in Caco2 Cell

    Directory of Open Access Journals (Sweden)

    Huizhen Cai

    2017-02-01

    Full Text Available Lycium barbarum L. polysaccharide (LBP is prepared from Lycium barbarum L. (L. barbarum, which is a traditional Chinese medicine. LPB has been shown to have hypoglycemic effects. In order to gain some mechanistic insights on the hypoglycemic effects of LBP, we investigated the uptake of LBP and its effect on glucose absorption in the human intestinal epithelial cell line Caco2 cell. The uptake of LBP through Caco2 cell monolayer was time-dependent and was inhibited by phloridzin, a competitive inhibitor of SGLT-1. LPB decreased the absorption of glucose in Caco2 cell, and down-regulated the expression of SGLT-1. These results suggest that LBP might be transported across the human intestinal epithelium through SGLT-1 and it inhibits glucose uptake via down-regulating SGLT-1.

  11. Sensitization of multidrug-resistant human cancer cells to Hsp90 inhibitors by down-regulation of SIRT1

    Science.gov (United States)

    Kim, Hak-Bong; Lee, Su-Hoon; Um, Jee-Hyun; Oh, Won Keun; Kim, Dong-Wan; Kang, Chi-Dug; Kim, Sun-Hee

    2015-01-01

    The effectiveness of Hsp90 inhibitors as anticancer agents was limited in multidrug-resistant (MDR) human cancer cells due to induction of heat shock proteins (Hsps) such as Hsp70/Hsp27 and P-glycoprotein (P-gp)-mediated efflux. In the present study, we showed that resistance to Hsp90 inhibitors of MDR human cancer cells could be overcome with SIRT1 inhibition. SIRT1 knock-down or SIRT1 inhibitors (amurensin G and EX527) effectively suppressed the resistance to Hsp90 inhibitors (17-AAG and AUY922) in several MDR variants of human lymphoblastic leukemia and human breast cancer cell lines. SIRT1 inhibition down-regulated the expression of heat shock factor 1 (HSF1) and subsequently Hsps and facilitated Hsp90 multichaperone complex disruption via hyperacetylation of Hsp90/Hsp70. These findings were followed by acceleration of ubiquitin ligase CHIP-mediated mutant p53 (mut p53) degradation and subsequent down-regulation of P-gp in 17-AAG-treated MDR cancer cells expressing P-gp and mut p53 after inhibition of SIRT1. Therefore, combined treatment with Hsp90 inhibitor and SIRT1 inhibitor could be a more effective therapeutic approach for Hsp90 inhibitor-resistant MDR cells via down-regulation of HSF1/Hsps, mut p53 and P-gp. PMID:26416354

  12. Ethanol extracts of black pepper or turmeric down-regulated SIRT1 protein expression in Daudi culture cells.

    Science.gov (United States)

    Nishimura, Yuri; Kitagishi, Yasuko; Yoshida, Hitomi; Okumura, Naoko; Matsuda, Satoru

    2011-01-01

    SIRT1 is a mammalian candidate molecule involved in longevity and diverse metabolic processes. The present study aimed to determine the effects of certain herbs and spices on SIRT1 expression. Human cell lines Daudi, Jurkat, U937 and K562 were cultured in RPMI-1640. Herb and spice powders were prepared and the supernatants were collected. RT-PCR was used to quantify the expression level of the gene. Protein samples were then analyzed by Western blotting. Western blotting revealed the down-regulation of SIRT1 protein expression in Daudi cells treated with extracts of black pepper or turmeric. On the other hand, the effect on the SIRT1 gene expression examined by reverse transcription polymerase chain reaction was unaltered. In conclusion, component(s) of certain herbs and spices may induce the down-regulation of SIRT1 protein.

  13. Down-Regulation of Desmosomes in Cultured Cells: The Roles of PKC, Microtubules and Lysosomal/Proteasomal Degradation

    Science.gov (United States)

    McHarg, Selina; Hopkins, Gemma; Lim, Lusiana; Garrod, David

    2014-01-01

    Desmosomes are intercellular adhesive junctions of major importance for tissue integrity. To allow cell motility and migration they are down-regulated in epidermal wound healing. Electron microscopy indicates that whole desmosomes are internalised by cells in tissues, but the mechanism of down-regulation is unclear. In this paper we provide an overview of the internalisation of half-desmosomes by cultured cells induced by calcium chelation. Our results show that: (i) half desmosome internalisation is dependent on conventional PKC isoforms; (ii) microtubules transport internalised half desmosomes to the region of the centrosome by a kinesin-dependent mechanism; (iii) desmosomal proteins remain colocalised after internalisation and are not recycled to the cell surface; (iv) internalised desmosomes are degraded by the combined action of lysosomes and proteasomes. We also confirm that half desmosome internalisation is dependent upon the actin cytoskeleton. These results suggest that half desmosomes are not disassembled and recycled during or after internalisation but instead are transported to the centrosomal region where they are degraded. These findings may have significance for the down-regulation of desmosomes in wounds. PMID:25291180

  14. Histones Induce the Procoagulant Phenotype of Endothelial Cells through Tissue Factor Up-Regulation and Thrombomodulin Down-Regulation.

    Science.gov (United States)

    Kim, Ji Eun; Yoo, Hyun Ju; Gu, Ja Yoon; Kim, Hyun Kyung

    2016-01-01

    The high circulating levels of histones found in various thrombotic diseases may compromise the anticoagulant barrier of endothelial cells. We determined how histones affect endothelial procoagulant tissue factor (TF) and anticoagulant thrombomodulin (TM). Surface antigens, soluble forms, and mRNA levels of TF and TM were measured by flow cytometry, ELISA, and real-time RT-PCR, respectively. TF and TM activity were measured using procoagulant activity, thrombin generation, or chromogenic assays. Involvement of the toll-like receptor (TLR) was assessed using the neutralizing antibodies. Histones dose-dependently induced surface antigens, activity and mRNA levels of endothelial TF. Histone-treated endothelial cells significantly shortened the lag time and enhanced the endogenous thrombin potential of normal plasma, which was normalized by a TF neutralizing antibody. Histones induced phosphatidylserine and protein-disulfide isomerase expression in endothelial cells. Histones also reduced the surface antigen, activity, and mRNA levels of endothelial TM. Polysialic acid and heparin reversed the histone-induced TF up-regulation and TM down-regulation. Activated protein C did not affect the TF up-regulation, but interrupted TM down-regulation. TLR2, and TLR4 inhibitors partially blocked the TF up-regulation. Histones induced the endothelial procoagulant phenotype through TF up-regulation and TM down-regulation. The effects of histones were partly mediated by TLR2, TLR4. Strategies to inhibit the harmful effects of histones in endothelial cells may be required in order to prevent a thrombotic environment.

  15. Activin A, B and AB decrease progesterone production by down-regulating StAR in human granulosa cells.

    Science.gov (United States)

    Chang, Hsun-Ming; Cheng, Jung-Chien; Huang, He-Feng; Shi, Feng-Tao; Leung, Peter C K

    2015-09-05

    Activins are homo- or heterodimers of inhibin β subunits that play important roles in the reproductive system. Our previous work has shown that activins A (βAβA), B (βBβB) and AB (βAβB) induce aromatase/estradiol, but suppress StAR/progesterone production in human granulosa-lutein cells. However, the underlying molecular determinants of these effects have not been examined. In this continuing study, we used immortalized human granulosa cells (SVOG) to investigate the effects of activins in regulating StAR/progesterone and the potential mechanisms of action. In SVOG cells, activins A, B and AB produced comparable down-regulation of StAR expression and progesterone production. In addition, all three activin isoforms induced equivalent phosphorylation of both SMAD2 and SMAD3. Importantly, the activin-induced down-regulation of StAR, increase in SMAD2/3 phosphorylation, and decrease in progesterone were abolished by the TGF-β type I receptor inhibitor SB431542. Interestingly, the small interfering RNA-mediated knockdown of ALK4 but not ALK5 reversed the activin-induced suppression of StAR. Furthermore, the knockdown of SMAD4 or SMAD2 but not SMAD3 abolished the inhibitory effects of all three activin isoforms on StAR expression. These results provide evidence that activins A, B and AB down-regulate StAR expression and decrease progesterone production in human granulosa cells, likely via an ALK4-mediated SMAD2/SMAD4-dependent pathway. Our findings provide important insights into the molecular mechanisms underlying the regulatory effects of activins on human granulosa cell steroidogenesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Endotoxin-induced basal respiration alterations of renal HK-2 cells: A sign of pathologic metabolism down-regulation

    Energy Technology Data Exchange (ETDEWEB)

    Quoilin, C., E-mail: cquoilin@ulg.ac.be [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium); Mouithys-Mickalad, A. [Center of Oxygen Research and Development, Department of Chemistry, University of Liege, 4000 Liege (Belgium); Duranteau, J. [Department of Anaesthesia and Surgical ICU, CHU Bicetre, University Paris XI Sud, 94275 Le Kremlin Bicetre (France); Gallez, B. [Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Universite catholique de Louvain, 1200 Brussels (Belgium); Hoebeke, M. [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer A HK-2 cells model of inflammation-induced acute kidney injury. Black-Right-Pointing-Pointer Two oximetry methods: high resolution respirometry and ESR spectroscopy. Black-Right-Pointing-Pointer Oxygen consumption rates of renal cells decrease when treated with LPS. Black-Right-Pointing-Pointer Cells do not recover normal respiration when the LPS treatment is removed. Black-Right-Pointing-Pointer This basal respiration alteration is a sign of pathologic metabolism down-regulation. -- Abstract: To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) both by high-resolution respirometry and electron spin resonance spectroscopy. These two complementary methods have shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.

  17. Monomethylfumarate affects polarization of monocyte-derived dendritic cells resulting in down-regulated Th1 lymphocyte responses

    DEFF Research Database (Denmark)

    Litjens, Nicolle H R; Rademaker, Mirjam; Ravensbergen, Bep

    2004-01-01

    Psoriasis vulgaris, a type-1 cytokine-mediated chronic skin disease, can be treated successfully with fumaric acid esters (FAE). Beneficial effects of this medication coincided with decreased production of IFN-gamma. Since dendritic cells (DC) regulate the differentiation of T helper (Th) cells......% of that by the respective Th cells cocultured with control DC. IL-4 production by primed, but not naive Th cells cocultured with MMF-DC was decreased as compared to cocultures with control DC. IL-10 production by naive and primed Th cells cocultured with MMF-DC and control DC did not differ. In addition, MMF inhibited LPS......-induced NF-kappaB activation in DC. Together, beneficial effects of FAE in psoriasis involve modulation of DC polarization by MMF such that these cells down-regulate IFN-gamma production by Th cells....

  18. [Effect of down-regulation of HE4 gene expression on biologic behavior of ovarian cancer cells].

    Science.gov (United States)

    Zhou, Lei; Xiao, Ran; Chen, Ying; Zhang, Jing; Lu, Ren-quan; Guo, Lin

    2013-10-01

    To investigate the effects of HE4 gene knockdown on the proliferation, adhesion and invasion of the ovarian cancer cells SKOV3. The knockdown of HE4 gene was performed by RNAi technology. The recombinant plasmids (pSUPER-HE4 shDNAs) were constructed and transfected into human ovarian cancer cells SKOV3. HE4 expression was then identified by real-time PCR and Western blot analysis. The invasion and adhesion ability of transduced cells were determined. In addition, cell proliferation and growth were analyzed by colonies formation assay. Knockdown of HE4 was achieved, and further confirmed by real-time PCR and Western blot. The proliferation of HE4-down-regulated cells was not affected, but the invasion ability of the transfected cells was reduced (P cells.

  19. Sex-lethal enables germline stem cell differentiation by down-regulating Nanos protein levels during Drosophila oogenesis.

    Science.gov (United States)

    Chau, Johnnie; Kulnane, Laura Shapiro; Salz, Helen K

    2012-06-12

    Drosophila ovarian germ cells require Sex-lethal (Sxl) to exit from the stem cell state and to enter the differentiation pathway. Sxl encodes a female-specific RNA binding protein and in somatic cells serves as the developmental switch gene for somatic sex determination and X-chromosome dosage compensation. None of the known Sxl target genes are required for germline differentiation, leaving open the question of how Sxl promotes the transition from stem cell to committed daughter cell. We address the mechanism by which Sxl regulates this transition through the identification of nanos as one of its target genes. Previous studies have shown that Nanos protein is necessary for GSC self-renewal and is rapidly down-regulated in the daughter cells fated to differentiate in the adult ovary. We find that this dynamic expression pattern is limited to female germ cells and is under Sxl control. In the absence of Sxl, or in male germ cells, Nanos protein is continuously expressed. Furthermore, this female-specific expression pattern is dependent on the presence of canonical Sxl binding sites located in the nanos 3' untranslated region. These results, combined with the observation that nanos RNA associates with the Sxl protein in ovarian extracts and loss and gain of function studies, suggest that Sxl enables the switch from germline stem cell to committed daughter cell by posttranscriptional down-regulation of nanos expression. These findings connect sexual identity to the stem cell self-renewal/differentiation decision and highlight the importance of posttranscriptional gene regulatory networks in controlling stem cell behavior.

  20. Neural cell adhesion molecule-180-mediated homophilic binding induces epidermal growth factor receptor (EGFR) down-regulation and uncouples the inhibitory function of EGFR in neurite outgrowth

    DEFF Research Database (Denmark)

    Povlsen, Gro Klitgaard; Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    The neural cell adhesion molecule (NCAM) plays important roles in neuronal development, regeneration, and synaptic plasticity. NCAM homophilic binding mediates cell adhesion and induces intracellular signals, in which the fibroblast growth factor receptor plays a prominent role. Recent studies...... this NCAM-180-induced EGFR down-regulation involves increased EGFR ubiquitination and lysosomal EGFR degradation. Furthermore, NCAM-180-mediated EGFR down-regulation requires NCAM homophilic binding and interactions of the cytoplasmic domain of NCAM-180 with intracellular interaction partners, but does...

  1. CD4+ NKG2D+ T cells induce NKG2D down-regulation in natural killer cells in CD86-RAE-1ε transgenic mice

    Science.gov (United States)

    Lin, Zhijie; Wang, Changrong; Xia, Haizui; Liu, Weiguang; Xiao, Weiming; Qian, Li; Jia, Xiaoqin; Ding, Yanbing; Ji, Mingchun; Gong, Weijuan

    2014-01-01

    The binding of NKG2D to its ligands strengthens the cross-talk between natural killer (NK) cells and dendritic cells, particularly at early stages, before the initiation of the adaptive immune response. We found that retinoic acid early transcript-1ε (RAE-1ε), one of the ligands of NKG2D, was persistently expressed on antigen-presenting cells in a transgenic mouse model (pCD86-RAE-1ε). By contrast, NKG2D expression on NK cells, NKG2D-dependent cytotoxicity and tumour rejection, and dextran sodium sulphate-induced colitis were all down-regulated in this mouse model. The down-regulation of NKG2D on NK cells was reversed by stimulation with poly (I:C). The ectopic expression of RAE-1ε on dendritic cells maintained NKG2D expression levels and stimulated the activity of NK cells ex vivo, but the higher frequency of CD4+ NKG2D+ T cells in transgenic mice led to the down-regulation of NKG2D on NK cells in vivo. Hence, high levels of RAE-1ε expression on antigen-presenting cells would be expected to induce the down-regulation of NK cell activation by a regulatory T-cell subset. PMID:24708417

  2. CD4(+) NKG2D(+) T cells induce NKG2D down-regulation in natural killer cells in CD86-RAE-1ε transgenic mice.

    Science.gov (United States)

    Lin, Zhijie; Wang, Changrong; Xia, Haizui; Liu, Weiguang; Xiao, Weiming; Qian, Li; Jia, Xiaoqin; Ding, Yanbing; Ji, Mingchun; Gong, Weijuan

    2014-03-01

    The binding of NKG2D to its ligands strengthens the cross-talk between natural killer (NK) cells and dendritic cells, particularly at early stages, before the initiation of the adaptive immune response. We found that retinoic acid early transcript-1ε (RAE-1ε), one of the ligands of NKG2D, was persistently expressed on antigen-presenting cells in a transgenic mouse model (pCD86-RAE-1ε). By contrast, NKG2D expression on NK cells, NKG2D-dependent cytotoxicity and tumour rejection, and dextran sodium sulphate-induced colitis were all down-regulated in this mouse model. The down-regulation of NKG2D on NK cells was reversed by stimulation with poly (I:C). The ectopic expression of RAE-1ε on dendritic cells maintained NKG2D expression levels and stimulated the activity of NK cells ex vivo, but the higher frequency of CD4(+) NKG2D(+) T cells in transgenic mice led to the down-regulation of NKG2D on NK cells in vivo. Hence, high levels of RAE-1ε expression on antigen-presenting cells would be expected to induce the down-regulation of NK cell activation by a regulatory T-cell subset. © 2013 John Wiley & Sons Ltd.

  3. [Impact of siRNA-mediated down-regulation of CD147 on human breast cancer cells].

    Science.gov (United States)

    Li, Zhenqian; Li, Daoming; Li, Jiangwei; Huang, Pei; Qin, Hui

    2015-10-01

    To investigate the influence of siRNA-mediated down-regulation of CD147 on growth, proliferation and movement of human breast cancer cell line MDA-MB-231. The protein expression of CD147, MMP-2 and TIMP-2 of the MDA-MB-231 cells were analyzed by ABC. Lentiviral expression vector of CD147 gene was constructed and transfected into MDA-MB-231 cells. RT-PCR and Western blot were used to detect the mRNA and protein level changes of CD147 genes to identify the optimal time point, followed by detection of changes of mRNA and protein expression of MMP-2 and TIMP-2 genes. CCK-8 reagent method and cell scratch test were used to detect the proliferation and migration change of MDA-MB-231 cells. The nude mouse model of breast cancer by hypodermic injection with MDA-MB-231 cells was established to document the effect of CD147 siRNA on the tumor transplants. After transfection of lentiviral expression vector of CD147 gene, protein of CD147, MMP-2 and TIMP-2 were weakly or negative expressed, significantly weaker than those of control group (P CD147 and MMP-2 were 96.03% ± 0.84% and 96.03% ± 0.84%, respectively. Both CD147 mRNA and MMP-2 mRNA expression were down-regulated (P 0.05). No less than 2 days after transfection, cell growth of MDA-MB-231 cell line was found significantly inhibited (P CD147 led to reduction of volume and mass of nude mouses. The growth of the carcinoma transplant was inhibited upon siRNA-mediated down-regulation of CD147 (P CD147 may alter the MMP-2/TIMP-2 balance in MDA-MB-231 cells. CD147 gene silencing inhibits the proliferation and migration of MDA-MB-231 cells and the growth of carcinoma transplants in nude mice.

  4. Quantitative cell signalling analysis reveals down-regulation of MAPK pathway activation in colorectal cancer.

    LENUS (Irish Health Repository)

    Gulmann, Christian

    2009-08-01

    Mitogen-activated protein kinases (MAPK) are considered to play significant roles in colonic carcinogenesis and kinase inhibitor therapy has been proposed as a potential tool in the treatment of this disease. Reverse-phase microarray assays using phospho-specific antibodies can directly measure levels of phosphorylated protein isoforms. In the current study, samples from 35 cases of untreated colorectal cancer colectomies were laser capture-microdissected to isolate epithelium and stroma from cancer as well as normal (i.e. uninvolved) mucosa. Lysates generated from these four tissue types were spotted onto reverse-phase protein microarrays and probed with a panel of antibodies to ERK, p-ERK, p38, p-p38, p-JNK, MEK and p-MEK. Whereas total protein levels were unchanged, or slightly elevated (p38, p = 0.0025) in cancers, activated isoforms, including p-ERK, p-p38 and p-JNK, were decreased two- to four-fold in cancers compared with uninvolved mucosa (p < 0.0023 in all cases except for p-JNK in epithelium, where decrement was non-significant). This was backed up by western blotting. Dukes\\' stage B and C cancers displayed lower p-ERK and p-p38 expression than Dukes\\' stage A cancers, although this was not statistically significant. It is concluded that MAPK activity may be down-regulated in colorectal cancer and that further exploration of inhibitory therapy in this system should be carefully evaluated if this finding is confirmed in larger series.

  5. Down-regulation of Transducin-Like Enhancer of Split protein 4 in hepatocellular carcinoma promotes cell proliferation and epithelial-Mesenchymal-Transition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiao-cai; Xiao, Cui-cui; Li, Hua [Department of Hepatic Surgery, 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou (China); Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou (China); Tai, Yan; Zhang, Qi [Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou (China); Yang, Yang, E-mail: yysysu2@163.com [Department of Hepatic Surgery, 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou (China)

    2016-08-19

    Background: Transducin-Like Enhancer of Split protein 4 (TLE4) has been reported to be involved in some subsets of acute myeloid leukemia and colorectal cancer. In the present study, we aimed to explore the role of TLE4 in tumorigenesis and cancer progression in hepatocellular carcinoma (HCC). Methods: The expression pattern of TLE4 in HCC was determined by Western-blot and qRT-PCR, gain-of-function and loss-of-function was used to explore the biological role of TLE4 in HCC cells. A xenograft model was established to confirm its effects on proliferation. Results: The protein expression levels of TLE4 were significantly down-regulated in HCC tissues compared to matched adjacent normal liver tissues. In vitro, down-regulation of TLE4 in Huh7 or SMMC-7721 promoted cell proliferation and ectopical expression of TLE4 in Hep3B or Bel-7404 suppressed cell proliferation. In addition, the cell colony formation ability was enhanced after down-regulation of TLE4 expression in Huh-7 but suppressed after over-expression in Hep3B. Furthermore, down-regulation of TLE4 increased the cell invasion ability, as well as increased the expression level of Vimentin and decreased that of E-cadherin, indicating a phenotype of epithelial-mesenchymal transition (EMT) in HCC cells. On the contrary, ectopical expression of TLE4 in HCC cells decreased the cell invasion ability and inhibited EMT. In vivo, compared to control group, xenograft tumor volumes were significantly decreased in TLE4 overexpression group. Conclusions: These results demonstrated that TLE4 might play important regulatory roles in cellular proliferation and EMT process in HCC. - Highlights: • TLE4 is significantly down-regulated in HCC samples. • Down regulated of TLE4 in HCC cells promotes cell proliferation. • Down regulated of TLE4 in HCC cells promotes epithelial-to-mesenchymal transition.

  6. Inhibition of disheveled-2 resensitizes cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling.

    Science.gov (United States)

    Luo, Ke; Gu, Xiuhui; Liu, Jing; Zeng, Guodan; Peng, Liaotian; Huang, Houyi; Jiang, Mengju; Yang, Ping; Li, Minhui; Yang, Yuhan; Wang, Yuanyuan; Peng, Quekun; Zhu, Li; Zhang, Kun

    2016-09-10

    Cisplatin (CDDP) is currently recommended as the front-line chemotherapeutic agent for lung cancer. However, the resistance to cisplatin is widespread in patients with advanced lung cancer, and the molecular mechanism of such resistance remains incompletely understood. Disheveled (DVL), a key mediator of Wnt/β-catenin, has been linked to cancer progression, while the role of DVL in cancer drug resistance is not clear. Here, we found that DVL2 was over-expressed in cisplatin-resistant human lung cancer cells A549/CDDP compared to the parental A549 cells. Inhibition of DVL2 by its inhibitor (3289-8625) or shDVL2 resensitized A549/CDDP cells to cisplatin. In addition, over-expression of DVL2 in A549 cells increased the protein levels of BCRP, MRP4, and Survivin, which are known to be associated with chemoresistance, while inhibition of DVL2 in A549/CDDP cells decreased these protein levels, and reduced the accumulation and nuclear translocation of β-catenin. In addition, shβ-catenin abolished the DVL2-induced the expression of BCRP, MRP4, and Survivin. Furthermore, our data showed that GSK3β/β-catenin signals were aberrantly activated by DVL2, and inactivation of GSK3β reversed the shDVL2-induced down-regulation of β-catenin. Taken together, these results suggested that inhibition of DVL2 can sensitize cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling and inhibiting BCRP, MRP4, and Survivin expression. It promises a new strategy to chemosensitize cisplatin-induced cytotoxicity in lung cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Down-Regulation of Neuropathy Target Esterase in Preeclampsia Placenta Inhibits Human Trophoblast Cell Invasion via Modulating MMP-9 Levels

    Directory of Open Access Journals (Sweden)

    Ting Zhong

    2018-02-01

    Full Text Available Background/Aims: Neuropathy target esterase (NTE, also known as neurotoxic esterase is proven to deacylate phosphatidylcholine (PC to glycerophosphocholine as a phospholipase B. Recently; studies showed that artificial phosphatidylserine/PC microvesicles can induce preeclampsia (PE-like changes in pregnant mice. However, it is unclear whether NTE plays a key role in the pathology of PE, a pregnancy-related disease, which was characterized by deficient trophoblast invasion and reduced trophoblast-mediated remodeling of spiral arteries. The aim of this study was to investigate the expression pattern of NTE in the placenta from women with PE and normal pregnancy, and the molecular mechanism of NTE involved in the development of PE. Methods: NTE expression levels in placentas from 20 pregnant women with PE and 20 healthy pregnant women were detected using quantitative PCR and immunohistochemistry staining. The effect of NTE on trophoblast migration and invasion and the underlying mechanisms were examined in HTR-8/SVneo cell lines by transfection method. Results: NTE mRNA and protein expression levels were significantly decreased in preeclamptic placentas than normal control. Over-expression of NTE in HTR-8/SVneo cells significantly promoted trophoblast cells migration and invasion and was associated with increased MMP-9 levels. Conversely, shRNA-mediated down-regulation of NTE markedly inhibited the cell migration and invasion. In addition, silencing NTE reduced the MMP-9 activity and phosphorylated Erk1/2 and AKT levels. Conclusions: Our results suggest that the decreased NTE may contribute to the development of PE through impairing trophoblast invasion by down-regulating MMP-9 via the Erk1/2 and AKT signaling pathway.

  8. Down-regulation of glutaminase C in human hepatocarcinoma cell by diphenylarsinic acid, a degradation product of chemical warfare agents

    International Nuclear Information System (INIS)

    Kita, Kayoko; Suzuki, Toshihide; Ochi, Takafumi

    2007-01-01

    In a poisonous incident in Kamisu, Japan, it is understood that diphenylarsinic acid (DPAA) was a critical contaminant of ground water. Most patients showed dysfunction of the central nervous system. To understand the overall mechanism of DPAA toxicity and to gain some insight into the application of a remedy specific for intoxication, the molecular target must be clarified. As an approach, a high throughput analysis of cell proteins in cultured human hepatocarcinoma HpG2 exposed to DPAA was performed by two-dimensional electrophoresis (2-DE). Four proteins, which were up- and down-regulated by exposure of cultured HepG2 cells to DPAA, were identified. They were chaperonin containing TCP-1 (CCT) beta subunit, aldehyde dehydrogenase 1 (ALDH1), ribosomal protein P0 and glutaminase C (GAC). Of these, GAC was the only protein that was down-regulated by DPAA exposure, and cellular expression levels were reduced by DPAA in a concentration- and time-dependent manner. Decrease in cellular GAC levels was accompanied by decreased activity of the enzyme, phosphate-activated glutaminase (PAG). Decreased expression of GAC by DPAA was also observed in human cervical carcinoma HeLa and neuroblastoma SH-SY5Y cells. By contrast, no significant changes in GAC protein expression were observed when cells were incubated with arsenite [iAs (III)] and trivalent dimethylarsinous acid [DMA (III)]. In the central nervous system, GAC plays a role in the production of the neurotransmitter glutamic acid. Selective inhibition of GAC expression by DPAA may be a cause of dysfunction of glutamatergic neuronal transmission and the resultant neurological impairments

  9. Down-regulation of glutaminase C in human hepatocarcinoma cell by diphenylarsinic acid, a degradation product of chemical warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Kayoko [Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Sagamiko-chou, Sagamihara, Kanagawa 229-0195 (Japan); Suzuki, Toshihide [Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Sagamiko-chou, Sagamihara, Kanagawa 229-0195 (Japan); Ochi, Takafumi [Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Sagamiko-chou, Sagamihara, Kanagawa 229-0195 (Japan)

    2007-05-01

    In a poisonous incident in Kamisu, Japan, it is understood that diphenylarsinic acid (DPAA) was a critical contaminant of ground water. Most patients showed dysfunction of the central nervous system. To understand the overall mechanism of DPAA toxicity and to gain some insight into the application of a remedy specific for intoxication, the molecular target must be clarified. As an approach, a high throughput analysis of cell proteins in cultured human hepatocarcinoma HpG2 exposed to DPAA was performed by two-dimensional electrophoresis (2-DE). Four proteins, which were up- and down-regulated by exposure of cultured HepG2 cells to DPAA, were identified. They were chaperonin containing TCP-1 (CCT) beta subunit, aldehyde dehydrogenase 1 (ALDH1), ribosomal protein P0 and glutaminase C (GAC). Of these, GAC was the only protein that was down-regulated by DPAA exposure, and cellular expression levels were reduced by DPAA in a concentration- and time-dependent manner. Decrease in cellular GAC levels was accompanied by decreased activity of the enzyme, phosphate-activated glutaminase (PAG). Decreased expression of GAC by DPAA was also observed in human cervical carcinoma HeLa and neuroblastoma SH-SY5Y cells. By contrast, no significant changes in GAC protein expression were observed when cells were incubated with arsenite [iAs (III)] and trivalent dimethylarsinous acid [DMA (III)]. In the central nervous system, GAC plays a role in the production of the neurotransmitter glutamic acid. Selective inhibition of GAC expression by DPAA may be a cause of dysfunction of glutamatergic neuronal transmission and the resultant neurological impairments.

  10. miR-24-mediated down-regulation of H2AX suppresses DNA repair in terminally differentiated blood cells

    Science.gov (United States)

    Lal, Ashish; Pan, Yunfeng; Navarro, Francisco; Dykxhoorn, Derek M.; Moreau, Lisa; Meire, Eti; Bentwich, Zvi; Lieberman, Judy; Chowdhury, Dipanjan

    2010-01-01

    Terminally differentiated cells have reduced capacity to repair double strand breaks (DSB), but the molecular mechanism behind this down-regulation is unclear. Here we find that miR-24 is consistently up-regulated during post-mitotic differentiation of hematopoietic cell lines and regulates the histone variant H2AX, a key DSB repair protein that activates cell cycle checkpoint proteins and retains DSB repair factors at DSB foci. The H2AX 3’UTR contains conserved miR-24 binding sites regulated by miR-24. Both H2AX mRNA and protein are substantially reduced during hematopoietic cell terminal differentiation by miR-24 up-regulation both in in vitro differentiated cells and primary human blood cells. miR-24 suppression of H2AX renders cells hypersensitive to γ-irradiation and genotoxic drugs. Antagonizing miR-24 in differentiating cells protects them from DNA damage-induced cell death, while transfecting miR-24 mimics in dividing cells increases chromosomal breaks and unrepaired DNA damage and reduces viability in response to DNA damage. This DNA repair phenotype can be fully rescued by over-expressing miR-24-insensitive H2AX. Therefore, miR-24 up-regulation in post-replicative cells reduces H2AX and thereby renders them highly vulnerable to DNA damage. PMID:19377482

  11. Down-regulation of LRP1B in colon cancer promoted the growth and migration of cancer cells.

    Science.gov (United States)

    Wang, Zhiqiang; Sun, Peng; Gao, Chun; Chen, Ji; Li, Jun; Chen, Zhonghao; Xu, Ming; Shao, Jun; Zhang, Yunpeng; Xie, Jiang

    2017-08-01

    Aberrant activation of beta-catenin/TCF signaling is one of the hallmarks of colon cancer. It is of great interest to study the mechanism for the regulation of beta-catenin/TCF signaling. In this study, it was found that LRP1B was down-regulated in colon cancer tissues and inhibited the growth, migration and metastasis of colon cancer cells. The molecular mechanism study revealed that LRP1B interacted with DVL2, inhibited the interaction between DVL2 and Axin, and negatively regulated beta-catenin/TCF signaling. Taken together, our study demonstrated the suppressive roles of LRP1B in the progression of colon cancer, implicating that restoring the function of LRP1B would be a promising strategy for the treatment of colon cancer. Copyright © 2017. Published by Elsevier Inc.

  12. The Cell Surface Estrogen Receptor, G Protein- Coupled Receptor 30 (GPR30, is Markedly Down Regulated During Breast Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Indira Poola

    2008-01-01

    Full Text Available Background: GPR30 is a cell surface estrogen receptor that has been shown to mediate a number of non-genomic rapid effects of estrogen and appear to balance the signaling of estrogen and growth factors. In addition, progestins appear to use GPR30 for their actions. Therefore, GPR30 could play a critical role in hormonal regulation of breast epithelial cell integrity. Deregulation of the events mediated by GPR30 could contribute to tumorigenesis.Methods: To understand the role of GPR30 in the deregulation of estrogen signaling processes during breast carcinogenesis, we have undertaken this study to investigate its expression at mRNA levels in tumor tissues and their matched normal tissues. We compared its expression at mRNA levels by RT quantitative real-time PCR relative to GAPDH in ERα”—positive (n = 54 and ERα”—negative (n = 45 breast cancer tissues to their matched normal tissues.Results: We report here, for the first time, that GPR30 mRNA levels were significantly down-regulated in cancer tissues in comparison with their matched normal tissues (p 0.0001 by two sided paired t-test. The GPR30 expression levels were significantly lower in tumor tissues from patients (n = 29 who had lymph node metastasis in comparison with tumors from patients (n = 53 who were negative for lymph node metastasis (two sample t-test, p 0.02, but no association was found with ERα, PR and other tumor characteristics.Conclusions: Down-regulation of GPR30 could contribute to breast tumorigenesis and lymph node metastasis.

  13. Interaction between C/EBPβ and Tax down-regulates human T-cell leukemia virus type I transcription

    International Nuclear Information System (INIS)

    Hivin, P.; Gaudray, G.; Devaux, C.; Mesnard, J.-M.

    2004-01-01

    The human T-cell leukemia virus type I (HTLV-I) Tax protein trans-activates viral transcription through three imperfect tandem repeats of a 21-bp sequence called Tax-responsive element (TxRE). Tax regulates transcription via direct interaction with some members of the activating transcription factor/CRE-binding protein (ATF/CREB) family including CREM, CREB, and CREB-2. By interacting with their ZIP domain, Tax stimulates the binding of these cellular factors to the CRE-like sequence present in the TxREs. Recent observations have shown that CCAAT/enhancer binding protein β (C/EBPβ) forms stable complexes on the CRE site in the presence of CREB-2. Given that C/EBPβ has also been found to interact with Tax, we analyzed the effects of C/EBPβ on viral Tax-dependent transcription. We show here that C/EBPβ represses viral transcription and that Tax is no more able to form a stable complex with CREB-2 on the TxRE site in the presence of C/EBPβ. We also analyzed the physical interactions between Tax and C/EBPβ and found that the central region of C/EBPβ, excluding its ZIP domain, is required for direct interaction with Tax. It is the first time that Tax is described to interact with a basic leucine-zipper (bZIP) factor without recognizing its ZIP domain. Although unexpected, this result explains why C/EBPβ would be unable to form a stable complex with Tax on the TxRE site and could then down-regulate viral transcription. Lastly, we found that C/EBPβ was able to inhibit Tax expression in vivo from an infectious HTLV-I molecular clone. In conclusion, we propose that during cell activation events, which stimulate the Tax synthesis, C/EBPβ may down-regulate the level of HTLV-I expression to escape the cytotoxic-T-lymphocyte response

  14. Nickel induces transcriptional down-regulation of DNA repair pathways in tumorigenic and non-tumorigenic lung cells.

    Science.gov (United States)

    Scanlon, Susan E; Scanlon, Christine D; Hegan, Denise C; Sulkowski, Parker L; Glazer, Peter M

    2017-06-01

    The heavy metal nickel is a known carcinogen, and occupational exposure to nickel compounds has been implicated in human lung and nasal cancers. Unlike many other environmental carcinogens, however, nickel does not directly induce DNA mutagenesis, and the mechanism of nickel-related carcinogenesis remains incompletely understood. Cellular nickel exposure leads to signaling pathway activation, transcriptional changes and epigenetic remodeling, processes also impacted by hypoxia, which itself promotes tumor growth without causing direct DNA damage. One of the mechanisms by which hypoxia contributes to tumor growth is the generation of genomic instability via down-regulation of high-fidelity DNA repair pathways. Here, we find that nickel exposure similarly leads to down-regulation of DNA repair proteins involved in homology-dependent DNA double-strand break repair (HDR) and mismatch repair (MMR) in tumorigenic and non-tumorigenic human lung cells. Functionally, nickel induces a defect in HDR capacity, as determined by plasmid-based host cell reactivation assays, persistence of ionizing radiation-induced DNA double-strand breaks and cellular hypersensitivity to ionizing radiation. Mechanistically, we find that nickel, in contrast to the metalloid arsenic, acutely induces transcriptional repression of HDR and MMR genes as part of a global transcriptional pattern similar to that seen with hypoxia. Finally, we find that exposure to low-dose nickel reduces the activity of the MLH1 promoter, but only arsenic leads to long-term MLH1 promoter silencing. Together, our data elucidate novel mechanisms of heavy metal carcinogenesis and contribute to our understanding of the influence of the microenvironment on the regulation of DNA repair pathways. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Down-regulation of inflammatory mediator synthesis and infiltration of inflammatory cells by MMP-3 in experimentally induced rat pulpitis.

    Science.gov (United States)

    Takimoto, Koyo; Kawashima, Nobuyuki; Suzuki, Noriyuki; Koizumi, Yu; Yamamoto, Mioko; Nakashima, Misako; Suda, Hideaki

    2014-09-01

    Matrix metalloproteinase (MMP)-3 is a member of the MMP family that degrades the extracellular matrix. Application of MMP-3 to injured pulp tissue induces angiogenesis and wound healing, but its anti-inflammatory effects are still unclear. Here, we evaluated the anti-inflammatory functions of MMP-3 in vitro and in vivo. Nitric oxide and inflammatory mediator synthesis in macrophages activated by lipopolysaccharide (LPS) was measured in the presence or absence of MMP-3. The mouse Mmp3 (mMmp3) expression vector containing full length cDNA sequence of mMmp3 or cDNA sequence of mMmp3 missing the signal peptide and pro-peptide regions was transfected to RAW264, a mouse macrophage cell line, and NO synthesis and inflammatory mediator expression were evaluated. Pulpal inflammation was histologically and immunohistochemically evaluated in a rat model of incisor pulpitis induced by the application of LPS for 9 hours in the presence or absence of MMP-3. NO and pro-inflammatory mediator synthesis promoted by LPS was significantly down-regulated by MMP-3 in vitro. The full length of mMmp3 down-regulated the LPS-induced NO synthesis and chemical mediator mRNA expression, however the mMmp3 missing the signal peptide failed to block the NO synthesis induced by LPS. The numbers of major histocompatibility complex class II+ and CD68+ cells, which infiltrated into the rat incisor pulp tissues in response to the topical application of LPS, were significantly decreased by the application of MMP-3 in vivo. These results indicate that MMP-3 possesses anti-inflammatory functions, suggesting its potential utility as an anti-inflammatory agent for pulpal inflammation. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Nicotine affects rat Leydig cell function in vivo and vitro via down-regulating some key steroidogenic enzyme expressions.

    Science.gov (United States)

    Guo, Xiaoling; Wang, Huang; Wu, Xiaolong; Chen, Xianwu; Chen, Yong; Guo, Jingjing; Li, Xiaoheng; Lian, Qingquan; Ge, Ren-Shan

    2017-12-01

    Nicotine is consumed largely as a component of cigarettes and has a potential effect on pubertal development of Leydig cells in males. To investigate its effects, 49-day-old male Sprague Dawley rats received intraperitoneal injections of nicotine (0.5 or 1 mg/kg/day) for 2 weeks and immature Leydig cells were isolated from the testes of 35-day-old rats and treated with nicotine (0.05-50 μM). Serum hormones, Leydig cell number and related gene expression levels after in vivo treatment were determined and medium androgen levels were measured and cell cycle, apoptosis, mitochondrial membrane potential (△Ψm), and reactive oxygen species (ROS) of Leydig cells after in vitro treatment were measured. In vivo exposure to nicotine lowered serum luteinizing hormone, follicle stimulating hormone, and testosterone levels and reduced Leydig cell number and gene expression levels. Nicotine in vitro inhibited androgen production in Leydig cells by downregulating the expression levels of P450 cholesterol side cleavage enzyme, 3β-hydroxysteroid dehydrogenase 1, and steroidogenic factor 1 at different concentration ranges. In conclusion, nicotine disrupts Leydig cell steroidogenesis during puberty possibly via down-regulating some key steroidogenic enzyme expressions. Copyright © 2017. Published by Elsevier Ltd.

  17. Down-regulation of survivin by oxaliplatin diminishes radioresistance of head and neck squamous carcinoma cells

    International Nuclear Information System (INIS)

    Khan, Zakir; Khan, Noor; Tiwari, Ram P.; Patro, Ishan K.; Prasad, G.B.K.S.; Bisen, Prakash S.

    2010-01-01

    Background: Oxaliplatin is integrated in treatment strategies against a variety of cancers including radiation protocols. Herein, as a new strategy we tested feasibility and rationale of oxaliplatin in combination with radiation to control proliferation of head and neck squamous cell carcinoma (HNSCC) cells and discussed survivin-related signaling and apoptosis induction. Methods: Cytotoxicity and apoptosis induced by radiation and/or oxaliplatin were examined in relation to survivin status using two HNSCC cell lines viz., Cal27 and NT8e, and one normal 293-cell line. Survivin gene knockdown by siRNA was also tested in relevance to oxaliplatin-mediated radiosensitization effects. Results: Survivin plays a critical role in mediating radiation-resistance in part through suppression of apoptosis via a caspase-dependent mechanism. Oxaliplatin treatment significantly decreased expression of survivin in cancer cells within 24-72 h. Apoptotic cells and caspase-3 activity were increased parallely with decrease in cell viability, if irradiated during this sensitive period. The cytotoxicity of oxaliplatin and radiation combination was greater than additive. Survivin gene knockdown experiments have demonstrated the role of survivin in radiosensitization of cancer cells mediated by oxaliplatin. Conclusions: Higher expression of survivin is a critical factor for radioresistance in HNSCC cell lines. Pre-treatment of cancer cells with oxaliplatin significantly increased the radiosensitivity through induction of apoptosis by potently inhibiting survivin.

  18. Cisplatin and ultra-violet-C synergistically down-regulate receptor tyrosine kinases in human colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Kawaguchi Junji

    2012-07-01

    Full Text Available Abstract Background Platinum-containing anti-cancer drugs such as cisplatin are widely used for patients with various types of cancers, however, resistance to cisplatin is observed in some cases. Whereas we have recently reported that high dose UV-C (200 J/m² induces colorectal cancer cell proliferation by desensitization of EGFR, which leads oncogenic signaling in these cells, in this study we investigated the combination effect of low dose cisplatin (10 μM and low dose UV-C (10 J/m² on cell growth and apoptosis in several human colorectal cancer cells, SW480, DLD-1, HT29 and HCT116. Results The combination inhibited cell cycle and colony formation, while either cisplatin or UV-C alone had little effect. The combination also induced apoptosis in these cells. In addition, the combination caused the downregulation of EGFR and HER2. Moreover, UV-C alone caused the transient internalization of the EGFR, but with time EGFR recycled back to the cell surface, while cisplatin did not affect its localization. Surprisingly, the combination caused persistent internalization of the EGFR, which results in the lasting downregulation of the EGFR. Conclusions The combination of low dose cisplatin and low dose UV-C synergistically exerted anti-cancer effect by down-regulating RTK, such as EGFR and HER2. These findings may provide a novel strategy for the treatment of patients with colorectal cancer.

  19. Down-regulation of Gab1 inhibits cell proliferation and migration in hilar cholangiocarcinoma.

    Directory of Open Access Journals (Sweden)

    Haiquan Sang

    Full Text Available Hilar cholangiocarcinoma is a highly aggressive malignancy originating from the hilar biliary duct epithelium. Due to few effective comprehensive treatments, the prognosis of hilar cholangiocarcinoma is poor. In this study, immunohistochemistry was first used to detect and analyze the expression of Gab1, VEGFR-2, and MMP-9 in hilar cholangiocarcinoma solid tumors and the relationships to the clinical pathological features. Furthermore, Gab1 and VEGFR-2 siRNA were used to interfere the hilar cholangiocarcinoma cell line ICBD-1 and then detect the PI3K/Akt signaling pathway, MMP-9 levels and malignant biological behaviors of tumor cells. The data showed that 1. Gab1, VEGFR-2, and MMP-9 were highly expressed and positively correlated with each other in hilar cholangiocarcinoma tissues, which were related to lymph node metastasis and differentiation. 2. After Gab1 or VEGFR-2 siRNA interference, PI3K/Akt pathway activity and MMP-9 levels were decreased in ICBD-1 cells. At the same time, cell proliferation decreased, cell cycle arrested in G1 phase, apoptosis increased and invasion decreased. These results suggest that the expression of Gab1, VEGFR-2, and MMP-9 are significantly related to the malignant biological behavior of hilar cholangiocarcinoma. Gab1 regulates growth, apoptosis and invasion through the VEGFR-2/Gab1/PI3K/Akt signaling pathway in hilar cholangiocarcinoma cells and influences the invasion of tumor cells via MMP-9.

  20. Down-regulation of Gab1 inhibits cell proliferation and migration in hilar cholangiocarcinoma.

    Science.gov (United States)

    Sang, Haiquan; Li, Tingting; Li, Hangyu; Liu, Jingang

    2013-01-01

    Hilar cholangiocarcinoma is a highly aggressive malignancy originating from the hilar biliary duct epithelium. Due to few effective comprehensive treatments, the prognosis of hilar cholangiocarcinoma is poor. In this study, immunohistochemistry was first used to detect and analyze the expression of Gab1, VEGFR-2, and MMP-9 in hilar cholangiocarcinoma solid tumors and the relationships to the clinical pathological features. Furthermore, Gab1 and VEGFR-2 siRNA were used to interfere the hilar cholangiocarcinoma cell line ICBD-1 and then detect the PI3K/Akt signaling pathway, MMP-9 levels and malignant biological behaviors of tumor cells. The data showed that 1. Gab1, VEGFR-2, and MMP-9 were highly expressed and positively correlated with each other in hilar cholangiocarcinoma tissues, which were related to lymph node metastasis and differentiation. 2. After Gab1 or VEGFR-2 siRNA interference, PI3K/Akt pathway activity and MMP-9 levels were decreased in ICBD-1 cells. At the same time, cell proliferation decreased, cell cycle arrested in G1 phase, apoptosis increased and invasion decreased. These results suggest that the expression of Gab1, VEGFR-2, and MMP-9 are significantly related to the malignant biological behavior of hilar cholangiocarcinoma. Gab1 regulates growth, apoptosis and invasion through the VEGFR-2/Gab1/PI3K/Akt signaling pathway in hilar cholangiocarcinoma cells and influences the invasion of tumor cells via MMP-9.

  1. Down-regulation of HSP40 gene family following OCT4B1 suppression in human tumor cell lines

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Mirzaei

    2016-02-01

    Full Text Available Objective(s: The OCT4B1, as one of OCT4 variants, is expressed in cancer cell lines and tissues more than other variants and plays an important role in apoptosis and stress (heat shock protein pathways. The present study was designed to determine the effects of OCT4B1 silencing on expressional profile of HSP40 gene family expression in three different human tumor cell lines. Materials and Methods: The OCT4B1 expression was suppressed by specific siRNA transfection in AGS (gastric adenocarcinoma, 5637 (bladder tumor and U-87MG (brain tumor cell lines employing Lipofectamine reagent. Real-time PCR array technique was employed for RNA qualification. The fold changes were calculated using RT2 Profiler PCR array data analysis software version 3.5. Results: Our results indicated that fifteen genes (from 36 studied genes were down-regulated and two genes (DNAJC11 and DNAJC5B were up-regulated in all three studied tumor cell lines by approximately more than two folds. The result of other studied genes (19 genes showed different expressional pattern (up or down-expression based on tumor cell lines. Conclusion: According to the findings of the present study, we may suggest that there is a direct correlation between OCT4B1 expression in tumor cell lines (and tissues and HSP40 family gene expressions to escape from apoptosis and cancer expansion.

  2. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    International Nuclear Information System (INIS)

    Guo, Hongsheng; Wu, Fenping; Wang, Yan; Yan, Chong; Su, Wenmei

    2014-01-01

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management

  3. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hongsheng [Department of Histology and Embryology, Guangdong Medical College, Dongguan 523808, Guangdong (China); Wu, Fenping [The 7th People’s Hospital of Chengdu, Chengdu 610041, Sichuan (China); Wang, Yan [The Second School of Clinical Medicine, Guangdong Medical College, Dongguan 523808, Guangdong (China); Yan, Chong [School of Pharmacy, Guangdong Medical College, Dongguan 523808, Guangdong (China); Su, Wenmei, E-mail: wenmeisutg@126.com [Oncology of Affiliated Hospital Guangdong Medical College, Zhanjiang 524000, Guangdong (China)

    2014-08-08

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management.

  4. Galectin-1 is expressed in early-type neural progenitor cells and down-regulates neurogenesis in the adult hippocampus

    Directory of Open Access Journals (Sweden)

    Imaizumi Yoichi

    2011-01-01

    Full Text Available Abstract Background In the adult mammalian brain, neural stem cells (NSCs proliferate in the dentate gyrus (DG of the hippocampus and generate new neurons throughout life. A multimodal protein, Galectin-1, is expressed in neural progenitor cells (NPCs and implicated in the proliferation of the NPCs in the DG. However, little is known about its detailed expression profile in the NPCs and functions in adult neurogenesis in the DG. Results Our immunohistochemical and morphological analysis showed that Galectin-1 was expressed in the type 1 and 2a cells, which are putative NSCs, in the subgranular zone (SGZ of the adult mouse DG. To study Galectin-1's function in adult hippocampal neurogenesis, we made galectin-1 knock-out mice on the C57BL6 background and characterized the effects on neurogenesis. In the SGZ of the galectin-1 knock-out mice, increased numbers of type 1 cells, DCX-positive immature progenitors, and NeuN-positive newborn neurons were observed. Using triple-labeling immunohistochemistry and morphological analyses, we found that the proliferation of the type-1 cells was increased in the SGZ of the galectin-1 knock-out mice, and we propose that this proliferation is the mechanism for the net increase in the adult neurogenesis in these knock-out mice DG. Conclusions Galectin-1 is expressed in the neural stem cells and down-regulates neurogenesis in the adult hippocampus.

  5. Impact of transient down-regulation of DREAM in human embryonic stem cell pluripotency

    Directory of Open Access Journals (Sweden)

    A. Fontán-Lozano

    2016-05-01

    Full Text Available Little is known about the functions of downstream regulatory element antagonist modulator (DREAM in embryonic stem cells (ESCs. However, DREAM interacts with cAMP response element-binding protein (CREB in a Ca2+-dependent manner, preventing CREB binding protein (CBP recruitment. Furthermore, CREB and CBP are involved in maintaining ESC self-renewal and pluripotency. However, a previous knockout study revealed the protective function of DREAM depletion in brain aging degeneration and that aging is accompanied by a progressive decline in stem cells (SCs function. Interestingly, we found that DREAM is expressed in different cell types, including human ESCs (hESCs, human adipose-derived stromal cells (hASCs, human bone marrow-derived stromal cells (hBMSCs, and human newborn foreskin fibroblasts (hFFs, and that transitory inhibition of DREAM in hESCs reduces their pluripotency, increasing differentiation. We stipulate that these changes are partly mediated by increased CREB transcriptional activity. Overall, our data indicates that DREAM acts in the regulation of hESC pluripotency and could be a target to promote or prevent differentiation in embryonic cells.

  6. Inhibition of disheveled-2 resensitizes cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Ke; Gu, Xiuhui [School of Basic Medical Sciences, Chengdu Medical College, Chengdu (China); Liu, Jing; Zeng, Guodan; Peng, Liaotian; Huang, Houyi; Jiang, Mengju [School of Biomedical Sciences, Chengdu Medical College, Chengdu (China); Yang, Ping; Li, Minhui [School of Basic Medical Sciences, Chengdu Medical College, Chengdu (China); Yang, Yuhan; Wang, Yuanyuan [School of Biomedical Sciences, Chengdu Medical College, Chengdu (China); Peng, Quekun, E-mail: pengquekun@163.com [School of Biomedical Sciences, Chengdu Medical College, Chengdu (China); Zhu, Li, E-mail: 1968403299@qq.com [Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Chengdu Medical College, Chengdu (China); Zhang, Kun, E-mail: zhangkunyyo@163.com [School of Biomedical Sciences, Chengdu Medical College, Chengdu (China)

    2016-09-10

    Cisplatin (CDDP) is currently recommended as the front-line chemotherapeutic agent for lung cancer. However, the resistance to cisplatin is widespread in patients with advanced lung cancer, and the molecular mechanism of such resistance remains incompletely understood. Disheveled (DVL), a key mediator of Wnt/β-catenin, has been linked to cancer progression, while the role of DVL in cancer drug resistance is not clear. Here, we found that DVL2 was over-expressed in cisplatin-resistant human lung cancer cells A549/CDDP compared to the parental A549 cells. Inhibition of DVL2 by its inhibitor (3289-8625) or shDVL2 resensitized A549/CDDP cells to cisplatin. In addition, over-expression of DVL2 in A549 cells increased the protein levels of BCRP, MRP4, and Survivin, which are known to be associated with chemoresistance, while inhibition of DVL2 in A549/CDDP cells decreased these protein levels, and reduced the accumulation and nuclear translocation of β-catenin. In addition, shβ-catenin abolished the DVL2-induced the expression of BCRP, MRP4, and Survivin. Furthermore, our data showed that GSK3β/β-catenin signals were aberrantly activated by DVL2, and inactivation of GSK3β reversed the shDVL2-induced down-regulation of β-catenin. Taken together, these results suggested that inhibition of DVL2 can sensitize cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling and inhibiting BCRP, MRP4, and Survivin expression. It promises a new strategy to chemosensitize cisplatin-induced cytotoxicity in lung cancer. - Highlights: • Inhibition of DVL2 chemosensitizes resistant lung cancer to cisplatin. • DVL2 positively regulated the expression of BCRP, MRP4 and Survivin. • β-catenin mediated the DVL2-induced expression. • DVL2 increased the accumulation and nuclear translocation of β-catenin. • DVL2 up-regulated β-catenin via inhibiting GSK3β.

  7. Promoter hypermethylation-induced transcriptional down-regulation of the gene MYCT1 in laryngeal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Yang, Min; Li, Wei; Liu, Yi-Ying; Fu, Shuang; Qiu, Guang-Bin; Sun, Kai-Lai; Fu, Wei-Neng

    2012-01-01

    MYCT1, previously named MTLC, is a novel candidate tumor suppressor gene. MYCT1 was cloned from laryngeal squamous cell cancer (LSCC) and has been found to be down-regulated in LSCC; however, the regulatory details have not been fully elucidated. Here, we sought to investigate the methylation status of the CpG islands of MYCT1 and mRNA levels by bisulfite-specific PCR (BSP) based on sequencing restriction enzyme digestion, reverse transcription and real-time quantitative polymerase chain reaction (RQ-PCR). The function of specific sites in the proximal promoter of MYCT1 in LSCC was measured by transient transfection, luciferase assays, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP). The results suggested hypermethylation of 12 CpG sites of the promoter in both laryngeal cancer tissues and the laryngeal cancer line Hep-2 cell. The hypermethylation of the site CGCG (−695 to −692), which has been identified as the c-Myc binding site, was identified in laryngeal cancer tissues (59/73) compared to paired mucosa (13/73); in addition, statistical analysis revealed that the methylation status of this site significantly correlated with cancer cell differentiation(p < 0.01). The mRNA level of MYCT1 increased in Hep-2 cells treated with 5-aza-C (p < 0.01). The luciferase activity from mutant transfectants pGL3-MYCT1m (−852/+12, mut-695-C > A, mut-693-C > G) was significantly reduced compared with the wild type pGL3-MYCT1 (−852/+12), while the luciferase activity from wild transfectants pGL3-MYCT1 (−852/+12) rose after 5-aza treatment in Hep-2 cells. Finally, EMSA and ChIP confirmed that the methylation of the CGCG (−695 to −692) site prevented c-Myc from binding of the site and demethylation treatment of the 5′ flanking region of MYCT1 by 5-aza induced the increased occupation of the core promoter by c-Myc (p < 0.01). In summary, this study concluded that hypermethylation contributed to the transcriptional down-regulation

  8. Inhibition of disheveled-2 resensitizes cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling

    International Nuclear Information System (INIS)

    Luo, Ke; Gu, Xiuhui; Liu, Jing; Zeng, Guodan; Peng, Liaotian; Huang, Houyi; Jiang, Mengju; Yang, Ping; Li, Minhui; Yang, Yuhan; Wang, Yuanyuan; Peng, Quekun; Zhu, Li; Zhang, Kun

    2016-01-01

    Cisplatin (CDDP) is currently recommended as the front-line chemotherapeutic agent for lung cancer. However, the resistance to cisplatin is widespread in patients with advanced lung cancer, and the molecular mechanism of such resistance remains incompletely understood. Disheveled (DVL), a key mediator of Wnt/β-catenin, has been linked to cancer progression, while the role of DVL in cancer drug resistance is not clear. Here, we found that DVL2 was over-expressed in cisplatin-resistant human lung cancer cells A549/CDDP compared to the parental A549 cells. Inhibition of DVL2 by its inhibitor (3289-8625) or shDVL2 resensitized A549/CDDP cells to cisplatin. In addition, over-expression of DVL2 in A549 cells increased the protein levels of BCRP, MRP4, and Survivin, which are known to be associated with chemoresistance, while inhibition of DVL2 in A549/CDDP cells decreased these protein levels, and reduced the accumulation and nuclear translocation of β-catenin. In addition, shβ-catenin abolished the DVL2-induced the expression of BCRP, MRP4, and Survivin. Furthermore, our data showed that GSK3β/β-catenin signals were aberrantly activated by DVL2, and inactivation of GSK3β reversed the shDVL2-induced down-regulation of β-catenin. Taken together, these results suggested that inhibition of DVL2 can sensitize cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling and inhibiting BCRP, MRP4, and Survivin expression. It promises a new strategy to chemosensitize cisplatin-induced cytotoxicity in lung cancer. - Highlights: • Inhibition of DVL2 chemosensitizes resistant lung cancer to cisplatin. • DVL2 positively regulated the expression of BCRP, MRP4 and Survivin. • β-catenin mediated the DVL2-induced expression. • DVL2 increased the accumulation and nuclear translocation of β-catenin. • DVL2 up-regulated β-catenin via inhibiting GSK3β.

  9. LIN28 expression in malignant germ cell tumors down-regulates let-7 and increases oncogene levels

    Science.gov (United States)

    Murray, Matthew J.; Saini, Harpreet K.; Siegler, Charlotte A.; Hanning, Jennifer E.; Barker, Emily M.; van Dongen, Stijn; Ward, Dawn M.; Raby, Katie L.; Groves, Ian J.; Scarpini, Cinzia G.; Pett, Mark R.; Thornton, Claire M.; Enright, Anton J.; Nicholson, James C.; Coleman, Nicholas

    2013-01-01

    Despite their clinico-pathologic heterogeneity, malignant germ-cell-tumors (GCTs) share molecular abnormalities that are likely to be functionally important. In this study, we investigated the potential significance of down-regulation of the let-7 family of tumor-suppressor microRNAs in malignant-GCTs. Microarray results from pediatric and adult samples (n=45) showed that LIN28, the negative-regulator of let-7 biogenesis, was abundant in malignant-GCTs, regardless of patient age, tumor site or histologic subtype. Indeed, a strong negative-correlation existed between LIN28 and let-7 levels in specimens with matched datasets. Low let-7 levels were biologically significant, since the sequence complementary to the 2-7nt common let-7 seed ‘GAGGUA’ was enriched in the 3′untranslated regions of mRNAs up-regulated in pediatric and adult malignant-GCTs, compared with normal gonads (a mixture of germ cells and somatic cells). We identified 27 mRNA targets of let-7 that were up-regulated in malignant-GCT cells, confirming significant negative-correlations with let-7 levels. Among 16 mRNAs examined in a largely independent set of specimens by qRT-PCR, we defined negative-associations with let-7e levels for six oncogenes, including MYCN, AURKB, CCNF, RRM2, MKI67 and C12orf5 (when including normal control tissues). Importantly, LIN28 depletion in malignant-GCT cells restored let-7 levels and repressed all of these oncogenic let-7 mRNA targets, with LIN28 levels correlating with cell proliferation and MYCN levels. Conversely, ectopic expression of let-7e was sufficient to reduce proliferation and down-regulate MYCN, AURKB and LIN28, the latter via a double-negative feedback loop. We concluded that the LIN28/let-7 pathway has a critical pathobiological role in malignant-GCTs and therefore offers a promising target for therapeutic intervention. PMID:23774216

  10. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion

    Energy Technology Data Exchange (ETDEWEB)

    Cekanova, Maria, E-mail: mcekanov@utk.edu [Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Fernando, Romaine I. [Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN (United States); Siriwardhana, Nalin [Department of Animal Science, The University of Tennessee, Knoxville, TN (United States); Sukhthankar, Mugdha [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Parra, Columba de la [Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR (United States); Woraratphoka, Jirayus [Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN (United States); Malone, Christine [Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Ström, Anders [Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Baek, Seung J. [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Wade, Paul A. [Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Saxton, Arnold M. [Department of Animal Science, The University of Tennessee, Knoxville, TN (United States); Donnell, Robert M. [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Pestell, Richard G. [Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA (United States); and others

    2015-02-01

    We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer. - Highlights: • BAD and p-BAD expressions are decreased in breast cancer compared with normal breast tissue. • BAD impedes breast cancer invasion and migration. • BAD inhibits the EMT and transcription factors that promote cancer cell migration. • Invasion and migration functions of BAD are distinct from the BAD's role in apoptosis.

  11. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion

    International Nuclear Information System (INIS)

    Cekanova, Maria; Fernando, Romaine I.; Siriwardhana, Nalin; Sukhthankar, Mugdha; Parra, Columba de la; Woraratphoka, Jirayus; Malone, Christine; Ström, Anders; Baek, Seung J.; Wade, Paul A.; Saxton, Arnold M.; Donnell, Robert M.; Pestell, Richard G.

    2015-01-01

    We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer. - Highlights: • BAD and p-BAD expressions are decreased in breast cancer compared with normal breast tissue. • BAD impedes breast cancer invasion and migration. • BAD inhibits the EMT and transcription factors that promote cancer cell migration. • Invasion and migration functions of BAD are distinct from the BAD's role in apoptosis

  12. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion.

    Science.gov (United States)

    Cekanova, Maria; Fernando, Romaine I; Siriwardhana, Nalin; Sukhthankar, Mugdha; De la Parra, Columba; Woraratphoka, Jirayus; Malone, Christine; Ström, Anders; Baek, Seung J; Wade, Paul A; Saxton, Arnold M; Donnell, Robert M; Pestell, Richard G; Dharmawardhane, Suranganie; Wimalasena, Jay

    2015-02-01

    We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. SIRT1 ameliorates oxidative stress induced neural cell death and is down-regulated in Parkinson's disease.

    Science.gov (United States)

    Singh, Preeti; Hanson, Peter S; Morris, Christopher M

    2017-06-02

    Sirtuins (SIRTs) are NAD + dependent lysine deacetylases which are conserved from bacteria to humans and have been associated with longevity and lifespan extension. SIRT1, the best studied mammalian SIRT is involved in many physiological and pathological processes and changes in SIRT1 have been implicated in neurodegenerative disorders, with SIRT1 having a suggested protective role in Parkinson's disease. In this study, we determined the effect of SIRT1 on cell survival and α-synuclein aggregate formation in SH-SY5Y cells following oxidative stress. Over-expression of SIRT1 protected SH-SY5Y cells from toxin induced cell death and the protection conferred by SIRT1 was partially independent of its deacetylase activity, which was associated with the repression of NF-кB and cPARP expression. SIRT1 reduced the formation of α-synuclein aggregates but showed minimal co-localisation with α-synuclein. In post-mortem brain tissue obtained from patients with Parkinson's disease, Parkinson's disease with dementia, dementia with Lewy bodies and Alzheimer's disease, the activity of SIRT1 was observed to be down-regulated. These findings suggests a negative effect of oxidative stress in neurodegenerative disorders and possibly explain the reduced activity of SIRT1 in neurodegenerative disorders. Our study shows that SIRT1 is a pro-survival protein that is downregulated under cellular stress.

  14. Methyl jasmonate abolishes the migration, invasion and angiogenesis of gastric cancer cells through down-regulation of matrix metalloproteinase 14

    International Nuclear Information System (INIS)

    Zheng, Liduan; Li, Dan; Xiang, Xuan; Tong, Ling; Qi, Meng; Pu, Jiarui; Huang, Kai; Tong, Qiangsong

    2013-01-01

    Recent evidence indicates that methyl jasmonate (MJ), a plant stress hormone, exhibits anti-cancer activity on human cancer cells. The aim of this study is to determine whether sub-cytotoxic MJ can abolish the migration, invasion and angiogenesis gastric cancer cells. Human gastric cancer cell lines SGC-7901 and MKN-45 were treated with diverse concentrations of MJ. Cell viability, proliferation, migration, invasion and angiogenesis capabilities of cancer cells were measured by MTT colorimetry, EdU incorporation, scratch assay, matrigel invasion assay, and tube formation assay. Gene expression was detected by western blot and real-time quantitative RT-PCR. Binding of transcription factor on gene promoter was detected by chromatin immunoprecipitation. Sub-cytotoxic (0.05 to 0.2 mM) MJ attenuated the migration, invasion and angiogenesis, but not the cell viability or proliferation, of gastric cancer cells in a time- and dose-dependent manner, with down-regulation of matrix metalloproteinase 14 (MMP-14) and its downstream gene vascular endothelial growth factor. Restoration of MMP-14 expression rescued the SGC-7901 and MKN-45 cells from sub-cytotoxic MJ-inhibited migration, invasion and angiogenesis. In addition, sub-cytotoxic MJ decreased the specificity protein 1 (Sp1) expression and binding on MMP-14 promoter, while restoration of Sp1 expression rescued the cancer cells from sub-cytotoxic MJ-mediated defects in MMP-14 expression, migration, invasion and angiogenesis. Sub-cytotoxic MJ attenuates the MMP-14 expression via decreasing the Sp1 expression and binding on MMP-14 promoter, thus inhibiting the migration, invasion and angiogenesis of gastric cancer cells

  15. Calycosin Inhibits the Migration and Invasion of Human Breast Cancer Cells by Down-Regulation of Foxp3 Expression

    Directory of Open Access Journals (Sweden)

    Shuangxi Li

    2017-12-01

    Full Text Available Background/Aims: Calycosin, a phytoestrogenic compound, has recently emerged as a promising antitumor drug. It has been shown that calycosin suppresses growth and induces apoptosis of breast cancer cells. However, the effect of calycosin on migration and invasion of breast cancer cells and the underlying molecular mechanisms have not been elucidated. Methods: Human breast cancer cells MCF-7 and T47D were treated with, or without, different doses (0, 6.25, 12.5, 25, 50, 100 or 150 μM of calycosin, and the viability of different groups was determined by MTT assay. Next, the inhibitory effect of higher doses (50, 100 or 150 μM of calycosin on migration and invasion of the two cell lines was determined by wound healing and transwell assay. The relative expression levels of forkhead box P3 (Foxp3, vascular endothelial growth factor (VEGF and matrix metalloproteinase-9 (MMP-9 in MCF-7 and T47D cells were determined by quantitative RT-PCR and Western blot. Results: Treatment with lower doses (6.25 or 12.5 μM promoted proliferation of breast cancer cells, but with higher doses significantly reduced the viability of MCF-7 and T47D cells. Furthermore, higher doses of calycosin were found to inhibit migration and invasion of the two cell lines in a dose-dependent manner. Additionally, treatment with a higher dose of calycosin significantly reduced the expression levels of Foxp3, followed by down-regulation of VEGF and MMP-9 in both MCF-7 and T47D breast cancer cells. Conclusion: Treatment with a higher dose of calycosin tends to reduce migration and invasion capacity of human breast cancer cells, by targeting Foxp3-mediated VEGF and MMP-9 expression.

  16. Nanocurcumin-Mediated Down-Regulation of Telomerase Via Stimulating TGFβ1 Signaling Pathway in Hepatocellular Carcinoma Cells

    Science.gov (United States)

    Shariati, Molood; Hajigholami, Samira; Veisi Malekshahi, Ziba; Entezari, Maliheh; Bodaghabadi, Narges; Sadeghizadeh, Majid

    2017-10-10

    Curcumin, extracted from turmeric, represents enormous potential to serve as an anticancer agent. Telomerase is viewed as a prominent molecular target of curcumin, and Transforming growth factor-β1 (TGFβ1) has proven to be a major inhibitory signaling pathway for telomerase activity. In the current study, we aimed to explore suppressive effects of nanocurcumin on telomerase expression through TGFβ1 pathway in a hepatocellular carcinoma cell line (Huh7). MTT assay was used to determine the effect of nonocurcumin on viability of Huh7 cells. RT-PCR was used to analyze the gene expression patterns. MTT assay revealed that nanocurcumin acts in a dose- and time-dependent manner to diminish the cell viability. RT-PCR analysis indicated that nanocurcumin results in augmentation of TGFβ1 72 hours post treatment and leads to the reduction of telomerase expression 48 and 72 hours post exposure. Also, up-regulation of Smad3 and E2F1 and down-regulation of Smad7 confirmed the effect of nanocurcumin on intermediate components of TGFβ1 pathway. Furthermore, transfection of the proximal promoter of telomerase triggered a significant reduction in luciferase activity. The data from the present study lead us to develop a deeper understanding of the mechanisms underlying nanocurcumin-mediated regulation of telomerase expression, thereby presenting a new perspective to the landscape of using nanocurcumin as a cancer-oriented therapeutic agent.

  17. miR-214 down-regulates ARL2 and suppresses growth and invasion of cervical cancer cells

    International Nuclear Information System (INIS)

    Peng, Ruiqing; Men, Jianlong; Ma, Rui; Wang, Qian; Wang, Yang; Sun, Ying; Ren, Jing

    2017-01-01

    Increasing evidence has shown that miRNAs are implicated in carcinogenesis and can function as oncogenes or tumor suppressor genes in human cancers. In this study, we confirmed that miR-214 is frequently down-regulated in cervical cancer compared with normal cervical tissues. Ectopic expression of miR-214 suppressed proliferation, migration and invasion of HeLa and C33A cervical cancer cells. Bioinformatics analysis revealed that ADP ribosylation factor like 2 (ARL2) was a potential target of miR-214 and was remarkably up-regulated in cervical cancer. Knockdown of ARL2 markedly inhibited cervical cancer cell proliferation, migration and invasion, similarly to over-expression of miR-214, indicating that ARL2 may function as an oncogene in cervical cancer. In conclusion, our study revealed that miR-214 acts as a tumor suppressor via inhibiting proliferation, migration and invasion of cervical cancer cells through targeting ARL2, and that both miR-214 and ARL2 may serve as prognostic or therapeutic targets for cervical cancer. - Highlights: • miR-214 targets ARL2. • ARL2 maybe an oncogene in cervical cancer. • ARL2 rescues miR-214.

  18. BMP15 suppresses progesterone production by down-regulating StAR via ALK3 in human granulosa cells.

    Science.gov (United States)

    Chang, Hsun-Ming; Cheng, Jung-Chien; Klausen, Christian; Leung, Peter C K

    2013-12-01

    In addition to somatic cell-derived growth factors, oocyte-derived growth differentiation factor (GDF)9 and bone morphogenetic protein (BMP)15 play essential roles in female fertility. However, few studies have investigated their effects on human ovarian steroidogenesis, and fewer still have examined their differential effects or underlying molecular determinants. In the present study, we used immortalized human granulosa cells (SVOG) and human granulosa cell tumor cells (KGN) to compare the effects of GDF9 and BMP15 on steroidogenic enzyme expression and investigate potential mechanisms of action. In SVOG cells, neither GDF9 nor BMP15 affects the mRNA levels of P450 side-chain cleavage enzyme or 3β-hydroxysteroid dehydrogenase. However, treatment with BMP15, but not GDF9, significantly decreases steroidogenic acute regulatory protein (StAR) mRNA and protein levels as well as progesterone production. These suppressive effects, along with the induction of Sma and Mad-related protein (SMAD)1/5/8 phosphorylation, are attenuated by cotreatment with 2 different BMP type I receptor inhibitors (dorsomorphin and DMH-1). Furthermore, depletion of activin receptor-like kinase (ALK)3 using small interfering RNA reverses the effects of BMP15 on SMAD1/5/8 phosphorylation and StAR expression. Similarly, knockdown of ALK3 abolishes BMP15-induced SMAD1/5/8 phosphorylation in KGN cells. These results provide evidence that oocyte-derived BMP15 down-regulates StAR expression and decreases progesterone production in human granulosa cells, likely via ALK3-mediated SMAD1/5/8 signaling. Our findings suggest that oocyte may play a critical role in the regulation of progesterone to prevent premature luteinization during the late stage of follicle development.

  19. eEF-2 Phosphorylation Down-Regulates P-Glycoprotein Over-Expression in Rat Brain Microvessel Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Xing Hua Tang

    Full Text Available We investigated whether glutamate, NMDA receptors, and eukaryote elongation factor-2 kinase (eEF-2K/eEF-2 regulate P-glycoprotein expression, and the effects of the eEF-2K inhibitor NH125 on the expression of P-glycoprotein in rat brain microvessel endothelial cells (RBMECs.Cortex was obtained from newborn Wistar rat brains. After surface vessels and meninges were removed, the pellet containing microvessels was resuspended and incubated at 37°C in culture medium. Cell viability was assessed by the MTT assay. RBMECs were identified by immunohistochemistry with anti-vWF. P-glycoprotein, phospho-eEF-2, and eEF-2 expression were determined by western blot analysis. Mdr1a gene expression was analyzed by RT-PCR.Mdr1a mRNA, P-glycoprotein and phospho-eEF-2 expression increased in L-glutamate stimulated RBMECs. P-glycoprotein and phospho-eEF-2 expression were down-regulated after NH125 treatment in L-glutamate stimulated RBMECs.eEF-2K/eEF-2 should have played an important role in the regulation of P-glycoprotein expression in RBMECs. eEF-2K inhibitor NH125 could serve as an efficacious anti-multidrug resistant agent.

  20. Melittin induces PTCH1 expression by down-regulating MeCP2 in human hepatocellular carcinoma SMMC-7721 cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaoqin; Zhao, Bin; Cheng, Yahui; Yang, Yang; Huang, Cheng; Meng, Xiaoming; Wu, Baoming; Zhang, Lei; Lv, Xiongwen; Li, Jun, E-mail: xqwu01@foxmail.com

    2015-10-01

    Hepatocellular carcinoma (HCC) has a high mortality rate worldwide and still remains to be a noticeable public health problem. Therefore, new remedies are urgently needed. Melittin, a major component of bee venom, is known to suppress cell growth in various cancers including HCC. However, the mechanism of the anticancer effect of melittin on HCC has not been fully elucidated. It has been reported that Methyl-CpG binding protein 2 (MeCP2) plays a key role in tumor proliferation, apoptosis, migration and invasion. In the present study, we found the high expression of MeCP2 in human HCC tissues and in the SMMC-7721 cell line. MeCP2 silencing inhibited cell proliferation, while over-expression of MeCP2 promoted cell growth in SMMC-7721 cells. It indicates that MeCP2 may be an attractive target for human HCC. We further found that melittin could inhibit cell proliferation by reducing MeCP2 expression in vitro. Interestingly, the inhibitory effect of melittin on cell proliferation was due to a delay in G{sub 0}/G{sub 1} cell cycle progression, without influencing cell apoptosis. Next, we investigated the potential molecular mechanisms and found that MeCP2 could modulate Shh signaling in SMMC-7721 cells. Further study indicates that melittin may induce the demethylation of PTCH1 promoter, resulting in the increased expression of PTCH1. Furthermore, the expression of Shh and GLI1 was significantly lowered upon treatment of melittin. These results suggest that melittin can block Shh signaling in vitro. In short, these results indicate that melittin inhibits cell proliferation by down-regulating MeCP2 through Shh signaling in SMMC-7721 cells. - Highlights: • MeCP2 plays a key role in the proliferation of human HCC cells. • Melittin reduces MeCP2 expression in vitro. • Melittin induces G{sub 0}/G{sub 1} cell cycle arrest in SMMC-7721 cells. • MeCP2 modulates the Shh signaling pathway in SMMC-7721 cells. • Melittin blocks the Shh signaling pathway in SMMC-7721 cells.

  1. Melittin induces PTCH1 expression by down-regulating MeCP2 in human hepatocellular carcinoma SMMC-7721 cells

    International Nuclear Information System (INIS)

    Wu, Xiaoqin; Zhao, Bin; Cheng, Yahui; Yang, Yang; Huang, Cheng; Meng, Xiaoming; Wu, Baoming; Zhang, Lei; Lv, Xiongwen; Li, Jun

    2015-01-01

    Hepatocellular carcinoma (HCC) has a high mortality rate worldwide and still remains to be a noticeable public health problem. Therefore, new remedies are urgently needed. Melittin, a major component of bee venom, is known to suppress cell growth in various cancers including HCC. However, the mechanism of the anticancer effect of melittin on HCC has not been fully elucidated. It has been reported that Methyl-CpG binding protein 2 (MeCP2) plays a key role in tumor proliferation, apoptosis, migration and invasion. In the present study, we found the high expression of MeCP2 in human HCC tissues and in the SMMC-7721 cell line. MeCP2 silencing inhibited cell proliferation, while over-expression of MeCP2 promoted cell growth in SMMC-7721 cells. It indicates that MeCP2 may be an attractive target for human HCC. We further found that melittin could inhibit cell proliferation by reducing MeCP2 expression in vitro. Interestingly, the inhibitory effect of melittin on cell proliferation was due to a delay in G 0 /G 1 cell cycle progression, without influencing cell apoptosis. Next, we investigated the potential molecular mechanisms and found that MeCP2 could modulate Shh signaling in SMMC-7721 cells. Further study indicates that melittin may induce the demethylation of PTCH1 promoter, resulting in the increased expression of PTCH1. Furthermore, the expression of Shh and GLI1 was significantly lowered upon treatment of melittin. These results suggest that melittin can block Shh signaling in vitro. In short, these results indicate that melittin inhibits cell proliferation by down-regulating MeCP2 through Shh signaling in SMMC-7721 cells. - Highlights: • MeCP2 plays a key role in the proliferation of human HCC cells. • Melittin reduces MeCP2 expression in vitro. • Melittin induces G 0 /G 1 cell cycle arrest in SMMC-7721 cells. • MeCP2 modulates the Shh signaling pathway in SMMC-7721 cells. • Melittin blocks the Shh signaling pathway in SMMC-7721 cells.

  2. Down-regulated βIII-tubulin Expression Can Reverse Paclitaxel Resistance in A549/Taxol Cells Lines

    Directory of Open Access Journals (Sweden)

    Yinling ZHUO

    2014-08-01

    Full Text Available Background and objective Chemotherapy drug resistance is the primary causes of death in patients with pulmonary carcinoma which make tumor recurrence or metastasis. β-tubulin is the main cell targets of anti-microtubule drug. Increased expression of βIII-tubulin has been implicated in non-small cell lung cancer (NSCLC cell lines. To explore the relationship among the expression level of βIII-tubulin and the sensitivity of A549/Taxolcell lines to Taxol and cell cycles and cell apoptosis by RNA interference-mediated inhibition of βIII-tubulin in A549/Taxol cells. Methods Three pairs of siRNA targetd βIII-tubulin were designed and prepared, which were transfected into A549/Taxol cells using LipofectamineTM 2000. We detected the expression of βIII-tubulin mRNA using Real-time fluorescence qRT-PCR. Tedhen we selected the most efficient siRNA by the expression of βIII-tubulin mRNA in transfected group. βIII-tubulin protein level were mesured by Western blot. The taxol sensitivity in transfected group were evaluated by MTT assay. And the cell apoptosis and cell cycles were determined by flow cytometry. Results βIII-tubulin mRNA levels in A549/Taxol cells were significantly decreased in transfected grop by Real-time qRT-PCR than control groups. And βIII-tubulin siRNA-1 sequence showed the highest transfection efficiency, which was (87.73±4.87% (P<0.01; Western blot results showed that the expressional level of BIII tublin protein was significantly down-reulated in the transfectant cells than thant in the control cells. By MTT assay, we showed that the inhibition ratio of Taxol to A549/Taxol cells transfeced was higher than that of control group (51.77±4.60% (P<0.01. The early apoptosis rate of A549/Taxol cells in transfected group were significantly higher than that of control group (P<0.01; G2-M content in taxol group obviously increased than untreated samples by the cell cycle (P<0.05. Conclusion βIII-tubulin down-regulated significantly

  3. Overexpression of microRNA-132 enhances the radiosensitivity of cervical cancer cells by down-regulating Bmi-1.

    Science.gov (United States)

    Liu, Gui-Feng; Zhang, Shu-Hua; Li, Xue-Feng; Cao, Li-Yan; Fu, Zhan-Zhao; Yu, Shao-Nan

    2017-10-06

    We examined the effects of microRNA-132 (miR-132) on Bmi-1 expression and radiosensitivity in HeLa, SiHa, and C33A cervical cancer (CC) cells and 104 CC patients. MiR-132 expression was decreased and Bmi-1 expression was increased in tumor tissues compared to adjacent normal tissues and in radiotherapy-resistant patients compared to radiotherapy-sensitive patients. MiR-132 expression and Bmi-1 mRNA expression were also negatively correlated in tumor tissues. HeLa, SiHa, and C33A cells were divided into blank, miR-132 negative control (NC), miR-132 inhibitor, miR-132 mimics, siBmi-1, and miR-132 inhibitor + siBmi-1 groups, after which expression of miR-132 and Bmi-1, and the interaction between them and cell survival, proliferation, and apoptosis were examined. Bmi-1 was confirmed as a target of miRNA-132. Survival was higher and apoptosis lower in the miR-132 inhibitor group than the blank group after various doses of radiation. By contrast, survival was lower and apoptosis higher in the miRNA-132 mimics and siBmi-1 groups than in the blank group. Moreover, miR-132 expression increased and Bmi-1 mRNA expression decreased in each group at radiation doses of 6 and 8 Gy. Finally, co-administration of radiotherapy and exogenous miR-132 inhibited the growth of HeLa cell transplant-induced tumors in nude mice more effectively than radiotherapy alone. These results suggest overexpression of miR-132 enhances the radiosensitivity of CC cells by down-regulating Bmi-1 and that miR-132 may be a useful new target for the treatment of CC.

  4. 2-Triazenoazaindoles: α novel class of triazenes inducing transcriptional down-regulation of EGFR and HER-2 in human pancreatic cancer cells.

    Science.gov (United States)

    Kreutzer, Jan N; Salvador, Alessia; Diana, Patrizia; Cirrincione, Girolamo; Vedaldi, Daniela; Litchfield, David W; Issinger, Olaf-Georg; Guerra, Barbara

    2012-04-01

    Pancreatic cancer is a complex malignancy arising from the accumulation of genetic and epigenetic defects in the affected cells. Standard chemotherapy for patients with advanced disease shows only modest effects and is associated with considerable toxicity. Overexpression or aberrant activation of members of the epidermal growth factor receptor tyrosine kinase family, which includes EGFR and HER-2, occurs frequently and is associated with multiple drug resistance and decreased patient survival. In this study, we have investigated the therapeutic potential of AS104, a novel compound of the triazene class, with potential inhibitory effects on EGFR. We found that treatment of cells with AS104 causes significant reduction of cell growth and metabolic activity in four human pancreatic cancer cell lines. Furthermore, we show that the AS104-mediated induction of apoptotic cell death is associated with stimulation of autophagy in a dose-dependent manner. Treatment of cells with AS104 results in significant down-regulation of EGFR and HER-2 expression and activity and subsequent inhibition of downstream signaling proteins. Quantitative RT-PCR analysis and assays with proteasome inhibitors revealed that AS104 regulates the expression of EGFR and HER-2 at the transcriptional level. These findings provide for the first time experimental evidence for efficacy of AS104 in the simultaneous transcriptional repression of EGFR and HER-2 genes and suggest that AS104 may have therapeutic potential in the treatment of pancreatic cancers that express high levels of the aforementioned receptor tyrosine kinases.

  5. 2-Triazenoazaindoles: A novel class of triazenes inducing transcriptional down-regulation of EGFR and HER-2 in human pancreatic cancer cells

    Science.gov (United States)

    KREUTZER, JAN N.; SALVADOR, ALESSIA; DIANA, PATRIZIA; CIRRINCIONE, GIROLAMO; VEDALDI, DANIELA; LITCHFIELD, DAVID W.; ISSINGER, OLAF-GEORG; GUERRA, BARBARA

    2012-01-01

    Pancreatic cancer is a complex malignancy arising from the accumulation of genetic and epigenetic defects in the affected cells. Standard chemotherapy for patients with advanced disease shows only modest effects and is associated with considerable toxicity. Overexpression or aberrant activation of members of the epidermal growth factor receptor tyrosine kinase family, which includes EGFR and HER-2, occurs frequently and is associated with multiple drug resistance and decreased patient survival. In this study, we have investigated the therapeutic potential of AS104, a novel compound of the triazene class, with potential inhibitory effects on EGFR. We found that treatment of cells with AS104 causes significant reduction of cell growth and metabolic activity in four human pancreatic cancer cell lines. Furthermore, we show that the AS104-mediated induction of apoptotic cell death is associated with stimulation of autophagy in a dose-dependent manner. Treatment of cells with AS104 results in significant down-regulation of EGFR and HER-2 expression and activity and subsequent inhibition of downstream signaling proteins. Quantitative RT-PCR analysis and assays with proteasome inhibitors revealed that AS104 regulates the expression of EGFR and HER-2 at the transcriptional level. These findings provide for the first time experimental evidence for efficacy of AS104 in the simultaneous transcriptional repression of EGFR and HER-2 genes and suggest that AS104 may have therapeutic potential in the treatment of pancreatic cancers that express high levels of the aforementioned receptor tyrosine kinases. PMID:22134789

  6. Andrographolide down-regulates hypoxia-inducible factor-1{alpha} in human non-small cell lung cancer A549 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hui-Hsuan [School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Tsai, Chia-Wen [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Chou, Fen-Pi [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Wang, Chau-Jong [Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Hsuan, Shu-Wen [Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, No.89, Wen Hwa 1st St., Rende Shiang, Tainan County 717, Taiwan (China); Wang, Cheng-Kun [E-Chyun Dermatology Clinic, No.70, Sec. 3, Jhonghua E. Rd., East District, Tainan, Taiwan (China); Chen, Jing-Hsien [Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, No.89, Wen Hwa 1st St., Rende Shiang, Tainan County 717, Taiwan (China)

    2011-02-01

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to inhibit non-small cell lung cancer (NSCLC) A549 cell migration and invasion via down-regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Here we demonstrated that Andro inhibited the expression of hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) in A549 cells. HIF-1{alpha} plays an important role in tumor growth, angiogenesis and lymph node metastasis of NSCLC. The Andro-induced decrease of cellular protein level of HIF-1{alpha} was correlated with a rapid ubiquitin-dependent degradation of HIF-1{alpha}, and was accompanied by increased expressions of hydroxyl-HIF-1{alpha} and prolyl hydroxylase (PHD2), and a later decrease of vascular endothelial growth factor (VEGF) upon the treatment of Andro. The Andro-inhibited VEGF expression appeared to be a consequence of HIF-1{alpha} inactivation, because its DNA binding activity was suppressed by Andro. Molecular data showed that all these effects of Andro might be mediated via TGF{beta}1/PHD2/HIF-1{alpha} pathway, as demonstrated by the transfection of TGF{beta}1 overexpression vector and PHD2 siRNA, and the usage of a pharmacological MG132 inhibitor. Furthermore, we elucidated the involvement of Andro in HIF-1{alpha} transduced VEGF expression in A549 cells and other NSCLC cell lines. In conclusion, these results highlighted the potential effects of Andro, which may be developed as a chemotherapeutic or an anti-angiogenesis agent for NSCLC in the future.

  7. Andrographolide down-regulates hypoxia-inducible factor-1α in human non-small cell lung cancer A549 cells

    International Nuclear Information System (INIS)

    Lin, Hui-Hsuan; Tsai, Chia-Wen; Chou, Fen-Pi; Wang, Chau-Jong; Hsuan, Shu-Wen; Wang, Cheng-Kun; Chen, Jing-Hsien

    2011-01-01

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to inhibit non-small cell lung cancer (NSCLC) A549 cell migration and invasion via down-regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Here we demonstrated that Andro inhibited the expression of hypoxia-inducible factor-1α (HIF-1α) in A549 cells. HIF-1α plays an important role in tumor growth, angiogenesis and lymph node metastasis of NSCLC. The Andro-induced decrease of cellular protein level of HIF-1α was correlated with a rapid ubiquitin-dependent degradation of HIF-1α, and was accompanied by increased expressions of hydroxyl-HIF-1α and prolyl hydroxylase (PHD2), and a later decrease of vascular endothelial growth factor (VEGF) upon the treatment of Andro. The Andro-inhibited VEGF expression appeared to be a consequence of HIF-1α inactivation, because its DNA binding activity was suppressed by Andro. Molecular data showed that all these effects of Andro might be mediated via TGFβ1/PHD2/HIF-1α pathway, as demonstrated by the transfection of TGFβ1 overexpression vector and PHD2 siRNA, and the usage of a pharmacological MG132 inhibitor. Furthermore, we elucidated the involvement of Andro in HIF-1α transduced VEGF expression in A549 cells and other NSCLC cell lines. In conclusion, these results highlighted the potential effects of Andro, which may be developed as a chemotherapeutic or an anti-angiogenesis agent for NSCLC in the future.

  8. Down-regulation of Pax6 is associated with abnormal differentiation of corneal epithelial cells in severe ocular surface diseases

    Science.gov (United States)

    Li, W; Chen, Y-T; Hayashida, Y; Blanco, G; Kheirkah, A; He, H; Chen, S-Y; Liu, C-Y; Tseng, SCG

    2010-01-01

    Pax6 is the universal master control gene for eye morphogenesis. Other than retina and lens, Pax6 also expressed in the ocular surface epithelium from early gestation until the postnatal stage, in which little is known about the function of Pax6. In this study, corneal pannus tissues from patients with ocular surface diseases such as Stevens–Johnson syndrome (SJS), chemical burn, aniridia and recurrent pterygium were investigated. Our results showed that normal ocular surface epithelial cells expressed Pax6. However, corneal pannus epithelial cells from the above patients showed a decline or absence of Pax6 expression, accompanied by a decline or absence of K12 keratin but an increase of K10 keratin and filaggrin expression. Pannus basal epithelial cells maintained nuclear p63 expression and showed activated proliferation, evidenced by positive Ki67 and K16 keratin staining. On 3T3 fibroblast feeder layers, Pax6 immunostaining was negative in clones generated from epithelial cells harvested from corneal pannus from SJS or aniridia, but positive in those from the normal limbal epithelium; whereas western blots showed that some epithelial clones expanded from pannus retained Pax6 expression. Transient transfection of an adenoviral vector carrying EGFP–Pax6 transgenes into these Pax6− clones increased both Pax6 and K12 keratin expression. These results indicate that Pax6 helps to maintain the normal corneal epithelial phenotype postnatally, and that down-regulation of Pax6 is associated with abnormal epidermal differentiation in severe ocular surface diseases. Reintroduction of activation of the Pax6 gene might be useful in treating squamous metaplasia of the ocular surface epithelium. PMID:18027901

  9. Down-regulation of the cyprinid herpesvirus-3 annotated genes in cultured cells maintained at restrictive high temperature.

    Science.gov (United States)

    Ilouze, Maya; Dishon, Arnon; Kotler, Moshe

    2012-10-01

    Cyprinid herpesvirus-3 (CyHV-3) is a member of the Alloherpesviridae, in the order Herpesvirales. It causes a fatal disease in carp and koi fish. The disease is seasonal and is active when water temperatures ranges from 18 to 28 °C. Little is known about how and where the virus is preserved between the permissive seasons. The hallmark of the herpesviruses is their ability to become latent, persisting in the host in an apparently inactive state for varying periods of time. Hence, it could be expected that CyHV-3 enter a latent period. CyHV-3 has so far been shown to persist in fish maintained under restrictive temperatures, while shifting the fish to permissive conditions reactivates the virus. Previously, we demonstrated that cultured cells infected with CyHV-3 at 22 °C and subsequently transferred to a restrictive temperature of 30 °C preserve the virus for 30 days. The present report shows that cultured carp cells maintained and exposed to CyHV-3 at 30 °C are abortively infected; that is, autonomous viral DNA synthesis is hampered and the viral genome is not multiplied. Under these conditions, 91 of the 156 viral annotated ORFs were initially transcribed. These transcripts were down-regulated and gradually shut off over 18 days post-infection, while two viral transcripts encoded by ORFs 114 and 115 were preserved in the infected cells for 18 days p.i. These experiments, carried out in cultured cells, suggest that fish could be infected at a high non-permissive temperature and harbor the viral genome without producing viral particles. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Down-regulation of Cell Surface Cyclic AMP Receptors and Desensitization of Cyclic AMP-stimulated Adenylate Cyclase by Cyclic AMP in Dictyostelium discoideum. Kinetics and Concentration Dependence

    NARCIS (Netherlands)

    Haastert, Peter J.M. van

    1987-01-01

    cAMP binds to Dictyostelium discoideum surface receptors and induces a transient activation of adenylate cyclase, which is followed by desensitization. cAMP also induces a loss of detectable surface receptors (down-regulation). Cells were incubated with constant cAMP concentrations, washed free of

  11. Atherosclerosis-Associated Endothelial Cell Apoptosis by MiR-429-Mediated Down Regulation of Bcl-2

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2015-10-01

    -associated endothelial cell apoptosis may result from down regulation of Bcl-2, through increased miR-429 that binds and suppresses translation of Bcl-2 mRNA.

  12. Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis.

    Science.gov (United States)

    Breiteneder-Geleff, S.; Matsui, K.; Soleiman, A.; Meraner, P.; Poczewski, H.; Kalt, R.; Schaffner, G.; Kerjaschki, D.

    1997-01-01

    Puromycin aminonucleoside nephrosis (PAN), a rat model of human minimal change nephropathy, is characterized by extensive flattening of glomerular epithelial cell (podocyte) foot processes and by severe proteinuria. For comparison of expression of glomerular membrane proteins of normal and PAN rats, a membrane protein fraction of isolated rat glomeruli was prepared and monoclonal antibodies were raised against it. An IgG-secreting clone designated LF3 was selected that specifically immunolabeled podocytes of normal but not of PAN rats. The antigen of LF3 IgG was identified as a 43-kd glycoprotein. Molecular cloning of its cDNA was performed in a delta gt11 expression library prepared from mRNA of isolated rat glomeruli. The predicted amino acid sequence indicated a 166-amino-acid integral membrane protein with a single membrane-spanning domain, two potential phosphorylation sites in its short cytoplasmic tail, and six potential O-glycosylation sites in the large ectodomain. High amino acid sequence identities were found to membrane glycoproteins of rat lung and bone and mouse thymus epithelial cells as well as to a phorbol-ester-induced protein in a mouse osteoblast cell line and to a canine influenza C virus receptor. In PAN, expression of this 43-kd protein was selectively reduced to < 30%, as determined by quantitative immunogold electron microscopy, immunoblotting, and Northern blotting. These data provide evidence that transcription of the 43-kd transmembrane podocyte glycoprotein is specifically down-regulated in PAN. To indicate that this protein could be associated with transformation of arborized foot processes to flat feet (Latin, pes planus) we have called it podoplanin. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 10 Figure 12 Figure 13 Figure 14 Figure 15 PMID:9327748

  13. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    Energy Technology Data Exchange (ETDEWEB)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Chung, Young Chul [Department of Food Science and Culinary, International University of Korea, Jinju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression.

  14. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    International Nuclear Information System (INIS)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-01-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression

  15. Effect of oxaliplatin on the survival rate of human Y79 cells after down-regulation of Mcl-1

    Directory of Open Access Journals (Sweden)

    Lu Zhou

    2017-12-01

    Full Text Available AIM: To study the effect of oxaliplatin on the survival rate of Y79 after down-regulation of Mcl-1 by SiRNA. METHODS: Y79 cells were cultured in RPMI1640. The cultured cells were stimulated with 0.25μmol/L of oxaliplatin. The expression of Mcl-1 protein was detected by Western blot after 6, 16 and 24h respectively. Cells in logarithmic phase were collected and used for single-cell suspension. Then they were transfected with empty plasmid, Mcl-1-homo-991, Mcl-1-homo-1114 and Mcl-1-homo-1235. After 6h, fluorescence microscope was used to observe the transfection efficiency and the optimal one was selected. The cells were divided into Group A and transfected with empty plasmids. The cells transfected with Mcl-1 were divided into Group B and Group C. Group A and Group C were treated with 0.25μmol/L oxaliplatin for stimulating induction, and the apoptotic rate was compared after 24h.RESULTS: The expression of Mcl-1 in Y79 stimulated by oxaliplatin was the most after 24h of culture. Mcl-1-homo-991 significantly inhibited the expression of Mcl-1 in Y79 after transfection. There was no significant difference in the apoptosis rate in Group A(11.1%±1.2%and in the control group(6.1%±0.6%(P>0.05. The apoptotic rate of Group C(49.2%±2.7%was significantly higher than that of Group B(20.8%±1.9%. At the same time, the apoptotic rates of these two groups were significantly higher than those of Group A and control group, the difference was statistically significant(PCONCLUSION:Downregulation of Mcl-1 by siRNA can reduce the drug resistance of Y79, thereby enhancing the apoptosis of Y79, and reducing the survival rate of Y79.

  16. Klotho down-regulates Egr-1 by inhibiting TGF-β1/Smad3 signaling in high glucose treated human mesangial cells

    International Nuclear Information System (INIS)

    Li, Yang; Hu, Fang; Xue, Meng; Jia, Yi-Jie; Zheng, Zong-Ji; Wang, Ling; Guan, Mei-Ping; Xue, Yao-Ming

    2017-01-01

    Diabetic kidney disease (DKD) has become the leading cause of end-stage renal disease worldwide and is associated with glomerular mesangial cell (MC) proliferation and excessive extracellular matrix (ECM) production. Klotho can attenuate renal fibrosis in part by inhibiting TGF-β1/Smad3 signaling in DKD. Early growth response factor 1 (Egr-1) has been shown to play a key role in renal fibrosis in part by facilitating the formation of a positive feedback loop involving TGF-β1. However, whether Klotho down-regulates Egr-1 by inhibiting TGF-β1/Smad3 signaling in DKD is unclear. In the present study, we assessed human MCs that were incubated under high-glucose conditions to mimic diabetes. Then, we transfected the cells with Klotho plasmid or siRNA to overexpress or knock down Klotho gene and protein expression. Klotho, Egr-1, fibronectin (FN), collagen type I (Col I), Smad3 and phosphorylated Smad3 (p-Smad3) gene and protein expression levels were determined by RT-qPCR and western blotting respectively. High glucose time-dependently down-regulated Klotho mRNA and protein expression in cultured human MCs. pcDNA3.1-Klotho transfection-mediated Klotho overexpression down-regulated Egr-1, FN and Col I expression and the p-Smad3/Smad3 ratio in human MCs. Conversely, siRNA-mediated Klotho silencing up-regulated Egr-1, FN, and Col I expression and the p-Smad3/Smad3 ratio. Moreover, the effects of si-Klotho on Egr-1 expression were abolished by the TGF-β1 inhibitor SB-431542. Klotho overexpression can prevent mesangial ECM production in high-glucose-treated human MCs, an effect that has been partially attributed to Egr-1 down-regulation facilitated by TGF-β1/Smad3 signaling inhibition. - Highlights: • High glucose time-dependently down-regulated Klotho mRNA and protein expression in cultured human MCs. • Klotho overexpression down-regulated Egr-1 and prevented mesangial ECM production in high-glucose-treated human MCs. • Klotho down-regulated Egr-1 by inhibiting

  17. Down-regulation of the antisense mitochondrial non-coding RNAs (ncRNAs) is a unique vulnerability of cancer cells and a potential target for cancer therapy.

    Science.gov (United States)

    Vidaurre, Soledad; Fitzpatrick, Christopher; Burzio, Verónica A; Briones, Macarena; Villota, Claudio; Villegas, Jaime; Echenique, Javiera; Oliveira-Cruz, Luciana; Araya, Mariela; Borgna, Vincenzo; Socías, Teresa; Lopez, Constanza; Avila, Rodolfo; Burzio, Luis O

    2014-09-26

    Hallmarks of cancer are fundamental principles involved in cancer progression. We propose an additional generalized hallmark of malignant transformation corresponding to the differential expression of a family of mitochondrial ncRNAs (ncmtRNAs) that comprises sense and antisense members, all of which contain stem-loop structures. Normal proliferating cells express sense (SncmtRNA) and antisense (ASncmtRNA) transcripts. In contrast, the ASncmtRNAs are down-regulated in tumor cells regardless of tissue of origin. Here we show that knockdown of the low copy number of the ASncmtRNAs in several tumor cell lines induces cell death by apoptosis without affecting the viability of normal cells. In addition, knockdown of ASncmtRNAs potentiates apoptotic cell death by inhibiting survivin expression, a member of the inhibitor of apoptosis (IAP) family. Down-regulation of survivin is at the translational level and is probably mediated by microRNAs generated by dicing of the double-stranded stem of the ASncmtRNAs, as suggested by evidence presented here, in which the ASncmtRNAs are bound to Dicer and knockdown of the ASncmtRNAs reduces reporter luciferase activity in a vector carrying the 3'-UTR of survivin mRNA. Taken together, down-regulation of the ASncmtRNAs constitutes a vulnerability or Achilles' heel of cancer cells, suggesting that the ASncmtRNAs are promising targets for cancer therapy. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Down-regulation of the Antisense Mitochondrial Non-coding RNAs (ncRNAs) Is a Unique Vulnerability of Cancer Cells and a Potential Target for Cancer Therapy*

    Science.gov (United States)

    Vidaurre, Soledad; Fitzpatrick, Christopher; Burzio, Verónica A.; Briones, Macarena; Villota, Claudio; Villegas, Jaime; Echenique, Javiera; Oliveira-Cruz, Luciana; Araya, Mariela; Borgna, Vincenzo; Socías, Teresa; Lopez, Constanza; Avila, Rodolfo; Burzio, Luis O.

    2014-01-01

    Hallmarks of cancer are fundamental principles involved in cancer progression. We propose an additional generalized hallmark of malignant transformation corresponding to the differential expression of a family of mitochondrial ncRNAs (ncmtRNAs) that comprises sense and antisense members, all of which contain stem-loop structures. Normal proliferating cells express sense (SncmtRNA) and antisense (ASncmtRNA) transcripts. In contrast, the ASncmtRNAs are down-regulated in tumor cells regardless of tissue of origin. Here we show that knockdown of the low copy number of the ASncmtRNAs in several tumor cell lines induces cell death by apoptosis without affecting the viability of normal cells. In addition, knockdown of ASncmtRNAs potentiates apoptotic cell death by inhibiting survivin expression, a member of the inhibitor of apoptosis (IAP) family. Down-regulation of survivin is at the translational level and is probably mediated by microRNAs generated by dicing of the double-stranded stem of the ASncmtRNAs, as suggested by evidence presented here, in which the ASncmtRNAs are bound to Dicer and knockdown of the ASncmtRNAs reduces reporter luciferase activity in a vector carrying the 3′-UTR of survivin mRNA. Taken together, down-regulation of the ASncmtRNAs constitutes a vulnerability or Achilles' heel of cancer cells, suggesting that the ASncmtRNAs are promising targets for cancer therapy. PMID:25100722

  19. Aspirin down Regulates Hepcidin by Inhibiting NF-κB and IL6/JAK2/STAT3 Pathways in BV-2 Microglial Cells Treated with Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Wan-Ying Li

    2016-12-01

    Full Text Available Aspirin down regulates transferrin receptor 1 (TfR1 and up regulates ferroportin 1 (Fpn1 and ferritin expression in BV-2 microglial cells treated without lipopolysaccharides (LPS, as well as down regulates hepcidin and interleukin 6 (IL-6 in cells treated with LPS. However, the relevant mechanisms are unknown. Here, we investigate the effects of aspirin on expression of hepcidin and iron regulatory protein 1 (IRP1, phosphorylation of Janus kinase 2 (JAK2, signal transducer and activator of transcription 3 (STAT3 and P65 (nuclear factor-κB, and the production of nitric oxide (NO in BV-2 microglial cells treated with and without LPS. We demonstrated that aspirin inhibited hepcidin mRNA as well as NO production in cells treated with LPS, but not in cells without LPS, suppresses IL-6, JAK2, STAT3, and P65 (nuclear factor-κB phosphorylation and has no effect on IRP1 in cells treated with or without LPS. These findings provide evidence that aspirin down regulates hepcidin by inhibiting IL6/JAK2/STAT3 and P65 (nuclear factor-κB pathways in the cells under inflammatory conditions, and imply that an aspirin-induced reduction in TfR1 and an increase in ferritin are not associated with IRP1 and NO.

  20. BMP6 down-regulates GDNF expression through SMAD1/5 and ERK1/2 signaling pathways in human granulosa-lutein cells.

    Science.gov (United States)

    Zhang, Xin-Yue; Chang, Hsun-Ming; Taylor, Elizabeth L; Leung, Peter C K; Liu, Rui-Zhi

    2018-05-09

    Bone morphogenetic protein 6 (BMP6) is a critical regulator of follicular development that is expressed in mammalian oocytes and granulosa cells. Glial cell line-derived neurotrophic factor (GDNF) is an intraovarian neurotrophic factor that plays an essential role in regulating mammalian oocyte maturation. The aim of this study was to investigate the effect of BMP6 on the regulation of GDNF expression and the potential underlying mechanisms. We used an established immortalized human granulosa cell line (SVOG cells) and primary human granulosa-lutein cells as in vitro cell models. Our results showed that BMP6 significantly down-regulated the expression of GDNF in both SVOG and primary human granulosa-lutein cells. Using dual inhibition approaches (kinase receptor inhibitor and small interfering RNA knockdown), our results showed that both ALK2 and ALK3 are involved in BMP6-induced down-regulation of GDNF. In addition, BMP6 induced the phosphorylation of SMAD1/5/8 and ERK1/2 but not AKT or p38. Among three downstream mediators, both SMAD1 and SMAD5 are involved in BMP6-induced down-regulation of GDNF. Moreover, concomitant knockdown of endogenous SMAD4 and inhibition of ERK1/2 activity completely reversed BMP6-induced down-regulation of GDNF, indicating that both SMAD and ERK1/2 signaling pathways are required for the regulatory effect of BMP6 on GDNF expression. Our findings suggest an additional role for an intrafollicular growth factor in regulating follicular function through their paracrine interactions in human granulosa cells.

  1. SOX2 expression is associated with a cancer stem cell state and down-regulation of CDX2 in colorectal cancer

    International Nuclear Information System (INIS)

    Lundberg, Ida V.; Edin, Sofia; Eklöf, Vincy; Öberg, Åke; Palmqvist, Richard; Wikberg, Maria L.

    2016-01-01

    To improve current treatment strategies for patients with aggressive colorectal cancer (CRC), the molecular understanding of subgroups of CRC with poor prognosis is of vast importance. SOX2 positive tumors have been associated with a poor patient outcome, but the functional role of SOX2 in CRC patient prognosis is still unclear. An in vitro cell culture model expressing SOX2 was used to investigate the functional role of SOX2 in CRC. In vitro findings were verified using RNA from fresh frozen tumor tissue or immunohistochemistry on formalin fixed paraffin embedded (FFPE) tumor tissue from a cohort of 445 CRC patients. Using our in vitro model, we found that SOX2 expressing cells displayed several characteristics of cancer stem cells; such as a decreased proliferative rate, a spheroid growth pattern, and increased expression of stem cell markers CD24 and CD44. Cells expressing SOX2 also showed down-regulated expression of the intestinal epithelial marker CDX2. We next evaluated CDX2 expression in our patient cohort. CDX2 down-regulation was more often found in right sided tumors of high grade and high stage. Furthermore, a decreased expression of CDX2 was closely linked to MSI, CIMP-high as well as BRAF mutated tumors. A decreased expression of CDX2 was also, in a stepwise manner, strongly correlated to a poor patient prognosis. When looking at SOX2 expression in relation to CDX2, we found that SOX2 expressing tumors more often displayed a down-regulated expression of CDX2. In addition, SOX2 expressing tumors with a down-regulated CDX2 expression had a worse patient prognosis compared to those with retained CDX2 expression. Our results indicate that SOX2 expression induces a cellular stem cell state in human CRC with a decreased expression of CDX2. Furthermore, a down-regulated expression of CDX2 results in a poor patient prognosis in CRC and at least part of the prognostic importance of SOX2 is mediated through CDX2 down-regulation. The online version of this

  2. Berberine diminishes side population and down-regulates stem cell-associated genes in the pancreatic cancer cell lines PANC-1 and MIA PaCa-2.

    Science.gov (United States)

    Park, S H; Sung, J H; Chung, N

    2014-09-01

    Cancer stem cells play an important role in metastasis and the relapse of drug resistant cancers. Side-population (SP) cells are capable of effluxing Hoechst 33342 dye and are referred to as cancer stem cells. We investigated the effect of berberine on pancreatic cancer stem cells of PANC-1 and MIA PaCa-2. For both cell lines, the proportions of SP cells in the presence of berberine were investigated and compared to the proportions in the presence of gemcitabine, a standard pancreatic anti-cancer drug. The proportions of SP cells in the PANC-1 and MIA PaCa-2 cell lines were about 9 and PANC-1 decreased to 5.7 ± 2.0 and 6.8 ± 0.8%, respectively, which compares to the control proportion of (9.7 ± 1.7). After berberine and gemcitabine treatment of PANC-1, of the four stem cell-associated genes (SOX2, POU5F1, NANOG, and NOTCH1), all but NOTCH1 were down-regulated. Unfortunately, the effect of berberine and gemcitabine treatments on MIA PaCa-2 SP cells could not be clearly observed because SP cells represented only a very small proportion of MIA PaCa-2 cells. However, SOX2, POU5F1, and NANOG genes were shown to be effectively down-regulated in the MIA PaCa-2 cell line as a whole. Taken together, these results indicate that berberine is as effective at targeting pancreatic cancer cell lines as gemcitabine. Therefore, we believe that POU5F1, SOX2, and NANOG can serve as potential markers, and berberine may be an effective anti-cancer agent when targeting human pancreatic cancer cells and/or their cancer stem cells.

  3. Cyclic mechanical stretch down-regulates cathelicidin antimicrobial peptide expression and activates a pro-inflammatory response in human bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Harpa Karadottir

    2015-12-01

    Full Text Available Mechanical ventilation (MV of patients can cause damage to bronchoalveolar epithelium, leading to a sterile inflammatory response, infection and in severe cases sepsis. Limited knowledge is available on the effects of MV on the innate immune defense system in the human lung. In this study, we demonstrate that cyclic stretch of the human bronchial epithelial cell lines VA10 and BCi NS 1.1 leads to down-regulation of cathelicidin antimicrobial peptide (CAMP gene expression. We show that treatment of VA10 cells with vitamin D3 and/or 4-phenyl butyric acid counteracted cyclic stretch mediated down-regulation of CAMP mRNA and protein expression (LL-37. Further, we observed an increase in pro-inflammatory responses in the VA10 cell line subjected to cyclic stretch. The mRNA expression of the genes encoding pro-inflammatory cytokines IL-8 and IL-1β was increased after cyclic stretching, where as a decrease in gene expression of chemokines IP-10 and RANTES was observed. Cyclic stretch enhanced oxidative stress in the VA10 cells. The mRNA expression of toll-like receptor (TLR 3, TLR5 and TLR8 was reduced, while the gene expression of TLR2 was increased in VA10 cells after cyclic stretch. In conclusion, our in vitro results indicate that cyclic stretch may differentially modulate innate immunity by down-regulation of antimicrobial peptide expression and increase in pro-inflammatory responses.

  4. Curcumin induces down-regulation of EZH2 expression through the MAPK pathway in MDA-MB-435 human breast cancer cells.

    Science.gov (United States)

    Hua, Wen-Feng; Fu, Yong-Shui; Liao, Yi-Ji; Xia, Wen-Jie; Chen, Yang-Chao; Zeng, Yi-Xin; Kung, Hsiang-Fu; Xie, Dan

    2010-07-10

    Curcumin, a natural compound isolated from turmeric, may inhibit cell proliferation in various tumor cells through a mechanism that is not fully understood. The enhancer of zeste homolog 2 (EZH2) gene is overexpressed in human breast cancers with poor prognosis. In this study, we observed a dose- and time-dependent down-regulation of expression of EZH2 by curcumin that correlates with decreased proliferation in the MDA-MB-435 breast cancer cell line. The curcumin treatment resulted in an accumulation of cells in the G(1) phase of the cell cycle. Further investigation revealed that curcumin-induced down-regulation of EZH2 through stimulation of three major members of the mitogen-activated protein kinase (MAPK) pathway: c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38 kinase. These data suggest that an underlying mechanism of the MAPK pathway mediates the down-regulation of EZH2, thus contributing to the anti-proliferative effects of curcumin against breast cancer. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Long-term load duration induces N-cadherin down-regulation and loss of cell phenotype of nucleus pulposus cells in a disc bioreactor culture.

    Science.gov (United States)

    Li, Pei; Zhang, Ruijie; Wang, Liyuan; Gan, Yibo; Xu, Yuan; Song, Lei; Luo, Lei; Zhao, Chen; Zhang, Chengmin; Ouyang, Bin; Tu, Bing; Zhou, Qiang

    2017-04-30

    Long-term exposure to a mechanical load causes degenerative changes in the disc nucleus pulposus (NP) tissue. A previous study demonstrated that N-cadherin (N-CDH)-mediated signalling can preserve the NP cell phenotype. However, N-CDH expression and the resulting phenotype alteration in NP cells under mechanical compression remain unclear. The present study investigated the effects of the compressive duration on N-CDH expression and on the phenotype of NP cells in an ex vivo disc organ culture. Porcine discs were organ cultured in a self-developed mechanically active bioreactor for 7 days. The discs were subjected to different dynamic compression durations (1 and 8 h at a magnitude of 0.4 MPa and frequency of 1.0 Hz) once per day. Discs that were not compressed were used as controls. The results showed that long-term compression duration (8 h) significantly down-regulated the expression of N-CDH and NP-specific molecule markers (Brachyury, Laminin, Glypican-3 and Keratin 19), attenuated Alcian Blue staining intensity, decreased glycosaminoglycan (GAG) and hydroxyproline (HYP) contents and decreased matrix macromolecule (aggrecan and collagen II) expression compared with the short-term compression duration (1 h). Taken together, these findings demonstrate that long-term load duration can induce N-CDH down-regulation, loss of normal cell phenotype and result in attenuation of NP-related matrix synthesis in NP cells. © 2017 The Author(s).

  6. A Rhodium(III) Complex as an Inhibitor of Neural Precursor Cell Expressed, Developmentally Down-Regulated 8-Activating Enzyme with in Vivo Activity against Inflammatory Bowel Disease.

    Science.gov (United States)

    Zhong, Hai-Jing; Wang, Wanhe; Kang, Tian-Shu; Yan, Hui; Yang, Yali; Xu, Lipeng; Wang, Yuqiang; Ma, Dik-Lung; Leung, Chung-Hang

    2017-01-12

    We report herein the identification of the rhodium(III) complex [Rh(phq) 2 (MOPIP)] + (1) as a potent and selective ATP-competitive neural precursor cell expressed, developmentally down-regulated 8 (NEDD8)-activating enzyme (NAE) inhibitor. Structure-activity relationship analysis indicated that the overall organometallic design of complex 1 was important for anti-inflammatory activity. Complex 1 showed promising anti-inflammatory activity in vivo for the potential treatment of inflammatory bowel disease.

  7. DZNep, inhibitor of S-adenosylhomocysteine hydrolase, down-regulates expression of SETDB1 H3K9me3 HMTase in human lung cancer cells.

    Science.gov (United States)

    Lee, Ju-Kyung; Kim, Keun-Cheol

    2013-09-06

    3-Deazaneplanocin A (DZNep), an epigenetic anticancer drug, leads to the indirect suppression of S-adenosyl methionine-dependent cellular methylations by inhibiting S-adenosyl homocystein (AdoHcy) hydrolase. Although it is well known that DZNep targets the degradation of EZH2 protein, H3K27me3 HMTase, there are still uncertainties about the regulation of other types of HMTases during cell death. In this study, we describe that SETDB1 gene expression was regulated by DZNep treatment in human lung cancer cells. We confirm that DZNep induced growth inhibition and increased the dead cell population of lung cancer cells. DZNep treatment affected histone methylations, including H3K27me3 and H3K9me3, but not H3K4me3. Reduced levels of H3K27me3 and H3K9me3 were related with the decreased EZH2 and SETDB1 proteins. Real time PCR analysis showed that SETDB1 gene expression was decreased by DZNep treatment, but no effect was observed for EZH2 gene expression. We cloned the promoter region of SETDB1 and SUV39H1 genes, and performed luciferase assays. The promoter activity of SETDB1 gene was down regulated by DZNep treatment, whereas no effect on SUV39H1 promoter activity was observed. In conclusion, we suggest that DZNep regulates not only on H3K27me3 HMTase EZH2, but also H3K9 HMTase SETDB1 gene expression at the transcription level, implicating that the mechanism of action of DZNep targets multiple HMTases during the death of lung cancer cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Mesenchymal stem cells cultured under hypoxia escape from senescence via down-regulation of p16 and extracellular signal regulated kinase

    International Nuclear Information System (INIS)

    Jin, Yonghui; Kato, Tomohisa; Furu, Moritoshi; Nasu, Akira; Kajita, Yoichiro; Mitsui, Hiroto; Ueda, Michiko; Aoyama, Tomoki; Nakayama, Tomitaka; Nakamura, Takashi; Toguchida, Junya

    2010-01-01

    Hypoxia has been considered to affect the properties of tissue stem cells including mesenchymal stem cells (MSCs). Effects of long periods of exposure to hypoxia on human MSCs, however, have not been clearly demonstrated. MSCs cultured under normoxic conditions (20% pO 2 ) ceased to proliferate after 15-25 population doublings, while MSCs cultured under hypoxic conditions (1% pO 2 ) retained the ability to proliferate with an additional 8-20 population doublings. Most of the MSCs cultured under normoxic conditions were in a senescent state after 100 days, while few senescent cells were found in the hypoxic culture, which was associated with a down-regulation of p16 gene expression. MSCs cultured for 100 days under hypoxic conditions were superior to those cultured under normoxic conditions in the ability to differentiate into the chondro- and adipogenic, but not osteogenic, lineage. Among the molecules related to mitogen-activated protein kinase (MAPK) signaling pathways, extracellular signal regulated kinase (ERK) was significantly down-regulated by hypoxia, which helped to inhibit the up-regulation of p16 gene expression. Therefore, the hypoxic culture retained MSCs in an undifferentiated and senescence-free state through the down-regulation of p16 and ERK.

  9. Salinomycin enhances cisplatin-induced cytotoxicity in human lung cancer cells via down-regulation of AKT-dependent thymidylate synthase expression.

    Science.gov (United States)

    Ko, Jen-Chung; Zheng, Hao-Yu; Chen, Wen-Ching; Peng, Yi-Shuan; Wu, Chia-Hung; Wei, Chia-Li; Chen, Jyh-Cheng; Lin, Yun-Wei

    2016-12-15

    Salinomycin, a polyether antibiotic, acts as a highly selective potassium ionophore and has anticancer activity on various cancer cell lines. Cisplatin has been proved as chemotherapy drug for advanced human non-small cell lung cancer (NSCLC). Thymidylate synthase (TS) is a key enzyme in the pyrimidine salvage pathway, and increased expression of TS is thought to be associated with resistance to cisplatin. In this study, we showed that salinomycin (0.5-2μg/mL) treatment down-regulating of TS expression in an AKT inactivation manner in two NSCLC cell lines, human lung adenocarcinoma A549 and squamous cell carcinoma H1703 cells. Knockdown of TS using small interfering RNA (siRNA) or inhibiting AKT activity with PI3K inhibitor LY294002 enhanced the cytotoxicity and cell growth inhibition of salinomycin. A combination of cisplatin and salinomycin resulted in synergistic enhancement of cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced activation of phospho-AKT, and TS expression. Overexpression of a constitutive active AKT (AKT-CA) expression vector reversed the salinomycin and cisplatin-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in salinomycin and cisplatin cotreated cells. Our findings suggested that the down-regulation of AKT-mediated TS expression by salinomycin enhanced the cisplatin-induced cytotoxicity in NSCLC cells. These results may provide a rationale to combine salinomycin with cisplatin for lung cancer treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Curcumin exhibits anti-tumor effect and attenuates cellular migration via Slit-2 mediated down-regulation of SDF-1 and CXCR4 in endometrial adenocarcinoma cells.

    Science.gov (United States)

    Sirohi, Vijay Kumar; Popli, Pooja; Sankhwar, Pushplata; Kaushal, Jyoti Bala; Gupta, Kanchan; Manohar, Murli; Dwivedi, Anila

    2017-06-01

    Although curcumin shows anti-proliferative and anti-inflammatory activities in various cancers, the effect of curcumin on cellular migration in endometrial adenocarcinoma cells remains to be understood. The current investigation was aimed to explore the anti-proliferative and anti-migratory effects of curcumin and its mechanism of action in endometrial cancer cells. Our in-vitro and in-vivo experimental studies showed that curcumin inhibited the proliferation of endometrial cancer cells and suppressed the tumor growth in Ishikawa xenograft mouse model. Curcumin induced ROS-mediated apoptosis in endometrial cancer cells. Curcumin suppressed the migration rate of Ishikawa and Hec-1B cells as analyzed by scratch wound assay. In transwell migration studies, knock down of Slit-2 reversed the anti-migratory effect of curcumin in these cell lines. Curcumin significantly up-regulated the expression of Slit-2 in Ishikawa, Hec-1B and primary endometrial cancer cells while it down-regulated the expression of stromal cell-derived factor-1 (SDF-1) and CXCR4 which in turn, suppressed the expression of matrix metallopeptidases (MMP) 2 and 9, thus attenuating the migration of endometrial cancer cells. In summary, we have demonstrated that curcumin has inhibitory effect on cellular migration via Slit-2 mediated down-regulation of CXCR4, SDF-1, and MMP2/MMP9 in endometrial carcinoma cells. These findings helped explore the role of Slit-2 in endometrial cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. SKP2 siRNA inhibits the degradation of P27kip1 and down-regulates the expression of MRP in HL-60/A cells.

    Science.gov (United States)

    Xiao, Jie; Yin, Songmei; Li, Yiqing; Xie, Shuangfeng; Nie, Danian; Ma, Liping; Wang, Xiuju; Wu, Yudan; Feng, Jianhong

    2009-08-01

    S-phase kinase-associated protein 2 (SKP2) gene is a tumor suppressor gene, and is involved in the ubiquitin-mediated degradation of P27kip1. SKP2 and P27kip1 affect the proceeding and prognosis of leukemia through regulating the proliferation, apoptosis and differentiation of leukemia cells. In this study, we explored the mechanism of reversing of HL-60/A drug resistance through SKP2 down-regulation. HL-60/A cells were nucleofected by Amaxa Nucleofector System with SKP2 siRNA. The gene and protein expression levels of Skp2, P27kip1, and multi-drug resistance associated protein (MRP) were determined by reverse transcription-polymerase chain reaction and western blot analysis, respectively. The cell cycle was analyzed by flow cytometry. The 50% inhibitory concentration value was calculated using cytotoxic analysis according to the death rate of these two kinds of cells under different concentrations of chemotherapeutics to compare the sensitivity of the cells. HL-60/A cells showed multi-drug resistance phenotype characteristic by cross-resistance to adriamycin, daunorubicin, and arabinosylcytosine, due to the expression of MRP. We found that the expression of SKP2 was higher in HL-60/A cells than in HL-60 cells, but the expression of P27kip1 was lower. The expression of SKP2 in HL-60/A cells nucleofected by SKP2 siRNA was down-regulated whereas the protein level of P27kip1 was up-regulated. Compared with the MRP expression level in the control group (nucleofected by control siRNA), the mRNA and protein expression levels of MRP in HL-60/A cells nucleofected by SKP2 siRNA were lower, and the latter cells were more sensitive to adriamycin, daunorubicin, and arabinosylcytosine. Down-regulating the SKP2 expression and arresting cells in the G0/G1 phase improve drug sensitivity of leukemia cells with down-regulated MRP expression.

  12. Static compression down-regulates N-cadherin expression and facilitates loss of cell phenotype of nucleus pulposus cells in a disc perfusion culture.

    Science.gov (United States)

    Zhou, Haibo; Shi, Jianmin; Zhang, Chao; Li, Pei

    2018-02-28

    Mechanical compression often induces degenerative changes of disc nucleus pulposus (NP) tissue. It has been indicated that N-cadherin (N-CDH)-mediated signaling helps to preserve the NP cell phenotype. However, N-CDH expression and the resulting NP-specific phenotype alteration under the static compression and dynamic compression remain unclear. To study the effects of static compression and dynamic compression on N-CDH expression and NP-specific phenotype in an in vitro disc organ culture. Porcine discs were organ cultured in a self-developed mechanically active bioreactor for 7 days and subjected to static or dynamic compression (0.4 MPa for 2 h once per day). The noncompressed discs were used as controls. Compared with the dynamic compression, static compression significantly down-regulated the expression of N-CDH and NP-specific markers (laminin, brachyury, and keratin 19); decreased the Alcian Blue staining intensity, glycosaminoglycan and hydroxyproline contents; and declined the matrix macromolecule (aggrecan and collagen II) expression. Compared with the dynamic compression, static compression causes N-CDH down-regulation, loss of NP-specific phenotype, and the resulting decrease in NP matrix synthesis. © 2018 The Author(s).

  13. AS1411-Induced Growth Inhibition of Glioma Cells by Up-Regulation of p53 and Down-Regulation of Bcl-2 and Akt1 via Nucleolin.

    Directory of Open Access Journals (Sweden)

    Ye Cheng

    Full Text Available AS1411 binds nucleolin (NCL and is the first oligodeoxynucleotide aptamer to reach phase I and II clinical trials for the treatment of several cancers. However, the mechanisms by which AS1411 targets and kills glioma cells and tissues remain unclear. Here we report that AS1411 induces cell apoptosis and cycle arrest, and inhibits cell viability by up-regulation of p53 and down-regulation of Bcl-2 and Akt1 in human glioma cells. NCL was overexpressed in both nucleus and cytoplasm in human glioma U87, U251 and SHG44 cells compared to normal human astrocytes (NHA. AS1411 bound NCL and inhibited the proliferation of glioma cells but not NHA, which was accompanied with up-regulation of p53 and down-regulation of Bcl-2 and Akt1. Moreover, AS1411 treatment resulted in the G2/M cell cycle arrest in glioma cells, which was however abolished by overexpression of NCL. Further, AS1411 induced cell apoptosis, which was prevented by silencing of p53 and overexpression of Bcl-2. In addition, AS1411 inhibited the migration and invasion of glioma cells in an Akt1-dependent manner. Importantly, AS1411 inhibited the growth of glioma xenograft and prolonged the survival time of glioma tumor-bearing mice. These results revealed a promising treatment of glioma by oligodeoxynucleotide aptamer.

  14. BAFF induces spleen CD4+ T cell proliferation by down-regulating phosphorylation of FOXO3A and activates cyclin D2 and D3 expression

    International Nuclear Information System (INIS)

    Ji, Fang; Chen, Rongjing; Liu, Baojun; Zhang, Xiaoping; Han, Junli; Wang, Haining; Shen, Gang; Tao, Jiang

    2012-01-01

    Highlights: ► Firstly analyze the mechanism of BAFF and anti-CD3 co-stimulation on purified mouse splenic CD4 + T cells. ► Carrying out siRNA technology to study FOXO3A protein function. ► Helpful to understand the T cell especially CD4 + T cell‘s role in immunological reaction. -- Abstract: The TNF ligand family member “B cell-activating factor belonging to the TNF family” (BAFF, also called BLyS, TALL-1, zTNF-4, and THANK) is an important survival factor for B and T cells. In this study, we show that BAFF is able to induce CD4 + spleen T cell proliferation when co-stimulated with anti-CD3. Expression of phosphorylated FOXO3A was notably down-regulated and cyclins D2 and D3 were up-regulated and higher in the CD4 + T cells when treated with BAFF and anti-CD3, as assessed by Western blotting. Furthermore, after FOXO3A was knocked down, expression of cyclin D1 was unchanged, compared with control group levels, but the expression of cyclins D2 and D3 increased, compared with the control group. In conclusion, our results suggest that BAFF induced CD4 + spleen T cell proliferation by down-regulating the phosphorylation of FOXO3A and then activating cyclin D2 and D3 expression, leading to CD4 + T cell proliferation.

  15. TGFβ1-induced down-regulation of microRNA-138 contributes to epithelial-mesenchymal transition in primary lung cancer cells.

    Science.gov (United States)

    Zhang, Fang; Li, Tiepeng; Han, Lu; Qin, Peng; Wu, Zhao; Xu, Benling; Gao, Quanli; Song, Yongping

    2018-02-19

    The existence of cancer stem cells within the tumor could lead to cancer therapy resistance. TGFβ1 is considered as one of the most powerful players in the generation of CSCs through induction of epithelial-mesenchymal transition in different types of cancer including lung cancer, however, the detailed mechanisms by which TGFβ1 contribute to EMT induction and CSC maintenance remains unclear. Here, we showed primary lung cancer cells treated by TGFβ1 exhibit mesenchymal features, including morphology and expression of mesenchymal marker in a time-dependent manner. We also observed long-term TGFβ1 exposure leads to an enrichment of a sub-population of CD44 + CD90 + cells which represent CSCs in lung cancer cells. Moreover, the differential expression microRNAs between CSCs and non-CSCs were identified using next-generation sequencing to screen key miRNAs which might contribute to TGFβ1-induced EMT and CSCs generation. Among those differentially expressed miRNAs, the expression of microRNA-138 was time-dependently down-regulated by TGFβ1 treatment. We further demonstrated primary lung cancer cells, in which we knockdown the expression of miR-138, exhibit mesenchymal phenotypes and stem cell properties. Taken together, these findings indicate TGFβ1-induced down-regulation of microRNA-138 contributes to EMT in primary lung cancer cells, and suggest that miR-138 might serve as a potential therapeutic target. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Prolonged oxidative stress down-regulates Early B cell factor 1 with inhibition of its tumor suppressive function against cholangiocarcinoma genesis

    Directory of Open Access Journals (Sweden)

    Napat Armartmuntree

    2018-04-01

    Full Text Available Early B cell factor 1 (EBF1 is a transcription factor involved in the differentiation of several stem cell lineages and it is a negative regulator of estrogen receptors. EBF1 is down-regulated in many tumors, and is believed to play suppressive roles in cancer promotion and progression. However, the functional roles of EBF1 in carcinogenesis are unclear. Liver fluke-infection-associated cholangiocarcinoma (CCA is an oxidative stress-driven cancer of bile duct epithelium. In this study, we investigated EBF1 expression in tissues from CCA patients, CCA cell lines (KKU-213, KKU-214 and KKU-156, cholangiocyte (MMNK1 and its oxidative stress-resistant (ox-MMNK1-L cell lines. The formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG was used as an oxidative stress marker. Our results revealed that EBF1 expression was suppressed in cancer cells compared with the individual normal bile duct cells at tumor adjacent areas of CCA tissues. CCA patients with low EBF1 expression and high formation of 8-oxodG were shown to correlate with poor survival. Moreover, EBF1 was suppressed in the oxidative stress-resistant cell line and all of CCA cell lines compared to the cholangiocyte cell line. This suggests that prolonged oxidative stress suppressed EBF1 expression and the reduced EBF1 level may facilitate CCA genesis. To elucidate the significance of EBF1 suppression in CCA genesis, EBF1 expression of the MMNK1 cell line was down-regulated by siRNA technique, and its effects on stem cell properties (CD133 and Oct3/4 expressions, tumorigenic properties (cell proliferation, wound healing and cell migration, estrogen responsive gene (TFF1, estrogen-stimulated wound healing, and cell migration were examined. The results showed that CD133, Oct3/4 and TFF1 expression levels, wound healing, and cell migration of EBF1 knockdown-MMNK1 cells were significantly increased. Also, cell migration of EBF1-knockdown cells was significantly enhanced after 17

  17. Steroidogenesis and early response gene expression in MA-10 Leydig tumor cells following heterologous receptor down-regulation and cellular desensitization

    Directory of Open Access Journals (Sweden)

    Tsuey-Ming Chen

    2016-03-01

    Full Text Available The Leydig tumor cell line, MA-10, expresses the luteinizing hormone receptor, a G protein-coupled receptor that, when activated with luteinizing hormone or chorionic gonadotropin (CG, stimulates cAMP production and subsequent steroidogenesis, notably progesterone. These cells also respond to epidermal growth factor (EGF and phorbol esters with increased steroid biosynthesis. In order to probe the intracellular pathways along with heterologous receptor down-regulation and cellular desensitization, cells were preincubated with EGF or phorbol esters and then challenged with CG, EGF, dibutryl-cyclic AMP, and a phorbol ester. Relative receptor numbers, steroid biosynthesis, and expression of the early response genes, JUNB and c-FOS, were measured. It was found that in all cases but one receptor down-regulation and decreased progesterone production were closely coupled under the conditions used; the exception involved preincubation of the cells with EGF followed by addition of CG where the CG-mediated stimulation of steroidogenesis was considerably lower than the level of receptor down-regulation. In a number of instances JUNB and c-FOS expression paralleled the decreases in receptor number and progesterone production, while in some cases these early response genes were affected little if at all by the changes in receptor number. This finding may indicate that even low levels of activated signaling kinases, e.g. protein kinase A, protein kinase C, or receptor tyrosine kinase, may suffice to yield good expression of JUNB and c-FOS, or it may suggest alternative pathways for regulating expression of these two early response genes.

  18. BTG2 Is Down-Regulated and Inhibits Cancer Stem Cell-Like Features of Side Population Cells in Hepatocellular Carcinoma.

    Science.gov (United States)

    Huang, Chen-Song; Zhai, Jing-Ming; Zhu, Xiao-Xu; Cai, Jian-Peng; Chen, Wei; Li, Jian-Hui; Yin, Xiao-Yu

    2017-12-01

    Our previous study found that B cell translocation gene 2 (BTG2) was hyper-methylated and down-regulated in side population (SP) cells of hepatocellular carcinoma (HCC) cell line. However, its clinical significances and biological impacts on HCC SP cells remained unclear. To investigate the prognostic value of BTG2 gene in HCC and its influences on cancer stem cells (CSCs)-like traits of HCC cell line SP cells. BTG2 expression in human HCC and adjacent non-cancerous tissues was detected by immunohistochemical staining and quantitative real-time PCR, and also obtained from GEO and TCGA data. Its prognostic values were assessed. Its biological influences on HCC cell line SP cells were evaluated using cell viability, cell cycle, plate clone-forming assay, and chemoresistance in vitro and tumorigenicity in vivo. BTG2 expression was significantly suppressed in human HCC compared to adjacent non-cancerous tissues. BTG2 expression was correlated with TNM stage, tumor size and vascular invasion. Lower expression of BTG2 was associated with poorer overall survival and disease-free survival. In vitro, overexpression of BTG2 substantially suppressed cell proliferation and accumulation of HCC cell line SP cells in G0/G1 phase. Colony formation ability was markedly suppressed by BTG2 overexpression. Moreover, sensitivity of HCC cell line SP cells to 5-fluorouracil was substantially increased by overexpression of BTG2. Furthermore, tumorigenicity of HCC cell line SP cells transfected with BTG2 plasmids was significantly reduced in vivo. BTG2 gene could regulate the CSC-like traits of HCC cell line SP cells, and it represented as a molecular prognostic marker for HCC.

  19. Induced ICER Iγ down-regulates cyclin A expression and cell proliferation in insulin-producing β cells

    International Nuclear Information System (INIS)

    Inada, Akari; Weir, Gordon C.; Bonner-Weir, Susan

    2005-01-01

    We have previously found that cyclin A expression is markedly reduced in pancreatic β-cells by cell-specific overexpression of repressor inducible cyclic AMP early repressor (ICER Iγ) in transgenic mice. Here we further examined regulatory effects of ICER Iγ on cyclin A gene expression using Min6 cells, an insulin-producing cell line. The cyclin A promoter luciferase assay showed that ICER Iγ directly repressed cyclin A gene transcription. In addition, upon ICER Iγ overexpression, cyclin A mRNA levels markedly decreased, thereby confirming an inhibitory effect of ICER Iγ on cyclin A expression. Suppression of cyclin A results in inhibition of BrdU incorporation. Under normal culture conditions endogenous cyclin A is abundant in these cells, whereas ICER is hardly detectable. However, serum starvation of Min6 cells induces ICER Iγ expression with a concomitant very low expression level of cyclin A. Cyclin A protein is not expressed unless the cells are in active DNA replication. These results indicate a potentially important anti-proliferative effect of ICER Iγ in pancreatic β cells. Since ICER Iγ is greatly increased in diabetes as well as in FFA- or high glucose-treated islets, this effect may in part exacerbate diabetes by limiting β-cell proliferation

  20. Down-regulation of SMT3A gene expression in association with DNA synthesis induction after X-ray irradiation in nevoid basal cell carcinoma syndrome (NBCCS) cells

    International Nuclear Information System (INIS)

    Sugaya, Shigeru; Nakanishi, Hiroshi; Tanzawa, Hideki; Sugita, Katsuo; Kita, Kazuko; Suzuki, Nobuo

    2005-01-01

    Fibroblast cells derived from nevoid basal carcinoma syndrome (NBCCS) patients show increased levels of DNA synthesis after X-ray irradiation. Genes, whose expression is modulated in association with the DNA synthesis induction, were searched by using PCR-based mRNA differential display analysis in one of the NBCCS cell lines, NBCCS1 cells. Decreased levels of SMT3A gene expression were found in X-ray-irradiated NBCCS1 cells. This decrease was also shown by RT-PCR analysis in another cell line, NBCCS3 cells. In addition to NBCCS cells, normal fibroblast cells showed the DNA synthesis induction after X-ray irradiation when they were treated with antisense oligonucleotides (AO) for SMT3A. However, treatment of normal fibroblasts with the random oligonucleotides (RO) resulted in decreased levels of DNA synthesis after X-ray irradiation. Thus, down-regulation of SMT3A gene expression may be involved in the DNA synthesis induction after X-ray irradiation in the NBCCS cells at least tested

  1. Down-regulation of SMT3A gene expression in association with DNA synthesis induction after X-ray irradiation in nevoid basal cell carcinoma syndrome (NBCCS) cells

    Energy Technology Data Exchange (ETDEWEB)

    Sugaya, Shigeru [Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Nakanishi, Hiroshi [Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Tanzawa, Hideki [Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Sugita, Katsuo [Department of Clinical Medicine, Faculty of Education, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522 (Japan); Kita, Kazuko [Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Suzuki, Nobuo [Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan)]. E-mail: nobuo@faculty.chiba-u.jp

    2005-10-15

    Fibroblast cells derived from nevoid basal carcinoma syndrome (NBCCS) patients show increased levels of DNA synthesis after X-ray irradiation. Genes, whose expression is modulated in association with the DNA synthesis induction, were searched by using PCR-based mRNA differential display analysis in one of the NBCCS cell lines, NBCCS1 cells. Decreased levels of SMT3A gene expression were found in X-ray-irradiated NBCCS1 cells. This decrease was also shown by RT-PCR analysis in another cell line, NBCCS3 cells. In addition to NBCCS cells, normal fibroblast cells showed the DNA synthesis induction after X-ray irradiation when they were treated with antisense oligonucleotides (AO) for SMT3A. However, treatment of normal fibroblasts with the random oligonucleotides (RO) resulted in decreased levels of DNA synthesis after X-ray irradiation. Thus, down-regulation of SMT3A gene expression may be involved in the DNA synthesis induction after X-ray irradiation in the NBCCS cells at least tested.

  2. pH-responsive artemisinin derivatives and lipid nanoparticle formulations inhibit growth of breast cancer cells in vitro and induce down-regulation of HER family members.

    Directory of Open Access Journals (Sweden)

    Yitong J Zhang

    Full Text Available Artemisinin (ART dimers show potent anti-proliferative activities against breast cancer cells. To facilitate their clinical development, novel pH-responsive artemisinin dimers were synthesized for liposomal nanoparticle formulations. A new ART dimer was designed to become increasingly water-soluble as pH declines. The new artemisinin dimer piperazine derivatives (ADPs remained tightly associated with liposomal nanoparticles (NPs at neutral pH but were efficiently released at acidic pH's that are known to exist within solid tumors and organelles such as endosomes and lysosomes. ADPs incorporated into nanoparticles down regulated the anti-apoptotic protein, survivin, and cyclin D1 when incubated at low concentrations with breast cancer cell lines. We demonstrate for the first time, for any ART derivative, that ADP NPs can down regulate the oncogenic protein HER2, and its counterpart, HER3 in a HER2+ cell line. We also show that the wild type epidermal growth factor receptor (EGFR or HER1 declines in a triple negative breast cancer (TNBC cell line in response to ADP NPs. The declines in these proteins are achieved at concentrations of NP109 at or below 1 µM. Furthermore, the new artemisinin derivatives showed improved cell-proliferation inhibition effects compared to known dimer derivatives.

  3. Transmembrane neural cell-adhesion molecule (NCAM), but not glycosyl-phosphatidylinositol-anchored NCAM, down-regulates secretion of matrix metalloproteinases

    DEFF Research Database (Denmark)

    Edvardsen, K; Chen, W; Rucklidge, G

    1993-01-01

    proteinases, and proteinase inhibitors all participate in the construction, maintenance, and remodeling of extracellular matrix by cells. The neural cell-adhesion molecule (NCAM)-negative rat glioma cell line BT4Cn secretes substantial amounts of metalloproteinases, as compared with its NCAM-positive mother......During embryogenesis interactions between cells and extracellular matrix play a central role in the modulation of cell motility, growth, and differentiation. Modulation of matrix structure is therefore crucial during development; extracellular matrix ligands, their receptors, extracellular...... cell line BT4C. We have transfected the BT4Cn cell line with cDNAs encoding the human NCAM-B and -C isoforms. We report here that the expression of transmembrane NCAM-B, but not of glycosyl-phosphatidylinositol-linked NCAM-C, induces a down-regulation of 92-kDa gelatinase (matrix metalloproteinase 9...

  4. A novel neuron-enriched protein SDIM1 is down regulated in Alzheimer's brains and attenuates cell death induced by DNAJB4 over-expression in neuro-progenitor cells

    Directory of Open Access Journals (Sweden)

    Lei Joy X

    2011-01-01

    Full Text Available Abstract Background Molecular changes in multiple biological processes contribute to the development of chronic neurodegeneration such as late onset Alzheimer's disease (LOAD. To discover how these changes are reflected at the level of gene expression, we used a subtractive transcription-based amplification of mRNA procedure to identify novel genes that have altered expression levels in the brains of Alzheimer's disease (AD patients. Among the genes altered in expression level in AD brains was a transcript encoding a novel protein, SDIM1, that contains 146 amino acids, including a typical signal peptide and two transmembrane domains. Here we examined its biochemical properties and putative roles in neuroprotection/neurodegeneration. Results QRT-PCR analysis of additional AD and control post-mortem human brains showed that the SDIM1 transcript was indeed significantly down regulated in all AD brains. SDIM1 is more abundant in NT2 neurons than astrocytes and present throughout the cytoplasm and neural processes, but not in the nuclei. In NT2 neurons, it is highly responsive to stress conditions mimicking insults that may cause neurodegeneration in AD brains. For example, SDIM1 was significantly down regulated 2 h after oxygen-glucose deprivation (OGD, though had recovered 16 h later, and also appeared significantly up regulated compared to untreated NT2 neurons. Overexpression of SDIM1 in neuro-progenitor cells improved cells' ability to survive after injurious insults and its downregulation accelerated cell death induced by OGD. Yeast two-hybrid screening and co-immunoprecipitation approaches revealed, both in vitro and in vivo, an interaction between SDIM1 and DNAJB4, a heat shock protein hsp40 homolog, recently known as an enhancer of apoptosis that also interacts with the mu opioid receptor in human brain. Overexpression of DNAJB4 alone significantly reduced cell viability and SDIM1 co-overexpression was capable of attenuating the cell death

  5. Caveolin-1 down-regulation is required for Wnt5a-Frizzled 2 signalling in Ha-RasV12 -induced cell transformation.

    Science.gov (United States)

    Lin, Hsiu-Kuan; Lin, Hsi-Hui; Chiou, Yu-Wei; Wu, Ching-Lung; Chiu, Wen-Tai; Tang, Ming-Jer

    2018-05-01

    Caveolin-1 (Cav1) is down-regulated during MK4 (MDCK cells harbouring inducible Ha-Ras V12 gene) transformation by Ha-Ras V12 . Cav1 overexpression abrogates the Ha-Ras V12 -driven transformation of MK4 cells; however, the targeted down-regulation of Cav1 is not sufficient to mimic this transformation. Cav1-silenced cells, including MK4/shCav1 cells and MDCK/shCav1 cells, showed an increased cell area and discontinuous junction-related proteins staining. Cellular and mechanical transformations were completed when MDCK/shCav1 cells were treated with medium conditioned by MK4 cells treated with IPTG (MK4+I-CM) but not with medium conditioned by MK4 cells. Nanoparticle tracking analysis showed that Ha-Ras V12 -inducing MK4 cells increased exosome-like microvesicles release compared with their normal counterparts. The cellular and mechanical transformation activities of MK4+I-CM were abolished after heat treatment and exosome depletion and were copied by exosomes derived from MK4+I-CM (MK4+I-EXs). Wnt5a, a downstream product of Ha-Ras V12 , was markedly secreted by MK4+I-CM and MK4+I-EXs. Suppression of Wnt5a expression and secretion using the porcupine inhibitor C59 or Wnt5a siRNA inhibited the Ha-Ras V12 - and MK4+I-CM-induced transformation of MK4 cells and MDCK/shCav1 cells, respectively. Cav1 down-regulation, either by Ha-Ras V12 or targeted shRNA, increased frizzled-2 (Fzd2) protein levels without affecting its mRNA levels, suggesting a novel role of Cav1 in negatively regulating Fzd2 expression. Additionally, silencing Cav1 facilitated the internalization of MK4+I-EXs in MDCK cells. These data suggest that Cav1-dependent repression of Fzd2 and exosome uptake is potentially relevant to its antitransformation activity, which hinders the activation of Ha-Ras V12 -Wnt5a-Stat3 pathway. Altogether, these results suggest that both decreasing Cav1 and increasing exosomal Wnt5a must be implemented during Ha-Ras V12 -driven cell transformation. © 2018 The Authors

  6. Specific down-regulation of XIAP with RNA interference enhances the sensitivity of canine tumor cell-lines to TRAIL and doxorubicin

    Directory of Open Access Journals (Sweden)

    Rothuizen Jan

    2006-09-01

    Full Text Available Abstract Background Apoptosis resistance occurs in various tumors. The anti-apoptotic XIAP protein is responsible for inhibiting apoptosis by reducing caspase-3 activation. Our aim is to evaluate whether RNA inhibition against XIAP increases the sensitivity of canine cell-lines for chemotherapeutics such as TRAIL and doxorubicin. We used small interfering RNA's (siRNA directed against XIAP in three cell-lines derived from bile-duct epithelia (BDE, mammary carcinoma (P114, and osteosarcoma (D17. These cell-lines represent frequently occurring canine cancers and are highly comparable to their human counterparts. XIAP down-regulation was measured by means of quantitative PCR (Q-PCR and Western blotting. The XIAP depleted cells were treated with a serial dilution of TRAIL or doxorubicin and compared to mock- and nonsense-treated controls. Viability was measured with a MTT assay. Results All XIAP siRNA treated cell-lines showed a mRNA down-regulation over 80 percent. Western blot analysis confirmed mRNA measurements. No compensatory effect of IAP family members was seen in XIAP depleted cells. The sensitivity of XIAP depleted cells for TRAIL was highest in BDE cells with an increase in the ED50 of 14-fold, compared to mock- and nonsense-treated controls. The sensitivity of P114 and D17 cell-lines increased six- and five-fold, respectively. Doxorubicin treatment in XIAP depleted cells increased sensitivity in BDE cells more than eight-fold, whereas P114 and D17 cell-lines showed an increase in sensitivity of three- and five-fold, respectively. Conclusion XIAP directed siRNA's have a strong sensitizing effect on TRAIL-reduced cell-viability and a smaller but significant effect with the DNA damaging drug doxorubicin. The increase in efficacy of chemotherapeutics with XIAP depletion provides the rationale for the use of XIAP siRNA's in insensitive canine tumors.

  7. MicroRNA-205 suppresses the oral carcinoma oncogenic activity via down-regulation of Axin-2 in KB human oral cancer cell.

    Science.gov (United States)

    Kim, Jae-Sung; Park, Sun-Young; Lee, Seul Ah; Park, Min-Gyeong; Yu, Sun-Kyoung; Lee, Myoung-Hwa; Park, Mi-Ra; Kim, Su-Gwan; Oh, Ji-Su; Lee, Sook-Young; Kim, Chun Sung; Kim, Heung-Joong; Chun, Hong Sung; Kim, Jin-Soo; Moon, Sung-Min; Kim, Do Kyung

    2014-02-01

    MicroRNA (miRNA) is a small noncoding RNA molecule, 19-25 nucleotides in length, which regulates several pathways including cell development, cell proliferation, carcinogenesis, apoptosis, etc. In this study, the over-expression of microRNA-205 (miR-205) increased the number of apoptotic cells by at least 4 times compared to the control. In addition, over-expressed miRNA in KB oral cancer cells triggered apoptosis via the caspase cascade, including the cleavage of caspase-9, caspase-7, caspase-3, and PARP. Flow cytometry showed that apoptotic cell death was increased significantly by 35.33% in KB oral cancer cells with over-expressed miR-205 compared to the control. The microarray data showed that axis inhibitor protein 2 (Axin2) was down-regulated in KB oral cancer cells transfected with miR-205. In addition, Axin2 was down-regulated by approximately 50% by over-expressed miR-205 at both the mRNA and protein levels. Interestingly, Axin2 was up-regulated in KB oral cancer compared to human normal oral keratinocytes. Furthermore, the cell cytotoxicity and apoptotic population of KB oral cancer cells were increased significantly after Axin2 siRNA transfection. These results suggest that Axin2 is might be as potential oncogene in KB oral cancer cells. The luciferase assay showed that over-expressed miR-205 in KB oral cancer cells suppressed AXIN2 expression through an interaction with its own binding site at AXIN2 3'UTR (64-92). These results suggest that miR-205 is a novel anti-oncogenic miRNA in KB oral cancer cells, and may have potential applications in oral cancer therapy.

  8. Down-regulation of Akt by methanol extracts of Impatiens balsamina L. promotes apoptosis in human oral squamous cell carcinoma cell lines.

    Science.gov (United States)

    Shin, Ji-Ae; Ryu, Mi Heon; Kwon, Ki-Han; Choi, BuYoung; Cho, Sung-Dae

    2015-07-01

    The apoptotic activity of methanol extracts of Impatiens balsamina L. (MEIB) and related mechanisms in human oral squamous cell carcinoma (OSCC) cells have been systematically investigated. The effects of MEIB on human OSCC cell lines were investigated using trypan blue exclusion assay, MTS assay, Western blot, 4'-6-diamidino-2-phenylindole (DAPI) staining, Live/Dead assay, Immunohistochemistry, reverse transcription-polymerase chain reaction, and promoter assay. MEIB decreased cell viability and induced apoptosis in HSC-4 cells. Higher levels of p-Akt expression were observed in OSCC than in normal oral mucosa (NOM), and it correlated with poor survival of the patients. MEIB dephosphorylated p-Akt and decreased Akt expression through proteasome-dependent degradation. LY294002 (PI3K inhibitor) decreased p-Akt and Akt, resulting in enhancing MEIB-induced apoptosis. MEIB down-regulated the expression level of survivin protein at the transcriptional level and YM155 (survivin inhibitor) decreased survivin, which facilitated MEIB-induced apoptosis. MEIB and LY294002 significantly increased Bax, thereby inducing the conformational change, mitochondrial translocation, and oligomerization. In addition, MEIB-induced growth inhibition and apoptosis in OSC-20, another human OSCC cells were mediated by regulating Akt and it downstream targets, survivin and Bax. These results suggest that MEIB may serve as a potential drug candidate for the treatment of human OSCC. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Decreased cell survival and DNA repair capacity after UVC irradiation in association with down-regulation of GRP78/BiP in human RSa cells

    International Nuclear Information System (INIS)

    Zhai Ling; Kita, Kazuko; Wano, Chieko; Wu Yuping; Sugaya, Shigeru; Suzuki, Nobuo

    2005-01-01

    In contrast to extensive studies on the roles of molecular chaperones, such as heat shock proteins, there are only a few reports about the roles of GRP78/BiP, an endoplasmic reticulum (ER) stress-induced molecular chaperone, in mammalian cell responses to DNA-damaging stresses. To investigate whether GRP78/BiP is involved in resistance to a DNA-damaging agent, UVC (principally 254 nm in wavelength), we established human cells with down-regulation of GRP78/BiP by transfection of human RSa cells with antisense cDNA for GRP78/BiP. We found that the transfected cells showed higher sensitivity to UVC-induced cell death than control cells transfected with the vector alone. In the antisense-cDNA transfected cells, the removal capacities of the two major types of UVC-damaged DNA (thymine dimers and (6-4) photoproducts) in vivo and DNA synthesis activity of whole cell extracts to repair UVC-irradiated plasmids in vitro were remarkably decreased compared with those in the control cells. Furthermore, the antisense-cDNA transfected cells also showed slightly higher sensitivity to cisplatin-induced cell death than the control cells. Cisplatin-induced DNA damage is primarily repaired by nucleotide excision repair, like UVC-induced DNA damage. The present results suggest that GRP78/BiP plays a protective role against UVC-induced cell death possibly via nucleotide excision repair, at least in the human RSa cells tested

  10. NOX4-mediated ROS production induces apoptotic cell death via down-regulation of c-FLIP and Mcl-1 expression in combined treatment with thioridazine and curcumin.

    Science.gov (United States)

    Seo, Seung Un; Kim, Tae Hwan; Kim, Dong Eun; Min, Kyoung-Jin; Kwon, Taeg Kyu

    2017-10-01

    Thioridazine is known to have anti-tumor effects by inhibiting PI3K/Akt signaling, which is an important signaling pathway in cell survival. However, thioridazine alone does not induce apoptosis in head and neck squamous cell carcinoma (AMC-HN4), human breast carcinoma (MDA-MB231), and human glioma (U87MG) cells. Therefore, we investigated whether combined treatment with thioridazine and curcumin induces apoptosis. Combined treatment with thioridazine and curcumin markedly induced apoptosis in cancer cells without inducing apoptosis in human normal mesangial cells and human normal umbilical vein cells (EA.hy926). We found that combined treatment with thioridazine and curcumin had synergistic effects in AMC-HN4 cells. Among apoptosis-related proteins, thioridazine plus curcumin induced down-regulation of c-FLIP and Mcl-1 expression at the post-translational levels in a proteasome-dependent manner. Augmentation of proteasome activity was related to the up-regulation of proteasome subunit alpha 5 (PSMA5) expression in curcumin plus thioridazine-treated cells. Combined treatment with curcumin and thioridazine produced intracellular ROS in a NOX4-dependent manner, and ROS-mediated activation of Nrf2/ARE signaling played a critical role in the up-regulation of PSMA5 expression. Furthermore, ectopic expression of c-FLIP and Mcl-1 inhibited apoptosis in thioridazine and curcumin-treated cells. Therefore, we demonstrated that thioridazine plus curcumin induces proteasome activity by up-regulating PSMA5 expression via NOX4-mediated ROS production and that down-regulation of c-FLIP and Mcl-1 expression post-translationally is involved in apoptosis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. NOX4-mediated ROS production induces apoptotic cell death via down-regulation of c-FLIP and Mcl-1 expression in combined treatment with thioridazine and curcumin

    Directory of Open Access Journals (Sweden)

    Seung Un Seo

    2017-10-01

    Full Text Available Thioridazine is known to have anti-tumor effects by inhibiting PI3K/Akt signaling, which is an important signaling pathway in cell survival. However, thioridazine alone does not induce apoptosis in head and neck squamous cell carcinoma (AMC-HN4, human breast carcinoma (MDA-MB231, and human glioma (U87MG cells. Therefore, we investigated whether combined treatment with thioridazine and curcumin induces apoptosis. Combined treatment with thioridazine and curcumin markedly induced apoptosis in cancer cells without inducing apoptosis in human normal mesangial cells and human normal umbilical vein cells (EA.hy926. We found that combined treatment with thioridazine and curcumin had synergistic effects in AMC-HN4 cells. Among apoptosis-related proteins, thioridazine plus curcumin induced down-regulation of c-FLIP and Mcl-1 expression at the post-translational levels in a proteasome-dependent manner. Augmentation of proteasome activity was related to the up-regulation of proteasome subunit alpha 5 (PSMA5 expression in curcumin plus thioridazine-treated cells. Combined treatment with curcumin and thioridazine produced intracellular ROS in a NOX4-dependent manner, and ROS-mediated activation of Nrf2/ARE signaling played a critical role in the up-regulation of PSMA5 expression. Furthermore, ectopic expression of c-FLIP and Mcl-1 inhibited apoptosis in thioridazine and curcumin-treated cells. Therefore, we demonstrated that thioridazine plus curcumin induces proteasome activity by up-regulating PSMA5 expression via NOX4-mediated ROS production and that down-regulation of c-FLIP and Mcl-1 expression post-translationally is involved in apoptosis.

  12. BAFF induces spleen CD4{sup +} T cell proliferation by down-regulating phosphorylation of FOXO3A and activates cyclin D2 and D3 expression

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Fang; Chen, Rongjing [Department of Orthodontics, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Liu, Baojun [Laboratory of Lung, Inflammation and Cancers, Huashan Hospital, Fudan University, Shanghai (China); Zhang, Xiaoping [Department of Nuclear Medicine, Shanghai 10th People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Han, Junli; Wang, Haining [Department of General Dentistry, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Shen, Gang [Department of Orthodontics, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Tao, Jiang, E-mail: taojiang2012@yahoo.cn [Department of General Dentistry, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Firstly analyze the mechanism of BAFF and anti-CD3 co-stimulation on purified mouse splenic CD4{sup +} T cells. Black-Right-Pointing-Pointer Carrying out siRNA technology to study FOXO3A protein function. Black-Right-Pointing-Pointer Helpful to understand the T cell especially CD4{sup +} T cell's role in immunological reaction. -- Abstract: The TNF ligand family member 'B cell-activating factor belonging to the TNF family' (BAFF, also called BLyS, TALL-1, zTNF-4, and THANK) is an important survival factor for B and T cells. In this study, we show that BAFF is able to induce CD4{sup +} spleen T cell proliferation when co-stimulated with anti-CD3. Expression of phosphorylated FOXO3A was notably down-regulated and cyclins D2 and D3 were up-regulated and higher in the CD4{sup +} T cells when treated with BAFF and anti-CD3, as assessed by Western blotting. Furthermore, after FOXO3A was knocked down, expression of cyclin D1 was unchanged, compared with control group levels, but the expression of cyclins D2 and D3 increased, compared with the control group. In conclusion, our results suggest that BAFF induced CD4{sup +} spleen T cell proliferation by down-regulating the phosphorylation of FOXO3A and then activating cyclin D2 and D3 expression, leading to CD4{sup +} T cell proliferation.

  13. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion.

    Directory of Open Access Journals (Sweden)

    Marie Lundholm

    Full Text Available Tumor-derived exosomes, which are nanometer-sized extracellular vesicles of endosomal origin, have emerged as promoters of tumor immune evasion but their role in prostate cancer (PC progression is poorly understood. In this study, we investigated the ability of prostate tumor-derived exosomes to downregulate NKG2D expression on natural killer (NK and CD8+ T cells. NKG2D is an activating cytotoxicity receptor whose aberrant loss in cancer plays an important role in immune suppression. Using flow cytometry, we found that exosomes produced by human PC cells express ligands for NKG2D on their surface. The NKG2D ligand-expressing prostate tumor-derived exosomes selectively induced downregulation of NKG2D on NK and CD8+ T cells in a dose-dependent manner, leading to impaired cytotoxic function in vitro. Consistent with these findings, patients with castration-resistant PC (CRPC showed a significant decrease in surface NKG2D expression on circulating NK and CD8+ T cells compared to healthy individuals. Tumor-derived exosomes are likely involved in this NKG2D downregulation, since incubation of healthy lymphocytes with exosomes isolated from serum or plasma of CRPC patients triggered downregulation of NKG2D expression in effector lymphocytes. These data suggest prostate tumor-derived exosomes as down-regulators of the NKG2D-mediated cytotoxic response in PC patients, thus promoting immune suppression and tumor escape.

  14. Lamprey Prohibitin2 Arrest G2/M Phase Transition of HeLa Cells through Down-regulating Expression and Phosphorylation Level of Cell Cycle Proteins.

    Science.gov (United States)

    Shi, Ying; Guo, Sicheng; Wang, Ying; Liu, Xin; Li, Qingwei; Li, Tiesong

    2018-03-02

    Prohibitin 2(PHB2) is a member of the SFPH trans-membrane family proteins. It is a highly conserved and functionally diverse protein that plays an important role in preserving the structure and function of the mitochondria. In this study, the lamprey PHB2 gene was expressed in HeLa cells to investigate its effect on cell proliferation. The effect of Lm-PHB2 on the proliferation of HeLa cells was determined by treating the cells with pure Lm-PHB2 protein followed by MTT assay. Using the synchronization method with APC-BrdU and PI double staining revealed rLm-PHB2 treatment induced the decrease of both S phase and G0/G1 phase and then increase of G2/M phase. Similarly, cells transfected with pEGFP-N1-Lm-PHB2 also exhibited remarkable reduction in proliferation. Western blot and quantitative real-time PCR(qRT-PCR) assays suggested that Lm-PHB2 caused cell cycle arrest in HeLa cells through inhibition of CDC25C and CCNB1 expression. According to our western blot analysis, Lm-PHB2 was also found to reduce the expression level of Wee1 and PLK1 and the phosphorylation level of CCNB1, CDC25C and CDK1 in HeLa cells. Lamprey prohibitin 2 could arrest G2/M phase transition of HeLa cells through down-regulating expression and phosphorylation level of cell cycle proteins.

  15. Estrogen-Induced Maldevelopment of the Penis Involves Down-Regulation of Myosin Heavy Chain 11 (MYH11) Expression, a Biomarker for Smooth Muscle Cell Differentiation1

    Science.gov (United States)

    Okumu, L.A.; Bruinton, Sequoia; Braden, Tim D.; Simon, Liz; Goyal, Hari O.

    2012-01-01

    ABSTRACT Cavernous smooth muscle cells are essential components in penile erection. In this study, we investigated effects of estrogen exposure on biomarkers for smooth muscle cell differentiation in the penis. Neonatal rats received diethylstilbestrol (DES), with or without the estrogen receptor (ESR) antagonist ICI 182,780 (ICI) or the androgen receptor (AR) agonist dihydrotestosterone (DHT), from Postnatal Days 1 to 6. Tissues were collected at 7, 10, or 21 days of age. The smooth muscle cell biomarker MYH11 was studied in depth because microarray data showed it was significantly down-regulated, along with other biomarkers, in DES treatment. Quantitative real time-PCR and Western blot analyses showed 50%–80% reduction (P ≤ 0.05) in Myh11 expression in DES-treated rats compared to that in controls; and ICI and DHT coadministration mitigated the decrease. Temporally, from 7 to 21 days of age, Myh11 expression was onefold increased (P ≥ 0.05) in DES-treated rats versus threefold increased (P ≤ 0.001) in controls, implying the long-lasting inhibitory effect of DES on smooth muscle cell differentiation. Immunohistochemical localization of smooth muscle alpha actin, another biomarker for smooth muscle cell differentiation, showed fewer cavernous smooth muscle cells in DES-treated animals than in controls. Additionally, DES treatment significantly up-regulated Esr1 mRNA expression and suppressed the neonatal testosterone surge by 90%, which was mitigated by ICI coadministration but not by DHT coadministration. Collectively, results provided evidence that DES treatment in neonatal rats inhibited cavernous smooth muscle cell differentiation, as shown by down-regulation of MYH11 expression at the mRNA and protein levels and by reduced immunohistochemical staining of smooth muscle alpha actin. Both the ESR and the AR pathways probably mediate this effect. PMID:22976277

  16. Down regulation of the TCR complex CD3 ζ-chain on CD3+ T cells: a potential mechanism for helminth mediated immune modulation

    Directory of Open Access Journals (Sweden)

    Laura Jane Appleby

    2015-02-01

    Full Text Available The CD3ζ forms part of the T cell receptor (TCR where it plays an important role in coupling antigen recognition to several intracellular signal-transduction pathways leading to T cell effector functions. Down regulation of CD3ζ leads to impairment of immune responses including reduced cell proliferation and cytokine production. In experimental models helminth parasites have been shown to modulate immune responses directed against them and unrelated antigens, so called bystander antigens, but there is a lack of studies validating these observations in humans. This study focused on investigated the relationship between expression levels of the TCR CD3ζ chain with lymphocyte cell proliferation during human infection with the helminth parasite, Schistosoma haematobium which causes uro-genital schistosomiasis. Using flow cytometry, peripheral blood mononuclear cells (PBMCs from individuals naturally exposed to S. haematobium in rural Zimbabwe were phenotyped, and expression levels of CD3ζ on T cells were related to intensity of infection. In this population, parasite infection intensity was inversely related to CD3ζ expression levels (p<0.05, consistent with down-regulation of CD3ζ expression during helminth infection. Furthermore, PBMC proliferation was positively related to expression levels of CD3ζ (p<0.05 after allowing for confounding variables (host age, sex, infection level. CD3ζ expression levels had a differing relationship between immune correlates of susceptibility and immunity, measured by antibody responses, indicating a complex relationship between immune activation status and immunity. The relationships between the CD3ζ chain of the TCR and schistosome infection, PBMC proliferation and schistosome-specific antibody responses have not previously been reported, and these results may indicate a mechanism for the impaired T cell proliferative responses observed during human schistosome infection.

  17. Expression of DIAPH1 is up-regulated in colorectal cancer and its down-regulation strongly reduces the metastatic capacity of colon carcinoma cells.

    Science.gov (United States)

    Lin, Yuan-Na; Izbicki, Jakob R; König, Alexandra; Habermann, Jens K; Blechner, Christine; Lange, Tobias; Schumacher, Udo; Windhorst, Sabine

    2014-04-01

    In most cases, metastatic colorectal cancer is not curable, thus new approaches are necessary to identify novel targets for colorectal cancer therapy. Actin-binding-proteins (ABPs) directly regulate motility of metastasising tumor cells, and for cortactin an association with colon cancer metastasis has been already shown. However, as its depletion only incompletely inhibits metastasis, additional, more suitable cellular targets have to be identified. Here we analyzed expression of the ABPs, DIAPH1, VASP, N-WASP, and fascin in comparison with cortactin and found that, besides cortactin, DIAPH1 was expressed with the highest frequency (63%) in colorectal cancer. As well as cortactin, DIAPH1 was not detectable in normal colon tissue and expression of both proteins was positively correlated with metastasis of colorectal cancer. To analyse the mechanistic role of DIAPH1 for metastasis of colon carcinoma cells in comparison with cortactin, expression of the proteins was stably down-regulated in the human colon carcinoma cell lines HT-29, HROC-24 and HCT-116. Analysis of metastasis of colon carcinoma cells in SCID mice revealed that depletion of DIAPH1 reduced metastasis 60-fold and depletion of cortactin 16-fold as compared with control cells. Most likely the stronger effect of DIAPH1 depletion on colon cancer metastasis is due to the fact that in vitro knock down of DIAPH1 impaired all steps of metastasis; adhesion, invasion and migration while down-regulation of cortactin only reduced adhesion and invasion. This very strong reducing effect of DIAPH1 depletion on colon carcinoma cell metastasis makes the protein a promising therapeutic target for individualized colorectal cancer therapy. © 2013 UICC.

  18. Celecoxib Down-Regulates the Hypoxia-Induced Expression of HIF-1α and VEGF Through the PI3K/AKT Pathway in Retinal Pigment Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Yi-zhou Sun

    2017-12-01

    Full Text Available Background/Aims: The goal of this study was to detect the expression of hypoxia-inducible factor 1α (HIF-1α and vascular endothelial growth factor (VEGF in human retinal pigmented epithelial (RPE cells treated with celecoxib, a selective cyclooxygenase-2 (COX-2 inhibitor, under hypoxic and normoxic conditions and to explore the signaling mechanism involved in regulating the hypoxia-induced expression of HIF-1α and VEGF in RPE cells. Methods: D407 cells were cultured in normoxic or hypoxic conditions, with or without celecoxib or a PI3K inhibitor (LY294002. The anti-proliferative effect of celecoxib was assessed using the MTT assay. RT-PCR, Western blotting and ELISA were performed to detect the levels of PI3K, phosphorylated AKT (p-AKT, HIF-1α, VEGF and COX-2. Results: Celecoxib inhibited the proliferation of RPE cells in a dose-dependent manner. Celecoxib suppressed the expression of VEGF at both the mRNA and protein levels and decreased HIF-1α protein expression. HIF-1α activation was regulated by the PI3K/AKT pathway. The celecoxib-induced down-regulation of HIF-1α and VEGF required the suppression of the hypoxia-induced PI3K/AKT pathway. However, the down-regulation of COX-2 did not occur in cells treated with celecoxib. Conclusions: The antiangiogenic effects of celecoxib in RPE cells under hypoxic conditions resulted from the inhibition of HIF-1α and VEGF expression, which may be partly mediated by a COX-2-independent, PI3K/AKT-dependent pathway.

  19. Budesonide suppresses pulmonary antibacterial host defense by down-regulating cathelicidin-related antimicrobial peptide in allergic inflammation mice and in lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Wang Peng

    2013-02-01

    Full Text Available Abstract Background Glucocorticoids are widely regarded as the most effective treatment for asthma. However, the direct impact of glucocorticoids on the innate immune system and antibacterial host defense during asthma remain unclear. Understanding the mechanisms underlying this process is critical to the clinical application of glucocorticoids for asthma therapy. After sensitization and challenge with ovalbumin (OVA, BALB/c mice were treated with inhaled budesonide and infected with Pseudomonas aeruginosa (P. aeruginosa. The number of viable bacteria in enflamed lungs was evaluated, and levels of interleukin-4 (IL-4 and interferon-γ (IFN-γ in serum were measured. A lung epithelial cell line was pretreated with budesonide. Levels of cathelicidin-related antimicrobial peptide (CRAMP were measured by immunohistochemistry and western blot analysis. Intracellular bacteria were observed in lung epithelial cells. Results Inhaled budesonide enhanced lung infection in allergic mice exposed to P. aeruginosa and increased the number of viable bacteria in lung tissue. Higher levels of IL-4 and lower levels of IFN-γ were observed in the serum. Budesonide decreased the expression of CRAMP, increased the number of internalized P. aeruginosa in OVA-challenged mice and in lung epithelial cell lines. These data indicate that inhaled budesonide can suppress pulmonary antibacterial host defense by down-regulating CRAMP in allergic inflammation mice and in cells in vitro. Conclusions Inhaled budesonide suppressed pulmonary antibacterial host defense in an asthmatic mouse model and in lung epithelium cells in vitro. This effect was dependent on the down-regulation of CRAMP.

  20. Triptolide inhibits transcription of hTERT through down-regulation of transcription factor specificity protein 1 in primary effusion lymphoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Long, Cong; Wang, Jingchao [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Guo, Wei [Department of Pathology and Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Wang, Huan; Wang, Chao; Liu, Yu [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Sun, Xiaoping, E-mail: xsun6@whu.edu.cn [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); State Key Laboratory of Virology, Wuhan University, Wuhan, 430072 (China)

    2016-01-01

    Primary effusion lymphoma (PEL) is a rare and aggressive non-Hodgkin's lymphoma. Human telomerase reverse transcriptase (hTERT), a key component responsible for the regulation of telomerase activity, plays important roles in cellular immortalization and cancer development. Triptolide purified from Tripterygium extracts displays a broad-spectrum bioactivity profile, including immunosuppressive, anti-inflammatory, and anti-tumor. In this study, it is investigated whether triptolide reduces hTERT expression and suppresses its activity in PEL cells. The mRNA and protein levels of hTERT were examined by real time-PCR and Western blotting, respectively. The activity of hTERT promoter was determined by Dual luciferase reporter assay. Our results demonstrated that triptolide decreased expression of hTERT at both mRNA and protein levels. Further gene sequence analysis indicated that the activity of hTERT promoter was suppressed by triptolide. Triptolide also reduced the half-time of hTERT. Additionally, triptolide inhibited the expression of transcription factor specificity protein 1(Sp1) in PEL cells. Furthermore, knock-down of Sp1 by using specific shRNAs resulted in down-regulation of hTERT transcription and protein expression levels. Inhibition of Sp1 by specific shRNAs enhanced triptolide-induced cell growth inhibition and apoptosis. Collectively, our results demonstrate that the inhibitory effect of triptolide on hTERT transcription is possibly mediated by inhibition of transcription factor Sp1 in PEL cells. - Highlights: • Triptolide reduces expression of hTERT by decreasing its transcription level. • Triptolide reduces promoter activity and stability of hTERT. • Triptolide down-regulates expression of Sp1. • Special Sp1 shRNAs inhibit transcription and protein expression of hTERT. • Triptolide and Sp1 shRNA2 induce cell proliferation inhibition and apoptosis.

  1. IL-13 promotes collagen accumulation in Crohn's disease fibrosis by down-regulation of fibroblast MMP synthesis: a role for innate lymphoid cells?

    Directory of Open Access Journals (Sweden)

    Jennifer R Bailey

    Full Text Available BACKGROUND: Fibrosis is a serious consequence of Crohn's disease (CD, often necessitating surgical resection. We examined the hypothesis that IL-13 may promote collagen accumulation within the CD muscle microenvironment. METHODS: Factors potentially modulating collagen deposition were examined in intestinal tissue samples from fibrotic (f CD and compared with cancer control (C, ulcerative colitis (UC and uninvolved (u CD. Mechanisms attributable to IL-13 were analysed using cell lines derived from uninvolved muscle tissue and tissue explants. RESULTS: In fCD muscle extracts, collagen synthesis was significantly increased compared to other groups, but MMP-2 was not co-ordinately increased. IL-13 transcripts were highest in fCD muscle compared to muscle from other groups. IL-13 receptor (R α1 was expressed by intestinal muscle smooth muscle, nerve and KIR(+ cells. Fibroblasts from intestinal muscle expressed Rα1, phosphorylated STAT6 in response to IL-13, and subsequently down-regulated MMP-2 and TNF-α-induced MMP-1 and MMP-9 synthesis. Cells with the phenotype KIR(+CD45(+CD56(+/-CD3(- were significantly increased in fCD muscle compared to all other groups, expressed Rα1 and membrane IL-13, and transcribed high levels of IL-13. In explanted CD muscle, these cells did not phosphorylate STAT6 in response to exogenous IL-13. CONCLUSIONS: The data indicate that in fibrotic intestinal muscle of Crohn's patients, the IL-13 pathway is stimulated, involving a novel population of infiltrating IL-13Rα1(+, KIR(+ innate lymphoid cells, producing IL-13 which inhibits fibroblast MMP synthesis. Consequently, matrix degradation is down-regulated and this leads to excessive collagen deposition.

  2. Differential Regulation of cGMP Signaling in Human Melanoma Cells at Altered Gravity: Simulated Microgravity Down-Regulates Cancer-Related Gene Expression and Motility

    Science.gov (United States)

    Ivanova, Krassimira; Eiermann, Peter; Tsiockas, Wasiliki; Hemmersbach, Ruth; Gerzer, Rupert

    2018-03-01

    Altered gravity is known to affect cellular function by changes in gene expression and cellular signaling. The intracellular signaling molecule cyclic guanosine-3',5'-monophosphate (cGMP), a product of guanylyl cyclases (GC), e.g., the nitric oxide (NO)-sensitive soluble GC (sGC) or natriuretic peptide-activated GC (GC-A/GC-B), is involved in melanocyte response to environmental stress. NO-sGC-cGMP signaling is operational in human melanocytes and non-metastatic melanoma cells, whereas up-regulated expression of GC-A/GC-B and inducible NO synthase (iNOS) are found in metastatic melanoma cells, the deadliest skin cancer. Here, we investigated the effects of altered gravity on the mRNA expression of NOS isoforms, sGC, GC-A/GC-B and multidrug resistance-associated proteins 4/5 (MRP4/MRP5) as selective cGMP exporters in human melanoma cells with different metastatic potential and pigmentation. A specific centrifuge (DLR, Cologne Germany) was used to generate hypergravity (5 g for 24 h) and a fast-rotating 2-D clinostat (60 rpm) to simulate microgravity values ≤ 0.012 g for 24 h. The results demonstrate that hypergravity up-regulates the endothelial NOS-sGC-MRP4/MRP5 pathway in non-metastatic melanoma cells, but down-regulates it in simulated microgravity when compared to 1 g. Additionally, the suppression of sGC expression and activity has been suggested to correlate inversely to tumor aggressiveness. Finally, hypergravity is ineffective in highly metastatic melanoma cells, whereas simulated microgravity down-regulates predominantly the expression of the cancer-related genes iNOS and GC-A/GC-B (shown additionally on protein levels) as well as motility in comparison to 1 g. The results suggest that future studies in real microgravity can benefit from considering GC-cGMP signaling as possible factor for melanocyte transformation.

  3. MiR-29b inhibits collagen maturation in hepatic stellate cells through down-regulating the expression of HSP47 and lysyl oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yifei; Ghazwani, Mohammed; Li, Jiang [Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Sun, Ming; Stolz, Donna B. [Department of Cell Biology and Physiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261 (United States); He, Fengtian [Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038 (China); Fan, Jie [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Xie, Wen [Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Li, Song, E-mail: sol4@pitt.edu [Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2014-04-18

    Highlights: • Enhanced HSP47 and LOX expression is associated with decreased miR-29b level in liver fibrosis. • miR-29b down-regulates HSP47 and LOX expression. • The suppression of HSP47 and LOX by miR-29b is mediated by putative sites at their 3′-UTRs. • miR-29b inhibits extracellular LOX activity and collagen maturation. - Abstract: Altered expression of miR-29b is implicated in the pathogenesis and progression of liver fibrosis. We and others previously demonstrated that miR-29b down-regulates the expression of several extracellular-matrix (ECM) genes including Col 1A1, Col 3A1 and Elastin via directly targeting their 3′-UTRs. However, whether or not miR-29b plays a role in the post-translational regulation of ECM biosynthesis has not been reported. Heat shock protein 47 (HSP47) and lysyl oxidase (LOX) are known to be essential for ECM maturation. In this study we have demonstrated that expression of HSP47 and LOX was significantly up-regulated in culture-activated primary rat hepatic stellate cells (HSCs), TGF-β stimulated LX-2 cells and liver tissue of CCl{sub 4}-treated mice, which was accompanied by a decrease of miR-29b level. In addition, over-expression of miR-29b in LX-2 cells resulted in significant inhibition on HSP47 and LOX expression. Mechanistically, miR-29b inhibited the expression of a reporter gene that contains the respective full-length 3′-UTR from HSP47 and LOX gene, and this inhibitory effect was abolished by the deletion of a putative miR-29b targeting sequence from the 3′-UTRs. Transfection of LX-2 cells with miR-29b led to abnormal collagen structure as shown by electron-microscopy, presumably through down-regulation of the expression of molecules involved in ECM maturation including HSP47 and LOX. These results demonstrated that miR-29b is involved in regulating the post-translational processing of ECM and fibril formation.

  4. MiR-29b inhibits collagen maturation in hepatic stellate cells through down-regulating the expression of HSP47 and lysyl oxidase

    International Nuclear Information System (INIS)

    Zhang, Yifei; Ghazwani, Mohammed; Li, Jiang; Sun, Ming; Stolz, Donna B.; He, Fengtian; Fan, Jie; Xie, Wen; Li, Song

    2014-01-01

    Highlights: • Enhanced HSP47 and LOX expression is associated with decreased miR-29b level in liver fibrosis. • miR-29b down-regulates HSP47 and LOX expression. • The suppression of HSP47 and LOX by miR-29b is mediated by putative sites at their 3′-UTRs. • miR-29b inhibits extracellular LOX activity and collagen maturation. - Abstract: Altered expression of miR-29b is implicated in the pathogenesis and progression of liver fibrosis. We and others previously demonstrated that miR-29b down-regulates the expression of several extracellular-matrix (ECM) genes including Col 1A1, Col 3A1 and Elastin via directly targeting their 3′-UTRs. However, whether or not miR-29b plays a role in the post-translational regulation of ECM biosynthesis has not been reported. Heat shock protein 47 (HSP47) and lysyl oxidase (LOX) are known to be essential for ECM maturation. In this study we have demonstrated that expression of HSP47 and LOX was significantly up-regulated in culture-activated primary rat hepatic stellate cells (HSCs), TGF-β stimulated LX-2 cells and liver tissue of CCl 4 -treated mice, which was accompanied by a decrease of miR-29b level. In addition, over-expression of miR-29b in LX-2 cells resulted in significant inhibition on HSP47 and LOX expression. Mechanistically, miR-29b inhibited the expression of a reporter gene that contains the respective full-length 3′-UTR from HSP47 and LOX gene, and this inhibitory effect was abolished by the deletion of a putative miR-29b targeting sequence from the 3′-UTRs. Transfection of LX-2 cells with miR-29b led to abnormal collagen structure as shown by electron-microscopy, presumably through down-regulation of the expression of molecules involved in ECM maturation including HSP47 and LOX. These results demonstrated that miR-29b is involved in regulating the post-translational processing of ECM and fibril formation

  5. Abnormal Cell Properties and Down-Regulated FAK-Src Complex Signaling in B Lymphoblasts of Autistic Subjects

    Science.gov (United States)

    Wei, Hongen; Malik, Mazhar; Sheikh, Ashfaq M.; Merz, George; Ted Brown, W.; Li, Xiaohong

    2011-01-01

    Recent studies suggest that one of the major pathways to the pathogenesis of autism is reduced cell migration. Focal adhesion kinase (FAK) has an important role in neural migration, dendritic morphological characteristics, axonal branching, and synapse formation. The FAK-Src complex, activated by upstream reelin and integrin β1, can initiate a cascade of phosphorylation events to trigger multiple intracellular pathways, including mitogen-activated protein kinase–extracellular signal–regulated kinase and phosphatidylinositol 3-kinase–Akt signaling. In this study, by using B lymphoblasts as a model, we tested whether integrin β1 and FAK-Src signaling are abnormally regulated in autism and whether abnormal FAK-Src signaling leads to defects in B-lymphoblast adhesion, migration, proliferation, and IgG production. To our knowledge, for the first time, we show that protein expression levels of both integrin β1 and FAK are significantly decreased in autistic lymphoblasts and that Src protein expression and the phosphorylation of an active site (Y416) are also significantly decreased. We also found that lymphoblasts from autistic subjects exhibit significantly decreased migration, increased adhesion properties, and an impaired capacity for IgG production. The overexpression of FAK in autistic lymphoblasts countered the adhesion and migration defects. In addition, we demonstrate that FAK mediates its effect through the activation of Src, phosphatidylinositol 3-kinase–Akt, and mitogen-activated protein kinase signaling cascades and that paxillin is also likely involved in the regulation of adhesion and migration in autistic lymphoblasts. PMID:21703394

  6. Dihydromyricetin induces mitochondria-mediated apoptosis in HepG2 cells through down-regulation of the Akt/Bad pathway.

    Science.gov (United States)

    Zhang, Zhuangwei; Zhang, Huiqin; Chen, Shiyong; Xu, Yan; Yao, Anjun; Liao, Qi; Han, Liyuan; Zou, Zuquan; Zhang, Xiaohong

    2017-02-01

    The plant flavonol dihydromyricetin (DHM) was reported to induce apoptosis in human hepatocarcinoma HepG2 cells. This study was undertaken to elucidate the underlying molecular mechanism of action of DHM. In the study, DHM down-regulated Akt expression and its phosphorylation at Ser473, up-regulated the levels of mitochondrial proapoptotic proteins Bax and Bad, and inhibited the phosphorylation of Bad at Ser136 and Ser112. It also inhibited the expression of the antiapoptotic protein Bcl-2 and enhanced the cleavage and activation of caspase-3 as well as the degradation of its downstream target poly(ADP-ribose) polymerase. Our results for the first time suggest that DHM-induced apoptosis in HepG2 cells may come about by the inhibition of the Akt/Bad signaling pathway and stimulation of the mitochondrial apoptotic pathway. Dihydromyricetin may be a promising therapeutic medication for hepatocellular carcinoma. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Enterococcus faecalis Infection and Reactive Oxygen Species Down-Regulates the miR-17-92 Cluster in Gastric Adenocarcinoma Cell Culture

    DEFF Research Database (Denmark)

    Strickertsson, Jesper A B; Rasmussen, Lene Juel; Friis-Hansen, Lennart

    2014-01-01

    Chronic inflammation due to bacterial overgrowth of the stomach predisposes to the development of gastric cancer and is also associated with high levels of reactive oxygen species (ROS). In recent years increasing attention has been drawn to microRNAs (miRNAs) due to their role in the pathogenesis...... of many human diseases including gastric cancer. Here we studied the impact of infection by the gram-positive bacteria Enterococcus faecalis (E. faecalis) on global miRNA expression as well as the effect of ROS on selected miRNAs. Human gastric adenocarcinoma cell line MKN74 was infected with living E...... by living E. faecalis bacteria caused a significant global response in miRNA expression in the MKN74 cell culture. E. faecalis infection as well as ROS stimulation down-regulated the expression of the miR-17-92 cluster. We believe that these changes could reflect a general response of gastric epithelial...

  8. Enterococcus faecalis Infection and Reactive Oxygen Species Down-Regulates the miR-17-92 Cluster in Gastric Adenocarcinoma Cell Culture

    Directory of Open Access Journals (Sweden)

    Jesper A. B. Strickertsson

    2014-08-01

    Full Text Available Chronic inflammation due to bacterial overgrowth of the stomach predisposes to the development of gastric cancer and is also associated with high levels of reactive oxygen species (ROS. In recent years increasing attention has been drawn to microRNAs (miRNAs due to their role in the pathogenesis of many human diseases including gastric cancer. Here we studied the impact of infection by the gram-positive bacteria Enterococcus faecalis (E. faecalis on global miRNA expression as well as the effect of ROS on selected miRNAs. Human gastric adenocarcinoma cell line MKN74 was infected with living E. faecalis for 24 h or for 5 days or with E. faecalis lysate for 5 days. The miRNA expression was examined by microarray analysis using Affymetrix GeneChip miRNA Arrays. To test the effect of ROS, MKN74 cells were treated with 100 mM tert-Butyl hydroperoxide (TBHP. Following 5 days of E. faecalis infection we found 91 differentially expressed miRNAs in response to living bacteria and 2 miRNAs responded to E. faecalis lysate. We verified the down-regulation of the miR-17-92 and miR-106-363 clusters and of other miRNAs involved in the oxidative stress-response by qRT-PCR. We conclude that only infection by living E. faecalis bacteria caused a significant global response in miRNA expression in the MKN74 cell culture. E. faecalis infection as well as ROS stimulation down-regulated the expression of the miR-17-92 cluster. We believe that these changes could reflect a general response of gastric epithelial cells to bacterial infections.

  9. DHT selectively reverses Smad3-mediated/TGF-beta-induced responses through transcriptional down-regulation of Smad3 in prostate epithelial cells.

    Science.gov (United States)

    Song, Kyung; Wang, Hui; Krebs, Tracy L; Wang, Bingcheng; Kelley, Thomas J; Danielpour, David

    2010-10-01

    Androgens suppress TGF-β responses in the prostate through mechanisms that are not fully explored. We have recently reported that 5α-dihydrotestosterone (DHT) suppresses the ability of TGF-β to inhibit proliferation and induce apoptosis of prostatic epithelial cells and provided evidence that such suppression was fueled by transcriptional down-regulation of TGF-β receptor II (ΤβRII). We now show that androgen receptor (AR) activated by DHT suppresses the TGF-β-induced phosphorylation of Sma- and Mad-related protein (Smad)3 in LNCaP cells overexpressing TβRII under the control of a cytomegalovirus promoter, which is not regulated by DHT, suggesting that transcriptional repression of TβRII alone does not fully account for the impact of DHT on TGF-β responses. Instead, we demonstrate that such suppression occurs through loss of total Smad3, resulting from transcriptional suppression of Smad3. We provide evidence that DHT down-regulates the promoter activity of Smad3 in various prostate cancer cell lines, including NRP-154+AR, DU145+AR, LNCaP, and VCaP, at least partly through androgen-dependent inactivation of Sp1. Moreover, we show that overexpression of Smad3 reverses the ability of DHT to protect against TGF-β-induced apoptosis in NRP-154+AR, supporting our model that loss of Smad3 by DHT is involved in the protection against TGF-β-induced apoptosis. Together, these findings suggest that deregulated/enhanced expression and activation of AR in prostate carcinomas may intercept the tumor suppressor function of TGF-β through transcriptional suppression of Smad3, thereby providing new mechanistic insight into the development of castration-resistant prostate cancer.

  10. TGF-β1 stimulates migration of type II endometrial cancer cells by down-regulating PTEN via activation of SMAD and ERK1/2 signaling pathways.

    Science.gov (United States)

    Xiong, Siyuan; Cheng, Jung-Chien; Klausen, Christian; Zhao, Jianfang; Leung, Peter C K

    2016-09-20

    PTEN acts as a tumor suppressor primarily by antagonizing the PI3K/AKT signaling pathway. PTEN is frequently mutated in human cancers; however, in type II endometrial cancers its mutation rate is very low. Overexpression of TGF-β1 and its receptors has been reported to correlate with metastasis of human cancers and reduced survival rates. Although TGF-β1 has been shown to regulate PTEN expression through various mechanisms, it is not yet known if the same is true in type II endometrial cancer. In the present study, we show that treatment with TGF-β1 stimulates the migration of two type II endometrial cancer cell lines, KLE and HEC-50. In addition, TGF-β1 treatment down-regulates both mRNA and protein levels of PTEN. Overexpression of PTEN or inhibition of PI3K abolishes TGF-β1-stimulated cell migration. TGF-β1 induces SMAD2/3 phosphorylation and knockdown of common SMAD4 inhibits the suppressive effects of TGF-β1 on PTEN mRNA and protein. Interestingly, TGF-β1 induces ERK1/2 phosphorylation and pre-treatment with a MEK inhibitor attenuates the suppression of PTEN protein, but not mRNA, by TGF-β1. This study provides important insights into the molecular mechanisms mediating TGF-β1-induced down-regulation of PTEN and demonstrates an important role of PTEN in the regulation of type II endometrial cancer cell migration.

  11. LW-214, a newly synthesized flavonoid, induces intrinsic apoptosis pathway by down-regulating Trx-1 in MCF-7 human breast cells.

    Science.gov (United States)

    Pan, Di; Li, Wei; Miao, Hanchi; Yao, Jing; Li, Zhiyu; Wei, Libin; Zhao, Li; Guo, Qinglong

    2014-02-15

    In this study, the anticancer effect of LW-214, a newly synthesized flavonoid, against MCF-7 human breast cancer cells and the underlying mechanisms were investigated. LW-214 triggered the mitochondrial apoptotic pathway by increasing Bax/Bcl-2 ratio, loss of mitochondrial membrane potential (ΔΨm) and caspase-9 activation, degradation of poly (ADP-ribose) polymerase (PARP), cytochrome c (Cyt c) release and apoptosis-inducing factor (AIF) transposition. Further research revealed that both the reactive oxygen species (ROS) generation and the apoptosis signal regulating kinase 1 (ASK1) activation by LW-214 were induced by down-regulating the thioredoxin-1 (Trx-1) expression. The ROS elevation and ASK1 activation induced a sustained phosphorylation of c-Jun N-terminal kinase (JNK), while SP600125, as known as JNK inhibitor, almost reversed LW-214-induced apoptosis in MCF-7 cells. Overexpression of Trx-1 in MCF-7 cells attenuated LW-214-mediated apoptosis as well as the JNK activation and reversed the expression of mitochondrial apoptosis-related protein. Accordingly, the in vivo study showed that LW-214 exhibited a potential antitumor effect in BALB/c species mice inoculated MCF-7 tumor with low systemic toxicity, and the mechanism was the same as in vitro study. Taken together, these findings indicated that LW-214 may down-regulated Trx-1 function, causing intracellular ROS generation and releasing the ASK1, and lead to JNK activation, which consequently induced the mitochondrial apoptosis in vitro and in vivo. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Down-regulation of GRP78 is associated with the sensitivity of chemotherapy to VP-16 in small cell lung cancer NCI-H446 cells

    International Nuclear Information System (INIS)

    Wang, Yingyan; Wang, Wei; Wang, Siyan; Wang, Jiarui; Shao, Shujuan; Wang, Qi

    2008-01-01

    Chemotherapy resistance remains a major obstacle for the treatment of small cell lung cancer (SCLC). Glucose-regulated protein 78 (GRP78), an endoplasmic reticulum chaperone, plays a critical role in chemotherapy resistance in some cancers. However, whether the suppression of the chaperone can enhance the sensitivity of chemotherapy in SCLC is still unclear. The SCLC NCI-H446 cells were divided into three groups: BAPTA-AM→A23187-treated group, A23187-treated group and control-group. Immunofluorescence, western blot and RT-PCR were used to assess the expression of GRP78 at both protein and mRNA levels. Cell apoptosis and the cell cycle distributions of the cells were analyzed by flow cytometry in order to evaluate the therapeutic sensitivity to VP-16. The expression of GRP78 at both protein and mRNA levels in the BAPTA-AM→A23187-treated cells dramatically decreased as compared to that in both A23187-treated and control groups. After treatment by VP-16, the percentage of apoptotic cells in BAPTA-AM→A23187-treated cells were: 33.4 ± 1.01%, 48.2 ± 1.77%, 53.0 ± 1.43%, 56.5 ± 2.13%, respectively, corresponding to the concentrations of BAPTA-AM 10, 15, 25, 40 μM, which was statistically significant high in comparison with the A23187-treated group and untreated-group (7.18 ± 1.03% and 27.8 ± 1.45%, respectively, p < 0.05). The results from analysis of cell cycle distribution showed that there was a significantly decreased in G 1 phase and a dramatically increased in S phase for the BAPTA-AM→A23187-treated cells as compared with the untreated cells. BAPTA-AM is a strong inhibitor of GRP78 in the NCI-H446 cell line, the down-regulation of GRP78 can significantly increase the sensitivity to VP-16. The suppression of GRP78 may offer a new surrogated therapeutic approach to the clinical management of lung cancer

  13. Down-regulation of parathyroid hormone (PTH) receptors in cultured bone cells is associated with agonist-specific intracellular processing of PTH-receptor complexes.

    Science.gov (United States)

    Teitelbaum, A P; Silve, C M; Nyiredy, K O; Arnaud, C D

    1986-02-01

    Exposure of cultured embryonic chicken bone cells to the PTH agonists bovine (b) PTH-(1-34) and [8Nle, 18Nle, 34Tyr]bPTH-(1-34)amide [bPTH-(1-34)A] reduces the subsequent cAMP response to the hormone and decreases the specific binding of 125I-labeled PTH to these cultures. To determine whether PTH receptor down-regulation in cultured bone cells is mediated by cellular internalization of PTH-receptor complexes, we measured the uptake of [125I]bPTH-(1-34) into an acid-resistant compartment. Uptake of radioactivity into this compartment was inhibited by incubating cells at 4 C with phenylarsineoxide and unlabeled bPTH-(1-34). Tracer uptake into the acid-resistant compartment at any time was directly proportional to total cell binding at 22 C. Thus, it is likely that PTH-receptor complexes are internalized by bone cells. This mechanism may explain the loss of cell surface receptors after PTH pretreatment. To determine whether internalized PTH-receptor complexes are reinserted into the plasma membrane, we measured PTH binding and PTH stimulation of cAMP production after cells were exposed to monensin, a known inhibitor of receptor recycling. Monensin (25 microM) had no effect on PTH receptor number or affinity and did not alter PTH-stimulated cAMP accumulation. However, monensin (25 microM) incubated with cells pretreated with various concentrations of bPTH-(1-34) for 1 h potentiated the effect of the hormone to reduce subsequent [125I]bPTH-(1-34) binding and PTH-stimulated cAMP accumulation by more than 2 orders of magnitude. Chloroquine also potentiated PTH-induced down-regulation of PTH receptors. By contrast, neither agent influenced PTH binding or PTH-stimulated cAMP production in cells pretreated with the antagonist bPTH-(3-34)A. Thus, monensin potentiated PTH receptor loss only in cells pretreated with PTH agonists, indicating that antagonist-occupied receptors may be processed differently from agonist-occupied receptors in bone cells. The data further suggest

  14. UVA-mediated down-regulation of MMP-2 and MT1-MMP coincides with impaired angiogenic phenotype of human dermal endothelial cells

    International Nuclear Information System (INIS)

    Cauchard, Jean-Hubert; Robinet, Arnaud; Poitevin, Stephane; Bobichon, Helene; Maziere, Jean-Claude; Bellon, Georges; Hornebeck, William

    2006-01-01

    UVA irradiation, dose-dependently (5-20 J/cm 2 ), was shown to impair the morphogenic differentiation of human microvascular endothelial cells (HMECs) on Matrigel. Parallely, UVA down-regulated the expression of MMP-2 and MT1-MMP, both at the protein and the mRNA levels. On the contrary, the production of MMP-1 and TIMP-1 by HMECs increased following UVA treatment. The inhibitory effect of UVA on MMP expression and pseudotubes formation was mediated by UVA-generated singlet oxygen ( 1 O 2 ). The contribution of MT1-MMP, but not TIMP-1, to the regulation of HMECs' angiogenic phenotype following UVA irradiation was suggested using elastin-derived peptides and TIMP-1 blocking antibody, respectively

  15. Down-regulation of HSP27 sensitizes TRAIL-resistant tumor cell to TRAIL-induced apoptosis

    DEFF Research Database (Denmark)

    Zhuang, Hongqin; Jiang, Weiwei; Cheng, Wei

    2010-01-01

    Tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) has recently emerged as a cancer therapeutic agent because it preferentially induces apoptosis in human cancer over normal cells. Most tumor cells, including lung cancer cell line A549, unfortunately, are resistant to TRAIL tre...

  16. Down-regulation of procaspase-8 expression by focal adhesion kinase protects HL-60 cells from TRAIL-induced apoptosis

    International Nuclear Information System (INIS)

    Tamagiku, Yuji; Sonoda, Yoshiko; Kunisawa, Mari; Ichikawa, Daiju; Murakami, Yayoi; Aizu-Yokota, Eriko; Kasahara, Tadashi

    2004-01-01

    We have demonstrated that focal adhesion kinase (FAK)-overexpressed (HL-60/FAK) cells have marked resistance against various apoptotic stimuli such as hydrogen peroxide, etoposide, and ionizing radiation compared with the vector-transfected (HL-60/Vect) cells. HL-60/FAK cells are highly resistant to TRAIL-induced apoptosis, while original HL-60 or HL-60/Vect cells were sensitive. TRAIL at 500 ng/ml induced significant DNA fragmentation, activation of caspase-8 and 3, the processing of a proapoptotic BID, and mitochondrial release of cytochrome c in HL-60/Vect cells, whereas no such events were observed in the HL-60/FAK cells. In particular, the expression of procaspase-8 gene and subsequent cleavage of caspase-8 were markedly reduced in HL-60/FAK cells, while expression of TRAIL-receptor 2 and 3, TRADD, and FADD was equivalent in both types of cells. In HL-60/FAK cells, the phosphoinositide 3 (PI3)-kinase/Akt survival pathway was constitutively activated, accompanied by significant induction of inhibitor-of-apoptosis proteins, XIAP, RIP, and Bcl-XL. The introduction of FAK siRNA in HL-60/FAK cells sensitized them against TRAIL-induced apoptosis, confirming that overexpressed FAK downregulates procaspase-8 expression, which subsequently inhibits downstream apoptosis pathway in the HL-60/FAK cells

  17. Down-regulation of long non-coding RNA TUG1 inhibits osteosarcoma cell proliferation and promotes apoptosis.

    Science.gov (United States)

    Zhang, Qiang; Geng, Pei-Liang; Yin, Pei; Wang, Xiao-Lin; Jia, Jin-Peng; Yao, Jie

    2013-01-01

    To investigate the expression level of TUG1 and one of its transcript variants (n377360) in osteosarcoma cells and assess the role of TUG1 in proliferation and apoptosis in the U2OS cell line. TUG1 and n377360 expression levels in patients with osteosarcomas and the U2OS human osteosarcoma cell line were evaluated using real-time quantitative PCR. U2OS cells were transected with TUG1 and n377360 siRNA or non-targeting siRNA. MTS was performed to assess the cell proliferation and flow cytometry was applied to analyze apoptosis. We found significantly higher TUG1 and n377360 expression levels in osteosarcoma tissues compared with matched non-tumorous tissues. In line with this, suppression of TUG1 and n377360 expression by siRNA significantly impaired the cell proliferation potential of osteosarcoma cells. Furthermore, inhibition of TUG1 expression significantly promoted osteosarcoma cell apoptosis. The overexpression of TUG1 and n377360 in osteosarcoma specimens and the functional role of TUG1 and n377360 regarding cell proliferation and apoptosis in an osteosarcoma cell line provided evidence that the use of TUG1 or n377360 may be a viable but an as yet unexplored therapeutic strategy in tumors that over express these factors.

  18. Anti-tumor activity of cabozantinib by FAK down-regulation in human oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Da-Lu Li

    2016-03-01

    Full Text Available Cabozantinib is a tyrosine kinase inhibitor involved in inhibition of cell proliferation and colony formation. We studied anti-cancer properties of cabozantinib in oral squamous cell carcinoma cells. The viability of BHY and HSC-3 cells decreased with increase in cabozantinib concentration and time. The proliferation of cell lines was affected by increasing concentration of cabozantinib from 0.3 to 1.2 μM after 48 hours of treatment. The expression of MET and phosphorylated MET was not affected by cabozantinib treatment. Cabozantinib-treated cells when compared to control, showed concentration-dependent increase in BHY and HSC-3 cells during G2/M phase and decrease in S phase with increase in cabozantinib concentration. Annexin-V/propidium iodide double staining showed that cells with annexin-V increased with the increase in cabozantinib concentration. The expression of apoptosis related proteins cleaved caspase-3 and cleaved-PARP were increased with increase in cabozantinib concentration. It was also found that suppression of FAK activation and expression was dose dependent. The results from this study revealed that cabozantinib can be useful in developing a drug for effective treatment of oral squamous cell carcinoma cells.

  19. Down-regulation of cellular FLICE-inhibitory protein (Long Form contributes to apoptosis induced by Hsp90 inhibition in human lung cancer cells

    Directory of Open Access Journals (Sweden)

    Wang Qilin

    2012-12-01

    Full Text Available Abstract Background Cellular FLICE-Inhibitory Protein (long form, c-FLIPL is a critical negative regulator of death receptor-mediated apoptosis. Overexpression of c-FLIPL has been reported in many cancer cell lines and is associated with chemoresistance. In contrast, down-regulation of c-FLIP may drive cancer cells into cellular apoptosis. This study aims to demonstrate that inhibition of the heat shock protein 90 (Hsp90 either by inhibitors geldanamycin/17-N-Allylamino-17-demethoxygeldanamycin (GA/17-AAG or siRNA technique in human lung cancer cells induces c-FLIPL degradation and cellular apoptosis through C-terminus of Hsp70-interacting protein (CHIP-mediated mechanisms. Methods Calu-1 and H157 cell lines (including H157-c-FLIPL overexpressing c-FLIPL and control cell H157-lacZ were treated with 17-AAG and the cell lysates were prepared to detect the given proteins by Western Blot and the cell survival was assayed by SRB assay. CHIP and Hsp90 α/β proteins were knocked down by siRNA technique. CHIP and c-FLIPL plasmids were transfected into cells and immunoprecipitation experiments were performed to testify the interactions between c-FLIPL, CHIP and Hsp90. Results c-FLIPL down-regulation induced by 17-AAG can be reversed with the proteasome inhibitor MG132, which suggested that c-FLIPL degradation is mediated by a ubiquitin-proteasome system. Inhibition of Hsp90α/β reduced c-FLIPL level, whereas knocking down CHIP expression with siRNA technique inhibited c-FLIPL degradation. Furthermore, c-FLIPL and CHIP were co-precipitated in the IP complexes. In addition, overexpression of c-FLIPL can rescue cancer cells from apoptosis. When 17-AAG was combined with an anti-cancer agent celecoxib(CCB, c-FLIPL level declined further and there was a higher degree of caspase activation. Conclusion We have elucidated c-FLIPL degradation contributes to apoptosis induced by Hsp90 inhibition, suggesting c-FLIP and Hsp90 may be the promising combined targets

  20. Down-regulation of TCF21 by hypermethylation induces cell proliferation, migration and invasion in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Youyi [Department of Oncology, Xiangya Hospital Central South University (China); Duan, Huaxin [Department of Oncology, Hunan Provincial People' s Hospital (China); The First Affiliated Hospital of Hunan Normal University (China); Duan, Chaojun [Cental Lab of Xiangya Hospital Central South University (China); Zhou, Rongrong; He, Yuxiang; Tu, Qingsong [Department of Oncology, Xiangya Hospital Central South University (China); Shen, Liangfang, E-mail: 3153559525@qq.com [Department of Oncology, Xiangya Hospital Central South University (China)

    2016-01-15

    Epigenetic alteration induced loss function of the transcription factor 21 (TCF21) has been associated with different types of human cancers. However, the epigenetic regulation and molecular functions of TCF21 in colorectal cancer (CRC) remain unknown. In this study, TCF21 expression levels and methylation status of its promoter region in CRC cell lines (n = 5) and CRC tissues (n = 151) as well as normal colorectal mucosa (n = 30) were assessed by RTq-PCR and methylation analysis (methylation specific PCR, MSP and bisulfite sequencing PCR, BSP), respectively. The cellular functions of TCF21 on CRC cell proliferation, apoptosis, invasion and migration were investigated in vitro. Our data revealed that TCF21 was frequently silenced by promoter hypermethylation in both tested CRC cell lines and primary CRC, and correlation analysis between methylation status and clinicopathologic parameters found that TCF21 methylation was significantly correlated with lymph node invasion (P = 0.013), while no significant correlation was found in other parameters. In addition, demethylation treatment resulted in re-expression of TCF21 in CRC cell lines, and cellular function experiments revealed that restoration of TCF21 inhibited CRC cell proliferation, promoted apoptosis and suppressed cell invasion and migration, suggesting that TCF21 may function as a tumor suppressor gene, which is downregulated through promoter hypermethylation in CRC development. - Highlights: • TCF21 was frequently silenced by promoter DNA methylation in CRC cells. • TCF21 was frequently methylated in primary CRC and significantly correlated with metastasis. • Restoration of TCF21 promotes cell apoptosis of CRC cells. • Restoration of TCF21 inhibits cell invasion and migration of CRC cells.

  1. Down-regulation of TCF21 by hypermethylation induces cell proliferation, migration and invasion in colorectal cancer

    International Nuclear Information System (INIS)

    Dai, Youyi; Duan, Huaxin; Duan, Chaojun; Zhou, Rongrong; He, Yuxiang; Tu, Qingsong; Shen, Liangfang

    2016-01-01

    Epigenetic alteration induced loss function of the transcription factor 21 (TCF21) has been associated with different types of human cancers. However, the epigenetic regulation and molecular functions of TCF21 in colorectal cancer (CRC) remain unknown. In this study, TCF21 expression levels and methylation status of its promoter region in CRC cell lines (n = 5) and CRC tissues (n = 151) as well as normal colorectal mucosa (n = 30) were assessed by RTq-PCR and methylation analysis (methylation specific PCR, MSP and bisulfite sequencing PCR, BSP), respectively. The cellular functions of TCF21 on CRC cell proliferation, apoptosis, invasion and migration were investigated in vitro. Our data revealed that TCF21 was frequently silenced by promoter hypermethylation in both tested CRC cell lines and primary CRC, and correlation analysis between methylation status and clinicopathologic parameters found that TCF21 methylation was significantly correlated with lymph node invasion (P = 0.013), while no significant correlation was found in other parameters. In addition, demethylation treatment resulted in re-expression of TCF21 in CRC cell lines, and cellular function experiments revealed that restoration of TCF21 inhibited CRC cell proliferation, promoted apoptosis and suppressed cell invasion and migration, suggesting that TCF21 may function as a tumor suppressor gene, which is downregulated through promoter hypermethylation in CRC development. - Highlights: • TCF21 was frequently silenced by promoter DNA methylation in CRC cells. • TCF21 was frequently methylated in primary CRC and significantly correlated with metastasis. • Restoration of TCF21 promotes cell apoptosis of CRC cells. • Restoration of TCF21 inhibits cell invasion and migration of CRC cells.

  2. Growth inhibition of human breast cancer cells and down-regulation of ODC1 and ADA genes by Nepeta binaloudensis

    Directory of Open Access Journals (Sweden)

    Akbar Safipour Afshar

    Full Text Available ABSTRACT Nepeta binaloudensis Jamzad, Lamiaceae, is a rare medicinal plant endemic to Iran. In spite of many studies about the chemical constituents and antibacterial effects of this species, no report has been provided about its cytotoxic and anticancer activities. In this study we have evaluated the effects of EtOH 70%, hexane and aqueous extracts of N. binaloudensis on the cell proliferation and n-hexane extract on the expression of adenosine deaminase and ornithine decarboxylase 1 genes in breast cancer cell lines (MCF-7, MDA-MB-231 compared to non-cancer line (MCF-10A. The cell lines were subjected to increasing doses of the extracts ranging from 10 to 320 µg/ml. Cell viability was quantified by MTS assay. Expression of adenosine deaminase and ornithine decarboxylase 1 genes was analyzed by real time PCR. N. binaloudensis inhibited the growth of malignant cells in a time and dose-dependent manner. Among extracts of N. binaloudensis, the hexane extract was found to be more toxic compared to other extracts. Results showed a marked decrease in the expression of ornithine decarboxylase 1 and adenosine deaminase genes in cancer cell lines. At 60 µg/ml concentration of N. binaloudensis hexane extract ornithine decarboxylase 1 and adenosine deaminase mRNA expression were reduced 4.9 fold and 3.5 fold in MCF-7 cell line and 3.6 fold and 2.6 fold in MDA-MB-231 cell line compared to control, respectively. The result of our study highlights the potential influences of N. binaloudensis hexane extract on ornithine decarboxylase 1 and adenosine deaminase genes expression in breast cancer cells and its relation to inhibition of cancer cell growth.

  3. p38 MAPK-Mediated Bmi-1 Down-Regulation and Defective Proliferation in ATM-Deficient Neural Stem Cells Can Be Restored by Akt Activation

    Science.gov (United States)

    Kim, Jeesun; Hwangbo, Jeon; Wong, Paul K. Y.

    2011-01-01

    A-T (ataxia telangiectasia) is a genetic disease caused by a mutation in the Atm (A-T mutated) gene that leads to neurodegeneration. Despite an increase in the numbers of studies in this area in recent years, the mechanisms underlying neurodegeneration in human A-T are still poorly understood. Previous studies demonstrated that neural stem cells (NSCs) isolated from the subventricular zone (SVZ) of Atm -/- mouse brains show defective self-renewal and proliferation, which is accompanied by activation of chronic p38 mitogen-activated protein kinase (MAPK) and a lower level of the polycomb protein Bmi-1. However, the mechanism underlying Bmi-1 down-regulation and its relevance to defective proliferation in Atm-/- NSCs remained unclear. Here, we show that over-expression of Bmi-1 increases self-renewal and proliferation of Atm-/- NSCs to normal, indicating that defective proliferation in Atm-/- NSCs is a consequence of down-regulation of Bmi-1. We also demonstrate that epidermal growth factor (EGF)-induced Akt phosphorylation renders Bmi-1 resistant to the proteasomal degradation, leading to its stabilization and accumulation in the nucleus. However, inhibition of the Akt-dependent Bmi-1 stabilizing process by p38 MAPK signaling reduces the levels of Bmi-1. Treatment of the Atm-/- NSCs with a specific p38 MAPK inhibitor SB203580 extended Bmi-1 posttranscriptional turnover and H2A ubiquitination in Atm-/- NSCs. Our observations demonstrate the molecular basis underlying the impairment of self-renewal and proliferation in Atm-/- NSCs through the p38 MAPK-Akt-Bmi-1-p21 signaling pathway. PMID:21305053

  4. Down-regulation of mTOR leads to up-regulation of osteoprotegerin in bone marrow cells

    International Nuclear Information System (INIS)

    Mogi, Makio; Kondo, Ayami

    2009-01-01

    Osteoprotegerin (OPG)/osteoclastogenesis inhibitory factor regulates bone mass by inhibiting osteoclastic bone resorption. mTOR, which is the mammalian target of rapamycin, is a kinase and central regulator of cell growth, proliferation, and survival. By using Rapamycin, we studied whether mTOR pathway is associated with OPG protein production in the mouse bone marrow-derived stromal cell line ST2. Rapamycin markedly increased the level of soluble OPG in ST2 cells. This antibiotic treatment resulted in the suppression of phosphorylation of mTOR. Rapamycin had no effects on the proliferation, differentiation, or apoptosis of the cells. Treatment with bone morphogenetic protein-4, which can induce OPG protein in ST2 cells, also resulted in a decrease in the density of the phospho-mTOR-band, suggesting that the suppression of the phospho-mTOR pathway is necessary for OPG production in ST2 cells. Thus, suitable suppression of mTOR phosphorylation is a necessary requirement for OPG production in bone marrow stromal cells.

  5. Lycopene inhibits regulator of calcineurin 1-mediated apoptosis by reducing oxidative stress and down-regulating Nucling in neuronal cells.

    Science.gov (United States)

    Lim, Seiyoung; Hwang, Sinwoo; Yu, Ji Hoon; Lim, Joo Weon; Kim, Hyeyoung

    2017-05-01

    Regulator of calcineurin 1 (RCAN1) is located on the Down syndrome critical region (DSCR) locus in human chromosome 21. Oxidative stress and overexpression of RCAN1 are implicated in neuronal impairment in Down's syndrome (DS) and Alzheimer's disease (AD). Serum level of lycopene, an antioxidant pigment, is low in DS and AD patients, which may be related to neuronal damage. The present study is to investigate whether lycopene inhibits apoptosis by reducing ROS levels, NF-κB activation, expression of the apoptosis regulator Nucling, cell viability, and indices of apoptosis (cytochrome c release, caspase-3 activation) in RCAN1-overexpressing neuronal cells. Cells transfected with either pcDNA or RCAN1 were treated with or without lycopene. Lycopene decreased intracellular and mitochondrial ROS levels, NF-κB activity, and Nucling expression while it reversed decrease in mitochondrial membrane potential, mitochondrial respiration, and glycolytic function in RCAN1-overexpressing cells. Lycopene inhibited cell death, DNA fragmentation, caspase-3 activation, and cytochrome c release in RCAN1-overexpressing cells. Lycopene inhibits RCAN1-mediated apoptosis by reducing ROS levels and by inhibiting NF-κB activation, Nucling induction, and the increase in apoptotic indices in neuronal cells. Consumption of lycopene-rich foods may prevent oxidative stress-associated neuronal damage in some pathologic conditions such as DS or AD. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Down-regulation of UDP-glucose dehydrogenase affects glycosaminoglycans synthesis and motility in HCT-8 colorectal carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tsung-Pao; Pan, Yun-Ru; Fu, Chien-Yu; Chang, Hwan-You, E-mail: hychang@life.nthu.edu.tw

    2010-10-15

    UDP-glucose dehydrogenase (UGDH) catalyzes oxidation of UDP-glucose to yield UDP-glucuronic acid, a precursor of hyaluronic acid (HA) and other glycosaminoglycans (GAGs) in extracellular matrix. Although association of extracellular matrix with cell proliferation and migration has been well documented, the importance of UGDH in these behaviors is not clear. Using UGDH-specific small interference RNA to treat HCT-8 colorectal carcinoma cells, a decrease in both mRNA and protein levels of UGDH, as well as the cellular UDP-glucuronic acid and GAG production was observed. Treatment of HCT-8 cells with either UGDH-specific siRNA or HA synthesis inhibitor 4-methylumbelliferone effectively delayed cell aggregation into multicellular spheroids and impaired cell motility in both three-dimensional collagen gel and transwell migration assays. The reduction in cell aggregation and migration rates could be restored by addition of exogenous HA. These results indicate that UGDH can regulate cell motility through the production of GAG. The enzyme may be a potential target for therapeutic intervention of colorectal cancers.

  7. Down-regulation of the expression of CCAAT/enhancer binding protein α gene in cervical squamous cell carcinoma

    International Nuclear Information System (INIS)

    Pan, Zemin; Shao, Renfu; Zheng, Weinan; Zhang, Jinli; Gao, Rui; Li, Dongmei; Guo, Xiaoqing; Han, Hu; Li, Feng; Qu, Shen

    2014-01-01

    Cervical carcinoma is the second most common cancer and is an important cause of death in women worldwide. CCAAT/enhancer binding proteins (C/EBPs) are a family of transcription factors that regulate cellular differentiation and proliferation in a variety of tissues. However, the role of C/EBPα gene in cervical cancer is still not clear. We investigated the expression of C/EBPα gene in cervical squamous cell carcinoma. C/EBPα mRNA level was measured by real-time quantitative RT-PCR in cervical cancer tissues and their adjacent normal tissues. C/EBPα protein level was measured by immunohistochemistry. Methylation in the promoter of C/EBPα gene was detected by MALDI TOF MassARRAY. We transfected HeLa cells with C/EBPα expression vector. C/EBPα expression in HeLa cells was examined and HeLa cell proliferation was measured by MTT assay and HeLa cells migration was analyzed by matrigel-coated transwell migration assays. There were significant difference in C/EBPα protein expression between chronic cervicitis and cervical carcinoma (P < 0.001). CEBPα mRNA level was significantly lower in cervical cancer tissues than in normal cervical tissues (P < 0.01). Methylation of the promoter of CEBPα gene in CpG 5, CpG-14.15, CpG-19.20 were significantly higher in cervical cancer than in normal cervical tissues (P < 0.05, P < 0.01, P < 0.05, respectively). CEBPα pcDNA3.1 construct transfected into HeLa cells inhibited cell proliferation and decreased cell migration. Our results indicate that reduced C/EBPα gene expression may play a role in the development of cervical squamous cell carcinoma

  8. Istaroxime Inhibits Motility and Down-Regulates Orai1 Expression, SOCE and FAK Phosphorylation in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Matias Julian Stagno

    2017-07-01

    Full Text Available Background/Aims: Istaroxime is a validated inotropic Na+/K+ ATPase inhibitor currently in development for the treatment of various cardiac conditions. Recent findings established that this steroidal drug exhibits potent apoptotic responses in prostate tumors in vitro and in vivo, by affecting key signaling orchestrating proliferation and apoptosis, such as c-Myc and caspase 3, Rho GTPases and actin cytoskeleton dynamics. In the present study we examined whether istaroxime is affecting cell motility and analyzed the underlying mechanism in prostate tumor cells. Methods: Migration was assessed by transwell and wound healing assays, Orai1 and Stim1 abundance by RT-PCR and confocal immunofluorescence microscopy, Fura-2 fluorescence was utilized to determine intracellular Ca2+ and Western blotting for FAK/pFAK measurements. Results: We observed strong inhibition of cell migration in istaroxime treated DU-145 prostate cancer cells. Istaroxime further decreased Orai1 and Stim1 transcript levels and downregulated Orai1 protein expression. Moreover, SOCE was significantly decreased upon istaroxime treatment. Furthermore, istaroxime strikingly diminished phosphorylated FAK levels. Interestingly, the efficacy of istaroxime on the inhibition of DU-145 cell migration was further enhanced by blocking Orai1 with 2-APB and FAK with the specific inhibitor PF-00562271. These results provide strong evidence that istaroxime prevents cell migration and motility of DU-145 prostate tumor cells, an effect at least partially attributed to Orai1 downregulation and FAK de-activation. Conclusion: Collectively our results indicate that this enzyme inhibitor, besides its pro-apoptotic action, affects motility of cancer cells, supporting its potential role as a strong candidate for further clinical cancer drug development.

  9. Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA

    International Nuclear Information System (INIS)

    Jiang, Jiahua; Jedinak, Andrej; Sliva, Daniel

    2011-01-01

    Highlights: ► Ganodermanontriol (GDNT), a Ganoderma mushroom alcohol, inhibits growth of breast cancer cells. ► CDC20 is over-expressed in tumors but not in the tumor surrounding tissue in breast cancer patients. ► GDNT inhibits expression of CDC20 in breast cancer cells. ► GDNT inhibits cell adhesion, cell migration and cell invasion of breast cancer cells. ► GDNT inhibits secretion of uPA and down-regulates expression of uPAR in breast cancer cells. -- Abstract: Ganoderma lucidum is a medicinal mushroom that has been recognized by Traditional Chinese Medicine (TCM). Although some of the direct anticancer activities are attributed to the presence of triterpenes—ganoderic and lucidenic acids—the activity of other compounds remains elusive. Here we show that ganodermanontriol (GDNT), a Ganoderma alcohol, specifically suppressed proliferation (anchorage-dependent growth) and colony formation (anchorage-independent growth) of highly invasive human breast cancer cells MDA-MB-231. GDNT suppressed expression of the cell cycle regulatory protein CDC20, which is over-expressed in precancerous and breast cancer cells compared to normal mammary epithelial cells. Moreover, we found that CDC20 is over-expressed in tumors when compared to the tissue surrounding the tumor in specimens from breast cancer patients. GDNT also inhibited invasive behavior (cell adhesion, cell migration, and cell invasion) through the suppression of secretion of urokinase-plasminogen activator (uPA) and inhibited expression of uPA receptor. In conclusion, mushroom GDNT is a natural agent that has potential as a therapy for invasive breast cancers.

  10. Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiahua; Jedinak, Andrej [Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Sliva, Daniel, E-mail: dsliva@iuhealth.org [Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN (United States); Indiana University Simon Cancer Center, School of Medicine, Indiana University, Indianapolis, IN (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Ganodermanontriol (GDNT), a Ganoderma mushroom alcohol, inhibits growth of breast cancer cells. Black-Right-Pointing-Pointer CDC20 is over-expressed in tumors but not in the tumor surrounding tissue in breast cancer patients. Black-Right-Pointing-Pointer GDNT inhibits expression of CDC20 in breast cancer cells. Black-Right-Pointing-Pointer GDNT inhibits cell adhesion, cell migration and cell invasion of breast cancer cells. Black-Right-Pointing-Pointer GDNT inhibits secretion of uPA and down-regulates expression of uPAR in breast cancer cells. -- Abstract: Ganoderma lucidum is a medicinal mushroom that has been recognized by Traditional Chinese Medicine (TCM). Although some of the direct anticancer activities are attributed to the presence of triterpenes-ganoderic and lucidenic acids-the activity of other compounds remains elusive. Here we show that ganodermanontriol (GDNT), a Ganoderma alcohol, specifically suppressed proliferation (anchorage-dependent growth) and colony formation (anchorage-independent growth) of highly invasive human breast cancer cells MDA-MB-231. GDNT suppressed expression of the cell cycle regulatory protein CDC20, which is over-expressed in precancerous and breast cancer cells compared to normal mammary epithelial cells. Moreover, we found that CDC20 is over-expressed in tumors when compared to the tissue surrounding the tumor in specimens from breast cancer patients. GDNT also inhibited invasive behavior (cell adhesion, cell migration, and cell invasion) through the suppression of secretion of urokinase-plasminogen activator (uPA) and inhibited expression of uPA receptor. In conclusion, mushroom GDNT is a natural agent that has potential as a therapy for invasive breast cancers.

  11. Tivantinib (ARQ-197) exhibits anti-tumor activity with down-regulation of FAK in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Xi, Wei-Hong; Yang, Li-Yun; Cao, Zhong-Yi; Qian, Yong

    2015-01-01

    Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide and the 5 years survival rate of the patients is about 60% in the USA, due to acquired chemotherapeutic resistance and metastasis of the disease. In this study, we found that tivantinib, a selective MET inhibitor, suppresses OCSS cell proliferation and colony formation, however, anti-tumor activities induced by tivantinib are independent of the inhibition of MET signaling pathway. In addition, tivantinib cause G2/M cell cycle arrest and caspases-dependent apoptosis in OSCC cell lines. We also found that tivantinib dose-dependently suppressed the activation and expression of FAK. In all, these data suggested that tivantinib may be developed as a chemotherapeutic agent to effectively treat certain cancers including OSCC. - Highlights: • Tivantinib suppresses OSCC cell growth independent of the inhibition of HGF/MET signaling pathway. • Tivantinib blocks cell cycle and induces caspases-mediated apoptosis. • Tivantinib elicits its anti-tumor activity with the inhibition of FAK signaling pathway

  12. Tivantinib (ARQ-197) exhibits anti-tumor activity with down-regulation of FAK in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Wei-Hong [Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006 (China); Yang, Li-Yun [Department of Blood Transfusion, First Affiliated Hospital, Nanchang University, Nanchang 330006 (China); Cao, Zhong-Yi, E-mail: m18070383032@163.com [Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006 (China); Qian, Yong, E-mail: yfykqkqy@163.com [Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006 (China)

    2015-02-20

    Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide and the 5 years survival rate of the patients is about 60% in the USA, due to acquired chemotherapeutic resistance and metastasis of the disease. In this study, we found that tivantinib, a selective MET inhibitor, suppresses OCSS cell proliferation and colony formation, however, anti-tumor activities induced by tivantinib are independent of the inhibition of MET signaling pathway. In addition, tivantinib cause G2/M cell cycle arrest and caspases-dependent apoptosis in OSCC cell lines. We also found that tivantinib dose-dependently suppressed the activation and expression of FAK. In all, these data suggested that tivantinib may be developed as a chemotherapeutic agent to effectively treat certain cancers including OSCC. - Highlights: • Tivantinib suppresses OSCC cell growth independent of the inhibition of HGF/MET signaling pathway. • Tivantinib blocks cell cycle and induces caspases-mediated apoptosis. • Tivantinib elicits its anti-tumor activity with the inhibition of FAK signaling pathway.

  13. Overexpression of long intergenic noncoding RNA LINC00312 inhibits the invasion and migration of thyroid cancer cells by down-regulating microRNA-197-3p.

    Science.gov (United States)

    Liu, Kai; Huang, Wen; Yan, Dan-Qing; Luo, Qing; Min, Xiang

    2017-08-31

    The study evaluated the ability of long intergenic noncoding RNA LINC00312 (LINC00312) to influence the proliferation, invasion, and migration of thyroid cancer (TC) cells by regulating miRNA-197-3p. TC tissues and adjacent normal tissues were collected from 211 TC patients. K1 (papillary TC), SW579 (squamous TC), and 8505C (anaplastic TC) cell lines were assigned into a blank, negative control (NC), LINC00312 overexpression, miR-197-3p inhibitors, and LINC00312 overexpression + miR-197-3p mimics group. The expression of LINC00312, miR-197-3p , and p120 were measured using quantitative real-time PCR (qRT-PCR) and Western blotting. Cell proliferation was assessed via CCK8 assay, cell invasion through the scratch test, and cell migration via Transwell assay. In comparison with adjacent normal tissues, the expression of LINC00312 is down-regulated and the expression of miR-197-3p is up-regulated in TC tissues. The dual luciferase reporter gene assay confirmed that P120 is a target of miR-197-3p The expression of LINC00312 and p120 was higher in the LINC00312 overexpression group than in the blank and NV groups. However, the expression of miR-197-3p was lower in the LINC00312 overexpression group than in the blank and NC groups. The miR-197-3p inhibitors group had a higher expression of miR-197-3p , but a lower expression of p120 than the blank and NC groups. The LINC00312 overexpression and miR-197-3p inhibitor groups had reduced cell proliferation, invasion and migration than the blank and NC groups. These results indicate that a LINC00312 overexpression inhibits the proliferation, invasion, and migration of TC cells and that this can be achieved by down-regulating miR-197-3p . © 2017 The Author(s).

  14. P02.04MICRORNA-MEDIATED DOWN-REGULATION OF NKG2D LIGAND EXPRESSION REDUCES GLIOMA CELL IMMUNOGENICITY

    Science.gov (United States)

    Codo, P.; Weller, M.; Meister, G.; Szabo, E.; Steinle, A.; Wolter, M.; Reifenberger, G.; Roth, P.

    2014-01-01

    Glioblastoma is a primary brain tumor with a dismal prognosis despite comprehensive therapeutic regimens. It is characterized by diffuse infiltration of the surrounding healthy brain tissue, well-adapted to hypoxic conditions and regarded as paradigmatic for tumor-associated immunosuppression. One of the major activating receptors of natural killer (NK) cells is NKG2D. It binds to at least 8 ligands (NKG2DL) which are induced after malignant transformation and cellular stress. Regulation of NKG2DL expression may be affected by endogenous RNA molecules known as microRNA (miRNA). Here, we aimed at characterizing the role of miRNA in the control of NKG2DL expression in glioma cells. We selected 6 miRNA that were described or predicted to target NKG2DL. Three of the miRNA candidates, miR-20a, miR-93 and miR-106b, were expressed in glioma cell lines and were also detected in glioblastoma tissue specimens. Silencing of these miRNA with locked nucleic acid (LNA) molecules resulted in an up-regulation of NKG2DL cell surface levels which translated into increased sensitivity to immune cell killing. This effect was reversed by neutralizing NKG2D antibodies, confirming that enhanced immune cell lysis upon miRNA silencing was mediated through the NKG2D system. We conclude that the expression of several miRNA may contribute to the immune escape of glioma cells at the level of the NKG2D system. Therapeutic targeting of miRNA that regulate NKG2DL levels may therefore represent a promising approach to allow for more potent immune responses against glioblastoma.

  15. Curcumin inhibits cholesterol uptake in Caco-2 cells by down-regulation of NPC1L1 expression

    Directory of Open Access Journals (Sweden)

    Duan Rui-Dong

    2010-04-01

    Full Text Available Abstract Background Curcumin is a polyphenol and the one of the principle curcuminoids of the spice turmeric. Its antioxidant, anti-cancer and anti-inflammatory effects have been intensively studied. Previous in vivo studies showed that administration of curcumin also decreased cholesterol levels in the blood, and the effects were considered to be related to upregulation of LDL receptor. However, since plasma cholesterol levels are also influenced by the uptake of cholesterol in the gut, which is mediated by a specific transporter Niemann-Pick Cl-like 1 (NPC1L1 protein, the present study is to investigate whether curcumin affects cholesterol uptake in the intestinal Caco-2 cells. Methods Caco-2 cells were cultured to confluence. The micelles composed of bile salt, monoolein, and 14C-cholesterol were prepared. We first incubated the cells with the micelles in the presence and absence of ezetimibe, the specific inhibitor of NPC1L1, to see whether the uptake of the cholesterol in the cells was mediated by NPC1L1. We then pretreated the cells with curcumin at different concentrations for 24 h followed by examination of the changes of cholesterol uptake in these curcumin-treated cells. Finally we determined whether curcumin affects the expression of NPC1L1 by both Western blot analysis and qPCR quantification. Results We found that the uptake of radioactive cholesterol in Caco-2 cells was inhibited by ezetimibe in a dose-dependent manner. The results indicate that the uptake of cholesterol in this study was mediated by NPC1L1. We then pretreated the cells with 25-100 μM curcumin for 24 h and found that such a treatment dose-dependently inhibited cholesterol uptake with 40% inhibition obtained by 100 μM curcumin. In addition, we found that the curcumin-induced inhibition of cholesterol uptake was associated with significant decrease in the levels of NPC1L1 protein and NPC1L1 mRNA, as analyzed by Western blot and qPCR, respectively. Conclusion

  16. Curcumin inhibits cholesterol uptake in Caco-2 cells by down-regulation of NPC1L1 expression.

    Science.gov (United States)

    Feng, Dan; Ohlsson, Lena; Duan, Rui-Dong

    2010-04-19

    Curcumin is a polyphenol and the one of the principle curcuminoids of the spice turmeric. Its antioxidant, anti-cancer and anti-inflammatory effects have been intensively studied. Previous in vivo studies showed that administration of curcumin also decreased cholesterol levels in the blood, and the effects were considered to be related to upregulation of LDL receptor. However, since plasma cholesterol levels are also influenced by the uptake of cholesterol in the gut, which is mediated by a specific transporter Niemann-Pick Cl-like 1 (NPC1L1) protein, the present study is to investigate whether curcumin affects cholesterol uptake in the intestinal Caco-2 cells. Caco-2 cells were cultured to confluence. The micelles composed of bile salt, monoolein, and 14C-cholesterol were prepared. We first incubated the cells with the micelles in the presence and absence of ezetimibe, the specific inhibitor of NPC1L1, to see whether the uptake of the cholesterol in the cells was mediated by NPC1L1. We then pretreated the cells with curcumin at different concentrations for 24 h followed by examination of the changes of cholesterol uptake in these curcumin-treated cells. Finally we determined whether curcumin affects the expression of NPC1L1 by both Western blot analysis and qPCR quantification. We found that the uptake of radioactive cholesterol in Caco-2 cells was inhibited by ezetimibe in a dose-dependent manner. The results indicate that the uptake of cholesterol in this study was mediated by NPC1L1. We then pretreated the cells with 25-100 muM curcumin for 24 h and found that such a treatment dose-dependently inhibited cholesterol uptake with 40% inhibition obtained by 100 muM curcumin. In addition, we found that the curcumin-induced inhibition of cholesterol uptake was associated with significant decrease in the levels of NPC1L1 protein and NPC1L1 mRNA, as analyzed by Western blot and qPCR, respectively. Curcumin inhibits cholesterol uptake through suppression of NPC1L1

  17. Melittin restores PTEN expression by down-regulating HDAC2 in human hepatocelluar carcinoma HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    Full Text Available Melittin is a water-soluble toxic peptide derived from the venom of the bee. Although many studies show the anti-tumor activity of melittin in human cancer including glioma cells, the underlying mechanisms remain elusive. Here the effect of melittin on human hepatocelluar carcinoma HepG2 cell proliferation in vitro and further mechanisms was investigated. We found melittin could inhibit cell proliferation in vitro using Flow cytometry and MTT method. Besides, we discovered that melittin significantly downregulated the expressions of CyclinD1 and CDK4. Results of western Blot and Real-time PCR analysis indicated that melittin was capable to upregulate the expression of PTEN and attenuate histone deacetylase 2 (HDAC2 expression. Further studies demonstrated that knockdown of HDAC2 completely mimicked the effects of melittin on PTEN gene expression. Conversely, it was that the potential utility of melittin on PTEN expression was reversed in cells treated with a recombinant pEGFP-C2-HDAC2 plasmid. In addition, treatment with melittin caused a downregulation of Akt phosphorylation, while overexpression of HDAC2 promoted Akt phosphorylation. These findings suggested that the inhibitory of cell growth by melittin might be led by HDAC2-mediated PTEN upregulation, Akt inactivation, and inhibition of the PI3K/Akt signaling pathways.

  18. Cornuside inhibits mast cell-mediated allergic response by down-regulating MAPK and NF-κB signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liangchang [Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Yanbian University, Yanji, 133002 (China); Jin, Guangyu [Yanbian University Hospital, Medicine College, Yanbian University, Yanji, 133000 (China); Jiang, Jingzhi [Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Yanbian University, Yanji, 133002 (China); Zheng, Mingyu; Jin, Yan [College of Pharmacy, Yanbian University, Yanji, 133002 (China); Lin, Zhenhua [Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, 133002 (China); Li, Guangzhao [Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Yanbian University, Yanji, 133002 (China); Choi, Yunho, E-mail: why76@jbnu.ac.kr [Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Yan, Guanghai, E-mail: ghyan2015@sina.com [Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Yanbian University, Yanji, 133002 (China)

    2016-04-29

    Aims: The present study is to investigate the effect of cornuside on mast cell-mediated allergic response, as well as its possible mechanisms of action. Methods: To test the anti-allergic effects of cornuside in vivo, local extravasation was induced by local injection of anti-dinitrophenyl immunoglobulin E (IgE) followed by intravenous antigenic challenge in passive cutaneous anaphylaxis model rats. Mast cell viability was determined using MTT assay. Histamine content from rat peritoneal mast cells was measured by the radioenzymatic method. To investigate the mechanisms by which cornuside affects the reduction of histamine release, the levels of calcium uptake were measured. To examine whether cornuside affects the expression of pro-inflammatory cytokines, Western blotting and ELISA were carried out. Results: Oral administration of cornuside inhibited passive cutaneous anaphylaxis in rats. Presence of cornuside attenuated IgE-induced histamine release from rat peritoneal mast cells. The inhibitory effect of cornuside on histamine release was mediated by the modulation of intracellular calcium. In addition, cornuside decreased phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-stimulated production and secretion of pro-inflammatory cytokines such as TNF-α and IL-6 in human mast cells. The inhibitory effect of cornuside on pro-inflammatory cytokines was dependent on nuclear factor-κB and p38 mitogen-activated protein kinase. Conclusions: The present study provides evidence that cornuside inhibits mast cell-derived inflammatory allergic reactions by blocking histamine release and pro-inflammatory cytokine expression. Furthermore, in vivo and in vitro anti-allergic effects of cornuside suggest a possible therapeutic application of this agent in inflammatory allergic diseases.

  19. Cornuside inhibits mast cell-mediated allergic response by down-regulating MAPK and NF-κB signaling pathways

    International Nuclear Information System (INIS)

    Li, Liangchang; Jin, Guangyu; Jiang, Jingzhi; Zheng, Mingyu; Jin, Yan; Lin, Zhenhua; Li, Guangzhao; Choi, Yunho; Yan, Guanghai

    2016-01-01

    Aims: The present study is to investigate the effect of cornuside on mast cell-mediated allergic response, as well as its possible mechanisms of action. Methods: To test the anti-allergic effects of cornuside in vivo, local extravasation was induced by local injection of anti-dinitrophenyl immunoglobulin E (IgE) followed by intravenous antigenic challenge in passive cutaneous anaphylaxis model rats. Mast cell viability was determined using MTT assay. Histamine content from rat peritoneal mast cells was measured by the radioenzymatic method. To investigate the mechanisms by which cornuside affects the reduction of histamine release, the levels of calcium uptake were measured. To examine whether cornuside affects the expression of pro-inflammatory cytokines, Western blotting and ELISA were carried out. Results: Oral administration of cornuside inhibited passive cutaneous anaphylaxis in rats. Presence of cornuside attenuated IgE-induced histamine release from rat peritoneal mast cells. The inhibitory effect of cornuside on histamine release was mediated by the modulation of intracellular calcium. In addition, cornuside decreased phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-stimulated production and secretion of pro-inflammatory cytokines such as TNF-α and IL-6 in human mast cells. The inhibitory effect of cornuside on pro-inflammatory cytokines was dependent on nuclear factor-κB and p38 mitogen-activated protein kinase. Conclusions: The present study provides evidence that cornuside inhibits mast cell-derived inflammatory allergic reactions by blocking histamine release and pro-inflammatory cytokine expression. Furthermore, in vivo and in vitro anti-allergic effects of cornuside suggest a possible therapeutic application of this agent in inflammatory allergic diseases.

  20. FLASH knockdown sensitizes cells to Fas-mediated apoptosis via down-regulation of the anti-apoptotic proteins, MCL-1 and Cflip short.

    Directory of Open Access Journals (Sweden)

    Song Chen

    Full Text Available FLASH (FLICE-associated huge protein or CASP8AP2 is a large multifunctional protein that is involved in many cellular processes associated with cell death and survival. It has been reported to promote apoptosis, but we show here that depletion of FLASH in HT1080 cells by siRNA interference can also accelerate the process. As shown previously, depletion of FLASH halts growth by down-regulating histone biosynthesis and arrests the cell cycle in S-phase. FLASH knockdown followed by stimulating the cells with Fas ligand or anti-Fas antibodies was found to be associated with a more rapid cleavage of PARP, accelerated activation of caspase-8 and the executioner caspase-3 and rapid progression to cellular disintegration. As is the case for most anti-apoptotic proteins, FLASH was degraded soon after the onset of apoptosis. Depletion of FLASH also resulted in the reduced intracellular levels of the anti-apoptotic proteins, MCL-1 and the short isoform of cFLIP. FLASH knockdown in HT1080 mutant cells defective in p53 did not significantly accelerate Fas mediated apoptosis indicating that the effect was dependent on functional p53. Collectively, these results suggest that under some circumstances, FLASH suppresses apoptosis.

  1. MicroRNA-148b is frequently down-regulated in gastric cancer and acts as a tumor suppressor by inhibiting cell proliferation

    Directory of Open Access Journals (Sweden)

    Jiang Li

    2011-01-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are involved in cancer development and progression, acting as tumor suppressors or oncogenes. Our previous studies have revealed that miR-148a and miR-152 are significantly down-regulated in gastrointestinal cancers. Interestingly, miR-148b has the same "seed sequences" as miR-148a and miR-152. Although aberrant expression of miR-148b has been observed in several types of cancer, its pathophysiologic role and relevance to tumorigenesis are still largely unknown. The purpose of this study was to elucidate the molecular mechanisms by which miR-148b acts as a tumor suppressor in gastric cancer. Results We showed significant down-regulation of miR-148b in 106 gastric cancer tissues and four gastric cancer cell lines, compared with their non-tumor counterparts by real-time RT-PCR. In situ hybridization of ten cases confirmed an overt decrease in the level of miR-148b in gastric cancer tissues. Moreover, the expression of miR-148b was demonstrated to be associated with tumor size (P = 0.027 by a Mann-Whitney U test. We also found that miR-148b could inhibit cell proliferation in vitro by MTT assay, growth curves and an anchorage-independent growth assay in MGC-803, SGC-7901, BGC-823 and AGS cells. An experiment in nude mice revealed that miR-148b could suppress tumorigenicity in vivo. Using a luciferase activity assay and western blot, CCKBR was identified as a target of miR-148b in cells. Moreover, an obvious inverse correlation was observed between the expression of CCKBR protein and miR-148b in 49 pairs of tissues (P = 0.002, Spearman's correlation. Conclusions These findings provide important evidence that miR-148b targets CCKBR and is significant in suppressing gastric cancer cell growth. Maybe miR-148b would become a potential biomarker and therapeutic target against gastric cancer.

  2. Down-regulation of Connexin43 expression reveals the involvement of caveolin-1 containing lipid rafts in human U251 glioblastoma cell invasion.

    Science.gov (United States)

    Strale, Pierre-Olivier; Clarhaut, Jonathan; Lamiche, Coralie; Cronier, Laurent; Mesnil, Marc; Defamie, Norah

    2012-11-01

    Glioblastoma cells are characterized by high proliferation and invasive capacities. Tumor development has been associated with a decrease of gap-junctional intercellular communication, but the concrete involvement of gap junction proteins, connexins, remains elusive since they are also suspected to promote cell invasion. In order to better understand how connexins control the glioma cell phenotype, we studied the consequences of inhibiting the intrinsic expression of the major astrocytic connexin, Connexin43, in human U251 glioblastoma cells by the shRNA strategy. The induced down-regulation of Cx43 expression has various effects on the U251 cells such as increased clonogenicity, angiogenesis and decreased adhesion on specific extracellular matrix proteins. We demonstrate that the invasion capacity measured in vitro and ex vivo correlates with Cx43 expression level. For the first time in a cancer cell context, our work demonstrates that Cx43 cofractionates, colocalizes and coimmunoprecipitates with a lipid raft marker, caveolin-1 and that this interaction is inversely correlated to the level of Cx43. This localization of Cx43 in these lipid raft microdomains regulates both homo- and heterocellular gap junctional communications (respectively between U251 cells, or between U251 cells and astrocytes). Moreover, the adhesive and invasive capacities are not dependent, in our model, on Cav-1 expression level. Our results tend to show that heterocellular gap junctional communication between cancer and stroma cells may affect the behavior of the tumor cells. Altogether, our data demonstrate that Cx43 controls the tumor phenotype of glioblastoma U251 cells and in particular, invasion capacity, through its localization in lipid rafts containing Cav-1. Copyright © 2011 Wiley Periodicals, Inc.

  3. Resistin promotes tumor metastasis by down-regulation of miR-519d through the AMPK/p38 signaling pathway in human chondrosarcoma cells

    Science.gov (United States)

    Huang, Ho-Ning; Hung, Chih-Hung; Hsu, Chin-Jung; Fong, Yi-Chin; Hsu, Horng-Chaung; Huang, Yuan-Li; Tang, Chih-Hsin

    2015-01-01

    Resistin is a recently discovered adipocyte-secreting adipokine, which may play a critical role in modulating cancer pathogenesis. Chondrosarcoma is a highly malignant tumor known to frequently metastasize; however, the role of resistin in the metastasis of human chondrosarcoma is largely unknown. Here, we found that the expression of resistin was higher in chondrosarcoma biopsy tissues than in normal cartilage. Moreover, treatment with resistin increased matrix metalloproteinase (MMP)-2 expression and promoted cell migration in human chondrosarcoma cells. Co-transfection with microRNA (miR)-519d mimic resulted in reversed resistin-mediated cell migration and MMP-2 expression. Additionally, AMP-activated protein kinase (AMPK) and p38 inhibitors or siRNAs reduced the resistin-increased cell migration and miR-519d suppression, and inhibition of resistin expression resulted in suppression of MMP-2 expression and lung metastasis in vivo. Taken together, our results indicate that resistin promotes chondrosarcoma metastasis and MMP-2 expression through activation of the AMPK/p38 signaling pathway and down-regulation of miR-519d expression. Therefore, resistin may represent a potential novel molecular therapeutic target in chondrosarcoma metastasis. PMID:25404641

  4. Down-regulation of histamine-induced endothelial cell activation as potential anti-atherosclerotic activity of peptides from Spirulina maxima.

    Science.gov (United States)

    Vo, Thanh-Sang; Kim, Se-Kwon

    2013-10-09

    Histamine, a potent inflammatory mediator, has been known to cause the pathogenesis of atherosclerosis. In this sense, two bioactive peptides P1 (LDAVNR; 686Da) and P2 (MMLDF; 655Da) purified from gastric enzymatic hydrolysate of Spirulina maxima were examined for their protective effects against early atherosclerotic responses induced by histamine in EA.hy926 endothelial cells. Interestingly, both P1 and P2 exhibited inhibitory activities on the production and expression of IL-6 and MCP-1. Furthermore, P1 and P2 inhibited the production of adhesion molecules including P-selectin and E-selectin, and thus reducing in vitro cell adhesion of monocyte onto endothelial cells. In addition, the production of intracellular reactive oxygen species was observed to reduce in the presence of P1 or P2. Notably, the inhibitory activities of P1 and P2 were found due to down-regulating Egr-1 expression via histamine receptor and PKCδ-dependent MAPKs activation pathway. These results suggest that peptides P1 and P2 from S. maxima are effective to suppress histamine-induced endothelial cell activation that may contribute to the prevention of early atherosclerosis. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Melatonin and vitamin D3 synergistically down-regulate Akt and MDM2 leading to TGFβ-1-dependent growth inhibition of breast cancer cells.

    Science.gov (United States)

    Proietti, Sara; Cucina, Alessandra; D'Anselmi, Fabrizio; Dinicola, Simona; Pasqualato, Alessia; Lisi, Elisabetta; Bizzarri, Mariano

    2011-03-01

    Melatonin and vitamin D3 inhibit breast cancer cell growth and induce apoptosis, but they have never been combined as a breast cancer treatment. Therefore, we investigated whether their association could lead to an enhanced anticancer activity. In MCF-7 breast cancer cells, melatonin together with vitamin D3, induced a synergistic proliferative inhibition, with an almost complete cell growth arrest at 144 hr. Cell growth blockade is associated to an activation of the TGFβ-1 pathway, leading to increased TGFβ-1, Smad4 and phosphorylated-Smad3 levels. Concomitantly, melatonin and D3, alone or in combination, caused a significant reduction in Akt phosphorylation and MDM2 values, with a consequent increase of p53/MDM2 ratio. These effects were completely suppressed by adding a monoclonal anti-TGFβ-1 antibody to the culture medium. Taken together, these results indicate that cytostatic effects triggered by melatonin and D3 are likely related to a complex TGFβ-1-dependent mechanism, involving down-regulation of both MDM2 and Akt-phosphorylation. © 2010 The Authors. Journal of Pineal Research © 2010 John Wiley & Sons A/S.

  6. Fisetin Enhances the Cytotoxicity of Gemcitabine by Down-regulating ERK-MYC in MiaPaca-2 Human Pancreatic Cancer Cells.

    Science.gov (United States)

    Kim, Nayoung; Kang, Min-Jung; Lee, Sang Hyub; Son, Jun Hyuk; Lee, Ji Eun; Paik, Woo Hyun; Ryu, Ji Kon; Kim, Yong-Tae

    2018-06-01

    Pancreatic cancer is a highly lethal malignancy with a poor prognosis. This study was set up to investigate the combined effect of gemcitabine and fisetin, a natural flavonoid from plants, on human pancreatic cancer cells. Meterials and Methods: Cytotoxic effect of fisetin in combination with gemcitabine on MiaPaca-2 cells was evaluated by the MTT assay, caspase 3/7 assay and propidium iodide/Annexin V. Extracellular signal-regulated kinase (ERK)-v-myc avian myelocytomatosis viral oncogene homolog (MYC) pathway was investigated by western blotting and quantitative real-time polymerase chain reaction. Combination treatment with fisetin and gemcitabine inhibited the proliferation of pancreatic cancer cells within 72 h and induced apoptosis, as indicated by activation of caspase 3/7. Fisetin down-regulated ERK at the protein and mRNA levels, and reduced ERK-induced MYC instability at the protein level. Fisetin sensitized human pancreatic cancer cells to gemcitabine-induced cytotoxicity through inhibition of ERK-MYC signaling. These results suggest that the combination of fisetin and gemcitabine could be developed as a novel potent therapeutic. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. Loss of TET1 facilitates DLD1 colon cancer cell migration via H3K27me3-mediated down-regulation of E-cadherin.

    Science.gov (United States)

    Zhou, Zhen; Zhang, Hong-Sheng; Liu, Yang; Zhang, Zhong-Guo; Du, Guang-Yuan; Li, Hu; Yu, Xiao-Ying; Huang, Ying-Hui

    2018-02-01

    Epigenetic modifications such as histone modifications and cytosine hydroxymethylation are linked to tumorigenesis. Loss of 5-hydroxymethylcytosine (5 hmC) by ten-eleven translocation 1 (TET1) down-regulation facilitates tumor initiation and development. However, the mechanisms by which loss of TET1 knockdown promotes malignancy development remains unclear. Here, we report that TET1 knockdown induced epithelial-mesenchymal transition (EMT) and increased cancer cell growth, migration, and invasion in DLD1 cells. Loss of TET1 increased EZH2 expression and reduced UTX-1 expression, thus increasing histone H3K27 tri-methylation causing repression of the target gene E-cadherin. Ectopic expression of the H3K27 demethylase UTX-1 or EZH2 depletion both impeded EZH2 binding caused a loss of H3K27 methylation at epithelial gene E-cadherin promoter, thereby suppressing EMT and tumor invasion in shTET1 cells. Conversely, UTX-1 depletion and ectopic expression of EZH2 enhanced EMT and tumor metastasis in DLD1 cells. These findings provide insight into the regulation of TET1 and E-cadherin and identify EZH2 as a critical mediator of E-cadherin repression and tumor progression. © 2017 Wiley Periodicals, Inc.

  8. CD4 down regulation and raft dissociation by the non-depleting YTS177 antibody hinder murine T helper cell activities

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng-Jang [Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan (China); Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093 (United States); Lu, Chun-Hao [Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan (China); Chen, Li-Chen [Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan (China); Nguyen, Duc T. [Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093 (United States); Huang, Yi-Shu [Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan (China); Lin, Hsi-Hsien [Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan (China); Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Tao-Yuan, Taiwan (China); Department of Anatomic Pathology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan (China); Lin, Chun-Yen [Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan (China); Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Tao-Yuan, Taiwan (China); Department of Hepatogastroenterology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan (China); Kuo, Ming-Ling, E-mail: mingling@mail.cgu.edu.tw [Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan (China); Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan (China); Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Tao-Yuan, Taiwan (China)

    2016-05-13

    Non-depleting YTS177 anti-CD4 monoclonal antibody (MoAb) has been reported to lead to antigen-specific immunotolerance in allograft transplantation and autoimmune diabetes, as well as possibly to inhibition of allergic inflammation in mice. However, the molecular mechanisms underlying hyporesponsive T cell responses induced by YTS177 MoAb remain elusive. Herein, we demonstrate that the YTS177 MoAb increases the levels of anergy factors p27{sup kip1} and Cbl-b, inhibits IL-2 production, and impairs calcium mobilization in activated T cells in vitro. YTS177 MoAb suppresses OVA-driven proliferation of DO11.10 CD4{sup +} T cells in vivo as well. Mechanistically, YTS177 MoAb induces tolerance by causing CD4 down-regulation through clathrin-dependent and raft dissociation. The results obtained in this study lead us to propose novel protective or curative approaches to CD4 T cell-mediated diseases.

  9. CD4 down regulation and raft dissociation by the non-depleting YTS177 antibody hinder murine T helper cell activities

    International Nuclear Information System (INIS)

    Wu, Cheng-Jang; Lu, Chun-Hao; Chen, Li-Chen; Nguyen, Duc T.; Huang, Yi-Shu; Lin, Hsi-Hsien; Lin, Chun-Yen; Kuo, Ming-Ling

    2016-01-01

    Non-depleting YTS177 anti-CD4 monoclonal antibody (MoAb) has been reported to lead to antigen-specific immunotolerance in allograft transplantation and autoimmune diabetes, as well as possibly to inhibition of allergic inflammation in mice. However, the molecular mechanisms underlying hyporesponsive T cell responses induced by YTS177 MoAb remain elusive. Herein, we demonstrate that the YTS177 MoAb increases the levels of anergy factors p27"k"i"p"1 and Cbl-b, inhibits IL-2 production, and impairs calcium mobilization in activated T cells in vitro. YTS177 MoAb suppresses OVA-driven proliferation of DO11.10 CD4"+ T cells in vivo as well. Mechanistically, YTS177 MoAb induces tolerance by causing CD4 down-regulation through clathrin-dependent and raft dissociation. The results obtained in this study lead us to propose novel protective or curative approaches to CD4 T cell-mediated diseases.

  10. Calcium supplementation decreases BCP-induced inflammatory processes in blood cells through the NLRP3 inflammasome down-regulation.

    Science.gov (United States)

    Lagadec, Patricia; Balaguer, Thierry; Boukhechba, Florian; Michel, Grégory; Bouvet-Gerbettaz, Sébastien; Bouler, Jean-Michel; Scimeca, Jean-Claude; Rochet, Nathalie

    2017-07-15

    Interaction of host blood with biomaterials is the first event occurring after implantation in a bone defect. This study aimed at investigating the cellular and molecular consequences arising at the interface between whole blood and biphasic calcium phosphate (BCP) particles. We observed that, due to calcium capture, BCP inhibited blood coagulation, and that this inhibition was reversed by calcium supplementation. Therefore, we studied the impact of calcium supplementation on BCP effects on blood cells. Comparative analysis of BCP and calcium supplemented-BCP (BCP/Ca) effects on blood cells showed that BCP as well as BCP/Ca induced monocyte proliferation, as well as a weak but significant hemolysis. Our data showed for the first time that calcium supplementation of BCP microparticles had anti-inflammatory properties compared to BCP alone that induced an inflammatory response in blood cells. Our results strongly suggest that the anti-inflammatory property of calcium supplemented-BCP results from its down-modulating effect on P2X7R gene expression and its capacity to inhibit ATP/P2X7R interactions, decreasing the NLRP3 inflammasome activation. Considering that monocytes have a vast regenerative potential, and since the excessive inflammation often observed after bone substitutes implantation limits their performance, our results might have great implications in terms of understanding the mechanisms leading to an efficient bone reconstruction. Although scaffolds and biomaterials unavoidably come into direct contact with blood during bone defect filling, whole blood-biomaterials interactions have been poorly explored. By studying in 3D the interactions between biphasic calcium phosphate (BCP) in microparticulate form and blood, we showed for the first time that calcium supplementation of BCP microparticles (BCP/Ca) has anti-inflammatory properties compared to BCP-induced inflammation in whole blood cells and provided information related to the molecular mechanisms

  11. Chronic Prenatal Hypoxia Down-Regulated BK Channel Β1 Subunits in Mesenteric Artery Smooth Muscle Cells of the Offspring

    Directory of Open Access Journals (Sweden)

    Bailin Liu

    2018-02-01

    Full Text Available Background/Aims: Chronic hypoxia in utero could impair vascular functions in the offspring, underlying mechanisms are unclear. This study investigated functional alteration in large-conductance Ca2+-activated K+ (BK channels in offspring mesenteric arteries following prenatal hypoxia. Methods: Pregnant rats were exposed to normoxic control (21% O2, Con or hypoxic (10.5% O2, Hy conditions from gestational day 5 to 21, their 7-month-old adult male offspring were tested for blood pressure, vascular BK channel functions and expression using patch clamp and wire myograh technique, western blotting, and qRT-PCR. Results: Prenatal hypoxia increased pressor responses and vasoconstrictions to phenylephrine in the offspring. Whole-cell currents density of BK channels and amplitude of spontaneous transient outward currents (STOCs, not the frequency, were significantly reduced in Hy vascular myocytes. The sensitivity of BK channels to voltage, Ca2+, and tamoxifen were reduced in Hy myocytes, whereas the number of channels per patch and the single-channel conductance were unchanged. Prenatal hypoxia impaired NS1102- and tamoxifen-mediated relaxation in mesenteric arteries precontracted with phenylephrine in the presence of Nω-nitro-L-arginine methyl ester. The mRNA and protein expression of BK channel β1, not the α-subunit, was decreased in Hy mesenteric arteries. Conclusions: Impaired BK channel β1-subunits in vascular smooth muscle cells contributed to vascular dysfunction in the offspring exposed to prenatal hypoxia.

  12. D-Glucosamine down-regulates HIF-1{alpha} through inhibition of protein translation in DU145 prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jee-Young; Park, Jong-Wook; Suh, Seong-Il [Chronic Disease Research Center, School of Medicine, Keimyung University, 194 Dongsan-Dong, Jung-Gu, Daegu 700-712 (Korea, Republic of); Baek, Won-Ki, E-mail: wonki@dsmc.or.kr [Chronic Disease Research Center, School of Medicine, Keimyung University, 194 Dongsan-Dong, Jung-Gu, Daegu 700-712 (Korea, Republic of)

    2009-04-24

    D-Glucosamine has been reported to inhibit proliferation of cancer cells in culture and in vivo. In this study we report a novel response to D-glucosamine involving the translation regulation of hypoxia inducible factor (HIF)-1{alpha} expression. D-Glucosamine caused a decreased expression of HIF-1{alpha} under normoxic and hypoxic conditions without affecting HIF-1{alpha} mRNA expression in DU145 prostate cancer cells. D-Glucosamine inhibited HIF-1{alpha} accumulation induced by proteasome inhibitor MG132 and prolyl hydroxylase inhibitor DMOG suggesting D-glucosamine reduces HIF-1{alpha} protein expression through proteasome-independent pathway. Metabolic labeling assays indicated that D-glucosamine inhibits translation of HIF-1{alpha} protein. In addition, D-glucosamine inhibited HIF-1{alpha} expression induced by serum stimulation in parallel with inhibition of p70S6K suggesting D-glucosamine inhibits growth factor-induced HIF-1{alpha} expression, at least in part, through p70S6K inhibition. Taken together, these results suggest that D-glucosamine inhibits HIF-1{alpha} expression through inhibiting protein translation and provide new insight into a potential mechanism of the anticancer properties of D-glucosamine.

  13. Inhibition of c-Jun N-terminal kinase sensitizes tumor cells to flavonoid-induced apoptosis through down-regulation of JunD

    International Nuclear Information System (INIS)

    Kook, Sung-Ho; Son, Young-Ok; Jang, Yong-Suk; Lee, Kyung-Yeol; Lee, Seung-Ah; Kim, Beom-Soo; Lee, Hyun-Jeong; Lee, Jeong-Chae

    2008-01-01

    Reduction of susceptibility to apoptosis signals is a crucial step in carcinogenesis. Therefore, sensitization of tumor cells to apoptosis is a promising therapeutic strategy. c-Jun NH 2 -terminal kinase (JNK) has been implicated in stress-induced apoptosis. However, many studies also emphasize the role of JNK on cell survival, although its mechanisms are not completely understood. Previously, we found that inhibition of JNK activity promotes flavonoid-mediated apoptosis of human osteosarcoma cells. We thus determined whether inhibition of JNK sensitizes tumor cells to a bioflavonoid-induced apoptosis, and whether this effect of JNK is a general effect. As the results, quercetin and genistein as well as a flavonoid fraction induced apoptosis of tumor cells, which was further accelerated by specific JNK inhibitor, SP600125 or by small interfering RNA specific to JNK1/2. This effect was specific to types of cells because it was further apparent in tumorigenic cell lines. Inhibition of JNK by SP600125 also reduced flavonoid-stimulated nuclear induction of JunD which was known to have protective role in apoptosis, whereas JNK inhibition alone had little effect on apoptosis. The flavonoid-induced apoptosis of tumor cells was significantly enhanced by transfecting them with antisense JunD oligonucleotides. These results suggest that inhibition of JNK facilitates flavonoid-induced apoptosis through down-regulation of JunD, which is further sensitive to tumor cells. Therefore, combination with a specific JNK inhibitor further enhances the anti-cancer and chemopreventive potential of bio-flavonoids

  14. Inhibition of p70S6K2 down-regulates Hedgehog/GLI pathway in non-small cell lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Kotani Hidehito

    2009-07-01

    Full Text Available Abstract Background The Hedgehog (HH pathway promotes tumorigenesis in a diversity of cancers. Activation of the HH signaling pathway is caused by overexpression of HH ligands or mutations in the components of the HH/GLI1 cascade, which lead to increased transactivation of GLI transcription factors. Although negative kinase regulators that antagonize the activity of GLI transcription factors have been reported, including GSK3β, PKA and CK1s, little is known regarding positive kinase regulators that are suitable for use on cancer therapeutic targets. The present study attempted to identify kinases whose silencing inhibits HH/GLI signalling in non-small cell lung cancer (NSCLC. Results To find positive kinase regulators in the HH pathway, kinome-wide siRNA screening was performed in a NSCLC cell line, A549, harboring the GLI regulatory reporter gene. This showed that p70S6K2-silencing remarkably reduced GLI reporter gene activity. The decrease in the activity of the HH pathway caused by p70S6K2-inhibition was accompanied by significant reduction in cell viability. We next investigated the mechanism for p70S6K2-mediated inhibition of GLI1 transcription by hypothesizing that GSK3β, a negative regulator of the HH pathway, is activated upon p70S6K2-silencing. We found that phosphorylated-GSK3β (Ser9 was reduced by p70S6K2-silencing, causing a decreased level of GLI1 protein. Finally, to further confirm the involvement of p70S6K2 in GLI1 signaling, down-regulation in GLI-mediated transcription by PI3KCA-inhibition was confirmed, establishing the pivotal role of the PI3K/p70S6K2 pathway in GLI1 cascade regulation. Conclusion We report herein that inhibition of p70S6K2, known as a downstream effector of the PI3K pathway, remarkably decreases GLI-mediated transactivation in NSCLC by reducing phosphorylated-GSK3β followed by GLI1 degradation. These results infer that p70S6K2 is a potential therapeutic target for NSCLC with hyperactivated HH/GLI pathway.

  15. IL-10-produced by human transitional B-cells down-regulates CD86 expression on B-cells leading to inhibition of CD4+T-cell responses.

    Science.gov (United States)

    Nova-Lamperti, Estefania; Fanelli, Giorgia; Becker, Pablo D; Chana, Prabhjoat; Elgueta, Raul; Dodd, Philippa C; Lord, Graham M; Lombardi, Giovanna; Hernandez-Fuentes, Maria P

    2016-01-22

    A novel subset of human regulatory B-cells has recently been described. They arise from within the transitional B-cell subpopulation and are characterised by the production of IL-10. They appear to be of significant importance in regulating T-cell immunity in vivo. Despite this important function, the molecular mechanisms by which they control T-cell activation are incompletely defined. Here we show that transitional B-cells produced more IL-10 and expressed higher levels of IL-10 receptor after CD40 engagement compared to other B-cell subsets. Furthermore, under this stimulatory condition, CD86 expressed by transitional B-cells was down regulated and T-cell proliferation was reduced. We provide evidence to demonstrate that the down-regulation of CD86 expression by transitional B-cells was due to the autocrine effect of IL-10, which in turn leads to decreased T-cell proliferation and TNF-α production. This analysis was further extended to peripheral B-cells in kidney transplant recipients. We observed that B-cells from patients tolerant to the graft maintained higher IL-10 production after CD40 ligation, which correlates with lower CD86 expression compared to patients with chronic rejection. Hence, the results obtained in this study shed light on a new alternative mechanism by which transitional B-cells inhibit T-cell proliferation and cytokine production.

  16. IL-10-produced by human transitional B-cells down-regulates CD86 expression on B-cells leading to inhibition of CD4+T-cell responses

    Science.gov (United States)

    Nova-Lamperti, Estefania; Fanelli, Giorgia; Becker, Pablo D.; Chana, Prabhjoat; Elgueta, Raul; Dodd, Philippa C.; Lord, Graham M.; Lombardi, Giovanna; Hernandez-Fuentes, Maria P.

    2016-01-01

    A novel subset of human regulatory B-cells has recently been described. They arise from within the transitional B-cell subpopulation and are characterised by the production of IL-10. They appear to be of significant importance in regulating T-cell immunity in vivo. Despite this important function, the molecular mechanisms by which they control T-cell activation are incompletely defined. Here we show that transitional B-cells produced more IL-10 and expressed higher levels of IL-10 receptor after CD40 engagement compared to other B-cell subsets. Furthermore, under this stimulatory condition, CD86 expressed by transitional B-cells was down regulated and T-cell proliferation was reduced. We provide evidence to demonstrate that the down-regulation of CD86 expression by transitional B-cells was due to the autocrine effect of IL-10, which in turn leads to decreased T-cell proliferation and TNF-α production. This analysis was further extended to peripheral B-cells in kidney transplant recipients. We observed that B-cells from patients tolerant to the graft maintained higher IL-10 production after CD40 ligation, which correlates with lower CD86 expression compared to patients with chronic rejection. Hence, the results obtained in this study shed light on a new alternative mechanism by which transitional B-cells inhibit T-cell proliferation and cytokine production. PMID:26795594

  17. Down regulation of E-Cadherin (ECAD) - a predictor for occult metastatic disease in sentinel node biopsy of early squamous cell carcinomas of the oral cavity and oropharynx

    International Nuclear Information System (INIS)

    Huber, Gerhard F; Stoeckli, Sandro J; Züllig, Lena; Soltermann, Alex; Roessle, Matthias; Graf, Nicole; Haerle, Stephan K; Studer, Gabriela; Jochum, Wolfram; Moch, Holger

    2011-01-01

    Prognostic factors in predicting occult lymph node metastasis in patients with head and neck squamous-cell carcinoma (HNSCC) are necessary to improve the results of the sentinel lymph node procedure in this tumour type. The E-Cadherin glycoprotein is an intercellular adhesion molecule in epithelial cells, which plays an important role in establishing and maintaining intercellular connections. To determine the value of the molecular marker E-Cadherin in predicting regional metastatic disease. E-Cadherin expression in tumour tissue of 120 patients with HNSCC of the oral cavity and oropharynx were evaluated using the tissue microarray technique. 110 tumours were located in the oral cavity (91.7%; mostly tongue), 10 tumours in the oropharynx (8.3%). Intensity of E-Cadherin expression was quantified by the Intensity Reactivity Score (IRS). These results were correlated with the lymph node status of biopsied sentinel lymph nodes. Univariate and multivariate analysis was used to determine statistical significance. pT-stage, gender, tumour side and location did not correlate with lymph node metastasis. Differentiation grade (p = 0.018) and down regulation of E-Cadherin expression significantly correlate with positive lymph node status (p = 0.005) in univariate and multivariate analysis. These data suggest that loss of E-cadherin expression is associated with increased lymhogeneous metastasis of HNSCC. E-cadherin immunohistochemistry may be used as a predictor for lymph node metastasis in squamous cell carcinoma of the oral cavity and oropharynx. Level of evidence: 2b

  18. Galectin-3-independent Down-regulation of GABABR1 due to Treatment with Korean Herbal Extract HAD-B Reduces Proliferation of Human Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kim Kyung-Hee

    2012-09-01

    Full Text Available Objectives: Many efforts have shown multi-oncologic roles of galectin-3 for cell proliferation, angiogenesis, and apoptosis. However, the mechanisms by which galectin-3 is involved in cell proliferation are not yet fully understood, especially in human colon cancer cells. Methods: To cluster genes showing positively or negatively correlated expression with galectin-3, we employed human colon cancer cell lines, SNU-61, SNU-81, SNU-769B, SNU-C4 and SNU-C5 in high-throughput gene expression profiling. Gene and protein expression levels were determined by using real-time quantitative polymerase chain reaction (PCR and western blot analysis, respectively. The proliferation rate of human colon cancer cells was measured by using a 3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide (MTT assay. Results: Expression of γ-aminobutyric acid B receptor 1 (GABABR1 showed a positive correlation with galectin-3 at both the transcriptional and the translational levels. Downregulation of galectin-3 decreased not only GABABR1 expression but also the proliferation rate of human colon cancer cells. However, Korean herbal extract, HangAmDan-B (HAD-B, decreased expression of GABABR1 without any expressional change of galectin-3, and offset γ-aminobutyric acid (GABA-enhanced human colon cancer cell proliferation. Conclusions: Our present study confirmed that GABABR1 expression was regulated by galectin-3. HAD-B induced galectin-3-independent down-regulation of GABABR1, which resulted in a decreased proliferation of human colon cancer cells. The therapeutic effect of HAD-B for the treatment of human colon cancer needs to be further validated.

  19. CCL5 promotes VEGF-dependent angiogenesis by down-regulating miR-200b through PI3K/Akt signaling pathway in human chondrosarcoma cells

    Science.gov (United States)

    Liu, Guan-Ting; Chen, Hsien-Te; Tsou, Hsi-Kai; Tan, Tzu-Wei; Fong, Yi-Chin; Chen, Po-Chen; Yang, Wei-Hung; Wang, Shih-Wei; Chen, Jui-Chieh; Tang, Chih-Hsin

    2014-01-01

    Chondrosarcoma is the second most common primary malignant bone cancer, with potential for local invasion and distant metastasis. Chemokine CCL5 (formerly RANTES) of the CC-chemokine family plays a crucial role in metastasis. Angiogenesis is essential for the cancer metastasis. However, correlation of CCL5 with vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma is still unknown. CCL5-mediated VEGF expression was assessed by qPCR, ELISA, and Western blotting. CCL5-induced angiogenesis was examined by migration and tube formation in endothelial progenitor cells in vitro. CCL5 increased VEGF expression and also promoted chondrosarcoma conditional medium-mediated angiogenesis in vitro and in vivo. Stimulation of chondrosarcoma with CCL5 augmented PI3K and Akt phosphorylation, while PI3K and Akt inhibitor or siRNA abolished CCL5-induced VEGF expression and angiogenesis. We also demonstrated CCL5 inhibiting miR-200b expression and miR-200b mimic reversing the CCL5-enhanced VEGF expression and angiogenesis. Moreover, in chondrosarcoma patients showed the positive correlation between CCL5 and VEGF; negative correlation between CCL5 and miR-200b. Taken together, results demonstrate CCL5 promoting VEGF-dependent angiogenesis in human chondrosarcoma cells by down-regulating miR-200b through PI3K/Akt signaling pathway. PMID:25301739

  20. Protective Effects of Total Glucosides of Paeony on N-nitrosodiethylamine-induced Hepatocellular Carcinoma in Rats via Down-regulation of Regulatory B Cells.

    Science.gov (United States)

    Song, S S; Yuan, P F; Li, P P; Wu, H X; Ni, W J; Lu, J T; Wei, W

    2015-01-01

    Total glucoside of paeony (TGP), extracted from the root of Paeonia Lactiflora, has been known to show anti-inflammatory, anti-oxidative, hepato-protective and immuno-regulatory activities. The aim of this present study was to determine the anti-tumor effect of TGP against N-nitrosodiethylamine (DEN)-induced hepatocellular carcinoma (HCC) in rats, and to find the related mechanisms. Rat HCC model was established by intragastrically administrating with DEN (8 mg/kg). We found the number of tumor nodules and the index of liver and spleen were increased in the model group compared with the normal group, and was significantly decreased by TGP. Additionally, TGP obviously improved the hepatic pathological lesions induced by DEN, and decreased the elevated levels of serum alanine aminotransferase (ALT), glutamic oxalacetic transaminase (AST), alkaline phosphatase (ALP) and alpha fetoprotein (AFP) by DEN. Moreover, TGP decreased the level of B cell-activating factor (BAFF) and the proportion of IL-10-producing regulatory B cells (Bregs), and the decrease of BAFF by TGP is positively correlated to the decrease of IL-10-producing Bregs by TGP. These results suggest that TGP had a good therapeutic action on DEN-induced HCC rats, which might be due to its down-regulation of Bregs through reducing the level of BAFF.

  1. PPARγ activation abolishes LDL-induced proliferation of human aortic smooth muscle cells via SOD-mediated down-regulation of superoxide

    International Nuclear Information System (INIS)

    Heo, Kyung-Sun; Kim, Dong-Uk; Ryoo, Sungwoo; Nam, Miyoung; Baek, Seung Tae; Kim, Lila; Park, Song-Kyu; Myung, Chang-Seon; Hoe, Kwang-Lae

    2007-01-01

    Native LDL would be a mitogenic and chemotactic stimulus of VSMC proliferation and differentiation in the atherosclerotic lesion where endothelial disruption occurred. In previous studies, our group investigated the molecular mechanisms by which LDL induces IL-8 production and by which PPARα activation abolishes LDL effects in human aortic SMCs (hAoSMCs). Herein is the first report of PPARγ activation by troglitazone (TG) exerting its inhibitory effects on LDL-induced cell proliferation via generation not of H 2 O 2 , but of O2?-, and the subsequent activation of Erk1/2 in hAoSMCs. Moreover, in this study TG abolished the LDL-accelerated G 1 -S progression to control levels via down-regulation of active cyclinD1/CDK4 and cyclinE/CDK2 complexes and up-regulation of p21 Cip1 expression. TG exerted its anti-proliferative effects through the up-regulation of basal superoxide dismutase (SOD) expression. This data suggests that the regulation of O2?- is located at the crossroads between LDL signaling and cell proliferation

  2. Culture supernatants of oral cancer cells induce impaired IFN-α production of pDCs partly through the down-regulation of TLR-9 expression.

    Science.gov (United States)

    Han, Nannan; Zhang, Zun; Jv, Houyu; Hu, Jingzhou; Ruan, Min; Zhang, Chenping

    2018-06-05

    The aim of the present study was to investigate whether tumor-derived supernatants down-regulate the immune function of plasmacytoid dendritic cells (pDCs) in oral cancer and the potential molecular mechanisms of this effect. Immunohistochemistry (IHC) and flow cytometry were used to detect tumor-infiltrating and peripheral blood pDCs. MTS and flow cytometry were employed to evaluate the immune response of CD4 + T cells. Real-time PCR and ELISA assays were used to identify TLR-7 and TLR-9 expression, IFN-α production and tumor-secreted soluble cytokines. The proportion of pDCs (0.121%±0.043%) was significantly higher in Oral squamous cell carcinoma (OSCC) samples than in normal tissue (0.023%±0.016%) (P = 0.021). TLR9 mRNA was significantly lower in tumor-infiltrating pDCs and positively correlated to low IFN-α production (r = 0.956; Poral cancer cells negatively regulated TLR9 mRNA expression and the subsequent IFN-α production of pDCs, which inhibited the immune response of CD4 + T cells. The neutralizing antibodies blocking assay showed that the specific inhibitory effect of pDC functionality was associated with the soluble fraction of the oral cancer environment, which is mainly mediated by IL-10 and TGF-β cooperation. Tumor-derived supernatants may impair the function of tumor-infiltrating pDCs, which subsequently decreases the immune response of CD4 + T cells in human oral cancer through TGF-β- and IL-10- dependent mechanisms. Careful manipulation of these impaired pDCs may help develop an important alternative immunotherapy for the treatment of oral cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Curcumin Promoted the Apoptosis of Cisplain-resistant Human Lung Carcinoma Cells A549/DDP through Down-regulating miR-186*

    Directory of Open Access Journals (Sweden)

    Jian ZHANG

    2010-04-01

    Full Text Available Background and objective Curcumin, a natural compound, is derived from the rthizom of Curcuma longa. In vitro and in vivo preclinical studies have shown its anti-inflammatory, antioxidant, anticancer activities and so on. miR-186*, which was found by microarray technology, was highly expressed in lung carcinoma cells A549/DDP. The aim of this study is to illustrate whether Curcumin could promote the apoptosis of A549/DDP cells through regulating the expression of miR-186*. Methods An oligonucleotide microarray chip was used to profile microRNA (miRNA expressions in A549/DDP cells treated with and without Curcumin. The significantly differentially expressed miRNA, which was selected from microarray chip, validated by quantitative real-time PCR. Ultimately, the remarkably expressed miRNA modulated the apoptosis assaying by flow cytometry expriments and the survival rate was measured by MTT method. Results The microarray chip results demonstrated: Curcumin altered the expression level of miRNAs compared with untreated control in A549/DDP cell line, miR-186* was significantly down-regulated after Curcumin treatment, which confirmed by quantitative real-time PCR. Downregulation of miR-186* expression by curcumin elevated the apoptosis, and the survival rate of A549/DDP cells decreased; but up-regulation of miR-186* expression by transfection its mimics restrained the apoptosis, the survival rate of A549/DDP cells increased, which were assayed by flow cytometry expriments and MTT method. Conclusion Modulation of miRNAs expression may be an important mechanism underlying the biological roles of Curcumin.

  4. MicroRNA-187, down-regulated in clear cell renal cell carcinoma and associated with lower survival, inhibits cell growth and migration though targeting B7-H3

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jun [Foshan Maternal and Child Health Care Hospital, Foshan (China); Lei, Ting [Zhongshan People’s Hospital, Zhongshan (China); Xu, Congjie [Department of Urology, Pepole’s Hospital of Hainan Province, Haikou (China); Li, Huan; Ma, Wenmin; Yang, Yunxia; Fan, Shuming [Foshan Maternal and Child Health Care Hospital, Foshan (China); Liu, Yuchen, E-mail: s_ycliu1@stu.edu.cn [Anhui Medical University, Hefei (China)

    2013-08-23

    Highlights: •miR-187 is down-regulated in clear cell renal cell carcinoma (ccRCC). •Down-regulation of miR-187 is associated with poor outcomes in patients with ccRCC. •miR-187 inhibits cell growth and migration though targeting B7-H3 in ccRCC. -- Abstract: Aberrantly expressed microRNAs (miRNAs) are frequently associated with the aggressive malignant behavior of human cancers, including clear cell renal cell carcinoma (ccRCC). Based on the preliminary deep sequencing data, we hypothesized that miR-187 may play an important role in ccRCC development. In this study, we found that miR-187 was down-regulated in both tumor tissue and plasma of ccRCC patients. Lower miR-187 expression levels were associated with higher tumor grade and stage. All patients with high miR-187 expression survived 5 years, while with low miR-187 expression, only 42% survived. Suppressed in vitro proliferation, inhibited in vivo tumor growth, and decreased motility were observed in cells treated with the miR-187 expression vector. Further studies showed that B7 homolog 3 (B7-H3) is a direct target of miR-187. Over-expression of miR-187 decreased B7-H3 mRNA level and repressed B7-H3-3′-UTR reporter activity. Knockdown of B7-H3 using siRNA resulted in similar phenotype changes as that observed for overexpression of miR-187. Our data suggest that miR-187 is emerging as a novel player in the disease state of ccRCC. miR-187 plays a tumor suppressor role in ccRCC.

  5. MicroRNA-187, down-regulated in clear cell renal cell carcinoma and associated with lower survival, inhibits cell growth and migration though targeting B7-H3

    International Nuclear Information System (INIS)

    Zhao, Jun; Lei, Ting; Xu, Congjie; Li, Huan; Ma, Wenmin; Yang, Yunxia; Fan, Shuming; Liu, Yuchen

    2013-01-01

    Highlights: •miR-187 is down-regulated in clear cell renal cell carcinoma (ccRCC). •Down-regulation of miR-187 is associated with poor outcomes in patients with ccRCC. •miR-187 inhibits cell growth and migration though targeting B7-H3 in ccRCC. -- Abstract: Aberrantly expressed microRNAs (miRNAs) are frequently associated with the aggressive malignant behavior of human cancers, including clear cell renal cell carcinoma (ccRCC). Based on the preliminary deep sequencing data, we hypothesized that miR-187 may play an important role in ccRCC development. In this study, we found that miR-187 was down-regulated in both tumor tissue and plasma of ccRCC patients. Lower miR-187 expression levels were associated with higher tumor grade and stage. All patients with high miR-187 expression survived 5 years, while with low miR-187 expression, only 42% survived. Suppressed in vitro proliferation, inhibited in vivo tumor growth, and decreased motility were observed in cells treated with the miR-187 expression vector. Further studies showed that B7 homolog 3 (B7-H3) is a direct target of miR-187. Over-expression of miR-187 decreased B7-H3 mRNA level and repressed B7-H3-3′-UTR reporter activity. Knockdown of B7-H3 using siRNA resulted in similar phenotype changes as that observed for overexpression of miR-187. Our data suggest that miR-187 is emerging as a novel player in the disease state of ccRCC. miR-187 plays a tumor suppressor role in ccRCC

  6. Hepatitis C virus core protein induces dysfunction of liver sinusoidal endothelial cell by down-regulation of silent information regulator 1.

    Science.gov (United States)

    Sun, Li-Jie; Yu, Jian-Wu; Shi, Yu-Guang; Zhang, Xiao-Yu; Shu, Meng-Ni; Chen, Mo-Yang

    2018-05-01

    . HCV core protein may down-regulate the activity and the expression of SIRT1 of LSEC, then decreasing synthesis of adiponectin and the expression of AdipoR2, thus inducing contraction of LSEC and hepatic sinusoidal capillarization and increasing oxidative stress, ultimately cause hepatic stellate cell (HSC) activation. Treatment with SIRT1 activator restored the function of LSEC and inhibited the activation of HSC. © 2018 Wiley Periodicals, Inc.

  7. CD3 gamma contains a phosphoserine-dependent di-leucine motif involved in down-regulation of the T cell receptor

    DEFF Research Database (Denmark)

    Dietrich, J; Hou, X; Wegener, A M

    1994-01-01

    -regulation of the TCR. Furthermore, analysis of a series of CD3 gamma truncation mutants indicated that in addition to S126 phosphorylation a motif C-terminal of S126 was required for TCR down-regulation. Point mutation analyses confirmed this observation and demonstrated that a membrane-proximal di-leucine motif (L131......, indicating that the TCR was down-regulated by endocytosis via clathrin coated pits. Based on the present results and previously published observations on intracellular receptor sorting, a general model for intracellular sorting of receptors containing di-leucine- or tyrosine-based motifs is proposed....

  8. Simultaneous down-regulation of tumor suppressor genes RBSP3/CTDSPL, NPRL2/G21 and RASSF1A in primary non-small cell lung cancer

    International Nuclear Information System (INIS)

    Senchenko, Vera N; Zabarovsky, Eugene R; Anedchenko, Ekaterina A; Kondratieva, Tatiana T; Krasnov, George S; Dmitriev, Alexei A; Zabarovska, Veronika I; Pavlova, Tatiana V; Kashuba, Vladimir I; Lerman, Michael I

    2010-01-01

    The short arm of human chromosome 3 is involved in the development of many cancers including lung cancer. Three bona fide lung cancer tumor suppressor genes namely RBSP3 (AP20 region),NPRL2 and RASSF1A (LUCA region) were identified in the 3p21.3 region. We have shown previously that homozygous deletions in AP20 and LUCA sub-regions often occurred in the same tumor (P < 10 -6 ). We estimated the quantity of RBSP3, NPRL2, RASSF1A, GAPDH, RPN1 mRNA and RBSP3 DNA copy number in 59 primary non-small cell lung cancers, including 41 squamous cell and 18 adenocarcinomas by real-time reverse transcription-polymerase chain reaction based on TaqMan technology and relative quantification. We evaluated the relationship between mRNA level and clinicopathologic characteristics in non-small cell lung cancer. A significant expression decrease (≥2) was found for all three genes early in tumor development: in 85% of cases for RBSP3; 73% for NPRL2 and 67% for RASSF1A (P < 0.001), more strongly pronounced in squamous cell than in adenocarcinomas. Strong suppression of both, NPRL2 and RBSP3 was seen in 100% of cases already at Stage I of squamous cell carcinomas. Deregulation of RASSF1A correlated with tumor progression of squamous cell (P = 0.196) and adenocarcinomas (P < 0.05). Most likely, genetic and epigenetic mechanisms might be responsible for transcriptional inactivation of RBSP3 in non-small cell lung cancers as promoter methylation of RBSP3 according to NotI microarrays data was detected in 80% of squamous cell and in 38% of adenocarcinomas. With NotI microarrays we tested how often LUCA (NPRL2, RASSF1A) and AP20 (RBSP3) regions were deleted or methylated in the same tumor sample and found that this occured in 39% of all studied samples (P < 0.05). Our data support the hypothesis that these TSG are involved in tumorigenesis of NSCLC. Both genetic and epigenetic mechanisms contribute to down-regulation of these three genes representing two tumor suppressor clusters in 3p21

  9. miR-146a down-regulation alleviates H2O2-induced cytotoxicity of PC12 cells by regulating MCL1/JAK/STAT pathway : miR-146a down-regulation relieves H2O2-induced PC12 cells cytotoxicity by MCL1/JAK/STAT.

    Science.gov (United States)

    Yang, Xuecheng; Mao, Xin; Ding, Xuemei; Guan, Fengju; Jia, Yuefeng; Luo, Lei; Li, Bin; Tan, Hailin; Cao, Caixia

    2018-02-26

    Oxidative stress and miRNAs have been confirmed to play an important role in neurological diseases. The study aimed to explore the underlying effect and mechanisms of miR-146a in H 2 O 2 -induced injury of PC12 cells. Here, PC12 cells were stimulated with 200 μM of H 2 O 2 to construct oxidative injury model. Cell injury was evaluated on the basis of the changes in cell viability, migration, invasion, apoptosis, and DNA damage. Results revealed that miR-146a expression was up-regulated in H 2 O 2 -induced PC12 cells. Functional analysis showed that down-regulation of miR-146a alleviated H 2 O 2 -induced cytotoxicity in PC12 cells. Dual-luciferase reporter and western blot assay verified that MCL1 was a direct target gene of miR-146a. Moreover, anti-miR-146a-mediated suppression on cell cytotoxicity was abated following MCL1 knockdown in H 2 O 2 -induced PC12 cells. Furthermore, MCL1 activated JAK/STAT signaling pathway and MCL1 overexpression attenuated H 2 O 2 -induced cytotoxicity in PC12 cells by JAK/STAT signaling pathway. In conclusion, this study suggested that suppression of miR-146a abated H 2 O 2 -induced cytotoxicity in PC12 cells via regulating MCL1/JAK/STAT pathway.

  10. HCV core protein-induced down-regulation of microRNA-152 promoted aberrant proliferation by regulating Wnt1 in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Shifeng Huang

    Full Text Available Hepatitis C virus (HCV has been reported to regulate cellular microRNAs (miRNAs. The HCV core protein is considered to be a potential oncoprotein in HCV-related hepatocellular carcinoma (HCV-HCC, but HCV core-regulated miRNAs are largely unknown. Our preliminary experiments revealed significant down-regulation of microRNA-152 (miR-152 by HCV core protein in HepG2 cells. Through target gene prediction softwares, Wnt1 was predicted to be a potential target of miR-152. The present study was initiated to investigate whether miR-152 is aberrantly regulated by the HCV core protein, and involved in the regulation of the aberrant proliferation of HCV-HCC cells.MiR-152 levels were examined by stem-loop real-time RT-PCR (SLqRT-PCR. Cell proliferation was analyzed by MTT and colony formation assay. Cell cycle analysis was performed by flow cytometry. Luciferase reporter assay was conducted to confirm miRNA-target association. Wnt1 expression was determined by real-time qPCR and Western blotting.HCV core protein significantly suppressed miR-152 expression, and led to significant Wnt1 up-regulation with a concomitant aberrantly promoted proliferation. Moreover, we validated that miR-152 inhibition promoted, while miR-152 mimics inhibited cell proliferation. Using, qRT-PCR and western blot, Wnt1 was demonstrated to be regulated by miR-152. Luciferase activity assay showed that while miR-152 mimics significantly reduced the luciferase activity by 83.76% (P<0.0001, miR-152 inhibitor showed no effect on luciferase reporter. Most notably, salvage expression of miR-152 after Ad-HCV core infection for 24 h almost totally reversed the proliferation-promoting effect of the HCV core protein, and meanwhile, reduced the expression of both Wnt1 mRNA and protein to basal levels.These findings provide important evidence that the reduced miR-152 expression by HCV core protein can indirectly lose an inhibitory effect on Wnt1, which might, at least partially lead to cell

  11. mRNA-binding protein TIA-1 reduces cytokine expression in human endometrial stromal cells and is down-regulated in ectopic endometrium.

    Science.gov (United States)

    Karalok, Hakan Mete; Aydin, Ebru; Saglam, Ozlen; Torun, Aysenur; Guzeloglu-Kayisli, Ozlem; Lalioti, Maria D; Kristiansson, Helena; Duke, Cindy M P; Choe, Gina; Flannery, Clare; Kallen, Caleb B; Seli, Emre

    2014-12-01

    Cytokines and growth factors play important roles in endometrial function and the pathogenesis of endometriosis. mRNAs encoding cytokines and growth factors undergo rapid turnover; primarily mediated by adenosine- and uridine-rich elements (AREs) located in their 3'-untranslated regions. T-cell intracellular antigen (TIA-1), an mRNA-binding protein, binds to AREs in target transcripts, leading to decreased gene expression. The purpose of this article was to determine whether TIA-1 plays a role in the regulation of endometrial cytokine and growth factor expression during the normal menstrual cycle and whether TIA-1 expression is altered in women with endometriosis. Eutopic endometrial tissue obtained from women without endometriosis (n = 30) and eutopic and ectopic endometrial tissues from women with endometriosis (n = 17) were immunostained for TIA-1. Staining intensities were evaluated by histological scores (HSCOREs). The regulation of endometrial TIA-1 expression by immune factors and steroid hormones was studied by treating primary cultured human endometrial stromal cells (HESCs) with vehicle, lipopolysaccharide, TNF-α, IL-6, estradiol, or progesterone, followed by protein blot analyses. HESCs were engineered to over- or underexpress TIA-1 to test whether TIA-1 regulates IL-6 or TNF-α expression in these cells. We found that TIA-1 is expressed in endometrial stromal and glandular cells throughout the menstrual cycle and that this expression is significantly higher in the perimenstrual phase. In women with endometriosis, TIA-1 expression in eutopic and ectopic endometrium was reduced compared with TIA-1 expression in eutopic endometrium of unaffected control women. Lipopolysaccharide and TNF-α increased TIA-1 expression in HESCs in vitro, whereas IL-6 or steroid hormones had no effect. In HESCs, down-regulation of TIA-1 resulted in elevated IL-6 and TNF-α expression, whereas TIA-1 overexpression resulted in decreased IL-6 and TNF-α expression. Endometrial

  12. Down-regulation of hTERT and Cyclin D1 transcription via PI3K/Akt and TGF-β pathways in MCF-7 Cancer cells with PX-866 and Raloxifene

    Energy Technology Data Exchange (ETDEWEB)

    Peek, Gregory W. [Department of Biology, University of Alabama at Birmingham, Birmingham, AL (United States); Tollefsbol, Trygve O., E-mail: trygve@uab.edu [Department of Biology, University of Alabama at Birmingham, Birmingham, AL (United States); Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL (United States); Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL (United States); Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL (United States); Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL (United States)

    2016-05-15

    Human telomerase reverse transcriptase (hTERT) is the catalytic and limiting component of telomerase and also a transcription factor. It is critical to the integrity of the ends of linear chromosomes and to the regulation, extent and rate of cell cycle progression in multicellular eukaryotes. The level of hTERT expression is essential to a wide range of bodily functions and to avoidance of disease conditions, such as cancer, that are mediated in part by aberrant level and regulation of cell cycle proliferation. Value of a gene in regulation depends on its ability to both receive input from multiple sources and transmit signals to multiple effectors. The expression of hTERT and the progression of the cell cycle have been shown to be regulated by an extensive network of gene products and signaling pathways, including the PI3K/Akt and TGF-β pathways. The PI3K inhibitor PX-866 and the competitive estrogen receptor ligand raloxifene have been shown to modify progression of those pathways and, in combination, to decrease proliferation of estrogen receptor positive (ER+) MCF-7 breast cancer cells. We found that combinations of modulators of those pathways decreased not only hTERT transcription but also transcription of additional essential cell cycle regulators such as Cyclin D1. By evaluating known expression profile signatures for TGF-β pathway diversions, we confirmed additional genes such as heparin-binding epidermal growth factor-like growth factor (HB EGF) by which those pathways and their perturbations may also modify cell cycle progression. - Highlights: • PX-866 and raloxifene affect the PI3K/Akt and TGF-β pathways. • PX-866 and raloxifene down-regulate genes up-regulated in cancer. • PX-866 and raloxifene decrease transcription of hTERT and Cyclin D1. • Pathological transcription signatures can identify new defense mechanisms.

  13. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Nilgun Gurbuz

    Full Text Available Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA, induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT, concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B- and 5-HT1D-mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification

  14. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Nilgun Gurbuz

    Full Text Available Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA, induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT, concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B- and 5-HT1D- mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification

  15. Human 3α-hydroxysteroid dehydrogenase type 3: structural clues of 5α-DHT reverse binding and enzyme down-regulation decreasing MCF7 cell growth.

    Science.gov (United States)

    Zhang, Bo; Hu, Xiao-Jian; Wang, Xiao-Qiang; Thériault, Jean-François; Zhu, Dao-Wei; Shang, Peng; Labrie, Fernand; Lin, Sheng-Xiang

    2016-04-15

    Human 3α-HSD3 (3α-hydroxysteroid dehydrogenase type 3) plays an essential role in the inactivation of the most potent androgen 5α-DHT (5α-dihydrotestosterone). The present study attempts to obtain the important structure of 3α-HSD3 in complex with 5α-DHT and to investigate the role of 3α-HSD3 in breast cancer cells. We report the crystal structure of human 3α-HSD3·NADP(+)·A-dione (5α-androstane-3,17-dione)/epi-ADT (epiandrosterone) complex, which was obtained by co-crystallization with 5α-DHT in the presence of NADP(+) Although 5α-DHT was introduced during the crystallization, oxidoreduction of 5α-DHT occurred. The locations of A-dione and epi-ADT were identified in the steroid-binding sites of two 3α-HSD3 molecules per crystal asymmetric unit. An overlay showed that A-dione and epi-ADT were oriented upside-down and flipped relative to each other, providing structural clues for 5α-DHT reverse binding in the enzyme with the generation of different products. Moreover, we report the crystal structure of the 3α-HSD3·NADP(+)·4-dione (4-androstene-3,17-dione) complex. When a specific siRNA (100 nM) was used to suppress 3α-HSD3 expression without interfering with 3α-HSD4, which shares a highly homologous active site, the 5α-DHT concentration increased, whereas MCF7 cell growth was suppressed. The present study provides structural clues for 5α-DHT reverse binding within 3α-HSD3, and demonstrates for the first time that down-regulation of 3α-HSD3 decreases MCF7 breast cancer cell growth. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  16. Quinacrine induces apoptosis in human leukemia K562 cells via p38 MAPK-elicited BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression

    International Nuclear Information System (INIS)

    Changchien, Jung-Jung; Chen, Ying-Jung; Huang, Chia-Hui; Cheng, Tian-Lu; Lin, Shinne-Ren; Chang, Long-Sen

    2015-01-01

    Although previous studies have revealed the anti-cancer activity of quinacrine, its effect on leukemia is not clearly resolved. We sought to explore the cytotoxic effect and mechanism of quinacrine action in human leukemia K562 cells. Quinacrine induced K562 cell apoptosis accompanied with ROS generation, mitochondrial depolarization, and down-regulation of BCL2L1 and BCL2. Upon exposure to quinacrine, ROS-mediated p38 MAPK activation and ERK inactivation were observed in K562 cells. Quinacrine-induced cell death and mitochondrial depolarization were suppressed by the p38MAPK inhibitor SB202190 and constitutively active MEK1 over-expression. Activation of p38 MAPK was shown to promote BCL2 degradation. Further, ERK inactivation suppressed c-Jun-mediated transcriptional expression of BCL2L1. Over-expression of BCL2L1 and BCL2 attenuated quinacrine-evoked mitochondrial depolarization and rescued the viability of quinacrine-treated cells. Taken together, our data indicate that quinacrine-induced K562 cell apoptosis is mediated through mitochondrial alterations triggered by p38 MAPK-mediated BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression. - Highlights: • Quinacrine induces K562 cell apoptosis via down-regulation of BCL2 and BCL2L1. • Quinacrine induces p38 MAPK activation and ERK inactivation in K562 cells. • Quinacrine elicits p38 MAPK-mediated BCL2 down-regulation. • Quinacrine suppresses ERK/c-Jun-mediated BCL2L1 expression

  17. MicroRNA-Mediated Down-Regulation of Apoptosis Signal-Regulating Kinase 1 (ASK1) Attenuates the Apoptosis of Human Mesenchymal Stem Cells (MSCs) Transplanted into Infarcted Heart.

    Science.gov (United States)

    Lee, Chang Youn; Shin, Sunhye; Lee, Jiyun; Seo, Hyang-Hee; Lim, Kyu Hee; Kim, Hyemin; Choi, Jung-Won; Kim, Sang Woo; Lee, Seahyung; Lim, Soyeon; Hwang, Ki-Chul

    2016-10-20

    Stem cell therapy using adult stem cells, such as mesenchymal stem cells (MSCs) has produced some promising results in treating the damaged heart. However, the low survival rate of MSCs after transplantation is still one of the crucial factors that limit the therapeutic effect of stem cells. In the damaged heart, oxidative stress due to reactive oxygen species (ROS) production can cause the death of transplanted MSCs. Apoptosis signal-regulating kinase 1 (ASK1) has been implicated in the development of oxidative stress-related pathologic conditions. Thus, we hypothesized that down-regulation of ASK1 in human MSCs (hMSCs) might attenuate the post-transplantation death of MSCs. To test this hypothesis, we screened microRNAs (miRNAs) based on a miRNA-target prediction database and empirical data and investigated the anti-apoptotic effect of selected miRNAs on human adipose-derived stem cells (hASCs) and on rat myocardial infarction (MI) models. Our data indicated that miRNA-301a most significantly suppressed ASK1 expression in hASCs. Apoptosis-related genes were significantly down-regulated in miRNA-301a-enriched hASCs exposed to hypoxic conditions. Taken together, these data show that miRNA-mediated down-regulation of ASK1 protects MSCs during post-transplantation, leading to an increase in the efficacy of MSC-based cell therapy.

  18. Micro-RNA-128 (miRNA-128) down-regulation in glioblastoma targets ARP5 (ANGPTL6), Bmi-1 and E2F-3a, key regulators of brain cell proliferation.

    Science.gov (United States)

    Cui, J G; Zhao, Y; Sethi, P; Li, Y Y; Mahta, A; Culicchia, F; Lukiw, W J

    2010-07-01

    High density micro-RNA (miRNA) arrays, fluorescent-reporter miRNA assay and Northern miRNA dot-blot analysis show that a brain-enriched miRNA-128 is significantly down-regulated in glioblastoma multiforme (GBM) and in GBM cell lines when compared to age-matched controls. The down-regulation of miRNA-128 was found to inversely correlate with WHO tumor grade. Three bioinformatics-verified miRNA-128 targets, angiopoietin-related growth factor protein 5 (ARP5; ANGPTL6), a transcription suppressor that promotes stem cell renewal and inhibits the expression of known tumor suppressor genes involved in senescence and differentiation, Bmi-1, and a transcription factor critical for the control of cell-cycle progression, E2F-3a, were found to be up-regulated. Addition of exogenous miRNA-128 to CRL-1690 and CRL-2610 GBM cell lines (a) restored 'homeostatic' ARP5 (ANGPTL6), Bmi-1 and E2F-3a expression, and (b) significantly decreased the proliferation of CRL-1690 and CRL-2610 cell lines. Our data suggests that down-regulation of miRNA-128 may contribute to glioma and GBM, in part, by coordinately up-regulating ARP5 (ANGPTL6), Bmi-1 and E2F-3a, resulting in the proliferation of undifferentiated GBM cells.

  19. MicroRNA-Mediated Down-Regulation of Apoptosis Signal-Regulating Kinase 1 (ASK1 Attenuates the Apoptosis of Human Mesenchymal Stem Cells (MSCs Transplanted into Infarcted Heart

    Directory of Open Access Journals (Sweden)

    Chang Youn Lee

    2016-10-01

    Full Text Available Stem cell therapy using adult stem cells, such as mesenchymal stem cells (MSCs has produced some promising results in treating the damaged heart. However, the low survival rate of MSCs after transplantation is still one of the crucial factors that limit the therapeutic effect of stem cells. In the damaged heart, oxidative stress due to reactive oxygen species (ROS production can cause the death of transplanted MSCs. Apoptosis signal-regulating kinase 1 (ASK1 has been implicated in the development of oxidative stress-related pathologic conditions. Thus, we hypothesized that down-regulation of ASK1 in human MSCs (hMSCs might attenuate the post-transplantation death of MSCs. To test this hypothesis, we screened microRNAs (miRNAs based on a miRNA-target prediction database and empirical data and investigated the anti-apoptotic effect of selected miRNAs on human adipose-derived stem cells (hASCs and on rat myocardial infarction (MI models. Our data indicated that miRNA-301a most significantly suppressed ASK1 expression in hASCs. Apoptosis-related genes were significantly down-regulated in miRNA-301a-enriched hASCs exposed to hypoxic conditions. Taken together, these data show that miRNA-mediated down-regulation of ASK1 protects MSCs during post-transplantation, leading to an increase in the efficacy of MSC-based cell therapy.

  20. Hypoxia in Tumor Angiogenesis and Metastasis: Evaluation of VEGF and MMP Over-expression and Down-Regulation of HIF-1alpha with RNAi in Hypoxic Tumor Cells

    Science.gov (United States)

    Shah, Shruti

    Background: As tumor mass grows beyond a few millimeters in diameter, the angiogenic "switch" is turned on leading to recruitment of blood vessels from surrounding artery and veins. However, the tumor mass is poorly perfused and there are pockets of hypoxia or lower oxygen concentrations relative to normal tissue. Hypoxia-inducing factor-1a (HIF-1a), a transcription factor, is activated when the oxygen concentration is low. Upon activation of HIF-1a, a number of other genes also turn on that allows the tumor to become more aggressive and resistant to therapy. Purpose: The main objectives of this study were to evaluate the effect of hypoxia-induced HIF-1a followed by over-expression of angiogenic and metastatic markers in tumor cells and down-regulation of HIF-1a using nanoparticle-delivered RNA interference therapy. Methods: Human ovarian (SKOV3) and breast (MDA-MB-231) adenocarcinoma cells were incubated under normoxic and hypoxic conditions. Following hypoxia treatment of the cells, HIF-1α, vascular endothelial growth factor (VEGF), matrix metalloproteinase 2 (MMP-2), and MMP-9 expression was analyzed qualitatively and quantitatively. For intracellular delivery of HIF-1a gene silencing small interfering RNA (siRNA), type B gelatin nanoparticles were fabricated using the solvent displacement method and the surface was modified with poly(ethylene glycol) (PEG, Mol. wt. 2kDa). Cellular uptake and distribution of the nanoparticles was observed with Cy3-siRNA loaded, FITC-conjugated gelatin nanoparticles. Cytotoxicity of the nanoparticle formulations was evaluated in both the cell lines. siRNA was transfected in the gelatin nanoparticles under hypoxic conditions. Total cellular protein and RNA were extracted for analysis of HIF1a, VEGF, MMP-2 and MMP-9 expression. Results: MDA-MB-231 and SKOV3 cells show increased expression of HIF1a under hypoxic conditions compared to baseline levels at normoxic conditions. ELISA and western blots of VEGF, MMP-2 and MMP-9 appear to

  1. B1-induced caspase-independent apoptosis in MCF-7 cells is mediated by down-regulation of Bcl-2 via p53 binding to P2 promoter TATA box

    International Nuclear Information System (INIS)

    Liang Xin; Xu Ke; Xu Yufang; Liu Jianwen; Qian Xuhong

    2011-01-01

    The Bcl-2 family contains a panel of proteins which are conserved regulators of apoptosis in mammalian cells, like the anti-apoptotic protein Bcl-2. According to its significant role in altering susceptibility to apoptosis, the deciphering of the mechanism of Bcl-2 expression modulation may be crucial for identifying therapeutics strategies for cancer. Treatment with naphthalimide-based DNA intercalators, including M2-A and R16, generally leads to a decrease in Bcl-2 intracellular amounts. Whereas the interest for these chemotherapeutics is accompanied by advances in the fundamental understanding of their anticancer properties, the molecular mechanism underlying changes in Bcl-2 expression remains poorly understood. We report here that p53 contributes to Bcl-2 down-regulation induced by B1, a novel naphthalimide-based DNA intercalating agent. Indeed, the decrease in Bcl-2 protein levels observed during B1-induced apoptosis was correlated to the decrease in mRNA levels, as a result of the inhibition of Bcl-2 transcription and promoter activity. In this context, we evaluated p53 contribution in the Bcl-2 transcriptional down-regulation. We found a significant increase of p53 binding to P 2 promoter TATA box in MCF7 cells by chromatin immunoprecipitation. These data suggest that B1-induced caspase-independent apoptosis in MCF-7 cells is associated with the activation of p53 and the down-regulation of Bcl-2. Our study strengthens the links between p53 and Bcl-2 at a transcriptional level, upon naphthalimide-based DNA intercalator treatment. - Research highlights: → B1 induced apoptosis in MCF-7 cells, following a transcriptional decrease in Bcl-2. → B1 treatment triggered p53 activation and leads to a p53-dependent down-regulation of Bcl-2. → B1 induced significant increase of p53 binding to Bcl-2 P 2 promoter TATA box.

  2. Down-regulation of Wild-type p53-induced Phosphatase 1 (Wip1) Plays a Critical Role in Regulating Several p53-dependent Functions in Premature Senescent Tumor Cells*

    Science.gov (United States)

    Crescenzi, Elvira; Raia, Zelinda; Pacifico, Francesco; Mellone, Stefano; Moscato, Fortunato; Palumbo, Giuseppe; Leonardi, Antonio

    2013-01-01

    Premature or drug-induced senescence is a major cellular response to chemotherapy in solid tumors. The senescent phenotype develops slowly and is associated with chronic DNA damage response. We found that expression of wild-type p53-induced phosphatase 1 (Wip1) is markedly down-regulated during persistent DNA damage and after drug release during the acquisition of the senescent phenotype in carcinoma cells. We demonstrate that down-regulation of Wip1 is required for maintenance of permanent G2 arrest. In fact, we show that forced expression of Wip1 in premature senescent tumor cells induces inappropriate re-initiation of mitosis, uncontrolled polyploid progression, and cell death by mitotic failure. Most of the effects of Wip1 may be attributed to its ability to dephosphorylate p53 at Ser15 and to inhibit DNA damage response. However, we also uncover a regulatory pathway whereby suppression of p53 Ser15 phosphorylation is associated with enhanced phosphorylation at Ser46, increased p53 protein levels, and induction of Noxa expression. On the whole, our data indicate that down-regulation of Wip1 expression during premature senescence plays a pivotal role in regulating several p53-dependent aspects of the senescent phenotype. PMID:23612976

  3. Inhibition of H3K9me2 Reduces Hair Cell Regeneration after Hair Cell Loss in the Zebrafish Lateral Line by Down-Regulating the Wnt and Fgf Signaling Pathways

    Science.gov (United States)

    Tang, Dongmei; Lin, Qin; He, Yingzi; Chai, Renjie; Li, Huawei

    2016-01-01

    The activation of neuromast (NM) supporting cell (SC) proliferation leads to hair cell (HC) regeneration in the zebrafish lateral line. Epigenetic mechanisms have been reported that regulate HC regeneration in the zebrafish lateral line, but the role of H3K9me2 in HC regeneration after HC loss remains poorly understood. In this study, we focused on the role of H3K9me2 in HC regeneration following neomycin-induced HC loss. To investigate the effects of H3K9me2 in HC regeneration, we took advantage of the G9a/GLP-specific inhibitor BIX01294 that significantly reduces the dimethylation of H3K9. We found that BIX01294 significantly reduced HC regeneration after neomycin-induced HC loss in the zebrafish lateral line. BIX01294 also significantly reduced the proliferation of NM cells and led to fewer SCs in the lateral line. In situ hybridization showed that BIX01294 significantly down-regulated the Wnt and Fgf signaling pathways, which resulted in reduced SC proliferation and HC regeneration in the NMs of the lateral line. Altogether, our results suggest that down-regulation of H3K9me2 significantly decreases HC regeneration after neomycin-induced HC loss through inactivation of the Wnt/β-catenin and Fgf signaling pathways. Thus H3K9me2 plays a critical role in HC regeneration. PMID:27303264

  4. Inhibition of H3K9me2 Reduces Hair Cell Regeneration after Hair Cell Loss in the Zebrafish Lateral Line by Down-Regulating the Wnt and Fgf Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Dongmei eTang

    2016-05-01

    Full Text Available The activation of neuromast supporting cell (SC proliferation leads to hair cell (HC regeneration in the zebrafish lateral line. Epigenetic mechanisms have been reported that regulate HC regeneration in the zebrafish lateral line, but the role of H3K9me2 in HC regeneration after HC loss remains poorly understood. In this study, we focused on the role of H3K9me2 in HC regeneration following neomycin-induced HC loss. To investigate the effects of H3K9me2 in HC regeneration, we took advantage of the G9a/GLP-specific inhibitor BIX01294 that significantly reduces the dimethylation of H3K9. We found that BIX01294 significantly reduced HC regeneration after neomycin-induced HC loss in the zebrafish lateral line. BIX01294 also significantly reduced the proliferation of neuromast cells and led to fewer SCs in the lateral line. In situ hybridization showed that BIX01294 significantly down-regulated the Wnt and Fgf signaling pathways, which resulted in reduced SC proliferation and HC regeneration in the neuromasts of the lateral line. Altogether, our results suggest that down-regulation of H3K9me2 significantly decreases HC regeneration after neomycin-induced HC loss through inactivation of the Wnt/β-catenin and Fgf signaling pathways. Thus H3K9me2 plays a critical role in HC regeneration.

  5. Cytotoxicity of diacetoxyscirpenol is associated with apoptosis by activation of caspase-8 and interruption of cell cycle progression by down-regulation of cdk4 and cyclin B1 in human Jurkat T cells

    International Nuclear Information System (INIS)

    Jun, Do Youn; Kim, Jun Seok; Park, Hae Sun; Song, Woo Sun; Bae, Young Seuk; Kim, Young Ho

    2007-01-01

    To understand the mechanism underlying T-cell toxicity of diacetoxyscirpenol (DAS) from Fusarium sambucinum, its apoptogenic as well as growth retardation activity was investigated in human Jurkat T cells. Exposure to DAS (0.01-0.15 μM) caused apoptotic DNA fragmentation along with caspase-8 activation, Bid cleavage, mitochondrial cytochrome c release, activation of caspase-9 and caspase-3, and PARP degradation, without any alteration in the levels of Fas or FasL. Under these conditions, necrosis was not accompanied. The cytotoxicity of DAS was not blocked by the anti-Fas neutralizing antibody ZB-4. Although the DAS-induced apoptotic events were completely prevented by overexpression of Bcl-xL, the cells overexpressing Bcl-xL were unable to divide in the presence of DAS, resulting from the failure of cell cycle progression possibly due to down-regulation in the protein levels of cdk4 and cyclin B1. The DAS-mediated apoptosis and activation of caspase-8, -9, and -3 were abrogated by either pan-caspase inhibitor (z-VAD-fmk) or caspase-8 inhibitor (z-IETD-fmk). While the DAS-mediated apoptosis and activation of caspase-9 and caspase-3 were slightly suppressed by the mitochondrial permeability transition pore inhibitor (CsA), both caspase-8 activation and Bid cleavage were not affected by CsA. The activated normal peripheral T cells possessed a similar susceptibility to the cytotoxicity of DAS. These results demonstrate that the T-cell toxicity of DAS is attributable to not only apoptosis initiated by caspase-8 activation and subsequent mitochondrion-dependent or -independent activation of caspase cascades, which can be regulated by Bcl-xL, but also interruption of cell cycle progression caused by down-regulation of cdk4 and cyclin B1 proteins

  6. Vitex rotundifolia Fruit Suppresses the Proliferation of Human Colorectal Cancer Cells through Down-regulation of Cyclin D1 and CDK4 via Proteasomal-Dependent Degradation and Transcriptional Inhibition.

    Science.gov (United States)

    Song, Hun Min; Park, Gwang Hun; Park, Su Bin; Kim, Hyun-Seok; Son, Ho-Jun; Um, Yurry; Jeong, Jin Boo

    2018-01-01

    Viticis Fructus (VF) as the dried fruit from Vitex rotundifolia L. used as a traditional medicine for treating inflammation, headache, migraine, chronic bronchitis, eye pain, and gastrointestinal infections has been reported to have antiproliferative effects against various cancer cells, including breast, lung and colorectal cancer cells. However, the molecular mechanisms by which VF mediates the inhibitory effect of the proliferation of cancer cells have not been elucidated in detail. In this study, we investigated the molecular mechanism of VF on the down-regulation of cyclin D1 and CDK4 level associated with cancer cell proliferation. VF suppressed the proliferation of human colorectal cancer cell lines such as HCT116 and SW480. VF induced decrease in cyclin D1 and CDK4 in both protein and mRNA levels. However, the protein levels of cyclin D1 and CDK4 were decreased by VF at an earlier time than the change of mRNA levels; rather it suppressed the expression of cyclin D1 and CDK4 via the proteasomal degradation. In cyclin D1 and CDK4 degradation, we found that Thr286 phosphorylation of cyclin D1 plays a pivotal role in VF-mediated cyclin D1 degradation. Subsequent experiments with several kinase inhibitors suggest that VF-mediated degradation of cyclin D1 may be dependent on GSK3[Formula: see text] and VF-mediated degradation of CDK4 is dependent on ERK1/2, p38 and GSK3[Formula: see text]. In the transcriptional regulation of cyclin D1 and CDK4, we found that VF inhibited Wnt activation associated with cyclin D1 transcriptional regulation through TCF4 down-regulation. In addition, VF treatment down-regulated c-myc expression associated CDK4 transcriptional regulation. Our results suggest that VF has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.

  7. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhaojing [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China); Xu, Yonghong [Institute of Ophthalmological Research, Department of Ophthalmology, Renmin Hospital of Wuhan University, 430060 Wuhan (China); Meng, Xiangning [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Watari, Fumio [Department of Biomedical, Dental Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586 (Japan); Liu, Hudan, E-mail: hudanliu@hust.edu.cn [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China); Chen, Xiao, E-mail: mornsmile@yahoo.com [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China)

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.

  8. Astaxanthin down-regulates Rad51 expression via inactivation of AKT kinase to enhance mitomycin C-induced cytotoxicity in human non-small cell lung cancer cells.

    Science.gov (United States)

    Ko, Jen-Chung; Chen, Jyh-Cheng; Wang, Tai-Jing; Zheng, Hao-Yu; Chen, Wen-Ching; Chang, Po-Yuan; Lin, Yun-Wei

    2016-04-01

    Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects, including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination, and studies show that chemo-resistant carcinomas exhibit high levels of Rad51 expression. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Astaxanthin treatment (2.5-20 μM) decreased Rad51 expression and phospho-AKT(Ser473) protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector rescued the decreased Rad51 mRNA and protein levels in astaxanthin-treated NSCLC cells. Combined treatment with phosphatidylinositol 3-kinase (PI3K) inhibitors (LY294002 or wortmannin) further decreased the Rad51 expression in astaxanthin-exposed A549 and H1703 cells. Knockdown of Rad51 expression by transfection with si-Rad51 RNA or cotreatment with LY294002 further enhanced the cytotoxicity and cell growth inhibition of astaxanthin. Additionally, mitomycin C (MMC) as an anti-tumor antibiotic is widely used in clinical NSCLC chemotherapy. Combination of MMC and astaxanthin synergistically resulted in cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced phospho-AKT(Ser473) level and Rad51 expression. Overexpression of AKT-CA or Flag-tagged Rad51 reversed the astaxanthin and MMC-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in astaxanthin and MMC co-treated cells. In conclusion, astaxanthin enhances MMC-induced cytotoxicity by decreasing Rad51 expression and AKT activation. These findings may provide rationale to combine astaxanthin with MMC for the treatment of NSCLC. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Minocycline enhances mitomycin C-induced cytotoxicity through down-regulating ERK1/2-mediated Rad51 expression in human non-small cell lung cancer cells.

    Science.gov (United States)

    Ko, Jen-Chung; Wang, Tai-Jing; Chang, Po-Yuan; Syu, Jhan-Jhang; Chen, Jyh-Cheng; Chen, Chien-Yu; Jian, Yun-Ting; Jian, Yi-Jun; Zheng, Hao-Yu; Chen, Wen-Ching; Lin, Yun-Wei

    2015-10-01

    Minocycline is a semisynthetic tetracycline derivative; it has anti-inflammatory and anti-cancer effects distinct from its antimicrobial function. However, the molecular mechanism of minocycline-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination and high levels of Rad51 expression are observed in chemo- or radioresistant carcinomas. Our previous studies have shown that the MKK1/2-ERK1/2 signal pathway maintains the expression of Rad51 in NSCLC cells. In this study, minocycline treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1975. Treatment with minocycline decreased Rad51 mRNA and protein levels through MKK1/2-ERK1/2 inactivation. Furthermore, expression of constitutively active MKK1 (MKK1-CA) vectors significantly rescued the decreased Rad51 protein and mRNA levels in minocycline-treated NSCLC cells. However, combined treatment with MKK1/2 inhibitor U0126 and minocycline further decreased the Rad51 expression and cell viability of NSCLC cells. Knocking down Rad51 expression by transfection with small interfering RNA of Rad51 enhanced the cytotoxicity and cell growth inhibition of minocycline. Mitomycin C (MMC) is typically used as a first or second line regimen to treat NSCLC. Compared to a single agent alone, MMC combined with minocycline resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells, accompanied with reduced activation of phospho-ERK1/2, and reduced Rad51 protein levels. Overexpression of MKK1-CA or Flag-tagged Rad51 could reverse the minocycline and MMC-induced synergistic cytotoxicity. These findings may have implications for the rational design of future drug regimens incorporating minocycline and MMC for the treatment of NSCLC. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Expression of background potassium channels in rat DRG is cell-specific and down-regulated in a neuropathic pain model.

    Science.gov (United States)

    Pollema-Mays, Sarah L; Centeno, Maria Virginia; Ashford, Crystle J; Apkarian, A Vania; Martina, Marco

    2013-11-01

    Neuropathic pain is associated with hyperexcitability of DRG neurons. Despite the importance of leakage potassium channels for neuronal excitability, little is known about their cell-specific expression in DRGs and possible modulation in neuropathic pain. Multiple leakage channels are expressed in DRG neurons, including TASK1, TASK3, TRESK, TRAAK, TWIK1, TREK1 and TREK2 but little is known about their distribution among different cell types. Our immunohistochemical studies show robust TWIK1 expression in large and medium size neurons, without overlap with TRPV1 or IB4 staining. TASK1 and TASK3, on the contrary, are selectively expressed in small cells; TASK1 expression closely overlaps TRPV1-positive cells, while TASK3 is expressed in TRPV1- and IB4-negative cells. We also studied mRNA expression of these channels in L4-L5 DRGs in control conditions and up to 4 weeks after spared nerve injury lesion. We found that TWIK1 expression is much higher than TASK1 and TASK3 and is strongly decreased 1, 2 and 4 weeks after neuropathic injury. TASK3 expression, on the other hand, decreases 1 week after surgery but reverts to baseline by 2weeks; TASK1 shows no significant change at any time point. These data suggest an involvement of TWIK1 in the maintenance of the pain condition. © 2013.

  11. Tamoxifen enhances erlotinib-induced cytotoxicity through down-regulating AKT-mediated thymidine phosphorylase expression in human non-small-cell lung cancer cells.

    Science.gov (United States)

    Ko, Jen-Chung; Chiu, Hsien-Chun; Syu, Jhan-Jhang; Jian, Yi-Jun; Chen, Chien-Yu; Jian, Yun-Ting; Huang, Yi-Jhen; Wo, Ting-Yu; Lin, Yun-Wei

    2014-03-01

    Tamoxifen is a triphenylethylene nonsteroidal estrogen receptor (ER) antagonist used worldwide as an adjuvant hormone therapeutic agent in the treatment of breast cancer. However, the molecular mechanism of tamoxifen-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Thymidine phosphorylase (TP) is an enzyme of the pyrimidine salvage pathway which is upregulated in cancers. In this study, tamoxifen treatment inhibited cell survival in two NSCLC cells, H520 and H1975. Treatment with tamoxifen decreased TP mRNA and protein levels through AKT inactivation. Furthermore, expression of constitutively active AKT (AKT-CA) vectors significantly rescued the decreased TP protein and mRNA levels in tamoxifen-treated NSCLC cells. In contrast, combination treatment with PI3K inhibitors (LY294002 or wortmannin) and tamoxifen further decreased the TP expression and cell viability of NSCLC cells. Knocking down TP expression by transfection with small interfering RNA of TP enhanced the cytotoxicity and cell growth inhibition of tamoxifen. Erlotinib (Tarceva, OSI-774), an orally available small molecular inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase, is approved for clinical treatment of NSCLC. Compared to a single agent alone, tamoxifen combined with erlotinib resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells, accompanied with reduced activation of phospho-AKT and phospho-ERK1/2, and reduced TP protein levels. These findings may have implications for the rational design of future drug regimens incorporating tamoxifen and erlotinib for the treatment of NSCLC. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Folate deprivation induces cell cycle arrest at G0/G1 phase and apoptosis in hippocampal neuron cells through down-regulation of IGF-1 signaling pathway.

    Science.gov (United States)

    Yang, Yang; Li, Xi; Sun, Qinwei; He, Bin; Jia, Yimin; Cai, Demin; Zhao, Ruqian

    2016-10-01

    Folate deficiency contributes to impaired adult hippocampal neurogenesis, yet the mechanisms remain unclear. Here we use HT-22 hippocampal neuron cells as model to investigate the effect of folate deprivation (FD) on cell proliferation and apoptosis, and to elucidate the underlying mechanism. FD caused cell cycle arrest at G0/G1 phase and increased the rate of apoptosis, which was associated with disrupted expression of folate transport and methyl transfer genes. FOLR1 and SLC46A1 were (Pmethyl transfer pathway and hypermethylation of IGF-1 gene promoter. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Human TM9SF4 Is a New Gene Down-Regulated by Hypoxia and Involved in Cell Adhesion of Leukemic Cells.

    Directory of Open Access Journals (Sweden)

    Rosa Paolillo

    Full Text Available The transmembrane 9 superfamily protein member 4, TM9SF4, belongs to the TM9SF family of proteins highly conserved through evolution. TM9SF4 homologs, previously identified in many different species, were mainly involved in cellular adhesion, innate immunity and phagocytosis. In human, the function and biological significance of TM9SF4 are currently under investigation. However, TM9SF4 was found overexpressed in human metastatic melanoma and in a small subset of acute myeloid leukemia (AMLs and myelodysplastic syndromes, consistent with an oncogenic function of this gene.In this study, we first analyzed the expression and regulation of TM9SF4 in normal and leukemic cells and identified TM9SF4 as a gene highly expressed in human quiescent CD34+ hematopoietic progenitor cells (HPCs, regulated during monocytic and granulocytic differentiation of HPCs, both lineages giving rise to mature myeloid cells involved in adhesion, phagocytosis and immunity. Then, we found that TM9SF4 is markedly overexpressed in leukemic cells and in AMLs, particularly in M2, M3 and M4 AMLs (i.e., in AMLs characterized by the presence of a more or less differentiated granulocytic progeny, as compared to normal CD34+ HPCs. Proliferation and differentiation of HPCs occurs in hypoxia, a physiological condition in bone marrow, but also a crucial component of cancer microenvironment. Here, we investigated the impact of hypoxia on TM9SF4 expression in leukemic cells and identified TM9SF4 as a direct target of HIF-1α, downregulated in these cells by hypoxia. Then, we found that the hypoxia-mediated downregulation of TM9SF4 expression is associated with a decrease of cell adhesion of leukemic cells to fibronectin, thus demonstrating that human TM9SF4 is a new molecule involved in leukemic cell adhesion.Altogether, our study reports for the first time the expression of TM9SF4 at the level of normal and leukemic hematopoietic cells and its marked expression at the level of AMLs

  14. Down-regulation of human endogenous retrovirus type K (HERV-K) viral env RNA in pancreatic cancer cells decreases cell proliferation and tumor growth

    Science.gov (United States)

    Li, Ming; Radvanyi, Laszlo; Yin, Bingnan; Li, Jia; Chivukula, Raghavender; Lin, Kevin; Lu, Yue; Shen, JianJun; Chang, David Z.; Li, Donghui; Johanning, Gary L.; Wang-Johanning, Feng

    2017-01-01

    Purpose We investigated the role of the human endogenous retrovirus type K (HERV-K) envelope (env) gene in pancreatic cancer (PC). Experimental Design shRNA was employed to knockdown (KD) the expression of HERV-K in PC cells. Results HERV-K env expression was detected in seven PC cell lines and in 80% of PC patient biopsies, but not in two normal pancreatic cell lines or uninvolved normal tissues. A new HERV-K splice variant was discovered in several PC cell lines. RT activity and virus-like particles were observed in culture media supernatant obtained from Panc-1 and Panc-2 cells. HERV-K viral RNA levels and anti-HERV-K antibody titers were significantly higher in PC patient sera (N=106) than in normal donor sera (N=40). Importantly, the in vitro and in vivo growth rates of three PC cell lines were significantly reduced after HERV-K KD by shRNA targeting HERV-K env, and there was reduced metastasis to lung after treatment. RNA-seq results revealed changes in gene expression after HERV-K env KD, including RAS and TP53. Furthermore, downregulation of HERV-K Env protein expression by shRNA also resulted in decreased expression of RAS, p-ERK, p-RSK, and p-AKT in several PC cells or tumors. Conclusion These results demonstrate that HERV-K influences signal transduction via the RAS-ERK-RSK pathway in PC. Our data highlight the potentially important role of HERV-K in tumorigenesis and progression of PC, and indicate that HERV-K viral proteins may be attractive biomarkers and/or tumor-associated antigens, as well as potentially useful targets for detection, diagnosis and immunotherapy of PC. PMID:28679769

  15. Aqueous extract of Tribulus terrestris Linn induces cell growth arrest and apoptosis by down-regulating NF-κB signaling in liver cancer cells.

    Science.gov (United States)

    Kim, Hye Jin; Kim, Jin Chul; Min, Jung Sun; Kim, Mi-Jee; Kim, Ji Ae; Kor, Myung Ho; Yoo, Hwa Seung; Ahn, Jeong Keun

    2011-06-14

    A medicinal herb Tribulus terrestris Linn has been used to treat various diseases including hepatocellular carcinoma. The aim of the present study was to investigate the anticancer activity of Tribulus terrestris Linn (TT) in liver cancer cells. The antitumor activity of aqueous TT extract was analyzed by testing the cytotoxicity and the effect on clonogenecity in HepG2 cells. Apoptosis and cell cycle arrest induced by TT were dissected by flow cytometry and its inhibitory effect on NF-κB activity was determined by analyzing the expression levels of NF-κB/IκB subunit proteins. The suppression of NF-κB-regulated gene expression by TT was assessed by RT-PCR. TT extract repressed clonogenecity and proliferation, induced apoptosis, and enhanced accumulation in the G0/G1 phase of liver cancer cells. It also turned out that TT extract inhibited NF-κB-dependent reporter gene expression and NF-κB subunit p50 expression, while it enhanced the cellular level of IκBα by inhibiting the phosphorylation and degradation of IκBα. In addition, IKK activity was inhibited in a dose-dependent manner. Furthermore, TT extract suppressed the transcription of genes associated with cell cycle regulation, anti-apoptosis, and invasion. These data showed that TT extract blocks proliferation and induces apoptosis in human liver cancer cells through the inhibition of NF-κB signaling. Aqueous TT extract can be used as an anticancer drug for hepatocellular carcinoma patients. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Resveratrol Inhibits the Invasion of Glioblastoma-Initiating Cells via Down-Regulation of the PI3K/Akt/NF-κB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yuming Jiao

    2015-06-01

    Full Text Available Invasion and metastasis of glioblastoma-initiating cells (GICs are thought to be responsible for the progression and recurrence of glioblastoma multiforme (GBM. A safe drug that can be applied during the rest period of temozolomide (TMZ maintenance cycles would greatly improve the prognosis of GBM patients by inhibiting GIC invasion. Resveratrol (RES is a natural compound that exhibits anti-invasion properties in multiple tumor cell lines. The current study aimed to evaluate whether RES can inhibit GIC invasion in vitro and in vivo. GICs were identified using CD133 and Nestin immunofluorescence staining and tumorigenesis in non-obese diabetic severe combined immunodeficient (NOD/SCID mice. Invasive behaviors, including the adhesion, invasion and migration of GICs, were determined by tumor invasive assays in vitro and in vivo. The activity of matrix metalloproteinases (MMPs was measured by the gelatin zymography assay. Western blotting analysis and immunofluorescence staining were used to determine the expression of signaling effectors in GICs. We demonstrated that RES suppressed the adhesion, invasion and migration of GICs in vitro and in vivo. Moreover, we proved that RES inhibited the invasion of GICs via the inhibition of PI3K/Akt/NF-κB signal transduction and the subsequent suppression of MMP-2 expression.

  17. HA117 endows HL60 cells with a stem-like signature by inhibiting the degradation of DNMT1 via its ability to down-regulate expression of the GGL domain of RGS6.

    Directory of Open Access Journals (Sweden)

    Shuangshuang Li

    Full Text Available All-trans retinoic acid (ATRA induces complete remission in almost all patients with acute promyelocytic leukemia (APL via its ability to induce the in vivo differentiation of APL blasts. However, prolonged ATRA treatment can result in drug resistance. In previous studies, we generated a multi-drug-resistant HL60/ATRA cell line and found it to contain a new drug resistance-related gene segment, HA117. In this study, we demonstrate that ATRA induces multi-drug-resistant subpopulations of HL60 cells with a putative stem-like signature by up-regulating the expression of the new gene segment HA117. Western blot analysis and quantitative real-time PCR demonstrated that HA117 causes alternative splicing of regulator of G-protein signaling 6 (RGS6 and down-regulation of the expression of the GGL domain of RGS6, which plays an important role in DNA methyltransferase 1 (DNMT1 degradation. Moreover, DNMT1 expression was increased in multi-drug resistance HL60/ATRA cells. Knockdown of HA117 restored expression of the GGL domain and blocked DNMT1 expression. Moreover, resistant cells displayed a putative stem-like signature with increased expression of cancer steam cell markers CD133 and CD123. The stem cell marker, Nanog, was significantly up-regulated. In conclusion, our study shows that HA117 potentially promotes the stem-like signature of the HL60/ATRA cell line by inhibiting by the ubiquitination and degradation of DNMT1 and by down-regulating the expression of the GGL domain of RGS6. These results throw light on the cellular events associated with the ATRA-induced multi-drug resistance phenotype in acute leukemia.

  18. miR-338-3p Is Down-Regulated by Hepatitis B Virus X and Inhibits Cell Proliferation by Targeting the 3′-UTR Region of CyclinD1

    Directory of Open Access Journals (Sweden)

    Xiaoyu Fu

    2012-07-01

    Full Text Available Hepatitis B virus X protein (HBx is recognized as an oncogene in hepatocellular carcinoma (HCC. HBx regulates microRNA expression, including down-regulating miR-338-3p in LO2 cells. Here, we investigated miR-338-3p function in HBx-mediated hepatocarcinogenesis. In 23 HBV-infected HCC clinical patient tumor and adjacent non-tumor control tissues, 17 and 19 tumors expressed HBx mRNA and protein, respectively. When considered as a group, HBV-infected HCC tumors had lower miR-338-3p expression than controls; however, miR-338-3p was only significantly down-regulated in HBx-positive tumors, indicating that HBx inversely correlated with miR-338-3p. Functional characterization of miR-338-3p indicated that miR-338-3p mimics inhibited cell proliferation by inducing cell cycle arrest at the G1/S phase as assessed by EdU and cell cycle assays in HBx-expressing LO2 cells. CyclinD1, containing two putative miR-338-3p targets, was confirmed as a direct target using 3′-UTR luciferase reporter assays from cells transfected with mutated binding sites. Mutating the 2397–2403 nt binding site conferred the greatest resistance to miR-338-3p suppression of CyclinD1, indicating that miR-338-3p suppresses CyclinD1 at this site. Overall, this study demonstrates that miR-338-3p inhibits proliferation by regulating CyclinD1, and HBx down-regulates miR-338-3p in HCC. This newly identified miR-338-3p/CyclinD1 interaction provides novel insights into HBx-mediated hepatocarcinogenesis and may facilitate therapeutic development against HCC.

  19. Down-regulation of triose phosphate isomerase in Vineristine-resistant gastric cancer SGC7901 cell line identified by immobilized pH gradient two-dimensional gel electrophoresis and mierosequencing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective:To exkplore new multidrug-resistance-related proteins in gastric SC7901 cells and clarify their mechanisms.Methods:Two-dimensional(2-D) polyacrylamide gel electrophoresis with immobilized pH gradients(IPG) was applied to compare the differential expression of multidrug-resistance-related proteins in gastric cancer SGC7901 cells and Vineristine-resistant SGC7901 cells (SGC7901/VCR) induced by vincristine sulfate.The 2-D gels were silver-stained.Then,preparative 2-D PAGE was performed.The differential proteins of PVDF membranes were cxcised and identified by N-terminal microsequencing.The mRNA expressions of differential proteins were detected in SGC 7901 cells and SGC7901/VCR cells by RT-PCR.Results:Approximatedly 680 protein sports were resolved on each 2-D gel by silver staining.Most protein spots showed no difference in composition,shape or density.25 proteins differed in abundance (6 higher in SGC7901/VCR cells;19 higher in 7901 cells);5 proteins were unique to one kind of cell or the othe(3 in SGC7901/VRC cells,2 in 7901 cells).One drug-resistance-related protein,which was down-regulated in SGC7901/VCR cells,was identified as trisephosphate isomerase(TPI),a glycolytic pathway enzyme.Conclusions:the results suggest that these differential proteins including TPI may be related to the Vincristine-resistant mechanism in human gastric cancer SGC7901/VCR cell line.

  20. Induction of apoptosis in renal cell carcinoma by reactive oxygen species: involvement of extracellular signal-regulated kinase 1/2, p38delta/gamma, cyclooxygenase-2 down-regulation, and translocation of apoptosis-inducing factor.

    LENUS (Irish Health Repository)

    Ambrose, Monica

    2012-02-03

    Renal cell carcinoma (RCC) is the most common malignancy of the kidney. Unfortunately, RCCs are highly refractory to conventional chemotherapy, radiation therapy, and even immunotherapy. Thus, novel therapeutic targets need to be sought for the successful treatment of RCCs. We now report that 6-anilino-5,8-quinolinequinone (LY83583), an inhibitor of cyclic GMP production, induced growth arrest and apoptosis of the RCC cell line 786-0. It did not prove deleterious to normal renal epithelial cells, an important aspect of chemotherapy. To address the cellular mechanism(s), we used both genetic and pharmacological approaches. LY83583 induced a time- and dose-dependent increase in RCC apoptosis through dephosphorylation of mitogen-activated protein kinase kinase 1\\/2 and its downstream extracellular signal-regulated kinases (ERK) 1 and -2. In addition, we observed a decrease in Elk-1 phosphorylation and cyclooxygenase-2 (COX-2) down-regulation. We were surprised that we failed to observe an increase in either c-Jun NH(2)-terminal kinase or p38alpha and -beta mitogen-activated protein kinase activation. In contradiction, reintroduction of p38delta by stable transfection or overexpression of p38gamma dominant negative abrogated the apoptotic effect. Cell death was associated with a decrease and increase in Bcl-x(L) and Bax expression, respectively, as well as release of cytochrome c and translocation of apoptosis-inducing factor. These events were associated with an increase in reactive oxygen species formation. The antioxidant N-acetyl l-cysteine, however, opposed LY83583-mediated mitochondrial dysfunction, ERK1\\/2 inactivation, COX-2 down-regulation, and apoptosis. In conclusion, our results suggest that LY83583 may represent a novel therapeutic agent for the treatment of RCC, which remains highly refractory to antineoplastic agents. Our data provide a molecular basis for the anticancer activity of LY83583.

  1. Long non-coding RNA TUG1 inhibits apoptosis and inflammatory response in LPS-treated H9c2 cells by down-regulation of miR-29b.

    Science.gov (United States)

    Zhang, Haifang; Li, Hui; Ge, Ang; Guo, Enyu; Liu, Shuxia; Zhang, Lijuan

    2018-05-01

    Myocarditis is an important cause for cardiovascular morbidity and mortality in children and adults. The lncRNA taurine up-regulated gene 1 (TUG1) plays important roles in cell apoptosis and inflammation in tumor and liver injury. The present study aimed to investigate the role of TUG1 in LPS-injured H9c2 cells and explore the underlying molecular mechanism. H9c2 cells were stimulated with LPS to induce inflammatory injury. The expression of TUG1 was altered by transient transfections. Cell viability and apoptotic cell rates were detected by CCK-8 assay and flow cytometry assay, respectively. Inflammatory response was determined by detecting levels of inflammatory cytokines using qRT-PCR and ELISA. Furthermore, western blot analysis was conducted to assess the expression levels of core factors related with apoptosis and activations of NF-κB and JAK/STAT signaling pathways. LPS exposure reduced cell viability but enhanced cell apoptosis and inflammation in H9c2 cells. Moreover, TUG1 expression was down-regulated in LPS-injured H9c2 cells. TUG1 overexpression attenuated LPS-induced injuries in H9c2 cells, evidenced by augmented cell viability, declined apoptotic cell rates and decreased levels of pro-apoptotic factors and inflammatory cytokines. Inversely, TUG1 inhibition exerted the opposite effects. More importantly, TUG1 negatively modulated the expression of miR-29b and miR-29b mimic blocked the effect of TUG1 overexpression on cell viability, apoptosis, inflammation and inactivation of NF-κB and JAK/STAT signaling pathways in LPS-stimulated H9c2 cells. This study demonstrated that TUG1 played the anti-apoptotic and anti-inflammatory roles in LPS-injured H9c2 cells via down-regulating miR-29b and inhibiting NF-κB and JAK/STAT pathways. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Moringa Oleifera aqueous leaf extract down-regulates nuclear factor-kappaB and increases cytotoxic effect of chemotherapy in pancreatic cancer cells.

    Science.gov (United States)

    Berkovich, Liron; Earon, Gideon; Ron, Ilan; Rimmon, Adam; Vexler, Akiva; Lev-Ari, Shahar

    2013-08-19

    Fewer than 6% patients with adenocarcinoma of the pancreas live up to five years after diagnosis. Chemotherapy is currently the standard treatment, however, these tumors often develop drug resistance over time. Agents for increasing the cytotoxic effects of chemotherapy or reducing the cancer cells' chemo-resistance to the drugs are required to improve treatment outcome. Nuclear factor kappa B (NF-kB), a pro-inflammatory transcription factor, reportedly plays a significant role in the resistance of pancreatic cancer cells to apoptosis-based chemotherapy. This study investigated the effect of aqueous Moringa Oleifera leaf extract on cultured human pancreatic cancer cells - Panc-1, p34, and COLO 357, and whether it can potentiates the effect of cisplatin chemotherapy on these cells. The effect of Moringa Oleifera leaf extract alone and in combination with cisplatin on the survival of cultured human pancreatic cancer cells was evaluated by XTT-based colorimetric assay. The distribution of Panc-1 cells in the cell cycle following treatment with Moringa leaf extract was evaluated by flow cytometry, and evaluations of protein levels were via immunoblotting. Data of cell survival following combined treatments were analyzed with Calcusyn software. Moringa Oleifera leaf extract inhibited the growth of all pancreatic cell lines tested. This effect was significant in all cells following exposure to ≥0.75 mg/ml of the extract. Exposure of Panc-1 cells to Moringa leaf extract induced an elevation in the sub-G1 cell population of the cell-cycle, and reduced the expression of p65, p-IkBα and IkBα proteins in crude cell extracts. Lastly, Moringa Oleifera leaf extract synergistically enhanced the cytotoxic effect of cisplatin on Panc-1 cells. Moringa Oleifera leaf extract inhibits the growth of pancreatic cancer cells, the cells NF-κB signaling pathway, and increases the efficacy of chemotherapy in human pancreatic cancer cells.

  3. Synergistic Effect of Subtoxic-dose Cisplatin and TRAIL to Mediate Apoptosis by Down-regulating Decoy Receptor 2 and Up-regulating Caspase-8, Caspase-9 and Bax Expression on NCI-H460 and A549 Cells

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhang

    2013-05-01

    Full Text Available Objective(s: Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL can selectively induce apoptosis in tumor cells, more than half of tumors including non-small cell lung cancer (NSCLC exhibit TRAIL-resistance. The purpose of this study was to determine whether subtoxic-dose cisplatin and TRAIL could synergistically enhance apoptosis on NSCLC cells and investigate its underlying mechanisms. Materials and Methods:NCI-H460 and A549 cells were treated with TRAIL alone, cisplatin alone or combination treatment in this study. The cytotoxicity was evaluated according to Sulforhodamine B assay, and apoptosis was examined using Hoechst 33342 staining and flow cytometry. The mRNA and protein levels of TRAIL receptors and apoptotic proteins including caspase-8, caspase-9, Bcl-2 and Bax were determined by RT-PCR and Western blotting, respectively. Results:Our results showed that NCI-H460 cells were sensitive to TRAIL, whereas A549 cells were resistant. However, subtoxic-dose cisplatin could enhance the both cells to TRAIL-mediated cell proliferation inhibition and apoptosis. The underlying mechanisms might be associated with the down-regulation of DcR2 and up-regulation of Caspase-8, Caspase-9 and Bax. Conclusion:Subtoxic-dose cisplatin could enhance both TRAIL- sensitive and TRAIL- resistant NSCLC cells to TRAIL-mediated apoptosis. These findings motivated further studies to evaluate such a combinatory therapeutic strategy against NSCLC in the animal models.

  4. Interferon-β induced microRNA-129-5p down-regulates HPV-18 E6 and E7 viral gene expression by targeting SP1 in cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Jiarong Zhang

    Full Text Available Infection by human papillomavirus (HPV can cause cervical intraepithelial neoplasia (CIN and cancer. Down-regulation of E6 and E7 expression may be responsible for the positive clinical outcomes observed with IFN treatment, but the molecular basis has not been well determined. As miRNAs play an important role in HPV induced cervical carcinogenesis, we hypothesize that IFN-β can regulate the expressions of specific miRNAs in cervical cancer cells, and that these miRNAs can mediate E6 and E7 expression, thus modulate their oncogenic potential. In this study, we found that miR-129-5p to be a candidate IFN-β inducible miRNA. MiR-129-5p levels gradually decrease with the development of cervical intraepithelial lesions. Manipulation of miR-129-5p expression in Hela cells modulates HPV-18 E6 and E7 viral gene expression. Exogenous miR-129-5p inhibits cell proliferation in Hela cells, promotes apoptosis and blocks cell cycle progression in Hela cells. SP1 is a direct target of miR-129-5p in Hela cells. This study is the first report of a cellular miRNA with anti-HPV activity and provides new insights into regulatory mechanisms between the HPV and the IFN system in host cells at the miRNA level.

  5. Down-regulation of 21A Alu RNA as a tool to boost proliferation maintaining the tissue regeneration potential of progenitor cells

    OpenAIRE

    Gigoni, Arianna; Costa, Delfina; Gaetani, Massimiliano; Tasso, Roberta; Villa, Federico; Florio, Tullio; Pagano, Aldo

    2016-01-01

    21A is an Alu non-coding (nc) RNA transcribed by RNA polymerase (pol) III. While investigating the biological role of 21A ncRNA we documented an inverse correlation between its expression level and the rate of cell proliferation. The downregulation of this ncRNA not only caused a boost in cell proliferation, but was also associated to a transient cell dedifferentiation, suggesting a possible involvement of this RNA in cell dedifferentiation/reprogramming. In this study, we explored the possib...

  6. Fenofibrate down-regulates the expressions of androgen receptor (AR) and AR target genes and induces oxidative stress in the prostate cancer cell line LNCaP

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hu; Zhu, Chen; Qin, Chao [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Tao, Tao [Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Li, Jie; Cheng, Gong; Li, Pu; Cao, Qiang; Meng, Xiaoxin; Ju, Xiaobing; Shao, Pengfei; Hua, Lixin [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Gu, Min, E-mail: medzhao1980@163.com [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Yin, Changjun, E-mail: drcjyin@gmail.com [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China)

    2013-03-08

    Highlights: ► Fenofibrate induces cell cycle arrest in G1 phase and apoptosis in LNCaP cells. ► Fenofibrate reduces the expressions of androgen receptor in LNCaP cells. ► Fenofibrate induces oxidative stress in the prostate cancer cell line LNCaP. -- Abstract: Fenofibrate, a peroxisome proliferator-androgen receptor-alpha agonist, is widely used in treating different forms of hyperlipidemia and hypercholesterolemia. Recent reports have indicated that fenofibrate exerts anti-proliferative and pro-apoptotic properties. This study aims to investigate the effects of fenofibrate on the prostate cancer (PCa) cell line LNCaP. The effects of fenofibrate on LNCaP cells were evaluated by flow cytometry, reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assays, Western blot analysis, and dual-luciferase reporter assay. Fenofibrate induces cell cycle arrest in G1 phase and apoptosis in LNCaP cells, reduces the expressions of androgen receptor (AR) and AR target genes (prostate-specific antigen and TMPRSS2), and inhibits Akt phosphorylation. Fenofibrate can induce the accumulation of intracellular reactive oxygen species and malondialdehyde, and decrease the activities of total anti-oxidant and superoxide dismutase in LNCaP cells. Fenofibrate exerts an anti-proliferative property by inhibiting the expression of AR and induces apoptosis by causing oxidative stress. Therefore, our data suggest fenofibrate may have beneficial effects in fenofibrate users by preventing prostate cancer growth through inhibition of androgen activation and expression.

  7. Hyperglycemia Promotes Schwann Cell De-differentiation and De-myelination via Sorbitol Accumulation and Igf1 Protein Down-regulation.

    Science.gov (United States)

    Hao, Wu; Tashiro, Syoichi; Hasegawa, Tomoka; Sato, Yuiko; Kobayashi, Tami; Tando, Toshimi; Katsuyama, Eri; Fujie, Atsuhiro; Watanabe, Ryuichi; Morita, Mayu; Miyamoto, Kana; Morioka, Hideo; Nakamura, Masaya; Matsumoto, Morio; Amizuka, Norio; Toyama, Yoshiaki; Miyamoto, Takeshi

    2015-07-10

    Diabetes mellitus (DM) is frequently accompanied by complications, such as peripheral nerve neuropathy. Schwann cells play a pivotal role in regulating peripheral nerve function and conduction velocity; however, changes in Schwann cell differentiation status in DM are not fully understood. Here, we report that Schwann cells de-differentiate into immature cells under hyperglycemic conditions as a result of sorbitol accumulation and decreased Igf1 expression in those cells. We found that de-differentiated Schwann cells could be re-differentiated in vitro into mature cells by treatment with an aldose reductase inhibitor, to reduce sorbitol levels, or with vitamin D3, to elevate Igf1 expression. In vivo DM models exhibited significantly reduced nerve function and conduction, Schwann cell de-differentiation, peripheral nerve de-myelination, and all conditions were significantly rescued by aldose reductase inhibitor or vitamin D3 administration. These findings reveal mechanisms underlying pathological changes in Schwann cells seen in DM and suggest ways to treat neurological conditions associated with this condition. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Hyperglycemia Promotes Schwann Cell De-differentiation and De-myelination via Sorbitol Accumulation and Igf1 Protein Down-regulation*

    Science.gov (United States)

    Hao, Wu; Tashiro, Syoichi; Hasegawa, Tomoka; Sato, Yuiko; Kobayashi, Tami; Tando, Toshimi; Katsuyama, Eri; Fujie, Atsuhiro; Watanabe, Ryuichi; Morita, Mayu; Miyamoto, Kana; Morioka, Hideo; Nakamura, Masaya; Matsumoto, Morio; Amizuka, Norio; Toyama, Yoshiaki; Miyamoto, Takeshi

    2015-01-01

    Diabetes mellitus (DM) is frequently accompanied by complications, such as peripheral nerve neuropathy. Schwann cells play a pivotal role in regulating peripheral nerve function and conduction velocity; however, changes in Schwann cell differentiation status in DM are not fully understood. Here, we report that Schwann cells de-differentiate into immature cells under hyperglycemic conditions as a result of sorbitol accumulation and decreased Igf1 expression in those cells. We found that de-differentiated Schwann cells could be re-differentiated in vitro into mature cells by treatment with an aldose reductase inhibitor, to reduce sorbitol levels, or with vitamin D3, to elevate Igf1 expression. In vivo DM models exhibited significantly reduced nerve function and conduction, Schwann cell de-differentiation, peripheral nerve de-myelination, and all conditions were significantly rescued by aldose reductase inhibitor or vitamin D3 administration. These findings reveal mechanisms underlying pathological changes in Schwann cells seen in DM and suggest ways to treat neurological conditions associated with this condition. PMID:25998127

  9. DMBT1 expression is down-regulated in breast cancer

    DEFF Research Database (Denmark)

    Braidotti, P; Nuciforo, P G; Mollenhauer, J

    2004-01-01

    and hyperplastic mammary cells positive with DMBTh12 were also MCM5-positive. CONCLUSIONS: The redistribution and up-regulation of DMBT1 in normal and hyperplastic tissues flanking malignant tumours and its down-regulation in carcinomas suggests a potential role in breast cancer. Moreover, the concomitant......BACKGROUND: We studied the expression of DMBT1 (deleted in malignant brain tumor 1), a putative tumor suppressor gene, in normal, proliferative, and malignant breast epithelium and its possible relation to cell cycle. METHODS: Sections from 17 benign lesions and 55 carcinomas were immunostained...... expression was down-regulated in the cancerous lesions compared to the normal and/or hyperplastic epithelium adjacent to carcinomas (3/55 positive carcinomas versus 33/42 positive normal/hyperplastic epithelia; p = 0.0001). In 72% of cases RT-PCR confirmed immunohistochemical results. Most of normal...

  10. The Herb Medicine Formula “Chong Lou Fu Fang” Increases the Cytotoxicity of Chemotherapeutic Agents and Down-Regulates the Expression of Chemotherapeutic Agent Resistance-Related Genes in Human Gastric Cancer Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Yongping Liu

    2011-01-01

    Full Text Available The herb medicine formula “Chong Lou Fu Fang” (CLFF has efficacy in inhibiting the proliferation of human gastric cancer in vitro and in vivo. To explore the potentially useful combination of CLFF with chemotherapeutic agents commonly used in gastric cancer therapy, we assess the interaction between CLFF and these chemotherapeutic agents in both SGC-7901 cell lines and BGC-823 cell lines using a median effect analysis and apoptosis analysis, and we also investigate the influence of CLFF on chemotherapeutic agent-associated gene expression. The synergistic analysis indicated that CLFF had a synergistic effect on the cytotoxicity of 5-fluorouracil (5-FU in a relative broad dose inhibition range (20–95% fraction affected in SGC-7901cell lines and 5–65% fraction affected in BGC-823 cell lines, while the synergistic interaction between CLFF and oxaliplatin or docetaxel only existed in a low dose inhibition range (≤50% fraction affected in both cell lines. Combination of CLFF and chemotherapeutic agents could also induce apoptosis in a synergistic manner. After 24 h, CLFF alone or CLFF combination with chemotherapeutic agents could significantly suppress the levels of expression of chemotherapeutic agent resistance related genes in gastric cancer cells. Our findings indicate that there are useful synergistic interactions between CLFF and chemotherapeutic agents in gastric cancer cells, and the possible mechanisms might be partially due to the down-regulation of chemotherapeutic agent resistance related genes and the synergistic apoptotic effect.

  11. Down regulation of ITGA4 and ITGA5 genes after formation of 3D spherules by human Wharton's jelly stem cells (hWJSCs).

    Science.gov (United States)

    Mostafavi-Pour, Zohreh; Ashrafi, Mohammad Reza; Talaei-Khozani, Tahereh

    2018-06-01

    Human Wharton's jelly mesenchymal stem cells (hWJSCs) are multipotent stem cells that could be aggregated into 3D spherules. ITGA4 and ITGA5 genes encode α4 and α5 subunits of integrins, respectively. In this study, we analyzed expression levels of ITGA4 and ITGA5 gene mRNAs in undifferentiated and 3D spherules forming hWJSCs in order to determine their expression pattern for possible future treatment of cancer cells in a co-culture fashion. For the purpose of obtaining hWJSCs, umbilical cords were collected from patients with caesarian section at full term delivery. The cells were then characterized according to cell surface markers using flow cytometry. Furthermore pluripotency of the obtained cells was verified. Subsequently the cells were aggregated in 3D spherules using hanging drop cultures. Expression levels of ITGA4 and ITGA5 gene mRNAs were determined by RT-PCR and Real time PCR, both in the initial undifferentiated cells and those aggregated in the spherules. The obtained hWJSCs demonstrated pluripotency, differentiating to adipogenic and osteogenic cells. They also expressed mesenchymal stem cell surface markers. Following the aggregation of these cells and formation of 3D spherules, mRNA expression levels of both genes were significantly reduced (P < 0.05) compared with the initial undifferentiated state. The results of this study demonstrated that aggregation of hWJSCs into spherules alters their expression of ITGA4 and ITGA5. The implications of such an alteration would require further research.

  12. Recognition of melanoma-derived antigens by CTL: possible mechanisms involved in down-regulating anti-tumor T-cell reactivity

    DEFF Research Database (Denmark)

    Rivoltini, L; Loftus, D J; Squarcina, P

    1998-01-01

    Several T cell-recognized epitopes presented by melanoma cells have been identified recently. Despite the large array of epitopes potentially available for clinical use, it is still unclear which of these antigens could be effective in mediating anti-tumor responses when used as a vaccine...

  13. Comparison of TGFbR2 down-regulation in expanded HSCs on MBA/DBM scaffolds coated by UCB stromal cells.

    Science.gov (United States)

    Hashemi, Zahra Sadat; Moghadam, Mehdi Forouzandeh; Soleimani, Masoud

    2015-05-01

    Bone marrow transplants (BMTs) are mainly limited by a low number of CD34(+) cells. The transforming growth factor-beta (TGF-β) pathway downregulation is a key factor that increases cell self-renewal. In nature, hematopoietic stem cells (HSCs) are in a microenvironment, surrounded by cells in a three-dimensional (3D) configuration. The aim of this study is to investigate the association between a 3D culture and the delivery ratio of downregulation. Demineralized bone matrix (DBM) and mineralized bone allograft (MBA) scaffolds were coated using unrestricted somatic stem cells (USSCs) as the feeder layer. Umbilical cord blood (UCB)-CD34(+) cells were then ex vivo expanded in them and transfected by small interfering RNA (siRNA) against TGFbR2, a type 2 receptor in the TGF-β pathway. Finally, quantitative real-time PCR, flow cytometry, and clonogenic assay were performed. In a global comparison, we observed that the highest expansion ratio, lowest expression level, and the highest CD34 marker belonged to the simple 2D culture transfected group. This suggests that TGFbR2 downregulation in a 2D culture can be done more effectively. The siRNA delivery system and the transfection ratio in an ex vivo environment, which mimicks in vivo conditions, have low efficiency. Genetic modification of the cells needs free 3D spaces to enable better transfection.

  14. 5-Bromo-3-(3-hydroxyprop-1-ynyl-2H-pyran-2-one targets prostate cancer cells by down-regulating inflammation-related genes

    Directory of Open Access Journals (Sweden)

    Zhao-Yang Wang

    2016-06-01

    Full Text Available The present study was performed to examine the effect of 5-bromo-3-(3-hydroxyprop-1-ynyl-2H-pyran-2-one (BHP on the rate of cell proliferation and apoptosis induction in the PC3, human prostate carcinoma cell line. The cell viability was assayed by using sulphorhodamine B staining and apoptosis by annexin V and flow cytometry analyses. The results revealed that BHP treatment in PC3 cells caused a significant reduction in the rate of cell proliferation in dose- and time-dependent manner. Compared to the un-treated cells, the formation of HUVEC tubes was markedly inhibited on treatment with BHP at a concentration of 30 µM. Further investigation revealed the expression of HMGB1, IL-6 and IL-8, pro-inflammatory cytokines was also inhibited on treatment with BHP. Therefore, BHP treatment plays an important role in inducing apoptosis in the prostrate cells and can be of therapeutic value for the prostate cancer treatment.

  15. Baicalin Protects against TNF-α-Induced Injury by Down-Regulating miR-191a That Targets the Tight Junction Protein ZO-1 in IEC-6 Cells.

    Science.gov (United States)

    Wang, Li; Zhang, Ren; Chen, Jian; Wu, Qihui; Kuang, Zaoyuan

    2017-04-01

    Tumor necrosis factor-alpha (TNF-α) plays an important role in the developing process of inflammatory bowel disease. Tight junction protein zonula occludens-1 (ZO-1), one of epithelial junctional proteins, maintains the permeability of intestinal barrier. The objective of this study was to investigate the mechanism of the protective effect of baicalin on TNF-α-induced injury and ZO-1 expression in intestinal epithelial cells (IECs). We found that baicalin pretreatment significantly improved cell viability and cell migration following TNF-α stimulation. miR-191a inhibitor increased the protective effect of baicalin on cell motility injured by TNF-α. In addition, miR-191a down-regulated the mRNA and protein level of its target gene ZO-1. TNF-α stimulation increased miR-191a expression, leading to the decline of ZO-1 mRNA and protein. Moreover, pretreatment with baicalin reversed TNF-α induced decrease of ZO-1 and increase of miR-191a, miR-191a inhibitor significantly enhanced ZO-1 protein expression restored by baicalin. These results indicate that baicalin exerts a protective effect on IEC-6 (rat small intestinal epithelial cells) cells against TNF-α-induced injury, which is at least partly via inhibiting the expression of miR-191a, thus increasing ZO-1 mRNA and protein levels.

  16. RNA interference targeting CD147 inhibits the proliferation, invasiveness, and metastatic activity of thyroid carcinoma cells by down-regulating glycolysis

    Science.gov (United States)

    Huang, Peng; Chang, Shi; Jiang, Xiaolin; Su, Juan; Dong, Chao; Liu, Xu; Yuan, Zhengtai; Zhang, Zhipeng; Liao, Huijun

    2015-01-01

    A high rate of glycolytic flux, even in the presence of oxygen, is a key metabolic hallmark of cancer cells. Lactate, the end product of glycolysis, decreases the extracellular pH and contributes to the proliferation, invasiveness and metastasis of tumor cells. CD147 play a crucial role in tumorigenicity, invasion and metastasis; and CD147 also interacts strongly and specifically with monocarboxylate transporter1 (MCT1) that mediates the transport of lactate. The objective of this study was to determine whether CD147 is involved, via its association with MCT1 to transport lactate, in glycolysis, contributing to the progression of thyroid carcinoma. The expression levels of CD147 in surgical specimens of normal thyroid, nodular goiter (NG), well-differentiated thyroid carcinoma (WDTC), and undifferentiated thyroid carcinoma (UDTC) were determined using immunohistochemical techniques. The effects of CD147 silencing on cell proliferation, invasiveness, metastasis, co-localization with MCT1, glycolysis rate and extracellular pH of thyroid cancer cells (WRO and FRO cell lines) were measured after CD147 was knocked-down using siRNA targeting CD147. Immunohistochemical analysis of thyroid carcinoma (TC) tissues revealed significant increases in signal for CD147 compared with normal tissue or NG, while UDTC expressed remarkably higher levels of CD147 compared with WDTC. Furthermore, silencing of CD147 in TC cells clearly abrogated the expression of MCT1 and its co-localization with CD147 and dramatically decreased both the glycolysis rate and extracellular pH. Thus, cell proliferation, invasiveness, and metastasis were all significantly decreased by siRNA. These results demonstrate in vitro that the expression of CD147 correlates with the degree of dedifferentiation of thyroid cancer, and show that CD147 interacts with MCT1 to regulate tumor cell glycolysis, resulting in the progression of thyroid carcinoma. PMID:25755717

  17. Phosphatidylcholine-specific phospholipase C inhibition down- regulates CXCR4 expression and interferes with proliferation, invasion and glycolysis in glioma cells.

    Directory of Open Access Journals (Sweden)

    Laura Mercurio

    Full Text Available The chemokine receptor CXCR4 plays a crucial role in tumors, including glioblastoma multiforme (GBM, the most aggressive glioma. Phosphatidylcholine-specific phospholipase C (PC-PLC, a catabolic enzyme of PC metabolism, is involved in several aspects of cancer biology and its inhibition down-modulates the expression of growth factor membrane receptors interfering with their signaling pathways. In the present work we investigated the possible interplay between CXCR4 and PC-PLC in GBM cells.Confocal microscopy, immunoprecipitation, western blot analyses, and the evaluation of migration and invasion potential were performed on U87MG cells after PC-PLC inhibition with the xanthate D609. The intracellular metabolome was investigated by magnetic resonance spectroscopy; lactate levels and lactate dehydrogenase (LDH activity were analyzed by colorimetric assay.Our studies demonstrated that CXCR4 and PC-PLC co-localize and are associated on U87MG cell membrane. D609 reduced CXCR4 expression, cell proliferation and invasion, interfering with AKT and EGFR activation and expression. Metabolic analyses showed a decrease in intracellular lactate concentration together with a decrement in LDH activity.Our data suggest that inhibition of PC-PLC could represent a new molecular approach in glioma biology not only for its ability in modulating cell metabolism, glioma growth and motility, but also for its inhibitory effect on crucial molecules involved in cancer progression.

  18. Preventive effect of Dioscorea japonica on squamous cell carcinoma of mouse skin involving down-regulation of prostaglandin E2 synthetic pathway.

    Science.gov (United States)

    Tsukayama, Izumi; Toda, Keisuke; Takeda, Yasunori; Mega, Takuto; Tanaka, Mitsuki; Kawakami, Yuki; Takahashi, Yoshitaka; Kimoto, Masumi; Yamamoto, Kei; Miki, Yoshimi; Murakami, Makoto; Suzuki-Yamamoto, Toshiko

    2018-03-01

    Hyperproduced prostaglandin E 2 by cyclooxygenase-2 and microsomal prostaglandin E synthase-1 evokes several pathophysiological responses such as inflammation and carcinogenesis. Our recent study demonstrated that Dioscorea japonica extract suppressed the expression of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 and induced apoptosis in lung carcinoma A549 cells. In the present study, we investigated the effects of Dioscorea japonica on squamous cell carcinoma of mouse skin. Dioscorea japonica feeding and Dioscorea japonica extract topical application suppressed the expression of cyclooxygenase-2, microsomal prostaglandin E synthase-1, interleukin-1β and interleukin-6 and inhibited tumor formation, hyperplasia and inflammatory cell infiltration. Immunohistochemical analyses showed the immunoreactivities of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 in tumor keratinocytes and stronger immunoreactivities of cyclooxygenase-2 and hematopoietic prostaglandin D synthase in epidermal dendritic cells (Langerhans cells). Treatment with Dioscorea japonica decreased the immunoreactivity of cyclooxygenase-2 and microsomal prostaglandin E synthase-1. These results indicate that Dioscorea japonica may have inhibitory effects on inflammation and carcinogenesis via suppression of the prostaglandin E 2 synthetic pathway.

  19. Down-regulation of eIF4GII by miR-520c-3p represses diffuse large B cell lymphoma development.

    Directory of Open Access Journals (Sweden)

    Krystyna Mazan-Mamczarz

    2014-01-01

    Full Text Available Deregulation of the translational machinery is emerging as a critical contributor to cancer development. The contribution of microRNAs in translational gene control has been established however; the role of microRNAs in disrupting the cap-dependent translation regulation complex has not been previously described. Here, we established that elevated miR-520c-3p represses global translation, cell proliferation and initiates premature senescence in HeLa and DLBCL cells. Moreover, we demonstrate that miR-520c-3p directly targets translation initiation factor, eIF4GII mRNA and negatively regulates eIF4GII protein synthesis. miR-520c-3p overexpression diminishes cells colony formation and reduces tumor growth in a human xenograft mouse model. Consequently, downregulation of eIF4GII by siRNA decreases translation, cell proliferation and ability to form colonies, as well as induces cellular senescence. In vitro and in vivo findings were further validated in patient samples; DLBCL primary cells demonstrated low miR-520c-3p levels with reciprocally up-regulated eIF4GII protein expression. Our results provide evidence that the tumor suppressor effect of miR-520c-3p is mediated through repression of translation while inducing senescence and that eIF4GII is a key effector of this anti-tumor activity.

  20. Proteasome Inhibitor YSY01A Abrogates Constitutive STAT3 Signaling via Down-regulation of Gp130 and JAK2 in Human A549 Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2017-08-01

    Full Text Available Proteasome inhibition interfering with many cell signaling pathways has been extensively explored as a therapeutic strategy for cancers. Proteasome inhibitor YSY01A is a novel agent that has shown remarkable anti-tumor effects; however, its mechanisms of action are not fully understood. Here we report that YSY01A is capable of suppressing cancer cell survival by induction of apoptosis. Paradoxically, we find that YSY01A abrogates constitutive activation of STAT3 via proteasome-independent degradation of gp130 and JAK2, but not transcriptional regulation, in human A549 non-small cell lung cancer cells. The reduction in gp130 and JAK2 can be restored by co-treatment with 3-methyladenine, an early-stage autophagy lysosome and type I/III PI3K inhibitor. YSY01A also effectively inhibits cancer cell migration and lung xenograft tumor growth with little adverse effect on animals. Thus, our findings suggest that YSY01A represents a promising candidate for further development of novel anticancer therapeutics targeting the proteasome.

  1. 13-methyltetradecanoic acid exhibits anti-tumor activity on T-cell lymphomas in vitro and in vivo by down-regulating p-AKT and activating caspase-3.

    Directory of Open Access Journals (Sweden)

    Qingqing Cai

    Full Text Available 13-Methyltetradecanoic acid (13-MTD, a saturated branched-chain fatty acid purified from soy fermentation products, induces apoptosis in human cancer cells. We investigated the inhibitory effects and mechanism of action of 13-MTD on T-cell non-Hodgkin's lymphoma (T-NHL cell lines both in vitro and in vivo. Growth inhibition in response to 13-MTD was evaluated by the cell counting kit-8 (CCK-8 assay in three T-NHL cell lines (Jurkat, Hut78, EL4 cells. Flow cytometry analyses were used to monitor the cell cycle and apoptosis. Proteins involved in 13-MTD-induced apoptosis were examined in Jurkat cells by western blotting. We found that 13-MTD inhibited proliferation and induced the apoptosis of T-NHL cell lines. 13-MTD treatment also induced a concentration-dependent arrest of Jurkat cells in the G1-phase. During 13-MTD-induced apoptosis in Jurkat cells, the cleavage of caspase-3 and poly ADP-ribose polymerase (PARP, a caspase enzymolysis product were detected after incubation for 2 h, and increased after extending the incubation time. However, there was no change in the expression of Bcl-2 or c-myc proteins. The appearance of apoptotic Jurkat cells was accompanied by the inhibition of AKT and nuclear factor-kappa B (NF-κB phosphorylation. In addition, 13-MTD could also effectively inhibit the growth of T-NHL tumors in vivo in a xenograft model. The tumor inhibition rate in the experimental group was 40%. These data indicate that 13-MTD inhibits proliferation and induces apoptosis through the down-regulation of AKT phosphorylation followed by caspase activation, which may provide a new approach for treating T-cell lymphomas.

  2. Simvastatin inhibits the proliferation of human prostate cancer PC-3 cells via down-regulation of the insulin-like growth factor 1 receptor

    International Nuclear Information System (INIS)

    Sekine, Yoshitaka; Furuya, Yosuke; Nishii, Masahiro; Koike, Hidekazu; Matsui, Hiroshi; Suzuki, Kazuhiro

    2008-01-01

    Recently, statins have been being studied for their proapoptic and antimetastatic effects. However, the exact mechanisms of their anticancer action are still unclear. Dolichyl phosphate is a nonsterol isoprenoid derivative in the mevalonate pathway that affects the expression of the Insulin-like growth factor 1 receptor (IGF-1R). IGF-1R activation is required for prostate cell proliferation; therefore, IGF-1R inhibitory agents may be of preventive and/or therapeutic value. In this study, the effects of simvastatin on IGF-1R signaling in prostate cancer PC-3 cells were examined. Simvastatin suppressed proliferation and induced apoptosis of PC-3, and the expression of IGF-1R was suppressed by simvastatin. Knockdown of IGF-1R by siRNA led to inhibition of proliferation of PC-3. Simvastatin also inhibited IGF-1-induced activation of both ERK and Akt signaling and IGF-1-induced PC-3 cell proliferation. Our results suggest statins are potent inhibitors of the IGF-1/IGF-1R system in prostate cancer cells and may be beneficial in prostate cancer treatment

  3. Down-regulation by elicitors of phosphatidylcholine-hydrolyzing phospholipase C and up-regulation of phospholipase A in plant cells

    Czech Academy of Sciences Publication Activity Database

    Scherer, G. F. E.; Paul, R. U.; Holk, A.; Martinec, Jan

    2002-01-01

    Roč. 293, č. 2 (2002), s. 766-770 ISSN 0006-291X R&D Projects: GA ČR GA522/00/1332 Institutional research plan: CEZ:AV0Z5038910 Keywords : CULTURED PARSLEY CELLS * PHYTOALEXIN SYNTHESIS * OXIDATIVE BURST Subject RIV: CE - Biochemistry Impact factor: 2.935, year: 2002

  4. TIMP1 overexpression mediates resistance of MCF-7 human breast cancer cells to fulvestrant and down-regulates progesterone receptor expression

    DEFF Research Database (Denmark)

    Bjerre, Christina; Vinther, Lena; Belling, Kirstine C.

    2013-01-01

    is associated with endocrine sensitivity. We established a panel of 11 MCF-7 subclones with a wide range of TIMP1 mRNA and protein expression levels. Cells with high expression of TIMP1 versus low TIMP1 displayed significantly reduced sensitivity to the antiestrogen fulvestrant (ICI 182,780, Faslodex®), while......, the effects of fulvestrant, 4-hydroxytamoxifen, or estrogen on estrogen receptor expression were not associated with TIMP1 levels. Gene expression analyses revealed associations between expression of TIMP1 and genes involved in metabolic pathways, epidermal growth factor receptor 1/cancer signaling pathways......, and cell cycle. Gene and protein expression analyses showed no general defects in estrogen receptor signaling except from lack of progesterone receptor expression and estrogen inducibility in clones with high TIMP1. The present study suggests a relation between high expression level of TIMP1 and loss...

  5. Hibiscus sabdariffa Leaf Extract Inhibits Human Prostate Cancer Cell Invasion via Down-Regulation of Akt/NF-κB/MMP-9 Pathway

    Science.gov (United States)

    Chiu, Chun-Tang; Chen, Jing-Hsien; Chou, Fen-Pi; Lin, Hui-Hsuan

    2015-01-01

    Hibiscus sabdariffa leaf has been previously shown to possess hypoglycemic, hypolipidemic, and antioxidant effects, and induce tumor cell apoptosis. However, the molecular mechanisms involved in the anticancer activity of H. sabdariffa leaf extract (HLE) are poorly understood. The object of the study was to examine the anti-invasive potential of HLE. First, HLE was demonstrated to be rich in polyphenols. The results of wound-healing assay and in vitro transwell assay revealed that HLE dose-dependently inhibited the migration and invasion of human prostate cancer LNCaP (lymph node carcinoma of the prostate) cells under non-cytotoxic concentrations. Our results further showed that HLE exerted an inhibitory effect on the activity and expressions of matrix metalloproteinase-9 (MMP-9). The HLE-inhibited MMP-9 expression appeared to be a consequence of nuclear factor-kappaB (NF-κB) inactivation because its DNA-binding activity was suppressed by HLE. Molecular data showed all these influences of HLE might be mediated via inhibition of protein kinase B (PKB, also known as Akt)/NF-κB/MMP-9 cascade pathway, as demonstrated by the transfection of Akt1 overexpression vector. Finally, the inhibitory effect of HLE was proven by its inhibition on the growth of LNCaP cells and the expressions of metastasis-related molecular proteins in vivo. These findings suggested that the inhibition of MMP-9 expression by HLE may act through the suppression of the Akt/NF-κB signaling pathway, which in turn led to the reduced invasiveness of the cancer cells. PMID:26115086

  6. Hibiscus sabdariffa Leaf Extract Inhibits Human Prostate Cancer Cell Invasion via Down-Regulation of Akt/NF-kB/MMP-9 Pathway.

    Science.gov (United States)

    Chiu, Chun-Tang; Chen, Jing-Hsien; Chou, Fen-Pi; Lin, Hui-Hsuan

    2015-06-24

    Hibiscus sabdariffa leaf has been previously shown to possess hypoglycemic, hypolipidemic, and antioxidant effects, and induce tumor cell apoptosis. However, the molecular mechanisms involved in the anticancer activity of H. sabdariffa leaf extract (HLE) are poorly understood. The object of the study was to examine the anti-invasive potential of HLE. First, HLE was demonstrated to be rich in polyphenols. The results of wound-healing assay and in vitro transwell assay revealed that HLE dose-dependently inhibited the migration and invasion of human prostate cancer LNCaP (lymph node carcinoma of the prostate) cells under non-cytotoxic concentrations. Our results further showed that HLE exerted an inhibitory effect on the activity and expressions of matrix metalloproteinase-9 (MMP-9). The HLE-inhibited MMP-9 expression appeared to be a consequence of nuclear factor-kappaB (NF-κB) inactivation because its DNA-binding activity was suppressed by HLE. Molecular data showed all these influences of HLE might be mediated via inhibition of protein kinase B (PKB, also known as Akt)/NF-kB/MMP-9 cascade pathway, as demonstrated by the transfection of Akt1 overexpression vector. Finally, the inhibitory effect of HLE was proven by its inhibition on the growth of LNCaP cells and the expressions of metastasis-related molecular proteins in vivo. These findings suggested that the inhibition of MMP-9 expression by HLE may act through the suppression of the Akt/NF-kB signaling pathway, which in turn led to the reduced invasiveness of the cancer cells.

  7. Hypoxic HepG2 cell adaptation decreases ATP synthase dimers and ATP production in inflated cristae by mitofilin down-regulation concomitant to MICOS clustering

    Czech Academy of Sciences Publication Activity Database

    Plecitá-Hlavatá, Lydie; Engstová, Hana; Alán, Lukáš; Špaček, Tomáš; Dlasková, Andrea; Smolková, Katarína; Špačková, Jitka; Tauber, Jan; Strádalová, Vendula; Malínský, Jan; Lessard, M.; Bewersdorf, J.; Ježek, Petr

    2016-01-01

    Roč. 30, č. 5 (2016), s. 1941-1957 ISSN 0892-6638 R&D Projects: GA ČR(CZ) GA13-02033S; GA ČR GJ15-02022Y Institutional support: RVO:67985823 ; RVO:68378041 Keywords : Mitofilin * Mic60 * OPA1 * dSTORM * 3D immunocytochemistry * electron microscopy * mitochondrial cristae morphology Subject RIV: EA - Cell Biology Impact factor: 5.498, year: 2016

  8. Hydroxy decenoic acid down regulates gtfB and gtfC expression and prevents Streptococcus mutans adherence to the cell surfaces

    Directory of Open Access Journals (Sweden)

    Yousefi Behnam

    2012-07-01

    Full Text Available Abstract Background 10-Hydroxy-2-decenoic acid, an unsaturated fatty acid is the most active and unique component to the royal jelly that has antimicrobial properties. Streptococcus mutans is associated with pathogenesis of oral cavity, gingivoperiodontal diseases and bacteremia following dental manipulations. In the oral cavity, S. mutans colonize the soft tissues including tongue, palate, and buccal mucosa. When considering the role of supragingival dental plaque in caries, the proportion of acid producing bacteria (particularly S. mutans, has direct relevance to the pathogenicity of the plaque. The genes that encode glucosyltransferases (gtfs especially gtfB and gtfC are important in S. mutans colonization and pathogenesis. This study investigated the hydroxy-decenoic acid (HDA effects on gtfB and gtfC expression and S. mutans adherence to cells surfaces. Methods Streptococcus mutans was treated by different concentrations of HPLC purified HDA supplied by Iran Beekeeping and Veterinary Association. Real time RT-PCR and western blot assays were conducted to evaluate gtfB and gtfC genes transcription and translation before and after HDA treatment. The bacterial attachment to the cell surfaces was evaluated microscopically. Results 500 μg ml-1 of HDA inhibited gtfB and gtfC mRNA transcription and its expression. The same concentration of HDA decreased 60% the adherence of S. mutans to the surface of P19 cells. Conclusion Hydroxy-decenoic acid prevents gtfB and gtfC expression efficiently in the bactericide sub-concentrations and it could effectively reduce S. mutans adherence to the cell surfaces. In the future, therapeutic approaches to affecting S. mutans could be selective and it’s not necessary to put down the oral flora completely.

  9. Hydroxy decenoic acid down regulates gtfB and gtfC expression and prevents Streptococcus mutans adherence to the cell surfaces.

    Science.gov (United States)

    Yousefi, Behnam; Ghaderi, Shahrooz; Rezapoor-Lactooyi, Alireza; Amiri, Niusha; Verdi, Javad; Shoae-Hassani, Alireza

    2012-07-28

    10-Hydroxy-2-decenoic acid, an unsaturated fatty acid is the most active and unique component to the royal jelly that has antimicrobial properties. Streptococcus mutans is associated with pathogenesis of oral cavity, gingivoperiodontal diseases and bacteremia following dental manipulations. In the oral cavity, S. mutans colonize the soft tissues including tongue, palate, and buccal mucosa. When considering the role of supragingival dental plaque in caries, the proportion of acid producing bacteria (particularly S. mutans), has direct relevance to the pathogenicity of the plaque. The genes that encode glucosyltransferases (gtfs) especially gtfB and gtfC are important in S. mutans colonization and pathogenesis. This study investigated the hydroxy-decenoic acid (HDA) effects on gtfB and gtfC expression and S. mutans adherence to cells surfaces. Streptococcus mutans was treated by different concentrations of HPLC purified HDA supplied by Iran Beekeeping and Veterinary Association. Real time RT-PCR and western blot assays were conducted to evaluate gtfB and gtfC genes transcription and translation before and after HDA treatment. The bacterial attachment to the cell surfaces was evaluated microscopically. 500 μg ml-1 of HDA inhibited gtfB and gtfC mRNA transcription and its expression. The same concentration of HDA decreased 60% the adherence of S. mutans to the surface of P19 cells. Hydroxy-decenoic acid prevents gtfB and gtfC expression efficiently in the bactericide sub-concentrations and it could effectively reduce S. mutans adherence to the cell surfaces. In the future, therapeutic approaches to affecting S. mutans could be selective and it's not necessary to put down the oral flora completely.

  10. MicroRNA hsa-miR-29b potentiates etoposide toxicity in HeLa cells via down-regulation of Mcl-1.

    Science.gov (United States)

    Kollinerová, S; Dostál, Z; Modrianský, M

    2017-04-01

    Etoposide is commonly used as a monotherapy or in combination with other drugs for cancer treatments. In order to increase the drug efficacy, ceaseless search for novel combinations of drugs and supporting molecules is under way. MiRNAs are natural candidates for facilitating drug effect in various cell types. We used several systems to evaluate the effect of miR-29 family on etoposide toxicity in HeLa cells. We show that miR-29b significantly increases etoposide toxicity in HeLa cells. Because Mcl-1 protein has been recognized as a miR-29 family target, we evaluated downregulation of Mcl-1 protein splicing variant expression induced by miR-29 precursors and confirmed a key role of Mcl-1 protein in enhancing etoposide toxicity. Despite downregulation of Mcl-1 by all three miR-29 family members, only miR-29b significantly enhanced etoposide toxicity. We hypothesized that this difference may be linked to the change in Mcl-1L/Mcl-1S ratio induced by miR-29b. We hypothesized that the change could be due to miR-29b nuclear shuttling. Using specifically modified miR-29b sequences with enhanced cytosolic and nuclear localization we show that there is a difference, albeit statistically non-significant. In conclusion, we show that miR-29b has the synergistic effect with etoposide treatment in the HeLa cells and that this effect is linked to Mcl-1 protein expression and nuclear shuttling of miR-29b. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A temperature-sensitive allele of a putative mRNA splicing helicase down-regulates many cell wall genes and causes radial swelling in Arabidopsis thaliana.

    Science.gov (United States)

    Howles, Paul A; Gebbie, Leigh K; Collings, David A; Varsani, Arvind; Broad, Ronan C; Ohms, Stephen; Birch, Rosemary J; Cork, Ann H; Arioli, Tony; Williamson, Richard E

    2016-05-01

    The putative RNA helicase encoded by the Arabidopsis gene At1g32490 is a homolog of the yeast splicing RNA helicases Prp2 and Prp22. We isolated a temperature-sensitive allele (rsw12) of the gene in a screen for root radial swelling mutants. Plants containing this allele grown at the restrictive temperature showed weak radial swelling, were stunted with reduced root elongation, and contained reduced levels of cellulose. The role of the protein was further explored by microarray analysis. By using both fold change cutoffs and a weighted gene coexpression network analysis (WGCNA) to investigate coexpression of genes, we found that the radial swelling phenotype was not linked to genes usually associated with primary cell wall biosynthesis. Instead, the mutation has strong effects on expression of secondary cell wall related genes. Many genes potentially associated with secondary walls were present in the most significant WGCNA module, as were genes coding for arabinogalactans and proteins with GPI anchors. The proportion of up-regulated genes that possess introns in rsw12 was above that expected if splicing was unrelated to the activity of the RNA helicase, suggesting that the helicase does indeed play a role in splicing in Arabidopsis. The phenotype may be due to a change in the expression of one or more genes coding for cell wall proteins.

  12. CCL5 promotes vascular endothelial growth factor expression and induces angiogenesis by down-regulating miR-199a in human chondrosarcoma cells.

    Science.gov (United States)

    Liu, Guan-Ting; Huang, Yuan-Li; Tzeng, Huey-En; Tsai, Chun-Hao; Wang, Shih-Wei; Tang, Chih-Hsin

    2015-02-28

    Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis. Angiogenesis is a critical step in tumor growth and metastasis. Chemokine CCL5 (previously called RANTES) has been shown to facilitate tumor progression and metastasis. However, the relationship of CCL5 with vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma is mostly unknown. In this study, CCL5 increased VEGF expression and also promoted chondrosarcoma medium-mediated angiogenesis in vitro as well as angiogenesis effects in the chick chorioallantoic membrane and Matrigel plug nude mice model in vivo. MicroRNA analysis was performed in CCL5-treated chondrosarcoma cells versus control cells to investigate the mechanism of CCL5-mediated promotion of chondrosarcoma angiogenesis. Among the miRNAs regulated by CCL5, miR-199a was the most downregulated miRNA after CCL5 treatment. In addition, co-transfection with miR-199a mimic reversed the CCL5-mediated VEGF expression and angiogenesis in vitro and in vivo. Moreover, overexpression of CCL5 increased tumor-associated angiogenesis and tumor growth by downregulating miR-199a in the xenograft tumor angiogenesis model. Taken together, these results demonstrated that CCL5 promotes VEGF-dependent angiogenesis in human chondrosarcoma cells by downregulating miR-199a. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Kaempferol Reduces Matrix Metalloproteinase-2 Expression by Down-Regulating ERK1/2 and the Activator Protein-1 Signaling Pathways in Oral Cancer Cells

    Science.gov (United States)

    Lin, Chiao-Wen; Chen, Pei-Ni; Chen, Mu-Kuan; Yang, Wei-En; Tang, Chih-Hsin; Yang, Shun-Fa; Hsieh, Yih-Shou

    2013-01-01

    Background Kaempferol has been proposed as a potential drug for cancer chemoprevention and treatment because it is a natural polyphenol contained in plant-based foods. Recent studies have demonstrated that kaempferol protects against cardiovascular disease and cancer. Based on this finding, we investigated the mechanisms by which kaempferol produces the anti-metastatic effect in human tongue squamous cell carcinoma SCC4 cells. Methodology/Principal Findings In this study, we provided molecular evidence associated with the anti-metastatic effect of kaempferol by demonstrating a substantial suppression of SCC4 cell migration and invasion. This effect was associated with reduced expressions of MMP-2 and TIMP-2 mRNA and protein levels. Analysis of the transcriptional regulation indicated that kaempferol inhibited MMP-2 transcription by suppressing c-Jun activity. Kaempferol also produced an inhibitory effect on the phosphorylation of ERK1/2. Conclusions These findings provide new insights into the molecular mechanisms involved in the anti-metastatic effect of kaempferol, and are valuable in the prevention of oral cancer metastasis. PMID:24278338

  14. IL-4 and IL-13 mediated down-regulation of CD8 expression levels can dampen anti-viral CD8⁺ T cell avidity following HIV-1 recombinant pox viral vaccination.

    Science.gov (United States)

    Wijesundara, Danushka K; Jackson, Ronald J; Tscharke, David C; Ranasinghe, Charani

    2013-09-23

    We have shown that mucosal HIV-1 recombinant pox viral vaccination can induce high, avidity HIV-specific CD8(+) T cells with reduced interleukin (IL)-4 and IL-13 expression compared to, systemic vaccine delivery. In the current study how these cytokines act to regulate anti-viral CD8(+) T, cell avidity following HIV-1 recombinant pox viral prime-boost vaccination was investigated. Out of a panel of T cell avidity markers tested, only CD8 expression levels were found to be enhanced on, KdGag197-205 (HIV)-specific CD8(+) T cells obtained from IL-13(-/-), IL-4(-/-) and signal transducer and, activator of transcription of 6 (STAT6)(-/-) mice compared to wild-type (WT) controls following, vaccination. Elevated CD8 expression levels in this instance also correlated with polyfunctionality, (interferon (IFN)-γ, tumour necorsis factor (TNF)-α and IL-2 production) and the avidity of HIVspecific CD8(+) T cells. Furthermore, mucosal vaccination and vaccination with the novel adjuvanted IL-13 inhibitor (i.e. IL-13Rα2) vaccines significantly enhanced CD8 expression levels on HIV-specific CD8(+), T cells, which correlated with avidity. Using anti-CD8 antibodies that blocked CD8 availability on CD8(+), T cells, it was established that CD8 played an important role in increasing HIV-specific CD8(+) T cell avidity and polyfunctionality in IL-4(-/-), IL-13(-/-) and STAT6(-/-) mice compared to WT controls, following vaccination. Collectively, our data demonstrate that IL-4 and IL-13 dampen CD8 expression levels on anti-viral CD8(+) T cells, which can down-regulate anti-viral CD8(+) T cell avidity and, polyfunctionality following HIV-1 recombinant pox viral vaccination. These findings can be exploited to, design more efficacious vaccines not only against HIV-1, but many chronic infections where high, avidity CD8(+) T cells help protection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. HMGB1 and HMGB2 cell-specifically down-regulate the p53-and p73-dependent sequence-specific transactivation from the human Bax gene promoter

    Czech Academy of Sciences Publication Activity Database

    Štros, Michal; Ozaki, T.; Bačíková, Alena; Kageyama, H.; Nakagawara, A.

    2002-01-01

    Roč. 277, č. 9 (2002), s. 7157-7164 ISSN 0021-9258 R&D Projects: GA AV ČR IAA7004902; GA AV ČR IAA5004105; GA ČR GA301/99/0691; GA ČR GA301/02/0952 Institutional research plan: CEZ:AV0Z5004920 Keywords : tumor-suppressor P53 * DNA-bending proteins * mammalian-cells Subject RIV: BO - Biophysics Impact factor: 6.696, year: 2002

  16. Naringenin modulates the metastasis of human prostate cancer cells by down regulating the matrix metalloproteinases -2/-9 via ROS/ERK1/2 pathways

    Directory of Open Access Journals (Sweden)

    Er-Jiang Lin

    2014-08-01

    Full Text Available Metastasis is a multifactorial condition that complicates cancer treatment options and widens the target of treatment. Matrix mettalopriteinases (MMPs of the extracellular matrix (ECM are involved in metastasis, thus they present as potential targets in halting cancer metastasis. The study was undertaken to investigate the influence of naringenin, a naturally occurring flavonoid on the metastasis of human prostate cancer cells (PC-3 and DU145. Naringenin was observed to be effective in reducing the viability and migratory percentage of PC-3 and DU145 cells. Naringenin significantly reduced the expression and activities of the chief MMPs (MMP-2 and MMP-9 as assessed by western blotting, real-time PCR and gelatin zymography analysis. The influence of naringenin on extracellular signal-regulated kinase (ERK -ERK1/2 was analysed by western blotting. The results indicated that naringenin was able to effectively inhibit ERK1/2. Naringenin exposure also significantly suppressed the levels of reactive oxygen species (ROS. Naringenin thus stands as an effective chemotherapeutic agent for prostate cancer treatment that could be further explored.

  17. miR126-5p down-regulation facilitates axon degeneration and NMJ disruption via a non-cell-autonomous mechanism in ALS.

    Science.gov (United States)

    Maimon, Roy; Ionescu, Ariel; Bonnie, Avichai; Sweetat, Sahar; Wald-Altman, Shane; Inbar, Shani; Gradus, Tal; Trotti, Davide; Weil, Miguel; Behar, Oded; Perlson, Eran

    2018-05-17

    Axon degeneration and disruption of neuromuscular junctions (NMJs) are key events in Amyotrophic Lateral Sclerosis (ALS) pathology. Although the disease's etiology is not fully understood, it is thought to involve a non-cell-autonomous mechanism and alterations in RNA metabolism. Here, we identified reduced levels of miR-126-5p in pre-symptomatic ALS male mice models, and an increase in its targets: axon destabilizing type-3 Semaphorins and their co-receptor Neuropilins. Utilizing compartmentalized in vitro co-cultures, we demonstrated that myocytes expressing diverse ALS-causing mutations promote axon degeneration and NMJ dysfunction, which were inhibited by applying Neuropilin1 (NRP1) blocking antibody. Finally, overexpressing miR126-5p is sufficient to transiently rescue axon degeneration and NMJ disruption both in vitro and in vivo Thus, we demonstrate a novel mechanism underlying ALS pathology, in which alterations in miR126-5p facilitate a non-cell-autonomous mechanism of motor neuron degeneration in ALS. SIGNIFICANCE STATEMENT In spite of some progress, currently no effective treatment is available for ALS. We suggest a novel regulatory role for miR126-5p in ALS and demonstrate for the first time a mechanism by which alterations in miR126-5p contribute to axon degeneration and NMJ disruption observed in ALS. We show that miR126-5p is altered in ALS models and that it can modulate Sema3 and NRP protein expression. Furthermore, NRP1 elevations in motor neurons and muscle secretion of Sema3A contribute to axon degeneration and NMJ disruption in ALS. Finally, overexpressing miR126-5p is sufficient to transiently rescue NMJ disruption and axon degeneration both in vitro and in vivo. Copyright © 2018 Maimon et al.

  18. MiR-138 promotes smooth muscle cells proliferation and migration in db/db mice through down-regulation of SIRT1

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Juan [Department of Gynecology, Changzhou Maternity and Children Health Hospital, Changzhou, Jiangsu 213003 (China); Li, Li; Yun, Hui-fang [Department of Anesthesiology, Changzhou No. 2 People' s Hospital, Changzhou, Jiangsu 213003 (China); Han, Ye-shan, E-mail: yeshanhan123@163.com [Department of Anesthesiology, Changzhou No. 2 People' s Hospital, Changzhou, Jiangsu 213003 (China)

    2015-08-07

    Background: Diabetic vascular smooth muscle cells (VSMCs) exhibit significantly increased rates of proliferation and migration, which was the most common pathological change in atherosclerosis. In addition, the study about the role for miRNAs in the regulation of VSMC proliferation is just beginning to emerge and additional miRNAs involved in VSMC proliferation modulation should be identified. Methods: The expression of miR-138 and SIRT1 were examined in SMCs separated from db/db mice and in SMC lines C-12511 exposed to high glucose with qRT-PCR and western blot. The regulation of miR-138 on the expression of SMCs was detected with luciferase report assay. VSMCs proliferation and migration assays were performed to examine the effect of miR-138 inhibitor on VSMCs proliferation and migration. Results: We discovered that higher mRNA level of miR-138 and reduced expression of SIRT1 were observed in SMCs separated from db/db mice and in SMC lines C-12511. Moreover, luciferase report assay showed that the activity of SIRT1 3′-UTR was highly increased by miR-138 inhibitor and reduced by miR-138 mimic. In addition, we examined that the up-regulation of NF-κB induced by high glucose in SMCs was reversed by resveratrol and miR-138 inhibitor. MTT and migration assays showed that miR-138 inhibitor attenuated the proliferation and migration of smooth muscle cells. Conclusion: In this study, we revealed that miR-138 might promote proliferation and migration of SMC in db/db mice through suppressing the expression of SIRT1. - Highlights: • Higher mRNA level of miR-138 was observed in SMCs from db/db mice. • The mRNA and protein level of SIRT1 in SMCs from db/db mice were greatly reduced. • miR-138 could regulate the expression of SIRT1 in SMCs. • SIRT1 overexpression reversed the up-regulation of acetylized p65 and NF-κB induced by high glucose. • MiR-138 inhibitor reversed VSMCs proliferation and migration induced by high glucose.

  19. Beta-elemene blocks epithelial-mesenchymal transition in human breast cancer cell line MCF-7 through Smad3-mediated down-regulation of nuclear transcription factors.

    Directory of Open Access Journals (Sweden)

    Xian Zhang

    Full Text Available Epithelial-mesenchymal transition (EMT is the first step required for breast cancer to initiate metastasis. However, the potential of drugs to block and reverse the EMT process are not well explored. In the present study, we investigated the inhibitory effect of beta-elemene (ELE, an active component of a natural plant-derived anti-neoplastic agent in an established EMT model mediated by transforming growth factor-beta1 (TGF-β1. We found that ELE (40 µg/ml blocked the TGF-β1-induced phenotypic transition in the human breast cancer cell line MCF-7. ELE was able to inhibit TGF-β1-mediated upregulation of mRNA and protein expression of nuclear transcription factors (SNAI1, SNAI2, TWIST and SIP1, potentially through decreasing the expression and phosphorylation of Smad3, a central protein mediating the TGF-β1 signalling pathway. These findings suggest a potential therapeutic benefit of ELE in treating basal-like breast cancer.

  20. The effect of down-regulation of Smad3 by RNAi on hepatic stellate cells and a carbon tetrachloride-induced rat model of hepatic fibrosis

    Directory of Open Access Journals (Sweden)

    Z.R. Wang

    2011-02-01

    Full Text Available Searching for effective Smad3 gene-based gene therapies for hepatic fibrosis, we constructed siRNA expression plasmids targeting the rat Smad3 gene and then delivered these plasmids into hepatic stellate cells (HSCs. The effect of siRNAs on the mRNA levels of Smad2, Smad3, Smad4, and collagens I-α1, III-α1 and IV-α1 (Colα1, Col3α1, Col4α1, respectively was determined by RT-PCR. Eighty adult male Sprague-Dawley rats were randomly divided into three groups. Twice a week for 8 weeks, the untreated hepatic fibrosis model (N = 30 and the treated group (N = 20 were injected subcutaneously with 40% (v/v carbon tetrachloride (CCl4-olive oil (3 mL/kg, and the normal control group (N = 30 was injected with olive oil (3 mL/kg. In the 4th week, the treated rats were injected subcutaneously with liposome-encapsulated plasmids (150 µg/kg into the right liver lobe under general anesthesia once every 2 weeks, and the untreated rats were injected with the same volume of buffer. At the end of the 6th and 8th weeks, liver tissue and sera were collected. Pathological changes were assessed by a semi-quantitative scoring system (SSS, and a radioimmunoassay was used to establish a serum liver fibrosis index (type III procollagen, type IV collagen, laminin, and hyaluronic acid. The mRNA expression levels of the above cited genes were reduced in the HSCs transfected with the siRNA expression plasmids. Moreover, in the treated group, fibrosis evaluated by the SSS was significantly reduced (P < 0.05 and the serum indices were greatly improved (P < 0.01. These results suggest that Smad3 siRNA expression plasmids have an anti-fibrotic effect.

  1. MiR-29-mediated elastin down-regulation contributes to inorganic phosphorus-induced osteoblastic differentiation in vascular smooth muscle cells.

    Science.gov (United States)

    Sudo, Ryo; Sato, Fumiaki; Azechi, Takuya; Wachi, Hiroshi

    2015-12-01

    Vascular calcification increases the risk of cardiovascular mortality. We previously reported that expression of elastin decreases with progression of inorganic phosphorus (Pi)-induced vascular smooth muscle cell (VSMC) calcification. However, the regulatory mechanisms of elastin mRNA expression during vascular calcification remain unclear. MicroRNA-29 family members (miR-29a, b and c) are reported to mediate elastin mRNA expression. Therefore, we aimed to determine the effect of miR-29 on elastin expression and Pi-induced vascular calcification. Calcification of human VSMCs was induced by Pi and evaluated measuring calcium deposition. Pi stimulation promoted Ca deposition and suppressed elastin expression in VSMCs. Knockdown of elastin expression by shRNA also promoted Pi-induced VSMC calcification. Elastin pre-mRNA measurements indicated that Pi stimulation suppressed elastin expression without changing transcriptional activity. Conversely, Pi stimulation increased miR-29a and miR-29b expression. Inhibition of miR-29 recovered elastin expression and suppressed calcification in Pi-treated VSMCs. Furthermore, over-expression of miR-29b promoted Pi-induced VSMC calcification. RT-qPCR analysis showed knockdown of elastin expression in VSMCs induced expression of osteoblast-related genes, similar to Pi stimulation, and recovery of elastin expression by miR-29 inhibition reduced their expression. Our study shows that miR-29-mediated suppression of elastin expression in VSMCs plays a pivotal role in osteoblastic differentiation leading to vascular calcification. © 2015 The Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  2. Periplocin from Cortex periplocae inhibits cell growth and down-regulates survivin and c-myc expression in colon cancer in vitro and in vivo via beta-catenin/TCF signaling.

    Science.gov (United States)

    Zhao, Lianmei; Shan, Baoen; Du, Yanyan; Wang, Mingxia; Liu, Lihua; Ren, Feng-Zhi

    2010-08-01

    Cancer of the colon and rectum is the third most commonly diagnosed cancer and accounts for approximately 10% of all cancer-related deaths. Although surgical resection or radiotherapy are potentially curative for localized disease, advanced colon cancer is currently associated with poor prognosis. Therefore, the development of a new and effective chemotherapeutic agent is required to target critical pathways to induce responsiveness of colon cancer cells to death signals. Dysregulation of the beta-catenin/TCF pathway plays a central role in early activities of colorectal carcinogenesis. In this study, human colon cancer SW480 cells were used to investigate the effect of CPP (periplocin from Cortex periplocae) on the modulation of the beta-catenin/TCF signaling pathway. Our research results showed that CPP caused a dose- and time-dependent inhibition of cell growth as assessed by MTT assay and an induction in apoptosis as measured by flow cytometry and transmission electron microscopy. Furthermore, the CPP- treated cells were characterized by a decreased expression of beta-catenin protein in the total cell lysates and cytosolic and nuclear extracts. This expression alleviates the binding activity of T-cell factor (Tcf) complexes to its specific DNA-binding sites. Thus, the protein expression of the downstream elements survivin and c-myc was down-regulated. To determine the precise inhibitory mechanisms involved, further in-depth in vivo studies of CPP are warranted. In conclusion, our data suggest that CPP wields a multi-prong strategy to target the beta-catenin/Tcf signaling pathway, leading to the induction of apoptosis and inhibition of growth of colon cancer cells in vitro and in vivo. Therefore, CPP may become a potential agent against colon cancer.

  3. Hath1 inhibits proliferation of colon cancer cells probably through up-regulating expression of Muc2 and p27 and down-regulating expression of cyclin D1.

    Science.gov (United States)

    Zhu, Dai-Hua; Niu, Bai-Lin; Du, Hui-Min; Ren, Ke; Sun, Jian-Ming; Gong, Jian-Ping

    2012-01-01

    Previous studies showed that Math1 homologous to human Hath1 can cause mouse goblet cells to differentiate. In this context it is important that the majority of colon cancers have few goblet cells. In the present study, the potential role of Hath1 in colon carcinogenesis was investigated. Sections of paraffin-embedded tissues were used to investigate the goblet cell population of normal colon mucosa, mucosa adjacent colon cancer and colon cancer samples from 48 patients. Hath1 and Muc2 expression in these samples were tested by immunohistochemistry, quantitative real-time reverse transcription -PCR and Western blotting. After the recombinant plasmid, pcDNA3.1(+)-Hath1 had been transfected into HT29 colon cancer cells, three clones were selected randomly to test the levels of Hath1 mRNA, Muc2 mRNA, Hath1, Muc2, cyclin D1 and p27 by quantitative real-time reverse transcription-PCR and Western blotting. Moreover, the proliferative ability of HT29 cells introduced with Hath1 was assessed by means of colony formation assay and xenografting. Expression of Hath1, Muc2, cyclin D1 and p27 in the xenograft tumors was also detected by Western blotting. No goblet cells were to be found in colon cancer and levels of Hath1 mRNA and Hath1, Muc2 mRNA and Muc2 were significantly down-regulated. Hath1 could decrease cyclin D1, increase p27 and Muc2 in HT29 cells and inhibit their proliferation. Hath1 may be an anti-oncogene in colon carcinogenesis.

  4. Down-regulation of 14-3-3β exerts anti-cancer effects through inducing ER stress in human glioma U87 cells: Involvement of CHOP–Wnt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lei; Lei, Hui; Chang, Ming-Ze; Liu, Zhi-Qin [Department of Neurological Disease, Xi' an Central Hospital, Xi' an Jiaotong University, Xi' an, Shaanxi 710000 (China); Bie, Xiao-Hua, E-mail: biexiaohua_xjtu@126.com [Department of Functional Neurosurgery, Xi' an Red Cross Hospital, Xi' an Jiaotong University, Xi' an, Shaanxi 710054 (China)

    2015-07-10

    We previously identified 14-3-3β as a tumor-specific isoform of 14-3-3 protein in astrocytoma, but its functional role in glioma cells and underlying mechanisms are poorly understood. In the present study, we investigated the effects of 14-3-3β inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA). The results showed that 14-3-3β is highly expressed in U87 cells but not in normal astrocyte SVGp12 cells. Knockdown of 14-3-3β by Si-14-3-3β transfection significantly decreased the cell viability but increased the LDH release in a time-dependent fashion in U87 cells, and these effects were accompanied with G0/G1 cell cycle arrest and apoptosis. In addition, 14-3-3β knockdown induced ER stress in U87 cells, as evidenced by ER calcium release, increased expression of XBP1S mRNA and induction of ER related pro-apoptotic factors. Down-regulation of 14-3-3β significantly decreased the nuclear localization of β-catenin and inhibited Topflash activity, which was shown to be reversely correlated with CHOP. Furthermore, Si-CHOP and sFRP were used to inhibit CHOP and Wnt, respectively. The results showed that the anti-cancer effects of 14-3-3β knockdown in U87 cells were mediated by increased expression of CHOP and followed inhibition of Wnt/β-catenin pathway. In summary, the remarkable efficiency of 14-3-3β knockdown to induce apoptotic cell death in U87 cells may find therapeutic application for the treatment of glioma patients. - Highlights: • Knockdown of 14-3-3β leads to cytotoxicity in human glioma U87 cells. • Knockdown of 14-3-3β induces cell cycle arrest and apoptosis in U87 cells. • Knockdown of 14-3-3β results in ER stress in U87 cells. • Knockdown of 14-3-3β inhibits Wnt/β-catenin pathway via CHOP activation.

  5. Down-regulation of 14-3-3β exerts anti-cancer effects through inducing ER stress in human glioma U87 cells: Involvement of CHOP–Wnt pathway

    International Nuclear Information System (INIS)

    Cao, Lei; Lei, Hui; Chang, Ming-Ze; Liu, Zhi-Qin; Bie, Xiao-Hua

    2015-01-01

    We previously identified 14-3-3β as a tumor-specific isoform of 14-3-3 protein in astrocytoma, but its functional role in glioma cells and underlying mechanisms are poorly understood. In the present study, we investigated the effects of 14-3-3β inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA). The results showed that 14-3-3β is highly expressed in U87 cells but not in normal astrocyte SVGp12 cells. Knockdown of 14-3-3β by Si-14-3-3β transfection significantly decreased the cell viability but increased the LDH release in a time-dependent fashion in U87 cells, and these effects were accompanied with G0/G1 cell cycle arrest and apoptosis. In addition, 14-3-3β knockdown induced ER stress in U87 cells, as evidenced by ER calcium release, increased expression of XBP1S mRNA and induction of ER related pro-apoptotic factors. Down-regulation of 14-3-3β significantly decreased the nuclear localization of β-catenin and inhibited Topflash activity, which was shown to be reversely correlated with CHOP. Furthermore, Si-CHOP and sFRP were used to inhibit CHOP and Wnt, respectively. The results showed that the anti-cancer effects of 14-3-3β knockdown in U87 cells were mediated by increased expression of CHOP and followed inhibition of Wnt/β-catenin pathway. In summary, the remarkable efficiency of 14-3-3β knockdown to induce apoptotic cell death in U87 cells may find therapeutic application for the treatment of glioma patients. - Highlights: • Knockdown of 14-3-3β leads to cytotoxicity in human glioma U87 cells. • Knockdown of 14-3-3β induces cell cycle arrest and apoptosis in U87 cells. • Knockdown of 14-3-3β results in ER stress in U87 cells. • Knockdown of 14-3-3β inhibits Wnt/β-catenin pathway via CHOP activation

  6. Exposure of E. coli to DNA-methylating agents impairs biofilm formation and invasion of eukaryotic cells via down regulation of the N-acetylneuraminate lyase NanA

    Directory of Open Access Journals (Sweden)

    Pamela eDi Pasquale

    2016-02-01

    Full Text Available DNA methylation damage can be induced by endogenous and exogenous chemical agents, which has led every living organism to develop suitable response strategies. We investigated protein expression profiles of Escherichia coli upon exposure to the alkylating agent methyl-methane sulfonate (MMS by differential proteomics. Quantitative proteomic data showed a massive downregulation of enzymes belonging to the glycolytic pathway and fatty acids degradation, strongly suggesting a decrease of energy production. A strong reduction in the expression of the N-acetylneuraminate lyases (NanA involved in the sialic acid metabolism was also observed. Using a null NanA mutant and DANA, a substrate analogue acting as competitive inhibitor, we demonstrated that down regulation of NanA affects biofilm formation and adhesion properties of E. coli MV1161. Exposure to alkylating agents also decreased biofilm formation and bacterial adhesion to Caco-2 eukaryotic cell line by the adherent invasive E. coli (AIEC strain LF82. Our data showed that methylation stress impairs E. coli adhesion properties and suggest a possible role of NanA in biofilm formation and bacteria host interactions.

  7. Amino acid limitation induces down-regulation of WNT5a at transcriptional level

    International Nuclear Information System (INIS)

    Wang Zuguang; Chen Hong

    2009-01-01

    An aberrant WNT signaling contributes to the development and progression of multiple cancers. WNT5a is one of the WNT signaling molecules. This study was designed to test the hypothesis that amino acid deprivation induces changes in the WNT signaling pathway in colon cancer cells. Results showed that targets of the amino acid response pathway, ATF3 and p21, were induced in the human colon cancer cell line SW480 during amino acid limitation. There was a significant decrease in the WNT5a mRNA level following amino acid deprivation. The down-regulation of WNT5a mRNA by amino acid deprivation is not due to mRNA destabilization. There is a reduction of nuclear β-catenin protein level by amino acid limitation. Under amino acid limitation, phosphorylation of ERK1/2 was increased and the blockage of ERK1/2 by the inhibitor U0126 partially restored WNT5a mRNA level. In conclusion, amino acid limitation in colon cancer cells induces phosphorylation of ERK1/2, which then down-regulates WNT5a expression.

  8. Metformin Causes G1-Phase Arrest via Down-Regulation of MiR-221 and Enhances TRAIL Sensitivity through DR5 Up-Regulation in Pancreatic Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Ryoichi Tanaka

    Full Text Available Although many chemotherapeutic strategies against cancer have been developed, pancreatic cancer is one of the most aggressive and intractable types of malignancies. Therefore, new strategies and anti-cancer agents are necessary to treat this disease. Metformin is a widely used drug for type-2 diabetes, and is also known as a promising candidate anti-cancer agent from recent studies in vitro and in vivo. However, the mechanisms of metformin's anti-cancer effects have not been elucidated. We demonstrated that metformin suppressed the expression of miR-221, one of the most well-known oncogenic microRNAs, in human pancreatic cancer PANC-1 cells. Moreover, we showed that the down-regulation of miR-221 by metformin caused G1-phase arrest via the up-regulation of p27, one of the direct targets of miR-221. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL is also a promising agent for cancer treatment. While recent studies showed that treatment with only TRAIL was not effective against pancreatic cancer cells, the present data showed that metformin sensitized p53-mutated pancreatic cancer cells to TRAIL. Metformin induced the expressions of death receptor 5 (DR5, a receptor for TRAIL, and Bim with a pro-apoptotic function in the downstream of TRAIL-DR5 pathway. We suggest that the up-regulation of these proteins may contribute to sensitization of TRAIL-induced apoptosis. The combination therapy of metformin and TRAIL could therefore be effective in the treatment of pancreatic cancer.

  9. DMBT1 expression is down-regulated in breast cancer

    International Nuclear Information System (INIS)

    Braidotti, P; Pietra, GG; Nuciforo, PG; Mollenhauer, J; Poustka, A; Pellegrini, C; Moro, A; Bulfamante, G; Coggi, G; Bosari, S

    2004-01-01

    We studied the expression of DMBT1 (deleted in malignant brain tumor 1), a putative tumor suppressor gene, in normal, proliferative, and malignant breast epithelium and its possible relation to cell cycle. Sections from 17 benign lesions and 55 carcinomas were immunostained with anti DMBT1 antibody (DMBTh12) and sections from 36 samples, were double-stained also with anti MCM5, one of the 6 pre-replicative complex proteins with cell proliferation-licensing functions. DMBT1 gene expression at mRNA level was assessed by RT-PCR in frozen tissues samples from 39 patients. Normal glands and hyperplastic epithelium in benign lesions displayed a luminal polarized DMBTh12 immunoreactivity. Normal and hyperplastic epithelium adjacent to carcinomas showed a loss of polarization, with immunostaining present in basal and perinuclear cytoplasmic compartments. DMBT1 protein expression was down-regulated in the cancerous lesions compared to the normal and/or hyperplastic epithelium adjacent to carcinomas (3/55 positive carcinomas versus 33/42 positive normal/hyperplastic epithelia; p = 0.0001). In 72% of cases RT-PCR confirmed immunohistochemical results. Most of normal and hyperplastic mammary cells positive with DMBTh12 were also MCM5-positive. The redistribution and up-regulation of DMBT1 in normal and hyperplastic tissues flanking malignant tumours and its down-regulation in carcinomas suggests a potential role in breast cancer. Moreover, the concomitant expression of DMTB1 and MCM5 suggests its possible association with the cell-cycle regulation

  10. CD44 staining of cancer stem-like cells is influenced by down-regulation of CD44 variant isoforms and up-regulation of the standard CD44 isoform in the population of cells that have undergone epithelial-to-mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Adrian Biddle

    Full Text Available CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumours, and we have previously demonstrated the existence of two different CD44(high cancer stem-like cell populations in squamous cell carcinoma, one having undergone epithelial-to-mesenchymal transition and the other maintaining an epithelial phenotype. Alternative splicing of CD44 variant exons generates a great many isoforms, and it is not known which isoforms are expressed on the surface of the two different cancer stem-like cell phenotypes. Here, we demonstrate that cancer stem-like cells with an epithelial phenotype predominantly express isoforms containing the variant exons, whereas the cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition down-regulate these variant isoforms and up-regulate expression of the standard CD44 isoform that contains no variant exons. In addition, we find that enzymatic treatments used to dissociate cells from tissue culture or fresh tumour specimens cause destruction of variant CD44 isoforms at the cell surface whereas expression of the standard CD44 isoform is preserved. This results in enrichment within the CD44(high population of cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition and depletion from the CD44(high population of cancer stem-like cells that maintain an epithelial phenotype, and therefore greatly effects the characteristics of any cancer stem-like cell population isolated based on expression of CD44. As well as effecting the CD44(high population, enzymatic treatment also reduces the percentage of the total epithelial cancer cell population staining CD44-positive, with potential implications for studies that aim to use CD44-positive staining as a prognostic indicator. Analyses of the properties of cancer stem-like cells are largely dependent on the ability to accurately identify and assay these populations. It is therefore critical that

  11. Cosmetic applications of glucitol-core containing gallotannins from a proprietary phenolic-enriched red maple (Acer rubrum) leaves extract: inhibition of melanogenesis via down-regulation of tyrosinase and melanogenic gene expression in B16F10 melanoma cells.

    Science.gov (United States)

    Ma, Hang; Xu, Jialin; DaSilva, Nicholas A; Wang, Ling; Wei, Zhengxi; Guo, Liangran; Johnson, Shelby L; Lu, Wei; Xu, Jun; Gu, Qiong; Seeram, Navindra P

    2017-05-01

    The red maple (Acer rubrum) is a rich source of phenolic compounds which possess galloyl groups attached to different positions of a 1,5-anhydro-D-glucitol core. While these glucitol-core containing gallotannins (GCGs) have reported anti-oxidant and anti-glycative effects, they have not yet been evaluated for their cosmetic applications. Herein, the anti-tyrosinase and anti-melanogenic effects of a proprietary phenolic-enriched red maple leaves extract [Maplifa ™ ; contains ca. 45% ginnalin A (GA) along with other GCGs] were investigated using enzyme and cellular assays. The GCGs showed anti-tyrosinase activity with IC 50 values ranging from 101.4 to 1047.3 μM and their mechanism of tyrosinase inhibition (using GA as a representative GCG) was evaluated by chelating and computational/modeling studies. GA reduced melanin content in murine melanoma B16F10 cells by 79.1 and 56.7% (at non-toxic concentrations of 25 and 50 μM, respectively), and its mechanisms of anti-melanogenic effects were evaluated by using methods including fluorescent probe (DCF-DA), real-time PCR, and western blot experiments. These data indicated that GA was able to: (1) reduce the levels of reactive oxygen species, (2) down-regulate the expression of MITF, TYR, TRP-1, and TRP-2 gene levels in a time-dependent manner, and (3) significantly reduce protein expression of the TRP-2 gene. Therefore, the anti-melanogenic effects of red maple GCGs warrant further investigation of this proprietary natural product extract for potential cosmetic applications.

  12. Down-Regulation of p53 by Double-Stranded RNA Modulates the Antiviral Response

    Science.gov (United States)

    Marques, Joao T.; Rebouillat, Dominique; Ramana, Chilakamarti V.; Murakami, Junko; Hill, Jason E.; Gudkov, Andrei; Silverman, Robert H.; Stark, George R.; Williams, Bryan R. G.

    2005-01-01

    p53 has been well characterized as a tumor suppressor gene, but its role in antiviral defense remains unclear. A recent report has demonstrated that p53 can be induced by interferons and is activated after vesicular stomatitis virus (VSV) infection. We observed that different nononcogenic viruses, including encephalomyocarditis virus (EMCV) and human parainfluenza virus type 3 (HPIV3), induced down-regulation of p53 in infected cells. Double-stranded RNA (dsRNA) and a mutant vaccinia virus lacking the dsRNA binding protein E3L can also induce this effect, indicating that dsRNA formed during viral infection is likely the trigger for down-regulation of p53. The mechanism of down-regulation of p53 by dsRNA relies on translation inhibition mediated by the PKR and RNase L pathways. In the absence of p53, the replication of both EMCV and HPIV3 was retarded, whereas, conversely, VSV replication was enhanced. Cell cycle analysis indicated that wild-type (WT) but not p53 knockout (KO) fibroblasts undergo an early-G1 arrest following dsRNA treatment. Moreover, in WT cells the onset of dsRNA-induced apoptosis begins after p53 levels are down-regulated, whereas p53 KO cells, which lack the early-G1 arrest, rapidly undergo apoptosis. Hence, our data suggest that the down-regulation of p53 facilitates apoptosis, thereby limiting viral replication. PMID:16103161

  13. Ku70 acetylation and modulation of c-Myc/ATF4/CHOP signaling axis by SIRT1 inhibition lead to sensitization of HepG2 cells to TRAIL through induction of DR5 and down-regulation of c-FLIP

    DEFF Research Database (Denmark)

    Kim, Mi-Ju; Hong, Kyung-Soo; Kim, Hak-Bong

    2013-01-01

    In this study, we investigated the role of c-Myc/ATF4/CHOP signaling pathway in sensitization of human hepatoma HepG2 cells to TRAIL. Knockdown of SIRT1 or treatment with SIRT1 inhibitor caused the up-regulation of DR5 and down-regulation of c-FLIP through modulation of c-Myc/ATF4/CHOP pathway, a...

  14. Flavonoids from Theobroma cacao down-regulate inflammatory mediators.

    Science.gov (United States)

    Ramiro, Emma; Franch, Angels; Castellote, Cristina; Pérez-Cano, Francisco; Permanyer, Joan; Izquierdo-Pulido, Maria; Castell, Margarida

    2005-11-02

    In the present study, we report the effects of a cocoa extract on the secretion and RNA expression of various proinflammatory mediators by macrophages. Monocyte chemoattractant protein 1 and tumor necrosis factor alpha (TNFalpha) were significantly and dose-dependently diminished by cocoa extract, and this effect was higher than that produced by equivalent concentrations of epicatechin but was lower than that produced by isoquercitrin. Interestingly, cocoa extract added prior to cell activation resulted in a significantly greater inhibition of TNFalpha secretion. Both cocoa extract and epicatechin decreased TNFalpha, interleukin (IL) 1alpha, and IL-6 mRNA expression, suggesting that their inhibitory effect on cytokine secretion is produced, in part, at the transcriptional level. Cocoa extract also significantly decreased NO secretion in a dose-dependent manner and with a greater effect than that produced by epicatechin. In conclusion, our study shows that cocoa flavonoids not only inhibit NO release from macrophages but also down-regulate inflammatory cytokines and chemokines.

  15. MiR-128b is down-regulated in gastric cancer and negatively ...

    Indian Academy of Sciences (India)

    2016-02-04

    Feb 4, 2016 ... found that miR-128b expression was down-regulated in tissues from 18 GC patients and 3 carcinoma cell lines. ... study reported that miRNA-128 promoted cell proliferation ... ed with 10% fetal bovine serum (Hyclone, Logan,.

  16. Curcumin significantly enhances dual PI3K/Akt and mTOR inhibitor NVP-BEZ235-induced apoptosis in human renal carcinoma Caki cells through down-regulation of p53-dependent Bcl-2 expression and inhibition of Mcl-1 protein stability.

    Directory of Open Access Journals (Sweden)

    Bo Ram Seo

    Full Text Available The PI3K/Akt and mTOR signaling pathways are important for cell survival and growth, and they are highly activated in cancer cells compared with normal cells. Therefore, these signaling pathways are targets for inducing cancer cell death. The dual PI3K/Akt and mTOR inhibitor NVP-BEZ235 completely inhibited both signaling pathways. However, NVP-BEZ235 had no effect on cell death in human renal carcinoma Caki cells. We tested whether combined treatment with natural compounds and NVP-BEZ235 could induce cell death. Among several chemopreventive agents, curcumin, a natural biologically active compound that is extracted from the rhizomes of Curcuma species, markedly induced apoptosis in NVP-BEZ235-treated cells. Co-treatment with curcumin and NVP-BEZ235 led to the down-regulation of Mcl-1 protein expression but not mRNA expression. Ectopic expression of Mcl-1 completely inhibited curcumin plus NVP-NEZ235-induced apoptosis. Furthermore, the down-regulation of Bcl-2 was involved in curcumin plus NVP-BEZ235-induced apoptosis. Curcumin or NVP-BEZ235 alone did not change Bcl-2 mRNA or protein expression, but co-treatment reduced Bcl-2 mRNA and protein expression. Combined treatment with NVP-BEZ235 and curcumin reduced Bcl-2 expression in wild-type p53 HCT116 human colon carcinoma cells but not p53-null HCT116 cells. Moreover, Bcl-2 expression was completely reversed by treatment with pifithrin-α, a p53-specific inhibitor. Ectopic expression of Bcl-2 also inhibited apoptosis in NVP-BE235 plus curcumin-treated cells. In contrast, NVP-BEZ235 combined with curcumin did not have a synergistic effect on normal human skin fibroblasts and normal human mesangial cells. Taken together, combined treatment with NVP-BEZ235 and curcumin induces apoptosis through p53-dependent Bcl-2 mRNA down-regulation at the transcriptional level and Mcl-1 protein down-regulation at the post-transcriptional level.

  17. Human T cell leukemia virus type I prevents cell surface expression of the T cell receptor through down-regulation of the CD3-gamma, -delta, -epsilon, and -zeta genes

    NARCIS (Netherlands)

    de Waal Malefyt, R.; Yssel, H.; Spits, H.; de Vries, J. E.; Sancho, J.; Terhorst, C.; Alarcon, B.

    1990-01-01

    Infection and transformation by human T cell leukemia virus type I (HTLV-I) up-regulates expression of several inducible genes including those coding for cytokines involved in the proliferation of normal and leukemic T cells. We demonstrate that HTLV-I can also shut off expression of the CD3-gamma,

  18. Comparison of loads for wind turbine down-regulation strategies

    DEFF Research Database (Denmark)

    Zhu, Jiangsheng; Ma, Kuichao; N. Soltani, Mohsen

    2017-01-01

    For wind farm active power setpoint tracking, both farm level and turbine level down regulation strategies should to be optimized. Several down regulation strategies are chosen to analyse the wind turbine load performance according to different wind speed and power reference. In this paper we...... suggest appropriate down regulation strategy to control wind turbine for active power reference tracking. we compare four different control strategies, namely Const-Ω, Const-λ, Max-Ω and Min-Ct and discuss the loads on main components and downwind speed by presenting analysis of several wind scenarios...

  19. Down-regulation of PRKCB1 expression in Han Chinese patients with subsyndromal symptomatic depression.

    Science.gov (United States)

    Guo, Xiaoyun; Li, Zezhi; Zhang, Chen; Yi, Zhenghui; Li, Haozhe; Cao, Lan; Yuan, Chengmei; Hong, Wu; Wu, Zhiguo; Peng, Daihui; Chen, Jun; Xia, Weiping; Zhao, Guoqing; Wang, Fan; Yu, Shunying; Cui, Donghong; Xu, Yifeng; Golam, Chowdhury M I; Smith, Alicia K; Wang, Tong; Fang, Yiru

    2015-10-01

    Subsyndromal symptomatic depression (SSD) is a common disease with significant social dysfunction. However, SSD is still not well understood and the pathophysiology of it remains unclear. We classified 48 candidate genes for SSD according to our previous study into clusters and pathways using DAVID Bioinformatics Functional Annotation Tool. We further replicated the result by using real-time Quantitative PCR (qPCR) studies to examine the expression of identified genes (i.e., STAT5b, PKCB1, ABL1 and NRAS) in another group of Han Chinese patients with SSD (n = 50). We further validated the result by examining PRKCB1 expression collected from MDD patients (n = 20). To test whether a deficit in PRKCB1 expression leads to dysregulation in PRKCB1 dependent transcript networks, we tested mRNA expression levels for the remaining 44 genes out of 48 genes in SSD patients. Finally, the power of discovery was improved by incorporating information from Quantitative Trait (eQTL) analysis. The results showed that the PRCKB1 gene expression in peripheral blood mononuclear cells (PBMC) was 33.3% down-regulated in SSD patients (n = 48, t = 3.202, p = 0.002), and a more dramatic (n = 17, 49%) down-regulation in MDD patients than control (n = 49, t = 2.114, p = 0.001). We also identified 37 genes that displayed a strong correlation with PRKCB1 mRNA expression levels in SSD patients. The expression of PRKCB1 was regulated by multiple single nucleotide polymorphisms (SNPs) both at the transcript level and exon level. In conclusion, we first found a significant decrease of PRCKB1 mRNA expression in SSD, suggesting PRKCB1 might be the candidate gene and biomarker for SSD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Down-regulation of 5S rRNA by miR-150 and miR-383 enhances c-Myc-rpL11 interaction and inhibits proliferation of esophageal squamous carcinoma cells.

    Science.gov (United States)

    Wang, Xinyu; Ren, Yanli; Wang, Zhiqiong; Xiong, Xiangyu; Han, Sichong; Pan, Wenting; Chen, Hongwei; Zhou, Liqing; Zhou, Changchun; Yuan, Qipeng; Yang, Ming

    2015-12-21

    5S rRNA plays an important part in ribosome biology and is over-expression in multiple cancers. In this study, we found that 5S rRNA is a direct target of miR-150 and miR-383 in esophageal squamous cell carcinoma (ESCC). Overexpression of miR-150 and miR-383 inhibited ESCC cell proliferation in vitro and in vivo. Moreover, 5S rRNA silencing by miR-150 and miR-383 might intensify rpL11-c-Myc interaction, which attenuated role of c-Myc as an oncogenic transcriptional factor and dysregulation of multiple c-Myc target genes. Taken together, our results highlight the involvement of miRNAs in ribosomal regulation during tumorigenesis. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Francisella tularensis elicits IL-10 via a PGE₂-inducible factor, to drive macrophage MARCH1 expression and class II down-regulation.

    Directory of Open Access Journals (Sweden)

    Danielle Hunt

    Full Text Available Francisella tularensis is a bacterial pathogen that uses host-derived PGE₂ to subvert the host's adaptive immune responses in multiple ways. Francisella-induced PGE₂ acts directly on CD4 T cells to blunt production of IFN-γ. Francisella-induced PGE₂ can also elicit production of a >10 kDa soluble host factor termed FTMØSN (F. tularensismacrophage supernatant, which acts on IFN-γ pre-activated MØ to down-regulate MHC class II expression via a ubiquitin-dependent mechanism, blocking antigen presentation to CD4 T cells. Here, we report that FTMØSN-induced down-regulation of MØ class II is the result of the induction of MARCH1, and that MØ expressing MARCH1 "resistant" class II molecules are resistant to FTMØSN-induced class II down-regulation. Since PGE₂ can induce IL-10 production and IL-10 is the only reported cytokine able to induce MARCH1 expression in monocytes and dendritic cells, these findings suggested that IL-10 is the active factor in FTMØSN. However, use of IL-10 knockout MØ established that IL-10 is not the active factor in FTMØSN, but rather that Francisella-elicited PGE₂ drives production of a >10 kDa host factor distinct from IL-10. This factor then drives MØ IL-10 production to induce MARCH1 expression and the resultant class II down-regulation. Since many human pathogens such as Salmonella typhi, Mycobacterium tuberculosis and Legionella pneumophila also induce production of host PGE₂, these results suggest that a yet-to-be-identified PGE₂-inducible host factor capable of inducing IL-10 is central to the immune evasion mechanisms of multiple important human pathogens.

  2. Eldecalcitol (ED-71), an analog of 1α,25(OH)2D3, inhibits the growth of squamous cell carcinoma (SCC) cells in vitro and in vivo by down-regulating expression of heparin-binding protein 17/fibroblast growth factor-binding protein-1 (HBp17/FGFBP-1) and FGF-2.

    Science.gov (United States)

    Shintani, T; Takatsu, F; Rosli, S N Z; Usui, E; Hamada, A; Sumi, K; Hayashido, Y; Toratani, S; Okamoto, Tetsuji

    2017-10-01

    Heparin-binding protein 17 (HBp17)/fibroblast growth factor-binding protein-1 (FGFBP-1) was first purified from medium conditioned by A431 cells for its capacity to bind to fibroblast growth factors 1 and 2 (FGF-1 and -2). Among FGF family members, FGF-2 is a potent mitogen for various cell types, including vascular endothelial cells, fibroblasts, and cancer cells such as oral squamous cell carcinoma (OSCC) cells. Besides being well known in bone metabolism, the active form of vitamin D 3 , i.e., 1α,25(OH) 2 D 3 (1,25D 3 ), was reported to have protective effects for heart disease and cancer. Previously, we reported that 1,25D 3 inhibited HBp17/FGFBP-1 expression in OSCC cell lines through NF-κB inhibition (IκBα activation) and resulted in the inactivation of FGF-2. In this study, we examined the potential anti-tumor effect of ED-71, an analog of 1α,25(OH) 2 D 3 , for squamous cell carcinoma cells in vitro and in vivo. The cell lines used were OSCC cell lines (NA-HO-1-n-1 and UE-HO-1-u-1), established from oral cancer patients in our laboratory, and an epidermoid carcinoma/SCC cell line (A431). The growth assay in serum-free culture revealed that ED-71 inhibited the growth of the cancer cell lines in a dose-dependent manner. In addition, ED-71 suppressed HBp17/FGFBP-1 expression by inhibiting the NF-κB pathway as did 1,25D 3 . Furthermore, a luciferase reporter assay revealed that the promoter activity of HBp17/FGFBP-1 (region between -217 and +61) was down-regulated by ED-71. Oral administration of ED-71 significantly inhibited the growth of A431-derived tumors in athymic nude mice. Immunohistochemical analysis revealed that the expression of HBp17/FGFBP-1, FGF-2, CD31, and Ki-67 in the tumors of ED71-treated group was down-regulated in comparison to control. These results suggest that ED-71 possesses potential anti-tumor activity for SCCs both in vitro and in vivo. This compound may act directly on the tumor cells or on endothelial cells by modulating the

  3. Putative tumour-suppressor gene DAB2 is frequently down regulated by promoter hypermethylation in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Tong, Joanna H; Lo, Kwok W; To, Ka F; Ng, David C; Chau, Shuk L; So, Ken K; Leung, Patrick P; Lee, Tin L; Lung, Raymond W; Chan, Michael W; Chan, Anthony W

    2010-01-01

    Human Disabled-2 (DAB2), is a multi-function signalling molecule that it is frequently down-regulated in human cancers. We aimed to investigate the possible tumour suppressor effect of DAB2 in nasopharyngeal carcinoma (NPC). We studied the expression of DAB2 in NPC cell lines, xenografts and primary tumour samples. The status of promoter methylation was assessed by methylation specific PCR and bisulfite sequencing. The functional role of DAB2 in NPC was investigated by re-introducing DAB2 expression into NPC cell line C666-1. Decrease or absent of DAB2 transcript was observed in NPC cell lines and xenografts. Loss of DAB2 protein expression was seen in 72% (33/46) of primary NPC as demonstrated by immunohistochemistry. Aberrant DAB2 promoter methylation was detected in 65.2% (30/46) of primary NPC samples by methylation specific PCR. Treatment of the DAB2 negative NPC cell line C666-1 with 5-aza-2'-deoxycytidine resulted in restoration of DAB2 expression in a dose-dependent manner. Overexpression of DAB2 in NPC cell line C666-1 resulted in reduced growth rate and 35% reduction in anchorage-dependent colony formation, and inhibition of serum-induced c-Fos expression compared to vector-transfected controls. Over expression of DAB2 resulted in alterations of multiple pathways as demonstrated by expression profiling and functional network analysis, which confirmed the role of DAB2 as an adaptor molecule involved in multiple receptor-mediated signalling pathways. We report the frequent down regulation of DAB2 in NPC and the promoter hypermethylation contributes to the loss of expression of DAB2. This is the first study demonstrating frequent DAB2 promoter hypermethylation in human cancer. Our functional studies support the putative tumour suppressor effect of DAB2 in NPC cells

  4. Uptake of donor lymphocytes treated with 8-methoxypsoralen and ultraviolet A light by recipient dendritic cells induces CD4+CD25+Foxp3+ regulatory T cells and down-regulates cardiac allograft rejection

    International Nuclear Information System (INIS)

    Zheng, De-Hua; Dou, Li-Ping; Wei, Yu-Xiang; Du, Guo-Sheng; Zou, Yi-Ping; Song, Ji-Yong; Zhu, Zhi-Dong; Cai, Ming; Qian, Ye-Yong; Shi, Bing-Yi

    2010-01-01

    Extracorporeal photopheresis (ECP) is an effective immunomodulatory therapy and has been demonstrated to be beneficial for graft-vs-host disease and solid-organ allograft rejection. ECP involves reinfusion of a patient's autologous peripheral blood leukocytes treated ex vivo with 8-methoxypsoralen and UVA light radiation (PUVA). Previous studies focused only on ECP treatment of recipient immune cells. Our study is the first to extend the target of ECP treatment to donor immune cells. The results of in vitro co-culture experiments demonstrate uptake of donor PUVA-treated splenic lymphocytes (PUVA-SPs) by recipient immature dendritic cells (DCs). Phagocytosis of donor PUVA-SPs does not stimulate phenotype maturation of recipient DCs. In the same co-culture system, donor PUVA-SPs enhanced production of interleukin-10 and interferon-γ by recipient DCs and impaired the subsequent capability of recipient DCs to stimulate recipient naive T cells. Phagocytosis of donor PUVA-SP (PUVA-SP DCs) by recipient DCs shifted T-cell responses in favor of T helper 2 cells. Infusion of PUVA-SP DCs inhibited cardiac allograft rejection in an antigen-specific manner and induced CD4 + CD25 high Foxp3 + regulatory T cells. In conclusion, PUVA-SP DCs simultaneously deliver the donor antigen and the regulatory signal to the transplant recipient, and thus can be used to develop a novel DC vaccine for negative immune regulation and immune tolerance induction.

  5. Uptake of donor lymphocytes treated with 8-methoxypsoralen and ultraviolet A light by recipient dendritic cells induces CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T cells and down-regulates cardiac allograft rejection

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, De-Hua [Organ Transplant Center, Chinese PLA 309th Hospital, No. 17A Hei-Shan-Hu Road, Beijing 100091 (China); Dou, Li-Ping [Department of Hematology, Chinese PLA General Hospital, No. 28 Fu-Xing Road, Beijing 100853 (China); Wei, Yu-Xiang; Du, Guo-Sheng; Zou, Yi-Ping; Song, Ji-Yong; Zhu, Zhi-Dong; Cai, Ming; Qian, Ye-Yong [Organ Transplant Center, Chinese PLA 309th Hospital, No. 17A Hei-Shan-Hu Road, Beijing 100091 (China); Shi, Bing-Yi, E-mail: shibingyi@medmail.com.cn [Organ Transplant Center, Chinese PLA 309th Hospital, No. 17A Hei-Shan-Hu Road, Beijing 100091 (China)

    2010-05-14

    Extracorporeal photopheresis (ECP) is an effective immunomodulatory therapy and has been demonstrated to be beneficial for graft-vs-host disease and solid-organ allograft rejection. ECP involves reinfusion of a patient's autologous peripheral blood leukocytes treated ex vivo with 8-methoxypsoralen and UVA light radiation (PUVA). Previous studies focused only on ECP treatment of recipient immune cells. Our study is the first to extend the target of ECP treatment to donor immune cells. The results of in vitro co-culture experiments demonstrate uptake of donor PUVA-treated splenic lymphocytes (PUVA-SPs) by recipient immature dendritic cells (DCs). Phagocytosis of donor PUVA-SPs does not stimulate phenotype maturation of recipient DCs. In the same co-culture system, donor PUVA-SPs enhanced production of interleukin-10 and interferon-{gamma} by recipient DCs and impaired the subsequent capability of recipient DCs to stimulate recipient naive T cells. Phagocytosis of donor PUVA-SP (PUVA-SP DCs) by recipient DCs shifted T-cell responses in favor of T helper 2 cells. Infusion of PUVA-SP DCs inhibited cardiac allograft rejection in an antigen-specific manner and induced CD4{sup +}CD25{sup high}Foxp3{sup +} regulatory T cells. In conclusion, PUVA-SP DCs simultaneously deliver the donor antigen and the regulatory signal to the transplant recipient, and thus can be used to develop a novel DC vaccine for negative immune regulation and immune tolerance induction.

  6. Hyperbaric environment up-regulates CD15s expression on leukocytes, down-regulates CD77 expression on renal cells and up-regulates CD34 expression on pulmonary and cardiac cells in rat

    Directory of Open Access Journals (Sweden)

    Danka Đevenica

    2016-08-01

    Full Text Available Objective(s: The aim of this study was to estimate effects of hyperbaric (HB treatment by determination of CD15s and CD11b leukocyte proinflammatory markers expression.  In addition, this study describes changes in CD77 and CD34 expression on rat endothelial cells in renal, pulmonary and cardiac tissue following exposure to hyperbaric pressure. Materials and Methods:Expression of CD11b and CD15s on leukocytes, as well as CD77 and CD34 expression on endothelial cells in cell suspensions of renal, pulmonary and cardiac tissue in rats after hyperbaric treatment and in control rats were determined by flow cytometry. Results: Hyperbaric treatment significantly increased percentage of leukocytes expressing CD15s+CD11b- (from 1.71±1.11 to 23.42±2.85, P

  7. microRNA-365, down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2.

    Science.gov (United States)

    Nie, Jing; Liu, Lin; Zheng, Wei; Chen, Lin; Wu, Xin; Xu, Yingxin; Du, Xiaohui; Han, Weidong

    2012-01-01

    Deregulated microRNAs participate in carcinogenesis and cancer progression, but their roles in cancer development remain unclear. In this study, miR-365 expression was found to be downregulated in human colon cancer tissues as compared with that in matched non-neoplastic mucosa tissues, and its downregulation was correlated with cancer progression and poor survival in colon cancer patients. Functional studies revealed that restoration of miR-365 expression inhibited cell cycle progression, promoted 5-fluorouracil-induced apoptosis and repressed tumorigenicity in colon cancer cell lines. Furthermore, bioinformatic prediction and experimental validation were used to identify miR-365 target genes and indicated that the antitumor effects of miR-365 were probably mediated by its targeting and repression of Cyclin D1 and Bcl-2 expression, thus inhibiting cell cycle progression and promoting apoptosis. These results suggest that downregulation of miR-365 in colon cancer may have potential applications in prognosis prediction and gene therapy in colon cancer patients.

  8. Menadione induces G2/M arrest in gastric cancer cells by down-regulation of CDC25C and proteasome mediated degradation of CDK1 and cyclin B1

    OpenAIRE

    Lee, Min Ho; Cho, Yoonjung; Kim, Do Hyun; Woo, Hyun Jun; Yang, Ji Yeong; Kwon, Hye Jin; Yeon, Min Ji; Park, Min; Kim, Sa-Hyun; Moon, Cheol; Tharmalingam, Nagendran; Kim, Tae Ue; Kim, Jong-Bae

    2016-01-01

    Menadione (vitamin K3) has been reported to induce apoptotic cell death and growth inhibition in various types of cancer cells. However, involvement of menadione in cell cycle control has not been considered in gastric cancer cells yet. In the current study, we have investigated whether menadione is involved in the cell cycle regulation and suppression of growth in gastric cancer cells. In the cell cycle analysis, we found that menadione induced G2/M cell cycle arrest in AGS cells. To elucida...

  9. Atrial natriuretic peptide down-regulates LPS/ATP-mediated IL-1β release by inhibiting NF-kB, NLRP3 inflammasome and caspase-1 activation in THP-1 cells.

    Science.gov (United States)

    Mezzasoma, Letizia; Antognelli, Cinzia; Talesa, Vincenzo Nicola

    2016-02-01

    Atrial natriuretic peptide (ANP) is an hormone/paracrine/autocrine factor regulating cardiovascular homeostasis by guanylyl cyclase natriuretic peptide receptor (NPR-1). ANP plays an important role also in regulating inflammatory and immune systems by altering macrophages functions and cytokines secretion. Interleukin-1β (IL-1β) is a potent pro-inflammatory cytokine involved in a wide range of biological responses, including the immunological one. Unlike other cytokines, IL-1β production is rigorously controlled. Primarily, NF-kB activation is required to produce pro-IL-1β; subsequently, NALP3 inflammasome/caspase-1 activation is required to cleave pro-IL-1β into the active secreted protein. NALP3 is a molecular platform capable of sensing a large variety of signals and a major player in innate immune defense. Due to their pleiotropism, IL-1β and NALP3 dysregulation is a common feature of a wide range of diseases. Therefore, identifying molecules regulating IL-1β/NALP3/caspase-1 expression is an important step in the development of new potential therapeutic agents. The aim of our study was to evaluate the effect of ANP on IL-1β/NALP3/caspase-1 expression in LPS/ATP-stimulated human THP1 monocytes. We provided new evidence of the direct involvement of ANP/NPR-1/cGMP axis on NF-kB/NALP3/caspase-1-mediated IL-1β release and NF-kB-mediated pro-IL-1β production. In particular, ANP inhibited both NF-kB and NALP3/caspase-1 activation leading to pro- and mature IL-1β down-regulation. Our data, pointing out a modulatory role of this endogenous peptide on IL-1β release and on NF-kB/NALP3/caspase-1 activation, indicate an important anti-inflammatory and immunomodulatory effect of ANP via these mechanisms. We suggest a possible employment of ANP for the treatment of inflammatory/immune-related diseases and IL-1β/NALP3-associated disorders, affecting millions of people worldwide.

  10. Sida rhomboidea.Roxb aqueous extract down-regulates in vivo expression of vascular cell adhesion molecules in atherogenic rats and inhibits in vitro macrophage differentiation and foam cell formation.

    Science.gov (United States)

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Salunke, Sunita P; Devkar, Ranjitsinh V; Ramachandran, A V

    2012-10-01

    The present study evaluates efficacy of Sida rhomboidea.Roxb (SR) leaves extract in ameliorating experimental atherosclerosis using in vitro and in vivo experimental models. Atherogenic (ATH) diet fed rats recorded significant increment in the serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), very LDL (VLDL), autoantibody against oxidized LDL (Ox-LDL), markers of LDL oxidation and decrement in high-density lipoprotein (HDL) along with increment in aortic TC and TG. The ex vivo LDL oxidation assay revealed an increased susceptibility of LDL isolated from ATH rats to undergo copper mediated oxidation. These set of changes were minimized by simultaneous co-supplementation of SR extract to ATH diet fed rats. Histopathology of aorta and immunolocalization studies recorded pronounced atheromatous plaque formation, vascular calcification, significant elastin derangements and higher expression of macrophage surface marker (F4/80), vascular cell adhesion molecule-1 (VCAM-1) and p-selectin in ATH rats. Whereas, ATH+SR rats depicted minimal evidence of atheromatous plaque formation, calcium deposition, distortion/defragmentation of elastin and accumulation of macrophages along with lowered expression of VCAM-1 and P-selectin compared to ATH rats. Further, monocyte to macrophage differentiation and in vitro foam cell formation were significantly attenuated in presence of SR extract. In conclusion, SR extract has the potency of controlling experimental atherosclerosis and can be used as promising herbal supplement in combating atherosclerosis.

  11. Down-Regulation of p53 by Double-Stranded RNA Modulates the Antiviral Response

    OpenAIRE

    Marques, Joao T.; Rebouillat, Dominique; Ramana, Chilakamarti V.; Murakami, Junko; Hill, Jason E.; Gudkov, Andrei; Silverman, Robert H.; Stark, George R.; Williams, Bryan R. G.

    2005-01-01

    p53 has been well characterized as a tumor suppressor gene, but its role in antiviral defense remains unclear. A recent report has demonstrated that p53 can be induced by interferons and is activated after vesicular stomatitis virus (VSV) infection. We observed that different nononcogenic viruses, including encephalomyocarditis virus (EMCV) and human parainfluenza virus type 3 (HPIV3), induced down-regulation of p53 in infected cells. Double-stranded RNA (dsRNA) and a mutant vaccinia virus la...

  12. Protein kinase B/Akt1 inhibits autophagy by down-regulating UVRAG expression

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wonseok; Ju, Ji-hyun; Lee, Kyung-min; Nam, KeeSoo; Oh, Sunhwa [Department of Life Science, College of Natural Science, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Shin, Incheol, E-mail: incheol@hanyang.ac.kr [Department of Life Science, College of Natural Science, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2013-02-01

    Autophagy, or autophagocytosis, is a selective intracellular degradative process involving the cell's own lysosomal apparatus. An essential component in cell development, homeostasis, repair and resistance to stress, autophagy may result in either cell death or survival. The targeted region of the cell is sequestered within a membrane structure, the autophagosome, for regulation of the catabolic process. A key factor in both autophagosome formation and autophagosome maturation is a protein encoded by the ultraviolet irradiation resistance-associated gene (UVRAG). Conversely, the serine/threonine-specific protein kinase B (PKB, also known as Akt), which regulates survival in various cancers, inhibits autophagy through mTOR activation. We found that Akt1 may also directly inhibit autophagy by down-regulating UVRAG both in a 293T transient transfection system and breast cancer cells stably expressing Akt1. The UVRAG with mutations at putative Akt1-phosphorylation sites were still inhibited by Akt1, and dominant-negative Akt1 also inhibited UVRAG expression, suggesting that Akt1 down-regulates UVRAG by a kinase activity-independent mechanism. We showed that Akt1 overexpression in MDA-MB-231 breast cancer cells down-regulated UVRAG transcription. Cells over-expressing Akt1 were more resistant than control cells to ultraviolet light-induced autophagy and exhibited the associated reduction in cell viability. Levels of the autophagosome indicator protein LC3B-II and mRFP-GFP-LC3 were reduced in cells that over-expressing Akt1. Inhibiting Akt1 by siRNA or reintroducing UVRAG gene rescued the level of LC3B-II in UV-irradiation. Altogether, these data suggest that Akt1 may inhibit autophagy by decreasing UVRAG expression, which also sensitizes cancer cells to UV irradiation.

  13. Wind Turbine Down-regulation Strategy for Minimum Wake Deficit

    DEFF Research Database (Denmark)

    Ma, Kuichao; Zhu, Jiangsheng; N. Soltani, Mohsen

    2017-01-01

    Down-regulation mode of wind turbine is commonly used no matter for the reserve power for supporting ancillary service to the grid, power optimization in wind farm or reducing power loss in the fault condition. It is also a method to protect faulty turbine. A down-regulation strategy based...... on minimum wake deficit is proposed in this paper, for the power improvement of the downwind turbine in low and medium wind speed region. The main idea is to operate turbine work at an appropriate operating point through rotor speed and torque control. The effectiveness of the strategy is verified...... by comparing with maximum rotor speed strategy. The result shows that the proposed strategy can improve the power of downwind turbine effectively....

  14. Menadione induces G2/M arrest in gastric cancer cells by down-regulation of CDC25C and proteasome mediated degradation of CDK1 and cyclin B1

    Science.gov (United States)

    Lee, Min Ho; Cho, Yoonjung; Kim, Do Hyun; Woo, Hyun Jun; Yang, Ji Yeong; Kwon, Hye Jin; Yeon, Min Ji; Park, Min; Kim, Sa-Hyun; Moon, Cheol; Tharmalingam, Nagendran; Kim, Tae Ue; Kim, Jong-Bae

    2016-01-01

    Menadione (vitamin K3) has been reported to induce apoptotic cell death and growth inhibition in various types of cancer cells. However, involvement of menadione in cell cycle control has not been considered in gastric cancer cells yet. In the current study, we have investigated whether menadione is involved in the cell cycle regulation and suppression of growth in gastric cancer cells. In the cell cycle analysis, we found that menadione induced G2/M cell cycle arrest in AGS cells. To elucidate the underlying mechanism, we investigated the cell cycle regulatory molecules involved in the G2/M cell cycle transition. After 24 h of menadione treatment, the protein level of CDK1, CDC25C and cyclin B1 in AGS cells was decreased in a menadione dose-dependent manner. In the time course experiment, the protein level of CDC25C decreased in 6 h, and CDK1and cyclin B1 protein levels began to decrease after 18 h of menadione treatment. We found that mRNA level of CDC25C decreased by menadione treatment in 6 h. Menadione did not have an influence on mRNA level of CDK1 and cyclin B1 though the protein levels were decreased. However, the decreased protein levels of CDK1 and cyclin B1 were recovered by inhibition of proteasome. Collectively, these results suggest that menadione inhibits growth of gastric cancer cells by reducing expression of CDC25C and promoting proteasome mediated degradation of CDK1 and cyclin B1 thereby blocking transition of the cell cycle from G2 phase to M phase. PMID:28077999

  15. Down-regulation of rat kidney calcitonin receptors by salmon calcitonin infusion evidence by autoradiography

    International Nuclear Information System (INIS)

    Bouizar, Z.; Rostene, W.H.; Milhaud, G.

    1987-01-01

    In treating age-related osteoporosis and Paget disease of bone, it is of major importance to avoid an escape phenomenon that would reduce effectiveness of the treatment. The factors involved in the loss of therapeutic efficacy with administration of large pharmacological doses of the hormone require special consideration. Down-regulation of the hormone receptors could account for the escape phenomenon. Specific binding sites for salmon calcitonin (sCT) were characterized and localized by autoradiography on rat kidney sections incubated with 125 I-labeled sCT. Autoradiograms demonstrated a heterogeneous distribution of 125 I-labeled sCT binding sites in the kidney, with high densities in both the superficial layer of the cortex and the outer medulla. Infusion of different doses of unlabeled sCT by means of Alzet minipumps for 7 days produced rapid changes in plasma calcium, phosphate, and magnesium levels, which were no longer observed after 2 or 6 days of treatment. Besides, infusion of high doses of sCT induced down-regulation of renal sCT binding sites located mainly in the medulla, where calcitonin (CT) has been shown to exert it physiological effects on water and ion reabsorption. These data suggest that the resistance to high doses of sCT often observed during long-term treatment of patients may be the consequence of not only bone-cell desensitization but also down-regulation of CT-sensitive kidney receptor sites

  16. Red Xylem and Higher Lignin Extractability by Down-Regulating a Cinnamyl Alcohol Dehydrogenase in Poplar.

    Science.gov (United States)

    Baucher, M.; Chabbert, B.; Pilate, G.; Van Doorsselaere, J.; Tollier, M. T.; Petit-Conil, M.; Cornu, D.; Monties, B.; Van Montagu, M.; Inze, D.; Jouanin, L.; Boerjan, W.

    1996-12-01

    Cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in the biosynthesis of the lignin precursors, the monolignols. We have down-regulated CAD in transgenic poplar (Populus tremula X Populus alba) by both antisense and co-suppression strategies. Several antisense and sense CAD transgenic poplars had an approximately 70% reduced CAD activity that was associated with a red coloration of the xylem tissue. Neither the lignin amount nor the lignin monomeric composition (syringyl/guaiacyl) were significantly modified. However, phloroglucinol-HCl staining was different in the down-regulated CAD plants, suggesting changes in the number of aldehyde units in the lignin. Furthermore, the reactivity of the cell wall toward alkali treatment was altered: a lower amount of lignin was found in the insoluble, saponified residue and more lignin could be precipitated from the soluble alkali fraction. Moreover, large amounts of phenolic compounds, vanillin and especially syringaldehyde, were detected in the soluble alkali fraction of the CAD down-regulated poplars. Alkaline pulping experiments on 3-month-old trees showed a reduction of the kappa number without affecting the degree of cellulose degradation. These results indicate that reducing the CAD activity in trees might be a valuable strategy to optimize certain processes of the wood industry, especially those of the pulp and paper industry.

  17. Protein Kinase C-{delta} mediates down-regulation of heterogeneous nuclear ribonucleoprotein K protein: involvement in apoptosis induction

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng-Hou [NO.3 People' s Hospital affiliated to Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 201900 (China); The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Wu, Ying-Li [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Zhao, Meng [Institute of Health Science, SJTU-SM/Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai (China); Liu, Chuan-Xu; Wang, Li-Shun [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Chen, Guo-Qiang, E-mail: chengq@shsmu.edu.cn [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Institute of Health Science, SJTU-SM/Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai (China)

    2009-11-15

    We reported previously that NSC606985, a camptothecin analogue, induces apoptosis of acute myeloid leukemia (AML) cells through proteolytic activation of protein kinase C delta ({Delta}PKC-{delta}). By subcellular proteome analysis, heterogeneous nuclear ribonucleoprotein K (hnRNP K) was identified as being significantly down-regulated in NSC606985-treated leukemic NB4 cells. HnRNP K, a docking protein for DNA, RNA, and transcriptional or translational molecules, is implicated in a host of processes involving the regulation of gene expression. However, the molecular mechanisms of hnRNP K reduction and its roles during apoptosis are still not understood. In the present study, we found that, following the appearance of the {Delta}PKC-{delta}, hnRNP K protein was significantly down-regulated in NSC606985, doxorubicin, arsenic trioxide and ultraviolet-induced apoptosis. We further provided evidence that {Delta}PKC-{delta} mediated the down-regulation of hnRNP K protein during apoptosis: PKC-{delta} inhibitor could rescue the reduction of hnRNP K; hnRNP K failed to be decreased in PKC-{delta}-deficient apoptotic KG1a cells; conditional induction of {Delta}PKC-{delta} in U937T cells directly down-regulated hnRNP K protein. Moreover, the proteasome inhibitor also inhibited the down-regulation of hnRNP K protein by apoptosis inducer and the conditional expression of {Delta}PKC-{delta}. More intriguingly, the suppression of hnRNP K with siRNA transfection significantly induced apoptosis. To our knowledge, this is the first demonstration that proteolytically activated PKC-{delta} down-regulates hnRNP K protein in a proteasome-dependent manner, which plays an important role in apoptosis induction.

  18. CRA(Crosolic Acid) isolated from Actinidia valvata Dunn.Radix induces apoptosis of human gastric cancer cell line BGC823 in vitro via down-regulation of the NF-κB pathway.

    Science.gov (United States)

    Cheng, Qi-Lai; Li, Hong-Liang; Li, Ying-Chen; Liu, Zhao-Wen; Guo, Xiao-Hua; Cheng, Yi-Jian

    2017-07-01

    A natural ursolic compound, 2α,3β-dihydroxy-urs-12-en-28-oic acid (corosolic acid, CRA) was isolated from the root of Actinidia valvata Dunn. (A. valvata Radix). Since a large number of triterpenoid compound has marked anticancer effects toward various types of cancer cell lines in vitro, this study was carried out to investigate the anticancer effect of CRA in human gastric cancer cell line BGC823 cells and the underlying apoptotic mechanism of CRA was examined in BGC823 cell lines. The results showed that CRA significantly suppressed the viability of BGC823 cells in a concentration- and time-dependent manner. CRA also significantly increased the sub G1 population by cell cycle analysis in a concentration dependent manner. Exposure to CRA decreased p65, bcl-2, Fas, smac mRNA and protein expression, and increased IκBα, bax, survivin mRNA and protein expression. Results of immunofluorescence staining and EMSA further indicated CRA induced apoptosis by inhibiting nuclear translocation of nuclear factor NF-κB subunit p65. Consistently overall, our findings suggest that CRA induces apoptosis via inhibition of NF-κB (p65) expression level and activation of IκBα in BGC cells as a potent anticancer candidate for gastric cancer treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Ectopic overexpression of LAPTM5 results in lysosomal targeting and induces Mcl-1 down-regulation, Bak activation, and mitochondria-dependent apoptosis in human HeLa cells.

    Directory of Open Access Journals (Sweden)

    Do Youn Jun

    Full Text Available Human lysosomal-associated protein multispanning membrane 5 (LAPTM5 was identified by an ordered differential display-polymerase chain reaction (ODD-PCR as an up-regulated cDNA fragment during 12-O-tetradecanoylphorbol 13-acetate (TPA-induced differentiation of U937 cells into monocytes/macrophages. After TPA-treatment, the levels of LAPTM5 mRNA and protein increased and reached a maximum at 18-36 h. In healthy human tissues, LAPTM5 mRNA was expressed at high levels in hematopoietic cells and tissues, at low levels in the lung and fetal liver, and was not detected in other non-hematopoietic tissues. LAPTM5 mRNA was detected in immature malignant cells of myeloid lineage, such as K562, HL-60, U937, and THP-1 cells, and in unstimulated peripheral T cells, but was absent or barely detectable in lymphoid malignant or non-hematopoietic malignant cells. The LAPTM5 level in HL-60 cells increased more significantly during TPA-induced monocyte/macrophage differentiation than during DMSO-induced granulocyte differentiation. Ectopic expression of GFP-LAPTM5 or LAPTM5 in HeLa cells exhibited the localization of LAPTM5 to the lysosome. In HeLa cells overexpressing LAPTM5, the Mcl-1 and Bid levels declined markedly and apoptosis was induced via Bak activation, Δψm loss, activation of caspase-9, -8 and -3, and PARP degradation without accompanying necrosis. However, these LAPTM5-induced apoptotic events except for the decline of Bid level were completely abrogated by concomitant overexpression of Mcl-1. The pan-caspase inhibitor (z-VAD-fmk could suppress the LAPTM5-induced apoptotic sub-G1 peak by ~40% but failed to block the induced Δψm loss, whereas the broad-range inhibitor of cathepsins (Cathepsin Inhibitor I could suppress the LAPTM5-induced apoptotic sub-G1 peak and Δψm loss, by ~22% and ~23%, respectively, suggesting that the LAPTM5-mediated Δψm loss was exerted at least in part in a cathepsin-dependent manner. Together, these results

  20. Ectopic overexpression of LAPTM5 results in lysosomal targeting and induces Mcl-1 down-regulation, Bak activation, and mitochondria-dependent apoptosis in human HeLa cells

    Science.gov (United States)

    Jun, Do Youn; Kim, Hyejin; Jang, Won Young; Lee, Ji Young; Fukui, Kiyoshi; Kim, Young Ho

    2017-01-01

    Human lysosomal-associated protein multispanning membrane 5 (LAPTM5) was identified by an ordered differential display-polymerase chain reaction (ODD-PCR) as an up-regulated cDNA fragment during 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced differentiation of U937 cells into monocytes/macrophages. After TPA-treatment, the levels of LAPTM5 mRNA and protein increased and reached a maximum at 18–36 h. In healthy human tissues, LAPTM5 mRNA was expressed at high levels in hematopoietic cells and tissues, at low levels in the lung and fetal liver, and was not detected in other non-hematopoietic tissues. LAPTM5 mRNA was detected in immature malignant cells of myeloid lineage, such as K562, HL-60, U937, and THP-1 cells, and in unstimulated peripheral T cells, but was absent or barely detectable in lymphoid malignant or non-hematopoietic malignant cells. The LAPTM5 level in HL-60 cells increased more significantly during TPA-induced monocyte/macrophage differentiation than during DMSO-induced granulocyte differentiation. Ectopic expression of GFP-LAPTM5 or LAPTM5 in HeLa cells exhibited the localization of LAPTM5 to the lysosome. In HeLa cells overexpressing LAPTM5, the Mcl-1 and Bid levels declined markedly and apoptosis was induced via Bak activation, Δψm loss, activation of caspase-9, -8 and -3, and PARP degradation without accompanying necrosis. However, these LAPTM5-induced apoptotic events except for the decline of Bid level were completely abrogated by concomitant overexpression of Mcl-1. The pan-caspase inhibitor (z-VAD-fmk) could suppress the LAPTM5-induced apoptotic sub-G1 peak by ~40% but failed to block the induced Δψm loss, whereas the broad-range inhibitor of cathepsins (Cathepsin Inhibitor I) could suppress the LAPTM5-induced apoptotic sub-G1 peak and Δψm loss, by ~22% and ~23%, respectively, suggesting that the LAPTM5-mediated Δψm loss was exerted at least in part in a cathepsin-dependent manner. Together, these results demonstrate that

  1. Multiple passage cells theory

    International Nuclear Information System (INIS)

    Riva, R.

    1983-01-01

    A review of the main concepts envolved in non astigmatic multiple passes cells is presented. It is shown that these concepts can be extended to ring cavities in which the analysis of the ray propagation (in the paraxial approaching) in two separated plans is accomplished. The concepts developed are applyed to a simple ring cavity (one curve mirror and two plane ones) showing that the acquired pattern of the rays on the mirrors is the one of a Lissajours figure which allows a better use of the mirror's area and consequently a larger number of passes. The cavity has applications in optical delay lines, measurements of mirrors reflectivities and possibly in passive optical gyroscopes. (Author) [pt

  2. Down-regulation of POLYGALACTURONASE1 alters firmness, tensile strength and water loss in apple (Malus x domestica) fruit.

    Science.gov (United States)

    Atkinson, Ross G; Sutherland, Paul W; Johnston, Sarah L; Gunaseelan, Kularajathevan; Hallett, Ian C; Mitra, Deepali; Brummell, David A; Schröder, Roswitha; Johnston, Jason W; Schaffer, Robert J

    2012-08-02

    While there is now a significant body of research correlating apple (Malus x domestica) fruit softening with the cell wall hydrolase ENDO-POLYGALACTURONASE1 (PG1), there is currently little knowledge of its physiological effects in planta. This study examined the effect of down regulation of PG1 expression in 'Royal Gala' apples, a cultivar that typically has high levels of PG1, and softens during fruit ripening. PG1-suppressed 'Royal Gala' apples harvested from multiple seasons were firmer than controls after ripening, and intercellular adhesion was higher. Cell wall analyses indicated changes in yield and composition of pectin, and a higher molecular weight distribution of CDTA-soluble pectin. Structural analyses revealed more ruptured cells and free juice in pulled apart sections, suggesting improved integrity of intercellular connections and consequent cell rupture due to failure of the primary cell walls under stress. PG1-suppressed lines also had reduced expansion of cells in the hypodermis of ripe apples, resulting in more densely packed cells in this layer. This change in morphology appears to be linked with reduced transpirational water loss in the fruit. These findings confirm PG1's role in apple fruit softening and suggests that this is achieved in part by reducing cellular adhesion. This is consistent with previous studies carried out in strawberry but not with those performed in tomato. In apple PG1 also appears to influence other fruit texture characters such as juiciness and water loss.

  3. Aldo-keto reductase 1B10 promotes development of cisplatin resistance in gastrointestinal cancer cells through down-regulating peroxisome proliferator-activated receptor-γ-dependent mechanism.

    Science.gov (United States)

    Matsunaga, Toshiyuki; Suzuki, Ayaka; Kezuka, Chihiro; Okumura, Naoko; Iguchi, Kazuhiro; Inoue, Ikuo; Soda, Midori; Endo, Satoshi; El-Kabbani, Ossama; Hara, Akira; Ikari, Akira

    2016-08-25

    Cisplatin (cis-diamminedichloroplatinum, CDDP) is one of the most effective chemotherapeutic drugs that are used for treatment of patients with gastrointestinal cancer cells, but its continuous administration often evokes the development of chemoresistance. In this study, we investigated alterations in antioxidant molecules and functions using a newly established CDDP-resistant variant of gastric cancer MKN45 cells, and found that aldo-keto reductase 1B10 (AKR1B10) is significantly up-regulated with acquisition of the CDDP resistance. In the nonresistant MKN45 cells, the sensitivity to cytotoxic effect of CDDP was decreased and increased by overexpression and silencing of AKR1B10, respectively. In addition, the AKR1B10 overexpression markedly suppressed accumulation and cytotoxicity of 4-hydroxy-2-nonenal that is produced during lipid peroxidation by CDDP treatment, suggesting that the enzyme acts as a crucial factor for facilitation of the CDDP resistance through inhibiting induction of oxidative stress by the drug. Transient exposure to CDDP and induction of the CDDP resistance decreased expression of peroxisome proliferator-activated receptor-γ (PPARγ) in MKN45 and colon cancer LoVo cells. Additionally, overexpression of PPARγ in the cells elevated the sensitivity to the CDDP toxicity, which was further augmented by concomitant treatment with a PPARγ ligand rosiglitazone. Intriguingly, overexpression of AKR1B10 in the cells resulted in a decrease in PPARγ expression, which was recovered by addition of an AKR1B10 inhibitor oleanolic acid, inferring that PPARγ is a downstream target of AKR1B10-dependent mechanism underlying the CDDP resistance. Combined treatment with the AKR1B10 inhibitor and PPARγ ligand elevated the CDDP sensitivity, which was almost the same level as that in the parental cells. These results suggest that combined treatment with the AKR1B10 inhibitor and PPARγ ligand is an effective adjuvant therapy for overcoming CDDP resistance of

  4. Fisetin inhibits migration and invasion of human cervical cancer cells by down-regulating urokinase plasminogen activator expression through suppressing the p38 MAPK-dependent NF-κB signaling pathway.

    Directory of Open Access Journals (Sweden)

    Ruey-Hwang Chou

    Full Text Available Fisetin (3,3',4',7-tetrahydroxyflavone, a naturally occurring flavonoid, has been reported to inhibit proliferation and induce apoptosis in several cancer types. However, its effect on the anti-metastatic potential of cervical cancer cells remains unclear. In the present study, we found that fisetin inhibits the invasion and migration of cervical cancer cells. The expression and activity of urokinase plasminogen activator (uPA was significantly suppressed by fisetin in a dose-dependent manner. We also demonstrated that fisetin reduces the phosphorylation of p38 MAPK, but not that of ERK1/2, JNK1/2, or AKT. Addition of a p38 MAPK inhibitor, SB203580, further enhanced the inhibitory effect of fisetin on the expression and activity of uPA and the invasion and motility in cervical cancer cells. Fisetin suppressed the TPA (tetradecanoylphorbol-13-acetate-induced activation of p38 MAPK and uPA, and inhibited the TPA-enhanced migratory and invasive abilities. Furthermore, the promoter activity of the uPA gene was dramatically repressed by fisetin, which disrupted the nuclear translocation of NF-κB and its binding amount on the promoter of the uPA gene, and these suppressive effects could be further enhanced by SB203580. This study provides strong evidence for the molecular mechanism of fisetin in inhibiting the aggressive phenotypes by repression of uPA via interruption of p38 MAPK-dependent NF-κB signaling pathway in cervical cancer cells and thus contributes insight to the potential of using fisetin as a therapeutic strategy against cervical cancer by inhibiting migration and invasion.

  5. Fisetin Inhibits Migration and Invasion of Human Cervical Cancer Cells by Down-Regulating Urokinase Plasminogen Activator Expression through Suppressing the p38 MAPK-Dependent NF-κB Signaling Pathway

    Science.gov (United States)

    Chou, Ruey-Hwang; Hsieh, Shu-Ching; Yu, Yung-Luen; Huang, Min-Hsien; Huang, Yi-Chang; Hsieh, Yi-Hsien

    2013-01-01

    Fisetin (3,3’,4’,7-tetrahydroxyflavone), a naturally occurring flavonoid, has been reported to inhibit proliferation and induce apoptosis in several cancer types. However, its effect on the anti-metastatic potential of cervical cancer cells remains unclear. In the present study, we found that fisetin inhibits the invasion and migration of cervical cancer cells. The expression and activity of urokinase plasminogen activator (uPA) was significantly suppressed by fisetin in a dose-dependent manner. We also demonstrated that fisetin reduces the phosphorylation of p38 MAPK, but not that of ERK1/2, JNK1/2, or AKT. Addition of a p38 MAPK inhibitor, SB203580, further enhanced the inhibitory effect of fisetin on the expression and activity of uPA and the invasion and motility in cervical cancer cells. Fisetin suppressed the TPA (tetradecanoylphorbol-13-acetate)-induced activation of p38 MAPK and uPA, and inhibited the TPA-enhanced migratory and invasive abilities. Furthermore, the promoter activity of the uPA gene was dramatically repressed by fisetin, which disrupted the nuclear translocation of NF-κB and its binding amount on the promoter of the uPA gene, and these suppressive effects could be further enhanced by SB203580. This study provides strong evidence for the molecular mechanism of fisetin in inhibiting the aggressive phenotypes by repression of uPA via interruption of p38 MAPK-dependent NF-κB signaling pathway in cervical cancer cells and thus contributes insight to the potential of using fisetin as a therapeutic strategy against cervical cancer by inhibiting migration and invasion. PMID:23940799

  6. Anti-CTGF single-chain variable fragment dimers inhibit human airway smooth muscle (ASM) cell proliferation by down-regulating p-Akt and p-mTOR levels.

    Science.gov (United States)

    Gao, Wei; Cai, Liting; Xu, Xudong; Fan, Juxiang; Xue, Xiulei; Yan, Xuejiao; Qu, Qinrong; Wang, Xihua; Zhang, Chen; Wu, Guoqiu

    2014-01-01

    Connective tissue growth factor (CTGF) contributes to airway smooth muscle (ASM) cell hyperplasia in asthma. Humanized single-chain variable fragment antibody (scFv) was well characterized as a CTGF antagonist in the differentiation of fibroblast into myofibroblast and pulmonary fibrosis in our previous studies. To further improve the bioactivity of scFv, we constructed a plasmid to express scFv-linker-matrilin-6×His fusion proteins that could self-assemble into the scFv dimers by disulfide bonds in matrilin under non-reducing conditions. An immunoreactivity assay demonstrated that the scFv dimer could highly bind to CTGF in a concentration-dependent manner. The MTT and EdU assay results revealed that CTGF (≥10 ng/mL) promoted the proliferation of ASM cells, and this effect was inhibited when the cells were treated with anti-CTGF scFv dimer. The western blot analysis results showed that increased phosphorylation of Akt and mTOR induced by CTGF could be suppressed by this scFv dimer. Based on these findings, anti-CTGF scFv dimer may be a potential agent for the prevention of airway remodeling in asthma.

  7. 8-Hydroxyquinoline inhibits iNOS expression and nitric oxide production by down-regulating LPS-induced activity of NF-κB and C/EBPβ in Raw 264.7 cells

    International Nuclear Information System (INIS)

    Kim, Young-Ho; Woo, Kyung Jin; Lim, Jun Hee; Kim, Shin; Lee, Tae Jin; Jung, Eun Mi; Lee, Jin-Man; Park, Jong-Wook; Kwon, Taeg Kyu

    2005-01-01

    In activated macrophage, large amounts of nitric oxide (NO) are generated by inducible nitric oxide synthase (iNOS), resulting in acute or chronic inflammatory disorders. In Raw 264.7 cells stimulated with lipopolysaccharide (LPS) to mimic inflammation, 8-hydroxyquinoline (8HQ) inhibited the LPS-induced expression of both iNOS protein and mRNA in a parallel dose-dependent manner. 8HQ did not enhance the degradation of iNOS mRNA. To investigate the mechanism by which 8HQ inhibits iNOS gene expression, we examined the activation of MAP kinases in Raw 264.7 cells. We did not observe any significant change in the phosphorylation of MAPKs between LPS alone and LPS plus 8HQ-treated cells. Moreover, 8HQ significantly inhibited the DNA-binding activity of nuclear factor-κB (NF-κB) and CCAAT/enhancer-binding protein β (C/EBPβ), but not activator protein-1 and cAMP response element-binding protein. Taken together, these results suggest that 8HQ acts to inhibit inflammation through inhibition of NO production and iNOS expression through blockade of C/EBPβ DNA-binding activity and NF-κB activation

  8. Wnt-11 signaling leads to down-regulation of the Wnt/β-catenin, JNK/AP-1 and NF-κB pathways and promotes viability in the CHO-K1 cells

    International Nuclear Information System (INIS)

    Railo, Antti; Nagy, Irina I.; Kilpelaeinen, Pekka; Vainio, Seppo

    2008-01-01

    The Wnt family of glycoprotein growth factors controls a number of central cellular processes such as proliferation, differentiation and ageing. All the Wnt proteins analyzed so far either activate or inhibit the canonical β-catenin signaling pathway that regulates transcription of the target genes. In addition, some of them activate noncanonical signaling pathways that involve components such as the JNK, heterotrimeric G proteins, protein kinase C, and calmodulin-dependent protein kinase II, although the precise signaling mechanisms are only just beginning to be revealed. We demonstrate here that Wnt-11 signaling is sufficient to inhibit not only the canonical β-catenin mediated Wnt signaling but also JNK/AP-1 and NF-κB signaling in the CHO cells, thus serving as a noncanonical Wnt ligand in this system. Inhibition of the JNK/AP-1 pathway is mediated in part by the MAPK kinase MKK4 and Akt. Moreover, protein kinase C is involved in the regulation of JNK/AP-1 by Wnt-11, but not of the NF-κB pathway. Consistent with the central role of Akt, JNK and NF-κB in cell survival and stress responses, Wnt-11 signaling promotes cell viability. Hence Wnt-11 is involved in coordination of key signaling pathways

  9. Curcumin Decreases Hyperphosphorylation of Tau by Down-Regulating Caveolin-1/GSK-3β in N2a/APP695swe Cells and APP/PS1 Double Transgenic Alzheimer's Disease Mice.

    Science.gov (United States)

    Sun, Jieyun; Zhang, Xiong; Wang, Chen; Teng, Zhipeng; Li, Yu

    2017-01-01

    Caveolin-1, the marker protein of membranal caveolae, is not only involved in cholesterol regulation, but also participates in the cleavage of amyloid [Formula: see text]-protein precursor (APP) and the generation of [Formula: see text]-amyloid peptide. It has been reported to be tightly related with Tau. In our previous studies, curcumin has been confirmed to play a neuroprotective role in Alzheimer's disease (AD), but its effects on Caveolin-1, Tau and their correlation, and the mechanism is still unknown. As such, in the present study, N2a/WT cells, N2a/APP695swe cell and six-month-old APP/PS1 double transgenic mice were enrolled. After curcumin treatment, the expression of Caveolin-1, Tau and their relationship was detected, and the potential mechanisms were explored. The results showed that in the N2a/APP695swe cells, curcumin not only decreased the number of caveolae, but also made their membrane to be thinner; and curcumin could decreased the expression of phosphorylated Tau (P-Tau(ser404)/Tau) and Caveolin-1 ([Formula: see text]), but the expression of phosphorylated GSK-3[Formula: see text] (P-GSK-3[Formula: see text]/GSK-3[Formula: see text] was increased ([Formula: see text]). In APP/PS1 transgenic mice, the same results were observed. Taken together, our data suggest that curcumin may play an important role in AD via reducing Caveolin-1, inactivating GSK-3[Formula: see text] and inhibiting the abnormal excessive phosphorylation of Tau, which will provide a new theory for AD treatment with curcumin.

  10. Elevation of CD16+CD56+ NK-cells and down-regulation of serum interleukin-21 (IL-21) and IL-1α after splenectomy in relapsed hemophagocytic lymphohistiocytosis of unknown cause.

    Science.gov (United States)

    Wang, Jingshi; Han, Wei; Gao, Zhuo; Wang, Yini; Wu, Lin; Zhang, Jia; Lai, Wenyuan; Wang, Zhao

    2017-09-01

    Encouraging progress has been made in application of splenectomy in the treatment of relapsed hemophagocytic lymphohistiocytosis (HLH) of unknown cause. The aim was to determine the roles of lymphocyte subpopulations and inflammatory cytokines in splenectomy. We retrospectively analyzed changes in lymphocyte subpopulations and levels of inflammatory cytokines at different time-points before and after splenectomy in the patients with relapsed HLH of unknown cause, as well as the correlations between these changes and the disease prognosis. During the period from June 2006 to June 2016, we enrolled 107 patients with relapsed HLH of unknown cause, of whom 29 were treated with splenectomy. Among the 29 patients, 7 cases were non-Hodgkin lymphomas based on spleen pathology, 1 case withdrew and the remaining 21 non-lymphoma cases were available for analysis. Results showed a significant increase in both percentage of CD16 + CD56 + NK cells (P = 0.003) and NK cell activity (P = 0.028) at 24 wk after splenectomy compared to their baseline pre-surgery levels. We also examined seven patients for the changes in cytokine levels before and after splenectomy and found that IL-21 and IL-1α decreased at 4 wk after splenectomy (P splenectomy had significantly longer survival (P = 0.001) compared to the 24 patients with relapsed HLH of unknown cause who were also determined as NR but not treated by splenectomy. Splenectomy can improve clinical symptoms and survival of patients with relapsed HLH of unknown cause. The mechanism is likely related to the changes in percent NK cells and cytokines (IL-21 and IL-1α) after surgery.

  11. Rapamycin up-regulates triglycerides in hepatocytes by down-regulating Prox1.

    Science.gov (United States)

    Kwon, Sora; Jeon, Ji-Sook; Kim, Su Bin; Hong, Young-Kwon; Ahn, Curie; Sung, Jung-Suk; Choi, Inho

    2016-02-27

    Although the prolonged use of rapamycin may cause unwanted side effects such as hyperlipidemia, the underlying mechanism remains unknown. Prox1 is a transcription factor responsible for the development of several tissues including lymphatics and liver. There is growing evidences that Prox1 participates in metabolism in addition to embryogenesis. However, whether Prox1 is directly related to lipid metabolism is currently unknown. HepG2 human hepatoma cells were treated with rapamycin and total lipids were analyzed by thin layer chromatography. The effect of rapamycin on the expression of Prox1 was determined by western blotting. To investigate the role of Prox1 in triglycerides regulation, siRNA and overexpression system were employed. Rapamycin was injected into mice for 2 weeks and total lipids and proteins in liver were measured by thin layer chromatography and western blot analysis, respectively. Rapamycin up-regulated the amount of triglyceride and down-regulated the expression of Prox1 in HepG2 cells by reducing protein half-life but did not affect its transcript. The loss-of-function of Prox1 was coincident with the increase of triglycerides in HepG2 cells treated with rapamycin. The up-regulation of triglycerides by rapamycin in HepG2 cells reverted to normal levels by the compensation of Prox1 using the overexpression system. Rapamycin also down-regulated Prox1 expression but increased triglycerides in mouse liver. This study suggests that rapamycin can increase the amount of triglycerides by down-regulating Prox1 expression in hepatocytes, which means that the mammalian target of rapamycin (mTOR) signaling is important for the regulation of triglycerides by maintaining Prox1 expression.

  12. Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar

    Science.gov (United States)

    Steven L. Voelker; Barbara Lachenbruch; Frederick C. Meinzer; Michael Jourdes; Chanyoung Ki; Ann M. Patten; Laurence B. Davin; Norman G. Lewis; Gerald A. Tuskan; Lee Gunter; Stephen R. Decker; Michael J. Selig; Robert Sykes; Michael E. Himmel; Peter Kitin; Olga Shevchenko; Steven H. Strauss

    2010-01-01

    Transgenic down-regulation of the Pt4CL1 gene family encoding 4-coumarate:coenzyme A ligase (4CL) has been reported as a means for reducing lignin content in cell walls and increasing overall growth rates, thereby improving feedstock quality for paper and bioethanol production. Using hybrid poplar (Populus tremula...

  13. The herpes simplex virus receptor nectin-1 is down-regulated after trans-interaction with glycoprotein D

    International Nuclear Information System (INIS)

    Stiles, Katie M.; Milne, Richard S.B.; Cohen, Gary H.; Eisenberg, Roselyn J.; Krummenacher, Claude

    2008-01-01

    During herpes simplex virus (HSV) entry, membrane fusion occurs either on the cell surface or after virus endocytosis. In both cases, binding of glycoprotein D (gD) to a receptor such as nectin-1 or HVEM is required. In this study, we co-cultured cells expressing gD with nectin-1 expressing cells to investigate the effects of gD on nectin-1 at cell contacts. After overnight co-cultures with gD expressing cells, there was a down-regulation of nectin-1 in B78H1-C10, SY5Y, A431 and HeLa cells, which HSV enters by endocytosis. In contrast, on Vero cells, which HSV enters at the plasma membrane, nectin-1 was not down-regulated. Further analysis of B78H1-derived cells showed that nectin-1 down-regulation corresponds to the ability of gD to bind nectin-1 and is achieved by internalization and low-pH-dependent degradation of nectin-1. Moreover, gD is necessary for virion internalization in B78H1 cells expressing nectin-1. These data suggest that the determinants of gD-mediated internalization of nectin-1 may direct HSV to an endocytic pathway during entry

  14. [Lentivirus-mediated shRNA silencing of LAMP2A inhibits the proliferation of multiple myeloma cells].

    Science.gov (United States)

    Li, Lixuan; Li, Jia

    2015-05-01

    To study the effects of lentivirus-mediated short hairpin RNA (shRNA) silencing of lysosome-associated membrane protein type 2A (LAMP2A) expression on the proliferation of multiple myeloma cells. The constructed shRNA lentiviral vector was applied to infect human multiple myeloma cell line MM.1S, and stable expression cell line was obtained by puromycin screening. Western blotting was used to verify the inhibitory effect on LAMP2A protein expression. MTT assay was conducted to detect the effect of knocked-down LAMP2A on MM.1S cell proliferation, and the anti-tumor potency of suberoylanilide hydroxamic acid (SAHA) against the obtained MM.1S LAMP2A(shRNA) stable cell line. Lactate assay was performed to observe the impact of low LAMP2A expression on cell glycolysis. The stable cell line with low LAMP2A expression were obtained with the constructed human LAMP2A-shRNA lentiviral vector. Down-regulation of LAMP2A expression significantly inhibited MM.1S cell proliferation and enhanced the anti-tumor activity of SAHA. Interestingly, decreased LAMP2A expression also inhibited MM.1S cell lactic acid secretion. Down-regulation of LAMP2A expression could inhibit cell proliferation in multiple myeloma cells.

  15. Down-regulation of ABCG2, a urate exporter, by parathyroid hormone enhances urate accumulation in secondary hyperparathyroidism.

    Science.gov (United States)

    Sugimoto, Ryusei; Watanabe, Hiroshi; Ikegami, Komei; Enoki, Yuki; Imafuku, Tadashi; Sakaguchi, Yoshiaki; Murata, Michiya; Nishida, Kento; Miyamura, Shigeyuki; Ishima, Yu; Tanaka, Motoko; Matsushita, Kazutaka; Komaba, Hirotaka; Fukagawa, Masafumi; Otagiri, Masaki; Maruyama, Toru

    2017-03-01

    Hyperuricemia occurs with increasing frequency among patients with hyperparathyroidism. However, the molecular mechanism by which the serum parathyroid hormone (PTH) affects serum urate levels remains unknown. This was studied in uremic rats with secondary hyperparathyroidism where serum urate levels were found to be increased and urate excretion in the intestine and kidney decreased, presumably due to down-regulation of the expression of the urate exporter ABCG2 in intestinal and renal epithelial membranes. These effects were prevented by administration of the calcimimetic cinacalcet, a PTH suppressor, suggesting that PTH may down-regulate ABCG2 expression. This was directly tested in intestinal Caco-2 cells where the expression of ABCG2 on the plasma membrane was down-regulated by PTH (1-34) while its mRNA level remained unchanged. Interestingly, an inactive PTH derivative (13-34) had no effect, suggesting that a posttranscriptional regulatory system acts through the PTH receptor to regulate ABCG2 plasma membrane expression. As found in an animal study, additional clinical investigations showed that treatment with cinacalcet resulted in significant reductions in serum urate levels together with decreases in PTH levels in patients with secondary hyperparathyroidism undergoing dialysis. Thus, PTH down-regulates ABCG2 expression on the plasma membrane to suppress intestinal and renal urate excretion, and the effects of PTH can be prevented by cinacalcet treatment. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  16. Significant Down-Regulation of “Biological Adhesion” Genes in Porcine Oocytes after IVM

    Directory of Open Access Journals (Sweden)

    Joanna Budna

    2017-12-01

    Full Text Available Proper maturation of the mammalian oocyte is a compound processes determining successful monospermic fertilization, however the number of fully mature porcine oocytes is still unsatisfactory. Since oocytes’ maturation and fertilization involve cellular adhesion and membranous contact, the aim was to investigate cell adhesion ontology group in porcine oocytes. The oocytes were collected from ovaries of 45 pubertal crossbred Landrace gilts and subjected to two BCB tests. After the first test, only granulosa cell-free BCB+ oocytes were directly exposed to microarray assays and RT-qPCR (“before IVM” group, or first in vitro matured and then if classified as BCB+ passed to molecular analyses (“after IVM” group. As a result, we have discovered substantial down-regulation of genes involved in adhesion processes, such as: organization of actin cytoskeleton, migration, proliferation, differentiation, apoptosis, survival or angiogenesis in porcine oocytes after IVM, compared to oocytes analyzed before IVM. In conclusion, we found that biological adhesion may be recognized as the process involved in porcine oocytes’ successful IVM. Down-regulation of genes included in this ontology group in immature oocytes after IVM points to their unique function in oocyte’s achievement of fully mature stages. Thus, results indicated new molecular markers involved in porcine oocyte IVM, displaying essential roles in biological adhesion processes.

  17. Parathyroid hormone contributes to the down-regulation of cytochrome P450 3A through the cAMP/PI3K/PKC/PKA/NF-κB signaling pathway in secondary hyperparathyroidism.

    Science.gov (United States)

    Watanabe, Hiroshi; Sugimoto, Ryusei; Ikegami, Komei; Enoki, Yuki; Imafuku, Tadashi; Fujimura, Rui; Bi, Jing; Nishida, Kento; Sakaguchi, Yoshiaki; Murata, Michiya; Maeda, Hitoshi; Hirata, Kenshiro; Jingami, Sachiko; Ishima, Yu; Tanaka, Motoko; Matsushita, Kazutaka; Komaba, Hirotaka; Fukagawa, Masafumi; Otagiri, Masaki; Maruyama, Toru

    2017-12-01

    Chronic kidney disease (CKD), which affects, not only renal clearance, but also non-renal clearance, is accompanied by a decline in renal function. Although it has been suggested that humoral factors, such as uremic toxins that accumulate in the body under CKD conditions, could be involved in the changes associated with non-renal drug clearance, the overall process is not completely understood. In this study, we report on the role of parathyroid hormone (PTH), a middle molecule uremic toxin, on the expression of drug metabolizing or transporting proteins using rats with secondary hyperparathyroidism (SHPT) as models. In SHPT rats, hepatic and intestinal CYP3A expression was suppressed, but the changes were recovered by the administration of the calcimimetic cinacalcet, a PTH suppressor. Under the same experimental conditions, a pharmacokinetic study using orally administered midazolam, a substrate for CYP3A, showed that the AUC was increased by 5 times in SHPT rats, but that was partially recovered by a cinacalcet treatment. This was directly tested in rat primary hepatocytes and intestinal Caco-2 cells where the expression of the CYP3A protein was down-regulated by PTH (1-34). In Caco-2 cells, PTH (1-34) down-regulated the expression of CYP3A mRNA, but an inactive PTH derivative (13-34) had no effect. 8-Bromo-cyclic adenosine monophosphate, a membrane-permeable cAMP analog, reduced mRNA expression of CYP3A whereas the inhibitors of PI3K, NF-κB, PKC and PKA reversed the PTH-induced CYP3A down-regulation. These results suggest that PTH down-regulates CYP3A through multiple signaling pathways, including the PI3K/PKC/PKA/NF-κB pathway after the elevation of intracellular cAMP, and the effect of PTH can be prevented by cinacalcet treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. microRNA-145 promotes differentiation in human urothelial carcinoma through down-regulation of syndecan-1

    International Nuclear Information System (INIS)

    Fujii, Tomomi; Shimada, Keiji; Tatsumi, Yoshihiro; Hatakeyama, Kinta; Obayashi, Chiho; Fujimoto, Kiyohide; Konishi, Noboru

    2015-01-01

    A new molecular marker of carcinoma in the urinary bladder is needed as a diagnostic tool or as a therapeutic target. Potential markers include microRNAs (miRNAs), which are short, low molecular weight RNAs 19–24 nt long that regulate genes associated with cell proliferation, differentiation, and development in various cancers. In this study, we investigated the molecular mechanisms by which miR-145 promotes survival of urothelial carcinoma cells and differentiation into multiple lineages. We found miR-145 to regulate expression of syndecan-1, a heparin sulfate proteoglycan. Cell proliferation in the human urothelial carcinoma cell lines T24 and KU7 was assessed by MTS assay. Cellular senescence and apoptosis were measured by senescence-associated β-galactosidase (SA-β-gal) and TUNEL assay, respectively. Quantitative RT-PCR was used to measure mRNA expression of various genes, including syndecan-1, stem cell factors, and markers of differentiation into squamous, glandular, or neuroendocrine cells. Overexpression of miR-145 induced cell senescence, and thus significantly inhibited cell proliferation in T24 and KU7 cells. Syndecan-1 expression diminished, whereas stem cell markers such as SOX2, NANOG, OCT4, and E2F3 increased. miR-145 also up-regulated markers of differentiation into squamous (p63, TP63, and CK5), glandular (MUC-1, MUC-2, and MUC-5 AC), and neuroendocrine cells (NSE and UCHL-1). Finally, expression of miR-145 was down-regulated in high-grade urothelial carcinomas, but not in low-grade tumors. Results indicate that miR-145 suppresses syndecan-1 and, by this mechanism, up-regulates stem cell factors and induces cell senescence and differentiation. We propose that miR-145 may confer stem cell-like properties on urothelial carcinoma cells and thus facilitate differentiation into multiple cell types. The online version of this article (doi:10.1186/s12885-015-1846-0) contains supplementary material, which is available to authorized users

  19. E-cadherin and beta-catenin are down-regulated in prostatic bone metastases.

    Science.gov (United States)

    Bryden, A A G; Hoyland, J A; Freemont, A J; Clarke, N W; Schembri Wismayer, D; George, N J R

    2002-03-01

    To determine the E-cadherin and beta-catenin expression phenotype in untreated primary prostate cancer and corresponding bone metastases. Paired bone metastasis and primary prostate specimens were obtained from 14 men with untreated metastatic prostate carcinoma. The tumours were histologically graded by an independent pathologist. Expression of mRNA for E-cadherin and beta-catenin was detected within the tumour cells using in-situ hybridization with a 35S-labelled cDNA probe. The expression of E-cadherin and beta-catenin were graded as uniform, heterogeneous or negative. The mRNA for E-cadherin was expressed in 13 of 14 primary carcinomas and 11 bone metastases; beta-catenin was expressed by 13 and nine, respectively. Of the primary tumours, nine expressed E-cadherin and beta-catenin uniformly; in contrast, all metastases had down-regulated E-cadherin and/or beta-catenin. The down-regulation of E-cadherin and beta-catenin are a feature of the metastatic phenotype, which may be a significant factor in the genesis of bone metastases. However, this does not appear to be reflected in the expression of these molecules in the primary tumours.

  20. Down-regulation of S100C is associated with bladder cancer progression and poor survival

    DEFF Research Database (Denmark)

    Memon, Ashfaque Ahmed; Sorensen, Boe Sandahl; Meldgaard, Peter

    2005-01-01

    cancer biopsy samples obtained from 88 patients followed for a median of 23 months (range, 1-97 months). RESULTS: We found a significantly lower mRNA expression of S100C in connective tissue invasive tumors (T1, P = 0.0030) and muscle invasive tumors [(T2-T4), P ...PURPOSE: The goal of this study was to identify proteins down-regulated during bladder cancer progression. EXPERIMENTAL DESIGN: By using comparative proteome analysis and measurement of mRNA, we found a significant down-regulation of S100C, a member of the S100 family of proteins, in T24 (grade 3......) as compared with RT4 (grade 1) bladder cancer cell lines. Moreover, quantification of the mRNA level revealed that decreased expression of the protein reflects a low level of transcription of the S100C gene. Based on this observation, we quantified the S100C mRNA expression level with real-time PCR in bladder...

  1. Tolerization with BLP down-regulates HMGB1 a critical mediator of sepsis-related lethality.

    LENUS (Irish Health Repository)

    Coffey, J Calvin

    2012-02-03

    Tolerization with bacterial lipoprotein (BLP) affords a significant survival benefit in sepsis. Given that high mobility group box protein-1 (HMGB1) is a recognized mediator of sepsis-related lethality, we determined if tolerization with BLP leads to alterations in HMGB1. In vitro, BLP tolerization led to a reduction in HMGB1 gene transcription. This was mirrored at the protein level, as HMGB1 protein expression and release were reduced significantly in BLP-tolerized human THP-1 monocytic cells. BLP tolerance in vivo led to a highly significant, long-term survival benefit following challenge with lethal dose BLP in C57BL\\/6 mice. This was associated with an attenuation of HMGB1 release into the circulation, as evidenced by negligible serum HMGB1 levels in BLP-tolerized mice. Moreover, HMGB1 levels in peritoneal macrophages from BLP-tolerized mice were reduced significantly. Hence, tolerization with BLP leads to a down-regulation of HMGB1 protein synthesis and release. The improved survival associated with BLP tolerance could thus be explained by a reduction in HMGB1, were the latter associated with lethality in BLP-related sepsis. In testing this hypothesis, it was noted that neutralization of HMGB1, using anti-HMGB1 antibodies, abrogated BLP-associated lethality almost completely. To conclude, tolerization with BLP leads to a down-regulation of HMGB1, thus offering a novel means of targeting the latter. HMGB1 is also a mediator of lethality in BLP-related sepsis.

  2. Phosphorylation-dependent down-regulation of apolipoprotein A5 by insulin

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Maxine; Helleboid-Chapman, Audrey; Jakel, Heidelinde; Rommens, Corinne; Martin, Genevieve; Duran-Sandoval, Daniel; Staels, Bart; Rubin, Edward M.; Pennacchio, Len A.; Taskinen, Marja-Riitta; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2004-02-15

    The apolipoprotein A5 (APOA5) gene has been shown to be important in lowering plasma triglyceride levels. Since several studies have shown that hyperinsulinemia is associated with hypertriglyceridemia, we sought to determine whether APOA5 gene is regulated by insulin. We show here that cell and mouse treatments with insulin down-regulated APOA5 expression in a dose-dependent manner. Furthermore, we determined that insulin decreases APOA5 promoter activity and subsequent deletion analyses revealed an E-box-containing fragment. We showed that Upstream Stimulatory Factors, USF1/USF2, bind to the identified E-box in the APOA5 promoter. Moreover, in cotransfection studies, USF1 stimulates APOA5 promoter activity. The treatment with insulin reduces the binding of USF1/USF2 to APOA5 promoter. The inhibition of PI3K pathway with wortmannin abolished the insulin s effect on APOA5 gene transcription. Using oligoprecipitation method of USF from nuclear extracts, we demonstrated that phosphorylated USF1 failed to bind to APOA5 promoter. This indicates that the APOA5 gene transrepression by insulin involves a phosphorylation of USF through PI3K, that modulate their binding to APOA5 promoter and results in APOA5 down-regulation. The effect of exogenous hyperinsulinemia in healthy men shows a decrease of the plasma ApoAV level. These data suggest a potential mechanism involving APOA5 gene in hypertriglyceridemia associated with hyperinsulinemia.

  3. Down-regulation of POLYGALACTURONASE1 alters firmness, tensile strength and water loss in apple (Malus x domestica fruit

    Directory of Open Access Journals (Sweden)

    Atkinson Ross G

    2012-08-01

    Full Text Available Abstract Background While there is now a significant body of research correlating apple (Malus x domestica fruit softening with the cell wall hydrolase ENDO-POLYGALACTURONASE1 (PG1, there is currently little knowledge of its physiological effects in planta. This study examined the effect of down regulation of PG1 expression in ‘Royal Gala’ apples, a cultivar that typically has high levels of PG1, and softens during fruit ripening. Results PG1-suppressed ‘Royal Gala’ apples harvested from multiple seasons were firmer than controls after ripening, and intercellular adhesion was higher. Cell wall analyses indicated changes in yield and composition of pectin, and a higher molecular weight distribution of CDTA-soluble pectin. Structural analyses revealed more ruptured cells and free juice in pulled apart sections, suggesting improved integrity of intercellular connections and consequent cell rupture due to failure of the primary cell walls under stress. PG1-suppressed lines also had reduced expansion of cells in the hypodermis of ripe apples, resulting in more densely packed cells in this layer. This change in morphology appears to be linked with reduced transpirational water loss in the fruit. Conclusions These findings confirm PG1’s role in apple fruit softening and suggests that this is achieved in part by reducing cellular adhesion. This is consistent with previous studies carried out in strawberry but not with those performed in tomato. In apple PG1 also appears to influence other fruit texture characters such as juiciness and water loss.

  4. Down-regulated miR-448 relieves spinal cord ischemia/reperfusion injury by up-regulating SIRT1

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2018-03-01

    Full Text Available MicroRNAs play a crucial role in the progression of spinal cord ischemia/reperfusion injury (SCII. The role of miR-448 and SIRT1 in SCII was investigated in this study, to provide further insights into prevention and improvement of this disorder. In this study, expressions of miR-448 and SIRT1 protein were determined by qRT-PCR and western blot, respectively. Flow cytometry was used to analyze cell apoptosis. The endogenous expression of genes was modulated by recombinant plasmids and cell transfection. Dual-luciferase reporter assay was performed to determine the interaction between miR-448 and SIRT1. The Basso, Beattie, and Bresnahan score was used to measure the hind-limb function of rat. The spinal cord ischemia reperfusion injury model of adult rats was developed by abdominal aorta clamping, and the nerve function evaluation was completed by motor deficit index score. In SCII tissues and cells treated with hypoxia, miR-448 was up-regulated while SIRT1 was down-regulated. Hypoxia treatment reduced the expression of SIRT1 through up-regulating miR-448 in nerve cells. Up-regulation of miR-448 induced by hypoxia promoted apoptosis of nerve cells through down-regulating SIRT1. Down-regulated miR-448 improved neurological function and hind-limb motor function of rats with SCII by up-regulating SIRT1. Down-regulated miR-448 inhibited apoptosis of nerve cells and improved neurological function by up-regulating SIRT1, which contributes to relieving SCII.

  5. Synergism between the mTOR inhibitor rapamycin and FAK down-regulation in the treatment of acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Pei-Jie Shi

    2016-02-01

    Full Text Available Abstract Background Acute lymphoblastic leukemia (ALL is an aggressive malignant disorder of lymphoid progenitor cells in both children and adults. Although improvements in contemporary therapy and development of new treatment strategies have led to dramatic increases in the cure rate in children with ALL, the relapse rate remains high and the prognosis of relapsed childhood ALL is poor. Molecularly targeted therapies have emerged as the leading treatments in cancer therapy. Multi-cytotoxic drug regimens have achieved success, yet many studies addressing targeted therapies have focused on only one single agent. In this study, we attempted to investigate whether the effect of the mammalian target of rapamycin (mTOR inhibitor rapamycin is synergistic with the effect of focal adhesion kinase (FAK down-regulation in the treatment of ALL. Methods The effect of rapamycin combined with FAK down-regulation on cell proliferation, the cell cycle, and apoptosis was investigated in the human precursor B acute lymphoblastic leukemia cells REH and on survival time and leukemia progression in a non-obese diabetic/severe combined immunodeficiency (NOD/SCID mouse model. Results When combined with FAK down-regulation, rapamycin-induced suppression of cell proliferation, G0/G1 cell cycle arrest, and apoptosis were significantly enhanced. In addition, REH cell-injected NOD/SCID mice treated with rapamycin and a short-hairpin RNA (shRNA to down-regulate FAK had significantly longer survival times and slower leukemia progression compared with mice injected with REH-empty vector cells and treated with rapamycin. Moreover, the B-cell CLL/lymphoma-2 (BCL-2 gene family was shown to be involved in the enhancement, by combined treatment, of REH cell apoptosis. Conclusions FAK down-regulation enhanced the in vitro and in vivo inhibitory effects of rapamycin on REH cell growth, indicating that the simultaneous targeting of mTOR- and FAK-related pathways might offer a novel

  6. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response

    International Nuclear Information System (INIS)

    Soto, Armando; DelRaso, Nicholas J.; Schlager, John J.; Chan, Victor T.

    2008-01-01

    Renal toxicity can commonly occur after exposure to xenobiotics, pharmaceutical agents or environmental pollutants. Changes in the gene expression in kidney parenchymal cells that precede and/or accompany renal injury may be hallmark critical events in the onset of pathologic changes of renal functions. Over the last several years, transcriptomic analysis has evolved to enable simultaneous analysis of the expression profiles of tens of thousands of genes in response to various endogenous and exogenous stimuli. In this study, we investigated gene expression changes in the kidney after acute exposure to a nephrotoxin, D-serine, which targets the proximal tubule of the kidney. Male F-344 rats injected intraperitoneally with a single dose of D-serine (5, 20, 50, 200 or 500 mg/kg), and gene expression profiles in the kidney were determined using the Affymetrix RAE230A gene arrays at 96 h post-dosing. D-Serine treatment resulted in the up- and down-regulation of 1158 and 749 genes, respectively, over the entire dose range based on the intersection of the results of t-test, p < 0.01 over two consecutive doses, and ANOVA with Bonferonni correction for multiple testing. Interestingly, both the up-and down-regulated genes show a unified dose response pattern as revealed in the self-organized map clustering analysis using the expression profiles of the 1907 differentially expressed genes as input data. There appears to be minimal changes in the expression level of these genes in the dose range of 5-50 mg/kg, while the most prominent changes were observed at the highest doses tested, i.e. 200 and 500 mg/kg. Pathway analysis of the differentially expressed genes showed perturbation of a large number of biological processes/pathways after D-serine exposure. Among the up-regulated pathways are actin cytoskeleton biogenesis and organization, apoptosis, cell cycle regulation, chromatin assembly, excision repair of damaged DNA, DNA replication and packaging, protein biosynthesis

  7. Internalization and down-regulation of the human epidermal growth factor receptor are regulated by the carboxyl-terminal tyrosines

    DEFF Research Database (Denmark)

    Helin, K; Beguinot, L

    1991-01-01

    with receptors in which 1, 2, or all 3 tyrosines were changed to phenylalanines. The triple point mutant EGF-R, expressed in NIH-3T3, exhibited low autophosphorylation in vivo, low biological and reduced kinase activities. Single and double point mutants were down-regulated, as well as wild type EGF......-R in response to EGF showing a half-life of about 1 h. Degradation of the triple point mutant, however, was impaired and resulted in a half-life of 4 h in the presence of EGF. EGF-dependent down-regulation of surface receptors was decreased in the triple point mutant EGF-R as was internalization and degradation...... of EGF. The specific rate of internalization of the triple point mutant was reduced. By contrast, intracellular processing of ligand previously internalized at 20 degrees C was similar between wild type and mutant receptors. Taken together the data indicate that the delay in degradation observed in cells...

  8. Foxa1 reduces lipid accumulation in human hepatocytes and is down-regulated in nonalcoholic fatty liver.

    Directory of Open Access Journals (Sweden)

    Marta Moya

    Full Text Available Triglyceride accumulation in nonalcoholic fatty liver (NAFL results from unbalanced lipid metabolism which, in the liver, is controlled by several transcription factors. The Foxa subfamily of winged helix/forkhead box (Fox transcription factors comprises three members which play important roles in controlling both metabolism and homeostasis through the regulation of multiple target genes in the liver, pancreas and adipose tissue. In the mouse liver, Foxa2 is repressed by insulin and mediates fasting responses. Unlike Foxa2 however, the role of Foxa1 in the liver has not yet been investigated in detail. In this study, we evaluate the role of Foxa1 in two human liver cell models, primary cultured hepatocytes and HepG2 cells, by adenoviral infection. Moreover, human and rat livers were analyzed to determine Foxa1 regulation in NAFL. Results demonstrate that Foxa1 is a potent inhibitor of hepatic triglyceride synthesis, accumulation and secretion by repressing the expression of multiple target genes of these pathways (e.g., GPAM, DGAT2, MTP, APOB. Moreover, Foxa1 represses the fatty acid transporter protein FATP2 and lowers fatty acid uptake. Foxa1 also increases the breakdown of fatty acids by inducing peroxisomal fatty acid β-oxidation and ketone body synthesis. Finally, Foxa1 is able to largely up-regulate UCP1, thereby dissipating energy and consistently decreasing the mitochondria membrane potential. We also report that human and rat NAFL have a reduced Foxa1 expression, possibly through a protein kinase C-dependent pathway. We conclude that Foxa1 is an antisteatotic factor that coordinately tunes several lipid metabolic pathways to block triglyceride accumulation in hepatocytes. However, Foxa1 is down-regulated in human and rat NAFL and, therefore, increasing Foxa1 levels could protect from steatosis. Altogether, we suggest that Foxa1 could be a novel therapeutic target for NAFL disease and insulin resistance.

  9. The CD3 gamma leucine-based receptor-sorting motif is required for efficient ligand-mediated TCR down-regulation

    DEFF Research Database (Denmark)

    von Essen, Marina; Menné, Charlotte; Nielsen, Bodil L

    2002-01-01

    . The other pathway is dependent on protein kinase C (PKC)-mediated activation of the CD3 gamma di-leucine-based receptor-sorting motif. Previous studies have failed to demonstrate a connection between ligand- and PKC-induced TCR down-regulation. Thus, although an apparent paradox, the dogma has been...... that ligand- and PKC-induced TCR down-regulations are not interrelated. By analyses of a newly developed CD3 gamma-negative T cell variant, freshly isolated and PHA-activated PBMC, and a mouse T cell line, we challenged this dogma and demonstrate in this work that PKC activation and the CD3 gamma di...

  10. Down-regulation of tricarboxylic acid (TCA) cycle genes blocks progression through the first mitotic division in Caenorhabditis elegans embryos.

    Science.gov (United States)

    Rahman, Mohammad M; Rosu, Simona; Joseph-Strauss, Daphna; Cohen-Fix, Orna

    2014-02-18

    The cell cycle is a highly regulated process that enables the accurate transmission of chromosomes to daughter cells. Here we uncover a previously unknown link between the tricarboxylic acid (TCA) cycle and cell cycle progression in the Caenorhabditis elegans early embryo. We found that down-regulation of TCA cycle components, including citrate synthase, malate dehydrogenase, and aconitase, resulted in a one-cell stage arrest before entry into mitosis: pronuclear meeting occurred normally, but nuclear envelope breakdown, centrosome separation, and chromosome condensation did not take place. Mitotic entry is controlled by the cyclin B-cyclin-dependent kinase 1 (Cdk1) complex, and the inhibitory phosphorylation of Cdk1 must be removed in order for the complex to be active. We found that following down-regulation of the TCA cycle, cyclin B levels were normal but CDK-1 remained inhibitory-phosphorylated in one-cell stage-arrested embryos, indicative of a G2-like arrest. Moreover, this was not due to an indirect effect caused by checkpoint activation by DNA damage or replication defects. These observations suggest that CDK-1 activation in the C. elegans one-cell embryo is sensitive to the metabolic state of the cell, and that down-regulation of the TCA cycle prevents the removal of CDK-1 inhibitory phosphorylation. The TCA cycle was previously shown to be necessary for the development of the early embryo in mammals, but the molecular processes affected were not known. Our study demonstrates a link between the TCA cycle and a specific cell cycle transition in the one-cell stage embryo.

  11. Aldosterone down-regulates the slowly activated delayed rectifier potassium current in adult guinea pig cardiomyocytes.

    Science.gov (United States)

    Lv, Yankun; Bai, Song; Zhang, Hua; Zhang, Hongxue; Meng, Jing; Li, Li; Xu, Yanfang

    2015-12-01

    There is emerging evidence that the mineralocorticoid hormone aldosterone is associated with arrhythmias in cardiovascular disease. However, the effect of aldosterone on the slowly activated delayed rectifier potassium current (IK s ) remains poorly understood. The present study was designed to investigate the modulation of IK s by aldosterone. Adult guinea pigs were treated with aldosterone for 28 days via osmotic pumps. Standard glass microelectrode recordings and whole-cell patch-clamp techniques were used to record action potentials in papillary muscles and IK s in ventricular cardiomyocytes. The aldosterone-treated animals exhibited a prolongation of the QT interval and action potential duration with a higher incidence of early afterdepolarizations. Patch-clamp recordings showed a significant down-regulation of IK s density in the ventricular myocytes of these treated animals. These aldosterone-induced electrophysiological changes were fully prevented by a combined treatment with spironolactone, a mineralocorticoid receptor (MR) antagonist. In addition, in in vitro cultured ventricular cardiomyocytes, treatment with aldosterone (sustained exposure for 24 h) decreased the IK s density in a concentration-dependent manner. Furthermore, a significant corresponding reduction in the mRNA/protein expression of IKs channel pore and auxiliary subunits, KCNQ1 and KCNE1 was detected in ventricular tissue from the aldosterone-treated animals. Aldosterone down-regulates IK s by inhibiting the expression of KCNQ1 and KCNE1, thus delaying the ventricular repolarization. These results provide new insights into the mechanism underlying K(+) channel remodelling in heart disease and may explain the highly beneficial effects of MR antagonists in HF. © 2015 The British Pharmacological Society.

  12. Reversal of islet GIP receptor down-regulation and resistance to GIP by reducing hyperglycemia in the Zucker rat

    International Nuclear Information System (INIS)

    Piteau, Shalea; Olver, Amy; Kim, Su-Jin; Winter, Kyle; Pospisilik, John Andrew; Lynn, Francis; Manhart, Susanne; Demuth, Hans-Ulrich; Speck, Madeleine; Pederson, Raymond A.; McIntosh, Christopher H.S.

    2007-01-01

    In type 2 diabetes (T2DM) β-cell responsiveness to glucose-dependent insulinotropic polypeptide (GIP) is reduced. In a model of T2DM, the VDF Zucker rat, GIP receptor mRNA and protein levels were shown to be down-regulated. Possible restoration of responsiveness to GIP in Zucker rats by reducing hyperglycemia has been examined. ZDF rats with extreme hyperglycemia demonstrated greater islet GIP receptor mRNA down-regulation (94.3 ± 3.8%) than ZF rats (48.8 ± 22.8%). GIP receptor mRNA levels in ZDF rats returned to 83.0 ± 17.9% of lean following normalization of hyperglycemia by phlorizin treatment and pancreas perfusions demonstrated markedly improved GIP responsiveness. Treatment of VDF rats with a DP IV inhibitor (P32/98) resulted in improved glucose tolerance and restored sensitivity to GIP in isolated pancreata. These findings support the proposal that GIP receptor down-regulation in rodent T2DM is secondary to chronic hyperglycemia and that normalization of glycemia can restore GIP sensitivity

  13. MiR-217 is down-regulated in psoriasis and promotes keratinocyte differentiation via targeting GRHL2

    International Nuclear Information System (INIS)

    Zhu, Haigang; Hou, Liyue; Liu, Jingjing; Li, Zhiming

    2016-01-01

    MiR-217 is a well-known tumor suppressor, and its down-regulation has been shown in a wide range of solid and leukaemic cancers. However, the biological role of miR-217 in psoriasis pathogenesis, especially in keratinocyte hyperproliferation and differentiation, is not clearly understood. In this study, we found the expression of miR-217 was markedly down-regulated in psoriasis keratinocytes of psoriatic patients. In addition, overexpression of miR-217 inhibited the proliferation and promoted the differentiation of primary human keratinocytes. On the contrary, inhibition of endogenous miR-217 increased cell proliferation and delayed differentiation. Furthermore, Grainyhead-like 2 (GRHL2) was identified as a direct target of miR-217 by luciferase reporter assay. The expression of miR-217 and GRHL2 was inversely correlated in both transfected keratinocytes and in psoriasis lesional skin. Moreover, knocking down GRHL2 expression by siRNA enhanced keratinocyte differentiation. Taken together, our results demonstrate a role for miR-217 in the regulation of keratinocyte differentiation, partially through the regulation of GRHL2. - Highlights: • miR-217 is down-regulated in psoriasis skin lesions. • miR-217 inhibits the proliferation and promotes differentiation of keratinocytes. • GRHL2 is a novel target of miR-217 in keratinocytes. • GRHL2 is up-regulated and inversely correlated with miR-217 in psoriasis skin lesions.

  14. MiR-217 is down-regulated in psoriasis and promotes keratinocyte differentiation via targeting GRHL2

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Haigang; Hou, Liyue; Liu, Jingjing; Li, Zhiming, E-mail: lizm_1001@sina.com

    2016-02-26

    MiR-217 is a well-known tumor suppressor, and its down-regulation has been shown in a wide range of solid and leukaemic cancers. However, the biological role of miR-217 in psoriasis pathogenesis, especially in keratinocyte hyperproliferation and differentiation, is not clearly understood. In this study, we found the expression of miR-217 was markedly down-regulated in psoriasis keratinocytes of psoriatic patients. In addition, overexpression of miR-217 inhibited the proliferation and promoted the differentiation of primary human keratinocytes. On the contrary, inhibition of endogenous miR-217 increased cell proliferation and delayed differentiation. Furthermore, Grainyhead-like 2 (GRHL2) was identified as a direct target of miR-217 by luciferase reporter assay. The expression of miR-217 and GRHL2 was inversely correlated in both transfected keratinocytes and in psoriasis lesional skin. Moreover, knocking down GRHL2 expression by siRNA enhanced keratinocyte differentiation. Taken together, our results demonstrate a role for miR-217 in the regulation of keratinocyte differentiation, partially through the regulation of GRHL2. - Highlights: • miR-217 is down-regulated in psoriasis skin lesions. • miR-217 inhibits the proliferation and promotes differentiation of keratinocytes. • GRHL2 is a novel target of miR-217 in keratinocytes. • GRHL2 is up-regulated and inversely correlated with miR-217 in psoriasis skin lesions.

  15. Five Conditions Commonly Used to Down-regulate Tor Complex 1 Generate Different Physiological Situations Exhibiting Distinct Requirements and Outcomes*

    Science.gov (United States)

    Tate, Jennifer J.; Cooper, Terrance G.

    2013-01-01

    Five different physiological conditions have been used interchangeably to establish the sequence of molecular events needed to achieve nitrogen-responsive down-regulation of TorC1 and its subsequent regulation of downstream reporters: nitrogen starvation, methionine sulfoximine (Msx) addition, nitrogen limitation, rapamycin addition, and leucine starvation. Therefore, we tested a specific underlying assumption upon which the interpretation of data generated by these five experimental perturbations is premised. It is that they generate physiologically equivalent outcomes with respect to TorC1, i.e. its down-regulation as reflected by TorC1 reporter responses. We tested this assumption by performing head-to-head comparisons of the requirements for each condition to achieve a common outcome for a downstream proxy of TorC1 inactivation, nuclear Gln3 localization. We demonstrate that the five conditions for down-regulating TorC1 do not elicit physiologically equivalent outcomes. Four of the methods exhibit hierarchical Sit4 and PP2A phosphatase requirements to elicit nuclear Gln3-Myc13 localization. Rapamycin treatment required Sit4 and PP2A. Nitrogen limitation and short-term nitrogen starvation required only Sit4. G1 arrest-correlated, long-term nitrogen starvation and Msx treatment required neither PP2A nor Sit4. Starving cells of leucine or treating them with leucyl-tRNA synthetase inhibitors did not elicit nuclear Gln3-Myc13 localization. These data indicate that the five commonly used nitrogen-related conditions of down-regulating TorC1 are not physiologically equivalent and minimally involve partially differing regulatory mechanisms. Further, identical requirements for Msx treatment and long-term nitrogen starvation raise the possibility that their effects are achieved through a common regulatory pathway with glutamine, a glutamate or glutamine metabolite level as the sensed metabolic signal. PMID:23935103

  16. Down-regulation of transcription of the proapoptotic gene BNip3 in cultured astrocytes by murine coronavirus infection

    International Nuclear Information System (INIS)

    Cai Yingyun; Liu Yin; Yu Dongdong; Zhang Xuming

    2003-01-01

    Murine coronavirus mouse hepatitis virus (MHV) causes encephalitis and demyelination in the central nervous system of susceptible rodents. Astrocytes are the major target for MHV persistence. However, the mechanisms by which astrocytes survive MHV infection and permit viral persistence are not known. Here we performed DNA microarray analysis on differential gene expression in astrocyte DBT cells by MHV infection and found that the mRNA of the proapoptotic gene BNip3 was significantly decreased following MHV infection. This finding was further confirmed by quantitative reverse transcription-polymerase chain reaction, Western blot analysis, and BNip3-promoter-luciferase reporter system. Interestingly, infection with live and ultraviolet light-inactivated viruses equally repressed BNip3 expression, indicating that the down-regulation of BNip3 expression does not require virus replication and is mediated during cell entry. Furthermore, treatment of cells with chloroquine, which blocks the acidification of endosomes, significantly inhibited the repression of the BNip3 promoter activity induced by the acidic pH-dependent MHV mutant OBLV60, which enters cells via endocytosis, indicating that the down-regulation of BNip3 expression is mediated by fusion between viral envelope and cell membranes during entry. Deletion analysis showed that the sequence between nucleotides 262 and 550 of the 588-base-pair BNip3 promoter is necessary and sufficient for driving the BNip3 expression and that it contains signals that are responsible for MHV-induced down-regulation of BNip3 expression in DBT cells. These results may provide insights into the mechanisms by which MHV evades host antiviral defense and promotes cell survival, thereby allowing its persistence in the host astrocytes

  17. Down regulation of macrophage IFNGR1 exacerbates systemic L. monocytogenes infection.

    Directory of Open Access Journals (Sweden)

    Emily M Eshleman

    2017-05-01

    Full Text Available Interferons (IFNs target macrophages to regulate inflammation and resistance to microbial infections. The type II IFN (IFNγ acts on a cell surface receptor (IFNGR to promote gene expression that enhance macrophage inflammatory and anti-microbial activity. Type I IFNs can dampen macrophage responsiveness to IFNγ and are associated with increased susceptibility to numerous bacterial infections. The precise mechanisms responsible for these effects remain unclear. Type I IFNs silence macrophage ifngr1 transcription and thus reduce cell surface expression of IFNGR1. To test how these events might impact macrophage activation and host resistance during bacterial infection, we developed transgenic mice that express a functional FLAG-tagged IFNGR1 (fGR1 driven by a macrophage-specific promoter. Macrophages from fGR1 mice expressed physiologic levels of cell surface IFNGR1 at steady state and responded equivalently to WT C57Bl/6 macrophages when treated with IFNγ alone. However, fGR1 macrophages retained cell surface IFNGR1 and showed enhanced responsiveness to IFNγ in the presence of type I IFNs. When fGR1 mice were infected with the bacterium Listeria monocytogenes their resistance was significantly increased, despite normal type I and II IFN production. Enhanced resistance was dependent on IFNγ and associated with increased macrophage activation and antimicrobial function. These results argue that down regulation of myeloid cell IFNGR1 is an important mechanism by which type I IFNs suppress inflammatory and anti-bacterial functions of macrophages.

  18. Quantitative Impact of Plasma Clearance and Down-regulation on GLP-1 Receptor Molecular Imaging.

    Science.gov (United States)

    Zhang, Liang; Thurber, Greg M

    2016-02-01

    Quantitative molecular imaging of beta cell mass (BCM) would enable early detection and treatment monitoring of type 1 diabetes. The glucagon-like peptide-1 (GLP-1) receptor is an attractive target due to its beta cell specificity and cell surface location. We quantitatively investigated the impact of plasma clearance and receptor internalization on targeting efficiency in healthy B6 mice. Four exenatide-based probes were synthesized that varied in molecular weight, binding affinity, and plasma clearance. The GLP-1 receptor internalization rate and in vivo receptor expression were quantified. Receptor internalization (54,000 receptors/cell in vivo) decreased significantly within minutes, reducing the benefit of a slower-clearing agent. The multimers and albumin binding probes had higher kidney and liver uptake, respectively. Slow plasma clearance is beneficial for GLP-1 receptor peptide therapeutics. However, for exendin-based imaging of islets, down-regulation of the GLP-1 receptor and non-specific background uptake result in a higher target-to-background ratio for fast-clearing agents.

  19. Leucine zipper, down regulated in cancer-1 gene expression in prostate cancer

    Science.gov (United States)

    Salemi, Michele; Barone, Nunziata; La Vignera, Sandro; Condorelli, Rosita A.; Recupero, Domenico; Galia, Antonio; Fraggetta, Filippo; Aiello, Anna Maria; Pepe, Pietro; Castiglione, Roberto; Vicari, Enzo; Calogero, Aldo E.

    2016-01-01

    Numerous genetic alterations have been implicated in the development of prostate cancer (PCa). DNA and protein microarrays have enabled the identification of genes associated with apoptosis, which is important in PCa development. Despite the molecular mechanisms are not entirely understood, inhibition of apoptosis is a critical pathophysiological factor that contributes to the onset and progression of PCa. Leucine zipper, down-regulated in cancer 1 (LDOC-1) is a known regulator of the nuclear factor (NF)-mediated pathway of apoptosis through the inhibition of NF-κB. The present study investigated the expression of the LDOC-1 gene in LNCaP, PC-3, PNT1A and PNT2 prostate cell lines by reverse transcription-quantitative polymerase chain reaction. In addition LDOC-1 protein expression in normal prostate tissues and PCa was studied by immunohistochemistry. LDOC-1 messenger RNA resulted overexpressed in LNCaP and PC-3 PCa cell lines compared with the two normal prostate cell lines PNT1A and PNT2. The results of immunohistochemistry demonstrated a positive cytoplasmic LDOC-1 staining in all PCa and normal prostate samples, whereas no nuclear staining was observed in any sample. Furthermore, a more intense signal was evidenced in PCa samples. LDOC-1 gene overexpression in PCa suggests an activity of LDOC-1 in PCa cell lines. PMID:27698860

  20. Dioscin enhances methotrexate absorption by down-regulating MDR1 in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan, E-mail: jlwang1979@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Wang, Changyuan, E-mail: wangcyuan@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Peng, Jinyong, E-mail: jinyongpeng2005@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Liu, Qi, E-mail: llaqii@yahoo.com.cn [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Meng, Qiang, E-mail: mengq531@yahoo.cn [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Sun, Huijun, E-mail: sunhuijun@hotmail.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Huo, Xiaokui, E-mail: huoxiaokui@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); and others

    2014-06-01

    The purpose of this study was to investigate the enhancing effect of dioscin on the absorption of methotrexate (MTX) and clarify the molecular mechanism involved in vivo and in vitro. Dioscin increased MTX chemosensitivity and transepithelial flux in the absorptive direction, significantly inhibiting multidrug resistance 1 (MDR1) mRNA and protein expression and MDR1 promoter and nuclear factor κ-B (NF-κB) activities in Caco-2 cells. Moreover, inhibitor κB-α (IκB-α) degradation was inhibited by dioscin. Dioscin enhanced the intracellular concentration of MTX by down-regulating MDR1 expression through a mechanism that involves NF-κB signaling pathway inhibition in Caco-2 cells. Dioscin strengthened MTX absorption by inhibiting MDR1 expression in rat intestine. In addition, even though MTX is absorbed into the enterocytes, there was no increase in toxicity observed, and that, in fact, decreased toxicity was seen. - Highlights: • Dioscin raised MTX concentration by inhibiting MDR1 in Caco-2 cells. • Dioscin suppresses MDR1 by inhibiting NF-κB signaling pathway in Caco-2 cells. • Dioscin can enhance MTX absorption via inhibiting MDR1 in vivo and in vitro. • Dioscin did not increase MTX-induced gastrointestinal mucosal toxicity.

  1. Down-regulation of SFRP1 as a putative tumor suppressor gene can contribute to human hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Huang, Jian; Zhang, Yun-Li; Teng, Xiao-Mei; Lin, Yun; Zheng, Da-Li; Yang, Peng-Yuan; Han, Ze-Guang

    2007-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers in the world. SFRP1 (the secreted frizzled-related protein 1), a putative tumor suppressor gene mapped onto chromosome 8p12-p11.1, the frequent loss of heterozygosity (LOH) region in human HCC, encodes a Wingless-type (Wnt) signaling antagonist and is frequently inactivated by promoter methylation in many human cancers. However, whether the down-regulation of SFRP1 can contribute to hepatocarcinogenesis still remains unclear. We investigated the expression of SFRP1 through real time RT-PCR and immunohistochemistry staining. The cell growth and colony formation were observed as the overexpression and knockdown of SFRP1. The DNA methylation status within SFRP1 promoter was analyzed through methylation-specific PCR or bisulphate-treated DNA sequencing assays. Loss of heterozygosity was here detected with microsatellite markers. SFRP1 was significantly down-regulated in 76.1% (35/46) HCC specimens at mRNA level and in 30% (30/100) HCCs indicated by immunohistochemistry staining, as compared to adjacent non-cancerous livers. The overexpression of SFRP1 can significantly inhibit the cell growth and colony formation of YY-8103, SMMC7721, and Hep3B cells. The RNA interference against the constitutional SFRP1 in the offspring SMMC7721 cells, which were stably transfected by ectopic SFRP1, can markedly promote cell growth of these cells. LOH of both microsatellite markers D8S532 and D8SAC016868 flanking the gene locus was found in 13% (6 of 46 HCCs) and 6.5% (3 of 46 HCCs) of the informative cases, respectively, where 5 of 8 HCC specimens with LOH showed the down-regulation of SFRP1. DNA hypermethylation within SFRP1 promoter was identified in two of three HCC specimens without SFRP1 expression. Moreover, the DNA methylation of SFRP1 promoter was significantly reduced, along with the re-expression of the gene, in those HCC cell lines, Bel7404, QGY7701, and MHCC-H, as treated by DAC. Our data suggested that the

  2. CD28 co-stimulation down regulates Th17 development.

    Directory of Open Access Journals (Sweden)

    Salim Bouguermouh

    Full Text Available Th17 cells are implicated in host defence and autoimmune diseases. CD28/B7 co-stimulation is involved in the induction and progression of autoimmune diseases, but its role in controlling murine Th17 cell fate remains to be clarified. We here report that soluble anti-CD28 mAb suppressed the differentiation of anti-CD3-stimulated naïve CD4(+ T cells into IL-17-producing cells. CD28 co-stimulation reduced the frequency of proliferating cells that produce IL-17. We provide evidence for an IL-2 and IFN-gamma-dependent mechanism of CD28-mediated IL-17 suppression. CD28 blockade of Th17 development was correlated with a decrease rather than an increase in the percentage of Foxp3(+ T cells. In APC/T cell co-cultures, mature dendritic cells (DC were less efficient than immature DC in their ability to support Th17 cell differentiation, while CTLA4-Ig, an agent blocking CD28/B7 and CTLA4/B7 interactions, facilitated both murine and human Th17 differentiation. This study identifies the importance of B7 co-stimulatory molecules in the negative regulation of Th17 development. These unexpected results caution targeting the CD28/B7 pathways in the treatment of human autoimmune diseases.

  3. Minocycline down-regulates topical mucosal inflammation during the application of microbicide candidates.

    Directory of Open Access Journals (Sweden)

    Liangzhu Li

    Full Text Available An effective anti-human immunodeficiency virus-1 (HIV-1 microbicide should exert its action in the absence of causing aberrant activation of topical immunity that will increase the risk of HIV acquisition. In the present study, we demonstrated that the vaginal application of cellulose sulfate (CS gel induced topical mucosal inflammatory responses; the addition of minocycline to CS gel could significantly attenuate the inflammation in a mice model. The combined gel of CS plus minocycline not only reduced the production of inflammatory cytokines in cervicovaginal lavages (CVLs, also down-regulated the activation of CD4+ T cells and the recruitment of other immune cells including HIV target cells into vaginal tissues. Furthermore, an In vitro HIV-1 pseudovirus infection inhibition assay showed that the combined gel decreased the infection efficacy of different subtypes of HIV-1 pseudoviruses compared with that of CS gel alone. These results implicate that minocycline could be integrated into microbicide formulation to suppress the aberrant activation of topical mucosal immunity and enhance the safety profile during the application of microbicides.

  4. Oral Administration of N-Acetyl-D Glucosamine Polymer Particles Down-Regulates Airway Allergic Responses

    National Research Council Canada - National Science Library

    Shibata, Yoshimi

    2006-01-01

    ... (IL-12, IL-18 and TNFo) that down-regulate allergic immune responses. We also found that administration of chitin particles resulted in less likely induce the production of IL-10 and prostaglandin E2 (PGE2...

  5. Selective Androgen Receptor Down-Regulators (SARDs): A New Prostate Cancer Therapy

    National Research Council Canada - National Science Library

    Bhattacharyya, Rumi S

    2007-01-01

    The androgen receptor (AR) plays a key role in the development and progression of prostate cancer Targeting the AR for down-regulation would be a useful strategy for treating prostate cancer, especially hormone-refractory...

  6. Mechanisms Down-Regulating Sprouty1, a Growth Inhibitor in Prostate Cancer

    National Research Council Canada - National Science Library

    Kwabi-Addo, Bernard

    2006-01-01

    .... I have demonstrated that Sprouty1 is down-regulated in human prostate cancer (PCa). The purpose of the present study is to characterize the molecular mechanisms regulating Sprouty1 expression in the human PCa. Results...

  7. Resolvin D1 Protects Lipopolysaccharide-induced Acute Kidney Injury by Down-regulating Nuclear Factor-kappa B Signal and Inhibiting Apoptosis

    Directory of Open Access Journals (Sweden)

    Yu-Liang Zhao

    2016-01-01

    Conclusion: In LPS-induced AKI, RvD1 could decrease TNF-α level, ameliorate kidney pathological injury, protect kidney function, and improve animal survival by down-regulating NF-κB inflammatory signal as well as inhibiting renal cell apoptosis.

  8. Endocrine gland derived-VEGF is down-regulated in human pituitary adenoma.

    Science.gov (United States)

    Raica, Marius; Coculescu, Mihail; Cimpean, Anca Maria; Ribatti, Domenico

    2010-10-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic molecule restricted to endocrine glands and, particularly, to steroid-secreting cells. The expression of EG-VEGF and its significance in human adenohypophysis in physiological and pathological conditions is still unknown. In this study, we investigated by immunohistochemistry the expression of EG-VEGF in 2 samples of normal adenohypophysis and 43 bioptic samples of pituitary adenoma. Moreover, the expression of growth hormone (GH), prolactin (PRL), follicle-stimulating hormone (FSH), luteinizing hormone (LH), thyroid-stimulating hormone (TSH) and adrenocorticoprophic hormone (ACTH) were also estimated. The results of this study for the first time demonstrate a down-regulation of EG-VEGF expression in human pituitary adenoma as compared to normal adenohypophysis, suggesting an impaired function of the neoplastic cells in terms of hormone release in the blood stream, as a consequence of impaired tumor angiogenesis in the tumor. On the basis of our data showing a marked decrease in the expression of EG-VEGF in pituitary adenoma, with the exception of LH-secreting adenomas, we suggest that LH might be involved in the induction of EG-VEGF secretion.

  9. Chlamydia trachomatis In Vivo to In Vitro Transition Reveals Mechanisms of Phase Variation and Down-Regulation of Virulence Factors.

    Directory of Open Access Journals (Sweden)

    Vítor Borges

    Full Text Available Research on the obligate intracellular bacterium Chlamydia trachomatis demands culture in cell-lines, but the adaptive process behind the in vivo to in vitro transition is not understood. We assessed the genomic and transcriptomic dynamics underlying C. trachomatis in vitro adaptation of strains representing the three disease groups (ocular, epithelial-genital and lymphogranuloma venereum propagated in epithelial cells over multiple passages. We found genetic features potentially underlying phase variation mechanisms mediating the regulation of a lipid A biosynthesis enzyme (CT533/LpxC, and the functionality of the cytotoxin (CT166 through an ON/OFF mechanism. We detected inactivating mutations in CT713/porB, a scenario suggesting metabolic adaptation to the available carbon source. CT135 was inactivated in a tropism-specific manner, with CT135-negative clones emerging for all epithelial-genital populations (but not for LGV and ocular populations and rapidly increasing in frequency (~23% mutants per 10 passages. RNA-sequencing analyses revealed that a deletion event involving CT135 impacted the expression of multiple virulence factors, namely effectors known to play a role in the C. trachomatis host-cell invasion or subversion (e.g., CT456/Tarp, CT694, CT875/TepP and CT868/ChlaDub1. This reflects a scenario of attenuation of C. trachomatis virulence in vitro, which may take place independently or in a cumulative fashion with the also observed down-regulation of plasmid-related virulence factors. This issue may be relevant on behalf of the recent advances in Chlamydia mutagenesis and transformation where culture propagation for selecting mutants/transformants is mandatory. Finally, there was an increase in the growth rate for all strains, reflecting gradual fitness enhancement over time. In general, these data shed light on the adaptive process underlying the C. trachomatis in vivo to in vitro transition, and indicates that it would be prudent to

  10. Probiotics and down-regulation of the allergic response.

    Science.gov (United States)

    Kalliomäki, Marko A; Isolauri, Erika

    2004-11-01

    The first clinical trials with probiotics, especially in the treatment of atopic eczema, have yielded encouraging results. Experimental studies have found that probiotics exert strain-specific effects in the intestinal lumen and on epithelial cells and immune cells with anti-allergic potential. These effects include enhancement in antigen degradation and gut barrier function and induction of regulatory and proinflammatory immune responses, the latter of which occurs more likely beyond the intestinal epithelium. Future studies should address more accurately how these and other possible mechanisms operate in the complex gastrointestinal macroenvironment in vivo and how these mechanisms are related to the clinical effects in a dose-dependent manner.

  11. Stathmin Mediates Hepatocyte Resistance to Death from Oxidative Stress by down Regulating JNK

    Science.gov (United States)

    Zhao, Enpeng; Amir, Muhammad; Lin, Yu; Czaja, Mark J.

    2014-01-01

    Stathmin 1 performs a critical function in cell proliferation by regulating microtubule polymerization. This proliferative function is thought to explain the frequent overexpression of stathmin in human cancer and its correlation with a bad prognosis. Whether stathmin also functions in cell death pathways is unclear. Stathmin regulates microtubules in part by binding free tubulin, a process inhibited by stathmin phosphorylation from kinases including c-Jun N-terminal kinase (JNK). The involvement of JNK activation both in stathmin phosphorylation, and in hepatocellular resistance to oxidative stress, led to an examination of the role of stathmin/JNK crosstalk in oxidant-induced hepatocyte death. Oxidative stress from menadione-generated superoxide induced JNK-dependent stathmin phosphorylation at Ser-16, Ser-25 and Ser-38 in hepatocytes. A stathmin knockdown sensitized hepatocytes to both apoptotic and necrotic cell death from menadione without altering levels of oxidant generation. The absence of stathmin during oxidative stress led to JNK overactivation that was the mechanism of cell death as a concomitant knockdown of JNK1 or JNK2 blocked death. Hepatocyte death from JNK overactivation was mediated by the effects of JNK on mitochondria. Mitochondrial outer membrane permeabilization occurred in stathmin knockdown cells at low concentrations of menadione that triggered apoptosis, whereas mitochondrial β-oxidation and ATP homeostasis were compromised at higher, necrotic menadione concentrations. Stathmin therefore mediates hepatocyte resistance to death from oxidative stress by down regulating JNK and maintaining mitochondrial integrity. These findings demonstrate a new mechanism by which stathmin promotes cell survival and potentially tumor growth. PMID:25285524

  12. Stathmin mediates hepatocyte resistance to death from oxidative stress by down regulating JNK.

    Directory of Open Access Journals (Sweden)

    Enpeng Zhao

    Full Text Available Stathmin 1 performs a critical function in cell proliferation by regulating microtubule polymerization. This proliferative function is thought to explain the frequent overexpression of stathmin in human cancer and its correlation with a bad prognosis. Whether stathmin also functions in cell death pathways is unclear. Stathmin regulates microtubules in part by binding free tubulin, a process inhibited by stathmin phosphorylation from kinases including c-Jun N-terminal kinase (JNK. The involvement of JNK activation both in stathmin phosphorylation, and in hepatocellular resistance to oxidative stress, led to an examination of the role of stathmin/JNK crosstalk in oxidant-induced hepatocyte death. Oxidative stress from menadione-generated superoxide induced JNK-dependent stathmin phosphorylation at Ser-16, Ser-25 and Ser-38 in hepatocytes. A stathmin knockdown sensitized hepatocytes to both apoptotic and necrotic cell death from menadione without altering levels of oxidant generation. The absence of stathmin during oxidative stress led to JNK overactivation that was the mechanism of cell death as a concomitant knockdown of JNK1 or JNK2 blocked death. Hepatocyte death from JNK overactivation was mediated by the effects of JNK on mitochondria. Mitochondrial outer membrane permeabilization occurred in stathmin knockdown cells at low concentrations of menadione that triggered apoptosis, whereas mitochondrial β-oxidation and ATP homeostasis were compromised at higher, necrotic menadione concentrations. Stathmin therefore mediates hepatocyte resistance to death from oxidative stress by down regulating JNK and maintaining mitochondrial integrity. These findings demonstrate a new mechanism by which stathmin promotes cell survival and potentially tumor growth.

  13. Senescence-related functional nuclear barrier by down-regulation of nucleo-cytoplasmic trafficking gene expression

    International Nuclear Information System (INIS)

    Kim, Sung Young; Ryu, Sung Jin; Ahn, Hong Ju; Choi, Hae Ri; Kang, Hyun Tae; Park, Sang Chul

    2010-01-01

    One of the characteristic natures of senescent cells is the hypo- or irresponsiveness not only to growth factors but also to apoptotic stress. In the present study, we confirmed the inhibition of nuclear translocation of activated p-ERK1/2 and NF-kB p50 in response to growth stimuli or LPS in the senescent human diploid fibroblasts. In order to elucidate the underlying mechanism for the senescence-associated hypo-responsiveness, we carried out the comparison study for gene expression profiles through microarray analysis. In consequence, we observed the vast reduction in expression of nucleo-cytoplasmic trafficking genes in senescent cells, when compared with those in young cells. Expression levels of several nucleoporins, karyopherin α, karyopherin β, Ran, and Ran-regulating factors were confirmed to be down-regulated in senescent HDFs by using RT-PCR and Western blot methods. Taken together, these data suggest the operation of certain senescence-associated functional nuclear barriers by down-regulation of the nucleo-cytoplasmic trafficking genes in the senescent cells.

  14. Senescence-related functional nuclear barrier by down-regulation of nucleo-cytoplasmic trafficking gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Young; Ryu, Sung Jin; Ahn, Hong Ju; Choi, Hae Ri; Kang, Hyun Tae [Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, Institute on Aging, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Park, Sang Chul, E-mail: scpark@snu.ac.kr [Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, Institute on Aging, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of)

    2010-01-01

    One of the characteristic natures of senescent cells is the hypo- or irresponsiveness not only to growth factors but also to apoptotic stress. In the present study, we confirmed the inhibition of nuclear translocation of activated p-ERK1/2 and NF-kB p50 in response to growth stimuli or LPS in the senescent human diploid fibroblasts. In order to elucidate the underlying mechanism for the senescence-associated hypo-responsiveness, we carried out the comparison study for gene expression profiles through microarray analysis. In consequence, we observed the vast reduction in expression of nucleo-cytoplasmic trafficking genes in senescent cells, when compared with those in young cells. Expression levels of several nucleoporins, karyopherin {alpha}, karyopherin {beta}, Ran, and Ran-regulating factors were confirmed to be down-regulated in senescent HDFs by using RT-PCR and Western blot methods. Taken together, these data suggest the operation of certain senescence-associated functional nuclear barriers by down-regulation of the nucleo-cytoplasmic trafficking genes in the senescent cells.

  15. The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways.

    Science.gov (United States)

    Youns, Mаhmoud; Abdel Halim Hegazy, Wael

    2017-01-01

    Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2), colorectal (Caco-2) and pancreatic (Suit-2) cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes.

  16. The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Mаhmoud Youns

    Full Text Available Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2, colorectal (Caco-2 and pancreatic (Suit-2 cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes.

  17. The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways

    Science.gov (United States)

    Youns, Mаhmoud; Abdel Halim Hegazy, Wael

    2017-01-01

    Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2), colorectal (Caco-2) and pancreatic (Suit-2) cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes. PMID:28052097

  18. Impressic acid from Acanthopanax koreanum, possesses matrix metalloproteinase-13 down-regulating capacity and protects cartilage destruction.

    Science.gov (United States)

    Lim, Hyun; Min, Dong Suk; Yun, Han Eul; Kim, Kil Tae; Sun, Ya Nan; Dat, Le Duc; Kim, Young Ho; Kim, Hyun Pyo

    2017-09-14

    Acanthopanax koreanum (Araliaceae) has been used in traditional medicine for enhancing vitality, rheumatism, and bone-related pains. But its activity on cartilage protection has not been known yet. Matrix metalloproteinase (MMP)-13 has an important role in degrading cartilage materials under pathologic conditions such as arthritis. The present study was designed to find the inhibitory activity of impressic acid on MMP-13 expression and cartilage protective action. 70% ethanol extract of Acanthopanax koreanum leaves and impressic acid, a major constituent isolated from the same plant materials, were examined on MMP-13 down-regulating capacity in IL-1β-treated human chondrocyte cell line (SW1353) and rabbit cartilage explants. In IL-1β-treated SW1353 cells, impressic acid significantly and concentration-dependently inhibited MMP-13 expression at 0.5-10μM. Impressic acid was found to be able to inhibit MMP-13 expression by blocking the phosphorylation of signal transducer and activator of transcription-1/-2 (STAT-1/-2) and activation of c-Jun and c-Fos among the cellular signaling pathways involved. Further, impressic acid was found to inhibit the expression of MMP-13 mRNA (47.7% inhibition at 10μM), glycosaminoglycan release (42.2% reduction at 10μM) and proteoglycan loss in IL-1-treated rabbit cartilage explants culture. In addition, a total of 21 lupane-type triterpenoids structurally-related to impressic acid were isolated from the same plant materials and their suppressive activities against MMP-13 expression were also examined. Among these derivatives, compounds 2, 3, 16, and 18 clearly down-regulated MMP-13 expression. However, impressic acid was more potent than these derivatives in down-regulating MMP-13 expression. Impressic acid, its related triterpenoids, and A. koreanum extract have potential as therapeutic agents to prevent cartilage degradation by inhibiting matrix protein degradation. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  19. Multiple intracellular signaling pathways orchestrate adipocytic differentiation of human bone marrow stromal stem cells

    DEFF Research Database (Denmark)

    Ayesh Hafez Ali, Dalia; Abuelreich, Sarah; Alkeraishan, Nora

    2018-01-01

    during adipocyte differentiation of human bone marrow stromal (mesenchymal) stem cells (hMSCs) and identified 2,589 up-regulated and 2,583 down-regulated mRNA transcripts. Pathway analysis on the up-regulated gene list untraveled enrichment in multiple signaling pathways including insulin receptor......Bone marrow adipocyte formation plays a role in bone homeostasis and whole body energy metabolism. However, the transcriptional landscape and signaling pathways associated with adipocyte lineage commitment and maturation are not fully delineated. Thus, we performed global gene expression profiling...... signaling, focal Adhesion, metapathway biotransformation, a number of metabolic pathways e.g. selenium metabolism, Benzo(a)pyrene metabolism, fatty acid, triacylglycerol, ketone body metabolism, tryptophan metabolism, and catalytic cycle of mammalian flavin-containing monooxygenase (FMOs). On the other hand...

  20. hZip2 and hZip3 zinc transporters are down regulated in human prostate adenocarcinomatous glands

    Directory of Open Access Journals (Sweden)

    Franklin Renty B

    2007-06-01

    Full Text Available Abstract Background The normal human prostate glandular epithelium has the unique function of accumulating high levels of zinc. In prostate cancer this capability is lost as an early event in the development of the malignant cells. The mechanism and factors responsible for the ability of the normal epithelial cells to accumulate zinc and the loss of this capability in the malignant cells need to be identified. We previously reported that Zip1 is an important zinc uptake transporter in prostate cells and is down regulated in the malignant cells in situ along with the depletion of zinc levels. In this report we investigated the expression of two other Zip family zinc transporters, Zip2 and Zip3 in malignant versus nonmalignant (normal and BPH glands. Zip2 and Zip3 relative protein levels were determined by immunohistochemistry analysis of human prostate tissue sections. Results Normal and BPH glandular epithelium consistently exhibited the strong presence of both Zip 2 and Zip3; whereas both transporters consistently were essentially non-detectable in the malignant glands. This represents the first report of the expression of Zip3 in human prostate tissue; and more importantly, reveals that ZiP2 and Zip3 are down regulated in malignant cells in situ as we also had demonstrated for Zip1. Zip2 and Zip3 transporter proteins were localized predominantly at the apical cell membrane, which is in contrast to the Zip1 localization at the basolateral membrane. Zip2 and Zip3 seemingly are associated with the re-uptake of zinc from prostatic fluid. Conclusion These results coupled with previous reports implicate Zip2 and Zip3 along with Zip1 as important zinc uptake transporters involved in the unique ability of prostate cells to accumulate high cellular zinc levels. Zip1 is important for the extraction of zinc from circulation as the primary source of cellular zinc. Zip 2 and Zip3 appear to be important for retention of the zinc in the cellular compartment

  1. Circumvention of Mcl-1-dependent drug resistance by simultaneous Chk1 and MEK1/2 inhibition in human multiple myeloma cells.

    Science.gov (United States)

    Pei, Xin-Yan; Dai, Yun; Felthousen, Jessica; Chen, Shuang; Takabatake, Yukie; Zhou, Liang; Youssefian, Leena E; Sanderson, Michael W; Bodie, Wesley W; Kramer, Lora B; Orlowski, Robert Z; Grant, Steven

    2014-01-01

    The anti-apoptotic protein Mcl-1 plays a major role in multiple myeloma (MM) cell survival as well as bortezomib- and microenvironmental forms of drug resistance in this disease. Consequently, there is a critical need for strategies capable of targeting Mcl-1-dependent drug resistance in MM. The present results indicate that a regimen combining Chk1 with MEK1/2 inhibitors effectively kills cells displaying multiple forms of drug resistance stemming from Mcl-1 up-regulation in association with direct transcriptional Mcl-1 down-regulation and indirect disabling of Mcl-1 anti-apoptotic function through Bim up-regulation and increased Bim/Mcl-1 binding. These actions release Bak from Mcl-1, accompanied by Bak/Bax activation. Analogous events were observed in both drug-naïve and acquired bortezomib-resistant MM cells displaying increased Mcl-1 but diminished Bim expression, or cells ectopically expressing Mcl-1. Moreover, concomitant Chk1 and MEK1/2 inhibition blocked Mcl-1 up-regulation induced by IL-6/IGF-1 or co-culture with stromal cells, effectively overcoming microenvironment-related drug resistance. Finally, this regimen down-regulated Mcl-1 and robustly killed primary CD138+ MM cells, but not normal hematopoietic cells. Together, these findings provide novel evidence that this targeted combination strategy could be effective in the setting of multiple forms of Mcl-1-related drug resistance in MM.

  2. Circumvention of Mcl-1-dependent drug resistance by simultaneous Chk1 and MEK1/2 inhibition in human multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Xin-Yan Pei

    Full Text Available The anti-apoptotic protein Mcl-1 plays a major role in multiple myeloma (MM cell survival as well as bortezomib- and microenvironmental forms of drug resistance in this disease. Consequently, there is a critical need for strategies capable of targeting Mcl-1-dependent drug resistance in MM. The present results indicate that a regimen combining Chk1 with MEK1/2 inhibitors effectively kills cells displaying multiple forms of drug resistance stemming from Mcl-1 up-regulation in association with direct transcriptional Mcl-1 down-regulation and indirect disabling of Mcl-1 anti-apoptotic function through Bim up-regulation and increased Bim/Mcl-1 binding. These actions release Bak from Mcl-1, accompanied by Bak/Bax activation. Analogous events were observed in both drug-naïve and acquired bortezomib-resistant MM cells displaying increased Mcl-1 but diminished Bim expression, or cells ectopically expressing Mcl-1. Moreover, concomitant Chk1 and MEK1/2 inhibition blocked Mcl-1 up-regulation induced by IL-6/IGF-1 or co-culture with stromal cells, effectively overcoming microenvironment-related drug resistance. Finally, this regimen down-regulated Mcl-1 and robustly killed primary CD138+ MM cells, but not normal hematopoietic cells. Together, these findings provide novel evidence that this targeted combination strategy could be effective in the setting of multiple forms of Mcl-1-related drug resistance in MM.

  3. Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase.

    Science.gov (United States)

    Chen, Lei; Auh, Chung-Kyoon; Dowling, Paul; Bell, Jeremey; Chen, Fang; Hopkins, Andrew; Dixon, Richard A; Wang, Zeng-Yu

    2003-11-01

    Lignification of cell walls during plant development has been identified as the major factor limiting forage digestibility and concomitantly animal productivity. cDNA sequences encoding a key lignin biosynthetic enzyme, cinnamyl alcohol dehydrogenase (CAD), were cloned from the widely grown monocotyledonous forage species tall fescue (Festuca arundinacea Schreb.). Recombinant tall fescue CAD expressed in E. coli exhibited the highest V(max)/K(m) values when coniferaldehyde and sinapaldehyde were used as substrates. Transgenic tall fescue plants carrying either sense or antisense CAD gene constructs were obtained by microprojectile bombardment of single genotype-derived embryogenic suspension cells. Severely reduced levels of mRNA transcripts and significantly reduced CAD enzymatic activities were found in two transgenic plants carrying sense and antisense CAD transgenes, respectively. These CAD down-regulated transgenic lines had significantly decreased lignin content and altered ratios of syringyl (S) to guaiacyl (G), G to p-hydroxyphenyl (H) and S to H units. No significant changes in cellulose, hemicellulose, neutral sugar composition, p-coumaric acid and ferulic acid levels were observed in the transgenic plants. Increases of in vitro dry matter digestibility of 7.2-9.5% were achieved in the CAD down-regulated lines, thus providing a novel germplasm to be used for the development of grass cultivars with improved forage quality.

  4. The Down regulated in Adenoma (dra) gene encodes an intestine-specific membrane sulfate transport protein.

    Science.gov (United States)

    Silberg, D G; Wang, W; Moseley, R H; Traber, P G

    1995-05-19

    A gene has been described, Down Regulated in Adenoma (dra), which is expressed in normal colon but is absent in the majority of colon adenomas and adenocarcinomas. However, the function of this protein is unknown. Because of sequence similarity to a recently cloned membrane sulfate transporter in rat liver, the transport function of Dra was examined. We established that dra encodes for a Na(+)-independent transporter for both sulfate and oxalate using microinjected Xenopus oocytes as an assay system. Sulfate transport was sensitive to the anion exchange inhibitor DIDS (4,4'-diisothiocyano-2,2' disulfonic acid stilbene). Using an RNase protection assay, we found that dra mRNA expression is limited to the small intestine and colon in mouse, therefore identifying Dra as an intestine-specific sulfate transporter. dra also had a unique pattern of expression during intestinal development. Northern blot analysis revealed a low level of expression in colon at birth with a marked increase in the first 2 postnatal weeks. In contrast, there was a lower, constant level of expression in small intestine in the postnatal period. Caco-2 cells, a colon carcinoma cell line that differentiates over time in culture, demonstrated a marked induction of dra mRNA as cells progressed from the preconfluent (undifferentiated) to the postconfluent (differentiated) state. These results show that Dra is an intestine-specific Na(+)-independent sulfate transporter that has differential expression during colonic development. This functional characterization provides the foundation for investigation of the role of Dra in intestinal sulfate transport and in the malignant phenotype.

  5. Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPα (signal regulatory protein-α on phagocytes

    Directory of Open Access Journals (Sweden)

    Reichert Fanny

    2011-03-01

    Full Text Available Abstract Background Traumatic injury to axons produces breakdown of axons and myelin at the site of the lesion and then further distal to this where Wallerian degeneration develops. The rapid removal of degenerated myelin by phagocytosis is advantageous for repair since molecules in myelin impede regeneration of severed axons. Thus, revealing mechanisms that regulate myelin phagocytosis by macrophages and microglia is important. We hypothesize that myelin regulates its own phagocytosis by simultaneous activation and down-regulation of microglial and macrophage responses. Activation follows myelin binding to receptors that mediate its phagocytosis (e.g. complement receptor-3, which has been previously studied. Down-regulation, which we test here, follows binding of myelin CD47 to the immune inhibitory receptor SIRPα (signal regulatory protein-α on macrophages and microglia. Methods CD47 and SIRPα expression was studied by confocal immunofluorescence microscopy, and myelin phagocytosis by ELISA. Results We first document that myelin, oligodendrocytes and Schwann cells express CD47 without SIRPα and further confirm that microglia and macrophages express both CD47 and SIRPα. Thus, CD47 on myelin can bind to and subsequently activate SIRPα on phagocytes, a prerequisite for CD47/SIRPα-dependent down-regulation of CD47+/+ myelin phagocytosis by itself. We then demonstrate that phagocytosis of CD47+/+ myelin is augmented when binding between myelin CD47 and SIRPα on phagocytes is blocked by mAbs against CD47 and SIRPα, indicating that down-regulation of phagocytosis indeed depends on CD47-SIRPα binding. Further, phagocytosis in serum-free medium of CD47+/+ myelin is augmented after knocking down SIRPα levels (SIRPα-KD in phagocytes by lentiviral infection with SIRPα-shRNA, whereas phagocytosis of myelin that lacks CD47 (CD47-/- is not. Thus, myelin CD47 produces SIRPα-dependent down-regulation of CD47+/+ myelin phagocytosis in phagocytes

  6. Structural Characterization of Lignin in Wild-Type versus COMT Down-Regulated Switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Reichel [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA (United States); BioEnergy Science Center, Oak Ridge, TN (United States); Pu, Yunqiao, E-mail: yunqiao.pu@ipst.gatech.edu [BioEnergy Science Center, Oak Ridge, TN (United States); Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA (United States); Jiang, Nan [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA (United States); BioEnergy Science Center, Oak Ridge, TN (United States); Fu, Chunxiang [Forage Improvement Division, The Samuel Roberts Noble Foundation, Ardmore, OK (United States); Wang, Zeng-Yu [BioEnergy Science Center, Oak Ridge, TN (United States); Forage Improvement Division, The Samuel Roberts Noble Foundation, Ardmore, OK (United States); Ragauskas, Arthur, E-mail: yunqiao.pu@ipst.gatech.edu [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA (United States); BioEnergy Science Center, Oak Ridge, TN (United States)

    2014-01-20

    This study examined the chemical structural characteristics of cellulolytic enzyme lignin isolated from switchgrass focusing on comparisons between wild-type control and caffeic acid 3-O-methyltransferase (COMT) down-regulated transgenic line. Nuclear magnetic resonance techniques including {sup 13}C, {sup 31}P, and two-dimensional {sup 13}C-{sup 1}H heteronuclear single quantum coherence as well as gel permeation chromatography were employed. Compared to the wild-type, the COMT down-regulated transgenic switchgrass lignin demonstrated a decrease in syringyl (S):guaiacyl (G) ratio and p-coumarate:ferulate ratio, an increase in relative abundance of phenylcoumaran unit, and a comparable content of total free phenolic OH groups along with formation of benzodioxane unit. In addition, COMT down-regulation had no significant effects on the lignin molecular weights during its biosynthesis process.

  7. Paroxetine prevented the down-regulation of astrocytic L-Glu transporters in neuroinflammation

    Directory of Open Access Journals (Sweden)

    Koki Fujimori

    2015-01-01

    Full Text Available The extracellular L-glutamate (L-Glu concentration is elevated in neuroinflammation, thereby causing excitotoxicity. One of the mechanisms is down-regulation of astrocyte L-Glu transporters. Some antidepressants have anti-inflammatory effects. We therefore investigated effects of various antidepressants on the down-regulation of astrocyte L-Glu transporters in the in vitro neuroinflammation model. Among these antidepressants, only paroxetine was effective. We previously demonstrated that the down-regulation of astrocyte L-Glu transporters was caused by L-Glu released from activated microglia. We here clarified that only paroxetine inhibited L-Glu release from microglia. This is the novel action of paroxetine, which may bring advantages on the therapy of neuroinflammation.

  8. Curcumin inhibits hepatitis B virus infection by down-regulating cccDNA-bound histone acetylation.

    Science.gov (United States)

    Wei, Zhi-Qiang; Zhang, Yong-Hong; Ke, Chang-Zheng; Chen, Hong-Xia; Ren, Pan; He, Yu-Lin; Hu, Pei; Ma, De-Qiang; Luo, Jie; Meng, Zhong-Ji

    2017-09-14

    To investigate the potential effect of curcumin on hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) and the underlying mechanism. A HepG2.2.15 cell line stably transfected with HBV was treated with curcumin, and HBV surface antigen (HBsAg) and e antigen (HBeAg) expression levels were assessed by ELISA. Intracellular HBV DNA replication intermediates and cccDNA were detected by Southern blot and real-time PCR, respectively. The acetylation levels of histones H3 and H4 were measured by Western blot. H3/H4-bound cccDNA was detected by chromatin immunoprecipitation (ChIP) assays. The deacetylase inhibitors trichostatin A and sodium butyrate were used to study the mechanism of action for curcumin. Additionally, short interfering RNAs (siRNAs) targeting HBV were tested along with curcumin. Curcumin treatment led to time- and dose-dependent reductions in HBsAg and HBeAg expression and significant reductions in intracellular HBV DNA replication intermediates and HBV cccDNA. After treatment with 20 μmol/L curcumin for 2 d, HBsAg and cccDNA levels in HepG2.2.15 cells were reduced by up to 57.7% ( P curcumin, accompanied by reductions in H3- and H4-bound cccDNA. Furthermore, the deacetylase inhibitors trichostatin A and sodium butyrate could block the effects of curcumin. Additionally, transfection of siRNAs targeting HBV enhanced the inhibitory effects of curcumin. Curcumin inhibits HBV gene replication via down-regulation of cccDNA-bound histone acetylation and has the potential to be developed as a cccDNA-targeting antiviral agent for hepatitis B.

  9. Irradiation of protoporphyric mice induces down-regulation of epidermal eicosanoid metabolism

    International Nuclear Information System (INIS)

    He, D.; Lim, H.W.

    1991-01-01

    This study investigated the effect of radiation on clinical and histologic changes, and on cutaneous eicosanoid metabolism, in Skh:HR-1 hairless albino mice rendered protoporphyric by the administration of collidine. At 0.1-18 h after exposure to 12 kJ/m2 of 396-406 nm irradiation, thicknesses of back skin and ears were measured, and histologic changes were evaluated by using hematoxylin and eosin (H-E) and Giemsa's stains. Activities of eicosanoid-metabolizing enzymes in epidermal and dermal homogenates were assessed by incubating the tissue homogenates with 3H-AA, followed by quantitation of the eicosanoids generated by radio-TLC. In irradiated protoporphyric mice, an increase of back-skin thickness was noted at 0.1 h, reaching a peak at 18 h, whereas maximal increase in ear thickness was observed at 12 h. Histologic changes included dermal edema, increased mast cell degranulation, and mononuclear cells in the dermis. In these irradiated protoporphyric animals, generations of 6 keto-PGF1a, PGF2a, PGE2, PGD2, and HETE by epidermal eicosanoid-metabolizing enzymes were markedly suppressed at all the timepoints studied. Dermal eicosanoid-metabolizing enzymes of irradiated protoporphyric mice generated increased amounts of PGE2 and HETE at 18 h, probably reflecting the presence of dermal cellular infiltrates. The suppression of the activities of epidermal eicosanoid-metabolizing enzymes was prevented by intraperitoneal injection of WR-2721, a sulfhydryl group generator, prior to irradiation, suggesting that the suppression was secondary to photo-oxidative damage of the enzymes during the in vivo phototoxic response. These results suggest that the effect of protoporphyrin and radiation on cutaneous eicosanoid metabolism in this animal model in vivo is that of a down regulation of the activities of epidermal eicosanoid-metabolizing enzymes

  10. Down-regulated resistin level in consequence of decreased neutrophil counts in untreated Grave's disease.

    Science.gov (United States)

    Peng, Ying; Qi, Yicheng; Huang, Fengjiao; Chen, Xinxin; Zhou, Yulin; Ye, Lei; Wang, Weiqing; Ning, Guang; Wang, Shu

    2016-11-29

    Resistin, belongs to cysteine-rich secretory protein, is mainly produced by circulating leukocytes, such as neutrophils monocytes and macrophages in humans. To date, few but controversial studies have reported about resistin concentrations in hyperthyroid patients, especially in Graves' disease (GD). We undertaked a controlled, prospective study to explore the serum resistin concentration in GD patients before and after -MMI treatment. In addition, we also investigated the main influencing factor on serum resistin level and discuessed the potential role of serum resistin plays in GD patients. 39 untreated GD (uGD) patients, including 8 males and 31 females, were enrolled in our investigation. All of these patients were prescribed with MMI treatment, in addition to 25 healthy controls. Anthropometric parameters and hormone assessment were measured. Enzyme-linked immunosorbent assay was used to detect serum resistin concentration in different stages of GD patients. Furthermore, neutrophil cell line NB4 with or without T3 treatment to detect the effect of thyroid hormones on resistin expression. The serum resistin level and neutrophil counts in untreated GD patients were significantly declined. And all of these parameters were recovered to normal after MMI treatment in ethyroid GD (eGD) and TRAb-negative conversion (nGD) patients. Resistin concentration exhibited a negative correlation with FT3 and FT4, but a positive correlation with absolute number of neutrophiles in uGD patients, whereas did not correlate with thyroid autoimmune antibodies and BMI. Neutrophile cell line, NB4, produced decreased expression of resistin when stimulated with T3. Our study showed a decrease of serum resistin level in GD patients and we suggested that the serum resistin might primarily secreted from circulating neutrophils and down-regulated by excessive thyroid hormones in GD patients.

  11. BDNF val66met Polymorphism Impairs Hippocampal Long-Term Depression by Down-Regulation of 5-HT3 Receptors

    Directory of Open Access Journals (Sweden)

    Rui Hao

    2017-10-01

    Full Text Available Brain-derived neurotrophic factor (BDNF is a key regulator of neuronal plasticity and cognitive functions. BDNF val66met polymorphism, a human single-nucleotide polymorphism (SNP in the pro-domain of BDNF gene, is associated with deficits in activity-dependent BDNF secretion and hippocampus-dependent memory. However, the underlying mechanism remains unclear. Here we show that in the BDNFMet/Met mouse line mimicking the human SNP, BDNF expression in the hippocampus was decreased. There was a reduction in the total number of cells in hippocampal CA1 region, while hippocampal expression of mRNAs for NR2a, 2b, GluR1, 2 and GABAARβ3 subunits were up-regulated. Although basal glutamatergic neurotransmission was unaltered, hippocampal long-term depression (LTD induced by low-frequency stimulation was impaired, which was partially rescued by exogenous application of BDNF. Interestingly, 5-HT3a receptors were down-regulated in the hippocampus of BDNFMet/Met mice, whereas 5-HT2c receptors were up-regulated. Moreover, impaired LTD in BDNFMet/Met mice was reversed by 5-HT3aR agonist. Thus, these observations indicate that BDNF val66met polymorphism changes hippocampal synaptic plasticity via down-regulation of 5-HT3a receptors, which may underlie cognition dysfunction of Met allele carriers.

  12. Agitation down-regulates immunoglobulin binding protein EibG expression in Shiga toxin-producing Escherichia coli (STEC.

    Directory of Open Access Journals (Sweden)

    Thorsten Kuczius

    Full Text Available Shiga toxin (Stx-producing Escherichia coli (STEC carrying eibG synthesize Escherichia coli immunoglobulin binding protein (EibG. EibG nonspecifically binds to immunoglobulins and tends to aggregate in multimers but is poorly expressed in wild-type strains. To study synthesis of the proteins and their regulation in the pathogens, we identified natural growth conditions that increased EibG synthesis. EibG proteins as well as corresponding mRNA were highly expressed under static growth conditions while shearing stress created by agitation during growth repressed protein synthesis. Further regulation effects were driven by reduced oxygen tension, and pH up-regulated EibG expression, but to a lesser extent than growth conditions while decreased temperature down-regulated EibG. Bacteria with increased EibG expression during static growth conditions showed a distinct phenotype with chain formation and biofilm generation, which disappeared with motion. High and low EibG expression was reversible indicating a process with up- and down-regulation of the protein expression. Our findings indicate that shear stress represses EibG expression and might reduce bacterial attachments to cells and surfaces.

  13. Petiveria alliacea extracts uses multiple mechanisms to inhibit growth of human and mouse tumoral cells

    Directory of Open Access Journals (Sweden)

    Kaur Punit

    2008-11-01

    Full Text Available Abstract Background There is ethnopharmacological evidence that Petiveria alliacea can have antitumor activity; however, the mechanism of its cytotoxic activity is not well understood. We assessed multiple in vitro biological activities of an ethyl acetate soluble plant fraction over several tumor cell lines. Methods Tumor cell lines were evaluated using the following tests: trypan blue exclusion test, MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide], flow cytometry, cytoskeleton organization analysis, cell cycle, mitochondria membrane depolarization, clonogenicity test, DNA fragmentation test and differential protein expression by HPLC-Chip/MS analysis. F4 fraction characterization was made by HPLC-MS. Results Petiveria alliacea fraction characterized by de-replication was found to alter actin cytoskeleton organization, induce G2 cell cycle arrest and cause apoptotic cell death in a mitochondria independent way. In addition, we found down regulation of cytoskeleton, chaperone, signal transduction proteins, and proteins involved in metabolic pathways. Finally up regulation of proteins involved in translation and intracellular degradation was also observed. Conclusion The results of this study indicate that Petiveria alliacea exerts multiple biological activities in vitro consistent with cytotoxicity. Further studies in animal models are needed but Petiveria alliacea appears to be a good candidate to be used as an antitumor agent.

  14. Petiveria alliacea extracts uses multiple mechanisms to inhibit growth of human and mouse tumoral cells.

    Science.gov (United States)

    Urueña, Claudia; Cifuentes, Claudia; Castañeda, Diana; Arango, Amparo; Kaur, Punit; Asea, Alexzander; Fiorentino, Susana

    2008-11-18

    There is ethnopharmacological evidence that Petiveria alliacea can have antitumor activity; however, the mechanism of its cytotoxic activity is not well understood. We assessed multiple in vitro biological activities of an ethyl acetate soluble plant fraction over several tumor cell lines. Tumor cell lines were evaluated using the following tests: trypan blue exclusion test, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide], flow cytometry, cytoskeleton organization analysis, cell cycle, mitochondria membrane depolarization, clonogenicity test, DNA fragmentation test and differential protein expression by HPLC-Chip/MS analysis. F4 fraction characterization was made by HPLC-MS. Petiveria alliacea fraction characterized by de-replication was found to alter actin cytoskeleton organization, induce G2 cell cycle arrest and cause apoptotic cell death in a mitochondria independent way. In addition, we found down regulation of cytoskeleton, chaperone, signal transduction proteins, and proteins involved in metabolic pathways. Finally up regulation of proteins involved in translation and intracellular degradation was also observed. The results of this study indicate that Petiveria alliacea exerts multiple biological activities in vitro consistent with cytotoxicity. Further studies in animal models are needed but Petiveria alliacea appears to be a good candidate to be used as an antitumor agent.

  15. The transcription factor FOXO4 is down-regulated and inhibits tumor proliferation and metastasis in gastric cancer

    International Nuclear Information System (INIS)

    Su, Linna; Liu, Xiangqiang; Chai, Na; Lv, Lifen; Wang, Rui; Li, Xiaosa; Nie, Yongzhan; Shi, Yongquan; Fan, Daiming

    2014-01-01

    FOXO4, a member of the FOXO family of transcription factors, is currently the focus of intense study. Its role and function in gastric cancer have not been fully elucidated. The present study was aimed to investigate the expression profile of FOXO4 in gastric cancer and the effect of FOXO4 on cancer cell growth and metastasis. Immunohistochemistry, Western blotting and qRT-PCR were performed to detect the FOXO4 expression in gastric cancer cells and tissues. Cell biological assays, subcutaneous tumorigenicity and tail vein metastatic assay in combination with lentivirus construction were performed to detect the impact of FOXO4 to gastric cancer in proliferation and metastasis in vitro and in vivo. Confocal and qRT-PCR were performed to explore the mechanisms. We found that the expression of FOXO4 was decreased significantly in most gastric cancer tissues and in various human gastric cancer cell lines. Up-regulating FOXO4 inhibited the growth and metastasis of gastric cancer cell lines in vitro and led to dramatic attenuation of tumor growth, and liver and lung metastasis in vivo, whereas down-regulating FOXO4 with specific siRNAs promoted the growth and metastasis of gastric cancer cell lines. Furthermore, we found that up-regulating FOXO4 could induce significant G1 arrest and S phase reduction and down-regulation of the expression of vimentin. Our data suggest that loss of FOXO4 expression contributes to gastric cancer growth and metastasis, and it may serve as a potential therapeutic target for gastric cancer

  16. CD36 deficiency leads to choroidal involution via COX2 down-regulation in rodents.

    Directory of Open Access Journals (Sweden)

    Marianne Houssier

    2008-02-01

    Full Text Available BACKGROUND: In the Western world, a major cause of blindness is age-related macular degeneration (AMD. Recent research in angiogenesis has furthered the understanding of choroidal neovascularization, which occurs in the "wet" form of AMD. In contrast, very little is known about the mechanisms of the predominant, "dry" form of AMD, which is characterized by retinal atrophy and choroidal involution. The aim of this study is to elucidate the possible implication of the scavenger receptor CD36 in retinal degeneration and choroidal involution, the cardinal features of the dry form of AMD. METHODS AND FINDINGS: We here show that deficiency of CD36, which participates in outer segment (OS phagocytosis by the retinal pigment epithelium (RPE in vitro, leads to significant progressive age-related photoreceptor degeneration evaluated histologically at different ages in two rodent models of CD36 invalidation in vivo (Spontaneous hypertensive rats (SHR and CD36-/- mice. Furthermore, these animals developed significant age related choroidal involution reflected in a 100%-300% increase in the avascular area of the choriocapillaries measured on vascular corrosion casts of aged animals. We also show that proangiogenic COX2 expression in RPE is stimulated by CD36 activating antibody and that CD36-deficient RPE cells from SHR rats fail to induce COX2 and subsequent vascular endothelial growth factor (VEGF expression upon OS or antibody stimulation in vitro. CD36-/- mice express reduced levels of COX2 and VEGF in vivo, and COX2-/- mice develop progressive choroidal degeneration similar to what is seen in CD36 deficiency. CONCLUSIONS: CD36 deficiency leads to choroidal involution via COX2 down-regulation in the RPE. These results show a novel molecular mechanism of choroidal degeneration, a key feature of dry AMD. These findings unveil a pathogenic process, to our knowledge previously undescribed, with important implications for the development of new therapies.

  17. Ectodermal-neural cortex 1 down-regulates Nrf2 at the translational level.

    Directory of Open Access Journals (Sweden)

    Xiao-Jun Wang

    Full Text Available The transcription factor Nrf2 is the master regulator of a cellular defense mechanism against environmental insults. The Nrf2-mediated antioxidant response is accomplished by the transcription of a battery of genes that encode phase II detoxifying enzymes, xenobiotic transporters, and antioxidants. Coordinated expression of these genes is critical in protecting cells from toxic and carcinogenic insults and in maintaining cellular redox homeostasis. Activation of the Nrf2 pathway is primarily controlled by Kelch-like ECH-associated protein 1 (Keap1, which is a molecular switch that turns on or off the Nrf2 signaling pathway according to intracellular redox conditions. Here we report our finding of a novel Nrf2 suppressor ectodermal-neural cortex 1 (ENC1, which is a BTB-Kelch protein and belongs to the same family as Keap1. Transient expression of ENC1 reduced steady-state levels of Nrf2 and its downstream gene expression. Although ENC1 interacted with Keap1 indirectly, the ENC1-mediated down-regulation of Nrf2 was independent of Keap1. The negative effect of ENC1 on Nrf2 was not due to a change in the stability of Nrf2 because neither proteasomal nor lysosomal inhibitors had any effects. Overexpression of ENC1 did not result in a change in the level of Nrf2 mRNA, rather, it caused a decrease in the rate of Nrf2 protein synthesis. These results demonstrate that ENC1 functions as a negative regulator of Nrf2 through suppressing Nrf2 protein translation, which adds another level of complexity in controlling the Nrf2 signaling pathway.

  18. Rapid male-specific regulatory divergence and down regulation of spermatogenesis genes in Drosophila species hybrids.

    Directory of Open Access Journals (Sweden)

    Jennifer Ferguson

    Full Text Available In most crosses between closely related species of Drosophila, the male hybrids are sterile and show postmeiotic abnormalities. A series of gene expression studies using genomic approaches have found significant down regulation of postmeiotic spermatogenesis genes in sterile male hybrids. These results have led some to suggest a direct relationship between down regulation in gene expression and hybrid sterility. An alternative explanation to a cause-and-effect relationship between misregulation of gene expression and male sterility is rapid divergence of male sex regulatory elements leading to incompatible interactions in an interspecies hybrid genome. To test the effect of regulatory divergence in spermatogenesis gene expression, we isolated 35 fertile D. simulans strains with D. mauritiana introgressions in either the X, second or third chromosome. We analyzed gene expression in these fertile hybrid strains for a subset of spermatogenesis genes previously reported as significantly under expressed in sterile hybrids relative to D. simulans. We found that fertile autosomal introgressions can cause levels of gene down regulation similar to that of sterile hybrids. We also found that X chromosome heterospecific introgressions cause significantly less gene down regulation than autosomal introgressions. Our results provide evidence that rapid male sex gene regulatory divergence can explain misexpression of spermatogenesis genes in hybrids.

  19. Lung Myofibroblasts Are Characterized by Down-Regulated Cyclooxygenase-2 and Its Main Metabolite, Prostaglandin E2

    Science.gov (United States)

    Gabasa, Marta; Royo, Dolores; Molina-Molina, Maria; Roca-Ferrer, Jordi; Pujols, Laura; Picado, Cesar

    2013-01-01

    Background Prostaglandin E2 (PGE2), the main metabolite of cyclooxygenase (COX), is a well-known anti-fibrotic agent. Moreover, myofibroblasts expressing α-smooth muscle actin (α-SMA), fibroblast expansion and epithelial-mesenchymal transition (EMT) are critical to the pathogenesis of idiopathic pulmonary fibrosis (IPF). Our aim was to investigate the expression of COX-2 and PGE2 in human lung myofibroblasts and establish whether fibroblast-myofibroblast transition (FMT) and EMT are associated with COX-2 and PGE2 down-regulation. Methods Fibroblasts obtained from IPF patients (n = 6) and patients undergoing spontaneous pneumothorax (control, n = 6) and alveolar epithelial cell line A549 were incubated with TGF-β1 and FMT and EMT markers were evaluated. COX-2 and α-SMA expression, PGE2 secretion and cell proliferation were measured after IL-1β and PGE2 incubation. Results Myofibroblasts from both control and IPF fibroblast cultures stimulated with IL-1β showed no COX-2 expression. IPF fibroblasts showed increased myofibroblast population and reduced COX-2 expression in response to IL-1β. TGF-β1 increased the number of myofibroblasts in a time-dependent manner. In contrast, TGF-β1 induced slight COX-2 expression at 4 h (without increase in myofibroblasts) and 24 h, but not at 72 h. Both IPF and control cultures incubated with TGF-β1 for 72 h showed diminished COX-2 induction, PGE2 secretion and α-SMA expression after IL-1β addition. The latter decreased proliferation in fibroblasts but not in myofibroblasts. A549 cells incubated with TGF-β1 for 72 h showed down-regulated COX-2 expression and low basal PGE2 secretion in response to IL-1β. Immuno-histochemical analysis of IPF lung tissue showed no COX-2 immuno-reactivity in myofibroblast foci. Conclusions Myofibroblasts are associated with COX-2 down-regulation and reduced PGE2 production, which could be crucial in IPF development and progression. PMID:23755232

  20. Mycophenolic acid inhibits migration and invasion of gastric cancer cells via multiple molecular pathways.

    Directory of Open Access Journals (Sweden)

    Boying Dun

    Full Text Available Mycophenolic acid (MPA is the metabolized product and active element of mycophenolate mofetil (MMF that has been widely used for the prevention of acute graft rejection. MPA potently inhibits inosine monophosphate dehydrogenase (IMPDH that is up-regulated in many tumors and MPA is known to inhibit cancer cell proliferation as well as fibroblast and endothelial cell migration. In this study, we demonstrated for the first time MPA's antimigratory and anti-invasion abilities of MPA-sensitive AGS (gastric cancer cells. Genome-wide expression analyses using Illumina whole genome microarrays identified 50 genes with ≥2 fold changes and 15 genes with > 4 fold alterations and multiple molecular pathways implicated in cell migration. Real-time RT-PCR analyses of selected genes also confirmed the expression differences. Furthermore, targeted proteomic analyses identified several proteins altered by MPA treatment. Our results indicate that MPA modulates gastric cancer cell migration through down-regulation of a large number of genes (PRKCA, DOCK1, INF2, HSPA5, LRP8 and PDGFRA and proteins (PRKCA, AKT, SRC, CD147 and MMP1 with promigratory functions as well as up-regulation of a number of genes with antimigratory functions (ATF3, SMAD3, CITED2 and CEAMCAM1. However, a few genes that may promote migration (CYR61 and NOS3 were up-regulated. Therefore, MPA's overall antimigratory role on cancer cells reflects a balance between promigratory and antimigratory signals influenced by MPA treatment.

  1. SENP1 attenuates the liver fibrosis through down-regulating the expression of SMAD2.

    Science.gov (United States)

    Wu, Linshi; Qiu, Weiqing; Sun, Jianhua; Wang, Jian

    2018-01-01

    To investigate whether SENP1 could play a regulating role in the liver fibrosis process, the Sprague-Dawley (SD) rats were used to establish the liver fibrosis rat models by intraperitoneally injecting with 1 ml/kg of 10% CCl 4 , while the control normal rats were injected with olive oil. Then confirmation experiments to verify the successful establishment of these models were conducted by detecting the cellular and lobular architecture, and liver function indexes using hematoxylin-eosin staining, Masson's trichrome staining and microplate method, respectively. In addition, the expression levels of fibrosis markers including collagen I, collagen III, α-SMA and TGF-β1 were inspected using quantitative real-time PCR (qRT-PCR), as well as SMAD2. Subsequently, the relative mRNA and protein level of SENP1 was also determined via qRT-PCR and western blot analysis. Next, the HSC-T6 cells of SENP1 knock-down were constructed and used to test the relative protein expression levels of α-SMA and SMAD2 in these cells. The results of hematoxylin-eosin staining, Masson's trichrome staining and microplate method turned out that the rat liver fibrosis models were constructed successfully, which was further confirmed by the increased expression of collagen I, collagen III, α-SMA and TGF-β1 in mRNA and protein level, as well as SMAD2. Then the expression of SENP1 was overexpressed in the rat liver fibrosis models induced by CCl 4 and the TGF-β1 treatment could increase the protein expression level of collagen I, collagen III and α-SMA. Lastly, the SENP1 knockdown HSC-T6 cells were successfully constructed, while the silence of SENP1 down-regulated the protein expression of α-SMA and SMAD2. In conclusion, this study provided a new regulation mechanism about the liver fibrosis process. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. miR-297 modulates multidrug resistance in human colorectal carcinoma by down-regulating MRP-2.

    Science.gov (United States)

    Xu, Ke; Liang, Xin; Shen, Ke; Cui, Daling; Zheng, Yuanhong; Xu, Jianhua; Fan, Zhongze; Qiu, Yanyan; Li, Qi; Ni, Lei; Liu, Jianwen

    2012-09-01

    Colorectal carcinoma is a frequent cause of cancer-related death in men and women. miRNAs (microRNAs) are endogenous small non-coding RNAs that regulate gene expression negatively at the post-transcriptional level. In the present study we investigated the possible role of microRNAs in the development of MDR (multidrug resistance) in colorectal carcinoma cells. We analysed miRNA expression levels between MDR colorectal carcinoma cell line HCT116/L-OHP cells and their parent cell line HCT116 using a miRNA microarray. miR-297 showed lower expression in HCT116/L-OHP cells compared with its parental cells. MRP-2 (MDR-associated protein 2) is an important MDR protein in platinum-drug-resistance cells and is a predicted target of miR-297. Additionally miR-297 was down-regulated in a panel of human colorectal carcinoma tissues and negatively correlated with expression levels of MRP-2. Furthermore, we found that ectopic expression of miR-297 in MDR colorectal carcinoma cells reduced MRP-2 protein level and sensitized these cells to anti-cancer drugs in vitro and in vivo. Taken together, our findings suggest that miR-297 could play a role in the development of MDR in colorectal carcinoma cells, at least in part by modulation of MRP-2.

  3. Down-regulation of DNA mismatch repair enhances initiation and growth of neuroblastoma and brain tumour multicellular spheroids.

    Directory of Open Access Journals (Sweden)

    Samuel L Collins

    Full Text Available Multicellular tumour spheroid (MCTS cultures are excellent model systems for simulating the development and microenvironmental conditions of in vivo tumour growth. Many documented cell lines can generate differentiated MCTS when cultured in suspension or in a non-adhesive environment. While physiological and biochemical properties of MCTS have been extensively characterized, insight into the events and conditions responsible for initiation of these structures is lacking. MCTS are formed by only a small subpopulation of cells during surface-associated growth but the processes responsible for this differentiation are poorly understood and have not been previously studied experimentally. Analysis of gene expression within spheroids has provided clues but to date it is not known if the observed differences are a cause or consequence of MCTS growth. One mechanism linked to tumourigenesis in a number of cancers is genetic instability arising from impaired DNA mismatch repair (MMR. This study aimed to determine the role of MMR in MCTS initiation and development. Using surface-associated N2a and CHLA-02-ATRT culture systems we have investigated the impact of impaired MMR on MCTS growth. Analysis of the DNA MMR genes MLH1 and PMS2 revealed both to be significantly down-regulated at the mRNA level compared with non-spheroid-forming cells. By using small interfering RNA (siRNA against these genes we show that silencing of MLH1 and PMS2 enhances both MCTS initiation and subsequent expansion. This effect was prolonged over several passages following siRNA transfection. Down-regulation of DNA MMR can contribute to tumour initiation and progression in N2a and CHLA-02-ATRT MCTS models. Studies of surface-associated MCTS differentiation may have broader applications in studying events in the initiation of cancer foci.

  4. Niemann-Pick C1 like 1 gene expression is down-regulated by LXR activators in the intestine

    International Nuclear Information System (INIS)

    Duval, Caroline; Touche, Veronique; Tailleux, Anne; Fruchart, Jean-Charles; Fievet, Catherine; Clavey, Veronique; Staels, Bart; Lestavel, Sophie

    2006-01-01

    Niemann-Pick C1 like 1 (NPC1L1) is a protein critical for intestinal cholesterol absorption. The nuclear receptors peroxisome proliferator-activated receptor alpha (PPARα) and liver X receptors (LXRα and LXRβ) are major regulators of cholesterol homeostasis and their activation results in a reduced absorption of intestinal cholesterol. The goal of this study was to define the role of PPARα and LXR nuclear receptors in the regulation of NPC1L1 gene expression. We show that LXR activators down-regulate NPC1L1 mRNA levels in the human enterocyte cell line Caco-2/TC7, whereas PPARα ligands have no effect. Furthermore, NPC1L1 mRNA levels are decreased in vivo, in duodenum of mice treated with the LXR agonist T0901317. In conclusion, the present study identifies NPC1L1 as a novel LXR target gene further supporting a crucial role of LXR in intestinal cholesterol homeostasis

  5. IL-10 down-regulates the expression of survival associated gene hspX of Mycobacterium tuberculosis in murine macrophage

    Directory of Open Access Journals (Sweden)

    Babban Jee

    2017-07-01

    Full Text Available Mycobacterium tuberculosis (MTB adopts a special survival strategy to overcome the killing mechanism(s of host immune system. Amongst the many known factors, small heat shock protein 16.3 (sHSP16.3 of MTB encoded by gene hspX has been reported to be critical for the survival of MTB. In the present study, the effect of recombinant murine interferon-gamma (rmIFN-γ and recombinant murine interleukin-10 (rmIL-10 on the expression of gene hspX of MTB in murine macrophage RAW264.7 has been investigated. By real-time RT-PCR, it was observed that three increasing concentrations (5, 25 and 50 ng/ml of rmIFN-γ significantly up-regulated the expression of hspX whereas similar concentrations of rmIL-10 (5, 25 and 50 ng/ml significantly down-regulated the hspX expression. This effect was not only dependent on the concentration of the stimulus but this was time-dependent as well. A contrasting pattern of hspX expression was observed against combinations of two different concentrations of rmIFN-γ and rmIL-10. The study results suggest that rIL-10 mediated down-regulation of hspX expression, in the presence of low concentration of rIFN-γ, could be used as an important strategy to decrease the dormancy of MTB in its host and thus making MTB susceptible to the standard anti-mycobacterial therapy used for treating tuberculosis. However, as these are only preliminary results in the murine cell line model, this hypothesis needs to be first validated in human cell lines and subsequently in animal models mimicking the latent infection using clinical isolates of MTB before considering the development of modified regimens for humans.

  6. PCI-24781 down-regulates EZH2 expression and then promotes glioma apoptosis by suppressing the PIK3K/Akt/mTOR pathway.

    Science.gov (United States)

    Zhang, Wei; Lv, Shengqing; Liu, Jun; Zang, Zhenle; Yin, Junyi; An, Ning; Yang, Hui; Song, Yechun

    2014-10-01

    PCI-24781 is a novel histone deacetylase inhibitor that inhibits tumor proliferation and promotes cell apoptosis. However, it is unclear whether PCI-24781 inhibits Enhancer of Zeste 2 (EZH2) expression in malignant gliomas. In this work, three glioma cell lines were incubated with various concentrations of PCI-24781 (0, 0.25, 0.5, 1, 2.5 and 5 μM) and analyzed for cell proliferation by the MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay and colony formation, and cell cycle and apoptosis were assessed by flow cytometry. The expression of EZH2 and apoptosis-related proteins was assessed by western blotting. Malignant glioma cells were also transfected with EZH2 siRNA to examine how PCI-24781 suppresses tumor cells. EZH2 was highly expressed in the three glioma cell lines. Incubation with PCI-24781 reduced cell proliferation and increased cell apoptosis by down-regulating EZH2 in a concentration-dependent manner. These effects were simulated by EZH2 siRNA. In addition, PCI-24781 or EZH2 siRNA accelerated cell apoptosis by down-regulating the expression of AKT, mTOR, p70 ribosomal protein S6 kinase (p70s6k), glycogen synthase kinase 3A and B (GSK3a/b) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1). These data suggest that PCI-24781 may be a promising therapeutic agent for treating gliomas by down-regulating EZH2 which promotes cell apoptosis by suppressing the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of the rapamycin (mTOR) pathway.

  7. Optimal experimental design in an epidermal growth factor receptor signalling and down-regulation model.

    Science.gov (United States)

    Casey, F P; Baird, D; Feng, Q; Gutenkunst, R N; Waterfall, J J; Myers, C R; Brown, K S; Cerione, R A; Sethna, J P

    2007-05-01

    We apply the methods of optimal experimental design to a differential equation model for epidermal growth factor receptor signalling, trafficking and down-regulation. The model incorporates the role of a recently discovered protein complex made up of the E3 ubiquitin ligase, Cbl, the guanine exchange factor (GEF), Cool-1 (beta -Pix) and the Rho family G protein Cdc42. The complex has been suggested to be important in disrupting receptor down-regulation. We demonstrate that the model interactions can accurately reproduce the experimental observations, that they can be used to make predictions with accompanying uncertainties, and that we can apply ideas of optimal experimental design to suggest new experiments that reduce the uncertainty on unmeasurable components of the system.

  8. Trichoepithelioma And Multiple Basal Cell Epithelioma

    Directory of Open Access Journals (Sweden)

    Dey S.K

    1996-01-01

    Full Text Available A combination of multiple trichoepithelioma and basal cell epithelioma is reported. Although malignant degeneration of trichoepithelioma is debated, clinical and histopathological studies, in our case, hint at that. The case is reported for its rarity.

  9. Leucine zipper, down regulated in cancer-1 gene expression in prostate cancer

    OpenAIRE

    Salemi, Michele; Barone, Nunziata; La Vignera, Sandro; Condorelli, Rosita A.; Recupero, Domenico; Galia, Antonio; Fraggetta, Filippo; Aiello, Anna Maria; Pepe, Pietro; Castiglione, Roberto; Vicari, Enzo; Calogero, Aldo E.

    2016-01-01

    Numerous genetic alterations have been implicated in the development of prostate cancer (PCa). DNA and protein microarrays have enabled the identification of genes associated with apoptosis, which is important in PCa development. Despite the molecular mechanisms are not entirely understood, inhibition of apoptosis is a critical pathophysiological factor that contributes to the onset and progression of PCa. Leucine zipper, down-regulated in cancer 1 (LDOC-1) is a known regulator of the nuclear...

  10. Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus.

    Science.gov (United States)

    Nebauer, Sergio G; Renau-Morata, Begoña; Guardiola, José Luis; Molina, Rosa-Victoria

    2011-02-01

    Photosynthesis down-regulation due to an imbalance between sources and sinks in Citrus leaves could be mediated by excessive accumulation of carbohydrates. However, there is limited understanding of the physiological role of soluble and insoluble carbohydrates in photosynthesis regulation and the elements triggering the down-regulation process. In this work, the role of non-structural carbohydrates in the regulation of photosynthesis under a broad spectrum of source-sink relationships has been investigated in the Salustiana sweet orange. Soluble sugar and starch accumulation in leaves, induced by girdling experiments, did not induce down-regulation of the photosynthetic rate in the presence of sinks (fruits). The leaf-to-fruit ratio did not modulate photosynthesis but allocation of photoassimilates to the fruits. The lack of strong sink activity led to a decrease in the photosynthetic rate and starch accumulation in leaves. However, photosynthesis down-regulation due to an excess of total soluble sugars or starch was discarded because photosynthesis and stomatal conductance reduction occurred prior to any significant accumulation of these carbohydrates. Gas exchange and fluorescence parameters suggested biochemical limitations to photosynthesis. In addition, the expression of carbon metabolism-related genes was altered within 24 h when strong sinks were removed. Sucrose synthesis and export genes were inhibited, whereas the expression of ADP-glucose pyrophosphorylase was increased to cope with the excess of assimilates. In conclusion, changes in starch and soluble sugar turnover, but not sugar content per se, could provide the signal for photosynthesis regulation. In these conditions, non-stomatal limitations strongly inhibited the photosynthetic rate prior to any significant increase in carbohydrate levels.

  11. Agonist-induced down-regulation of endogenous protein kinase c α through an endolysosomal mechanism.

    Science.gov (United States)

    Lum, Michelle A; Pundt, Krista E; Paluch, Benjamin E; Black, Adrian R; Black, Jennifer D

    2013-05-03

    Protein kinase C (PKC) isozymes undergo down-regulation upon sustained stimulation. Previous studies have pointed to the existence of both proteasome-dependent and -independent pathways of PKCα processing. Here we demonstrate that these down-regulation pathways are engaged in different subcellular compartments; proteasomal degradation occurs mainly at the plasma membrane, whereas non-proteasomal processing occurs in the perinuclear region. Using cholesterol depletion, pharmacological inhibitors, RNA interference, and dominant-negative mutants, we define the mechanisms involved in perinuclear accumulation of PKCα and identify the non-proteasomal mechanism mediating its degradation. We show that intracellular accumulation of PKCα involves at least two clathrin-independent, cholesterol/lipid raft-mediated pathways that do not require ubiquitination of the protein; one is dynamin-dependent and likely involves caveolae, whereas the other is dynamin- and small GTPase-independent. Internalized PKCα traffics through endosomes and is delivered to the lysosome for degradation. Supportive evidence includes (a) detection of the enzyme in EEA1-positive early endosomes, Rab7-positive late endosomes/multivesicular bodies, and LAMP1-positive lysosomes and (b) inhibition of its down-regulation by lysosome-disrupting agents and leupeptin. Only limited dephosphorylation of PKCα occurs during trafficking, with fully mature enzyme being the main target for lysosomal degradation. These studies define a novel and widespread mechanism of desensitization of PKCα signaling that involves endocytic trafficking and lysosome-mediated degradation of the mature, fully phosphorylated protein.

  12. Down-regulation of E-cadherin and catenins in human pituitary growth hormone-producing adenomas.

    Science.gov (United States)

    Sano, Toshiaki; Rong, Qian Zhi; Kagawa, Noriko; Yamada, Shozo

    2004-01-01

    Growth hormone (GH)-producing pituitary adenomas can be ultrastructurally divided into two major types: densely granulated and sparsely granulated. The latter type of adenoma characteristically exhibits globular accumulations of cytokeratin filaments known as fibrous bodies, which are immunohistochemically identifiable as juxtanuclear dot-like immunoreactivity. We hypothesize that the formation of fibrous body might be related to dysfunction of adhesion molecules, because of the functional relationship between intermediate filaments and the cadherin-catenin complex and frequent observation of loss of cohesiveness of the adenoma cells. Our recent immunohistochemical study showed that expression of E-cadherin and its undercoat proteins, alpha-, beta- and gamma-catenin, in GH cell adenomas with prominent fibrous bodies was significantly reduced compared with GH cell adenomas without fibrous bodies and the normal adenohypophysial cells. Although no mutation of exon 3 of the beta-catenin gene was found in any GH cell adenomas with fibrous bodies, methylation-specific polymerase chain reaction analysis revealed that the E-cadherin promoter region was methylated in 37.5% of these adenomas, two of which displayed total methylation, but not in GH cell adenomas without fibrous bodies. We conclude that the decreased expression of the E-cadherin-catenin complex and methylation of the E-cadherin gene promoter region are events associated with the formation of fibrous bodies in GH cell adenomas. It remains to be clarified to explain the mechanism by which down-regulation of adhesion molecules is involved in the abnormal assembly of intermediate filaments.

  13. Induction of autophagy by Imatinib sequesters Bcr-Abl in autophagosomes and down-regulates Bcr-Abl protein.

    LENUS (Iri