WorldWideScience

Sample records for double-stranded rna aptamers

  1. Activation of 2'-5' oligoadenylate synthetase by single-stranded and double-stranded RNA aptamers

    DEFF Research Database (Denmark)

    Hartmann, R; Norby, P L; Martensen, P M

    1998-01-01

    A number of small RNA molecules that are high affinity ligands for the 46-kDa form of human 2'-5' oligoadenylate synthetase have been identified by the SELEX method. Surface plasmon resonance analysis indicates that these RNAs bind to the enzyme with dissociation constants in the nanomolar range....... Competition experiments indicate that the binding site for the small RNAs on the 2'-5' oligoadenylate synthetase molecule at least partially overlaps that for the synthetic double-stranded RNA, poly(I).poly(C). Several of the RNAs function as potent activators of 2'-5' oligoadenylate synthetase in vitro......-stranded RNA, can also be activated by RNA ligands with little secondary structure. Since 2'-5' oligoadenylate synthetase possesses no homology to other known RNA-binding proteins, the development of small specific ligands by SELEX should facilitate studies of RNA-protein interactions and may reveal novel...

  2. Analysis of Double-Stranded RNA from Microbial Communities Identifies Double-Stranded RNA Virus-like Elements

    OpenAIRE

    Decker, Carolyn J.; Parker, Roy

    2014-01-01

    Double-stranded RNA (dsRNA) can function as genetic information and may have served as genomic material before the existence of DNA-based life. By developing a method to purify dsRNA, we have investigated the diversity of dsRNA in microbial populations. We detect large dsRNAs in multiple microbial populations. Analysis of an aquatic microbial population reveals that some dsRNA sequences match metagenomic DNA, suggesting that microbes contain pools of sense-antisense transcripts. In addition, ...

  3. Herpetic keratoconjunctivitis: Therapy with synthetic double-stranded RNA

    Science.gov (United States)

    Friedman, I.; Evans, C.; Meighan, C.W.; Foote, L.J.; Aiello, P.V.; Park, J.H.; Baron, S.

    1968-01-01

    A study was undertaken in rabbits to determine how late in the course of keratoconjunctivitis caused by herpes simplex recovery could be effected by an inducer of interferon. Interferon was induced by means of synthetic double-stranded RNA copolymer formed with polynosinic acid : polycytidilic acid RNA. Therapy promotes recovery from severe and fully established keratoconjunctivitis for which treatment was begun as late as 3 days after virus inoculation. No drug toxicity was observed in the therapeutic dose range. These findings further support the proposed role of the interferon mechanism in the natural recovery of already established viral infection. They also suggest the usefulness of interferon inducers in viral infections of man.

  4. RNA-directed repair of DNA double-strand breaks.

    Science.gov (United States)

    Yang, Yun-Gui; Qi, Yijun

    2015-08-01

    DNA double-strand breaks (DSBs) are among the most deleterious DNA lesions, which if unrepaired or repaired incorrectly can cause cell death or genome instability that may lead to cancer. To counteract these adverse consequences, eukaryotes have evolved a highly orchestrated mechanism to repair DSBs, namely DNA-damage-response (DDR). DDR, as defined specifically in relation to DSBs, consists of multi-layered regulatory modes including DNA damage sensors, transducers and effectors, through which DSBs are sensed and then repaired via DNAprotein interactions. Unexpectedly, recent studies have revealed a direct role of RNA in the repair of DSBs, including DSB-induced small RNA (diRNA)-directed and RNA-templated DNA repair. Here, we summarize the recent discoveries of RNA-mediated regulation of DSB repair and discuss the potential impact of these novel RNA components of the DSB repair pathway on genomic stability and plasticity. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Template role of double-stranded RNA in tombusvirus replication.

    Science.gov (United States)

    Kovalev, Nikolay; Pogany, Judit; Nagy, Peter D

    2014-05-01

    Replication of plus-strand RNA [(+)RNA] viruses of plants is a relatively simple process that involves complementary minus-strand RNA [(-)RNA] synthesis and subsequent (+)RNA synthesis. However, the actual replicative form of the (-)RNA template in the case of plant (+)RNA viruses is not yet established unambiguously. In this paper, using a cell-free replication assay supporting a full cycle of viral replication, we show that replication of Tomato bushy stunt virus (TBSV) leads to the formation of double-stranded RNA (dsRNA). Using RNase digestion, DNAzyme, and RNA mobility shift assays, we demonstrate the absence of naked (-)RNA templates during replication. Time course experiments showed the rapid appearance of dsRNA earlier than the bulk production of new (+)RNAs, suggesting an active role for dsRNA in replication. Radioactive nucleotide chase experiments showed that the mechanism of TBSV replication involves the use of dsRNA templates in strand displacement reactions, where the newly synthesized plus strand replaces the original (+)RNA in the dsRNA. We propose that the use of dsRNA as a template for (+)RNA synthesis by the viral replicase is facilitated by recruited host DEAD box helicases and the viral p33 RNA chaperone protein. Altogether, this replication strategy allows TBSV to separate minus- and plus-strand syntheses in time and regulate asymmetrical RNA replication that leads to abundant (+)RNA progeny. Positive-stranded RNA viruses of plants use their RNAs as the templates for replication. First, the minus strand is synthesized by the viral replicase complex (VRC), which then serves as a template for new plus-strand synthesis. To characterize the nature of the (-)RNA in the membrane-bound viral replicase, we performed complete RNA replication of Tomato bushy stunt virus (TBSV) in yeast cell-free extracts and in plant extracts. The experiments demonstrated that the TBSV (-)RNA is present as a double-stranded RNA that serves as the template for TBSV

  6. Assembly of large icosahedral double-stranded RNA viruses.

    Science.gov (United States)

    Poranen, Minna M; Bamford, Dennis H

    2012-01-01

    Double-stranded RNA (dsRNA) viruses are a diverse group of viruses infecting hosts from bacteria to higher eukaryotes. Among the hosts are humans, domestic animals, and economically important plant species. Fine details of high-resolution virion structures have revealed common structural characteristics unique to these viruses including an internal icosahedral capsid built from 60 asymmetric dimers (120 monomers!) of the major coat protein. Here we focus mainly on the structures and assembly principles of large icosahedral dsRNA viruses belonging to the families of Cystoviridae and Reoviridae. It is obvious that there are a variety of assembly pathways utilized by different viruses starting from similar building blocks and reaching in all cases a similar capsid architecture. This is true even with closely related viruses indicating that the assembly pathway per se is not an indicator of relatedness and is achieved with minor changes in the interacting components.

  7. Analysis of double-stranded RNA from microbial communities identifies double-stranded RNA virus-like elements.

    Science.gov (United States)

    Decker, Carolyn J; Parker, Roy

    2014-05-08

    Double-stranded RNA (dsRNA) can function as genetic information and may have served as genomic material before the existence of DNA-based life. By developing a method to purify dsRNA, we have investigated the diversity of dsRNA in microbial populations. We detect large dsRNAs in multiple microbial populations. Analysis of an aquatic microbial population reveals that some dsRNA sequences match metagenomic DNA, suggesting that microbes contain pools of sense-antisense transcripts. In addition, ∼30% of the dsRNA sequences are not present in the corresponding DNA pool and are strongly biased toward encoding novel proteins. Of these "dsRNA unique" sequences, only a small percentage share similarity to known viruses, a large fraction assemble into RNA virus-like contigs, and the remaining fraction has an unexplained origin. These results have uncovered dsRNA virus-like elements and underscore that dsRNA potentially represents an additional reservoir of genetic information in microbial populations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. [Diverse double-stranded RNA viruses infecting fungi].

    Science.gov (United States)

    Chiba, Sotaro; Suzuki, Nobuhiro

    2014-01-01

    Most of reported fungal viruses (mycoviruses) have double-stranded RNA (dsRNA) genomes. This may reflect the simple, easy method for mycovirus hunting that entails detection of dsRNAs as a sign of viral infections. There are an increasing number of screens of various fungi, particularly phytopathogenic fungi for viruses pathogenic to host fungi or able to confer hypovirulence to them. This bases on an attractive research field of biological control of fungal plant diseases using viruses (virocontrol), mainly targeting important phytopathogenic fungi. While isolated viruses usually induce asymptomatic symptoms, they show a considerably high level of diversity. As of 2014, fungal dsRNA viruses are classified into six families: Reoviridae, Totiviridae, Chrysoviridae, Partitiviridae, Megabirnaviridae and Quadriviridae. These exclude unassigned mycoviruses which will definitely be placed into distinct families and/or genera. In this review article, dsRNA viruses isolated from the kingdom Fungi including as-yet-unclassified taxa are overviewed. Some recent achievements in the related field are briefly introduced as well.

  9. Viral Proteins That Bind Double-Stranded RNA: Countermeasures Against Host Antiviral Responses

    OpenAIRE

    Krug, Robert M.

    2014-01-01

    Several animal viruses encode proteins that bind double-stranded RNA (dsRNA) to counteract host dsRNA-dependent antiviral responses. This article discusses the structure and function of the dsRNA-binding proteins of influenza A virus and Ebola viruses (EBOVs).

  10. DOUBLE-STRANDED-RNA MYCOVIRUSES IN MYCELIUM OF PLEUROTUS-OSTREATUS

    NARCIS (Netherlands)

    VANDERLENDE, TR; HARMSEN, MC; GO, SJ

    1995-01-01

    Mycelium of Pleurotus ostreatus var. florida with a decreased growth rate contained seven double-stranded RNA segments and isometrical virus particles with diameters of 24 and 30 nm. Mycelium with a normal growth rate lacked dsRNA. Protoclones from virus-containing mycelium contained one to seven of

  11. Baculovirus-mediated gene silencing in insect cells using intracellularly produced long double-stranded RNA

    NARCIS (Netherlands)

    Huang, Yi; Deng, F.; Hu, Z.H.; Vlak, J.M.; Wang, H.

    2007-01-01

    Double-stranded RNA-mediated interference (RNAi) has recently emerged as a powerful reverse genetics tool to silence gene expression in multiple organisms, including plants, nematodes and insects. In this study, DNA vectors capable of promoting the synthesis of long hairpin dsRNAs in vivo from a DNA

  12. DMPD: Transcriptional signaling by double-stranded RNA: role of TLR3. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15733829 Transcriptional signaling by double-stranded RNA: role of TLR3. Sen GC, Sa...rkar SN. Cytokine Growth Factor Rev. 2005 Feb;16(1):1-14. (.png) (.svg) (.html) (.csml) Show Transcriptional sign...aling by double-stranded RNA: role of TLR3. PubmedID 15733829 Title Transcriptional signaling by double

  13. Understanding the similarity in thermophoresis between single- and double-stranded DNA or RNA

    Science.gov (United States)

    Reichl, Maren; Herzog, Mario; Greiss, Ferdinand; Wolff, Manuel; Braun, Dieter

    2015-06-01

    Thermophoresis is the movement of molecules in a temperature gradient. For aqueous solutions its microscopic basis is debated. Understanding thermophoresis for this case is, however, important since it proved very useful to detect the binding affinity of biomolecules and since thermophoresis could have played an important role in early molecular evolution. Here we discuss why the thermophoresis of single- and double-stranded oligonucleotides - DNA and RNA - is surprisingly similar. This finding is understood by comparing the spherical capacitor model for single-stranded species with the case of a rod-shaped model for double-stranded oligonucleotides. The approach describes thermophoresis of DNA and RNA with fitted effective charges consistent with electrophoresis measurements and explains the similarity between single- and double-stranded species. We could not confirm the sign change for the thermophoresis of single- versus double-stranded DNA in crowded solutions containing polyethylene glycol [Y. T. Maeda, T. Tlusty, and A. Libchaber, Proc. Natl. Acad. Sci. USA 109, 17972 (2012), 10.1073/pnas.1215764109], but find a salt-independent offset while the Debye length dependence still satisfies the capacitor model. Overall, the analysis documents the continuous progress in the microscopic understanding of thermophoresis.

  14. Gene Silencing in Adult Aedes aegypti Mosquitoes Through Oral Delivery of Double-Stranded RNA

    Science.gov (United States)

    2012-01-01

    2 Beeologics Inc., Miami, Florida, USA Introduction Mosquitoes ( Diptera : Culicidae) are the most medi- cally important arthropods worldwide, vectoring...insecticides can create a long-term burden on species diversity and ecosystem sustainability. Double-stranded RNA (dsRNA) is an attractive alternative as a...insecticide against a variety of insect orders including Coleoptera (Baum et al. 2007; Whyard et al. 2009), Diptera (Walshe et al. 2009; Whyard et al. 2009

  15. Characterization of the double stranded RNA dependent RNase activity associated with recombinant reverse transcriptases.

    OpenAIRE

    Ben-Artzi, H; Zeelon, E; Le-Grice, S F; Gorecki, M; Panet, A

    1992-01-01

    An in situ gel assay was applied to the study of double stranded RNA dependent RNase activity associated with reverse transcriptase (RT) of HIV-1 and murine leukemia virus. Polyacrylamide gels containing [32P] RNA/RNA substrate were used for electrophoresis of proteins under denaturing conditions. The proteins were renatured and in situ enzymatic degradation of 32P-RNA/RNA was followed. E. coli RNaseIII, but not E. coli RNaseH, was active in this in situ gel assay, indicating specificity of t...

  16. RNA interference by feeding in vitro synthesized double-stranded RNA to planarians: methodology and dynamics

    Science.gov (United States)

    Rouhana, Labib; Weiss, Jennifer A.; Forsthoefel, David J.; Lee, Hayoung; King, Ryan S.; Inoue, Takeshi; Shibata, Norito; Agata, Kiyokazu; Newmark, Phillip A.

    2013-01-01

    Background The ability to assess gene function is essential for understanding biological processes. Currently, RNA interference (RNAi) is the only technique available to assess gene function in planarians, in which it has been induced via injection of double-stranded RNA (dsRNA), soaking, or ingestion of bacteria expressing dsRNA. Results We describe a simple and robust RNAi protocol, involving in vitro synthesis of dsRNA that is fed to the planarians. Advantages of this protocol include the ability to produce dsRNA from any vector without subcloning, resolution of ambiguities in quantity and quality of input dsRNA, as well as time, and ease of application. We have evaluated the logistics of inducing RNAi in planarians using this methodology in careful detail, from the ingestion and processing of dsRNA in the intestine, to timing and efficacy of knockdown in neoblasts, germline, and soma. We also present systematic comparisons of effects of amount, frequency, and mode of dsRNA delivery. Conclusions This method gives robust and reproducible results and is amenable to high-throughput studies. Overall, this RNAi methodology provides a significant advance by combining the strengths of current protocols available for dsRNA delivery in planarians and has the potential to benefit RNAi methods in other systems. PMID:23441014

  17. Deletion of Cytoplasmic Double-Stranded RNA Sensors Does Not Uncover Viral Small Interfering RNA Production in Human Cells

    NARCIS (Netherlands)

    Schuster, Susan; Tholen, Lotte E; Overheul, Gijs J; van Kuppeveld, Frank J M|info:eu-repo/dai/nl/156614723; van Rij, Ronald P

    2017-01-01

    Antiviral immunity in insects and plants is mediated by the RNA interference (RNAi) pathway in which viral long double-stranded RNA (dsRNA) is processed into small interfering RNAs (siRNAs) by Dicer enzymes. Although this pathway is evolutionarily conserved, its involvement in antiviral defense in

  18. Gene Mapping of Rotavirus Double-Stranded RNA Segments by Northern Blot Hybridization: Application to Segments 7, 8, and 9

    OpenAIRE

    Dyall-Smith, Michael L.; Azad, Ahmed A.; Holmes, Ian H.

    1983-01-01

    Cloned DNA copies of double-stranded RNA segments 7, 8, and 9 of UK bovine rotavirus were nick-translated with [α-32P]ATP and hybridized to double-stranded RNA of various rotavirus strains which had been separated on long polyacrylamide gels and then transferred to o-aminophenylthioether paper. Specific hybridization of the UK calf clones to the separated RNA segments allowed the corresponding genes of four different rotaviruses to be rapidly determined.

  19. Complete Genome Sequence of a Double-Stranded RNA Virus from Avocado

    Science.gov (United States)

    Villanueva, Francisco; Sabanadzovic, Sead; Valverde, Rodrigo A.

    2012-01-01

    A number of avocado (Persea americana) cultivars are known to contain high-molecular-weight double-stranded RNA (dsRNA) molecules for which a viral nature has been suggested, although sequence data are not available. Here we report the cloning and complete sequencing of a 13.5-kbp dsRNA virus isolated from avocado and show that it corresponds to the genome of a new species of the genus Endornavirus (family Endornaviridae), tentatively named Persea americana endornavirus (PaEV). PMID:22205720

  20. Human Ku70 protein binds hairpin RNA and double stranded DNA through two different sites.

    Science.gov (United States)

    Anisenko, Andrey N; Knyazhanskaya, Ekaterina S; Zatsepin, Timofey S; Gottikh, Marina B

    2017-01-01

    Human protein Ku usually functions in the cell as a complex of two subunits, Ku70 and Ku80. The Ku heterodimer plays a key role in the non-homologous end joining DNA repair pathway by specifically recognizing the DNA ends at the site of the lesion. The binding of the Ku heterodimer to DNA has been well-studied, and its interactions with RNA have been also described. However, Ku70 subunit is known to have independent DNA binding capability, which is less characterized. RNA binding properties of Ku70 have not been yet specially studied. We have prepared recombinant full-length Ku70 and a set of its truncated mutants in E. coli, and studied their interactions with nucleic acids of various structures: linear single- and double-stranded DNA and RNA, as well as closed circular DNA and hairpin RNA. Ku70 has demonstrated a high affinity binding to double stranded DNA and hairpin RNA with a certain structure only. Interestingly, in contrast to the Ku heterodimer, Ku70 is found to interact with closed circular DNA. We also show for the first time that Ku70 employs two different sites for DNA and RNA binding. The double-stranded DNA is recognized by the C-terminal part of Ku70 including SAP domain as it has been earlier demonstrated, whereas hairpin RNA binding is provided by amino acids 251-438. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  1. Induction of virus resistance by exogenous application of double-stranded RNA.

    Science.gov (United States)

    Mitter, Neena; Worrall, Elizabeth A; Robinson, Karl E; Xu, Zhi Ping; Carroll, Bernard J

    2017-10-01

    Exogenous application of double-stranded RNA (dsRNA) for virus resistance in plants represents a very attractive alternative to virus resistant transgenic crops or pesticides targeting virus vectors. However, the instability of dsRNA sprayed onto plants is a major challenge as spraying naked dsRNA onto plants provides protection against homologous viruses for only 5 days. Innovative approaches, such as the use of nanoparticles as carriers of dsRNA for improved stability and sustained release, are emerging as key disruptive technologies. Knowledge is still limited about the mechanism of entry, transport and processing of exogenously applied dsRNA in plants. Cost of dsRNA and regulatory framework will be key influencers towards practical adoption of this technology. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Plant insects and mites uptake double-stranded RNA upon its exogenous application on tomato leaves.

    Science.gov (United States)

    Gogoi, Anupam; Sarmah, Nomi; Kaldis, Athanasios; Perdikis, Dionysios; Voloudakis, Andreas

    2017-12-01

    Exogenously applied double-stranded RNA (dsRNA) molecules onto tomato leaves, moved rapidly from local to systemic leaves and were uptaken by agricultural pests namely aphids, whiteflies and mites. Four small interfering RNAs, deriving from the applied dsRNA, were molecularly detected in plants, aphids and mites but not in whiteflies. Double-stranded RNA (dsRNA) acts as the elicitor molecule of the RNA silencing (RNA interference, RNAi), the endogenous and evolutionary conserved surveillance system present in all eukaryotes. DsRNAs and their subsequent degradation products, namely the small interfering RNAs (siRNAs), act in a sequence-specific manner to control gene expression. Exogenous application of dsRNAs onto plants elicits resistance against plant viruses. In the present work, exogenously applied dsRNA molecules, derived from Zucchini yellow mosaic virus (ZYMV) HC-Pro region, onto tomato plants were detected in aphids (Myzus persicae), whiteflies (Trialeurodes vaporariorum) and mites (Tetranychus urticae) that were fed on treated as well as systemic tomato leaves. Furthermore, four siRNAs, deriving from the dsRNA applied, were detected in tomato and the agricultural pests fed on treated tomato plants. More specifically, dsRNA was detected in agricultural pests at 3 and 10 dpt (days post treatment) in dsRNA-treated leaves and at 14 dpt in systemic leaves. In addition, using stem-loop RT-PCR, siRNAs were detected in agricultural pests at 3 and 10 dpt in aphids and mites. Surprisingly, in whiteflies carrying the applied dsRNA, siRNAs were not molecularly detected. Our results showed that, upon exogenous application of dsRNAs molecules, these moved rapidly within tomato and were uptaken by agricultural pests fed on treated tomato. As a result, this non-transgenic method has the potential to control important crop pests via RNA silencing of vital genes of the respective pests.

  3. Processing of double-stranded RNA in mammalian cells: a direct antiviral role?

    Science.gov (United States)

    Gantier, Michael P

    2014-06-01

    Processing of viral double-stranded RNA (dsRNA) into small interfering RNAs (siRNAs) contributes directly to an antiviral effect in plants and invertebrates, which is amplified through the recruitment of RNA interference (RNAi). In mammals, viral dsRNAs are the substrate of the innate immune response and limit viral spread by impacting on cellular translation and cytokine production, as well as promoting cell death. Recent studies suggest that viral siRNAs also exert a direct antiviral activity in mammalian cells. Here, I review the current knowledge of dsRNA processing in mammalian cells and discuss the recent findings in light of the complex interplay between RNAi and dsRNA-driven innate immune responses toward the common goal of virus restriction.

  4. Yeast double-stranded RNA virus L-A deliberately synthesizes RNA transcripts with 5'-diphosphate.

    Science.gov (United States)

    Fujimura, Tsutomu; Esteban, Rosa

    2010-07-23

    L-A is a persistent double-stranded RNA virus commonly found in the yeast Saccharomyces cerevisiae. Isolated L-A virus synthesizes positive strand transcripts in vitro. We found that the 5' termini of the transcripts are diphosphorylated. The 5'-terminal nucleotide is G, and GDP was the best substrate among those examined to prime the reaction. When GTP was used, the triphosphate of GTP incorporated into the 5'-end was converted to diphosphate. This activity was not dependent on host CTL1 RNA triphosphatase. The 5'-end of the GMP-primed transcript also was converted to diphosphate, the beta-phosphate of which was derived from the gamma-phosphate of ATP present in the polymerization reaction. These results demonstrate that L-A virus commands elaborate enzymatic systems to ensure its transcript to be 5'-diphosphorylated. Transcripts of M1, a satellite RNA of L-A virus, also had diphosphate at the 5' termini. Because viral transcripts are released from the virion into the cytoplasm to be translated and encapsidated into a new viral particle, a stage most vulnerable to degradation in the virus replication cycle, our results suggest that the 5'-diphosphate status is important for transcript stability. Consistent with this, L-A transcripts made in vitro are resistant to the affinity-purified Ski1p 5'-exonuclease. We also discuss the implication of these findings on translation of viral RNA. Because the viral transcript has no conventional 5'-cap structure, this work may shed light on the metabolism of non-self-RNA in yeast.

  5. Use of S1 nuclease in deep sequencing for detection of double-stranded RNA viruses.

    Science.gov (United States)

    Shimada, Saya; Nagai, Makoto; Moriyama, Hiromitsu; Fukuhara, Toshiyuki; Koyama, Satoshi; Omatsu, Tsutomu; Furuya, Tetsuya; Shirai, Junsuke; Mizutani, Tetsuya

    2015-09-01

    Metagenomic approach using next-generation DNA sequencing has facilitated the detection of many pathogenic viruses from fecal samples. However, in many cases, majority of the detected sequences originate from the host genome and bacterial flora in the gut. Here, to improve efficiency of the detection of double-stranded (ds) RNA viruses from samples, we evaluated the applicability of S1 nuclease on deep sequencing. Treating total RNA with S1 nuclease resulted in 1.5-28.4- and 10.1-208.9-fold increases in sequence reads of group A rotavirus in fecal and viral culture samples, respectively. Moreover, increasing coverage of mapping to reference sequences allowed for sufficient genotyping using analytical software. These results suggest that library construction using S1 nuclease is useful for deep sequencing in the detection of dsRNA viruses.

  6. A double-stranded RNA as the genome of a potential virus infecting Vicia faba.

    Science.gov (United States)

    Liu, Weixia; Chen, Jishuang

    2009-08-01

    Preparations of double-stranded (ds) RNAs extracted from naturally infected Vicia faba Linn. growing in Hangzhou, Zhejiang Province, Eastern China displayed 3 dominant bands (FaR1, FaR2, and FaR3). FaR2 and FaR3 were found to be identical to the genomic dsRNAs of a recently reported Vicia cryptic virus (VCV). The positive strand of FaR1 contained two large open reading frames (ORFs), ORF1 and ORF2. The putative proteins encoded by these ORFs were found to have certain similarities to the putative capsid protein [ABO36237] and RNA-dependent RNA polymerase [ABC96788], respectively, of Tomato yellow stunt virus. Thus, FaR1 may represent the genome of a new dsRNA virus, which we have named Vicia cryptic virus M.

  7. A single-stranded RNA copy of the Giardia lamblia virus double-stranded RNA genome is present in the infected Giardia lamblia.

    OpenAIRE

    Furfine, E S; White, T C; Wang, A L; Wang, C C

    1989-01-01

    An isolate of Giardia lamblia infected with the double-stranded RNA virus (GLV) has two major species of RNA that are not present in an uninfected isolate. One of these species is the previously characterized double-stranded RNA genome of GLV (1). The second species of RNA appears to be a full length copy of one strand of the double-stranded RNA genome. This full length single-stranded RNA is not present in viral particles isolated from the growth medium. The cellular concentration of the sin...

  8. Rapid isolation of mycoviral double-stranded RNA from Botrytis cinerea and Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Sepúlveda Felipe

    2011-01-01

    Full Text Available Abstract Background In most of the infected fungi, the mycoviruses are latent or cryptic, the infected fungus does not show disease symptoms, and it is phenotypically identical to a non-infected strain of the same species. Because of these properties, the initial stage in the search for fungi infected with mycoviruses is the detection of their viral genome, which in most of the described cases corresponds to double-stranded RNA (dsRNA. So to analyze a large number of fungal isolates it is necessary to have a simple and rapid method to detect dsRNA. Results A rapid method to isolate dsRNA from a virus-infected filamentous fungus, Botrytis cinerea, and from a killer strain of Saccharomyces cerevisiae using commercial minicolumns packed with CF11 cellulose was developed. In addition to being a rapid method, it allows to use small quantities of yeasts or mycelium as starting material, being obtained sufficient dsRNA quantity that can later be analyzed by agarose gel electrophoresis, treated with enzymes for its partial characterization, amplified by RT-PCR and cloned in appropriate vectors for further sequencing. Conclusions The method yields high quality dsRNA, free from DNA and ssRNA. The use of nucleases to degrade the DNA or the ssRNA is not required, and it can be used to isolate dsRNA from any type of fungi or any biological sample that contains dsRNA.

  9. MDA5 Detects the Double-Stranded RNA Replicative Form in Picornavirus-Infected Cells

    Directory of Open Access Journals (Sweden)

    Qian Feng

    2012-11-01

    Full Text Available RIG-I and MDA5 are cytosolic RNA sensors that play a critical role in innate antiviral responses. Major advances have been made in identifying RIG-I ligands, but our knowledge of the ligands for MDA5 remains restricted to data from transfection experiments mostly using poly(I:C, a synthetic dsRNA mimic. Here, we dissected the IFN-α/β-stimulatory activity of different viral RNA species produced during picornavirus infection, both by RNA transfection and in infected cells in which specific steps of viral RNA replication were inhibited. Our results show that the incoming genomic plus-strand RNA does not activate MDA5, but minus-strand RNA synthesis and production of the 7.5 kbp replicative form trigger a strong IFN-α/β response. IFN-α/β production does not rely on plus-strand RNA synthesis and thus generation of the partially double-stranded replicative intermediate. This study reports MDA5 activation by a natural RNA ligand under physiological conditions.

  10. Efficient double-stranded RNA production methods for utilization in plant virus control.

    Science.gov (United States)

    Voloudakis, Andreas E; Holeva, Maria C; Sarin, L Peter; Bamford, Dennis H; Vargas, Marisol; Poranen, Minna M; Tenllado, Francisco

    2015-01-01

    Double-stranded RNA (dsRNA) is an inducer molecule of the RNA silencing (RNA interference, RNAi) pathway that is present in all higher eukaryotes and controls gene expression at the posttranscriptional level. This mechanism allows the cell to recognize aberrant genetic material in a highly sequence specific manner. This ultimately leads to degradation of the homologous target sequence, rendering the plant cell resistant to subcellular pathogens. Consequently, dsRNA-mediated resistance has been exploited in transgenic plants to convey resistance against viruses. In addition, it has been shown that enzymatically synthesized specific dsRNA molecules can be applied directly onto plant tissue to induce resistance against the cognate virus. This strongly implies that dsRNA molecules are applicable as efficacious agents in crop protection, which will fuel the demand for cost-effective dsRNA production methods. In this chapter, the different methods for dsRNA production-both in vitro and in vivo-are described in detail.

  11. Synthesis of double-stranded RNA in a virus-enriched fraction from Agaricus bisporus

    International Nuclear Information System (INIS)

    Sriskantha, A.; Wach, P.; Schlagnhaufer, B.; Romaine, C.P.

    1986-01-01

    Partially purified virus preparations from sporophores of Agaricus bisporus affected with LaFrance disease had up to a 15-fold-higher RNA-dependent RNA polymerase activity than did comparable preparations from health sporophores. Enzyme activity was dependent upon the presence of Mg 2+ and the four nucleoside triphosphates and was insensitive to actinomycin D, α-amanitin, and rifampin. The 3 H-labeled enzyme reaction products were double-stranded RNA (dsRNA) as indicated by CF-11 cellulose column chromatography and by their ionic-strength-dependent sensitivity to hydrolysis by RNase A. The principal dsRNA products had estimated molecular weights of 4.3 /times/ 10 6 and 1.4 /times/ 10 6 . Cs 2 SO 4 equilibrium centrifugation of the virus preparation resolved a single peak of RNA polymerase activity that banded with a 35-nm spherical virus particle containing dsRNAs with molecular weights of 4.3 /times/ 10 6 and 1.4 /times/ 10 6 . The data suggest that the RNA-dependent RNA polymerase associated with the 35-nm spherical virus is a replicase which catalyzes the synthesis of the genomic dsRNAs

  12. Infectious Bursal disease virus: ribonucleoprotein complexes of a double-stranded RNA virus.

    Science.gov (United States)

    Luque, Daniel; Saugar, Irene; Rejas, María Teresa; Carrascosa, José L; Rodríguez, José F; Castón, José R

    2009-02-27

    Genome-binding proteins with scaffolding and/or regulatory functions are common in living organisms and include histones in eukaryotic cells, histone-like proteins in some double-stranded DNA (dsDNA) viruses, and the nucleocapsid proteins of single-stranded RNA viruses. dsRNA viruses nevertheless lack these ribonucleoprotein (RNP) complexes and are characterized by sharing an icosahedral T=2 core involved in the metabolism and insulation of the dsRNA genome. The birnaviruses, with a bipartite dsRNA genome, constitute a well-established exception and have a single-shelled T=13 capsid only. Moreover, as in many negative single-stranded RNA viruses, the genomic dsRNA is bound to a nucleocapsid protein (VP3) and the RNA-dependent RNA polymerase (VPg). We used electron microscopy and functional analysis to characterize these RNP complexes of infectious bursal disease virus, the best characterized member of the Birnaviridae family. Mild disruption of viral particles revealed that VP3, the most abundant core protein, present at approximately 450 copies per virion, is found in filamentous material tightly associated with the dsRNA. We developed a method to purify RNP and VPg-dsRNA complexes. Analysis of these complexes showed that they are linear molecules containing a constant amount of protein. Sensitivity assays to nucleases indicated that VP3 renders the genomic dsRNA less accessible for RNase III without introducing genome compaction. Additionally, we found that these RNP complexes are functionally competent for RNA synthesis in a capsid-independent manner, in contrast to most dsRNA viruses.

  13. Transient RNA-DNA Hybrids Are Required for Efficient Double-Strand Break Repair.

    Science.gov (United States)

    Ohle, Corina; Tesorero, Rafael; Schermann, Géza; Dobrev, Nikolay; Sinning, Irmgard; Fischer, Tamás

    2016-11-03

    RNA-DNA hybrids are a major internal cause of DNA damage within cells, and their degradation by RNase H enzymes is important for maintaining genomic stability. Here, we identified an unexpected role for RNA-DNA hybrids and RNase H enzymes in DNA repair. Using a site-specific DNA double-strand break (DSB) system in Schizosaccharomyces pombe, we showed that RNA-DNA hybrids form as part of the homologous-recombination (HR)-mediated DSB repair process and that RNase H enzymes are essential for their degradation and efficient completion of DNA repair. Deleting RNase H stabilizes RNA-DNA hybrids around DSB sites and strongly impairs recruitment of the ssDNA-binding RPA complex. In contrast, overexpressing RNase H1 destabilizes these hybrids, leading to excessive strand resection and RPA recruitment and to severe loss of repeat regions around DSBs. Our study challenges the existing model of HR-mediated DSB repair and reveals a surprising role for RNA-DNA hybrids in maintaining genomic stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Detection and molecular characterization of double-stranded RNA viruses in Philippine Trichomonas vaginalis isolates.

    Science.gov (United States)

    Rivera, Windell L; Justo, Christine Aubrey C; Relucio-San Diego, Mary Ann Cielo V; Loyola, Lorenz M

    2017-10-01

    The flagellated protozoon Trichomonas vaginalis that parasitizes the urogenital tract of humans was reported to harbor double-stranded RNA (dsRNA) viruses. These viruses, identified as Trichomonas vaginalis virus (TVV), belong to the genus Trichomonasvirus of the family Totiviridae. Four species, formally recognized by the International Committee on Taxonomy of Viruses (ICTV), have been reported and distinguished by pairwise comparisons of the sequences of genes coding for major capsid protein (CP) and RNA-dependent RNA polymerase (RdRp). Reverse transcription polymerase chain reaction (RT-PCR) was used to amplify the complimentary DNA of target virus genes coding for CP and RdRp. Sequence analyses confirmed the identity of the TVV isolates from T. vaginalis cultures. A total of 35 dsRNA viruses were identified from 18 (19%) T. vaginalis isolates. Multiple TVV species were observed in six of the 18 T. vaginalis cultures. Phylogenetic analyses show monophyly in TVV1 and TVV2 whereas TVV3 and TVV4 appear paraphyletic. The phylogeny of Philippine Trichomonasvirus reflects the global distribution of its host. This is the first study in the Philippines and one of the two reports worldwide to detect the four TVVs and their concurrent infection in a single T. vaginalis isolate. Copyright © 2015. Published by Elsevier B.V.

  15. Infectious bursal disease virus capsid protein VP3 interacts both with VP1, the RNA-dependent RNA polymerase and with viral double-stranded RNA

    NARCIS (Netherlands)

    Tacken, M.G.J.; Peeters, B.P.H.; Thomas, A.A.M.; Rottier, P.J.M.; Boot, H.J.

    2002-01-01

    Infectious bursal disease virus (IBDV) is a double-stranded RNA (dsRNA) virus of the Birnaviridae family. Its two genome segments are encapsidated together with multiple copies of the viral RNA-dependent RNA polymerase, VP1, in a single-shell capsid that is composed of VP2 and VP3. In this study we

  16. Scavenger receptors in human airway epithelial cells: role in response to double-stranded RNA.

    Directory of Open Access Journals (Sweden)

    Audrey Dieudonné

    Full Text Available Scavenger receptors and Toll-like receptors (TLRs cooperate in response to danger signals to adjust the host immune response. The TLR3 agonist double stranded (dsRNA is an efficient activator of innate signalling in bronchial epithelial cells. In this study, we aimed at defining the role played by scavenger receptors expressed by bronchial epithelial cells in the control of the innate response to dsRNA both in vitro and in vivo. Expression of several scavenger receptor involved in pathogen recognition was first evaluated in human bronchial epithelial cells in steady-state and inflammatory conditions. Their implication in the uptake of dsRNA and the subsequent cell activation was evaluated in vitro by competition with ligand of scavenger receptors including maleylated ovalbumin and by RNA silencing. The capacity of maleylated ovalbumin to modulate lung inflammation induced by dsRNA was also investigated in mice. Exposure to tumor necrosis factor-α increased expression of the scavenger receptors LOX-1 and CXCL16 and the capacity to internalize maleylated ovalbumin, whereas activation by TLR ligands did not. In contrast, the expression of SR-B1 was not modulated in these conditions. Interestingly, supplementation with maleylated ovalbumin limited dsRNA uptake and inhibited subsequent activation of bronchial epithelial cells. RNA silencing of LOX-1 and SR-B1 strongly blocked the dsRNA-induced cytokine production. Finally, administration of maleylated ovalbumin in mice inhibited the dsRNA-induced infiltration and activation of inflammatory cells in bronchoalveolar spaces and lung draining lymph nodes. Together, our data characterize the function of SR-B1 and LOX-1 in bronchial epithelial cells and their implication in dsRNA-induced responses, a finding that might be relevant during respiratory viral infections.

  17. Widespread horizontal gene transfer from double-stranded RNA viruses to eukaryotic nuclear genomes.

    Science.gov (United States)

    Liu, Huiquan; Fu, Yanping; Jiang, Daohong; Li, Guoqing; Xie, Jiatao; Cheng, Jiasen; Peng, Youliang; Ghabrial, Said A; Yi, Xianhong

    2010-11-01

    Horizontal gene transfer commonly occurs from cells to viruses but rarely occurs from viruses to their host cells, with the exception of retroviruses and some DNA viruses. However, extensive sequence similarity searches in public genome databases for various organisms showed that the capsid protein and RNA-dependent RNA polymerase genes from totiviruses and partitiviruses have widespread homologs in the nuclear genomes of eukaryotic organisms, including plants, arthropods, fungi, nematodes, and protozoa. PCR amplification and sequencing as well as comparative evidence of junction coverage between virus and host sequences support the conclusion that these viral homologs are real and occur in eukaryotic genomes. Sequence comparison and phylogenetic analysis suggest that these genes were likely transferred horizontally from viruses to eukaryotic genomes. Furthermore, we present evidence showing that some of the transferred genes are conserved and expressed in eukaryotic organisms and suggesting that these viral genes are also functional in the recipient genomes. Our findings imply that horizontal transfer of double-stranded RNA viral genes is widespread among eukaryotes and may give rise to functionally important new genes, thus entailing that RNA viruses may play significant roles in the evolution of eukaryotes.

  18. Two Novel Relative Double-Stranded RNA Mycoviruses Infecting Fusarium poae Strain SX63.

    Science.gov (United States)

    Wang, Luan; Zhang, Jingze; Zhang, Hailong; Qiu, Dewen; Guo, Lihua

    2016-04-30

    Two novel double-stranded RNA (dsRNA) mycoviruses, termed Fusarium poae dsRNA virus 2 (FpV2) and Fusarium poae dsRNA virus 3 (FpV3), were isolated from the plant pathogenic fungus, Fusarium poae strain SX63, and molecularly characterized. FpV2 and FpV3, with respective genome sequences of 9518 and 9419 base pairs (bps), are both predicted to contain two discontinuous open reading frames (ORFs), ORF1 and ORF2. A hypothetical polypeptide (P1) and a RNA-dependent RNA polymerase (RdRp) are encoded by ORF1 and ORF2, respectively. Phytoreo_S7 domain (pfam07236) homologs were detected downstream of the RdRp domain (RdRp_4; pfam02123) of the ORF2-coded proteins of both FpV2 and FpV3. The same shifty heptamers (GGAAAAC) were both found immediately before the stop codon UAG of ORF1 in FpV2 and FpV3, which could mediate programmed -1 ribosomal frameshifting (-1 PRF). Phylogenetic analysis based on RdRp sequences clearly place FpV2 and FpV3 in a taxonomically unassigned dsRNA mycovirus group. Together, with a comparison of genome organization, a new taxonomic family termed Fusagraviridae is proposed to be created to include FpV2- and FpV3-related dsRNA mycoviruses, within which FpV2 and FpV3 would represent two distinct virus species.

  19. Conserved asymmetry underpins homodimerization of Dicer-associated double-stranded RNA-binding proteins.

    Science.gov (United States)

    Heyam, Alex; Coupland, Claire E; Dégut, Clément; Haley, Ruth A; Baxter, Nicola J; Jakob, Leonhard; Aguiar, Pedro M; Meister, Gunter; Williamson, Michael P; Lagos, Dimitris; Plevin, Michael J

    2017-12-01

    Double-stranded RNA-binding domains (dsRBDs) are commonly found in modular proteins that interact with RNA. Two varieties of dsRBD exist: canonical Type A dsRBDs interact with dsRNA, while non-canonical Type B dsRBDs lack RNA-binding residues and instead interact with other proteins. In higher eukaryotes, the microRNA biogenesis enzyme Dicer forms a 1:1 association with a dsRNA-binding protein (dsRBP). Human Dicer associates with HIV TAR RNA-binding protein (TRBP) or protein activator of PKR (PACT), while Drosophila Dicer-1 associates with Loquacious (Loqs). In each case, the interaction involves a region of the protein that contains a Type B dsRBD. All three dsRBPs are reported to homodimerize, with the Dicer-binding region implicated in self-association. We report that these dsRBD homodimers display structural asymmetry and that this unusual self-association mechanism is conserved from flies to humans. We show that the core dsRBD is sufficient for homodimerization and that mutation of a conserved leucine residue abolishes self-association. We attribute differences in the self-association properties of Loqs, TRBP and PACT to divergence of the composition of the homodimerization interface. Modifications that make TRBP more like PACT enhance self-association. These data are examined in the context of miRNA biogenesis and the protein/protein interaction properties of Type B dsRBDs. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Double-stranded RNA transcribed from vector-based oligodeoxynucleotide acts as transcription factor decoy

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiao [State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi Province (China); Gang, Yi [State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi Province (China); Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, Shaanxi Province (China); Wang, Honghong [No. 518 Hospital of Chinese People’s Liberation Army, Xi’an 710043, Shaanxi Province (China); Wang, Jiayin [The Genome Institute, Washington University in St. Louis, St. Louis, MO 63108 (United States); Zhao, Lina [Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi Province (China); Xu, Li, E-mail: lxuhelen@163.com [State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi Province (China); Liu, Zhiguo, E-mail: liuzhiguo@fmmu.edu.cn [State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi Province (China)

    2015-02-06

    Highlights: • A shRNA vector based transcription factor decoy, VB-ODN, was designed. • VB-ODN for NF-κB inhibited cell viability in HEK293 cells. • VB-ODN inhibited expression of downstream genes of target transcription factors. • VB-ODN may enhance nuclear entry ratio for its feasibility of virus production. - Abstract: In this study, we designed a short hairpin RNA vector-based oligodeoxynucleotide (VB-ODN) carrying transcription factor (TF) consensus sequence which could function as a decoy to block TF activity. Specifically, VB-ODN for Nuclear factor-κB (NF-κB) could inhibit cell viability and decrease downstream gene expression in HEK293 cells without affecting expression of NF-κB itself. The specific binding between VB-ODN produced double-stranded RNA and NF-κB was evidenced by electrophoretic mobility shift assay. Moreover, similar VB-ODNs designed for three other TFs also inhibit their downstream gene expression but not that of themselves. Our study provides a new design of decoy for blocking TF activity.

  1. Double-stranded RNA transcribed from vector-based oligodeoxynucleotide acts as transcription factor decoy

    International Nuclear Information System (INIS)

    Xiao, Xiao; Gang, Yi; Wang, Honghong; Wang, Jiayin; Zhao, Lina; Xu, Li; Liu, Zhiguo

    2015-01-01

    Highlights: • A shRNA vector based transcription factor decoy, VB-ODN, was designed. • VB-ODN for NF-κB inhibited cell viability in HEK293 cells. • VB-ODN inhibited expression of downstream genes of target transcription factors. • VB-ODN may enhance nuclear entry ratio for its feasibility of virus production. - Abstract: In this study, we designed a short hairpin RNA vector-based oligodeoxynucleotide (VB-ODN) carrying transcription factor (TF) consensus sequence which could function as a decoy to block TF activity. Specifically, VB-ODN for Nuclear factor-κB (NF-κB) could inhibit cell viability and decrease downstream gene expression in HEK293 cells without affecting expression of NF-κB itself. The specific binding between VB-ODN produced double-stranded RNA and NF-κB was evidenced by electrophoretic mobility shift assay. Moreover, similar VB-ODNs designed for three other TFs also inhibit their downstream gene expression but not that of themselves. Our study provides a new design of decoy for blocking TF activity

  2. Double-stranded RNA viral infection of Trichomonas vaginalis (TVV1) in Iranian isolates.

    Science.gov (United States)

    Khanaliha, Khadijeh; Masoumi-Asl, Hossein; Bokharaei-Salim, Farah; Tabatabaei, Azardokht; Naghdalipoor, Mehri

    2017-08-01

    The Totiviridae family includes a number of viruses that can infect protozoan parasites such as Leishmania and Giardia and fungi like Saccharomyces cerevisiae. Some isolates of Trichomonas vaginalis are also infected with one or more double-stranded RNA (dsRNA) viruses. In this study, the frequency of Trichomonas vaginalis virus (TVV1) was evaluated in Iranian isolates of T. vaginalis in Tehran, Iran. One thousand five hundred vaginal samples were collected from patients attending obstetrics and gynaecology hospitals associated with Iran University of Medical Sciences in Tehran, Iran from October 2015 to September 2016. Trichomonas vaginalis isolates were cultured in Diamond's modified medium. Nucleic acids were extracted using a DNA/RNA extraction kit and RT-PCR was performed. Among 1500 collected vaginal samples, 8 (0.53%) cases of T. vaginalis infection were found. Half (4/8) of the T. vaginalis positive cases were infected with TVV1. Phylogenetic mapping indicated that the Iranian isolates were most closely related to TVV1-OC5, TVV1-UR1. Iranian isolates of T. vaginalis were infected with TVV1. The frequency of viral infection (TVV1) in T. vaginalis isolates found in this study is higher than previously reported in Iran. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Synthetic double-stranded RNA induces interleukin-32 in bronchial epithelial cells.

    Science.gov (United States)

    Ota, Kyoko; Kawaguchi, Mio; Fujita, Junichi; Kokubu, Fumio; Huang, Shau-Ku; Morishima, Yuko; Matsukura, Satoshi; Kurokawa, Masatsugu; Ishii, Yukio; Satoh, Hiroaki; Sakamoto, Tohru; Hizawa, Nobuyuki

    2015-01-01

    Interleukin (IL)-32 is a novel cytokine and is involved in the pathogenesis of various inflammatory diseases, including asthma and COPD. However, the regulatory mechanisms of IL-32 expression and its precise pathogenic role remain to be defined. Given that viral infections are known to potentially cause and exacerbate airway inflammation, in this study, we investigated the expression of IL-32 induced by synthetic double-stranded (ds) RNA, and its signaling mechanisms involved. Bronchial epithelial cells were stimulated with synthetic dsRNA poly I:C. The levels of IL-32 expression were analyzed using real-time PCR and ELISA. The involvement of transforming growth factor β-activated kinase 1 (TAK1) and a subunit of nuclear factor-κB (NF-κB), p65 was determined by western blot analyses. TAK1 inhibitor, 5Z-7-Oxozeaenol and NF-κB inhibitor, BAY 11-7082 were added to the culture to identify key signaling events leading to the expression of IL-32. Finally, the effect of short interfering RNAs (siRNAs) targeting TAK1 and p65 was investigated. dsRNA significantly induced IL-32 gene and protein expression, concomitant with activation of TAK1 and p65. Pretreatment of 5Z-7-Oxozeaenol diminished dsRNA-induced phosphorylation of NF-κB. Both 5Z-7-Oxozeaenol and BAY 11-7082 significantly abrogated dsRNA-induced IL-32 production. Moreover, transfection of the cells with siRNAs targeting TAK1 and p65 inhibited the expression of IL-32. The expression of IL-32 is induced by dsRNA via the TAK1-NF-κB signaling pathway in bronchial epithelial cells. IL-32 is involved in the pathogenesis of airway inflammation, and may be a novel therapeutic target for airway inflammatory diseases.

  4. Cap snatching in yeast L-BC double-stranded RNA totivirus.

    Science.gov (United States)

    Fujimura, Tsutomu; Esteban, Rosa

    2013-08-16

    Yeast L-A double-stranded RNA virus furnishes its transcript with a 5' cap structure by a novel cap-snatching mechanism in which m(7)Gp from a host mRNA cap structure is transferred to the 5'-diphosphate terminus of the viral transcript. His-154 of the coat protein Gag forms an m(7)Gp adduct, and the H154R mutation abolishes both m(7)Gp adduct formation and cap snatching. Here we show that L-BC, another totivirus closely related to L-A, also synthesizes 5'-diphosphorylated transcripts and transfers m(7)Gp from mRNA to the 5' termini of the transcripts. L-BC Gag also covalently binds to the cap structure and the mutation H156R, which corresponds to H154R of L-A Gag, abolishes cap adduct formation. Cap snatching of the L-BC virus is very similar to that of L-A; N7 methylation of the mRNA cap is essential for cap donor activity, and only 5'-diphosphorylated RNA is used as cap acceptor. L-BC cap snatching is also activated by viral transcription. Furthermore, both viruses require Mg(2+) and Mn(2+) for cap snatching. These cations are not only required for transcription activation but also directly involved in the cap transfer process. These findings support our previous proposal that the cap-snatching mechanism of the L-A virus is shared by fungal totiviruses closely related to L-A. Interestingly, L-A and L-BC viruses accept either viral transcript as cap acceptor in vitro. Because L-A and L-BC viruses cohabit in many yeast strains, it raises the possibility that their cohabitation in the same host may be beneficial for their mutual cap acquisition.

  5. Disruption of Specific RNA-RNA Interactions in a Double-Stranded RNA Virus Inhibits Genome Packaging and Virus Infectivity.

    Science.gov (United States)

    Fajardo, Teodoro; Sung, Po-Yu; Roy, Polly

    2015-12-01

    Bluetongue virus (BTV) causes hemorrhagic disease in economically important livestock. The BTV genome is organized into ten discrete double-stranded RNA molecules (S1-S10) which have been suggested to follow a sequential packaging pathway from smallest to largest segment during virus capsid assembly. To substantiate and extend these studies, we have investigated the RNA sorting and packaging mechanisms with a new experimental approach using inhibitory oligonucleotides. Putative packaging signals present in the 3'untranslated regions of BTV segments were targeted by a number of nuclease resistant oligoribonucleotides (ORNs) and their effects on virus replication in cell culture were assessed. ORNs complementary to the 3' UTR of BTV RNAs significantly inhibited virus replication without affecting protein synthesis. Same ORNs were found to inhibit complex formation when added to a novel RNA-RNA interaction assay which measured the formation of supramolecular complexes between and among different RNA segments. ORNs targeting the 3'UTR of BTV segment 10, the smallest RNA segment, were shown to be the most potent and deletions or substitution mutations of the targeted sequences diminished the RNA complexes and abolished the recovery of viable viruses using reverse genetics. Cell-free capsid assembly/RNA packaging assay also confirmed that the inhibitory ORNs could interfere with RNA packaging and further substitution mutations within the putative RNA packaging sequence have identified the recognition sequence concerned. Exchange of 3'UTR between segments have further demonstrated that RNA recognition was segment specific, most likely acting as part of the secondary structure of the entire genomic segment. Our data confirm that genome packaging in this segmented dsRNA virus occurs via the formation of supramolecular complexes formed by the interaction of specific sequences located in the 3' UTRs. Additionally, the inhibition of packaging in-trans with inhibitory ORNs

  6. Double-stranded RNA-dependent protein kinase regulates the motility of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Mei Xu

    Full Text Available Double-stranded RNA (dsRNA-dependent protein kinase (PKR is an interferon-induced protein kinase that plays a central role in the anti-viral process. Due to its pro-apoptotic and anti-proliferative action, there is an increased interest in PKR modulation as an anti-tumor strategy. PKR is overexpressed in breast cancer cells; however, the role of PKR in breast cancer cells is unclear. The expression/activity of PKR appears inversely related to the aggressiveness of breast cancer cells. The current study investigated the role of PKR in the motility/migration of breast cancer cells. The activation of PKR by a synthesized dsRNA (PIC significantly decreased the motility of several breast cancer cell lines (BT474, MDA-MB231 and SKBR3. PIC inhibited cell migration and blocked cell membrane ruffling without affecting cell viability. PIC also induced the reorganization of the actin cytoskeleton and impaired the formation of lamellipodia. These effects of PIC were reversed by the pretreatment of a selective PKR inhibitor. PIC also activated p38 mitogen-activated protein kinase (MAPK and its downstream MAPK-activated protein kinase 2 (MK2. PIC-induced activation of p38 MAPK and MK2 was attenuated by the PKR inhibitor and the PKR siRNA, but a selective p38 MAPK inhibitor (SB203580 or other MAPK inhibitors did not affect PKR activity, indicating that PKR is upstream of p38 MAPK/MK2. Cofilin is an actin severing protein and regulates membrane ruffling, lamellipodia formation and cell migration. PIC inhibited cofilin activity by enhancing its phosphorylation at Ser3. PIC activated LIM kinase 1 (LIMK1, an upstream kinase of cofilin in a p38 MAPK-dependent manner. We concluded that the activation of PKR suppressed cell motility by regulating the p38 MAPK/MK2/LIMK/cofilin pathway.

  7. Alternaria inhibits double-stranded RNA-induced cytokine production through Toll-like receptor 3.

    Science.gov (United States)

    Wada, Kota; Kobayashi, Takao; Matsuwaki, Yoshinori; Moriyama, Hiroshi; Kita, Hirohito

    2013-01-01

    Fungi may be involved in asthma and chronic rhinosinusitis (CRS). Peripheral blood mononuclear cells from CRS patients produce interleukin (IL)-5, IL-13 and interferon (IFN)-γ in the presence of Alternaria. In addition, Alternaria produces potent Th2-like adjuvant effects in the airway. Therefore, we hypothesized that Alternaria may inhibit Th1-type defense mechanisms against virus infection. Dendritic cells (DCs) were generated from mouse bone marrow. The functional responses were assessed by expression of cell surface molecules by FACS (MHC class II, CD40, CD80, CD86 and OX40L). Production of IL-6, chemokine CXCL10 (IP-10), chemokine CXCL11 (I-TAC) and IFN-β was measured by ELISA. Toll-like receptor 3 (TLR3) mRNA and protein expression was detected by quantitative real-time PCR and Western blot. Alternaria and polyinosinic-polycytidylic acid (poly I:C) enhanced cell surface expression of MHC class II, CD40, CD80, CD86 and OX40L, and IL-6 production in a concentration-dependent manner. However, Alternaria significantly inhibited production of IP-10, I-TAC and IFN-β, induced by viral double-stranded RNA (dsRNA) mimic poly I:C. TLR3 mRNA expression and protein production by poly I:C were significantly inhibited by Alternaria. These reactions are likely caused by heat-stable factor(s) in Alternaria extract with >100 kDa molecular mass. These findings suggest that the fungus Alternaria may inhibit production of IFN-β and other cytokines by DCs by suppressing TLR3 expression. These results indicate that Alternaria may inhibit host innate immunity against virus infection. Copyright © 2013 S. Karger AG, Basel.

  8. Alternaria Inhibits Double-stranded RNA-Induced Cytokines Productions through TLR3

    Science.gov (United States)

    Wada, Kota; Kobayashi, Takao; Matsuwaki, Yoshinori; Moriyama, Hiroshi; Kita, Hirohito

    2014-01-01

    Background Fungi may be involved in asthma and chronic rhinosinusitis (CRS). PBMCs from CRS patients produce IL-5, IL-13 and INF-γ by Alternaria. In addition, Alternaria produces potent Th2-like adjuvant effects in the airway. Therefore, we hypothesized that Alternaria may inhibit Th1-type defense mechanisms against virus infection. Methods Dendritic cells (DCs) were generated from mouse bone marrow. The functional responses were assessed by expression of cell surface molecules by FACS (MHC Class II, CD40, CD80, CD86 and OX40L. Production of IL-6, IP-10, I-TAC and IFN -β were measured by ELISA. TLR3 mRNA and protein expression were detected by quantitative Real time-PCR and Western blot. Results Alternaria and poly I:C enhanced cell surface expression of MHC Class II, CD40, CD80, CD86 and OX40L, and IL-6 production in a concentration-dependent manner. However, Alternaria significantly inhibited IP-10, I-TAC and IFN-β production induced by viral double-stranded RNA (dsRNA)-mimic poly I:C. TLR3 mRNA expression and protein production by poly I:C were significantly inhibited by Alternaria. These reactions are likely caused by heat-stable factor(s) in Alternaria extract with >100 kDa molecular mass. Conclusion These findings suggest that fungus, Alternaria may inhibit production of IFN-β and other cytokines by DCs by suppressing TLR3 expression. These results indicate that Alternaria may inhibit host innate immunity against virus infection. PMID:23711857

  9. Identification and sequence determination of a novel double-stranded RNA mycovirus from the entomopathogenic fungus Beauveria bassiana.

    Science.gov (United States)

    Kotta-Loizou, Ioly; Sipkova, Jana; Coutts, Robert H A

    2015-03-01

    An isolate of the entomopathogenic fungus Beauveria bassiana was found to contain five double-stranded (ds) RNA elements ranging from 1.5 to more than 3 kbp. The complete sequence of the largest dsRNA element is described here. Analysis of the RdRp nucleotide sequence reveals its similarity to unclassified dsRNA elements, such as Alternaria longipes dsRNA virus 1, and its distant relationship to the RNA-dependent RNA polymerases of members of the family Partitiviridae.

  10. Visualizing double-stranded RNA distribution and dynamics in living cells by dsRNA binding-dependent fluorescence complementation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xiaofei [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 (Canada); College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036 (China); Deng, Ping; Cui, Hongguang [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 (Canada); Wang, Aiming, E-mail: aiming.wang@agr.gc.ca [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 (Canada)

    2015-11-15

    Double-stranded RNA (dsRNA) is an important type of RNA that plays essential roles in diverse cellular processes in eukaryotic organisms and a hallmark in infections by positive-sense RNA viruses. Currently, no in vivo technology has been developed for visualizing dsRNA in living cells. Here, we report a dsRNA binding-dependent fluorescence complementation (dRBFC) assay that can be used to efficiently monitor dsRNA distribution and dynamics in vivo. The system consists of two dsRNA-binding proteins, which are fused to the N- and C-terminal halves of the yellow fluorescent protein (YFP). Binding of the two fusion proteins to a common dsRNA brings the split YFP halves in close proximity, leading to the reconstitution of the fluorescence-competent structure and restoration of fluorescence. Using this technique, we were able to visualize the distribution and trafficking of the replicative RNA intermediates of positive-sense RNA viruses in living cells. - Highlights: • A live-cell imaging system was developed for visualizing dsRNA in vivo. • It uses dsRNA binding proteins fused with two halves of a fluorescent protein. • Binding to a common dsRNA enables the reporter to become fluorescent. • The system can efficiently monitor viral RNA replication in living cells.

  11. Visualizing double-stranded RNA distribution and dynamics in living cells by dsRNA binding-dependent fluorescence complementation

    International Nuclear Information System (INIS)

    Cheng, Xiaofei; Deng, Ping; Cui, Hongguang; Wang, Aiming

    2015-01-01

    Double-stranded RNA (dsRNA) is an important type of RNA that plays essential roles in diverse cellular processes in eukaryotic organisms and a hallmark in infections by positive-sense RNA viruses. Currently, no in vivo technology has been developed for visualizing dsRNA in living cells. Here, we report a dsRNA binding-dependent fluorescence complementation (dRBFC) assay that can be used to efficiently monitor dsRNA distribution and dynamics in vivo. The system consists of two dsRNA-binding proteins, which are fused to the N- and C-terminal halves of the yellow fluorescent protein (YFP). Binding of the two fusion proteins to a common dsRNA brings the split YFP halves in close proximity, leading to the reconstitution of the fluorescence-competent structure and restoration of fluorescence. Using this technique, we were able to visualize the distribution and trafficking of the replicative RNA intermediates of positive-sense RNA viruses in living cells. - Highlights: • A live-cell imaging system was developed for visualizing dsRNA in vivo. • It uses dsRNA binding proteins fused with two halves of a fluorescent protein. • Binding to a common dsRNA enables the reporter to become fluorescent. • The system can efficiently monitor viral RNA replication in living cells.

  12. siRNA-like double-stranded RNAs are specifically protected against degradation in human cell extract.

    Directory of Open Access Journals (Sweden)

    John A H Hoerter

    Full Text Available RNA interference (RNAi is a set of intracellular pathways in eukaryotes that controls both exogenous and endogenous gene expression. The power of RNAi to knock down (silence any gene of interest by the introduction of synthetic small-interfering (siRNAs has afforded powerful insight into biological function through reverse genetic approaches and has borne a new field of gene therapeutics. A number of questions are outstanding concerning the potency of siRNAs, necessitating an understanding of how short double-stranded RNAs are processed by the cell. Recent work suggests unmodified siRNAs are protected in the intracellular environment, although the mechanism of protection still remains unclear. We have developed a set of doubly-fluorophore labeled RNAs (more precisely, RNA/DNA chimeras to probe in real-time the stability of siRNAs and related molecules by fluorescence resonance energy transfer (FRET. We find that these RNA probes are substrates for relevant cellular degradative processes, including the RNase H1 mediated degradation of an DNA/RNA hybrid and Dicer-mediated cleavage of a 24-nucleotide (per strand double-stranded RNA. In addition, we find that 21- and 24-nucleotide double-stranded RNAs are relatively protected in human cytosolic cell extract, but less so in blood serum, whereas an 18-nucleotide double-stranded RNA is less protected in both fluids. These results suggest that RNAi effector RNAs are specifically protected in the cellular environment and may provide an explanation for recent results showing that unmodified siRNAs in cells persist intact for extended periods of time.

  13. Crystallization of the avian reovirus double-stranded RNA-binding and core protein σA

    Energy Technology Data Exchange (ETDEWEB)

    Hermo-Parrado, X. Lois; Guardado-Calvo, Pablo [Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Sur, E-15782 Santiago de Compostela (Spain); Llamas-Saiz, Antonio L. [Unidad de Difracción de Rayos X, Laboratorio Integral de Dinámica y Estructura de Biomoléculas José R. Carracido, Edificio CACTUS, Universidad de Santiago de Compostela, Campus Sur, E-15782 Santiago de Compostela (Spain); Fox, Gavin C. [Spanish CRG Beamline BM16, European Synchrotron Radiation Facility (ESRF), 6 Rue Jules Horowitz, BP 220, F-38043 Grenoble (France); Vazquez-Iglesias, Lorena; Martínez-Costas, José; Benavente, Javier [Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Sur, E-15782 Santiago de Compostela (Spain); Raaij, Mark J. van, E-mail: vanraaij@usc.es [Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Sur, E-15782 Santiago de Compostela (Spain); Unidad de Difracción de Rayos X, Laboratorio Integral de Dinámica y Estructura de Biomoléculas José R. Carracido, Edificio CACTUS, Universidad de Santiago de Compostela, Campus Sur, E-15782 Santiago de Compostela (Spain)

    2007-05-01

    The avian reovirus double-stranded RNA-binding and core protein σA has been crystallized in space group P1, with unit-cell parameters a = 103.2, b = 129.9, c = 144.0 Å, α = 93.8, β = 105.1, γ = 98.2°. A complete data set has been collected to 2.3 Å resolution and analyzed. The avian reovirus protein σA plays a dual role: it is a structural protein forming part of the transcriptionally active core, but it has also been implicated in the resistance of the virus to interferon by strongly binding double-stranded RNA and thus inhibiting the double-stranded RNA-dependent protein kinase. The σA protein has been crystallized from solutions containing ammonium sulfate at pH values around 6. Crystals belonging to space group P1, with unit-cell parameters a = 103.2, b = 129.9, c = 144.0 Å, α = 93.8, β = 105.1, γ = 98.2° were grown and a complete data set has been collected to 2.3 Å resolution. The self-rotation function suggests that σA may form symmetric arrangements in the crystals.

  14. Crystallization of the avian reovirus double-stranded RNA-binding and core protein σA

    International Nuclear Information System (INIS)

    Hermo-Parrado, X. Lois; Guardado-Calvo, Pablo; Llamas-Saiz, Antonio L.; Fox, Gavin C.; Vazquez-Iglesias, Lorena; Martínez-Costas, José; Benavente, Javier; Raaij, Mark J. van

    2007-01-01

    The avian reovirus double-stranded RNA-binding and core protein σA has been crystallized in space group P1, with unit-cell parameters a = 103.2, b = 129.9, c = 144.0 Å, α = 93.8, β = 105.1, γ = 98.2°. A complete data set has been collected to 2.3 Å resolution and analyzed. The avian reovirus protein σA plays a dual role: it is a structural protein forming part of the transcriptionally active core, but it has also been implicated in the resistance of the virus to interferon by strongly binding double-stranded RNA and thus inhibiting the double-stranded RNA-dependent protein kinase. The σA protein has been crystallized from solutions containing ammonium sulfate at pH values around 6. Crystals belonging to space group P1, with unit-cell parameters a = 103.2, b = 129.9, c = 144.0 Å, α = 93.8, β = 105.1, γ = 98.2° were grown and a complete data set has been collected to 2.3 Å resolution. The self-rotation function suggests that σA may form symmetric arrangements in the crystals

  15. The double-stranded RNA-activated protein kinase mediates viral-induced encephalitis

    International Nuclear Information System (INIS)

    Scheuner, Donalyn; Gromeier, Matthias; Davies, Monique V.; Dorner, Andrew J.; Song Benbo; Patel, Rupali V.; Wimmer, Eckard J.; McLendon, Roger E.; Kaufman, Randal J.

    2003-01-01

    The double-stranded (ds) RNA-activated protein kinase (PKR) plays an important role in control of viral infections and cell growth. We have studied the role of PKR in viral infection in mice that are defective in the PKR signaling pathway. Transgenic mice were derived that constitutively express a trans-dominant-negative kinase-defective mutant PKR under control of the β-actin promoter. The trans-dominant-negative PKR mutant expressing transgenic mice do not have a detectable phenotype, similar to observations with PKR knock-out mice. The requirement for PKR in viral pathogenesis was studied by intracerebral infection of mice with a mouse-adapted poliovirus. Histopathological analysis revealed diffuse encephalomyelitis with severe inflammatory lesions throughout the central nervous system (CNS) in infected wild-type mice. In contrast, histopathological evaluation of virus-injected trans-dominant-negative PKR transgenic mice as well as PKR knock-out mice yielded no signs of tissue damage associated with inflammatory host responses. However, the virus did replicate in both models of PKR-deficient mice at a level equal to that observed in wild-type infected mice. Although the results indicate a clear difference in susceptibility to poliovirus-induced encephalitis, this difference manifests clinically as a slight delay in fatal neuropathy in trans-dominant-negative PKR transgenic and PKR knock-out animals. Our observations support the finding that viral-induced PKR activation may play a significant role in pathogenesis by mediating the host response to viral CNS infection. They support PKR to be an effective target to control tissue damage due to deleterious host responses to viral infection

  16. RNA interference by feeding in vitro-synthesized double-stranded RNA to planarians: methodology and dynamics.

    Science.gov (United States)

    Rouhana, Labib; Weiss, Jennifer A; Forsthoefel, David J; Lee, Hayoung; King, Ryan S; Inoue, Takeshi; Shibata, Norito; Agata, Kiyokazu; Newmark, Phillip A

    2013-06-01

    The ability to assess gene function is essential for understanding biological processes. Currently, RNA interference (RNAi) is the only technique available to assess gene function in planarians, in which it has been induced by means of injection of double-stranded RNA (dsRNA), soaking, or ingestion of bacteria expressing dsRNA. We describe a simple and robust RNAi protocol, involving in vitro synthesis of dsRNA that is fed to the planarians. Advantages of this protocol include the ability to produce dsRNA from any vector without subcloning, resolution of ambiguities in quantity and quality of input dsRNA, as well as time and ease of application. We have evaluated the logistics of inducing RNAi in planarians using this methodology in careful detail, from the ingestion and processing of dsRNA in the intestine, to timing and efficacy of knockdown in neoblasts, germline, and soma. We also present systematic comparisons of effects of amount, frequency, and mode of dsRNA delivery. This method gives robust and reproducible results and is amenable to high-throughput studies. Overall, this RNAi methodology provides a significant advance by combining the strengths of current protocols available for dsRNA delivery in planarians and has the potential to benefit RNAi methods in other systems. Copyright © 2013 Wiley Periodicals, Inc.

  17. Double-stranded RNA induces similar pulmonary dysfunction to respiratory syncytial virus in BALB/c mice.

    Science.gov (United States)

    Aeffner, Famke; Traylor, Zachary P; Yu, Erin N Z; Davis, Ian C

    2011-07-01

    Both respiratory syncytial virus (RSV) and influenza A virus induce nucleotide/P2Y purinergic receptor-mediated impairment of alveolar fluid clearance (AFC), which contributes to formation of lung edema. Although genetically dissimilar, both viruses generate double-stranded RNA replication intermediates, which act as Toll-like receptor (TLR)-3 ligands. We hypothesized that double-stranded RNA/TLR-3 signaling underlies nucleotide-mediated inhibition of amiloride-sensitive AFC in both infections. We found that addition of the synthetic double-stranded RNA analog poly-inosinic-cytidylic acid [poly(I:C)] (500 ng/ml) to the AFC instillate resulted in nucleotide/P2Y purinergic receptor-mediated inhibition of amiloride-sensitive AFC in BALB/c mice but had no effect on cystic fibrosis transmembrane regulator (CFTR)-mediated Cl(-) transport. Poly(I:C) also induced acute keratinocyte cytokine-mediated AFC insensitivity to stimulation by the β-adrenergic agonist terbutaline. Inhibitory effects of poly(I:C) on AFC were absent in TLR-3(-/-) mice and were not replicated by addition to the AFC instillate of ligands for other TLRs except TLR-2. Intranasal poly(I:C) administration (250 μg/mouse) similarly induced nucleotide-dependent AFC inhibition 2-3 days later, together with increased lung water content and neutrophilic inflammation. Intranasal treatment of BALB/c mice with poly(I:C) did not induce airway hyperresponsiveness at day 2 but did result in insensitivity to airway bronchodilation by β-adrenergic agonists. These findings suggest that viral double-stranded RNA replication intermediates induce nucleotide-mediated impairment of amiloride-sensitive AFC in both infections, together with β-adrenergic agonist insensitivity. Both of these effects also occur in RSV infection. However, double-stranded RNA replication intermediates do not appear to be sufficient to induce either adenosine-mediated, CFTR-dependent Cl(-) secretion in the lung or severe, lethal hypoxemia, both

  18. Characterization of a novel double-stranded RNA mycovirus conferring hypovirulence from the phytopathogenic fungus Botryosphaeria dothidea.

    Science.gov (United States)

    Zhai, Lifeng; Xiang, Jun; Zhang, Meixin; Fu, Min; Yang, Zuokun; Hong, Ni; Wang, Guoping

    2016-06-01

    A novel double-stranded RNA (dsRNA) virus, designated as Botryosphaeria dothidea RNA virus 1 (BdRV1), isolated from a hypovirulent strain YZN115 of Botryosphaeria dothidea was biologically and molecularly characterized. The genome of BdRV1 comprises of five dsRNAs. Each dsRNA contains a single open reading frame. The proteins encoded by dsRNA1-4 shared significant amino acid identities of 55%, 47%, 43% and 53% with the corresponding proteins of Aspergillus fumigatus tetramycovirus-1. DsRNA1, 3, and 4 of BdRV1 encoded an RNA-dependent RNA polymerase, a viral methyltransferase, and a P-A-S-rich protein, respectively. Function of proteins encoded by the dsRNA2 and dsRNA5 were unknown. BdRV1 conferred hypovirulence for its host and could be transmitted through conidia and hyphae contact. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Hepatitis C virus double-stranded RNA is the predominant form in human liver and in interferon-treated cells.

    Science.gov (United States)

    Klepper, Arielle; Eng, Francis J; Doyle, Erin H; El-Shamy, Ahmed; Rahman, Adeeb H; Fiel, M Isabel; Avino, Gonzalo Carrasco; Lee, Moonju; Ye, Fei; Roayaie, Sasan; Bansal, Meena B; MacDonald, Margaret R; Schiano, Thomas D; Branch, Andrea D

    2017-08-01

    Hepatitis C virus (HCV) is unique among RNA viruses in its ability to establish chronic infection in the majority of exposed adults. HCV persists in the liver despite interferon (IFN)-stimulated gene (ISG) induction; robust induction actually predicts treatment failure and viral persistence. It is unclear which forms of HCV RNA are associated with ISG induction and IFN resistance during natural infections. To thoroughly delineate HCV RNA populations, we developed conditions that fully separate the strands of long double-stranded RNA (dsRNA) and allow the released RNAs to be quantified in reverse transcription/polymerase chain reaction assays. These methods revealed that dsRNA, a pathogen-associated molecular pattern (PAMP), comprised 52% (standard deviation, 28%) of the HCV RNA in the livers of patients with chronic infection. HCV dsRNA was proportionally higher in patients with the unfavorable IL28B TT (rs12979860) genotype. Higher ratios of HCV double-stranded to single-stranded RNA (ssRNA) correlated positively with ISG induction. In Huh-7.5 cells, IFN treatment increased the total amount of HCV dsRNA through a process that required de novo viral RNA synthesis and shifted the ratio of viral dsRNA/ssRNA in favor of dsRNA. This shift was blocked by ribavirin (RBV), an antiviral drug that reduces relapse in HCV patients. Northern blotting established that HCV dsRNA contained genome-length minus strands. HCV dsRNA is the predominant form in the HCV-infected liver and has features of both a PAMP and a genomic reservoir. Interferon treatment increased rather than decreased HCV dsRNA. This unexpected finding suggests that HCV produces dsRNA in response to IFN, potentially to antagonize antiviral defenses. (Hepatology 2017;66:357-370). © 2016 The Authors. Hepatology published by Wiley Periodicals, Inc., on behalf of the American Association for the Study of Liver Diseases.

  20. Inactivation of the type I interferon pathway reveals long double-stranded RNA-mediated RNA interference in mammalian cells.

    Science.gov (United States)

    Maillard, Pierre V; Van der Veen, Annemarthe G; Deddouche-Grass, Safia; Rogers, Neil C; Merits, Andres; Reis E Sousa, Caetano

    2016-12-01

    RNA interference (RNAi) elicited by long double-stranded (ds) or base-paired viral RNA constitutes the major mechanism of antiviral defence in plants and invertebrates. In contrast, it is controversial whether it acts in chordates. Rather, in vertebrates, viral RNAs induce a distinct defence system known as the interferon (IFN) response. Here, we tested the possibility that the IFN response masks or inhibits antiviral RNAi in mammalian cells. Consistent with that notion, we find that sequence-specific gene silencing can be triggered by long dsRNAs in differentiated mouse cells rendered deficient in components of the IFN pathway. This unveiled response is dependent on the canonical RNAi machinery and is lost upon treatment of IFN-responsive cells with type I IFN Notably, transfection with long dsRNA specifically vaccinates IFN-deficient cells against infection with viruses bearing a homologous sequence. Thus, our data reveal that RNAi constitutes an ancient antiviral strategy conserved from plants to mammals that precedes but has not been superseded by vertebrate evolution of the IFN system. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  1. Differential Inductions of RNA Silencing among Encapsidated Double-Stranded RNA Mycoviruses in the White Root Rot Fungus Rosellinia necatrix.

    Science.gov (United States)

    Yaegashi, Hajime; Shimizu, Takeo; Ito, Tsutae; Kanematsu, Satoko

    2016-06-15

    RNA silencing acts as a defense mechanism against virus infection in a wide variety of organisms. Here, we investigated inductions of RNA silencing against encapsidated double-stranded RNA (dsRNA) fungal viruses (mycoviruses), including a partitivirus (RnPV1), a quadrivirus (RnQV1), a victorivirus (RnVV1), a mycoreovirus (RnMyRV3), and a megabirnavirus (RnMBV1) in the phytopathogenic fungus Rosellinia necatrix Expression profiling of RNA silencing-related genes revealed that a dicer-like gene, an Argonaute-like gene, and two RNA-dependent RNA polymerase genes were upregulated by RnMyRV3 or RnMBV1 infection but not by other virus infections or by constitutive expression of dsRNA in R. necatrix Massive analysis of viral small RNAs (vsRNAs) from the five mycoviruses showed that 19- to 22-nucleotide (nt) vsRNAs were predominant; however, their ability to form duplexes with 3' overhangs and the 5' nucleotide preferences of vsRNAs differed among the five mycoviruses. The abundances of 19- to 22-nt vsRNAs from RnPV1, RnQV1, RnVV1, RnMyRV3, and RnMBV1 were 6.8%, 1.2%, 0.3%, 13.0%, and 24.9%, respectively. Importantly, the vsRNA abundances and accumulation levels of viral RNA were not always correlated, and the origins of the vsRNAs were distinguishable among the five mycoviruses. These data corroborated diverse interactions between encapsidated dsRNA mycoviruses and RNA silencing. Moreover, a green fluorescent protein (GFP)-based sensor assay in R. necatrix revealed that RnMBV1 infection induced silencing of the target sensor gene (GFP gene and the partial RnMBV1 sequence), suggesting that vsRNAs from RnMBV1 activated the RNA-induced silencing complex. Overall, this study provides insights into RNA silencing against encapsidated dsRNA mycoviruses. Encapsidated dsRNA fungal viruses (mycoviruses) are believed to replicate inside their virions; therefore, there is a question of whether they induce RNA silencing. Here, we investigated inductions of RNA silencing against

  2. Hepatitis delta antigen requires a flexible quasi-double-stranded RNA structure to bind and condense hepatitis delta virus RNA in a ribonucleoprotein complex.

    Science.gov (United States)

    Griffin, Brittany L; Chasovskikh, Sergey; Dritschilo, Anatoly; Casey, John L

    2014-07-01

    The circular genome and antigenome RNAs of hepatitis delta virus (HDV) form characteristic unbranched, quasi-double-stranded RNA secondary structures in which short double-stranded helical segments are interspersed with internal loops and bulges. The ribonucleoprotein complexes (RNPs) formed by these RNAs with the virus-encoded protein hepatitis delta antigen (HDAg) perform essential roles in the viral life cycle, including viral replication and virion formation. Little is understood about the formation and structure of these complexes and how they function in these key processes. Here, the specific RNA features required for HDAg binding and the topology of the complexes formed were investigated. Selective 2'OH acylation analyzed by primer extension (SHAPE) applied to free and HDAg-bound HDV RNAs indicated that the characteristic secondary structure of the RNA is preserved when bound to HDAg. Notably, the analysis indicated that predicted unpaired positions in the RNA remained dynamic in the RNP. Analysis of the in vitro binding activity of RNAs in which internal loops and bulges were mutated and of synthetically designed RNAs demonstrated that the distinctive secondary structure, not the primary RNA sequence, is the major determinant of HDAg RNA binding specificity. Atomic force microscopy analysis of RNPs formed in vitro revealed complexes in which the HDV RNA is substantially condensed by bending or wrapping. Our results support a model in which the internal loops and bulges in HDV RNA contribute flexibility to the quasi-double-stranded structure that allows RNA bending and condensing by HDAg. RNA-protein complexes (RNPs) formed by the hepatitis delta virus RNAs and protein, HDAg, perform critical roles in virus replication. Neither the structures of these RNPs nor the RNA features required to form them have been characterized. HDV RNA is unusual in that it forms an unbranched quasi-double-stranded structure in which short base-paired segments are interspersed

  3. The complete genome sequence of a double-stranded RNA mycovirus from Fusarium graminearum strain HN1.

    Science.gov (United States)

    Wang, Luan; Wang, Shuangchao; Yang, Xiufen; Zeng, Hongmei; Qiu, Dewen; Guo, Lihua

    2017-07-01

    The complete nucleotide sequence of a double-stranded RNA (dsRNA) mycovirus, Fusarium graminearum dsRNA virus 5 (FgV5), was identified and characterized. The FgV5 genome comprises two dsRNA genome segments of 2030 bp and 1740 bp. FgV5 dsRNA1 contains a single open reading frame (ORF1), which is predicted to encode a protein of 613 amino acids (aa) with a molecular mass of 70.4 kDa and has a conserved RNA-dependent RNA polymerase (RdRp) motif. FgV5 dsRNA2 is predicted to contain two discontinuous ORFs (ORF2 and ORF3) that code for products of unknown function. Sequence comparisons showed that FgV5 has the highest aa sequence identities to Fusarium graminearum virus 4 (FgV4) (83.01% for ORF1, 78.70% for ORF2, and 76.27% for ORF3), suggesting that FgV5 and FgV4 should be regarded as members of different species. Phylogenetic analysis indicated that FgV5 belongs to a taxonomically unassigned dsRNA mycovirus group that is related to the families Amalgaviridae and Partitiviridae. Here, we propose that FgV5 and related viruses are members of a yet to be named and formally recognized new family.

  4. Primer-dependent and primer-independent initiation of double stranded RNA synthesis by purified arabidopsis RNA-dependent RNA polymerases RDR2 and RDR6

    DEFF Research Database (Denmark)

    Devert, Anthony; Fabre, Nicolas; Floris, Maina Huguette Joséphine

    2015-01-01

    Cellular RNA-dependent RNA polymerases (RDRs) are fundamental components of RNA silencing in plants and many other eukaryotes. In Arabidopsis thaliana genetic studies have demonstrated that RDR2 and RDR6 are involved in the synthesis of double stranded RNA (dsRNA) from single stranded RNA (ssRNA)...

  5. Measles virus C protein impairs production of defective copyback double-stranded viral RNA and activation of protein kinase R.

    Science.gov (United States)

    Pfaller, Christian K; Radeke, Monte J; Cattaneo, Roberto; Samuel, Charles E

    2014-01-01

    Measles virus (MV) lacking expression of C protein (C(KO)) is a potent activator of the double-stranded RNA (dsRNA)-dependent protein kinase (PKR), whereas the isogenic parental virus expressing C protein is not. Here, we demonstrate that significant amounts of dsRNA accumulate during C(KO) mutant infection but not following parental virus infection. dsRNA accumulated during late stages of infection and localized with virus replication sites containing N and P proteins. PKR autophosphorylation and stress granule formation correlated with the timing of dsRNA appearance. Phospho-PKR localized to dsRNA-containing structures as revealed by immunofluorescence. Production of dsRNA was sensitive to cycloheximide but resistant to actinomycin D, suggesting that dsRNA is a viral product. Quantitative PCR (qPCR) analyses revealed reduced viral RNA synthesis and a steepened transcription gradient in C(KO) virus-infected cells compared to those in parental virus-infected cells. The observed alterations were further reflected in lower viral protein expression levels and reduced C(KO) virus infectious yield. RNA deep sequencing confirmed the viral RNA expression profile differences seen by qPCR between C(KO) mutant and parental viruses. After one subsequent passage of the C(KO) virus, defective interfering RNA (DI-RNA) with a duplex structure was obtained that was not seen with the parental virus. We conclude that in the absence of C protein, the amount of PKR activator RNA, including DI-RNA, is increased, thereby triggering innate immune responses leading to impaired MV growth.

  6. Identification and molecular characterization of a new nonsegmented double-stranded RNA virus isolated from Culex mosquitoes in Japan.

    Science.gov (United States)

    Isawa, Haruhiko; Kuwata, Ryusei; Hoshino, Keita; Tsuda, Yoshio; Sakai, Kouji; Watanabe, Shumpei; Nishimura, Miho; Satho, Tomomitsu; Kataoka, Michiyo; Nagata, Noriyo; Hasegawa, Hideki; Bando, Hisanori; Yano, Kazuhiko; Sasaki, Toshinori; Kobayashi, Mutsuo; Mizutani, Tetsuya; Sawabe, Kyoko

    2011-01-01

    Two infectious agents were isolated from Culex species mosquitoes in Japan and were identified as distinct strains of a new RNA virus by a method for sequence-independent amplification of viral nucleic acids. The virus designated Omono River virus (OMRV) replicated in mosquito cells in which it produced a severe cytopathic effect. Icosahedral virus particles of approximately 40 nm in diameter were detected in the cytoplasm of infected cells. The OMRV genome was observed to consist of a nonsegmented, 7.6-kb double-stranded RNA (dsRNA) and contain two overlapping open reading frames (ORFs), namely ORF1 and ORF2. ORF1 was found to encode a putative dsRNA-binding protein, a major capsid protein, and other putative proteins, which might be generated by co- and/or post-translational processing of the ORF1 polyprotein precursor, and ORF2 was found to encode a putative RNA-dependent RNA polymerase (RdRp), which could be translated as a fusion with the ORF1 product by a -1 ribosomal frameshift. Phylogenetic analysis based on RdRp revealed that OMRV is closely related to penaeid shrimp infectious myonecrosis virus and Drosophila totivirus, which are tentatively assigned to the family Totiviridae. These results indicated that OMRV is a new member of the family of nonsegmented dsRNA viruses infecting arthropod hosts, but not fungal or protozoan hosts. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Spectroscopic studies on the binding interaction of phenothiazinium dyes, azure A and azure B to double stranded RNA polynucleotides

    Science.gov (United States)

    Khan, Asma Yasmeen; Suresh Kumar, Gopinatha

    2016-01-01

    This manuscript presents spectroscopic characterization of the interaction of two phenothiazinium dyes, azure A and azure B with double stranded (ds) ribonucleic acids, poly(A).poly(U), poly(C).poly(G) and poly(I).poly(C). Absorbance and fluorescence studies revealed that these dyes bind to the RNAs with binding affinities of the order 106 M-1 to poly(A).poly(U), and 105 M-1 to poly(C).poly(G) and poly(I).poly(C), respectively. Fluorescence quenching and viscosity data gave conclusive evidence for the intercalation of the dyes to these RNA duplexes. Circular dichroism results suggested that the conformation of the RNAs was perturbed on interaction and the dyes acquired strong induced optical activity on binding. Azure B bound to all the three RNAs stronger than azure A and the binding affinity varied as poly(A).poly(U) > poly(C).poly(G) > poly(I).poly(C) for both dyes.

  8. Protection of Macrobrachium rosenbergii against white tail disease by oral administration of bacterial expressed and encapsulated double-stranded RNA.

    Science.gov (United States)

    Naveen Kumar, Singaiah; Karunasagar, Indrani; Karunasagar, Iddya

    2013-09-01

    White tail disease (WTD) of cultured Macrobrachium rosenbergii is caused by M. rosenbergii nodavirus (MrNV) and an extra small virus (XSV), both present together, and the mortality rate can be as high as 100% within 2 or 3 days of infection. Possible protection of M. rosenbergii against WTD by oral administration of bacterial expressed and encapsulated double-stranded RNA (dsRNA) was studied. Juvenile M. rosenbergii were fed with the feed coated with inactivated bacteria encapsulated dsRNA of MrNV and XSV genes individually and in combination for 7 days followed by challenge with WTD causing agents at 24 h and 72 h post-feeding. Test animals fed with a combination of dsRNA of MrNV and XSV capsid genes showed the highest relative percent survival (RPS) when compared to other treatments with RPS of 80% and 75% at 24 and 72 h respectively. One hundred percent mortality was observed in test animals fed with control dsRNA coated feed. Although in the literature, injection is the most common method used to deliver dsRNA, this study shows that oral administration is effective, feasible and economical. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Double-Stranded RNA Derived from Lactic Acid Bacteria Augments Th1 ImmunityviaInterferon-β from Human Dendritic Cells.

    Science.gov (United States)

    Kawashima, Tadaomi; Ikari, Naho; Watanabe, Yohei; Kubota, Yoshiro; Yoshio, Sachiyo; Kanto, Tatsuya; Motohashi, Shinichiro; Shimojo, Naoki; Tsuji, Noriko M

    2018-01-01

    Lactic acid bacteria (LAB) are one of the major commensal species in the small intestine and known for contributing to maintenance of protective immunity and immune homeostasis. However, currently there has been no evidence regarding the cellular mechanisms involved in the probiotic effects of LAB on human immune cells. Here, we demonstrated that LAB double-stranded RNA (dsRNA) triggered interferon-β (IFN-β) production by human dendritic cells (DCs), which activated IFN-γ-producing T cells. Interleukin-12 (IL-12) secretion from human DCs in response to LAB was abrogated by depletion of bacterial dsRNA, and was attenuated by neutralizing IFN-β, indicating LAB dsRNA primarily activated the IFN-β/IL-12 pathway. Moreover, the induction of IL-12 secretion from DCs by LAB was abolished by the inhibition of endosomal acidification, confirming the critical role of the endosomal digestion of LAB. In a coculture of human naïve CD4 + T cells and BDCA1 + DCs, DCs stimulated with LAB containing dsRNA induced IFN-γ-producing T cells. These results indicate that human DCs activated by LAB enhance Th1 immunity depending on IFN-β secretion in response to bacterial dsRNA.

  10. Using double-stranded RNA for the control of Laem-Singh Virus (LSNV) in Thai P. monodon.

    Science.gov (United States)

    Saksmerprome, Vanvimon; Thammasorn, Thitiporn; Jitrakorn, Sarocha; Wongtripop, Somjai; Borwornpinyo, Suparerk; Withyachumnarnkul, Boonsirm

    2013-04-15

    Viral inhibition by double-stranded (ds)RNA is a potential therapeutic approach for controlling shrimp viral diseases. Here, we describe the successful oral application of dsRNA targeting Laem-Singh Virus (LSNV) to diminish monodon slow growth syndrome (MSGS) in Thai Penaeus monodon. Shrimp feed formulated with bacterially expressed LSNV-dsRNA was given to shrimp for 9 weeks. RT-PCR results revealed that all control shrimp were LSNV-positive at the end of experiment, while the shrimp that received dsRNA-feed exhibited 20-60% LSNV reduction. The average body weight of treated shrimp (number of shrimp=100) was significantly higher than that of the control group. Such increase is likely due to the elimination of MSGS caused by LSNV, as size variation of the treated group is much lower than that in the control group. This study demonstrates for the first time that feed with LSNV-specific dsRNA promotes the overall growth of P. monodon and relieves MSGS condition in LSNV-infected shrimp. The work reaffirms the potential of dsRNA application for controlling viral disease in shrimp farming. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Mutations Abrogating VP35 Interaction with Double-Stranded RNA Render Ebola Virus Avirulent in Guinea Pigs

    Energy Technology Data Exchange (ETDEWEB)

    Prins, Kathleen C.; Delpeut, Sebastien; Leung, Daisy W.; Reynard, Olivier; Volchkova, Valentina A.; Reid, St. Patrick; Ramanan, Parameshwaran; Cárdenas, Washington B.; Amarasinghe, Gaya K.; Volchkov, Viktor E.; Basler, Christopher F. (CNRS-INSERM); (Mount Sinai Hospital); (LB-Ecuador); (Iowa State)

    2010-10-11

    Ebola virus (EBOV) protein VP35 is a double-stranded RNA (dsRNA) binding inhibitor of host interferon (IFN)-{alpha}/{beta} responses that also functions as a viral polymerase cofactor. Recent structural studies identified key features, including a central basic patch, required for VP35 dsRNA binding activity. To address the functional significance of these VP35 structural features for EBOV replication and pathogenesis, two point mutations, K319A/R322A, that abrogate VP35 dsRNA binding activity and severely impair its suppression of IFN-{alpha}/{beta} production were identified. Solution nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography reveal minimal structural perturbations in the K319A/R322A VP35 double mutant and suggest that loss of basic charge leads to altered function. Recombinant EBOVs encoding the mutant VP35 exhibit, relative to wild-type VP35 viruses, minimal growth attenuation in IFN-defective Vero cells but severe impairment in IFN-competent cells. In guinea pigs, the VP35 mutant virus revealed a complete loss of virulence. Strikingly, the VP35 mutant virus effectively immunized animals against subsequent wild-type EBOV challenge. These in vivo studies, using recombinant EBOV viruses, combined with the accompanying biochemical and structural analyses directly correlate VP35 dsRNA binding and IFN inhibition functions with viral pathogenesis. Moreover, these studies provide a framework for the development of antivirals targeting this critical EBOV virulence factor.

  12. Complete sequence of a double-stranded RNA from the phytopathogenic fungus Erysiphe cichoracearum that might represent a novel endornavirus.

    Science.gov (United States)

    Du, Zhenguo; Lin, Wenzhong; Qiu, Ping; Liu, Xiaojuan; Guo, Lingfang; Wu, Kangcheng; Zhang, Songbai; Wu, Zujian

    2016-08-01

    A double-stranded RNA (dsRNA) HBJZ1506 recovered from the phytopathogenic fungus Erysiphe cichoracearum infecting Calendula officinalis in Jingzhou, Hubei Province, China, was sequenced. HBJZ1506 comprises 11,908 nucleotides (nt) and contains a 11,859-nt-long open reading frame (ORF) coding for a polypeptide that is 61 % identical to that of a putative endornavirus named grapevine endophyte endornavirus (GeEV). The putative polyprotein has an RNA-dependent RNA polymerase (RdRp) domain and an RNA helicase domain, which show homology to and have an arrangement that is similar to that of their counterparts in approved or putative endornaviruses. In a phylogenetic tree constructed using amino acid sequences of the RdRp region of HBJZ1506 and selected endornaviruses, HBJZ1506 clustered with endornaviruses and formed a well-supported monophyletic branch with GeEV. These results suggest that HBJZ1506 might represent a novel endornavirus, for which the name Erysiphe cichoracearum endornavirus (EcEV) is proposed.

  13. Physicochemical properties of double-stranded RNA used to discover a reo-like virus from blue crab Callinectes sapidus.

    Science.gov (United States)

    Bowers, Holly A; Messick, Gretchen A; Hanif, Ammar; Jagus, Rosemary; Carrion, Lee; Zmora, Oded; Schott, Eric J

    2010-12-07

    Mortality among blue crab Callinectes sapidus in soft shell production facilities is typically 25% or greater. The harvest, handling, and husbandry practices of soft shell crab production have the potential to spread or exacerbate infectious crab diseases. To investigate the possible role of viruses in soft shell crab mortalities, we took advantage of the physicochemical properties of double-stranded RNA (dsRNA) to isolate a putative virus genome. Further characterization confirmed the presence of a reo-like virus that possesses 12 dsRNA genome segments. The virus was present in >50% of dead or dying soft shell crabs, but fewer than 5% of healthy hard crabs. Injection of the virus caused mortality and resulted in the appearance of viral RNA and virus inclusions in hemocytes. The genome of the virus was partially sequenced and the information used to develop a reverse transcription polymerase chain reaction (RT-PCR) assay that is able to detect the virus genome in as little as 7.5 pg of total RNA. The molecular tools developed during this study will allow us to quantify prevalence of the blue crab reo-like virus in captive (soft shell facilities, aquaculture operations) and wild populations and facilitate understanding of the role this virus has in blue crab life history.

  14. Activation of innate antiviral immune response via double-stranded RNA-dependent RLR receptor-mediated necroptosis.

    Science.gov (United States)

    Wang, Wei; Wang, Wei-Hua; Azadzoi, Kazem M; Su, Ning; Dai, Peng; Sun, Jianbin; Wang, Qin; Liang, Ping; Zhang, Wentao; Lei, Xiaoying; Yan, Zhen; Yang, Jing-Hua

    2016-03-03

    Viruses induce double-stranded RNA (dsRNA) in the host cells. The mammalian system has developed dsRNA-dependent recognition receptors such as RLRs that recognize the long stretches of dsRNA as PAMPs to activate interferon-mediated antiviral pathways and apoptosis in severe infection. Here we report an efficient antiviral immune response through dsRNA-dependent RLR receptor-mediated necroptosis against infections from different classes of viruses. We demonstrated that virus-infected A549 cells were efficiently killed in the presence of a chimeric RLR receptor, dsCARE. It measurably suppressed the interferon antiviral pathway but promoted IL-1β production. Canonical cell death analysis by morphologic assessment, phosphatidylserine exposure, caspase cleavage and chemical inhibition excluded the involvement of apoptosis and consistently suggested RLR receptor-mediated necroptosis as the underlying mechanism of infected cell death. The necroptotic pathway was augmented by the formation of RIP1-RIP3 necrosome, recruitment of MLKL protein and the activation of cathepsin D. Contributing roles of RIP1 and RIP3 were confirmed by gene knockdown. Furthermore, the necroptosis inhibitor necrostatin-1 but not the pan-caspase inhibitor zVAD impeded dsCARE-dependent infected cell death. Our data provides compelling evidence that the chimeric RLR receptor shifts the common interferon antiviral responses of infected cells to necroptosis and leads to rapid death of the virus-infected cells. This mechanism could be targeted as an efficient antiviral strategy.

  15. The dengue virus conceals double-stranded RNA in the intracellular membrane to escape from an interferon response.

    Science.gov (United States)

    Uchida, Leo; Espada-Murao, Lyre Anni; Takamatsu, Yuki; Okamoto, Kenta; Hayasaka, Daisuke; Yu, Fuxun; Nabeshima, Takeshi; Buerano, Corazon C; Morita, Kouichi

    2014-12-10

    The dengue virus (DENV) circulates between humans and mosquitoes and requires no other mammals or birds for its maintenance in nature. The virus is well-adapted to humans, as reflected by high-level viraemia in patients. To investigate its high adaptability, the DENV induction of host type-I interferon (IFN) was assessed in vitro in human-derived HeLa cells and compared with that induced by the Japanese encephalitis virus (JEV), a closely related arbovirus that generally exhibits low viraemia in humans. A sustained viral spread with a poor IFN induction was observed in the DENV-infected cells, whereas the JEV infection resulted in a self-limiting and abortive infection with a high IFN induction. There was no difference between DENV and JEV double-stranded RNA (dsRNA) as IFN inducers. Instead, the dsRNA was poorly exposed in the cytosol as late as 48 h post-infection (p.i.), despite the high level of DENV replication in the infected cells. In contrast, the JEV-derived dsRNA appeared in the cytosol as early as 24 h p.i. Our results provided evidence for the first time in DENV, that concealing dsRNA in the intracellular membrane diminishes the effect of the host defence mechanism, a strategy that differs from an active suppression of IFN activity.

  16. Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase A gene.

    Directory of Open Access Journals (Sweden)

    Nidhi Thakur

    Full Text Available BACKGROUND: Expression of double strand RNA (dsRNA designed against important insect genes in transgenic plants have been shown to give protection against pests through RNA interference (RNAi, thus opening the way for a new generation of insect-resistant crops. We have earlier compared the efficacy of dsRNAs/siRNAs, against a number of target genes, for interference in growth of whitefly (Bemisia tabaci upon oral feeding. The v-ATPase subunit A (v-ATPaseA coding gene was identified as a crucial target. We now report the effectiveness of transgenic tobacco plants expressing siRNA to silence v-ATPaseA gene expression for the control of whitefly infestation. METHODOLOGY/PRINCIPAL FINDINGS: Transgenic tobacco lines were developed for the expression of long dsRNA precursor to make siRNA and knock down the v-ATPaseA mRNA in whitefly. Molecular analysis and insecticidal properties of the transgenic plants established the formation of siRNA targeting the whitefly v-ATPaseA, in the leaves. The transcript level of v-ATPaseA in whiteflies was reduced up to 62% after feeding on the transgenic plants. Heavy infestation of whiteflies on the control plants caused significant loss of sugar content which led to the drooping of leaves. The transgenic plants did not show drooping effect. CONCLUSIONS/SIGNIFICANCE: Host plant derived pest resistance was achieved against whiteflies by genetic transformation of tobacco which generated siRNA against the whitefly v-ATPaseA gene. Transgenic tobacco lines expressing dsRNA of v-ATPaseA, delivered sufficient siRNA to whiteflies feeding on them, mounting a significant silencing response, leading to their mortality. The transcript level of the target gene was reduced in whiteflies feeding on transgenic plants. The strategy can be taken up for genetic engineering of plants to control whiteflies in field crops.

  17. Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase A gene.

    Science.gov (United States)

    Thakur, Nidhi; Upadhyay, Santosh Kumar; Verma, Praveen C; Chandrashekar, Krishnappa; Tuli, Rakesh; Singh, Pradhyumna K

    2014-01-01

    Expression of double strand RNA (dsRNA) designed against important insect genes in transgenic plants have been shown to give protection against pests through RNA interference (RNAi), thus opening the way for a new generation of insect-resistant crops. We have earlier compared the efficacy of dsRNAs/siRNAs, against a number of target genes, for interference in growth of whitefly (Bemisia tabaci) upon oral feeding. The v-ATPase subunit A (v-ATPaseA) coding gene was identified as a crucial target. We now report the effectiveness of transgenic tobacco plants expressing siRNA to silence v-ATPaseA gene expression for the control of whitefly infestation. Transgenic tobacco lines were developed for the expression of long dsRNA precursor to make siRNA and knock down the v-ATPaseA mRNA in whitefly. Molecular analysis and insecticidal properties of the transgenic plants established the formation of siRNA targeting the whitefly v-ATPaseA, in the leaves. The transcript level of v-ATPaseA in whiteflies was reduced up to 62% after feeding on the transgenic plants. Heavy infestation of whiteflies on the control plants caused significant loss of sugar content which led to the drooping of leaves. The transgenic plants did not show drooping effect. Host plant derived pest resistance was achieved against whiteflies by genetic transformation of tobacco which generated siRNA against the whitefly v-ATPaseA gene. Transgenic tobacco lines expressing dsRNA of v-ATPaseA, delivered sufficient siRNA to whiteflies feeding on them, mounting a significant silencing response, leading to their mortality. The transcript level of the target gene was reduced in whiteflies feeding on transgenic plants. The strategy can be taken up for genetic engineering of plants to control whiteflies in field crops.

  18. Profile and functional analysis of small RNAs derived from Aspergillus fumigatus infected with double-stranded RNA mycoviruses.

    Science.gov (United States)

    Özkan, Selin; Mohorianu, Irina; Xu, Ping; Dalmay, Tamas; Coutts, Robert H A

    2017-05-30

    Mycoviruses are viruses that naturally infect and replicate in fungi. Aspergillus fumigatus, an opportunistic pathogen causing fungal lung diseases in humans and animals, was recently shown to harbour several different types of mycoviruses. A well-characterised defence against virus infection is RNA silencing. The A. fumigatus genome encodes essential components of the RNA silencing machinery, including Dicer, Argonaute and RNA-dependent RNA polymerase (RdRP) homologues. Active silencing of double-stranded (ds)RNA and the generation of small RNAs (sRNAs) has been shown for several mycoviruses and it is anticipated that a similar mechanism will be activated in A. fumigatus isolates infected with mycoviruses. To investigate the existence and nature of A. fumigatus sRNAs, sRNA-seq libraries of virus-free and virus-infected isolates were created using Scriptminer adapters and compared. Three dsRNA viruses were investigated: Aspergillus fumigatus partitivirus-1 (AfuPV-1, PV), Aspergillus fumigatus chrysovirus (AfuCV, CV) and Aspergillus fumigatus tetramycovirus-1 (AfuTmV-1, NK) which were selected because they induce phenotypic changes such as coloration and sectoring. The dsRNAs of all three viruses, which included two conventionally encapsidated ones PV and CV and one unencapsidated example NK, were silenced and yielded characteristic vsiRNAs together with co-incidental silencing of host fungal genes which shared sequence homology with the viral genomes. Virus-derived sRNAs were detected and characterised in the presence of virus infection. Differentially expressed A. fumigatus microRNA-like (miRNA-like) sRNAs and small interfering RNAs (siRNAs) were detected and validated. Host sRNA loci which were differentially expressed as a result of virus infection were also identified. To our knowledge, this is the first study reporting the sRNA profiles of A. fumigatus isolates.

  19. Structure-spectrophotometric selectivity relationship in interactions of quercetin related flavonoids with double stranded and single stranded RNA

    Science.gov (United States)

    Piantanida, Ivo; Mašić, Lozika; Rusak, Gordana

    2009-04-01

    Interactions of five flavonoids with dsRNA and single stranded ssRNA were studied by UV/vis titrations. The results obtained supported the intercalative binding mode as a dominant interaction of studied flavonoids with dsRNA as well as major interaction with ssRNA. Furthermore, changes of the UV/vis spectra of flavonoids induced by addition of poly G or poly C, respectively, are significantly stronger than changes induced by double stranded poly G-poly C, pointing to essential role of the free poly G or poly C sequence (not hydrogen bonded in double helix). Exclusively poly G caused significant batochromic shift of the UV/vis maxima of all studied flavonoids, whereby the intensity of batochromic shift is nicely correlated to the number of OH groups of flavonoid. Unlikely to poly G, addition of poly A and poly U induced measurable changes only in the UV/vis spectra of flavonoids characterised by no OH (galangin) or three OH groups (myricetin) on the phenyl part of the molecule. Consequently, flavonoids with one- or two-OH groups on the phenyl part of the molecule (luteolin, fisetin, kaempferol) specifically differentiate between poly A, poly U (negligible changes in the UV/Vis spectra) and poly G (strong changes in the UV/Vis spectra) as well as poly C (moderate changes in the UV/Vis spectra).

  20. OsRDR6 plays role in host defense against double-stranded RNA virus, Rice Dwarf Phytoreovirus.

    Science.gov (United States)

    Hong, Wei; Qian, Dan; Sun, Runhong; Jiang, Lin; Wang, Yu; Wei, Chunhong; Zhang, Zhongkai; Li, Yi

    2015-07-13

    RNAi is a major antiviral defense response in plant and animal model systems. RNA-dependent RNA polymerase 6 (RDR6) is an essential component of RNAi, which plays an important role in the resistance against viruses in the model plants. We found previously that rice RDR6 (OsRDR6) functioned in the defense against Rice stripe virus (RSV), and Rice Dwarf Phytoreovirus (RDV) infection resulted in down-regulation of expression of RDR6. Here we report our new findings on the function of OsRDR6 against RDV. Our result showed that down-regulation of OsRDR6 through the antisense (OsRDR6AS) strategy increased rice susceptibility to RDV infection while over-expression of OsRDR6 had no effect on RDV infection. The accumulation of RDV vsiRNAs was reduced in the OsRDR6AS plants. In the OsRDR6 over-expressed plants, the levels of OsRDR6 RNA transcript and protein were much higher than that in the control plants. Interestingly, the accumulation level of OsRDR6 protein became undetectable after RDV infection. This finding indicated that the translation and/or stability of OsRDR6 protein were negatively impacted upon RDV infection. This new finding provides a new light on the function of RDR6 in plant defense response and the cross-talking between factors encoded by host plant and double-stranded RNA viruses.

  1. Chicken MDA5 senses short double-stranded RNA with implications for antiviral response against avian influenza viruses in chicken.

    Science.gov (United States)

    Hayashi, Tsuyoshi; Watanabe, Chiaki; Suzuki, Yasushi; Tanikawa, Taichiro; Uchida, Yuko; Saito, Takehiko

    2014-01-01

    Mammalian melanoma differentiation-associated gene-5 (MDA5) and retinoic acid-inducible gene-I (RIG-I) selectively sense double-stranded RNA (dsRNA) according to length, as well as various RNA viruses to induce an antiviral response. RIG-I, which plays a predominant role in the induction of antiviral responses against influenza virus infection, has been considered to be lacking in chicken, putting the function of chicken MDA5 (chMDA5) under the spotlight. Here, we show that chMDA5, unlike mammalian MDA5, preferentially senses shorter dsRNA synthetic analogues, poly(I:C), in chicken DF-1 fibroblasts. A requirement for caspase activation and recruitment domains for chMDA5-mediated chicken interferon beta (chIFNβ) induction and its interaction with mitochondrial antiviral signaling proteins were demonstrated. We also found that chMDA5 is involved in chIFNβ induction against avian influenza virus infection. Our findings imply that chMDA5 compensates in part the function of RIG-I in chicken, and highlights the importance of chMDA5 in the innate immune response in chicken. © 2013 S. Karger AG, Basel.

  2. RNAi-mediated mortality of the whitefly through transgenic expression of double-stranded RNA homologous to acetylcholinesterase and ecdysone receptor in tobacco plants

    Science.gov (United States)

    The whitefly Bemisia tabaci (Genn.) is a pest and vector of plant viruses affecting plants worldwide. Using RNA interference (RNAi) to downregulate whitefly genes by expressing their homologous double stranded RNAs in plants has great potential for management of whiteflies to reduce plant virus dise...

  3. Double-Stranded RNA Is Detected by Immunofluorescence Analysis in RNA and DNA Virus Infections, Including Those by Negative-Stranded RNA Viruses.

    Science.gov (United States)

    Son, Kyung-No; Liang, Zhiguo; Lipton, Howard L

    2015-09-01

    Early biochemical studies of viral replication suggested that most viruses produce double-stranded RNA (dsRNA), which is essential for the induction of the host immune response. However, it was reported in 2006 that dsRNA could be detected by immunofluorescence antibody staining in double-stranded DNA and positive-strand RNA virus infections but not in negative-strand RNA virus infections. Other reports in the literature seemed to support these observations. This suggested that negative-strand RNA viruses produce little, if any, dsRNA or that more efficient viral countermeasures to mask dsRNA are mounted. Because of our interest in the use of dsRNA antibodies for virus discovery, particularly in pathological specimens, we wanted to determine how universal immunostaining for dsRNA might be in animal virus infections. We have detected the in situ formation of dsRNA in cells infected with vesicular stomatitis virus, measles virus, influenza A virus, and Nyamanini virus, which represent viruses from different negative-strand RNA virus families. dsRNA was also detected in cells infected with lymphocytic choriomeningitis virus, an ambisense RNA virus, and minute virus of mice (MVM), a single-stranded DNA (ssDNA) parvovirus, but not hepatitis B virus. Although dsRNA staining was primarily observed in the cytoplasm, it was also seen in the nucleus of cells infected with influenza A virus, Nyamanini virus, and MVM. Thus, it is likely that most animal virus infections produce dsRNA species that can be detected by immunofluorescence staining. The apoptosis induced in several uninfected cell lines failed to upregulate dsRNA formation. An effective antiviral host immune response depends on recognition of viral invasion and an intact innate immune system as a first line of defense. Double-stranded RNA (dsRNA) is a viral product essential for the induction of innate immunity, leading to the production of type I interferons (IFNs) and the activation of hundreds of IFN

  4. Ectromelia virus accumulates less double-stranded RNA compared to vaccinia virus in BS-C-1 cells.

    Science.gov (United States)

    Frey, Tiffany R; Lehmann, Michael H; Ryan, Colton M; Pizzorno, Marie C; Sutter, Gerd; Hersperger, Adam R

    2017-09-01

    Most orthopoxviruses, including vaccinia virus (VACV), contain genes in the E3L and K3L families. The protein products of these genes have been shown to combat PKR, a host defense pathway. Interestingly, ectromelia virus (ECTV) contains an E3L ortholog but does not possess an intact K3L gene. Here, we gained insight into how ECTV can still efficiently evade PKR despite lacking K3L. Relative to VACV, we found that ECTV-infected BS-C-1 cells accumulated considerably less double-stranded (ds) RNA, which was due to lower mRNA levels and less transcriptional read-through of some genes by ECTV. The abundance of dsRNA in VACV-infected cells, detected using a monoclonal antibody, was able to activate the RNase L pathway at late time points post-infection. Historically, the study of transcription by orthopoxviruses has largely focused on VACV as a model. Our data suggest that there could be more to learn by studying other members of this genus. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Killer toxin-secreting double-stranded RNA mycoviruses in the yeasts Hanseniaspora uvarum and Zygosaccharomyces bailii.

    Science.gov (United States)

    Schmitt, M J; Neuhausen, F

    1994-01-01

    Killer toxin-secreting strains of the yeasts Hanseniaspora uvarum and Zygosaccharomyces bailii were shown to contain linear double-stranded RNAs (dsRNAs) that persist within the cytoplasm of the infected host cell as encapsidated virus-like particles. In both yeasts, L- and M-dsRNAs were associated with 85-kDa major capsid protein, whereas the additional Z-dsRNA (2.8 kb), present only in the wild-type Z. bailii killer strain, was capsid protein, whereas the additional Z-dsRNA (2.8 kb), present only in the wild-type Z. bailii killer strain, was shown to be encapsidated by a 35-kDa coat protein. Although Northern (RNA) blot hybridizations indicated that L-dsRNA from Z. bailii is a LA species, additional peptide maps of the purified 85-kDa capsid from Z. bailii and the 88- and 80-kDa major coat proteins from K1 and K28 killer viruses of Saccharomyces cerevisiae revealed distinctly different patterns of peptides. Electron microscopy of purified Z. bailii viruses (ZbV) identified icosahedral particles 40 nm in diameter which were undistinguishable from the S. cerevisiae killer viruses. We demonstrated that purified ZbVs are sufficient to confer the Z. bailii killer phenotype on transfected spheroplasts of a S. cerevisiae nonkiller strain and that the resulting transfectants secreted even more killer toxin that the original ZbV donor strain did. Curing experiments with ZbV-transfected S. cerevisiae strains indicated that the M-dsRNA satellite from Z. bailii contains the genetic information for toxin production, whereas expression of toxin immunity might be dependent on Z-dsRNA, which resembles a new dsRNA replicon in yeasts that is not dependent on an LA helper virus to be stably maintained and replicated within the cell. Images PMID:8107238

  6. A new virus discovered by immunocapture of double-stranded RNA, a rapid method for virus enrichment in metagenomic studies.

    Science.gov (United States)

    Blouin, Arnaud G; Ross, Howard A; Hobson-Peters, Jody; O'Brien, Caitlin A; Warren, Ben; MacDiarmid, Robin

    2016-09-01

    Next-generation sequencing technologies enable the rapid identification of viral infection of diseased organisms. However, despite a consistent decrease in sequencing costs, it is difficult to justify their use in large-scale surveys without a virus sequence enrichment technique. As the majority of plant viruses have an RNA genome, a common approach is to extract the double-stranded RNA (dsRNA) replicative form, to enrich the replicating virus genetic material over the host background. The traditional dsRNA extraction is time-consuming and labour-intensive. We present an alternative method to enrich dsRNA from plant extracts using anti-dsRNA monoclonal antibodies in a pull-down assay. The extracted dsRNA can be amplified by reverse transcriptase-polymerase chain reaction and sequenced by next-generation sequencing. In our study, we have selected three distinct plant hosts: Māori potato (Solanum tuberosum), rengarenga (Arthropodium cirratum) and broadleaved dock (Rumex obtusifolius) representing a cultivated crop, a New Zealand-native ornamental plant and a weed, respectively. Of the sequence data obtained, 31-74% of the reads were of viral origin, and we identified five viruses including Potato virus Y and Potato virus S in potato; Turnip mosaic virus in rengarenga (a new host record); and in the dock sample Cherry leaf roll virus and a novel virus belonging to the genus Macluravirus. We believe that this new assay represents a significant opportunity to upscale virus ecology studies from environmental, primary industry and/or medical samples. © 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  7. Viral double-strand RNA-binding proteins can enhance innate immune signaling by toll-like Receptor 3.

    Directory of Open Access Journals (Sweden)

    Yvonne Lai

    Full Text Available Toll-like Receptor 3 (TLR3 detects double-stranded (ds RNAs to activate innate immune responses. While poly(I:C is an excellent agonist for TLR3 in several cell lines and in human peripheral blood mononuclear cells, viral dsRNAs tend to be poor agonists, leading to the hypothesis that additional factor(s are likely required to allow TLR3 to respond to viral dsRNAs. TLR3 signaling was examined in a lung epithelial cell line by quantifying cytokine production and in human embryonic kidney cells by quantifying luciferase reporter levels. Recombinant 1b hepatitis C virus polymerase was found to enhance TLR3 signaling in the lung epithelial BEAS-2B cells when added to the media along with either poly(I:C or viral dsRNAs. The polymerase from the genotype 2a JFH-1 HCV was a poor enhancer of TLR3 signaling until it was mutated to favor a conformation that could bind better to a partially duplexed RNA. The 1b polymerase also co-localizes with TLR3 in endosomes. RNA-binding capsid proteins (CPs from two positive-strand RNA viruses and the hepadenavirus hepatitis B virus (HBV were also potent enhancers of TLR3 signaling by poly(I:C or viral dsRNAs. A truncated version of the HBV CP that lacked an arginine-rich RNA-binding domain was unable to enhance TLR3 signaling. These results demonstrate that several viral RNA-binding proteins can enhance the dsRNA-dependent innate immune response initiated by TLR3.

  8. Viral phosphodiesterases that antagonize double-stranded RNA signaling to RNase L by degrading 2-5A.

    Science.gov (United States)

    Silverman, Robert H; Weiss, Susan R

    2014-06-01

    The host interferon (IFN) antiviral response involves a myriad of diverse biochemical pathways that disrupt virus replication cycles at many different levels. As a result, viruses have acquired and evolved genes that antagonize the host antiviral proteins. IFNs inhibit viral infections in part through the 2',5'-oligoadenylate (2-5A) synthetase (OAS)/RNase L pathway. OAS proteins are pathogen recognition receptors that exist at different basal levels in different cell types and that are IFN inducible. Upon activation by the pathogen-associated molecular pattern viral double-stranded RNA, certain OAS proteins synthesize 2-5A from ATP. 2-5A binds to the antiviral enzyme RNase L causing its dimerization and activation. Recently, disparate RNA viruses, group 2a betacoronaviruses, and group A rotaviruses, have been shown to produce proteins with 2',5'-phosphodiesterase (PDE) activities that eliminate 2-5A thereby evading the antiviral activity of the OAS/RNase L pathway. These viral proteins are members of the eukaryotic-viral LigT-like group of 2H phosphoesterases, so named for the presence of 2 conserved catalytic histidine residues. Here, we will review the biochemistry, biology, and implications of viral and cellular 2',5'-PDEs that degrade 2-5A. In addition, we discuss alternative viral and cellular strategies for limiting the activity of OAS/RNase L.

  9. DEAF1 is a Pellino1-interacting protein required for interferon production by Sendai virus and double-stranded RNA.

    Science.gov (United States)

    Ordureau, Alban; Enesa, Karine; Nanda, Sambit; Le Francois, Brice; Peggie, Mark; Prescott, Alan; Albert, Paul R; Cohen, Philip

    2013-08-23

    Double-stranded (ds) RNA of viral origin, a ligand for Melanoma Differentiation-associated gene 5 (MDA5) and Toll-Like Receptor 3 (TLR3), induces the TANK-Binding Kinase 1 (TBK1)-dependent phosphorylation and activation of Interferon Regulatory Factor 3 (IRF3) and the E3 ubiquitin ligase Pellino1, which are required for interferon β (IFNβ) gene transcription. Here, we report that Pellino1 interacts with the transcription factor Deformed Epidermal Autoregulatory Factor 1 (DEAF1). The interaction is independent of the E3 ligase activity of Pellino1, but weakened by the phosphorylation of Pellino1. We show that DEAF1 binds to the IFNβ promoter and to IRF3 and IRF7, that it is required for the transcription of the IFNβ gene and IFNβ secretion in MEFs infected with Sendai virus or transfected with poly(I:C). DEAF1 is also needed for TLR3-dependent IFNβ production. Taken together, our results identify DEAF1 as a novel component of the signal transduction network by which dsRNA of viral origin stimulates IFNβ production.

  10. Innate immune recognition of double-stranded RNA triggers increased expression of NKG2D ligands after virus infection.

    Science.gov (United States)

    Esteso, Gloria; Guerra, Susana; Valés-Gómez, Mar; Reyburn, Hugh T

    2017-12-15

    Self/non-self-discrimination by the innate immune system relies on germline-encoded, non-rearranging receptors expressed by innate immune cells recognizing conserved pathogen-associated molecular patterns. The natural killer group 2D (NKG2D) receptor is a potent immune-activating receptor that binds human genome-encoded ligands, whose expression is negligible in normal tissues, but increased in stress and disease conditions for reasons that are incompletely understood. Here it is not clear how the immune system reconciles receptor binding of self-proteins with self/non-self-discrimination to avoid autoreactivity. We now report that increased expression of NKG2D ligands after virus infection depends on interferon response factors activated by the detection of viral double-stranded RNA by pattern-recognition receptors (RIG-I/MDA-5) and that NKG2D ligand up-regulation can be blocked by the expression of viral dsRNA-binding proteins. Thus, innate immunity-mediated recognition of viral nucleic acids triggers the infected cell to release interferon for NK cell recruitment and to express NKG2D ligands to become more visible to the immune system. Finally, the observation that NKG2D-ligand induction is a consequence of signaling by pattern-recognition receptors that have been selected over evolutionary time to be highly pathogen-specific explains how the risks of autoreactivity in this system are minimized. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Dendritic cells activated by double-stranded RNA induce arthritis via autocrine type I IFN signaling.

    Science.gov (United States)

    Narendra, Sudeep Chenna; Chalise, Jaya Prakash; Höök, Nina; Magnusson, Mattias

    2014-04-01

    Viral dsRNA can be found at the site of inflammation in RA patients, and intra-articular injection of dsRNA induces arthritis by activating type I IFN signaling in mice. Further, DCs, a major source of IFN-α, can be found in the synovium of RA patients. We therefore determined the occurrence of DCs in dsRNA-induced arthritis and their ability to induce arthritis. Here, we show, by immunohistochemistry, that cells expressing the pan-DC marker CD11c and the pDC marker 120G8 are present in the inflamed synovium in dsRNA-induced arthritis. Flt3L-generated and splenic DCs preactivated with dsRNA before intra-articular injection, but not mock-stimulated cells, clearly induced arthritis. Induction of arthritis was dependent on type I IFN signaling in the donor DCs, whereas IFNAR expression in the recipient was not required. Sorting of the Flt3L-DC population into cDCs (CD11c(+), PDCA-1(-)) and pDCs (CD11c(+), PDCA-1(+)) revealed that both subtypes were arthritogenic and produced type I IFN if treated with dsRNA. Taken together, these results demonstrate that viral nucleic acids can elicit arthritis by activating type I IFN signaling in DCs. Once triggered, autocrine type I IFN signaling in dsRNA-activated DCs is sufficient to propagate arthritis.

  12. A Transformed Bacterium Expressing Double-Stranded RNA Specific to Integrin ?1 Enhances Bt Toxin Efficacy against a Polyphagous Insect Pest, Spodoptera exigua

    OpenAIRE

    Kim, Eunseong; Park, Youngjin; Kim, Yonggyun

    2015-01-01

    Background Oral toxicity of double-stranded RNA (dsRNA) specific to integrin ?1 subunit (SeINT) was known in a polyphagous insect pest, Spodoptera exigua. For an application of the dsRNA to control the insect pest, this study prepared a transformed Escherichia coli expressing dsRNA specific to SeINT. Principal Findings The dsRNA expression was driven by T7 RNA polymerase overexpressed by an inducer in the transformed E. coli. The produced dsRNA amount was proportional to the number of the cul...

  13. Spectroscopic studies on the binding interaction of phenothiazinium dyes, azure A and azure B to double stranded RNA polynucleotides.

    Science.gov (United States)

    Khan, Asma Yasmeen; Suresh Kumar, Gopinatha

    2016-01-05

    This manuscript presents spectroscopic characterization of the interaction of two phenothiazinium dyes, azure A and azure B with double stranded (ds) ribonucleic acids, poly(A).poly(U), poly(C).poly(G) and poly(I).poly(C). Absorbance and fluorescence studies revealed that these dyes bind to the RNAs with binding affinities of the order 10(6)M(-1) to poly(A).poly(U), and 10(5)M(-1) to poly(C).poly(G) and poly(I).poly(C), respectively. Fluorescence quenching and viscosity data gave conclusive evidence for the intercalation of the dyes to these RNA duplexes. Circular dichroism results suggested that the conformation of the RNAs was perturbed on interaction and the dyes acquired strong induced optical activity on binding. Azure B bound to all the three RNAs stronger than azure A and the binding affinity varied as poly(A).poly(U)>poly(C).poly(G)>poly(I).poly(C) for both dyes. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Alpha-lipoic acid effects on brain glial functions accompanying double-stranded RNA antiviral and inflammatory signaling.

    Science.gov (United States)

    Scumpia, Philip O; Kelly-Scumpia, Kindra; Stevens, Bruce R

    2014-01-01

    Double-stranded RNAs (dsRNA) serve as viral ligands that trigger innate immunity in astrocytes and microglial, as mediated through Toll-like receptor 3 (TLR3) and dsRNA-dependent protein kinase (PKR). Beneficial transient TLR3 and PKR anti-viral signaling can become deleterious when events devolve into inflammation and cytotoxicity. Viral products in the brain cause glial cell dysfunction, and are a putative etiologic factor in neuropsychiatric disorders, notably schizophrenia, bipolar disorder, Parkinson's, and autism spectrum. Alpha-lipoic acid (LA) has been proposed as a possible therapeutic neuroprotectant. The objective of this study was to test our hypothesis that LA can control untoward antiviral mechanisms associated with neural dysfunction. Utilizing rat brain glial cultures (91% astrocytes:9% microglia) treated with PKR- and TLR3-ligand/viral mimetic dsRNA, polyinosinic-polycytidylic acid (polyI:C), we report in vitro glial antiviral signaling and LA reduction of the effects of this signaling. LA blunted the dsRNA-stimulated expression of IFNα/β-inducible genes Mx1, PKR, and TLR3. And in polyI:C treated cells, LA promoted gene expression of rate-limiting steps that benefit healthy neural redox status in glutamateric systems. To this end, LA decreased dsRNA-induced inflammatory signaling by downregulating IL-1β, IL-6, TNFα, iNOS, and CAT2 transcripts. In the presence of polyI:C, LA prevented cultured glial cytotoxicity which was correlated with increased expression of factors known to cooperatively control glutamate/cystine/glutathione redox cycling, namely glutamate uptake transporter GLAST/EAAT1, γ-glutamyl cysteine ligase catalytic and regulatory subunits, and IL-10. Glutamate exporting transporter subunits 4F2hc and xCT were downregulated by LA in dsRNA-stimulated glia. l-Glutamate net uptake was inhibited by dsRNA, and this was relieved by LA. Glutathione synthetase mRNA levels were unchanged by dsRNA or LA. This study demonstrates the protective

  15. Acquisition of functions on the outer capsid surface during evolution of double-stranded RNA fungal viruses.

    Science.gov (United States)

    Mata, Carlos P; Luque, Daniel; Gómez-Blanco, Josué; Rodríguez, Javier M; González, José M; Suzuki, Nobuhiro; Ghabrial, Said A; Carrascosa, José L; Trus, Benes L; Castón, José R

    2017-12-01

    Unlike their counterparts in bacterial and higher eukaryotic hosts, most fungal viruses are transmitted intracellularly and lack an extracellular phase. Here we determined the cryo-EM structure at 3.7 Å resolution of Rosellinia necatrix quadrivirus 1 (RnQV1), a fungal double-stranded (ds)RNA virus. RnQV1, the type species of the family Quadriviridae, has a multipartite genome consisting of four monocistronic segments. Whereas most dsRNA virus capsids are based on dimers of a single protein, the ~450-Å-diameter, T = 1 RnQV1 capsid is built of P2 and P4 protein heterodimers, each with more than 1000 residues. Despite a lack of sequence similarity between the two proteins, they have a similar α-helical domain, the structural signature shared with the lineage of the dsRNA bluetongue virus-like viruses. Domain insertions in P2 and P4 preferential sites provide additional functions at the capsid outer surface, probably related to enzyme activity. The P2 insertion has a fold similar to that of gelsolin and profilin, two actin-binding proteins with a function in cytoskeleton metabolism, whereas the P4 insertion suggests protease activity involved in cleavage of the P2 383-residue C-terminal region, absent in the mature viral particle. Our results indicate that the intimate virus-fungus partnership has altered the capsid genome-protective and/or receptor-binding functions. Fungal virus evolution has tended to allocate enzyme activities to the virus capsid outer surface.

  16. Double-stranded RNA-specific adenosine deaminase 1 (ADAR1) promotes EIAV replication and infectivity.

    Science.gov (United States)

    Tang, Yan-Dong; Na, Lei; Fu, Li-Hua; Yang, Fei; Zhu, Chun-Hui; Tang, Li; Li, Qiang; Wang, Jia-Yi; Li, Zhan; Wang, Xue-Feng; Li, Cheng-Yao; Wang, Xiaojun; Zhou, Jian-Hua

    2015-02-01

    Adenosine deaminases that act on RNA (ADARs) have been reported to be functional on various viruses. ADAR1 may exhibit antiviral or proviral activity depending on the type of virus. Human immunodeficiency virus (HIV)-1 is the most well-studied lentivirus with respect to its interaction with ADAR1, and variable results have been reported. In this study, we demonstrated that equine ADAR1 (eADAR1) was a positive regulator of equine infectious anemia virus (EIAV), another lentivirus of the Retroviridae family. First, eADAR1 significantly promoted EIAV replication, and the enhancement of viral protein expression was associated with the long terminal repeat (LTR) and Rev response element (RRE) regions. Second, the RNA binding domain 1 of eADAR1 was essential only for enhancing LTR-mediated gene expression. Third, in contrast with APOBEC proteins, which have been shown to reduce lentiviral infectivity, eADAR1 increased the EIAV infectivity. This study indicated that eADAR1 was proviral rather than antiviral for EIAV. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Three-dimensional structure of a protozoal double-stranded RNA virus that infects the enteric pathogen Giardia lamblia.

    Science.gov (United States)

    Janssen, Mandy E W; Takagi, Yuko; Parent, Kristin N; Cardone, Giovanni; Nibert, Max L; Baker, Timothy S

    2015-01-15

    Giardia lamblia virus (GLV) is a small, nonenveloped, nonsegmented double-stranded RNA (dsRNA) virus infecting Giardia lamblia, the most common protozoan pathogen of the human intestine and a major agent of waterborne diarrheal disease worldwide. GLV (genus Giardiavirus) is a member of family Totiviridae, along with several other groups of protozoal or fungal viruses, including Leishmania RNA viruses and Trichomonas vaginalis viruses. Interestingly, GLV is more closely related than other Totiviridae members to a group of recently discovered metazoan viruses that includes penaeid shrimp infectious myonecrosis virus (IMNV). Moreover, GLV is the only known protozoal dsRNA virus that can transmit efficiently by extracellular means, also like IMNV. In this study, we used transmission electron cryomicroscopy and icosahedral image reconstruction to examine the GLV virion at an estimated resolution of 6.0 Å. Its outermost diameter is 485 Å, making it the largest totivirus capsid analyzed to date. Structural comparisons of GLV and other totiviruses highlighted a related "T=2" capsid organization and a conserved helix-rich fold in the capsid subunits. In agreement with its unique capacity as a protozoal dsRNA virus to survive and transmit through extracellular environments, GLV was found to be more thermoresistant than Trichomonas vaginalis virus 1, but no specific protein machinery to mediate cell entry, such as the fiber complexes in IMNV, could be localized. These and other structural and biochemical findings provide a basis for future work to dissect the cell entry mechanism of GLV into a "primitive" (early-branching) eukaryotic host and an important enteric pathogen of humans. Numerous pathogenic bacteria, including Corynebacterium diphtheriae, Salmonella enterica, and Vibrio cholerae, are infected with lysogenic bacteriophages that contribute significantly to bacterial virulence. In line with this phenomenon, several pathogenic protozoa, including Giardia lamblia

  18. Molecular characterization of double-stranded RNA virus in Trichomonas vaginalis Egyptian isolates and its association with pathogenicity.

    Science.gov (United States)

    El-Gayar, Eman K; Mokhtar, Amira B; Hassan, Wael A

    2016-10-01

    Trichomoniasis is a common human sexually transmitted infection caused by Trichomonas vaginalis. The parasite can be infected with double-stranded RNA viruses (TVV). This viral infection may have important implications on trichomonal virulence and disease pathogenesis. This study aimed to determine the prevalence of T. vaginalis virus among isolates obtained from infected (symptomatic and asymptomatic) women in Ismailia City, Egypt, and to correlate the virus-infected isolates with the clinical manifestations of patients. In addition, the pathogenicity of TVV infected isolates on mice was also evaluated. T. vaginalis isolates were obtained from symptomatic and asymptomatic female patients followed by axenic cultivation in Diamond's TYM medium. The presence of T. vaginalis virus was determined from total extraction of nucleic acids (DNA-RNA) followed by reverse transcriptase-PCR. Representative samples were inoculated intraperitoneally in female albino/BALB mice to assess the pathogenicity of different isolates. A total of 110 women were examined; 40 (36.3 %) samples were positive for T. vaginalis infection. Of these 40 isolates, 8 (20 %) were infected by TVV. Five isolates contained TVV-2 virus species, and the remaining three isolates were infected withTVV-4 variant. A significant association was found between the presence of TVV and particular clinical manifestations of trichomoniasis. Experimental mice infection showed varying degrees of pathogenicity. This is the first report on T. vaginalis infection by TVV in Egypt. The strong association detected between TVV and particular clinical features of trichomoniasis and also the degree of pathogenicity in experimentally infected mice may indicate a possible clinical significance of TVV infection of T. vaginalis isolates.

  19. Non-Target Effects of Green Fluorescent Protein (GFP)-Derived Double-Stranded RNA (dsRNA-GFP) Used in Honey Bee RNA Interference (RNAi) Assays.

    Science.gov (United States)

    Nunes, Francis M F; Aleixo, Aline C; Barchuk, Angel R; Bomtorin, Ana D; Grozinger, Christina M; Simões, Zilá L P

    2013-01-04

    RNA interference has been frequently applied to modulate gene function in organisms where the production and maintenance of mutants is challenging, as in our model of study, the honey bee, Apis mellifera. A green fluorescent protein (GFP)-derived double-stranded RNA (dsRNA-GFP) is currently commonly used as control in honey bee RNAi experiments, since its gene does not exist in the A. mellifera genome. Although dsRNA-GFP is not expected to trigger RNAi responses in treated bees, undesirable effects on gene expression, pigmentation or developmental timing are often observed. Here, we performed three independent experiments using microarrays to examine the effect of dsRNA-GFP treatment (introduced by feeding) on global gene expression patterns in developing worker bees. Our data revealed that the expression of nearly 1,400 genes was altered in response to dsRNA-GFP, representing around 10% of known honey bee genes. Expression changes appear to be the result of both direct off-target effects and indirect downstream secondary effects; indeed, there were several instances of sequence similarity between putative siRNAs generated from the dsRNA-GFP construct and genes whose expression levels were altered. In general, the affected genes are involved in important developmental and metabolic processes associated with RNA processing and transport, hormone metabolism, immunity, response to external stimulus and to stress. These results suggest that multiple dsRNA controls should be employed in RNAi studies in honey bees. Furthermore, any RNAi studies involving these genes affected by dsRNA-GFP in our studies should use a different dsRNA control.

  20. Antiviral activity of double-stranded RNA-binding protein PACT against influenza A virus mediated via suppression of viral RNA polymerase.

    Science.gov (United States)

    Chan, Chi-Ping; Yuen, Chun-Kit; Cheung, Pak-Hin Hinson; Fung, Sin-Yee; Lui, Pak-Yin; Chen, Honglin; Kok, Kin-Hang; Jin, Dong-Yan

    2018-03-07

    PACT is a double-stranded RNA-binding protein that has been implicated in host-influenza A virus (IAV) interaction. PACT facilitates the action of RIG-I in the activation of the type I IFN response, which is suppressed by the viral nonstructural protein NS1. PACT is also known to interact with the IAV RNA polymerase subunit PA. Exactly how PACT exerts its antiviral activity during IAV infection remains to be elucidated. In the current study, we demonstrated the interplay between PACT and IAV polymerase. Induction of IFN-β by the IAV RNP complex was most robust when both RIG-I and PACT were expressed. PACT-dependent activation of IFN-β production was suppressed by the IAV polymerase subunits, polymerase acidic protein, polymerase basic protein 1 (PB1), and PB2. PACT associated with PA, PB1, and PB2. Compromising PACT in IAV-infected A549 cells resulted in the augmentation of viral RNA (vRNA) transcription and replication and IFN-β production. Furthermore, vRNA replication was boosted by knockdown of PACT in both A549 cells and IFN-deficient Vero cells. Thus, the antiviral activity of PACT is mediated primarily via its interaction with and inhibition of IAV polymerase. Taken together, our findings reveal a new facet of the host-IAV interaction in which the interplay between PACT and IAV polymerase affects the outcome of viral infection and antiviral response.-Chan, C.-P., Yuen, C.-K., Cheung, P.-H. H., Fung, S.-Y., Lui, P.-Y., Chen, H., Kok, K.-H., Jin, D.-Y. Antiviral activity of double-stranded RNA-binding protein PACT against influenza A virus mediated via suppression of viral RNA polymerase.

  1. Activation of double-stranded RNA-dependent protein kinase inhibits proliferation of pancreatic β-cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shan-Shan [Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing (China); Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing (China); Jiang, Teng [Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing (China); Wang, Yi; Gu, Li-Ze [Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing (China); Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing (China); Wu, Hui-Wen [Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing (China); Tan, Lan [Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing (China); Guo, Jun, E-mail: Guoj@njmu.edu.cn [Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing (China); Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing (China)

    2014-01-17

    Highlights: •PKR can be activated by glucolipitoxicity and pro-inflammatory cytokines in β-cells. •Activated PKR inhibited β-cell proliferation by arresting cell cycle at G1 phase. •Activated PKR fully abrogated the pro-proliferative effects of IGF-I on β-cells. -- Abstract: Double-stranded RNA-dependent protein kinase (PKR) is revealed to participate in the development of insulin resistance in peripheral tissues in type 2 diabetes (T2DM). Meanwhile, PKR is also characterized as a critical regulator of cell proliferation. To date, no study has focused on the impact of PKR on the proliferation of pancreatic β-cells. Here, we adopted insulinoma cell lines and mice islet β-cells to investigate: (1) the effects of glucolipotoxicity and pro-inflammatory cytokines on PKR activation; (2) the effects of PKR on proliferation of pancreatic β-cells and its underlying mechanisms; (3) the actions of PKR on pro-proliferative effects of IGF-I and its underlying pathway. Our results provided the first evidence that PKR can be activated by glucolipitoxicity and pro-inflammatory cytokines in pancreatic β-cells, and activated PKR significantly inhibited cell proliferation by arresting cell cycle at G1 phase. Reductions in cyclin D1 and D2 as well as increases in p27 and p53 were associated with the anti-proliferative effects of PKR, and proteasome-dependent degradation took part in the reduction of cyclin D1 and D2. Besides, PKR activation abrogated the pro-proliferative effects of IGF-I by activating JNK and disrupting IRS1/PI3K/Akt signaling pathway. These findings indicate that the anti-proliferative actions of PKR on pancreatic β-cells may contribute to the pathogenesis of T2DM.

  2. Cryphonectria nitschkei virus 1 structure shows that the capsid protein of chrysoviruses is a duplicated helix-rich fold conserved in fungal double-stranded RNA viruses.

    Science.gov (United States)

    Gómez-Blanco, Josué; Luque, Daniel; González, José M; Carrascosa, José L; Alfonso, Carlos; Trus, Benes; Havens, Wendy M; Ghabrial, Said A; Castón, José R

    2012-08-01

    Cryoelectron microscopy reconstruction of Cryphonectria nitschkei virus 1, a double-stranded RNA (dsRNA) virus, shows that the capsid protein (60 copies/particle) is formed by a repeated helical core, indicative of gene duplication. This unusual organization is common to chrysoviruses. The arrangement of many of these putative α-helices is conserved in the totivirus L-A capsid protein, suggesting a shared motif. Our results indicate that a 120-subunit T=1 capsid is a conserved architecture that optimizes dsRNA replication and organization.

  3. An Approach to Detect and Study DNA Double-Strand Break Repair by Transcript RNA Using a Spliced-Antisense RNA Template.

    Science.gov (United States)

    Keskin, Havva; Storici, Francesca

    2018-01-01

    A double-strand break (DSB) is one of the most dangerous DNA lesion, and its repair is crucial for genome stability. Homologous recombination is considered the safest way to repair a DNA DSB and requires an identical or nearly identical DNA template, such as a sister chromatid or a homologous chromosome for accurate repair. Can transcript RNA serve as donor template for DSB repair? Here, we describe an approach that we developed to detect and study DNA repair by transcript RNA. Key features of the method are: (i) use of antisense (noncoding) RNA as template for DSB repair by RNA, (ii) use of intron splicing to distinguish the sequence of the RNA template from that of the DNA that generates the RNA template, and (iii) use of a trans and cis system to study how RNA repairs a DSB in homologous but distant DNA or in its own DNA, respectively. This chapter provides details on how to use a spliced-antisense RNA template to detect and study DSB repair by RNA in trans or cis in yeast cells. Our approach for detection of DSB repair by RNA in cells can be applied to cell types other than yeast, such as bacteria, mammalian cells, or other eukaryotic cells. © 2018 Elsevier Inc. All rights reserved.

  4. Cellular 5'-3' mRNA exonuclease Xrn1 controls double-stranded RNA accumulation and anti-viral responses.

    Science.gov (United States)

    Burgess, Hannah M; Mohr, Ian

    2015-03-11

    By accelerating global mRNA decay, many viruses impair host protein synthesis, limiting host defenses and stimulating virus mRNA translation. Vaccinia virus (VacV) encodes two decapping enzymes (D9, D10) that remove protective 5' caps on mRNAs, presumably generating substrates for degradation by the host exonuclease Xrn1. Surprisingly, we find VacV infection of Xrn1-depleted cells inhibits protein synthesis, compromising virus growth. These effects are aggravated by D9 deficiency and dependent upon a virus transcription factor required for intermediate and late mRNA biogenesis. Considerable double-stranded RNA (dsRNA) accumulation in Xrn1-depleted cells is accompanied by activation of host dsRNA-responsive defenses controlled by PKR and 2'-5' oligoadenylate synthetase (OAS), which respectively inactivate the translation initiation factor eIF2 and stimulate RNA cleavage by RNase L. This proceeds despite VacV-encoded PKR and RNase L antagonists being present. Moreover, Xrn1 depletion sensitizes uninfected cells to dsRNA treatment. Thus, Xrn1 is a cellular factor regulating dsRNA accumulation and dsRNA-responsive innate immune effectors. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Double stranded RNA-dependent protein kinase is involved in osteoclast differentiation of RAW264.7 cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Teramachi, Junpei [Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima 770-8504 (Japan); Morimoto, Hiroyuki; Baba, Ryoko; Doi, Yoshiaki [Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Yahatanishi, Kitakyushu 807-8555 (Japan); Hirashima, Kanji [Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima 770-8504 (Japan); Haneji, Tatsuji, E-mail: tat-hane@dent.tokushima-u.ac.jp [Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima 770-8504 (Japan)

    2010-11-15

    Double-stranded RNA-dependent protein kinase (PKR) plays a critical role in antiviral defence of the host cells. PKR is also involved in cell cycle progression, cell proliferation, cell differentiation, tumorigenesis, and apoptosis. We previously reported that PKR is required for differentiation and calcification of osteoblasts. However, it is unknown about the role of PKR in osteoclast differentiation. A dominant-negative PKR mutant cDNA, in which the amino acid lysine at 296 was replaced with arginine, was transfected into RAW264.7 cells. We have established the cell line that stably expresses the PKR mutant gene (PKR-K/R). Phosphorylation of PKR and {alpha}-subunit of eukaryotic initiation factor 2 was not stimulated by polyinosic-polycytidylic acid in the PKR-K/R cells. RANKL stimulated the formation of TRAP-positive multinuclear cells in RAW264.7 cells. However, TRAP-positive multinuclear cells were not formed in the PKR-K/R cells even when the cells were stimulated with higher doses of RANKL. A specific inhibitor of PKR, 2-aminopurine, also suppressed the RANKL-induced osteoclast differentiation in RAW264.7 cells. The expression of macrophage fusion receptor and dendritic cell-specific transmembrane protein significantly decreased in the PKR-K/R cells by real time PCR analysis. The results of RT-PCR revealed that the mRNA expression of osteoclast markers (cathepsin K and calcitonin receptor) was suppressed in the PKR-K/R cells and RAW264.7 cells treated with 2-aminopurine. Expression of NF-{kappa}B protein was suppressed in the PKR-K/R cells and 2-aminopurine-treated RAW264.7 cells. The level of STAT1 protein expression was elevated in the PKR-K/R cells compared with that of the wild-type cells. Immunohistochemical study showed that PKR was localized in osteoclasts of metatarsal bone of newborn mouse. The finding that the PKR-positive multinuclear cells should be osteoclasts was confirmed by TRAP-staining. Our present study indicates that PKR plays important

  6. The cellular RNA helicase UAP56 is required for prevention of double-stranded RNA formation during influenza A virus infection.

    Science.gov (United States)

    Wisskirchen, Christian; Ludersdorfer, Thomas H; Müller, Dominik A; Moritz, Eva; Pavlovic, Jovan

    2011-09-01

    The cellular DEAD box RNA helicase UAP56 plays a pivotal role in the efficient transcription/replication of influenza A virus. UAP56 is recruited by the nucleoprotein (NP) of influenza A viruses, and recent data revealed that the RNA helicase is required for the nuclear export of a subset of spliced and unspliced viral mRNAs. The fact that influenza viruses do not produce detectable amounts of double-stranded RNA (dsRNA) intermediates during transcription/replication suggests the involvement of cellular RNA helicases. Hence, we examined whether the RNA-unwinding activity of UAP56 or its paralog URH49 plays a role in preventing the accumulation of dsRNA during infection. First, our data showed that not only UAP56 but also its paralog URH49 can interact with NPs of avian and human influenza A viruses. The small interfering RNA (siRNA)-mediated depletion of either RNA helicase reduced the transport of M1 and hemagglutinin (HA) mRNAs and, to a lesser extent, NP and NS1 mRNAs into the cytoplasm. Moreover, we found that virus infection of UAP56-depleted cells leads to the rapid accumulation of dsRNA in the perinuclear region. In parallel, we observed a robust virus-mediated activation of dsRNA-dependent protein kinase R (PKR), indicating that the cellular RNA helicase UAP56 may be recruited by influenza virus to prevent dsRNA formation. The accumulation of dsRNA was blocked when actinomycin D or cycloheximide was used to inhibit viral transcription/replication or translation, respectively. In summary, we demonstrate that UAP56 is utilized by influenza A viruses to prevent the formation of dsRNA and, hence, the activation of the innate immune response.

  7. Examination for double-stranded RNA viruses in Trichomonas gallinae and identification of a novel sequence of a Trichomonas vaginalis virus.

    Science.gov (United States)

    Gerhold, Richard W; Allison, Andrew B; Sellers, Holly; Linnemann, Erich; Chang, T-H; Alderete, John F

    2009-09-01

    To determine if double-stranded RNA (dsRNA) viruses exist and are potential virulence factors in Trichomonas gallinae, virus purification via ultracentrifugation was attempted for 12 T. gallinae isolates recovered from wild birds. Following purification, virus-like particles were not observed by transmission electron microscopy, nor were dsRNA segments visualized in agarose gels after electrophoresis of extracted RNA from any of the 12 T. gallinae isolates. However, virus particles and dsRNA segments were detected from a previously determined virus-infected T. vaginalis isolate as a control using identical purification procedures. Subsequent reverse transcription-polymerase chain reaction analysis of the dsRNA of the virus in this isolate revealed a novel sequence of the RNA-dependent RNA polymerase gene of T. vaginalis viruses.

  8. The interaction between the helicase DHX33 and IPS-1 as a novel pathway to sense double-stranded RNA and RNA viruses in myeloid dendritic cells.

    Science.gov (United States)

    Liu, Ying; Lu, Ning; Yuan, Bin; Weng, Leiyun; Wang, Feng; Liu, Yong-Jun; Zhang, Zhiqiang

    2014-01-01

    In eukaryotes, there are at least 60 members of the DExD/H helicase family, many of which are able to sense viral nucleic acids. By screening all known family members, we identified the helicase DHX33 as a novel double-stranded RNA (dsRNA) sensor in myeloid dendritic cells (mDCs). The knockdown of DHX33 using small heteroduplex RNA (shRNA) blocked the ability of mDCs to produce type I interferon (IFN) in response to poly I:C and reovirus. The HELICc domain of DHX33 was shown to bind poly I:C. The interaction between DHX33 and IPS-1 is mediated by the HELICc region of DHX33 and the C-terminal domain of IPS-1 (also referred to MAVS and VISA). The inhibition of DHX33 expression by RNA interference blocked the poly I:C-induced activation of MAP kinases, NF-κB and IRF3. The interaction between the helicase DHX33 and IPS-1 was independent of RIG-I/MDA5 and may be a novel pathway for sensing poly I:C and RNA viruses in mDCs.

  9. Plant viruses of the Amalgaviridae family evolved via recombination between viruses with double-stranded and negative-strand RNA genomes.

    Science.gov (United States)

    Krupovic, Mart; Dolja, Valerian V; Koonin, Eugene V

    2015-03-29

    Plant viruses of the recently recognized family Amalgaviridae have monopartite double-stranded (ds) RNA genomes and encode two proteins: an RNA-dependent RNA polymerase (RdRp) and a putative capsid protein (CP). Whereas the RdRp of amalgaviruses has been found to be most closely related to the RdRps of dsRNA viruses of the family Partitiviridae, the provenance of their CP remained obscure. Here we show that the CP of amalgaviruses is homologous to the nucleocapsid proteins of negative-strand RNA viruses of the genera Phlebovirus (Bunyaviridae) and Tenuivirus. The chimeric genomes of amalgaviruses are a testament to the effectively limitless gene exchange between viruses that shaped the evolution of the virosphere.

  10. RNA aptamer inhibitors of a restriction endonuclease.

    Science.gov (United States)

    Mondragón, Estefanía; Maher, L James

    2015-09-03

    Restriction endonucleases (REases) recognize and cleave short palindromic DNA sequences, protecting bacterial cells against bacteriophage infection by attacking foreign DNA. We are interested in the potential of folded RNA to mimic DNA, a concept that might be applied to inhibition of DNA-binding proteins. As a model system, we sought RNA aptamers against the REases BamHI, PacI and KpnI using systematic evolution of ligands by exponential enrichment (SELEX). After 20 rounds of selection under different stringent conditions, we identified the 10 most enriched RNA aptamers for each REase. Aptamers were screened for binding and specificity, and assayed for REase inhibition. We obtained eight high-affinity (Kd ∼12-30 nM) selective competitive inhibitors (IC50 ∼20-150 nM) for KpnI. Predicted RNA secondary structures were confirmed by in-line attack assay and a 38-nt derivative of the best anti-KpnI aptamer was sufficient for inhibition. These competitive inhibitors presumably act as KpnI binding site analogs, but lack the primary consensus KpnI cleavage sequence and are not cleaved by KpnI, making their potential mode of DNA mimicry fascinating. Anti-REase RNA aptamers could have value in studies of REase mechanism and may give clues to a code for designing RNAs that competitively inhibit DNA binding proteins including transcription factors. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Yellow fever virus capsid protein is a potent suppressor of RNA silencing that binds double-stranded RNA.

    Science.gov (United States)

    Samuel, Glady Hazitha; Wiley, Michael R; Badawi, Atif; Adelman, Zach N; Myles, Kevin M

    2016-11-29

    Mosquito-borne flaviviruses, including yellow fever virus (YFV), Zika virus (ZIKV), and West Nile virus (WNV), profoundly affect human health. The successful transmission of these viruses to a human host depends on the pathogen's ability to overcome a potentially sterilizing immune response in the vector mosquito. Similar to other invertebrate animals and plants, the mosquito's RNA silencing pathway comprises its primary antiviral defense. Although a diverse range of plant and insect viruses has been found to encode suppressors of RNA silencing, the mechanisms by which flaviviruses antagonize antiviral small RNA pathways in disease vectors are unknown. Here we describe a viral suppressor of RNA silencing (VSR) encoded by the prototype flavivirus, YFV. We show that the YFV capsid (YFC) protein inhibits RNA silencing in the mosquito Aedes aegypti by interfering with Dicer. This VSR activity appears to be broadly conserved in the C proteins of other medically important flaviviruses, including that of ZIKV. These results suggest that a molecular "arms race" between vector and pathogen underlies the continued existence of flaviviruses in nature.

  12. tPA-binding RNA Aptamers

    DEFF Research Database (Denmark)

    Bjerregaard, Nils

    2015-01-01

    -density lipoprotein receptor Related Protein-1 (LRP-1). Here, we describe the selection and characterisation of structured RNA ligands (“RNA aptamers”) to tPA, K18 and K32. Both aptamers were truncated to minimal 32-nucleotide constructs (v2) with improved or unchanged activities, and were shown to bind tPA with low...

  13. Recombinant modified vaccinia virus Ankara generating excess early double-stranded RNA transiently activates protein kinase R and triggers enhanced innate immune responses.

    Science.gov (United States)

    Wolferstätter, Michael; Schweneker, Marc; Späth, Michaela; Lukassen, Susanne; Klingenberg, Marieken; Brinkmann, Kay; Wielert, Ursula; Lauterbach, Henning; Hochrein, Hubertus; Chaplin, Paul; Suter, Mark; Hausmann, Jürgen

    2014-12-01

    Double-stranded RNA (dsRNA) is an important molecular pattern associated with viral infection and is detected by various extra- and intracellular recognition molecules. Poxviruses have evolved to avoid producing dsRNA early in infection but generate significant amounts of dsRNA late in infection due to convergent transcription of late genes. Protein kinase R (PKR) is activated by dsRNA and triggers major cellular defenses against viral infection, including protein synthesis shutdown, apoptosis, and type I interferon (IFN-I) production. The poxviral E3 protein binds and sequesters viral dsRNA and is a major antagonist of the PKR pathway. We found that the highly replication-restricted modified vaccinia virus Ankara (MVA) engineered to produce excess amounts of dsRNA early in infection showed enhanced induction of IFN-β in murine and human cells in the presence of an intact E3L gene. IFN-β induction required a minimum overlap length of 300 bp between early complementary transcripts and was strongly PKR dependent. Excess early dsRNA produced by MVA activated PKR early but transiently in murine cells and induced enhanced systemic levels of IFN-α, IFN-γ, and other cytokines and chemokines in mice in a largely PKR-dependent manner. Replication-competent chorioallantois vaccinia virus Ankara (CVA) generating excess early dsRNA also enhanced IFN-I production and was apathogenic in mice even at very high doses but showed no in vitro host range defect. Thus, genetically adjuvanting MVA and CVA to generate excess early dsRNA is an effective method to enhance innate immune stimulation by orthopoxvirus vectors and to attenuate replicating vaccinia virus in vivo. Efficient cellular sensing of pathogen-specific components, including double-stranded RNA (dsRNA), is an important prerequisite of an effective antiviral immune response. The prototype poxvirus vaccinia virus (VACV) and its derivative modified vaccinia virus Ankara (MVA) produce dsRNA as a by-product of viral

  14. Characterization of a Novel Megabirnavirus from Sclerotinia sclerotiorum Reveals Horizontal Gene Transfer from Single-Stranded RNA Virus to Double-Stranded RNA Virus.

    Science.gov (United States)

    Wang, Minghong; Wang, Yong; Sun, Xiangzhong; Cheng, Jiasen; Fu, Yanping; Liu, Huiquan; Jiang, Daohong; Ghabrial, Said A; Xie, Jiatao

    2015-08-01

    Mycoviruses have been detected in all major groups of filamentous fungi, and their study represents an important branch of virology. Here, we characterized a novel double-stranded RNA (dsRNA) mycovirus, Sclerotinia sclerotiorum megabirnavirus 1 (SsMBV1), in an apparently hypovirulent strain (SX466) of Sclerotinia sclerotiorum. Two similarly sized dsRNA segments (L1- and L2-dsRNA), the genome of SsMBV1, are packaged in rigid spherical particles purified from strain SX466. The full-length cDNA sequence of L1-dsRNA/SsMBV1 comprises two large open reading frames (ORF1 and ORF2), which encode a putative coat protein and an RNA-dependent RNA polymerase (RdRp), respectively. Phylogenetic analysis of the RdRp domain clearly indicates that SsMBV1 is related to Rosellinia necatrix megabirnavirus 1 (RnMBV1). L2-dsRNA/SsMBV1 comprises two nonoverlapping ORFs (ORFA and ORFB) encoding two hypothetical proteins with unknown functions. The 5'-terminal regions of L1- and L2-dsRNA/SsMBV1 share strictly conserved sequences and form stable stem-loop structures. Although L2-dsRNA/SsMBV1 is dispensable for replication, genome packaging, and pathogenicity of SsMBV1, it enhances transcript accumulation of L1-dsRNA/SsMBV1 and stability of virus-like particles (VLPs). Interestingly, a conserved papain-like protease domain similar to a multifunctional protein (p29) of Cryphonectria hypovirus 1 was detected in the ORFA-encoded protein of L2-dsRNA/SsMBV1. Phylogenetic analysis based on the protease domain suggests that horizontal gene transfer may have occurred from a single-stranded RNA (ssRNA) virus (hypovirus) to a dsRNA virus, SsMBV1. Our results reveal that SsMBV1 has a slight impact on the fundamental biological characteristics of its host regardless of the presence or absence of L2-dsRNA/SsMBV1. Mycoviruses are widespread in all major fungal groups, and they possess diverse genomes of mostly ssRNA and dsRNA and, recently, circular ssDNA. Here, we have characterized a novel dsRNA virus

  15. Diphosphates at the 5' end of the positive strand of yeast L-A double-stranded RNA virus as a molecular self-identity tag.

    Science.gov (United States)

    Fujimura, Tsutomu; Esteban, Rosa

    2016-10-01

    The 5'end of RNA conveys important information on self-identity. In mammalian cells, double-stranded RNA (dsRNA) with 5'di- or triphosphates generated during virus infection is recognized as foreign and elicits the host innate immune response. Here, we analyze the 5' ends of the dsRNA genome of the yeast L-A virus. The positive strand has largely diphosphates with a minor amount of triphosphates, while the negative strand has only diphosphates. Although the virus can produce capped transcripts by cap snatching, neither strand carried a cap structure, suggesting that only non-capped transcripts serve as genomic RNA for encapsidation. We also found that the 5' diphosphates of the positive but not the negative strand within the dsRNA genome are crucial for transcription in vitro. Furthermore, the presence of a cap structure in the dsRNA abrogated its template activity. Given that the 5' diphosphates of the transcripts are also essential for cap acquisition and that host cytosolic RNAs (mRNA, rRNA, and tRNA) are uniformly devoid of 5' pp-structures, the L-A virus takes advantage of its 5' terminal diphosphates, using them as a self-identity tag to propagate in the host cytoplasm. © 2016 John Wiley & Sons Ltd.

  16. Inhibition of antiviral innate immunity by birnavirus VP3 protein via blockage of viral double-stranded RNA binding to the host cytoplasmic RNA detector MDA5.

    Science.gov (United States)

    Ye, Chengjin; Jia, Lu; Sun, Yanting; Hu, Boli; Wang, Lun; Lu, Xingmeng; Zhou, Jiyong

    2014-10-01

    Chicken MDA5 (chMDA5), the sole known pattern recognition receptor for cytoplasmic viral RNA in chickens, initiates type I interferon (IFN) production. Infectious bursal disease virus (IBDV) evades host innate immunity, but the mechanism is unclear. We report here that IBDV inhibited antiviral innate immunity via the chMDA5-dependent signaling pathway. IBDV infection did not induce efficient type I interferon (IFN) production but antagonized the antiviral activity of beta interferon (IFN-β) in DF-1 cells pretreated with IFN-α/β. Dual-luciferase assays and inducible expression systems demonstrated that IBDV protein VP3 significantly inhibited IFN-β expression stimulated by naked IBDV genomic double-stranded RNA (dsRNA). The VP3 protein competed strongly with chMDA5 to bind IBDV genomic dsRNA in vitro and in vivo, and VP3 from other birnaviruses also bound dsRNA. Site-directed mutagenesis confirmed that deletion of the VP3 dsRNA binding domain restored IFN-β expression. Our data demonstrate that VP3 inhibits antiviral innate immunity by blocking binding of viral genomic dsRNA to MDA5. MDA5, a known pattern recognition receptor and cytoplasmic viral RNA sensor, plays a critical role in host antiviral innate immunity. Many pathogens escape or inhibit the host antiviral immune response, but the mechanisms involved are unclear for most pathogens. We report here that birnaviruses inhibit host antiviral innate immunity via the MDA5-dependent signaling pathway. The antiviral innate immune system involving IFN-β did not function effectively during birnavirus infection, and the viral protein VP3 significantly inhibited IFN-β expression stimulated by naked viral genomic dsRNA. We also show that VP3 blocks MDA5 binding to viral genomic dsRNA in vitro and in vivo. Our data reveal that birnavirus-encoded viral protein VP3 is an inhibitor of the antiviral innate immune response and inhibits the antiviral innate immune response via the MDA5-dependent signaling pathway

  17. Effects of double-stranded RNA on virulence of Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes against the silverleaf whitefly, Bemisia tabaci strain B (Homoptera: Aleyrodidae

    Directory of Open Access Journals (Sweden)

    Andréia Cristiane Souza Azevedo

    2000-03-01

    Full Text Available Bands of double-stranded RNA (dsRNA were detected in three out of twelve isolates of Paecilomyces fumosoroseus. Identity of these bands was confirmed by RNAse, DNAse and S1 nuclease treatments. The cure of dsRNA for one isolate (P92 was successfully carried out for a single conidium subculture. Isogenic strains, with or without dsRNA, were submitted to virulence tests against the whitefly Bemisia tabaci strain B. In contrast to findings for some phytopathogenic fungi, these dsRNA fragments did not cause hypovirulence in P. fumosoroseus.Bandas de dsRNA foram detectadas em três dos doze isolados de Paecilomyces fumosoroseus. A identidade destas bandas foi provada através de tratamentos com RNAse, DNAse e S1 nuclease. A cura do dsRNA para um dos isolados (P92 foi obtida através do isolamento de colônias monospóricas. Linhagens isogênicas, com e sem dsRNA, foram submetidas ao teste de virulência contra a mosca branca Bemisia tabaci biotipo B. Ao contrário do que ocorre para vários fungos fitopatogênicos, os fragmentos de dsRNA não causaram hipovirulência em P. fumosoroseus.

  18. Expression of the double-stranded RNA of the soybean pod borer Leguminivora glycinivorella (Lepidoptera: Tortricidae) ribosomal protein P0 gene enhances the resistance of transgenic soybean plants.

    Science.gov (United States)

    Meng, Fanli; Li, Yang; Zang, Zhenyuan; Li, Na; Ran, Ruixue; Cao, Yingxue; Li, Tianyu; Zhou, Quan; Li, Wenbin

    2017-12-01

    The soybean pod borer [SPB; Leguminivora glycinivorella (Matsumura) (Lepidoptera: Tortricidae)] is the most important soybean pest in northeastern Asia. Silencing genes using plant-mediated RNA-interference is a promising strategy for controlling SPB infestations. The ribosomal protein P0 is important for protein translation and DNA repair in the SPB. Thus, transferring P0 double-stranded RNA (dsRNA) into plants may help prevent SPB-induced damage. We investigated the effects of SpbP0 dsRNA injections and SpbP0 dsRNA-expressing transgenic soybean plants on the SPB. Larval mortality rates were greater for SpbP0 dsRNA-injected larvae (96%) than for the control larvae (31%) at 14 days after injections. Transgenic T 2 soybean plants expressing SpbP0 dsRNA sustained less damage from SPB larvae than control plants. In addition, the expression level of the SpbP0 gene decreased and the mortality rate increased when SPB larvae were fed on T 3 transgenic soybean pods. Moreover, the surviving larvae were deformed and exhibited inhibited growth. Silencing SpbP0 expression is lethal to the SPB. Transgenic soybean plants expressing SpbP0 dsRNA are more resistant to the SPB than wild-type plants. Thus, SpbP0 dsRNA-expressing transgenic plants may be useful for controlling insect pests. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Silencing of ecdysone receptor, insect intestinal mucin and sericotropin genes by bacterially produced double-stranded RNA affects larval growth and development in Plutella xylostella and Helicoverpa armigera.

    Science.gov (United States)

    Israni, B; Rajam, M V

    2017-04-01

    RNA interference mediated gene silencing, which is triggered by double-stranded RNA (dsRNA), has become a important tool for functional genomics studies in various systems, including insects. Bacterially produced dsRNA employs the use of a bacterial strain lacking in RNaseIII activity and harbouring a vector with dual T7 promoter sites, which allow the production of intact dsRNA molecules. Here, we report an assessment of the functional relevance of the ecdysone receptor, insect intestinal mucin and sericotropin genes through silencing by dsRNA in two lepidopteran insect pests, Helicoverpa armigera and Plutella xylostella, both of which cause serious crop losses. Oral feeding of dsRNA led to significant reduction in transcripts of the target insect genes, which caused significant larval mortality with various moulting anomalies and an overall developmental delay. We also found a significant decrease in reproductive potential in female moths, with a drop in egg laying and compromised egg hatching from treated larvae as compared to controls. dsRNA was stable in the insect gut and was efficiently processed into small interfering RNAs (siRNAs), thus accounting for the phenotypes observed in the present work. The study revealed the importance of these genes in core insect processes, which are essential for insect development and survival. © 2016 The Royal Entomological Society.

  20. A Transformed Bacterium Expressing Double-Stranded RNA Specific to Integrin β1 Enhances Bt Toxin Efficacy against a Polyphagous Insect Pest, Spodoptera exigua.

    Directory of Open Access Journals (Sweden)

    Eunseong Kim

    Full Text Available Oral toxicity of double-stranded RNA (dsRNA specific to integrin β1 subunit (SeINT was known in a polyphagous insect pest, Spodoptera exigua. For an application of the dsRNA to control the insect pest, this study prepared a transformed Escherichia coli expressing dsRNA specific to SeINT.The dsRNA expression was driven by T7 RNA polymerase overexpressed by an inducer in the transformed E. coli. The produced dsRNA amount was proportional to the number of the cultured bacteria. The transformed bacteria gave a significant oral toxicity to S. exigua larvae with a significant reduction of the SeINT expression. The resulting insect mortality increased with the fed number of the bacteria. Pretreatment with an ultra-sonication to disrupt bacterial cell wall/membrane significantly increased the insecticidal activity of the transformed bacteria. The larvae treated with the transformed bacteria suffered tissue damage in the midgut epithelium, which exhibited a marked loss of cell-cell contacts and underwent a remarkable cell death. Moreover, these treated larvae became significantly susceptible to a Cry toxin derived from Bacillus thuringiensis (Bt.This study provides a novel and highly efficient application technique to use dsRNA specific to an integrin gene by mixing with a biopesticide, Bt.

  1. A Transformed Bacterium Expressing Double-Stranded RNA Specific to Integrin β1 Enhances Bt Toxin Efficacy against a Polyphagous Insect Pest, Spodoptera exigua.

    Science.gov (United States)

    Kim, Eunseong; Park, Youngjin; Kim, Yonggyun

    2015-01-01

    Oral toxicity of double-stranded RNA (dsRNA) specific to integrin β1 subunit (SeINT) was known in a polyphagous insect pest, Spodoptera exigua. For an application of the dsRNA to control the insect pest, this study prepared a transformed Escherichia coli expressing dsRNA specific to SeINT. The dsRNA expression was driven by T7 RNA polymerase overexpressed by an inducer in the transformed E. coli. The produced dsRNA amount was proportional to the number of the cultured bacteria. The transformed bacteria gave a significant oral toxicity to S. exigua larvae with a significant reduction of the SeINT expression. The resulting insect mortality increased with the fed number of the bacteria. Pretreatment with an ultra-sonication to disrupt bacterial cell wall/membrane significantly increased the insecticidal activity of the transformed bacteria. The larvae treated with the transformed bacteria suffered tissue damage in the midgut epithelium, which exhibited a marked loss of cell-cell contacts and underwent a remarkable cell death. Moreover, these treated larvae became significantly susceptible to a Cry toxin derived from Bacillus thuringiensis (Bt). This study provides a novel and highly efficient application technique to use dsRNA specific to an integrin gene by mixing with a biopesticide, Bt.

  2. Reduction in deformed wing virus infection in larval and adult honey bees (Apis mellifera L.) by double-stranded RNA ingestion.

    Science.gov (United States)

    Desai, S D; Eu, Y-J; Whyard, S; Currie, R W

    2012-08-01

    Deformed wing virus (DWV) is a serious pathogen of the honey bee, Apis mellifera L., vectored by the parasitic mite Varroa destructor. The virus is associated with wing deformity in symptomatic bees, and premature death and reduced colony performance in asymptomatic bees. In the present study we reduced DWV infection by feeding both first instar larvae and adult A. mellifera with a double-stranded (ds) RNA construct, DWV-dsRNA, which is specific to DWV in DWV-inoculated bees, by mixing it with their food. We showed that feeding DWV to larvae causes wing deformity in adult bees in the absence of varroa mites and decreases survival rates of adult bees relative to bees not fed DWV. Feeding larvae with DWV-dsRNA in advance of inoculation with virus reduced the DWV viral level and reduced wing deformity relative to larvae fed DWV or DWV with green fluorescent protein-dsRNA (probably a result of RNA silencing), but did not affect survival to the adult stage. Feeding DWV-dsRNA did not affect larval survival rates, which suggests that dsRNA is non-toxic to larvae. Feeding adult workers with DWV-dsRNA in advance of inoculation with virus increased their longevity and reduced DWV concentration relative to controls. © 2012 The Authors. Insect Molecular Biology © 2012 The Royal Entomological Society.

  3. Inhibition of Taura syndrome virus replication in Litopenaeus vannamei through silencing the LvRab7 gene using double-stranded RNA.

    Science.gov (United States)

    Ongvarrasopone, Chalermporn; Saejia, Pipop; Chanasakulniyom, Mayuree; Panyim, Sakol

    2011-07-01

    Taura syndrome virus (TSV) is a major cause of high mortality in Pacific white shrimp (Litopenaeus vannamei, Lv). Previously, silencing of Penaeus monodon Rab7 (PmRab7) by injecting double-stranded RNA corresponding to PmRab7 (dsRNA-PmRab7) prevented white spot syndrome virus or yellow head virus infection. Rab7 is proposed to be involved in intracellular trafficking of the viruses. This study aimed to investigate whether knockdown of Rab7 in L. vannamei by dsRNA-PmRab7 could inhibit replication of TSV. RNA interference (RNAi) technology using dsRNA targeting the LvRab7 gene was used to silence the mRNA expression of LvRab7. The silencing of the LvRab7 gene inhibited TSV replication dramatically when compared to groups receiving dsRNA-GFP or NaCl. This is the first demonstration that dsRNA targeting the endogenous shrimp gene LvRab7 strongly reduces TSV replication. It provides further evidence that LvRab7 is involved in the endosomal trafficking pathway of viruses infecting penaeid shrimp.

  4. A thermodynamic investigation on the binding of phenothiazinium dyes azure A and azure B to double stranded RNA polynucleotides

    International Nuclear Information System (INIS)

    Khan, Asma Yasmeen; Suresh Kumar, Gopinatha

    2015-01-01

    Highlights: • The binding affinity of azure B was higher than azure A to the RNAs. • The binding of dyes stabilized the melting of poly(A).poly(U) and poly(I).poly(C). • Binding of azure A was enthalpy dominated but azure B binding was favoured by both enthalpy and entropy. • Nonpolyelectrolytic forces were found to play a crucial role in the binding process. • Enthalpy–entropy compensation phenomenon was seen in all the systems. - Abstract: The thermodynamics of the reactions of the two phenothiazinium dyes azure A and azure B with the three double stranded ribonucleic acids, poly(A).poly(U), poly(C).poly(G), poly(I).poly(C) were investigated using DSC and ITC. The bound dyes stabilized the RNAs against thermal strand separation. The binding of azure A to the RNAs was predominantly enthalpy dominated while the binding of azure B was favoured by both negative enthalpy and favourable entropy changes. Although electrostatic interaction had a significant role in the binding, non-polyelectrolytic forces dominated the binding process. The negative values of heat capacity changes for the binding suggested a substantial hydrophobic contribution to the binding process. The overall binding affinity of both the dyes to the RNAs varied in the order, poly(A).poly(U) > poly(C).poly(G) > poly(I).poly(C).

  5. A novel virus-like double-stranded RNA in an obligate biotroph arbuscular mycorrhizal fungus: a hidden player in mycorrhizal symbiosis.

    Science.gov (United States)

    Ikeda, Yoji; Shimura, Hanako; Kitahara, Ryoko; Masuta, Chikara; Ezawa, Tatsuhiro

    2012-07-01

    Arbuscular mycorrhizal (AM) fungi form mutualistic associations with most land plants and enhance phosphorus uptake of the host plants. Fungal viruses (mycoviruses) that possess a double-stranded RNA (dsRNA) genome often affect plant-fungal interactions via altering phenotypic expression of their host fungi. The present study demonstrates, for the first time, the presence of dsRNAs, which are highly likely to be mycoviruses, in AM fungi. dsRNA was extracted from mycelia of Glomus sp. strain RF1, purified, and subjected to electrophoresis. The fungus was found to harbor various dsRNA segments that differed in size. Among them, a 4.5-kbp segment was termed Glomus sp. strain RF1 virus-like medium dsRNA (GRF1V-M) and characterized in detail. The GRF1V-M genome segment was 4,557 nucleotides in length and encoded RNA-dependent RNA polymerase and a structural protein. GRF1V-M was phylogenetically distinct and could not be assigned to known genera of mycovirus. The GRF1V-M-free culture line of Glomus sp. strain RF1, which was raised by single-spore isolation, produced twofold greater number of spores and promoted plant growth more efficiently than the GRF1V-M-positive lines. These observations suggest that mycoviruses in AM fungi, at least some of them, have evolved under unique selection pressures and are a biologically active component in the symbiosis.

  6. RAPID-SELEX for RNA Aptamers

    Science.gov (United States)

    Ozer, Abdullah; Pagano, John M.; White, Brian S.; Shalloway, David; Lis, John T.; Craighead, Harold G.

    2013-01-01

    Aptamers are high-affinity ligands selected from DNA or RNA libraries via SELEX, a repetitive in vitro process of sequential selection and amplification steps. RNA SELEX is more complicated than DNA SELEX because of the additional transcription and reverse transcription steps. Here, we report a new selection scheme, RAPID-SELEX (RNA Aptamer Isolation via Dual-cycles SELEX), that simplifies this process by systematically skipping unnecessary amplification steps. Using affinity microcolumns, we were able to complete a multiplex selection for protein targets, CHK2 and UBLCP1, in a third of the time required for analogous selections using a conventional SELEX approach. High-throughput sequencing of the enriched pools from both RAPID and SELEX revealed many identical candidate aptamers from the starting pool of 5×1015 sequences. For CHK2, the same sequence was preferentially enriched in both selections as the top candidate and was found to bind to its respective target. These results demonstrate the efficiency and, most importantly, the robustness of our selection scheme. RAPID provides a generalized approach that can be used with any selection technology to accelerate the rate of aptamer discovery, without compromising selection performance. PMID:24376564

  7. Unpaired 5' ppp-nucleotides, as found in arenavirus double-stranded RNA panhandles, are not recognized by RIG-I.

    Science.gov (United States)

    Marq, Jean-Baptiste; Kolakofsky, Daniel; Garcin, Dominique

    2010-06-11

    Arenavirus and bunyavirus RNA genomes are unusual in that they are found in circular nucleocapsids, presumably due to the annealing of their complementary terminal sequences. Moreover, arenavirus genome synthesis initiates with GTP at position +2 of the template rather than at the precise 3' end (position +1). After formation of a dinucleotide, 5' pppGpC(OH) is then realigned on the template before this primer is extended. The net result of this "prime and realign" mechanism of genome initiation is that 5' pppG is found as an unpaired 5' nucleotide when the complementary genome ends anneal to form a double-stranded (dsRNA) panhandle. Using 5' pppRNA made in vitro and purified so that all dsRNA side products are absent, we have determined that both this 5' nucleotide overhang, as well as mismatches within the dsRNA (as found in some arenavirus genomes), clearly reduce the ability of these model dsRNAs to induce interferon upon transfection into cells. The presence of this unpaired 5' ppp-nucleotide is thus another way that some viruses appear to use to avoid detection by cytoplasmic pattern recognition receptors.

  8. Large-scale production and antiviral efficacy of multi-target double-stranded RNA for the prevention of white spot syndrome virus (WSSV) in shrimp.

    Science.gov (United States)

    Thammasorn, Thitiporn; Sangsuriya, Pakkakul; Meemetta, Watcharachai; Senapin, Saengchan; Jitrakorn, Sarocha; Rattanarojpong, Triwit; Saksmerprome, Vanvimon

    2015-12-01

    RNA interference (RNAi) is a specific and effective approach for inhibiting viral replication by introducing double-stranded (ds)RNA targeting the viral gene. In this study, we employed a combinatorial approach to interfere multiple gene functions of white spot syndrome virus (WSSV), the most lethal shrimp virus, using a single-batch of dsRNA, so-called "multi-WSSV dsRNA." A co-cultivation of RNase-deficient E. coli was developed to produce dsRNA targeting a major structural protein (VP28) and a hub protein (WSSV051) with high number of interacting protein partners. For a co-cultivation of transformed E. coli, use of Terrific broth (TB) medium was shown to improve the growth of the E. coli and multi-WSSV dsRNA yields as compared to the use of Luria Bertani (LB) broth. Co-culture expression was conducted under glycerol feeding fed-batch fermentation. Estimated yield of multi-WSSV dsRNA (μg/mL culture) from the fed-batch process was 30 times higher than that obtained under a lab-scale culture with LB broth. Oral delivery of the resulting multi-WSSV dsRNA reduced % cumulative mortality and delayed average time to death compared to the non-treated group after WSSV challenge. The present study suggests a co-cultivation technique for production of antiviral dsRNA with multiple viral targets. The optimal multi-WSSV dsRNA production was achieved by the use of glycerol feeding fed-batch cultivation with controlled pH and dissolved oxygen. The cultivation technique developed herein should be feasible for industrial-scale RNAi applications in shrimp aquaculture. Interference of multiple viral protein functions by a single-batch dsRNA should also be an ideal approach for RNAi-mediated fighting against viruses, especially the large and complicated WSSV.

  9. PI3K-delta mediates double-stranded RNA-induced upregulation of B7-H1 in BEAS-2B airway epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kan-o, Keiko [Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Matsumoto, Koichiro, E-mail: koichi@kokyu.med.kyushu-u.ac.jp [Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Asai-Tajiri, Yukari; Fukuyama, Satoru; Hamano, Saaka; Seki, Nanae; Nakanishi, Yoichi [Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Inoue, Hiromasa [Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan)

    2013-05-31

    Highlights: •Double-stranded RNA upregulates B7-H1 on BEAS-2B airway epithelial cells. •The upregulation of B7-H1 is attenuated by inhibition of PI3Kδ isoform. •PI3Kδ-mediated upregulation of B7-H1 is independent of NF-κB activation. •Inhibition of PI3Kδ may prevent persistent viral infection induced by B7-H1. -- Abstract: Airway viral infection disturbs the health-related quality of life. B7-H1 (also known as PD-L1) is a coinhibitory molecule associated with the escape of viruses from the mucosal immunity, leading to persistent infection. Most respiratory viruses generate double-stranded (ds) RNA during replication. The stimulation of cultured airway epithelial cells with an analog of viral dsRNA, polyinosinic-polycytidylic acid (poly IC) upregulates the expression of B7-H1 via activation of the nuclear factor κB(NF-κB). The mechanism of upregulation was investigated in association with phosphatidylinositol 3-kinases (PI3Ks). Poly IC-induced upregulation of B7-H1 was profoundly suppressed by a pan-PI3K inhibitor and partially by an inhibitor or a small interfering (si)RNA for PI3Kδ in BEAS-2B cells. Similar results were observed in the respiratory syncytial virus-infected cells. The expression of p110δ was detected by Western blot and suppressed by pretreatment with PI3Kδ siRNA. The activation of PI3Kδ is typically induced by oxidative stress. The generation of reactive oxygen species was increased by poly IC. Poly IC-induced upregulation of B7-H1 was attenuated by N-acetyl-L-cysteine, an antioxidant, or by oxypurinol, an inhibitor of xanthine oxidase. Poly IC-induced activation of NF-κB was suppressed by a pan-PI3K inhibitor but not by a PI3Kδ inhibitor. These results suggest that PI3Kδ mediates dsRNA-induced upregulation of B7-H1 without affecting the activation of NF-κB.

  10. PI3K-delta mediates double-stranded RNA-induced upregulation of B7-H1 in BEAS-2B airway epithelial cells

    International Nuclear Information System (INIS)

    Kan-o, Keiko; Matsumoto, Koichiro; Asai-Tajiri, Yukari; Fukuyama, Satoru; Hamano, Saaka; Seki, Nanae; Nakanishi, Yoichi; Inoue, Hiromasa

    2013-01-01

    Highlights: •Double-stranded RNA upregulates B7-H1 on BEAS-2B airway epithelial cells. •The upregulation of B7-H1 is attenuated by inhibition of PI3Kδ isoform. •PI3Kδ-mediated upregulation of B7-H1 is independent of NF-κB activation. •Inhibition of PI3Kδ may prevent persistent viral infection induced by B7-H1. -- Abstract: Airway viral infection disturbs the health-related quality of life. B7-H1 (also known as PD-L1) is a coinhibitory molecule associated with the escape of viruses from the mucosal immunity, leading to persistent infection. Most respiratory viruses generate double-stranded (ds) RNA during replication. The stimulation of cultured airway epithelial cells with an analog of viral dsRNA, polyinosinic-polycytidylic acid (poly IC) upregulates the expression of B7-H1 via activation of the nuclear factor κB(NF-κB). The mechanism of upregulation was investigated in association with phosphatidylinositol 3-kinases (PI3Ks). Poly IC-induced upregulation of B7-H1 was profoundly suppressed by a pan-PI3K inhibitor and partially by an inhibitor or a small interfering (si)RNA for PI3Kδ in BEAS-2B cells. Similar results were observed in the respiratory syncytial virus-infected cells. The expression of p110δ was detected by Western blot and suppressed by pretreatment with PI3Kδ siRNA. The activation of PI3Kδ is typically induced by oxidative stress. The generation of reactive oxygen species was increased by poly IC. Poly IC-induced upregulation of B7-H1 was attenuated by N-acetyl-L-cysteine, an antioxidant, or by oxypurinol, an inhibitor of xanthine oxidase. Poly IC-induced activation of NF-κB was suppressed by a pan-PI3K inhibitor but not by a PI3Kδ inhibitor. These results suggest that PI3Kδ mediates dsRNA-induced upregulation of B7-H1 without affecting the activation of NF-κB

  11. Exogenous application of double-stranded RNA molecules from TMV p126 and CP genes confers resistance against TMV in tobacco.

    Science.gov (United States)

    Konakalla, Naga Charan; Kaldis, Athanasios; Berbati, Margarita; Masarapu, Hema; Voloudakis, Andreas E

    2016-10-01

    External application of dsRNA molecules from Tobacco mosaic virus (TMV) p126 and CP genes confers significant resistance against TMV infection. Exogenously applied dsRNA exhibits a rapid systemic trafficking in planta , and it is processed successfully by DICER-like proteins producing small interfering RNAs. RNA interference (RNAi) is a sequence-specific, post-transcriptional gene silencing mechanism, induced by double-stranded RNA (dsRNA), which protects eukaryotic cells against invasive nucleic acids like viruses and transposons. In the present study, we used a non-transgenic strategy to induce RNAi in Nicotiana tabacum cv. Xanthi plants against TMV. DsRNA molecules for the p126 (TMV silencing suppressor) and coat protein (CP) genes were produced by a two-step PCR approach followed by in vitro transcription. The application of TMV p126 dsRNA onto tobacco plants induced greater resistance against TMV infection as compared to CP dsRNA (65 vs. 50 %). This study also reported the fast systemic spread of TMV p126 dsRNA from the treated (local) to non-treated (systemic) leaves beginning from 1 h post-application, confirmed by both conventional and real-time RT-PCR. Furthermore, we employed a stem-loop RT-PCR and confirmed the presence of a putative viral siRNA for up to 9 days in local leaves and up to 6 days in systemic leaves post-application. The approach employed could represent a simple and environmentally safe way for the control of plant viruses in future agriculture.

  12. Optimization of the Alkyl Linker of TO Base Surrogate in Triplex-Forming PNA for Enhanced Binding to Double-Stranded RNA.

    Science.gov (United States)

    Sato, Takaya; Sato, Yusuke; Nishizawa, Seiichi

    2017-03-23

    A series of triplex-forming peptide nucleic acid (TFP) probes carrying a thiazole orange (TO) base surrogate through an alkyl linker was synthesized, and the interactions between these so-called tFIT probes and purine-rich sequences within double-stranded RNA (dsRNA) were examined. We found that the TO base surrogate linker significantly affected both the binding affinity and the fluorescence response upon triplex formation with the target dsRNA. Among the probes examined, the TO base surrogate connected through the propyl linker in the tFIT probes increased the binding affinity by a factor of ten while maintaining its function as the fluorescent universal base. Isothermal titration calorimetry experiments revealed that the increased binding affinity resulted from the gain in the binding enthalpy, which could be explained by the enhanced π-stacking interaction between the TO base surrogate and the dsRNA part of the triplex. We expect that these results will provide a molecular basis for designing strong binding tFIT probes for fluorescence sensing of various kinds of purine-rich dsRNAs sequences including those carrying a pyrimidine-purine inversion. The obtained data also offers a new insight into further development of the universal bases incorporated in TFP. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Modeling of the catalytic core of Arabidopsis thaliana Dicer-like 4 protein and its complex with double-stranded RNA.

    Science.gov (United States)

    Mickiewicz, Agnieszka; Sarzyńska, Joanna; Miłostan, Maciej; Kurzyńska-Kokorniak, Anna; Rybarczyk, Agnieszka; Łukasiak, Piotr; Kuliński, Tadeusz; Figlerowicz, Marek; Błażewicz, Jacek

    2017-02-01

    Plant Dicer-like proteins (DCLs) belong to the Ribonuclease III (RNase III) enzyme family. They are involved in the regulation of gene expression and antiviral defense through RNA interference pathways. A model plant, Arabidopsis thaliana encodes four DCL proteins (AtDCL1-4) that produce different classes of small regulatory RNAs. Our studies focus on AtDCL4 that processes double-stranded RNAs (dsRNAs) into 21 nucleotide trans-acting small interfering RNAs. So far, little is known about the structures of plant DCLs and the complexes they form with dsRNA. In this work, we present models of the catalytic core of AtDCL4 and AtDCL4-dsRNA complex constructed by computational methods. We built a homology model of the catalytic core of AtDCL4 comprising Platform, PAZ, Connector helix and two RNase III domains. To assemble the AtDCL4-dsRNA complex two modeling approaches were used. In the first method, to establish conformations that allow building a consistent model of the complex, we used Normal Mode Analysis for both dsRNA and AtDCL4. The second strategy involved template-based approach for positioning of the PAZ domain and manual arrangement of the Connector helix. Our results suggest that the spatial orientation of the Connector helix, Platform and PAZ relative to the RNase III domains is crucial for measuring dsRNA of defined length. The modeled complexes provide information about interactions that may contribute to the relative orientations of these domains and to dsRNA binding. All these information can be helpful for understanding the mechanism of AtDCL4-mediated dsRNA recognition and binding, to produce small RNA of specific size. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Long-term suppression of HIV-1C virus production in human peripheral blood mononuclear cells by LTR heterochromatization with a short double-stranded RNA.

    Science.gov (United States)

    Singh, Anand; Palanichamy, Jayanth K; Ramalingam, Pradeep; Kassab, Muzaffer A; Bhagat, Mohita; Andrabi, Raiees; Luthra, Kalpana; Sinha, Subrata; Chattopadhyay, Parthaprasad

    2014-02-01

    A region in the conserved 5' long terminal repeat (LTR) promoter of the integrated HIV-1C provirus was identified for effective targeting by a short double-stranded RNA (dsRNA) to cause heterochromatization leading to a long-lasting decrease in viral transcription, replication and subsequent productive infection in human host cells. Small interfering RNAs (siRNAs) were transfected into siHa cells containing integrated LTR-luciferase reporter constructs and screened for efficiency of inducing transcriptional gene silencing (TGS). TGS was assessed by a dual luciferase assay and real-time PCR. Chromatin modification at the targeted region was also studied. The efficacy of potent siRNA was then checked for effectiveness in TZM-bl cells and human peripheral blood mononuclear cells (PBMCs) infected with HIV-1C virus. Viral Gag-p24 antigen levels were determined by ELISA. One HIV-1C LTR-specific siRNA significantly decreased luciferase activity and its mRNA expression with no such effect on HIV-1B LTR. This siRNA-mediated TGS was induced by histone methylation, which leads to heterochromatization of the targeted LTR region. The same siRNA also substantially suppressed viral replication in TZM-bl cells and human PBMCs infected with various HIV-1C clinical isolates for ≥3 weeks after a single transfection, even of a strain that had a mismatch in the target region. We have identified a potent dsRNA that causes long-term suppression of HIV-1C virus production in vitro and ex vivo by heritable epigenetic modification at the targeted C-LTR region. This dsRNA has promising therapeutic potential in HIV-1C infection, the clade responsible for more than half of AIDS cases worldwide.

  15. Analyses of the radiation of birnaviruses from diverse host phyla and of their evolutionary affinities with other double-stranded RNA and positive strand RNA viruses using robust structure-based multiple sequence alignments and advanced phylogenetic methods.

    Science.gov (United States)

    Gibrat, Jean-François; Mariadassou, Mahendra; Boudinot, Pierre; Delmas, Bernard

    2013-07-17

    Birnaviruses form a distinct family of double-stranded RNA viruses infecting animals as different as vertebrates, mollusks, insects and rotifers. With such a wide host range, they constitute a good model for studying the adaptation to the host. Additionally, several lines of evidence link birnaviruses to positive strand RNA viruses and suggest that phylogenetic analyses may provide clues about transition. We characterized the genome of a birnavirus from the rotifer Branchionus plicalitis. We used X-ray structures of RNA-dependent RNA polymerases and capsid proteins to obtain multiple structure alignments that allowed us to obtain reliable multiple sequence alignments and we employed "advanced" phylogenetic methods to study the evolutionary relationships between some positive strand and double-stranded RNA viruses. We showed that the rotifer birnavirus genome exhibited an organization remarkably similar to other birnaviruses. As this host was phylogenetically very distant from the other known species targeted by birnaviruses, we revisited the evolutionary pathways within the Birnaviridae family using phylogenetic reconstruction methods. We also applied a number of phylogenetic approaches based on structurally conserved domains/regions of the capsid and RNA-dependent RNA polymerase proteins to study the evolutionary relationships between birnaviruses, other double-stranded RNA viruses and positive strand RNA viruses. We show that there is a good correlation between the phylogeny of the birnaviruses and that of their hosts at the phylum level using the RNA-dependent RNA polymerase (genomic segment B) on the one hand and a concatenation of the capsid protein, protease and ribonucleoprotein (genomic segment A) on the other hand. This correlation tends to vanish within phyla. The use of advanced phylogenetic methods and robust structure-based multiple sequence alignments allowed us to obtain a more accurate picture (in terms of probability of the tree topologies) of the

  16. Sendai virus C protein plays a role in restricting PKR activation by limiting the generation of intracellular double-stranded RNA.

    Science.gov (United States)

    Takeuchi, Kenji; Komatsu, Takayuki; Kitagawa, Yoshinori; Sada, Kiyonao; Gotoh, Bin

    2008-10-01

    Sendai virus (SeV) C protein is a multifunctional protein that plays important roles in regulating viral genome replication and transcription, antagonizing the host interferon system, suppressing virus-induced apoptosis, and facilitating virus assembly and budding. We here report a novel role of SeV C protein, the limitation of double-stranded RNA (dsRNA) generation for maintaining the rate of protein synthesis in infected cells. It was found that the intracellular protein synthesis rate was maintained even after wild-type (wt) SeV infection, but markedly suppressed following C-knockout SeV infection. This indicates the requirement of C protein for maintaining protein synthesis after infection. In contrast to wt SeV infection, C-knockout SeV infection caused phosphorylation of both the translation initiation factor eIF2alpha and dsRNA-dependent protein kinase (PKR). Phosphorylation of eIF2alpha occurred mainly due to the action of PKR, since knockdown of PKR by small interfering RNA limited eIF2alpha phosphorylation. C protein, however, could inhibit neither poly(I):poly(C)-activated nor Newcastle disease virus-induced phosphorylation of PKR and eIF2alpha, suggesting that C protein does not target common pathways leading to PKR activation. Immunofluorescent staining experiments with a monoclonal antibody specifically recognizing dsRNA revealed generation of a large amount of dsRNA in cells infected with C-knockout SeV but not wt SeV. The dsRNA generation as well as phosphorylation of PKR and eIF2alpha induced by C-knockout SeV was markedly suppressed in cells constitutively expressing C protein. Taken together, these results demonstrate that the SeV C protein limits generation of dsRNA, thereby keeping PKR inactive to maintain intracellular protein synthesis.

  17. Plant-feeding insects harbor double-stranded RNA viruses encoding a novel proline-alanine rich protein and a polymerase distantly related to that of fungal viruses.

    Science.gov (United States)

    Spear, Allyn; Sisterson, Mark S; Yokomi, Raymond; Stenger, Drake C

    2010-09-01

    Novel double-stranded RNAs (approximately 8 kbp) were isolated from threecornered alfalfa hopper (Spissistilus festinus) and beet leafhopper (Circulifer tenellus), two plant-feeding hemipteran insect pests. The two new viruses, designated Spissistilus festinus virus 1 (SpFV1) and Circulifer tenellus virus 1 (CiTV1), do not appear to be encapsidated in conventional virions and shared a genome organization similar to that of several unclassified fungal viruses. SpFV1 and CiTVl encode a proline-alanine rich protein (PArp) and an RNA-directed RNA polymerase (RdRp). Expression of the 3'-proximal RdRp ORF appears to result from -1 translational frameshifting of the PArp ORF. Phylogenetic analysis of the RdRp indicated that SpFV1 and CiTV1 were most closely related to each other and the unclassified plant virus Cucurbit yellows associated virus, and more distantly related to the unclassified fungal dsRNA viruses Phlebiopsis gigantea virus 2 and Fusarium graminearum virus 3. Published by Elsevier Inc.

  18. Opposing Roles of Double-Stranded RNA Effector Pathways and Viral Defense Proteins Revealed with CRISPR-Cas9 Knockout Cell Lines and Vaccinia Virus Mutants.

    Science.gov (United States)

    Liu, Ruikang; Moss, Bernard

    2016-09-01

    Vaccinia virus (VACV) decapping enzymes and cellular exoribonuclease Xrn1 catalyze successive steps in mRNA degradation and prevent double-stranded RNA (dsRNA) accumulation, whereas the viral E3 protein can bind dsRNA. We showed that dsRNA and E3 colocalized within cytoplasmic viral factories in cells infected with a decapping enzyme mutant as well as with wild-type VACV and that they coprecipitated with antibody. An E3 deletion mutant induced protein kinase R (PKR) and eukaryotic translation initiation factor alpha (eIF2α) phosphorylation earlier and more strongly than a decapping enzyme mutant even though less dsRNA was made, leading to more profound effects on viral gene expression. Human HAP1 and A549 cells were genetically modified by clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) to determine whether the same pathways restrict E3 and decapping mutants. The E3 mutant replicated in PKR knockout (KO) HAP1 cells in which RNase L is intrinsically inactive but only with a double knockout (DKO) of PKR and RNase L in A549 cells, indicating that both pathways decreased replication equivalently and that no additional dsRNA pathway was crucial. In contrast, replication of the decapping enzyme mutant increased significantly (though less than that of wild-type virus) in DKO A549 cells but not in DKO HAP1 cells where a smaller increase in viral protein synthesis occurred. Xrn1 KO A549 cells were viable but nonpermissive for VACV; however, wild-type and mutant viruses replicated in triple-KO cells in which RNase L and PKR were also inactivated. Since KO of PKR and RNase L was sufficient to enable VACV replication in the absence of E3 or Xrn1, the poor replication of the decapping mutant, particularly in HAP1 DKO, cells indicated additional translational defects. Viruses have evolved ways of preventing or counteracting the cascade of antiviral responses that double-stranded RNA (dsRNA) triggers in host cells. We showed that the dsRNA produced in

  19. Mutational analysis of vaccinia virus E3 protein: the biological functions do not correlate with its biochemical capacity to bind double-stranded RNA.

    Science.gov (United States)

    Dueck, Kevin J; Hu, YuanShen Sandy; Chen, Peter; Deschambault, Yvon; Lee, Jocelyn; Varga, Jessie; Cao, Jingxin

    2015-05-01

    Vaccinia E3 protein has the biochemical capacity of binding to double-stranded RNA (dsRNA). The best characterized biological functions of the E3 protein include its host range function, suppression of cytokine expression, and inhibition of interferon (IFN)-induced antiviral activity. Currently, the role of the dsRNA binding capacity in the biological functions of the E3 protein is not clear. To further understand the mechanism of the E3 protein biological functions, we performed alanine scanning of the entire dsRNA binding domain of the E3 protein to examine the link between its biochemical capacity of dsRNA binding and biological functions. Of the 115 mutants examined, 20 were defective in dsRNA binding. Although the majority of the mutants defective in dsRNA binding also showed defective replication in HeLa cells, nine mutants (I105A, Y125A, E138A, F148A, F159A, K171A, L182A, L183A, and I187/188A) retained the host range function to various degrees. Further examination of a set of representative E3L mutants showed that residues essential for dsRNA binding are not essential for the biological functions of E3 protein, such as inhibition of protein kinase R (PKR) activation, suppression of cytokine expression, and apoptosis. Thus, data described in this communication strongly indicate the E3 protein performs its biological functions via a novel mechanism which does not correlate with its dsRNA binding activity. dsRNAs produced during virus replication are important pathogen-associated molecular patterns (PAMPs) for inducing antiviral immune responses. One of the strategies used by many viruses to counteract such antiviral immune responses is achieved by producing dsRNA binding proteins, such as poxvirus E3 family proteins, influenza virus NS1, and Ebola virus V35 proteins. The most widely accepted model for the biological functions of this class of viral dsRNA binding proteins is that they bind to and sequester viral dsRNA PAMPs; thus, they suppress the related

  20. Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte.

    Directory of Open Access Journals (Sweden)

    Renata Bolognesi

    Full Text Available RNA interference (RNAi has previously been shown to be effective in western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte larvae via oral delivery of synthetic double-stranded RNA (dsRNA in an artificial diet bioassay, as well as by ingestion of transgenic corn plant tissues engineered to express dsRNA. Although the RNAi machinery components appear to be conserved in Coleopteran insects, the key steps in this process have not been reported for WCR. Here we characterized the sequence of events that result in mortality after ingestion of a dsRNA designed against WCR larvae. We selected the Snf7 ortholog (DvSnf7 as the target mRNA, which encodes an essential protein involved in intracellular trafficking. Our results showed that dsRNAs greater than or equal to approximately 60 base-pairs (bp are required for biological activity in artificial diet bioassays. Additionally, 240 bp dsRNAs containing a single 21 bp match to the target sequence were also efficacious, whereas 21 bp short interfering (si RNAs matching the target sequence were not. This result was further investigated in WCR midgut tissues: uptake of 240 bp dsRNA was evident in WCR midgut cells while a 21 bp siRNA was not, supporting the size-activity relationship established in diet bioassays. DvSnf7 suppression was observed in a time-dependent manner with suppression at the mRNA level preceding suppression at the protein level when a 240 bp dsRNA was fed to WCR larvae. DvSnf7 suppression was shown to spread to tissues beyond the midgut within 24 h after dsRNA ingestion. These events (dsRNA uptake, target mRNA and protein suppression, systemic spreading, growth inhibition and eventual mortality comprise the overall mechanism of action by which DvSnf7 dsRNA affects WCR via oral delivery and provides insights as to how targeted dsRNAs in general are active against insects.

  1. Two-dimensional strandness-dependent electrophoresis: a method to characterize single-stranded DNA, double-stranded DNA, and RNA-DNA hybrids in complex samples.

    Science.gov (United States)

    Gunnarsson, Gudmundur H; Gudmundsson, Bjarki; Thormar, Hans G; Alfredsson, Arni; Jonsson, Jon J

    2006-03-01

    We describe two-dimensional strandness-dependent electrophoresis (2D-SDE) for quantification and length distribution analysis of single-stranded (ss) DNA fragments, double-stranded (ds) DNA fragments, RNA-DNA hybrids, and nicked DNA fragments in complex samples. In the first dimension nucleic acid molecules are separated based on strandness and length in the presence of 7 M urea. After the first-dimension electrophoresis all nucleic acid fragments are heat denatured in the gel. During the second-dimension electrophoresis all nucleic acid fragments are single-stranded and migrate according to length. 2D-SDE takes about 90 min and requires only basic skills and equipment. We show that 2D-SDE has many applications in analyzing complex nucleic acid samples including (1) estimation of renaturation efficiency and kinetics, (2) monitoring cDNA synthesis, (3) detection of nicked DNA fragments, and (4) estimation of quality and in vitro damage of nucleic acid samples. Results from 2D-SDE should be useful to validate techniques such as complex polymerase chain reaction, subtractive hybridization, cDNA synthesis, cDNA normalization, and microarray analysis. 2D-SDE could also be used, e.g., to characterize biological nucleic acid samples. Information obtained with 2D-SDE cannot be readily obtained with other methods. 2D-SDE can be used for preparative isolation of ssDNA fragments, dsDNA fragments, and RNA-DNA hybrids.

  2. Hepatitis C virus replicative double-stranded RNA is a potent interferon inducer that triggers interferon production through MDA5.

    Science.gov (United States)

    Du, Xiaoting; Pan, Tingting; Xu, Jun; Zhang, Yang; Song, Wuhui; Yi, Zhigang; Yuan, Zhenghong

    2016-11-01

    The cytoplasmic RNA sensors, retinoic acid-inducible gene I and melanoma differentiation-associated gene 5, play crucial roles in innate sensing of hepatitis C virus (HCV). However, the exact identity of the IFN inducer generated during HCV infection is poorly understood. To identify the IFN inducer, we extracted the RNAs from HCV-replicating cells and introduced these into IFN signalling-competent cells to examine IFN production. RNAs isolated from HCV-replicating cells triggered robust IFN-β and IFN-λ production in Huh7 cells in a viral replication-dependent manner, preferentially through the melanoma differentiation-associated gene 5 but not through the retinoic acid-inducible gene I-mediated pathway. The IFN-inducing capacity of HCV RNA survived after calf intestinal alkaline phosphatase and ssRNA-specific S1 nuclease treatment, but was completely eliminated by dsRNA-specific RNase III digestion, suggesting that viral replicative dsRNA is an IFN inducer. Furthermore, HCV viral RNA extracted from replicating cells was sensitive to 5'-monophosphate-dependent 5'→3' exonuclease (TER) digestion, suggesting that the HCV genome lacks a 5'-triphosphate or -diphosphate. In semi-permeabilized cells, the HCV IFN inducer primarily resided in an enclosed membranous structure that protects the IFN inducer from RNase digestion. Taken together, we identified HCV replicative dsRNA as a viral IFN inducer enclosed within the viral replication factory.

  3. Novel Bat Influenza Virus NS1 Proteins Bind Double-Stranded RNA and Antagonize Host Innate Immunity.

    Science.gov (United States)

    Turkington, Hannah L; Juozapaitis, Mindaugas; Kerry, Philip S; Aydillo, Teresa; Ayllon, Juan; García-Sastre, Adolfo; Schwemmle, Martin; Hale, Benjamin G

    2015-10-01

    We demonstrate that novel bat HL17NL10 and HL18NL11 influenza virus NS1 proteins are effective interferon antagonists but do not block general host gene expression. Solving the RNA-binding domain structures revealed the canonical NS1 symmetrical homodimer, and RNA binding required conserved basic residues in this domain. Interferon antagonism was strictly dependent on RNA binding, and chimeric bat influenza viruses expressing NS1s defective in this activity were highly attenuated in interferon-competent cells but not in cells unable to establish antiviral immunity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. A new wine Saccharomyces cerevisiae killer toxin (Klus), encoded by a double-stranded rna virus, with broad antifungal activity is evolutionarily related to a chromosomal host gene.

    Science.gov (United States)

    Rodríguez-Cousiño, Nieves; Maqueda, Matilde; Ambrona, Jesús; Zamora, Emiliano; Esteban, Rosa; Ramírez, Manuel

    2011-03-01

    Wine Saccharomyces cerevisiae strains producing a new killer toxin (Klus) were isolated. They killed all the previously known S. cerevisiae killer strains, in addition to other yeast species, including Kluyveromyces lactis and Candida albicans. The Klus phenotype is conferred by a medium-size double-stranded RNA (dsRNA) virus, Saccharomyces cerevisiae virus Mlus (ScV-Mlus), whose genome size ranged from 2.1 to 2.3 kb. ScV-Mlus depends on ScV-L-A for stable maintenance and replication. We cloned and sequenced Mlus. Its genome structure is similar to that of M1, M2, or M28 dsRNA, with a 5'-terminal coding region followed by two internal A-rich sequences and a 3'-terminal region without coding capacity. Mlus positive strands carry cis-acting signals at their 5' and 3' termini for transcription and replication similar to those of killer viruses. The open reading frame (ORF) at the 5' portion codes for a putative preprotoxin with an N-terminal secretion signal, potential Kex2p/Kexlp processing sites, and N-glycosylation sites. No sequence homology was found either between the Mlus dsRNA and M1, M2, or M28 dsRNA or between Klus and the K1, K2, or K28 toxin. The Klus amino acid sequence, however, showed a significant degree of conservation with that of the product of the host chromosomally encoded ORF YFR020W of unknown function, thus suggesting an evolutionary relationship.

  5. Double-stranded RNA-induced activation of activating protein-1 promoter is differentially regulated by the non-structural protein 1 of avian influenza A viruses.

    Science.gov (United States)

    Munir, Muhammad; Zohari, Siamak; Belák, Sándor; Berg, Mikael

    2012-02-01

    Non-structural protein 1 (NS1) of influenza A viruses is a multifunctional protein that antagonizes the host immune response by interfering with several host signaling pathways. Based on putative amino acid sequences, NS1 proteins are categorized into two gene pools, allele A and allele B. Here we identified that allele A NS1 proteins of H6N8 and H4N6 are able to inhibit double-stranded RNA (dsRNA)-induced activating protein-1 (AP-1) promoter in cultured cell lines (human A549 and mink lung cells). Allele B NS1 proteins from corresponding subtypes of influenza A viruses are weak in this inhibition, despite significant levels of expression of each NS1 protein in human A549 cells. Furthermore, the capability to inhibit AP-1 promoter was mapped in the effector domain, since RNA binding domain alone lost its ability to inhibit this promoter activation. Chimeric forms of NS1 protein, composed of either RNA binding domain of allele A or B and effector domain of allele A or B, showed comparable inhibition to that of their wild-type NS1 proteins, or to the effector domain of corresponding NS1 proteins. Both alleles A and B NS1 proteins of H6N8 and H4N6 were expressed to significant levels, and were localized predominantly in the nucleus of human A549 cells. These results underscore the importance of the effector domain in inhibiting AP-1 promoter activation, and the biological function of the effector domain in stabilizing the RNA binding domain. Further, we revealed the versatile nature of NS1 in inhibiting the AP-1 transcription factor, in a manner dependent on allele type. Comprehensive studies, focusing on the molecular mechanisms behind this differential inhibition, may facilitate exploration of the zoonotic and pathogenic potential of influenza A viruses.

  6. A DNA sequence obtained by replacement of the dopamine RNA aptamer bases is not an aptamer

    DEFF Research Database (Denmark)

    Álvarez-Martos, Isabel; Ferapontova, Elena

    2017-01-01

    A unique specificity of the aptamer-ligand biorecognition and binding facilitates bioanalysis and biosensor development, contributing to discrimination of structurally related molecules, such as dopamine and other catecholamine neurotransmitters. The aptamer sequence capable of specific binding...... of dopamine is a 57 nucleotides long RNA sequence reported in 1997 (Biochemistry, 1997, 36, 9726). Later, it was suggested that the DNA homologue of the RNA aptamer retains the specificity of dopamine binding (Biochem. Biophys. Res. Commun., 2009, 388, 732). Here, we show that the DNA sequence obtained...... by the replacement of the RNA aptamer bases for their DNA analogues is not able of specific biorecognition of dopamine, in contrast to the original RNA aptamer sequence. This DNA sequence binds dopamine and structurally related catecholamine neurotransmitters non-specifically, as any DNA sequence, and, thus...

  7. Association of the Endobiont Double-Stranded RNA Virus LRV1 With Treatment Failure for Human Leishmaniasis Caused by Leishmania braziliensis in Peru and Bolivia.

    Science.gov (United States)

    Adaui, Vanessa; Lye, Lon-Fye; Akopyants, Natalia S; Zimic, Mirko; Llanos-Cuentas, Alejandro; Garcia, Lineth; Maes, Ilse; De Doncker, Simonne; Dobson, Deborah E; Arevalo, Jorge; Dujardin, Jean-Claude; Beverley, Stephen M

    2016-01-01

    Cutaneous and mucosal leishmaniasis, caused in South America by Leishmania braziliensis, is difficult to cure by chemotherapy (primarily pentavalent antimonials [Sb(V)]). Treatment failure does not correlate well with resistance in vitro, and the factors responsible for treatment failure in patients are not well understood. Many isolates of L. braziliensis (>25%) contain a double-stranded RNA virus named Leishmaniavirus 1 (LRV1), which has also been reported in Leishmania guyanensis, for which an association with increased pathology, metastasis, and parasite replication was found in murine models. Here we probed the relationship of LRV1 to drug treatment success and disease in 97 L. braziliensis-infected patients from Peru and Bolivia. In vitro cultures were established, parasites were typed as L. braziliensis, and the presence of LRV1 was determined by reverse transcription-polymerase chain reaction, followed by sequence analysis. LRV1 was associated significantly with an increased risk of treatment failure (odds ratio, 3.99; P = .04). There was no significant association with intrinsic Sb(V) resistance among parasites, suggesting that treatment failure arises from LRV1-mediated effects on host metabolism and/or parasite survival. The association of LRV1 with clinical drug treatment failure could serve to guide more-effective treatment of tegumentary disease caused by L. braziliensis. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  8. Current Progress of RNA Aptamer-Based Therapeutics

    Science.gov (United States)

    Zhou, Jiehua; Bobbin, Maggie L.; Burnett, John C.; Rossi, John J.

    2012-01-01

    Aptamers are single-stranded nucleic acids that specifically recognize and bind tightly to their cognate targets due to their stable three-dimensional structure. Nucleic acid aptamers have been developed for various applications, including diagnostics, molecular imaging, biomarker discovery, target validation, therapeutics, and drug delivery. Due to their high specificity and binding affinity, aptamers directly block or interrupt the functions of target proteins making them promising therapeutic agents for the treatment of human maladies. Additionally, aptamers that bind to cell surface proteins are well suited for the targeted delivery of other therapeutics, such as conjugated small interfering RNAs (siRNA) that induce RNA interference (RNAi). Thus, aptamer-siRNA chimeras may offer dual-functions, in which the aptamer inhibits a receptor function, while the siRNA internalizes into the cell to target a specific mRNA. This review focuses on the current progress and therapeutic potential of RNA aptamers, including the use of cell-internalizing aptamers as cell-type specific delivery vehicles for targeted RNAi. In particular, we discuss emerging aptamer-based therapeutics that provide unique clinical opportunities for the treatment various cancers and neurological diseases. PMID:23130020

  9. Current progress of RNA aptamer-based therapeutics

    Directory of Open Access Journals (Sweden)

    Jiehua eZhou

    2012-11-01

    Full Text Available Aptamers are single-stranded nucleic acids that specifically recognize and bind tightly to their cognate targets due to their stable three-dimensional structure. Nucleic acid aptamers have been developed for various applications, including diagnostics, molecular imaging, biomarker discovery, target validation, therapeutics and drug delivery. Due to their high specificity and binding affinity, aptamers directly block or interrupt the functions of target proteins making them promising therapeutic agents for the treatment of human maladies. Additionally, aptamers that bind to cell surface proteins are well suited for the targeted delivery of other therapeutics, such as conjugated small interfering RNAs (siRNA that induce RNA interference (RNAi. Thus, aptamer-siRNA chimeras may offer dual-functions, in which the aptamer inhibits a receptor function, while the siRNA internalizes into the cell to target a specific mRNA. This review focuses on the current progress and therapeutic potential of RNA aptamers, including the use of cell-internalizing aptamers as cell-type specific delivery vehicles for targeted RNAi. In particular, we discuss emerging aptamer-based therapeutics that provide unique clinical opportunities for the treatment various cancers and neurological diseases.

  10. Effects of chitin synthase double-stranded RNA on molting and oogenesis in the Chagas disease vector Rhodnius prolixus.

    Science.gov (United States)

    Mansur, Juliana F; Alvarenga, Evelyn S L; Figueira-Mansur, Janaina; Franco, Thiago A; Ramos, Isabela B; Masuda, Hatisaburo; Melo, Ana C A; Moreira, Mônica F

    2014-08-01

    In this study, we provided the demonstration of the presence of a single CHS gene in the Rhodnius prolixus (a blood-sucking insect) genome that is expressed in adults (integument and ovary) and in the integument of nymphs during development. This CHS gene appears to be essential for epidermal integrity and egg formation in R. prolixus. Because injection of CHS dsRNA was effective in reducing CHS transcript levels, phenotypic alterations in the normal course of ecdysis occurred. In addition, two phenotypes with severe cuticle deformations were observed, which were associated with loss of mobility and lifetime. The CHS dsRNA treatment in adult females affected oogenesis, reducing the size of the ovary and presenting a greater number of atresic oocytes and a smaller number of chorionated oocytes compared with the control. The overall effect was reduced oviposition. The injection of CHS dsRNA modified the natural course of egg development, producing deformed eggs that were dark in color and unable to hatch, distinct from the viable eggs laid by control females. The ovaries, which were examined under fluorescence microscopy using a probe for chitin detection, showed a reduced deposition on pre-vitellogenic and vitellogenic oocytes compared with control. Taken together, these data suggest that the CHS gene is fundamentally important for ecdysis, oogenesis and egg hatching in R. prolixus and also demonstrated that the CHS gene is a good target for controlling Chagas disease vectors. Published by Elsevier Ltd.

  11. PNPase autocontrols its expression by degrading a double-stranded structure in the pnp mRNA leader

    Science.gov (United States)

    Jarrige, Anne-Charlotte; Mathy, Nathalie; Portier, Claude

    2001-01-01

    Polynucleotide phosphorylase synthesis is autocontrolled at a post-transcriptional level in an RNase III-dependent mechanism. RNase III cleaves a long stem–loop in the pnp leader, which triggers pnp mRNA instability, resulting in a decrease in the synthesis of polynucleotide phosphorylase. The staggered cleavage by RNase III removes the upper part of the stem–loop structure, creating a duplex with a short 3′ extension. Mutations or high temperatures, which destabilize the cleaved stem–loop, decrease expression of pnp, while mutations that stabilize the stem increase expression. We propose that the dangling 3′ end of the duplex created by RNase III constitutes a target for polynucleotide phosphorylase, which binds to and degrades the upstream half of this duplex, hence inducing pnp mRNA instability. Consistent with this interpretation, a pnp mRNA starting at the downstream RNase III processing site exhibits a very low level of expression, regardless of the presence of polynucleotide phosphorylase. Moreover, using an in vitro synthesized pnp leader transcript, it is shown that polynucleotide phosphorylase is able to digest the duplex formed after RNase III cleavage. PMID:11726520

  12. The C proteins of human parainfluenza virus type 1 limit double-stranded RNA accumulation that would otherwise trigger activation of MDA5 and protein kinase R.

    Science.gov (United States)

    Boonyaratanakornkit, Jim; Bartlett, Emmalene; Schomacker, Henrick; Surman, Sonja; Akira, Shizuo; Bae, Yong-Soo; Collins, Peter; Murphy, Brian; Schmidt, Alexander

    2011-02-01

    Human parainfluenza virus type 1 (HPIV1) is an important respiratory pathogen in young children, the immunocompromised, and the elderly. We found that infection with wild-type (WT) HPIV1 suppressed the innate immune response in human airway epithelial cells by preventing not only phosphorylation of interferon regulatory factor 3 (IRF3) but also degradation of IκBβ, thereby inhibiting IRF3 and NF-κB activation, respectively. Both of these effects were ablated by a F170S substitution in the HPIV1 C proteins (F170S) or by silencing the C open reading frame [P(C-)], resulting in a potent beta interferon (IFN-β) response. Using murine knockout cells, we found that IFN-β induction following infection with either mutant relied mainly on melanoma-associated differentiation gene 5 (MDA5) rather than retinoic acid-inducible gene I (RIG-I). Infection with either mutant, but not WT HPIV1, induced a significant accumulation of intracellular double-stranded RNA (dsRNA). These mutant viruses directed a marked increase in the accumulation of viral genome, antigenome, and mRNA that was coincident with the accumulation of dsRNA. In addition, the amount of viral proteins was reduced compared to that of WT HPIV1. Thus, the accumulation of dsRNA might be a result of an imbalance in the N protein/genomic RNA ratio leading to incomplete encapsidation. Protein kinase R (PKR) activation and IFN-β induction followed the kinetics of dsRNA accumulation. Interestingly, the C proteins did not appear to directly inhibit intracellular signaling involved in IFN-β induction; instead, their role in preventing IFN-β induction appeared to be in suppressing the formation of dsRNA. PKR activation contributed to IFN-β induction and also was associated with the reduction in the amount of viral proteins. Thus, the HPIV1 C proteins normally limit the accumulation of dsRNA and thereby limit activation of IRF3, NF-κB, and PKR. If C protein function is compromised, as in the case of F170S HPIV1, the

  13. Cardiomyopathy syndrome of atlantic salmon (Salmo salar L.) is caused by a double-stranded RNA virus of the Totiviridae family.

    Science.gov (United States)

    Haugland, Oyvind; Mikalsen, Aase B; Nilsen, Pål; Lindmo, Karine; Thu, Beate J; Eliassen, Trygve M; Roos, Norbert; Rode, Marit; Evensen, Oystein

    2011-06-01

    Cardiomyopathy syndrome (CMS) of farmed and wild Atlantic salmon (Salmo salar L.) is a disease of yet unknown etiology characterized by a necrotizing myocarditis involving the atrium and the spongious part of the heart ventricle. Here, we report the identification of a double-stranded RNA virus likely belonging to the family Totiviridae as the causative agent of the disease. The proposed name of the virus is piscine myocarditis virus (PMCV). On the basis of the RNA-dependent RNA polymerase (RdRp) sequence, PMCV grouped with Giardia lamblia virus and infectious myonecrosis virus of penaeid shrimp. The genome size of PMCV is 6,688 bp, with three open reading frames (ORFs). ORF1 likely encodes the major capsid protein, while ORF2 encodes the RdRp, possibly expressed as a fusion protein with the ORF1 product. ORF3 seems to be translated as a separate protein not described for any previous members of the family Totiviridae. Following experimental challenge with cell culture-grown virus, histopathological changes are observed in heart tissue by 6 weeks postchallenge (p.c.), with peak severity by 9 weeks p.c. Viral genome levels detected by real-time reverse transcription (RT)-PCR peak earlier at 6 to 7 weeks p.c. The virus genome is detected by in situ hybridization in degenerate cardiomyocytes from clinical cases of CMS. Virus genome levels in the hearts from clinical field cases correlate well with the severity of histopathological changes in heart tissue. The identification of the causative agent for CMS is important for improved disease surveillance and disease control and will serve as a basis for vaccine development against the disease.

  14. 15-lipoxygenase metabolites play an important role in the development of a T-helper type 1 allergic inflammation induced by double-stranded RNA.

    Science.gov (United States)

    Jeon, S G; Moon, H-G; Kim, Y-S; Choi, J-P; Shin, T-S; Hong, S-W; Tae, Y-M; Kim, S-H; Zhu, Z; Gho, Y S; Kim, Y-K

    2009-06-01

    We recently demonstrated that the T-helper type 1 (Th1) immune response plays an important role in the development of non-eosinophilic inflammation induced by airway exposure of an allergen plus double-stranded RNA (dsRNA). However, the role of lipoxygenase (LO) metabolites in the development of Th1 inflammation is poorly understood. To evaluate the role of LO metabolites in the development of Th1 inflammation induced by sensitization with an allergen plus dsRNA. A Th2-allergic inflammation mouse model was created by an intraperitoneal injection of lipopolysaccharide-depleted ovalbumin (OVA, 75 microg) and alum (2 mg) twice, and the Th1 model was created by intranasal application of OVA (75 microg) and synthetic dsRNA [10 microg of poly(I : C)] four times, followed by an intranasal challenge with 50 microg of OVA four times. The role of LO metabolites was evaluated using two approaches: a transgenic approach using 5-LO(-/-) and 15-LO(-/-) mice, and a pharmacological approach using inhibitors of cysteinyl leucotriene receptor-1 (cysLTR1), LTB4 receptor (BLT1), and 15-LO. We found that the Th1-allergic inflammation induced by OVA+dsRNA sensitization was similar between 5-LO(-/-) and wild-type (WT) control mice, although Th2 inflammation induced by sensitization with OVA+alum was reduced in the former group. In addition, dsRNA-induced Th1 allergic inflammation, which is associated with down-regulation of 15-hydroxyeicosateraenoic acids production, was not affected by treatment with cysLTR1 or BLT1 inhibitors, whereas it was significantly lower in 12/15-LO(-/-) mice compared with WT control mice. Moreover, dsRNA-induced allergic inflammation and the recruitment of T cells following an allergen challenge were significantly inhibited by treatment with a specific 15-LO inhibitor (PD146176). 15-LO metabolites appear to be important mediators in the development of Th1-allergic inflammation induced by sensitization with an allergen plus dsRNA. Our findings suggest that the

  15. High rates of double-stranded RNA viruses and Mycoplasma hominis in Trichomonas vaginalis clinical isolates in South Brazil.

    Science.gov (United States)

    da Luz Becker, Débora; dos Santos, Odelta; Frasson, Amanda Piccoli; de Vargas Rigo, Graziela; Macedo, Alexandre José; Tasca, Tiana

    2015-08-01

    Trichomonas vaginalis is the etiological agent of trichomoniasis, the most common non-viral sexually transmitted disease (STD) in world, with 276.4 million new cases each year. T. vaginalis can be naturally infected with Mycoplasma hominis and Trichomonasvirus species. This study aimed to evaluate the prevalence of T. vaginalis infected with four distinct T. vaginalis viruses (TVVs) and M. hominis among isolates from patients in Porto Alegre city, South Brazil. An additional goal of this study was to investigate whether there is association between metronidazole resistance and the presence of M. hominis during TVV infection. The RNA expression level of the pyruvate ferredoxin oxidoreductase (PFOR) gene was also evaluated among metronidazole-resistant and metronidazole-sensitive T. vaginalis isolates. A total of 530 urine samples were evaluated, and 5.7% samples were positive for T. vaginalis infection. Among them, 4.51% were isolated from female patients and 1.12% were from male patients. Remarkably, the prevalence rates of M. hominis and TVV-positive T. vaginalis isolates were 56.7% and 90%, respectively. Most of the T. vaginalis isolates were metronidazole-sensitive (86.7%), and only four isolates (13.3%) were resistant. There is no statistically significant association between infection by M. hominis and infection by TVVs. Our results refute the hypothesis that the presence of the M. hominis and TVVs is enough to confer metronidazole resistance to T. vaginalis isolates. Additionally, the role of PFOR RNA expression levels in metronidazole resistance as the main mechanism of resistance to metronidazole could not be established. This study is the first report of the T. vaginalis infection by M. hominis and TVVs in a large collection of isolates from South Brazil. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Use of double-stranded RNA-mediated interference to determine the substrates of protein tyrosine kinases and phosphatases.

    Science.gov (United States)

    Muda, Marco; Worby, Carolyn A; Simonson-Leff, Nancy; Clemens, James C; Dixon, Jack E

    2002-08-15

    Despite the wealth of information generated by genome-sequencing projects, the identification of in vivo substrates of specific protein kinases and phosphatases is hampered by the large number of candidate enzymes, overlapping enzyme specificity and sequence similarity. In the present study, we demonstrate the power of RNA interference (RNAi) to dissect signal transduction cascades involving specific kinases and phosphatases. RNAi is used to identify the cellular tyrosine kinases upstream of the phosphorylation of Down-Syndrome cell-adhesion molecule (Dscam), a novel cell-surface molecule of the immunoglobulin-fibronectin super family, which has been shown to be important for axonal path-finding in Drosophila. Tyrosine phosphorylation of Dscam recruits the Src homology 2 domain of the adaptor protein Dock to the receptor. Dock, the ortho- logue of mammalian Nck, is also essential for correct axonal path-finding in Drosophila. We further determined that Dock is tyrosine-phosphorylated in vivo and identified DPTP61F as the protein tyrosine phosphatase responsible for maintaining Dock in its non-phosphorylated state. The present study illustrates the versatility of RNAi in the identification of the physiological substrates for protein kinases and phosphatases.

  17. EGF receptor-targeted synthetic double-stranded RNA eliminates glioblastoma, breast cancer, and adenocarcinoma tumors in mice.

    Directory of Open Access Journals (Sweden)

    Alexei Shir

    2006-01-01

    Full Text Available BACKGROUND: Glioblastoma multiforme (GBM is the most lethal form of brain cancer. With the available treatments, survival does not exceed 12-14 mo from the time of diagnosis. We describe a novel strategy to selectively induce the death of glioblastoma cells and other cancer cells that over-express the EGF receptor. Using a non-viral delivery vector that homes to the EGF receptor, we target synthetic anti-proliferative dsRNA (polyinosine-cytosine [poly IC], a strong activator of apoptosis, selectively to cancer cells. METHODS AND FINDINGS: Poly IC was delivered by means of a non-viral vector: 25kDa polyethylenimine-polyethyleneglycol-EGF (PEI25-PEG-EGF. EGFR-targeted poly IC induced rapid apoptosis in the target cells in vitro and in vivo. Expression of several cytokines and "bystander killing" of untransfected tumor cells was detected in vitro and in vivo. Intra-tumoral delivery of the EGFR-targeted poly IC induced the complete regression of pre-established intracranial tumors in nude mice, with no obvious adverse toxic effects on normal brain tissue. A year after treatment completion the treated mice remain cancer-free and healthy. Similarly, non-viral delivery of poly IC completely eliminated pre-established breast cancer and adenocarcinoma xenografts derived from EGFR over-expressing cancer cell lines, suggesting that the strategy is applicable to other EGFR-over-expressing tumors. CONCLUSION: The strategy described has yielded an effective treatment of EGFR over-expressing GBM in an animal model. If this strategy is translated successfully to the clinical setting, it may actually offer help to GBM patients. Moreover the elimination of two additional EGFR over-expressing cancers in vivo suggests that in principle this strategy can be applied to treat other tumors that over-express EGFR.

  18. Inducible Major Vault Protein Plays a Pivotal Role in Double-Stranded RNA- or Virus-Induced Proinflammatory Response.

    Science.gov (United States)

    Peng, Nanfang; Liu, Shi; Xia, Zhangchuan; Ren, Sheng; Feng, Jian; Jing, Mingzhen; Gao, Xin; Wiemer, Erik A C; Zhu, Ying

    2016-03-15

    Pathogen invasion triggers robust antiviral cytokine production via different transcription factor signaling pathways. We have previously demonstrated that major vault protein (MVP) induces type I IFN production during viral infection; however, little is known about the role of MVP in proinflammatory responses. In this study, we found in vitro that expression of MVP, IL-6, and IL-8 was inducible upon dsRNA stimulation or viral infection. Moreover, MVP was essential for the induction of IL-6 and IL-8, as impaired expression of IL-6 and IL-8 in MVP-deficient human PBMCs, human lung epithelial cells (A549), and THP-1 monocytes, as well as in murine splenocytes, peritoneal macrophages, and PBMCs from MVP-knockout (MVP(-/-)) mice, was observed. Upon investigation of the underlying mechanisms, we demonstrated that MVP acted in synergy with AP-1 (c-Fos) and CCAAT/enhancer binding protein (C/EBP)β-liver-enriched transcriptional activating protein to activate the IL6 and IL8 promoters. Introduction of mutations into the AP-1 and C/EBPβ binding sites on the IL6 and IL8 promoters resulted in the loss of synergistic activation with MVP. Furthermore, we found that MVP interacted with both c-Fos and C/EBPβ. The interactions promoted nuclear translocation and recruitment of these transcription factors to IL6 and IL8 promoter regions. In the MVP(-/-) mouse model, significantly decreased expression of early antiviral cytokines resulted in higher viral titer in the lung, higher mortality, and heavier lung damage after infection with lethal influenza A virus. Taken together, our findings help to delineate a novel role of MVP in host proinflammatory response. Copyright © 2016 by The American Association of Immunologists, Inc.

  19. A wild-type Botrytis cinerea strain co-infected by double-stranded RNA mycoviruses presents hypovirulence-associated traits.

    Science.gov (United States)

    Potgieter, Christiaan A; Castillo, Antonio; Castro, Miguel; Cottet, Luis; Morales, Angélica

    2013-07-02

    Botrytis cinerea CCg378 is a wild-type strain infected with two types of double-stranded RNA (dsRNA) mycoviruses and which presents hypovirulence-associated traits. The objectives of the present study were to characterize the mycoviruses and investigate their relationship with the low virulence degree of the fungal host. B. cinerea CCg378 contains five dsRNA molecules that are associated with two different types of isometric viral particles of 32 and 23 nm in diameter, formed by structural polypeptides of 70-kDa and 48-kDa, respectively. The transfection of spheroplasts of a virus-free strain, B. cinerea CKg54, with viral particles purified from the CCg378 strain revealed that the 2.2-kbp dsRNAs have no dependency on the smaller molecules for its stable maintenance in the fungal cytoplasm, because a fungal clone that only contains the 2.2-kbp dsRNAs associated with the 32-nm particles was obtained, which we named B. cinerea CKg54vi378. One of the 2.2 kbpdsRNA segments (2219 bp) was sequenced and corresponds to the gene encoding the capsid protein of B. cinerea CCg378 virus 1 (Bc378V1), a putative new member of the Partitiviridae family. Furthermore, physiological parameters related to the degree of virulence of the fungus, such as the sporulation rate and laccase activity, were lower in B. cinerea CCg378 and B. cinerea CKg54vi378 than in B. cinerea CKg54. Additionally, bioassays performed on grapevine leaves showed that the CCg378 and CKg54vi378 strains presented a lower degree of invasiveness on the plant tissue than the CKg54 strain. The results show that B. cinerea CCg378 is coinfected by two mycoviruses and that the 2.2-kbp dsRNAs correspond to the 32-nm mycovirus genome, which would be a new member of the Partitiviridae family as it has the typical pattern of partitiviruses. On the other hand, the results suggest that the hypovirulence of B. cinerea CCg378 could be conferred by both mycoviruses, since the fungal clone B. cinerea CKg54vi378 presents an

  20. Plant-feeding insects harbor double-stranded RNA viruses encoding a novel proline-alanine rich protein and a polymerase distantly related to that of fungal viruses

    Science.gov (United States)

    Novel double-stranded RNAs (~8 kbp) were isolated from three cornered alfalfa hopper (Spissistilus festinus) and beet leafhopper (Circulifer tenellus), two plant-feeding hemipteran insect pests. Genomes of the two new viruses, designated as Spissistilus festinus virus 1 (SpFV1) and Circulifer tenell...

  1. Novel double-stranded RNA viruses of plant-feeding insects encode a serine-alanine-proline rich protein and a polymerase distantly related to fungal viruses

    Science.gov (United States)

    Novel double stranded RNAs (~8 kbp) were isolated from the three cornered alfalfa hopper (Spissistilus festinus) and beet leafhopper (Circulifer tenellus), two plant-feeding hemipteran insect pests. Genome organization of the two new viruses, designated as Spissistilus festinus virus 1 (SpFV1) and ...

  2. Heterodimers as the Structural Unit of the T=1 Capsid of the Fungal Double-Stranded RNA Rosellinia necatrix Quadrivirus 1.

    Science.gov (United States)

    Luque, Daniel; Mata, Carlos P; González-Camacho, Fernando; González, José M; Gómez-Blanco, Josué; Alfonso, Carlos; Rivas, Germán; Havens, Wendy M; Kanematsu, Satoko; Suzuki, Nobuhiro; Ghabrial, Said A; Trus, Benes L; Castón, José R

    2016-12-15

    Most double-stranded RNA (dsRNA) viruses are transcribed and replicated in a specialized icosahedral capsid with a T=1 lattice consisting of 60 asymmetric capsid protein (CP) dimers. These capsids help to organize the viral genome and replicative complex(es). They also act as molecular sieves that isolate the virus genome from host defense mechanisms and allow the passage of nucleotides and viral transcripts. Rosellinia necatrix quadrivirus 1 (RnQV1), the type species of the family Quadriviridae, is a dsRNA fungal virus with a multipartite genome consisting of four monocistronic segments (segments 1 to 4). dsRNA-2 and dsRNA-4 encode two CPs (P2 and P4, respectively), which coassemble into ∼450-Å-diameter capsids. We used three-dimensional cryo-electron microscopy combined with complementary biophysical techniques to determine the structures of RnQV1 virion strains W1075 and W1118. RnQV1 has a quadripartite genome, and the capsid is based on a single-shelled T=1 lattice built of P2-P4 dimers. Whereas the RnQV1-W1118 capsid is built of full-length CP, P2 and P4 of RnQV1-W1075 are cleaved into several polypeptides, maintaining the capsid structural organization. RnQV1 heterodimers have a quaternary organization similar to that of homodimers of reoviruses and other dsRNA mycoviruses. The RnQV1 capsid is the first T=1 capsid with a heterodimer as an asymmetric unit reported to date and follows the architectural principle for dsRNA viruses that a 120-subunit capsid is a conserved assembly that supports dsRNA replication and organization. Given their importance to health, members of the family Reoviridae are the basis of most structural and functional studies and provide much of our knowledge of dsRNA viruses. Analysis of bacterial, protozoal, and fungal dsRNA viruses has improved our understanding of their structure, function, and evolution, as well. Here, we studied a dsRNA virus that infects the fungus Rosellinia necatrix, an ascomycete that is pathogenic to a wide

  3. Presence of poly(A) tails at the 3'-termini of some mRNAs of a double-stranded RNA virus, southern rice black-streaked dwarf virus.

    Science.gov (United States)

    He, Ming; Jiang, Ziqiong; Li, Shuo; He, Peng

    2015-03-31

    Southern rice black-streaked dwarf virus (SRBSDV), a new member of the genus Fijivirus, is a double-stranded RNA virus known to lack poly(A) tails. We now showed that some of SRBSDV mRNAs were indeed polyadenylated at the 3' terminus in plant hosts, and investigated the nature of 3' poly(A) tails. The non-abundant presence of SRBSDV mRNAs bearing polyadenylate tails suggested that these viral RNA were subjected to polyadenylation-stimulated degradation. The discovery of poly(A) tails in different families of viruses implies potentially a wide occurrence of the polyadenylation-assisted RNA degradation in viruses.

  4. A DNA sequence obtained by replacement of the dopamine RNA aptamer bases is not an aptamer.

    Science.gov (United States)

    Álvarez-Martos, Isabel; Ferapontova, Elena E

    2017-08-05

    A unique specificity of the aptamer-ligand biorecognition and binding facilitates bioanalysis and biosensor development, contributing to discrimination of structurally related molecules, such as dopamine and other catecholamine neurotransmitters. The aptamer sequence capable of specific binding of dopamine is a 57 nucleotides long RNA sequence reported in 1997 (Biochemistry, 1997, 36, 9726). Later, it was suggested that the DNA homologue of the RNA aptamer retains the specificity of dopamine binding (Biochem. Biophys. Res. Commun., 2009, 388, 732). Here, we show that the DNA sequence obtained by the replacement of the RNA aptamer bases for their DNA analogues is not able of specific biorecognition of dopamine, in contrast to the original RNA aptamer sequence. This DNA sequence binds dopamine and structurally related catecholamine neurotransmitters non-specifically, as any DNA sequence, and, thus, is not an aptamer and cannot be used neither for in vivo nor in situ analysis of dopamine in the presence of structurally related neurotransmitters. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Recognition of double-stranded DNA using energetically activated duplexes with interstrand zippers of 1-, 2-or 4-pyrenyl-functionalized O2 '-alkylated RNA monomers

    DEFF Research Database (Denmark)

    Karmakar, Saswata; Madsen, Andreas Stahl; Guenther, Dale C.

    2014-01-01

    Despite advances with triplex-forming oligonucleotides, peptide nucleic acids, polyamides and more recently engineered proteins, there remains an urgent need for synthetic ligands that enable specific recognition of double-stranded (ds) DNA to accelerate studies aiming at detecting, regulating......'-alkylated uridine monomers X-Z by means of thermal denaturation experiments, optical spectroscopy, force-field simulations and recognition experiments using DNA hairpins as model targets. We demonstrate that Invaders with +1 interstrand zippers of X or Y monomers efficiently recognize mixed-sequence DNA...

  6. Thermal Stability of siRNA Modulates Aptamer- conjugated siRNA Inhibition

    Directory of Open Access Journals (Sweden)

    Alexey Berezhnoy

    2012-01-01

    Full Text Available Oligonucleotide aptamer-mediated in vivo cell targeting of small interfering RNAs (siRNAs is emerging as a useful approach to enhance the efficacy and reduce the adverse effects resulting from siRNA-mediated genetic interference. A current main impediment in aptamer-mediated siRNA targeting is that the activity of the siRNA is often compromised when conjugated to an aptamer, often requiring labor intensive and time consuming design and testing of multiple configurations to identify a conjugate in which the siRNA activity has not been significantly reduced. Here, we show that the thermal stability of the siRNA is an important parameter of siRNA activity in its conjugated form, and that siRNAs with lower melting temperature (Tm are not or are minimally affected when conjugated to the 3′ end of 2′F-pyrimidine-modified aptamers. In addition, the configuration of the aptamer-siRNA conjugate retains activity comparable with the free siRNA duplex when the passenger strand is co-transcribed with the aptamer and 3′ overhangs on the passenger strand are removed. The approach described in this paper significantly reduces the time and effort necessary to screening siRNA sequences that retain biological activity upon aptamer conjugation, facilitating the process of identifying candidate aptamer-siRNA conjugates suitable for in vivo testing.

  7. Recognition of double-stranded DNA using energetically activated duplexes with interstrand zippers of 1-, 2- or 4-pyrenyl-functionalized O2'-alkylated RNA monomers.

    Science.gov (United States)

    Karmakar, Saswata; Madsen, Andreas S; Guenther, Dale C; Gibbons, Bradley C; Hrdlicka, Patrick J

    2014-10-21

    Despite advances with triplex-forming oligonucleotides, peptide nucleic acids, polyamides and--more recently--engineered proteins, there remains an urgent need for synthetic ligands that enable specific recognition of double-stranded (ds) DNA to accelerate studies aiming at detecting, regulating and modifying genes. Invaders, i.e., energetically activated DNA duplexes with interstrand zipper arrangements of intercalator-functionalized nucleotides, are emerging as an attractive approach toward this goal. Here, we characterize and compare Invaders based on 1-, 2- and 4-pyrenyl-functionalized O2'-alkylated uridine monomers X-Z by means of thermal denaturation experiments, optical spectroscopy, force-field simulations and recognition experiments using DNA hairpins as model targets. We demonstrate that Invaders with +1 interstrand zippers of X or Y monomers efficiently recognize mixed-sequence DNA hairpins with single nucleotide fidelity. Intercalator-mediated unwinding and activation of the double-stranded probe, coupled with extraordinary stabilization of probe-target duplexes (ΔT(m)/modification up to +14.0 °C), provides the driving force for dsDNA recognition. In contrast, Z-modified Invaders show much lower dsDNA recognition efficiency. Thus, even very conservative changes in the chemical makeup of the intercalator-functionalized nucleotides used to activate Invader duplexes, affects dsDNA-recognition efficiency of the probes, which highlights the importance of systematic structure-property studies. The insight from this study will guide future design of Invaders for applications in molecular biology and nucleic acid diagnostics.

  8. Screening inhibitory potential of anti-HIV RT RNA aptamers.

    Science.gov (United States)

    Lange, Margaret J; Burke, Donald H

    2014-01-01

    Aptamers targeted to HIV reverse transcriptase (RT) have been demonstrated to inhibit RT in biochemical assays and as in cell culture. However, methods employed to date to evaluate viral suppression utilize time-consuming serial passage of infectious HIV in aptamer-expressing stable cell lines. We have established a rapid, transfection-based assay system to effectively examine the inhibitory potential of anti-HIV RT aptamers expressed between two catalytically inactive hammerhead ribozymes. Our system can be altered and optimized for a variety of cloning schemes, and addition of sequences of interest to the cassette is simple and straightforward. When paired with methods to analyze aptamer RNA accumulation and localization in cells and as packaging into pseudotyped virions, the method has a very high level of success in predicting good inhibitors.

  9. Molecular characterization of a bipartite double-stranded RNA virus and its satellite-like RNA co-infecting the phytopathogenic fungus Sclerotinia sclerotiorum

    Directory of Open Access Journals (Sweden)

    Lijiang eLiu

    2015-05-01

    Full Text Available A variety of mycoviruses have been found in Sclerotinia sclerotiorum. In this study, we report a novel mycovirus Sclerotinia sclerotiorum botybirnavirus 1 (SsBRV1 that was originally isolated from the hypovirulent strain SCH941 of S. sclerotiorum. SsBRV1 has rigid spherical virions that are ~38 nm in diameter, and three dsRNA segments (dsRNA1, 2 and 3 with lengths of 6.4, 6.0 and 1.7 kbp, respectively were packaged in the virions. dsRNA1 encodes a cap-pol fusion protein, and dsRNA2 encodes a polyprotein with unknown functions but contributes to the formation of virus particles. The dsRNA3 is dispensable and may be a satellite-like RNA (SatlRNA of SsBRV1. Although phylogenetic analysis of the RdRp domain demonstrated that SsBRV1 is related to Botrytis porri RNA virus 1 (BpRV1 and Ustilago maydis dsRNA virus-H1 (UmV-H1, the structure proteins of SsBRV1 do not have any significant sequence similarities with other known viral proteins with the exception of those of BpRV1. SsBRV1 carrying dsRNA3 seems to have no obvious effects on the colony morphology, but can significantly reduce the growth rate and virulence of S. sclerotiorum. Notably, a growth hormone receptor binding domain (GHBP, Pfam12772 is detected in ORF2-encoded protein of SsBRV1, which have not been reported in any other viruses. These findings provide new insights into the virus taxonomy, virus evolution and the interactions between SsBRV1 and the fungal hosts.

  10. Recognition of double-stranded DNA using energetically activated duplexes with interstrand zippers of 1-, 2- or 4-pyrenyl-functionalized O2′-alkylated RNA monomers†

    Science.gov (United States)

    Karmakar, Saswata; Madsen, Andreas S.; Guenther, Dale C.; Gibbons, Bradley C.; Hrdlicka, Patrick J.

    2014-01-01

    Despite advances with triplex-forming oligonucleotides, peptide nucleic acids, polyamides and - more recently - engineered proteins, there remains an urgent need for synthetic ligands that enable specific recognition of double-stranded (ds) DNA to accelerate studies aiming at detecting, regulating and modifying genes. Invaders, i.e., energetically activated DNA duplexes with interstrand zipper arrangements of intercalator-functionalized nucleotides, are emerging as an attractive approach toward this goal. Here, we characterize and compare Invaders based on 1-, 2- and 4-pyrenyl-functionalized O2′-alkylated uridine monomers X–Z by means of thermal denaturation experiments, optical spectroscopy, force-field simulations and recognition experiments using DNA hairpins as model targets. We demonstrate that Invaders with +1 interstrand zippers of X or Y monomers efficiently recognize mixed-sequence DNA hairpins with single nucleotide fidelity. Intercalator-mediated unwinding and activation of the double-stranded probe, coupled with extraordinary stabilization of probe-target duplexes (ΔTm/modification up to +14.0 °C), provides the driving force for dsDNA recognition. In contrast, Z-modified Invaders show much lower dsDNA recognition efficiency. Thus, even very conservative changes in the chemical makeup of the intercalator-functionalized nucleotides used to activate Invader duplexes, affects dsDNA-recognition efficiency of the probes, which highlights the importance of systematic structure-property studies. The insight from this study will guide future design of Invaders for applications in molecular biology and nucleic acid diagnostics. PMID:25144705

  11. Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response.

    Science.gov (United States)

    Siu, Kam-Leung; Yeung, Man Lung; Kok, Kin-Hang; Yuen, Kit-San; Kew, Chun; Lui, Pak-Yin; Chan, Chi-Ping; Tse, Herman; Woo, Patrick C Y; Yuen, Kwok-Yung; Jin, Dong-Yan

    2014-05-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging pathogen that causes severe disease in human. MERS-CoV is closely related to bat coronaviruses HKU4 and HKU5. Evasion of the innate antiviral response might contribute significantly to MERS-CoV pathogenesis, but the mechanism is poorly understood. In this study, we characterized MERS-CoV 4a protein as a novel immunosuppressive factor that antagonizes type I interferon production. MERS-CoV 4a protein contains a double-stranded RNA-binding domain capable of interacting with poly(I · C). Expression of MERS-CoV 4a protein suppressed the interferon production induced by poly(I · C) or Sendai virus. RNA binding of MERS-CoV 4a protein was required for IFN antagonism, a property shared by 4a protein of bat coronavirus HKU5 but not by the counterpart in bat coronavirus HKU4. MERS-CoV 4a protein interacted with PACT in an RNA-dependent manner but not with RIG-I or MDA5. It inhibited PACT-induced activation of RIG-I and MDA5 but did not affect the activity of downstream effectors such as RIG-I, MDA5, MAVS, TBK1, and IRF3. Taken together, our findings suggest a new mechanism through which MERS-CoV employs a viral double-stranded RNA-binding protein to circumvent the innate antiviral response by perturbing the function of cellular double-stranded RNA-binding protein PACT. PACT targeting might be a common strategy used by different viruses, including Ebola virus and herpes simplex virus 1, to counteract innate immunity. Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging and highly lethal human pathogen. Why MERS-CoV causes severe disease in human is unclear, and one possibility is that MERS-CoV is particularly efficient in counteracting host immunity, including the sensing of virus invasion. It will therefore be critical to clarify how MERS-CoV cripples the host proteins that sense viruses and to compare MERS-CoV with its ancestral viruses in bats in the counteraction of virus sensing

  12. Non-structural protein 1 of influenza viruses inhibits rapid mRNA degradation mediated by double-stranded RNA-binding protein, staufen1.

    Science.gov (United States)

    Cho, Hana; Ahn, Sang Ho; Kim, Kyoung Mi; Kim, Yoon Ki

    2013-07-11

    Although non-structural protein 1 (NS1) of influenza viruses is not essential for virulence, this protein is involved in host-virus interactions, viral replication, and translation. In particular, NS1 is known to interact with the host protein, staufen1 (Stau1). This interaction is important for efficient viral replication. However, the underlying molecular mechanism by which NS1 influences the viral life cycle remains obscure. Here, we show using immunoprecipitation and artificial tethering that the N-terminus of NS1, NS1(1-73), interacts with Stau1, blocks the Stau1-Upf1 interaction, and consequently inhibits the efficiency of Stau1-mediated mRNA decay (SMD), but not nonsense-mediatedmRNA decay (NMD). The regulation of SMD efficiency by NS1 may contribute to building a more favorable cellular environment for viral replication. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Selection and Identification of Skeletal-Muscle-Targeted RNA Aptamers

    Directory of Open Access Journals (Sweden)

    Styliana Philippou

    2018-03-01

    Full Text Available Oligonucleotide gene therapy has shown great promise for the treatment of muscular dystrophies. Nevertheless, the selective delivery to affected muscles has shown to be challenging because of their high representation in the body and the high complexity of their cell membranes. Current trials show loss of therapeutic molecules to non-target tissues leading to lower target efficacy. Therefore, strategies that increase uptake efficiency would be particularly compelling. To address this need, we applied a cell-internalization SELEX (Systematic Evolution of Ligands by Exponential Enrichment approach and identified a skeletal muscle-specific RNA aptamer. A01B RNA aptamer preferentially internalizes in skeletal muscle cells and exhibits decreased affinity for off-target cells. Moreover, this in vitro selected aptamer retained its functionality in vivo, suggesting a potential new approach for targeting skeletal muscles. Ultimately, this will aid in the development of targeted oligonucleotide therapies against muscular dystrophies.

  14. A Luciferase Reporter Gene Assay to Measure Ebola Virus Viral Protein 35-Associated Inhibition of Double-Stranded RNA-Stimulated, Retinoic Acid-Inducible Gene 1-Mediated Induction of Interferon β.

    Science.gov (United States)

    Cannas, Valeria; Daino, Gian Luca; Corona, Angela; Esposito, Francesca; Tramontano, Enzo

    2015-10-01

    During Ebola virus (EBOV) infection, the type I interferon α/β (IFN-α/β) innate immune response is suppressed by EBOV viral protein 35 (VP35), a validated drug target. Identification of EBOV VP35 inhibitors requires a cellular system able to assess the VP35-based inhibitory functions of viral double-stranded RNA (dsRNA) IFN-β induction. We established a miniaturized luciferase gene reporter assay in A549 cells that measures IFN-β induction by viral dsRNA and is dose-dependently inhibited by VP35 expression. When compared to influenza A virus NS1 protein, EBOV VP35 showed improved inhibition of viral dsRNA-based IFN-β induction. This assay can be used to screen for EBOV VP35 inhibitors. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. High-affinity RNA aptamers to C-reactive protein (CRP): newly developed pre-elution methods for aptamer selection

    Science.gov (United States)

    Orito, N.; Umekage, S.; Sato, K.; Kawauchi, S.; Tanaka, H.; Sakai, E.; Tanaka, T.; Kikuchi, Y.

    2012-03-01

    We have developed a modified SELEX (systematic evolution of ligands by exponential enrichment) method to obtain RNA aptamers with high affinity to C-reactive protein (CRP). CRP is a clinical biomarker present in plasma, the level of which increases in response to infections and noninfectious inflammation. The CRP level is also an important prognostic indicator in patients with several syndromes. At present, CRP content in blood is measured immunochemically using antibodies. To develop a more sensitive method using RNA aptamers, we have attempted to obtain high-affinity RNA aptamers to CRP. We succeeded in obtaining an RNA aptamer with high affinity to CRP using a CRP-immobilized Sepharose column and pre-elution procedure. Pre-elution is a method that removes the weak binding portion from a selected RNA population by washing for a short time with buffer containing CRP. By surface plasmon-resonance (SPR) analysis, the affinity constant of this aptamer for CRP was calculated to be KD = 2.25×10-9 (M). The secondary structure, contact sites with CRP protein, and application of this aptamer will be described.

  16. Efficacy of double-stranded RNA against white spot syndrome virus (WSSV non-structural (orf89, wsv191 and structural (vp28, vp26 genes in the Pacific white shrimp Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    César M. Escobedo-Bonilla

    2015-04-01

    Full Text Available White spot syndrome virus (WSSV is a major pathogen in shrimp aquaculture. RNA interference (RNAi is a promising tool against viral infections. Previous works with RNAi showed different antiviral efficacies depending on the silenced gene. This work evaluated the antiviral efficacy of double-stranded (ds RNA against two non-structural (orf89, wsv191 WSSV genes compared to structural (vp26, vp28 genes to inhibit an experimental WSSV infection. Gene orf89 encodes a putative regulatory protein and gene white spot virus (wsv191 encodes a nonspecific nuclease; whereas genes vp26 and vp28 encode envelope proteins, respectively. Molecules of dsRNA against each of the WSSV genes were intramuscularly injected (4 μg per shrimp into a group of shrimp 48 h before a WSSV challenge. The highest antiviral activity occurred with dsRNA against orf89, vp28 and vp26 (cumulative mortalities 10%, 10% and 21%, respectively. In contrast, the least effective treatment was wsv191 dsRNA (cumulative mortality 83%. All dead animals were WSSV-positive by one-step PCR, whereas reverse-transcription PCR of all surviving shrimp confirmed inhibition of virus replication. This study showed that dsRNA against WSSV genes orf89, vp28 and vp26 were highly effective to inhibit virus replication and suggest an essential role in WSSV infection. Non-structural WSSV genes such as orf89 can be used as novel targets to design therapeutic RNAi molecules against WSSV infection.

  17. Contribution of double-stranded RNA and CPSF30 binding domains of influenza virus NS1 to the inhibition of type I interferon production and activation of human dendritic cells.

    Science.gov (United States)

    Ramos, Irene; Carnero, Elena; Bernal-Rubio, Dabeiba; Seibert, Christopher W; Westera, Liset; García-Sastre, Adolfo; Fernandez-Sesma, Ana

    2013-03-01

    The influenza virus nonstructural protein 1 (NS1) inhibits innate immunity by multiple mechanisms. We previously reported that NS1 is able to inhibit the production of type I interferon (IFN) and proinflammatory cytokines in human primary dendritic cells (DCs). Here, we used recombinant viruses expressing mutant NS1 from the A/Texas/36/91 and A/Puerto Rico/08/34 strains in order to analyze the contribution of different NS1 domains to its antagonist functions. We show that the polyadenylation stimulating factor 30 (CPSF30) binding function of the NS1 protein from A/Texas/36/91 influenza virus, which is absent in the A/Puerto Rico/08/34 strain, is essential for counteracting these innate immune events in DCs. However, the double-stranded RNA (dsRNA) binding domain, present in both strains, specifically inhibits the induction of type I IFN genes in infected DCs, while it is essential only for inhibition of type I IFN proteins and proinflammatory cytokine production in cells infected with influenza viruses lacking a functional CPSF30 binding domain, such as A/Puerto Rico/08/34.

  18. Elimination of double strand nuclease activity from S1 nuclease prepared from crude alpha amylase.

    Science.gov (United States)

    Hahn, W E; Van Ness, J

    1976-01-01

    Single strand-specific s1 nuclease prepared as previously described from crude alpha amylase by DEAE-cellulose chromatography also contains nuclease which degrades double strand nucleic acid. The double strand activity can be removed by repeating the DEAE-cellulose chromatography procedure at least two additional times. S1 nuclease prepared by this procedure does not degrade double strand sheared DNA as measured by Sephadex chromatography. Under the same conditions single strand DNA is completely degraded. Thus, S1 nuclease prepared by this procedure is suitable for use in removing single strand regions in DNA/DNA duplexes and DNA/RNA hybrids. PMID:940774

  19. Double-stranded RNA interferes in a sequence-specific manner with the infection of representative members of the two viroid families

    International Nuclear Information System (INIS)

    Carbonell, Alberto; Martinez de Alba, Angel-Emilio; Flores, Ricardo; Gago, Selma

    2008-01-01

    Infection by viroids, non-protein-coding circular RNAs, occurs with the accumulation of 21-24 nt viroid-derived small RNAs (vd-sRNAs) with characteristic properties of small interfering RNAs (siRNAs) associated to RNA silencing. The vd-sRNAs most likely derive from dicer-like (DCL) enzymes acting on viroid-specific dsRNA, the key elicitor of RNA silencing, or on the highly structured genomic RNA. Previously, viral dsRNAs delivered mechanically or agroinoculated have been shown to interfere with virus infection in a sequence-specific manner. Here, we report similar results with members of the two families of nuclear- and chloroplast-replicating viroids. Moreover, homologous vd-sRNAs co-delivered mechanically also interfered with one of the viroids examined. The interference was sequence-specific, temperature-dependent and, in some cases, also dependent on the dose of the co-inoculated dsRNA or vd-sRNAs. The sequence-specific nature of these effects suggests the involvement of the RNA induced silencing complex (RISC), which provides sequence specificity to RNA silencing machinery. Therefore, viroid titer in natural infections might be regulated by the concerted action of DCL and RISC. Viroids could have evolved their secondary structure as a compromise between resistance to DCL and RISC, which act preferentially against RNAs with compact and relaxed secondary structures, respectively. In addition, compartmentation, association with proteins or active replication might also help viroids to elude their host RNA silencing machinery

  20. Identification, functional characterization and phylogenetic analysis of double stranded RNA degrading enzymes present in the gut of the desert locust, Schistocerca gregaria.

    Science.gov (United States)

    Wynant, Niels; Santos, Dulce; Verdonck, Rik; Spit, Jornt; Van Wielendaele, Pieter; Vanden Broeck, Jozef

    2014-03-01

    RNA interference (RNAi) has become a widely used reverse genetics tool in eukaryotes and holds great potential to contribute to the development of novel strategies for insect pest control. While previous studies clearly demonstrated that injection of dsRNA into the body cavity of the desert locust, Schistocerca gregaria, is highly effective to induce gene silencing effects, we observed that the RNAi response is much less sensitive to orally delivered dsRNA. In line with this, we report on the presence of a potent dsRNA degrading activity in the midgut juice. Four different dsRNase sequences that belong to the DNA/RNA Non-specific Nuclease superfamily were retrieved from a transcriptome database of the desert locust. Surprisingly, we have found that, in the publicly available eukaryote nucleotide sequence databases, the presence of this group of enzymes is restricted to insects and crustaceans. Nonetheless, phylogenetic analyses predict a common origin of these enzymes with the Endonuclease G (EndoG) Non-specific Nucleases that display a widespread taxonomic distribution. Moreover, in contrast to the Sg-endoG transcript, the four Sg-dsRNase transcripts appear to be specifically expressed in the gut. Finally, by means of RNAi, we provide evidence for an important contribution of dsRNase2 to the dsRNA degrading activity that is present in the gut lumen of S. gregaria. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Efficient Reverse Transcription Using Locked Nucleic Acid Nucleotides towards the Evolution of Nuclease Resistant RNA Aptamers

    DEFF Research Database (Denmark)

    Crouzier, Lucile; Dubois, Camille; Edwards, Stacey L

    2012-01-01

    Modified nucleotides are increasingly being utilized in the de novo selection of aptamers for enhancing their drug-like character and abolishing the need for time consuming trial-and-error based post-selection modifications. Locked nucleic acid (LNA) is one of the most prominent and successful...... nucleic acid analogues because of its remarkable properties, and widely explored as building blocks in therapeutic oligonucleotides. Evolution of LNA-modified RNA aptamers requires an efficient reverse transcription method for PCR enrichment of the selected RNA aptamer candidates. Establishing this key...... step is a pre-requisite for performing LNA-modified RNA aptamer selection....

  2. A new wine Torulaspora delbrueckii killer strain with broad antifungal activity and its toxin-encoding double-stranded RNA virus

    Science.gov (United States)

    Ramírez, Manuel; Velázquez, Rocío; Maqueda, Matilde; López-Piñeiro, Antonio; Ribas, Juan C.

    2015-01-01

    Wine Torulaspora delbrueckii strains producing a new killer toxin (Kbarr-1) were isolated and selected for wine making. They killed all the previously known Saccharomyces cerevisiae killer strains, in addition to other non-Saccharomyces yeasts. The Kbarr-1 phenotype is encoded by a medium-size 1.7 kb dsRNA, TdV-Mbarr-1, which seems to depend on a large-size 4.6 kb dsRNA virus (TdV-LAbarr) for stable maintenance and replication. The TdV-Mbarr-1 dsRNA was sequenced by new generation sequencing techniques. Its genome structure is similar to those of S. cerevisiae killer M dsRNAs, with a 5′-end coding region followed by an internal A-rich sequence and a 3′-end non-coding region. Mbarr-1 RNA positive strand carries cis acting signals at its 5′ and 3′ termini for transcription and replication respectively, similar to those RNAs of yeast killer viruses. The ORF at the 5′ region codes for a putative preprotoxin with an N-terminal secretion signal, potential Kex2p/Kexlp processing sites, and N-glycosylation sites. No relevant sequence identity was found either between the full sequence of Mbarr-1 dsRNA and other yeast M dsRNAs, or between their respective toxin-encoded proteins. However, a relevant identity of TdV-Mbarr-1 RNA regions to the putative replication and packaging signals of most of the M-virus RNAs suggests that they are all evolutionarily related. PMID:26441913

  3. Mouse embryonic stem cells are deficient in type I interferon expression in response to viral infections and double-stranded RNA.

    Science.gov (United States)

    Wang, Ruoxing; Wang, Jundi; Paul, Amber M; Acharya, Dhiraj; Bai, Fengwei; Huang, Faqing; Guo, Yan-Lin

    2013-05-31

    Embryonic stem cells (ESCs) are considered to be a promising cell source for regenerative medicine because of their unlimited capacity for self-renewal and differentiation. However, little is known about the innate immunity in ESCs and ESC-derived cells. We investigated the responses of mouse (m)ESCs to three types of live viruses as follows: La Crosse virus, West Nile virus, and Sendai virus. Our results demonstrated mESCs were susceptible to viral infection, but they were unable to express type I interferons (IFNα and IFNβ, IFNα/β), which differ from fibroblasts (10T1/2 cells) that robustly express IFNα/β upon viral infections. The failure of mESCs to express IFNα/β was further demonstrated by treatment with polyIC, a synthetic viral dsRNA analog that strongly induced IFNα/β in 10T1/2 cells. Although polyIC transiently inhibited the transcription of pluripotency markers, the stem cell morphology was not significantly affected. However, polyIC can induce dsRNA-activated protein kinase in mESCs, and this activation resulted in a strong inhibition of cell proliferation. We conclude that the cytosolic receptor dsRNA-activated protein kinase is functional, but the mechanisms that mediate type I IFN expression are deficient in mESCs. This conclusion is further supported by the findings that the major viral RNA receptors are either expressed at very low levels (TLR3 and MDA5) or may not be active (retinoic acid-inducible gene I) in mESCs.

  4. A novel nonsegmented double-stranded RNA mycovirus identified in the phytopathogenic fungus Nigrospora oryzae shows similarity to partitivirus-like viruses.

    Science.gov (United States)

    Zhou, Qian; Zhong, Jie; Hu, Yue; Da Gao, Bi

    2016-01-01

    Nigrospora oryzae is a pathogen that can infect plants of various species. Here, we report the isolation of a novel mycovirus from N. oryzae infecting rice, as well as the complete genome sequence and genomic organization of this virus, which we have named "Nigrospora oryzae nonsegmented RNA virus 1" (NoNRV1). The genome of NoNRV1 contained two non-overlapping open reading frames (ORF1 and ORF2) potentially encoding a protein with an unknown function in ORF1 and a putative RNA-dependent RNA polymerase (RdRp) in ORF2. Homology and phylogenetic analysis revealed that NoNRV1 was most similar to the Ustilaginoidea virens nonsegmented virus 1 (UvNV-1) and distantly related to members of the virus family Partitiviridae. It is proposed that NoNRV1, together with UvNV-1 and other related viruses, might represent a novel virus taxon of mycoviruses belonging to a partitivirus-like lineage.

  5. RNA-based networks: using RNA aptamers and ribozymes as synthetic genetic devices.

    Science.gov (United States)

    Weigand, Julia E; Wittmann, Alexander; Suess, Beatrix

    2012-01-01

    Within the last few years, a set of synthetic riboswitches has been engineered, which expands the toolbox of genetic regulatory devices. Small molecule binding aptamers have been used for the design of such riboswitches by insertion into untranslated regions of mRNAs, exploiting the fact that upon ligand binding the RNA structure interferes either with translation initiation or pre-mRNA splicing in yeast. In combination with self-cleaving ribozymes, aptamers have been used to modulate RNA stability. In this chapter, we discuss the applicability of different aptamers, ways to identify novel genetic devices, the pros and cons of various insertion sites and the application of allosteric ribozymes. Our expertise help to apply synthetic riboswitches to engineer complex genetic circuits.

  6. Exposure to double-stranded RNA mediated by tobacco rattle virus leads to transcription up-regulation of effector gene Mi-vap-2 from Meloidogyne incognita and promotion of pathogenicity in progeny.

    Science.gov (United States)

    Chi, Yuankai; Wang, Xuan; Le, Xiuhu; Ju, Yuliang; Guan, Tinglong; Li, Hongmei

    2016-02-01

    Meloidogyne spp. are economically important plant parasites and cause enormous damage to agriculture world-wide. These nematodes use secreted effectors which modify host cells, allowing them to obtain the nutrients required for growth and development. A better understanding of the roles of effectors in nematode parasitism is critical for understanding the mechanisms of nematode-host interactions. In this study, Mi-vap-2 of Meloidogyne incognita, a gene encoding a venom allergen-like protein, was targeted by RNA interference mediated by the tobacco rattle virus. Unexpectedly, compared with a wild type line, a substantial up-regulation of Mi-vap-2 transcript was observed in juveniles collected at 7 days p.i. from Nicotiana benthamiana agroinfiltrated with TRV::vap-2. This up-regulation of the targeted transcript did not impact development of females or the production of galls, nor the number of females on the TRV::vap-2 line. In a positive control line, the transcript of Mi16D10 was knocked down in juveniles from the TRV::16D10 line at 7 days p.i., resulting in a significant inhibition of nematode development. The up-regulation of Mi-vap-2 triggered by TRV-RNAi was inherited by the progeny of the nematodes exposed to double-stranded RNA. Meanwhile, a substantial increase in Mi-VAP-2 expression in those juvenile progeny was revealed by ELISA. This caused an increase in the number of galls (71.2%) and females (84.6%) produced on seedlings of N. benthamiana compared with the numbers produced by control nematodes. Up-regulation of Mi-vap-2 and its encoded protein therefore enhanced pathogenicity of the nematodes, suggesting that Mi-vap-2 may be required for successful parasitism during the early parasitic stage of M. incognita. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  7. Two interferon-independent double-stranded RNA-induced host defense strategies suppress the common cold virus at warm temperature.

    Science.gov (United States)

    Foxman, Ellen F; Storer, James A; Vanaja, Kiran; Levchenko, Andre; Iwasaki, Akiko

    2016-07-26

    Most strains of rhinovirus (RV), the common cold virus, replicate better at cool temperatures found in the nasal cavity (33-35 °C) than at lung temperature (37 °C). Recent studies found that although 37 °C temperature suppressed RV growth largely by engaging the type 1 IFN response in infected epithelial cells, a significant temperature dependence to viral replication remained in cells devoid of IFN induction or signaling. To gain insight into IFN-independent mechanisms limiting RV replication at 37 °C, we studied RV infection in human bronchial epithelial cells and H1-HeLa cells. During the single replication cycle, RV exhibited temperature-dependent replication in both cell types in the absence of IFN induction. At 37 °C, earlier signs of apoptosis in RV-infected cells were accompanied by reduced virus production. Furthermore, apoptosis of epithelial cells was enhanced at 37 °C in response to diverse stimuli. Dynamic mathematical modeling and B cell lymphoma 2 (BCL2) overexpression revealed that temperature-dependent host cell death could partially account for the temperature-dependent growth observed during RV amplification, but also suggested additional mechanisms of virus control. In search of a redundant antiviral pathway, we identified a role for the RNA-degrading enzyme RNAseL. Simultaneous antagonism of apoptosis and RNAseL increased viral replication and dramatically reduced temperature dependence. These findings reveal two IFN-independent mechanisms active in innate defense against RV, and demonstrate that even in the absence of IFNs, temperature-dependent RV amplification is largely a result of host cell antiviral restriction mechanisms operating more effectively at 37 °C than at 33 °C.

  8. Double-Stranded Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2001-01-01

    A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  9. A Map of the Arenavirus Nucleoprotein-Host Protein Interactome Reveals that Junín Virus Selectively Impairs the Antiviral Activity of Double-Stranded RNA-Activated Protein Kinase (PKR).

    Science.gov (United States)

    King, Benjamin R; Hershkowitz, Dylan; Eisenhauer, Philip L; Weir, Marion E; Ziegler, Christopher M; Russo, Joanne; Bruce, Emily A; Ballif, Bryan A; Botten, Jason

    2017-08-01

    Arenaviruses are enveloped negative-strand RNA viruses that cause significant human disease. These viruses encode only four proteins to accomplish the viral life cycle, so each arenavirus protein likely plays unappreciated accessory roles during infection. Here we used immunoprecipitation and mass spectrometry to identify human proteins that interact with the nucleoproteins (NPs) of the Old World arenavirus lymphocytic choriomeningitis virus (LCMV) and the New World arenavirus Junín virus (JUNV) strain Candid #1. Bioinformatic analysis of the identified protein partners of NP revealed that host translation appears to be a key biological process engaged during infection. In particular, NP associates with the double-stranded RNA (dsRNA)-activated protein kinase (PKR), a well-characterized antiviral protein that inhibits cap-dependent protein translation initiation via phosphorylation of eIF2α. JUNV infection leads to increased expression of PKR as well as its redistribution to viral replication and transcription factories. Further, phosphorylation of PKR, which is a prerequisite for its ability to phosphorylate eIF2α, is readily induced by JUNV. However, JUNV prevents this pool of activated PKR from phosphorylating eIF2α, even following exposure to the synthetic dsRNA poly(I·C), a potent PKR agonist. This blockade of PKR function is highly specific, as LCMV is unable to similarly inhibit eIF2α phosphorylation. JUNV's ability to antagonize the antiviral activity of PKR appears to be complete, as silencing of PKR expression has no impact on viral propagation. In summary, we provide a detailed map of the host machinery engaged by arenavirus NPs and identify an antiviral pathway that is subverted by JUNV. IMPORTANCE Arenaviruses are important human pathogens for which FDA-approved vaccines do not exist and effective antiviral therapeutics are needed. Design of antiviral treatment options and elucidation of the mechanistic basis of disease pathogenesis will depend

  10. A Capture-SELEX Strategy for Multiplexed Selection of RNA Aptamers Against Small Molecules

    DEFF Research Database (Denmark)

    Lauridsen, Lasse Holm; Doessing, Holger B.; Long, Katherine S.

    2018-01-01

    In vitro selection of aptamers that recognize small organic molecules has proven difficult, in part due to the challenge of immobilizing small molecules on solid supports for SELEX (Systematic Evolution of Ligands by Exponential Enrichment). This study describes the implementation of RNA Capture......-SELEX, a selection strategy that uses an RNA library to yield ligand-responsive RNA aptamers targeting small organic molecules in solution. To demonstrate the power of this method we selected several aptamers with specificity towards either the natural sweetener rebaudioside A or the food-coloring agent carminic...

  11. Method for Imaging Live-Cell RNA Using an RNA Aptamer and a Fluorescent Probe.

    Science.gov (United States)

    Sato, Shin-Ichi; Yatsuzuka, Kenji; Katsuda, Yousuke; Uesugi, Motonari

    2018-01-01

    Live-cell imaging of mRNA dynamics is increasingly important to understanding spatially restricted gene expression. We recently developed a convenient and versatile method that uses a gene-specific RNA aptamer and a fluorescent probe to enable spatiotemporal imaging of endogenous mRNAs in living cells. The method was validated by live-cell imaging of the endogenous mRNA of β-actin. The new RNA-imaging technology might be useful for live-cell imaging of any RNA molecules.

  12. Regression of hepatocarcinoma cells using RNA aptamer specific to alpha-fetoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Ju [Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University, Yongin 448-701 (Korea, Republic of); Lee, Seong-Wook, E-mail: SWL0208@dankook.ac.kr [Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University, Yongin 448-701 (Korea, Republic of)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Identification of RNA aptamer specific to AFP with high affinity. Black-Right-Pointing-Pointer Specific induction of HCC proliferation by AFP. Black-Right-Pointing-Pointer Efficient increase in oncogene expression by AFP. Black-Right-Pointing-Pointer Efficient inhibition of AFP-mediated HCC proliferation by the aptamer. Black-Right-Pointing-Pointer Efficient suppression of AFP-induced oncogene expression of by the aptamer. -- Abstract: Alpha-fetoprotein (AFP) is a cancer-associated fetal protein and has long been utilized as a serum fetal defect/tumor marker to monitor distress/disease progression. In addition, AFP is closely associated with the proliferation of hepatocellular carcinoma. Thus, direct targeting of AFP has been recommended for a therapeutic strategy against hepatocellular carcinoma. In this study, we developed and characterized an RNA aptamer that specifically bound to the alpha-fetoprotein using SELEX technology. The aptamer interacted with the AFP with a K{sub D} of {approx}33 nM. Importantly, the identified aptamer specifically and efficiently inhibited the AFP-mediated proliferation of hepatocarcinoma cells in a dose dependent manner. Moreover, the aptamer efficiently down-regulated AFP-induced expression of oncogenes in the cells. These results indicate that an AFP-specific RNA aptamer could be a useful therapeutic and diagnostic agent against AFP-related hepatocellular carcinoma.

  13. Selective Evolution of Ligands by Exponential Enrichment to Identify RNA Aptamers against Shiga Toxins

    Directory of Open Access Journals (Sweden)

    Sreerupa Challa

    2014-01-01

    Full Text Available Infection with Shiga toxin- (Stx- producing E. coli causes life threatening hemolytic uremic syndrome (HUS, a leading cause of acute renal failure in children. Of the two antigenically distinct toxins, Stx1 and Stx2, Stx2 is more firmly linked with the development of HUS. In the present study, selective evolution of ligands by exponential enrichment (SELEX was used in an attempt to identify RNA aptamers against Stx1 and Stx2. After 5 rounds of selection, significant enrichment of aptamer pool was obtained against Stx2, but not against Stx1, using a RNA aptamer library containing 56 random nucleotides (N56. Characterization of individual aptamer sequences revealed that six unique RNA aptamers (mA/pC, mB/pA, mC, mD, pB, and pD recognized Stx2 in a filter binding assay. None of these aptamers bound Stx1. Aptamers mA/pC, mB/pA, mC, and mD, but not pB and pD, partially blocked binding of Alexa 488-labeled Stx2 with HeLa cells in a flow cytometry assay. However, none of the aptamers neutralized Stx2-mediated cytotoxicity and death of HeLa cells.

  14. Fragmentation in DNA double-strand breaks

    International Nuclear Information System (INIS)

    Wei Zhiyong; Suzhou Univ., Suzhou; Zhang Lihui; Li Ming; Fan Wo; Xu Yujie

    2005-01-01

    DNA double strand breaks are important lesions induced by irradiations. Random breakage model or quantification supported by this concept is suitable to analyze DNA double strand break data induced by low LET radiation, but deviation from random breakage model is more evident in high LET radiation data analysis. In this work we develop a new method, statistical fragmentation model, to analyze the fragmentation process of DNA double strand breaks. After charged particles enter the biological cell, they produce ionizations along their tracks, and transfer their energies to the cells and break the cellular DNA strands into fragments. The probable distribution of the fragments is obtained under the condition in which the entropy is maximum. Under the approximation E≅E 0 + E 1 l + E 2 l 2 , the distribution functions are obtained as exp(αl + βl 2 ). There are two components, the one proportional to exp(βl 2 ), mainly contributes to the low mass fragment yields, the other component, proportional to exp(αl), decreases slowly as the mass of the fragments increases. Numerical solution of the constraint equations provides parameters α and β. Experimental data, especially when the energy deposition is higher, support the statistical fragmentation model. (authors)

  15. Prevention of the β-amyloid peptide-induced inflammatory process by inhibition of double-stranded RNA-dependent protein kinase in primary murine mixed co-cultures

    Directory of Open Access Journals (Sweden)

    Terro F

    2011-06-01

    Full Text Available Abstract Background Inflammation may be involved in the pathogenesis of Alzheimer's disease (AD. There has been little success with anti-inflammatory drugs in AD, while the promise of anti-inflammatory treatment is more evident in experimental models. A new anti-inflammatory strategy requires a better understanding of molecular mechanisms. Among the plethora of signaling pathways activated by β-amyloid (Aβ peptides, the nuclear factor-kappa B (NF-κB pathway could be an interesting target. In virus-infected cells, double-stranded RNA-dependent protein kinase (PKR controls the NF-κB signaling pathway. It is well-known that PKR is activated in AD. This led us to study the effect of a specific inhibitor of PKR on the Aβ42-induced inflammatory response in primary mixed murine co-cultures, allowing interactions between neurons, astrocytes and microglia. Methods Primary mixed murine co-cultures were prepared in three steps: a primary culture of astrocytes and microglia for 14 days, then a primary culture of neurons and astrocytes which were cultured with microglia purified from the first culture. Before exposure to Aβ neurotoxicity (72 h, co-cultures were treated with compound C16, a specific inhibitor of PKR. Levels of tumor necrosis factor-α (TNFα, interleukin (IL-1β, and IL-6 were assessed by ELISA. Levels of PT451-PKR and activation of IκB, NF-κB and caspase-3 were assessed by western blotting. Apoptosis was also followed using annexin V-FITC immunostaining kit. Subcellular distribution of PT451-PKR was assessed by confocal immunofluorescence and morphological structure of cells by scanning electron microscopy. Data were analysed using one-way ANOVA followed by a Newman-Keuls' post hoc test Results In these co-cultures, PKR inhibition prevented Aβ42-induced activation of IκB and NF-κB, strongly decreased production and release of tumor necrosis factor (TNFα and interleukin (IL-1β, and limited apoptosis. Conclusion In spite of the

  16. Relationships and Evolution of Double-Stranded RNA Totiviruses of Yeasts Inferred from Analysis of L-A-2 and L-BC Variants in Wine Yeast Strain Populations.

    Science.gov (United States)

    Rodríguez-Cousiño, Nieves; Esteban, Rosa

    2017-02-15

    Saccharomyces cerevisiae killer strains secrete a protein toxin active on nonkiller strains of the same (or other) yeast species. Different killer toxins, K1, K2, K28, and Klus, have been described. Each toxin is encoded by a medium-size (1.5- to 2.3-kb) M double-stranded RNA (dsRNA) located in the cytoplasm. M dsRNAs require L-A helper virus for maintenance. L-A belongs to the Totiviridae family, and its dsRNA genome of 4.6 kb codes for the major capsid protein Gag and a minor Gag-Pol protein, which form the virions that separately encapsidate L-A or the M satellites. Different L-A variants exist in nature; on average, 24% of their nucleotides are different. Previously, we reported that L-A-lus was specifically associated with Mlus, suggesting coevolution, and proposed a role of the toxin-encoding M dsRNAs in the appearance of new L-A variants. Here we confirm this by analyzing the helper virus in K2 killer wine strains, which we named L-A-2. L-A-2 is required for M2 maintenance, and neither L-A nor L-A-lus shows helper activity for M2 in the same genetic background. This requirement is overcome when coat proteins are provided in large amounts by a vector or in ski mutants. The genome of another totivirus, L-BC, frequently accompanying L-A in the same cells shows a lower degree of variation than does L-A (about 10% of nucleotides are different). Although L-BC has no helper activity for M dsRNAs, distinct L-BC variants are associated with a particular killer strain. The so-called L-BC-lus (in Klus strains) and L-BC-2 (in K2 strains) are analyzed. Killer strains of S. cerevisiae secrete protein toxins that kill nonkiller yeasts. The "killer phenomenon" depends on two dsRNA viruses: L-A and M. M encodes the toxin, and L-A, the helper virus, provides the capsids for both viruses. Different killer toxins exist: K1, K2, K28, and Klus, encoded on different M viruses. Our data indicate that each M dsRNA depends on a specific helper virus; these helper viruses have

  17. Efficient reverse transcription using locked nucleic acid nucleotides towards the evolution of nuclease resistant RNA aptamers

    DEFF Research Database (Denmark)

    Crouzier, Lucile; Dubois, Camille; Edwards, Stacey L

    2012-01-01

    We found that SuperScript® III Reverse Transcriptase is an efficient enzyme for the recognition of LNA nucleotides, making it a prime candidate to be used in de novo selection of LNA containing RNA aptamers.......We found that SuperScript® III Reverse Transcriptase is an efficient enzyme for the recognition of LNA nucleotides, making it a prime candidate to be used in de novo selection of LNA containing RNA aptamers....

  18. Endogenous expression of a high-affinity pseudoknot RNA aptamer suppresses replication of HIV-1.

    Science.gov (United States)

    Chaloin, Laurent; Lehmann, Maik Jörg; Sczakiel, Georg; Restle, Tobias

    2002-09-15

    Aptamers, small oligonucleotides derived from an in vitro evolution process called SELEX, are promising therapeutic and diagnostic agents. Although very effective in vitro, only a few examples are available showing their potential in vivo. We have analyzed the effect of a well characterized pseudoknot RNA aptamer selected for tight binding to human immunodeficiency virus (HIV) type 1 reverse transcriptase on HIV replication. Transient intracellular expression of a chimeric RNA consisting of the human initiator tRNA(Met) (tRNA(Meti))/aptamer sequence in human 293T cells showed inhibition of HIV particle release by >75% when the cells were co-transfected with proviral HIV-1 DNA. Subsequent virus production of human T-lymphoid C8166 cells, infected with viral particles derived from co-transfected 293T cells, was again reduced by >75% as compared with the control. As the observed effects are additive, in this model for virus spread, the total reduction of HIV particle formation by transient intracellular expression of the pseudoknot RNA aptamer amounts to >95%. Low-dose HIV infection of human T cells stably expressing the aptamer did not show any virus replication over a period of 35 days. This is the first example of an RNA aptamer selected against a viral enzyme target to show powerful antiviral activity in HIV-1-permissive human T-lymphoid cell lines.

  19. First report of in vitro selection of RNA aptamers targeted to recombinant Loxosceles laeta spider toxins.

    Science.gov (United States)

    Sapag, Amalia; Salinas-Luypaert, Catalina; Constenla-Muñoz, Carlos

    2014-03-26

    Loxoscelism is the envenomation caused by the bite of Loxosceles spp. spiders. It entails severe necrotizing skin lesions, sometimes accompanied by systemic reactions and even death. There are no diagnostic means and treatment is mostly palliative. The main toxin, found in several isoforms in the venom, is sphingomyelinase D (SMD), a phospholipase that has been used to generate antibodies intended for medical applications. Nucleic acid aptamers are a promising alternative to antibodies. Aptamers may be isolated from a combinatorial mixture of oligonucleotides by iterative selection of those that bind to the target. In this work, two Loxosceles laeta SMD isoforms, Ll1 and Ll2, were produced in bacteria and used as targets with the aim of identifying RNA aptamers that inhibit sphingomyelinase activity. Six RNA aptamers capable of eliciting partial but statistically significant inhibitions of the sphingomyelinase activity of recombinant SMD-Ll1 and SMD-Ll2 were obtained: four aptamers exert ~17% inhibition of SMD-Ll1, while two aptamers result in ~25% inhibition of SMD-Ll2 and ~18% cross inhibition of SMD-Ll1. This work is the first attempt to obtain aptamers with therapeutic and diagnostic potential for loxoscelism and provides an initial platform to undertake the development of novel anti Loxosceles venom agents.

  20. First report of in vitro selection of RNA aptamers targeted to recombinant Loxosceles laeta spider toxins

    Directory of Open Access Journals (Sweden)

    Amalia Sapag

    2014-01-01

    Full Text Available BACKGROUND: Loxoscelism is the envenomation caused by the bite of Loxosceles spp. spiders. It entails severe necrotizing skin lesions, sometimes accompanied by systemic reactions and even death. There are no diagnostic means and treatment is mostly palliative. The main toxin, found in several isoforms in the venom, is sphingomyelinase D (SMD, a phospholipase that has been used to generate antibodies intended for medical applications. Nucleic acid aptamers are a promising alternative to antibodies. Aptamers may be isolated from a combinatorial mixture of oligonucleotides by iterative selection of those that bind to the target. In this work, two Loxosceles laeta SMD isoforms, Ll1 and Ll2, were produced in bacteria and used as targets with the aim of identifying RNA aptamers that inhibit sphingomyelinase activity. RESULTS: Six RNA aptamers capable of eliciting partial but statistically significant inhibitions of the sphingomyelinase activity of recombinant SMD-Ll1 and SMD-Ll2 were obtained: four aptamers exert ~17% inhibition of SMD-Ll1, while two aptamers result in ~25% inhibition of SMD-Ll2 and ~18% cross inhibition of SMD-Ll1. CONCLUSIONS: This work is the first attempt to obtain aptamers with therapeutic and diagnostic potential for loxoscelism and provides an initial platform to undertake the development of novel anti Loxoscelesvenom agents.

  1. Affinity capillary electrophoresis with laser induced fluorescence detection for thrombin analysis using nuclease-resistant RNA aptamers.

    Science.gov (United States)

    Hao, Lihua; Bai, Yunlong; Wang, Hailin; Zhao, Qiang

    2016-12-09

    Aptamer affinity capillary electrophoresis coupled with laser-induced fluorescence (CE-LIF) combines the advantages of affinity aptamer, rapid CE separation, and high sensitivity detection. Here we reported an affinity CE-LIF assay for thrombin by using a fluorophore-labeled RNA aptamer containing 2'-fluoro modification in sugar rings of pyrimidine nucleotides (C and U) as affinity ligand. This RNA aptamer has high binding affinity, specificity and biostability. Thrombin at 0.2nM was successfully detected. This RNA aptamer allowed for the detection of thrombin spiked in diluted human serum sample due to the nuclease resistance. The RNA aptamer has comparable binding affinity to a 29-mer DNA aptamer for thrombin, and the binding site of the RNA aptamer on thrombin partially overlaps with the binding site of the 29-mer DNA aptamer on thrombin. It shows the nuclease-resistant RNA aptamers are promising in assays for thrombin. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Computational Selection of RNA Aptamer against Angiopoietin-2 and Experimental Evaluation

    Directory of Open Access Journals (Sweden)

    Wen-Pin Hu

    2015-01-01

    Full Text Available Angiogenesis plays a decisive role in the growth and spread of cancer and angiopoietin-2 (Ang2 is in the spotlight of studies for its unique role in modulating angiogenesis. The aim of this study was to introduce a computational simulation approach to screen aptamers with high binding ability for Ang2. We carried out computational simulations of aptamer-protein interactions by using ZDOCK and ZRANK functions in Discovery Studio 3.5 starting from the available information of aptamers generated through the systematic evolution of ligands by exponential enrichment (SELEX in the literature. From the best of three aptamers on the basis of ZRANK scores, 189 sequences with two-point mutations were created and simulated with Ang2. Then, we used a surface plasmon resonance (SPR biosensor to test 3 mutant sequences of high ZRANK scores along with a high and a low affinity binding sequence as reported in the literature. We found a selected RNA aptamer has a higher binding affinity and SPR response than a reported sequence with the highest affinity. This is the first study of in silico selection of aptamers against Ang2 by using the ZRANK scoring function, which should help to increase the efficiency of selecting aptamers with high target-binding ability.

  3. Highly stable aptamers selected from a 2'-fully modified fGmH RNA library for targeting biomaterials.

    Science.gov (United States)

    Friedman, Adam D; Kim, Dongwook; Liu, Rihe

    2015-01-01

    When developed as targeting ligands for the in vivo delivery of biomaterials to biological systems, RNA aptamers immediately face numerous obstacles, in particular nuclease degradation and post-selection 2' modification. This study aims to develop a novel class of highly stable, 2'-fully modified RNA aptamers that are ideal for the targeted delivery of biomaterials. We demonstrated the facile transcription of a fGmH (2'-F-dG, 2'-OMe-dA/dC/dU) RNA library with unexpected hydrophobicity, the direct selection of aptamers from a fGmH RNA library that bind Staphylococcus aureus Protein A (SpA) as a model target, and the superior nuclease and serum stability of these aptamers compared to 2'-partially modified RNA variants. Characterizations of fGmH RNA aptamers binding to purified SpA and to endogenous SpA present on the surface of S. aureus cells demonstrate fGmH RNA aptamer selectivity and stability. Significantly, fGmH RNA aptamers were able to functionalize, stabilize, and specifically deliver aggregation-prone silver nanoparticles (AgNPs) to S. aureus with SpA-dependent antimicrobial effects. This study describes a novel aptamer class with considerable potential to improve the in vivo applicability of nucleic acid-based affinity molecules to biomaterials.

  4. Facile synthesis of Graphene Oxide/Double-stranded DNA ...

    Indian Academy of Sciences (India)

    assembled liquid crystals and three-dimensional hydrogels of graphene oxidewith double-stranded DNA by simple mixing in an aqueous buffer media without unwinding double-strandedDNA to single-stranded DNA. The GO/dsDNA hydrogels have ...

  5. Receptor-targeted aptamer-siRNA conjugate-directed transcriptional regulation of HIV-1

    Science.gov (United States)

    Zhou, Jiehua; Lazar, Daniel; Li, Haitang; Xia, Xin; Satheesan, Sangeetha; Charlins, Paige; O'Mealy, Denis; Akkina, Ramesh; Saayman, Sheena; Weinberg, Marc S.; Rossi, John J.; Morris, Kevin V.

    2018-01-01

    Gene-based therapies represent a promising therapeutic paradigm for the treatment of HIV-1, as they have the potential to maintain sustained viral inhibition with reduced treatment interventions. Such an option may represent a long-term treatment alternative to highly active antiretroviral therapy. Methods: We previously described a therapeutic approach, referred to as transcriptional gene silencing (TGS), whereby small noncoding RNAs directly inhibit the transcriptional activity of HIV-1 by targeting sites within the viral promoter, specifically the 5' long terminal repeat (LTR). TGS differs from traditional RNA interference (RNAi) in that it is characterized by concomitant silent-state epigenetic marks on histones and DNA. To deliver TGS-inducing RNAs, we developed functional RNA conjugates based on the previously reported dual function of the gp120 (A-1) aptamer conjugated to 27-mer Dicer-substrate anti-HIV-1 siRNA (dsiRNA), LTR-362. Results: We demonstrate here that high levels of processed guide RNAs localize to the nucleus in infected T lymphoblastoid CEM cell line and primary human CD4+ T-cells. Treatment of the aptamer-siRNA conjugates induced TGS with an ~10-fold suppression of viral p24 levels as measured at day 12 post infection. To explore the silencing efficacy of aptamer-siRNA conjugates in vivo, HIV-1-infected humanized NOD/SCID/IL2 rγnull mice (hu-NSG) were treated with the aptamer-siRNA conjugates. Systemic delivery of the A-1-stick-LTR-362 27-mer siRNA conjugates suppressed HIV-1 infection and protected CD4+ T cell levels in viremia hu-NSG mice. Principle conclusions: Collectively these data suggest that the gp120 aptamer-dsiRNA conjugate design is suitable for systemic delivery of small RNAs that can be used to suppress HIV-1. PMID:29556342

  6. Structure analysis of free and bound states of an RNA aptamer against ribosomal protein S8 from Bacillus anthracis.

    Science.gov (United States)

    Davlieva, Milya; Donarski, James; Wang, Jiachen; Shamoo, Yousif; Nikonowicz, Edward P

    2014-01-01

    Several protein-targeted RNA aptamers have been identified for a variety of applications and although the affinities of numerous protein-aptamer complexes have been determined, the structural details of these complexes have not been widely explored. We examined the structural accommodation of an RNA aptamer that binds bacterial r-protein S8. The core of the primary binding site for S8 on helix 21 of 16S rRNA contains a pair of conserved base triples that mold the sugar-phosphate backbone to S8. The aptamer, which does not contain the conserved sequence motif, is specific for the rRNA binding site of S8. The protein-free RNA aptamer adopts a helical structure with multiple non-canonical base pairs. Surprisingly, binding of S8 leads to a dramatic change in the RNA conformation that restores the signature S8 recognition fold through a novel combination of nucleobase interactions. Nucleotides within the non-canonical core rearrange to create a G-(G-C) triple and a U-(A-U)-U quartet. Although native-like S8-RNA interactions are present in the aptamer-S8 complex, the topology of the aptamer RNA differs from that of the helix 21-S8 complex. This is the first example of an RNA aptamer that adopts substantially different secondary structures in the free and protein-bound states and highlights the remarkable plasticity of RNA secondary structure. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Development of RNA aptamers as molecular probes for HER2+ breast cancer study using cell-SELEX

    Directory of Open Access Journals (Sweden)

    Seyedeh Alia Moosavian

    2015-06-01

    Full Text Available Objective(s: Development of molecules that specifically recognize cancer cells is one of the major areas in cancer research. Human epidermal growth factor receptor 2 (HER2 is specifically expressed on the surface of breast cancer cells. HER2 is associated with an aggressive phenotype and poor prognosis. In this study we aimed to isolate RNA aptamers that specifically bind to HER2 overexpressing TUBO cell line. Materials and Methods: Panel of aptamers was selected using cell-based systematic evolution of ligands by exponential enrichment (cell-SELEX. Results: Binding studies showed that selected aptamers can identify TUBO cell line with high affinity and selectivity. Our preliminary investigation of the target of aptamers suggested that aptamers bind with HER2 proteins on the surface of TUBO cells. Conclusion: We believe the selected aptamers could be useful ligands for targeted breast cancer therapy.

  8. A Review of Therapeutic Aptamer Conjugates with Emphasis on New Approaches

    Directory of Open Access Journals (Sweden)

    John G. Bruno

    2013-03-01

    Full Text Available The potential to emulate or enhance antibodies with nucleic acid aptamers while lowering costs has prompted development of new aptamer-protein, siRNA, drug, and nanoparticle conjugates. Specific focal points of this review discuss DNA aptamers covalently bound at their 3' ends to various proteins for enhanced stability and greater pharmacokinetic lifetimes in vivo. The proteins can include Fc tails of IgG for opsonization, and the first component of complement (C1q to trigger complement-mediated lysis of antibiotic-resistant Gram negative bacteria, cancer cells and possibly some parasites during vulnerable stages. In addition, the 3' protein adduct may be a biotoxin, enzyme, or may simply be human serum albumin (HSA or a drug known to bind HSA, thereby retarding kidney and other organ clearance and inhibiting serum exonucleases. In this review, the author summarizes existing therapeutic aptamer conjugate categories and describes his patented concept for PCR-based amplification of double-stranded aptamers followed by covalent attachment of proteins or other agents to the chemically vulnerable overhanging 3' adenine added by Taq polymerase. PCR amplification of aptamers could dramatically lower the current $2,000/gram cost of parallel chemical oligonucleotide synthesis, thereby enabling mass production of aptamer-3'-protein or drug conjugates to better compete against expensive humanized monoclonal antibodies.

  9. Inhibiting heat shock factor 1 in human cancer cells with a potent RNA aptamer.

    Directory of Open Access Journals (Sweden)

    H Hans Salamanca

    Full Text Available Heat shock factor 1 (HSF1 is a master regulator that coordinates chaperone protein expression to enhance cellular survival in the face of heat stress. In cancer cells, HSF1 drives a transcriptional program distinct from heat shock to promote metastasis and cell survival. Its strong association with the malignant phenotype implies that HSF1 antagonists may have general and effective utilities in cancer therapy. For this purpose, we had identified an avid RNA aptamer for HSF1 that is portable among different model organisms. Extending our previous work in yeast and Drosophila, here we report the activity of this aptamer in human cancer cell lines. When delivered into cells using a synthetic gene and strong promoter, this aptamer was able to prevent HSF1 from binding to its DNA regulation elements. At the cellular level, expression of this aptamer induced apoptosis and abolished the colony-forming capability of cancer cells. At the molecular level, it reduced chaperones and attenuated the activation of the MAPK signaling pathway. Collectively, these data demonstrate the advantage of aptamers in drug target validation and support the hypothesis that HSF1 DNA binding activity is a potential target for controlling oncogenic transformation and neoplastic growth.

  10. Light-Up RNA Aptamers and Their Cognate Fluorogens: From Their Development to Their Applications

    Directory of Open Access Journals (Sweden)

    Farah Bouhedda

    2017-12-01

    Full Text Available An RNA-based fluorogenic module consists of a light-up RNA aptamer able to specifically interact with a fluorogen to form a fluorescent complex. Over the past decade, significant efforts have been devoted to the development of such modules, which now cover the whole visible spectrum, as well as to their engineering to serve in a wide range of applications. In this review, we summarize the different strategies used to develop each partner (the fluorogen and the light-up RNA aptamer prior to giving an overview of their applications that range from live-cell RNA imaging to the set-up of high-throughput drug screening pipelines. We then conclude with a critical discussion on the current limitations of these modules and how combining in vitro selection with screening approaches may help develop even better molecules.

  11. Fluorogenic RNA Mango aptamers for imaging small non-coding RNAs in mammalian cells.

    Science.gov (United States)

    Autour, Alexis; C Y Jeng, Sunny; D Cawte, Adam; Abdolahzadeh, Amir; Galli, Angela; Panchapakesan, Shanker S S; Rueda, David; Ryckelynck, Michael; Unrau, Peter J

    2018-02-13

    Despite having many key roles in cellular biology, directly imaging biologically important RNAs has been hindered by a lack of fluorescent tools equivalent to the fluorescent proteins available to study cellular proteins. Ideal RNA labelling systems must preserve biological function, have photophysical properties similar to existing fluorescent proteins, and be compatible with established live and fixed cell protein labelling strategies. Here, we report a microfluidics-based selection of three new high-affinity RNA Mango fluorogenic aptamers. Two of these are as bright or brighter than enhanced GFP when bound to TO1-Biotin. Furthermore, we show that the new Mangos can accurately image the subcellular localization of three small non-coding RNAs (5S, U6, and a box C/D scaRNA) in fixed and live mammalian cells. These new aptamers have many potential applications to study RNA function and dynamics both in vitro and in mammalian cells.

  12. Treatment of Pancreatic Cancer by Aptamer Conjugated C/EBPα-saRNA.

    Science.gov (United States)

    Yoon, Sorah; Rossi, John J

    2017-01-01

    Pancreatic cancer is estimated to become the second-leading cause of cancer-related mortality by 2020. While the death rates of most other cancers continue to decline recently, the death rates of pancreatic cancer are still increasing, with less than 5% of patients achieving 5-year survival. Despite great efforts to improve treatment with combinational therapies in pancreatic cancer patients, limited progress has been made. V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) has been depicted as a therapeutic target in pancreatic cancer for many years. However, the clinical outcome of KRAS-directed therapies has not been successful, suggesting that KRAS is an undruggable target. For the new druggable target, epigenetically silenced transcriptional factor C/EBPα (CCAAT/enhancer-binding protein α), upregulator of a strong inhibitor of cell proliferation (p21), is upregulated by small activating RNA (saRNA) in pancreatic cancer. For the cell type-specific delivery, pancreatic cancer-specific 2'-Fluoropyrimidine RNA-aptamers (2'F-RNAs) are conjugated with C/EBPα-saRNA via sticky bridge sequences. The conjugates of aptamer-C/EBPα-saRNA upregulate the expression of C/EBPα in vitro and inhibit the tumor growth in vivo. It suggests that aptamer-mediated targeted delivery of therapeutic C/EBPα-saRNA might be the effective therapeutics under the current therapeutic modality failure in pancreatic cancer.

  13. Strong resistance against Rice grassy stunt virus is induced in transgenic rice plants expressing double-stranded RNA of the viral genes for nucleocapsid or movement proteins as targets for RNA interference.

    Science.gov (United States)

    Shimizu, Takumi; Ogamino, Takumi; Hiraguri, Akihiro; Nakazono-Nagaoka, Eiko; Uehara-Ichiki, Tamaki; Nakajima, Masami; Akutsu, Katsumi; Omura, Toshihiro; Sasaya, Takahide

    2013-05-01

    Rice grassy stunt virus (RGSV), a member of the genus Tenuivirus, causes significant economic losses in rice production in South, Southeast, and East Asian countries. Growing resistant varieties is the most efficient method to control RGSV; however, suitable resistance genes have not yet been found in natural rice resources. One of the most promising methods to confer resistance against RGSV is the use of RNA interference (RNAi). It is important to target viral genes that play important roles in viral infection and proliferation at an early stage of viral replication. Our recent findings obtained from an RNAi experiment with Rice stripe virus (RSV), a tenuivirus, revealed that the genes for nucleocapsid and movement proteins were appropriate targets for RNAi to confer resistance against RSV. In this study, we transformed rice plants by introducing an RNAi construct of the RGSV genes for the nucelocapsid protein pC5 or movement protein pC6. All progenies from self-fertilized transgenic plants had strong resistance against RGSV infection and did not allow the proliferation of RGSV. Thus, our strategy to target genes for nucleocapsid and movement proteins for conferring viral resistance might be applicable to the plant viruses in the genus Tenuivirus.

  14. Translocation of double-stranded DNA through membrane-adapted phi29 motor protein nanopores

    Science.gov (United States)

    Wendell, David; Jing, Peng; Geng, Jia; Subramaniam, Varuni; Lee, Tae Jin; Montemagno, Carlo; Guo, Peixuan

    2009-11-01

    Biological pores have been used to study the transport of DNA and other molecules, but most pores have channels that allow only the movement of small molecules and single-stranded DNA and RNA. The bacteriophage phi29 DNA-packaging motor, which allows double-stranded DNA to enter the virus during maturation and exit during an infection, contains a connector protein with a channel that is between 3.6 and 6 nm wide. Here we show that a modified version of this connector protein, when reconstituted into liposomes and inserted into planar lipid bilayers, allows the translocation of double-stranded DNA. The measured conductance of a single connector channel was 4.8 nS in 1 M KCl. This engineered and membrane-adapted phage connector is expected to have applications in microelectromechanical sensing, microreactors, gene delivery, drug loading and DNA sequencing.

  15. An RNA Aptamer Targets the PDZ-Binding Motif of the HPV16 E6 Oncoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Belyaeva, Tamara A.; Nicol, Clare; Cesur, Özlem [School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT (United Kingdom); Travé, Gilles [UMR 7242 CNRS-Université de Strasbourg, Ecole Supérieure de Biotechnologie, Boulevard Sébastien Brant, Illkirch 67412 (France); Blair, George Eric; Stonehouse, Nicola J., E-mail: n.j.stonehouse@leeds.ac.uk [School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2014-07-24

    Human papillomavirus 16 (HPV16) is a high-risk DNA tumour virus which is the primary causative agent of cervical cancer. Cell transformation arises from deregulated expression of the E6 and E7 oncogenes. E6 has been shown to bind a number of cellular proteins, including p53 and proteins containing a PDZ domain. This study reports the first RNA aptamers to E6. These have been employed as molecular tools to further investigate E6-p53 and E6-PDZ interactions. This study is focussed on two aptamers (termed F2 and F4) which induced apoptosis in cells derived from an HPV16-transformed cervical carcinoma. The molecules were able to inhibit the interaction between E6 and PDZ1 from Magi1, with F2 being the most effective inhibitor. Neither of the aptamers inhibited E6-p53 interaction or p53 degradation. This study shows the specificity of this approach and highlights the potential benefits of the E6 aptamers as potential therapeutic or diagnostic agents in the future.

  16. An RNA Aptamer Targets the PDZ-Binding Motif of the HPV16 E6 Oncoprotein.

    Science.gov (United States)

    Belyaeva, Tamara A; Nicol, Clare; Cesur, Ozlem; Travé, Gilles; Blair, George Eric; Stonehouse, Nicola J

    2014-07-24

    Human papillomavirus 16 (HPV16) is a high-risk DNA tumour virus which is the primary causative agent of cervical cancer. Cell transformation arises from deregulated expression of the E6 and E7 oncogenes. E6 has been shown to bind a number of cellular proteins, including p53 and proteins containing a PDZ domain. This study reports the first RNA aptamers to E6. These have been employed as molecular tools to further investigate E6-p53 and E6-PDZ interactions. This study is focussed on two aptamers (termed F2 and F4) which induced apoptosis in cells derived from an HPV16-transformed cervical carcinoma. The molecules were able to inhibit the interaction between E6 and PDZ1 from Magi1, with F2 being the most effective inhibitor. Neither of the aptamers inhibited E6-p53 interaction or p53 degradation. This study shows the specificity of this approach and highlights the potential benefits of the E6 aptamers as potential therapeutic or diagnostic agents in the future.

  17. A RNA-DNA Hybrid Aptamer for Nanoparticle-Based Prostate Tumor Targeted Drug Delivery

    Directory of Open Access Journals (Sweden)

    John C. Leach

    2016-03-01

    Full Text Available The side effects of radio- and chemo-therapy pose long-term challenges on a cancer patient’s health. It is, therefore, highly desirable to develop more effective therapies that can specifically target carcinoma cells without damaging normal and healthy cells. Tremendous efforts have been made in the past to develop targeted drug delivery systems for solid cancer treatment. In this study, a new aptamer, A10-3-J1, which recognizes the extracellular domain of the prostate specific membrane antigen (PSMA, was designed. A super paramagnetic iron oxide nanoparticle-aptamer-doxorubicin (SPIO-Apt-Dox was fabricated and employed as a targeted drug delivery platform for cancer therapy. This DNA RNA hybridized aptamer antitumor agent was able to enhance the cytotoxicity of targeted cells while minimizing collateral damage to non-targeted cells. This SPIO-Apt-Dox nanoparticle has specificity to PSMA+ prostate cancer cells. Aptamer inhibited nonspecific uptake of membrane-permeable doxorubic to the non-target cells, leading to reduced untargeted cytotoxicity and endocytic uptake while enhancing targeted cytotoxicity and endocytic uptake. The experimental results indicate that the drug delivery platform can yield statistically significant effectiveness being more cytotoxic to the targeted cells as opposed to the non-targeted cells.

  18. Biochemical and structural features of extracellular vesicle-binding RNA aptamers

    Science.gov (United States)

    Murakami, Kazuyoshi; Zhao, Jing; Yamasaki, Kazuhiko; Miyagishi, Makoto

    2017-01-01

    Extracellular vesicles are particles in mammalian body fluids that have attracted considerable attention as biomarkers for various diseases. In the present study, the authors isolated RNA aptamers with an affinity for extracellular vesicles from two library pools that encoded randomized sequences of different lengths. After the several rounds of selection, two conserved motifs are identified in the sequences that are obtained by next-generation sequencing. Most of the sequences were predicted to adopt a secondary structure that consisted of a non-conserved stem structure and a conserved loop sequence. Two minimal similar sequences are synthesized and confirmed the ability of these sequences to bind to extracellular vesicles. Circular dichroism spectroscopy and melting temperature analysis demonstrated that the aptamers were able to form a G-quadruplex structure in their loop regions and these structures were stabilized by potassium ions. Consistent with these structural data, the affinity of each aptamer for extracellular vesicles was dependent on potassium ions. The aptamers that were identified may be useful molecular tools for the development of diagnostic methods that utilize body fluids, such as blood, saliva and urine. PMID:28584632

  19. Distinct genetic control of homologous recombination repair of Cas9-induced double-strand breaks, nicks and paired nicks

    NARCIS (Netherlands)

    Vriend, Lianne E. M.; Prakash, Rohit; Chen, Chun-Chin; Vanoli, Fabio; Cavallo, Francesca; Zhang, Yu; Jasin, Maria; Krawczyk, Przemek M.

    2016-01-01

    DNA double-strand breaks (DSBs) are known to be powerful inducers of homologous recombination (HR), but single-strand breaks (nicks) have also been shown to trigger HR. Both DSB- and nick-induced HR ((nick)HR) are exploited in advanced genome-engineering approaches based on the bacterial RNA-guided

  20. Chromatin remodelers in the DNA double strand break response

    NARCIS (Netherlands)

    Smeenk, Godelieve

    2012-01-01

    During my PhD project, I studied the role of several chromatin remodelers in the DNA double strand break (DSB) response. We discovered that both CHD4 and SMARCA5 are required for ubiquitin signaling through the E3 ubiquitin ligases RNF8 and RNF168, which is a central signaling event in the response

  1. Use of cell-SELEX to generate DNA aptamers as molecular probes of HPV-associated cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Jessica C Graham

    Full Text Available Disease-specific biomarkers are an important tool for the timely and effective management of pathological conditions, including determination of susceptibility, diagnosis, and monitoring efficacy of preventive or therapeutic strategies. Aptamers, comprising single-stranded or double-stranded DNA or RNA, can serve as biomarkers of disease or biological states. Aptamers can bind to specific epitopes on macromolecules by virtue of their three dimensional structures and, much like antibodies, aptamers can be used to target specific epitopes on the basis of their molecular shape. The Systematic Evolution of Ligands by EXponential enrichment (SELEX is the approach used to select high affinity aptamers for specific macromolecular targets from among the >10(13 oligomers comprising typical random oligomer libraries. In the present study, we used live cell-based SELEX to identify DNA aptamers which recognize cell surface differences between HPV-transformed cervical carcinoma cancer cells and isogenic, nontumorigenic, revertant cell lines.Whole-cell SELEX methodology was adapted for use with adherent cell lines (which we termed Adherent Cell-SELEX (AC-SELEX. Using this approach, we identified high affinity aptamers (nanomolar range K(d to epitopes specific to the cell surface of two nontumorigenic, nontumorigenic revertants derived from the human cervical cancer HeLa cell line, and demonstrated the loss of these epitopes in another human papillomavirus transformed cervical cancer cell line (SiHa. We also performed preliminary investigation of the aptamer epitopes and their binding characteristics.Using AC-SELEX we have generated several aptamers that have high affinity and specificity to the nontumorigenic, revertant of HPV-transformed cervical cancer cells. These aptamers can be used to identify new biomarkers that are related to carcinogenesis. Panels of aptamers, such as these may be useful in predicting the tumorigenic potential and properties of

  2. The studies of DNA double-strand break (DSB) rejoining and mRNA expression of repair gene XRCCs in malignant transformed cell lines of human bronchial epithelial cells generated by α-particles

    International Nuclear Information System (INIS)

    Sun Jingfen; Sui Jianli; Geng Yu; Zhou Pingkun; Wu Dechang

    2002-01-01

    Objective: To investigate the efficiency of γ-ray-induced DNA DSB rejoining and the mRNA expression of DNA repair genes in malignantly transformed cell lines of human bronchial epithelial cells generated by exposure to a-particles. Methods: Pulsed field gel electrophoresis (PFGE) was used to detect DNA. DSBs mRNA expression was analyzed by RT-PCR. Results: The residual DNA DSB damage level after 4hrs repair following 0-150 Gy of γ-irradiation in the malignantly transformed cell lines BERP35T-1 and BERP35T-4 was significantly higher than that in their parental BEP2D cells. The analysis of mRNA level revealed a 2.5-to 6.5-fold down-regulated expression of the DNA repair genes XRCC-2, XRCC-3 and Ku80 (XRCC-5) in BERP35T-1 and BERP35T-4 cells as compared with the parental BEP2D cells. In contrast, the expression of DNA-PKcs(XRCC7) was 2.4-fold up-regulated in the transformed cell line BERP35T-4, in which there was a significantly higher proportion of polyploid cells. Conclusion: This study results show that the deficiency of DNA DSB rejoining and depressed mRNA expression of DNA repair genes could be involved in the malignant transformation process of BEP2D cells induced by exposure to α-particles

  3. The murine double-stranded RNA-dependent protein kinase PKR and the murine 2',5'-oligoadenylate synthetase-dependent RNase L are required for IFN-β-mediated resistance against herpes simplex virus type 1 in primary trigeminal ganglion culture

    International Nuclear Information System (INIS)

    Al-khatib, Khaldun; Williams, Bryan R.G.; Silverman, Robert H.; Halford, William; Carr, Daniel J.J.

    2003-01-01

    A study was undertaken to evaluate the efficacy of an adenoviral construct expressing the murine interferon-β (IFN-β) transgene (Ad:IFN-β) against herpes simplex virus type 1 (HSV-1) infection in a primary trigeminal ganglion (TG) cell culture. The transduction efficiency ranged from 0.2 to 11.0% depending on the multiplicity of infection (m.o.i.) of the adenoviral vector (0.5-50.0). Moreover, neurons were the main target of the adenoviral transduction. TG cultures transduced with Ad:IFN-β displayed up to a 19-fold reduction in viral titers compared with cells transduced with an Ad:Null or nontransduced TG culture controls. Transduction with Ad:IFN-β up-regulated two critical antiviral genes, double-stranded RNA-dependent protein kinase R (PKR) and 2',5'-oligoadenylate synthetase (OAS). The absence of PKR or RNase L (downstream effector molecule of OAS) attenuated Ad:IFN-β efficacy against HSV-1 replication, implicating a critical role for PKR and OAS/RNase systems in the establishment of IFN-induced resistance against HSV-1 in TG cells

  4. L-A-lus, a new variant of the L-A totivirus found in wine yeasts with Klus killer toxin-encoding Mlus double-stranded RNA: possible role of killer toxin-encoding satellite RNAs in the evolution of their helper viruses.

    Science.gov (United States)

    Rodríguez-Cousiño, Nieves; Gómez, Pilar; Esteban, Rosa

    2013-08-01

    Yeast killer viruses are widely distributed in nature. Several toxins encoded in double-stranded RNA (dsRNA) satellites of the L-A totivirus have been described, including K1, K2, K28, and Klus. The 4.6-kb L-A genome encodes the Gag major structural protein that forms a 39-nm icosahedral virion and Gag-Pol, a minor fusion protein. Gag-Pol has transcriptase and replicase activities responsible for maintenance of L-A (or its satellite RNAs). Recently we reported a new killer toxin, Klus. The L-A virus in Klus strains showed poor hybridization to known L-A probes, suggesting substantial differences in their sequences. Here we report the characterization of this new L-A variant named L-A-lus. At the nucleotide level, L-A and L-A-lus showed only 73% identity, a value that increases to 86% in the amino acid composition of Gag or Gag-Pol. Two regions in their genomes, however, the frameshifting region between Gag and Pol and the encapsidation signal, are 100% identical, implying the importance of these two cis signals in the virus life cycle. L-A-lus shows higher resistance than L-A to growth at high temperature or to in vivo expression of endo- or exonucleases. L-A-lus also has wider helper activity, being able to maintain not only Mlus but also M1 or a satellite RNA of L-A called X. In a screening of 31 wine strains, we found that none of them had L-A; they carried either L-A-lus or a different L-A variant in K2 strains. Our data show that distinct M killer viruses are specifically associated with L-As with different nucleotide compositions, suggesting coevolution.

  5. Functions of Human Rad51 and Other Recombination Factors in DNA Double-Strand Break Repair

    National Research Council Canada - National Science Library

    Sigurdsson, Stefan

    2004-01-01

    ... of. DNA double strand breaks. Genetic and biochemical studies have suggested that the function of genes of the RAD52 group is highly conserved from yeast to humans and interestingly the efficiency of DNA double strand break...

  6. IDN2 Interacts with RPA and Facilitates DNA Double-Strand Break Repair by Homologous Recombination in Arabidopsis.

    Science.gov (United States)

    Liu, Mingming; Ba, Zhaoqing; Costa-Nunes, Pedro; Wei, Wei; Li, Lanxia; Kong, Fansi; Li, Yan; Chai, Jijie; Pontes, Olga; Qi, Yijun

    2017-03-01

    Repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genome integrity. We previously showed that DSB-induced small RNAs (diRNAs) facilitate homologous recombination-mediated DSB repair in Arabidopsis thaliana Here, we show that INVOLVED IN DE NOVO2 (IDN2), a double-stranded RNA binding protein involved in small RNA-directed DNA methylation, is required for DSB repair in Arabidopsis. We find that IDN2 interacts with the heterotrimeric replication protein A (RPA) complex. Depletion of IDN2 or the diRNA binding ARGONAUTE2 leads to increased accumulation of RPA at DSB sites and mislocalization of the recombination factor RAD51. These findings support a model in which IDN2 interacts with RPA and facilitates the release of RPA from single-stranded DNA tails and subsequent recruitment of RAD51 at DSB sites to promote DSB repair. © 2017 American Society of Plant Biologists. All rights reserved.

  7. Isolation of Endogenously Assembled RNA-Protein Complexes Using Affinity Purification Based on Streptavidin Aptamer S1

    Directory of Open Access Journals (Sweden)

    Yangchao Dong

    2015-09-01

    Full Text Available Efficient isolation of endogenously assembled viral RNA-protein complexes is essential for understanding virus replication mechanisms. We have developed an affinity purification strategy based on an RNA affinity tag that allows large-scale preparation of native viral RNA-binding proteins (RBPs. The streptavidin-binding aptamer S1 sequence was inserted into the 3′ end of dengue virus (DENV 5′–3′ UTR RNA, and the DENV RNA UTR fused to the S1 RNA aptamer was expressed in living mammalian cells. This allowed endogenous viral ribonucleoprotein (RNP assembly and isolation of RNPs from whole cell extract, through binding the S1 aptamer to streptavidin magnetic beads. Several novel host DENV RBPs were subsequently identified by liquid chromatography with tandem mass spectrometry (LC-MS/MS, including RPS8, which we further implicate in DENV replication. We proposed efficient S1 aptamer-based isolation of viral assembled RNPs from living mammalian cells will be generally applicable to the purification of high- and low-affinity RBPs and RNPs under endogenous conditions.

  8. Dissecting the effect of RNA aptamer binding on the dynamics of plasminogen activator inhibitor 1 using hydrogen/deuterium exchange mass spectrometry

    DEFF Research Database (Denmark)

    Trelle, Morten B; Dupont, Daniel Miotto; Madsen, Jeppe Buur

    2014-01-01

    , about their effects on protein conformation and dynamics. We have employed hydrogen/deuterium exchange (HDX) mass spectrometry to study the effect of RNA aptamers on the structural flexibility of the serpin plasminogen activator inhibitor-1 (PAI-1). The aptamers have characteristic effects...... of the aptamers to PAI-1 is associated with substantial and widespread protection against deuterium uptake in PAI-1. The aptamers induce protection against exchange with the solvent both in the protein-aptamer interface as well as in other specific areas. Interestingly, the aptamers induce substantial protection...... against exchange in α-helices B, C and I. This observation substantiates the relevance of structural instability in this region for transition to the latent state and argues for involvement of flexibility in regions not commonly associated with regulation of latency transition in serpins....

  9. Double-stranded DNA-dependent ATPase Irc3p is directly involved in mitochondrial genome maintenance.

    Science.gov (United States)

    Sedman, Tiina; Gaidutšik, Ilja; Villemson, Karin; Hou, YingJian; Sedman, Juhan

    2014-12-01

    Nucleic acid-dependent ATPases are involved in nearly all aspects of DNA and RNA metabolism. Previous studies have described a number of mitochondrial helicases. However, double-stranded DNA-dependent ATPases, including translocases or enzymes remodeling DNA-protein complexes, have not been identified in mitochondria of the yeast Saccharomyces cerevisae. Here, we demonstrate that Irc3p is a mitochondrial double-stranded DNA-dependent ATPase of the Superfamily II. In contrast to the other mitochondrial Superfamily II enzymes Mss116p, Suv3p and Mrh4p, which are RNA helicases, Irc3p has a direct role in mitochondrial DNA (mtDNA) maintenance. Specific Irc3p-dependent mtDNA metabolic intermediates can be detected, including high levels of double-stranded DNA breaks that accumulate in irc3Δ mutants. irc3Δ-related topology changes in rho- mtDNA can be reversed by the deletion of mitochondrial RNA polymerase RPO41, suggesting that Irc3p counterbalances adverse effects of transcription on mitochondrial genome stability. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Targeted Delivery of C/EBPα -saRNA by Pancreatic Ductal Adenocarcinoma-specific RNA Aptamers Inhibits Tumor Growth In Vivo.

    Science.gov (United States)

    Yoon, Sorah; Huang, Kai-Wen; Reebye, Vikash; Mintz, Paul; Tien, Yu-Wen; Lai, Hong-Shiee; Sætrom, Pål; Reccia, Isabella; Swiderski, Piotr; Armstrong, Brian; Jozwiak, Agnieszka; Spalding, Duncan; Jiao, Long; Habib, Nagy; Rossi, John J

    2016-06-01

    The 5-year survival rate for pancreatic ductal adenocarcinoma (PDAC) remains dismal despite current chemotherapeutic agents and inhibitors of molecular targets. As the incidence of PDAC constantly increases, more effective multidrug approaches must be made. Here, we report a novel method of delivering antitumorigenic therapy in PDAC by upregulating the transcriptional factor CCAAT/enhancer-binding protein-α (C/EBPα), recognized for its antiproliferative effects. Small activating RNA (saRNA) duplexes designed to increase C/EBPα expression were linked onto PDAC-specific 2'-Fluropyrimidine RNA aptamers (2'F-RNA) - P19 and P1 for construction of a cell type-specific delivery vehicle. Both P19- and P1-C/EBPα-saRNA conjugates increased expression of C/EBPα and significantly suppressed cell proliferation. Tail vein injection of the saRNA/aptamer conjugates in PANC-1 and in gemcitabine-resistant AsPC-1 mouse-xenografts led to reduced tumor size with no observed toxicity. To exploit the specificity of the P19/P1 aptamers for PDAC cells, we also assessed if conjugation with Cy3 would allow it to be used as a diagnostic tool on archival human pancreatic duodenectomy tissue sections. Scoring pattern from 72 patients suggested a positive correlation between high fluorescent signal in the high mortality patient groups. We propose a novel aptamer-based strategy for delivery of targeted molecular therapy in advanced PDAC where current modalities fail.

  11. Long Double-Stranded Multiplex siRNAs for Dual Genes Silencing

    Science.gov (United States)

    Peng, Wei; Chen, Jianxin; Qin, Yinchao; Yang, Zhenjun

    2013-01-01

    Simultaneous suppression of multiple oncogenes is an attractive strategy to treat cancers. Herein we present a series of long double-stranded multiplex small interfering RNAs (multi-siRNAs) that is suitable for dual genes silencing through a sequence-specific RNA interference process without inducing significant immune responses. A gap feature structurally designed in either of the nucleotide strands of the multi-siRNAs was proved to be essential toward silencing target genes and avoiding immune responses. Furthermore, the silencing effect of multi-siRNAs against SURVIVIN and BCL-2 genes was shown to be effective and resulted in up-regulation of caspase-3 related apoptosis and, in turn, inhibition of bladder cancer cell proliferation. Our observation suggested that the rationally designed multi-siRNAs would have great potential for therapeutic siRNA design. PMID:23656495

  12. Cell-specific RNA aptamer against human CCR5 specifically targets HIV-1 susceptible cells and inhibits HIV-1 infectivity.

    Science.gov (United States)

    Zhou, Jiehua; Satheesan, Sangeetha; Li, Haitang; Weinberg, Marc S; Morris, Kevin V; Burnett, John C; Rossi, John J

    2015-03-19

    The C-C chemokine receptor type 5 (CCR5) is a receptor expressed by T cells and macrophages that serves as a coreceptor for macrophage-tropic HIV-1. Loss of CCR5 is associated with resistance to HIV-1. Here, we combine the live-cell-based SELEX with high-throughput sequencing technology to generate CCR5 RNA aptamers capable of specifically targeting HIV-1 susceptible cells (as small interfering RNA [siRNA] delivery agent) and inhibiting HIV-1 infectivity (as antiviral agent) via block of the CCR5 required for HIV-1 to enter cells. One of the best candidates, G-3, efficiently bound and was internalized into human CCR5-expressing cells. The G-3 specifically neutralized R5 virus infection in primary peripheral blood mononuclear cells, and in vivo generated human CD4(+) T cells with a nanomolar inhibitory concentration 50%. G-3 was also capable of transferring functional siRNAs to CCR5-expressing cells. Collectively, the cell-specific, internalizing, CCR5-targeted aptamers and aptamer-siRNA conjugates offer promise for overcoming some of the current challenges of drug resistance in HIV-1 by providing cell-type- or tissue-specific delivery of various therapeutic moieties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Phosphorylation: The Molecular Switch of Double-Strand Break Repair

    Directory of Open Access Journals (Sweden)

    K. C. Summers

    2011-01-01

    Full Text Available Repair of double-stranded breaks (DSBs is vital to maintaining genomic stability. In mammalian cells, DSBs are resolved in one of the following complex repair pathways: nonhomologous end-joining (NHEJ, homologous recombination (HR, or the inclusive DNA damage response (DDR. These repair pathways rely on factors that utilize reversible phosphorylation of proteins as molecular switches to regulate DNA repair. Many of these molecular switches overlap and play key roles in multiple pathways. For example, the NHEJ pathway and the DDR both utilize DNA-PK phosphorylation, whereas the HR pathway mediates repair with phosphorylation of RPA2, BRCA1, and BRCA2. Also, the DDR pathway utilizes the kinases ATM and ATR, as well as the phosphorylation of H2AX and MDC1. Together, these molecular switches regulate repair of DSBs by aiding in DSB recognition, pathway initiation, recruitment of repair factors, and the maintenance of repair mechanisms.

  14. DNA double-strand break repair in Caenorhabditis elegans.

    Science.gov (United States)

    Lemmens, Bennie B L G; Tijsterman, Marcel

    2011-02-01

    Faithful repair of DNA double-strand breaks (DSBs) is vital for animal development, as inappropriate repair can cause gross chromosomal alterations that result in cellular dysfunction, ultimately leading to cancer, or cell death. Correct processing of DSBs is not only essential for maintaining genomic integrity, but is also required in developmental programs, such as gametogenesis, in which DSBs are deliberately generated. Accordingly, DSB repair deficiencies are associated with various developmental disorders including cancer predisposition and infertility. To avoid this threat, cells are equipped with an elaborate and evolutionarily well-conserved network of DSB repair pathways. In recent years, Caenorhabditis elegans has become a successful model system in which to study DSB repair, leading to important insights in this process during animal development. This review will discuss the major contributions and recent progress in the C. elegans field to elucidate the complex networks involved in DSB repair, the impact of which extends well beyond the nematode phylum.

  15. Heavy Metal Exposure Influences Double Strand Break DNA Repair Outcomes.

    Directory of Open Access Journals (Sweden)

    Maria E Morales

    Full Text Available Heavy metals such as cadmium, arsenic and nickel are classified as carcinogens. Although the precise mechanism of carcinogenesis is undefined, heavy metal exposure can contribute to genetic damage by inducing double strand breaks (DSBs as well as inhibiting critical proteins from different DNA repair pathways. Here we take advantage of two previously published culture assay systems developed to address mechanistic aspects of DNA repair to evaluate the effects of heavy metal exposures on competing DNA repair outcomes. Our results demonstrate that exposure to heavy metals significantly alters how cells repair double strand breaks. The effects observed are both specific to the particular metal and dose dependent. Low doses of NiCl2 favored resolution of DSBs through homologous recombination (HR and single strand annealing (SSA, which were inhibited by higher NiCl2 doses. In contrast, cells exposed to arsenic trioxide preferentially repaired using the "error prone" non-homologous end joining (alt-NHEJ while inhibiting repair by HR. In addition, we determined that low doses of nickel and cadmium contributed to an increase in mutagenic recombination-mediated by Alu elements, the most numerous family of repetitive elements in humans. Sequence verification confirmed that the majority of the genetic deletions were the result of Alu-mediated non-allelic recombination events that predominantly arose from repair by SSA. All heavy metals showed a shift in the outcomes of alt-NHEJ repair with a significant increase of non-templated sequence insertions at the DSB repair site. Our data suggest that exposure to heavy metals will alter the choice of DNA repair pathway changing the genetic outcome of DSBs repair.

  16. Heavy Metal Exposure Influences Double Strand Break DNA Repair Outcomes.

    Science.gov (United States)

    Morales, Maria E; Derbes, Rebecca S; Ade, Catherine M; Ortego, Jonathan C; Stark, Jeremy; Deininger, Prescott L; Roy-Engel, Astrid M

    2016-01-01

    Heavy metals such as cadmium, arsenic and nickel are classified as carcinogens. Although the precise mechanism of carcinogenesis is undefined, heavy metal exposure can contribute to genetic damage by inducing double strand breaks (DSBs) as well as inhibiting critical proteins from different DNA repair pathways. Here we take advantage of two previously published culture assay systems developed to address mechanistic aspects of DNA repair to evaluate the effects of heavy metal exposures on competing DNA repair outcomes. Our results demonstrate that exposure to heavy metals significantly alters how cells repair double strand breaks. The effects observed are both specific to the particular metal and dose dependent. Low doses of NiCl2 favored resolution of DSBs through homologous recombination (HR) and single strand annealing (SSA), which were inhibited by higher NiCl2 doses. In contrast, cells exposed to arsenic trioxide preferentially repaired using the "error prone" non-homologous end joining (alt-NHEJ) while inhibiting repair by HR. In addition, we determined that low doses of nickel and cadmium contributed to an increase in mutagenic recombination-mediated by Alu elements, the most numerous family of repetitive elements in humans. Sequence verification confirmed that the majority of the genetic deletions were the result of Alu-mediated non-allelic recombination events that predominantly arose from repair by SSA. All heavy metals showed a shift in the outcomes of alt-NHEJ repair with a significant increase of non-templated sequence insertions at the DSB repair site. Our data suggest that exposure to heavy metals will alter the choice of DNA repair pathway changing the genetic outcome of DSBs repair.

  17. In vivo quantification of DNA double strand breaks

    International Nuclear Information System (INIS)

    Simonsson, M.; Qvarnstroem, F.; Turesson, I.; Johansson, K.-A.; Nyman, J.; Hermansson, I.; Oden, A.; Book, M.

    2003-01-01

    DNA double strand breaks (DSBs) can be introduced in the genome by exposure to exogenous agents such as ionising radiation and radio-mimetic chemicals. The biological importance of these breaks is significant even at low numbers. Inaccurate repair or lack of repair of a single DSB has the potential to kill a cell or lead to tumourigenesis. Thus the induction and repair of DSBs are crucial events in the onset of malignancies. Following the induction of DSBs, the core histone H2AX is rapidly phosphorylated at residue serine 139. This phosphorylated form of H2AX is referred to as gH2AX. Histones wrapped in megabase regions flanking these breaks are involved in this process, which results in the formation of discrete nuclear foci. It has previously been shown that a single DSB is sufficient to produce a detectable focus. So far there has been a lack of methods capable of measuring the amount of DSBs at clinically relevant quantities. Such a method would embrace a wide field of applications. It could be applied as a biological dosimeter when studying carcinogenic effects and provide the basis for an assay predicting individual radiosensitivity. We describe a measurement procedure that detects and quantifies small amounts of DSBs in vivo. This is accomplished using immunofluorescence detection of the molecular marker gH2AX. The gH2AX foci are quantified in histological sections using basic digital image analysis methods as the main component. In a primary assessment of the procedure we analysed the in vivo dose response of prostate cancer patients in clinical practice undergoing radiotherapy. Epidermal nucleated cells in skin biopsies taken 30 minutes following the first single dose delivered show linear dose response for low doses ranging from 0 - 1.2 Gy. The described procedure for double strand break quantification can detect dose changes as low as 0.18 Gy

  18. An RNA aptamer specific to Hsp70-ATP conformation inhibits its ATPase activity independent of Hsp40.

    Science.gov (United States)

    Thirunavukarasu, Deepak; Shi, Hua

    2015-04-01

    The highly conserved and ubiquitous molecular chaperone heat shock protein 70 (Hsp70) plays a critical role in protein homeostasis (proteostasis). Controlled by its ATPase activity, Hsp70 cycles between two conformations, Hsp70-ATP and Hsp70-ADP, to bind and release its substrate. Chemical tools with distinct modes of action, especially those capable of modulating the ATPase activity of Hsp70, are being actively sought after in the mechanistic dissection of this system. Here, we report a conformation-specific RNA aptamer that binds only to Hsp70-ATP but not to Hsp70-ADP. We have refined this aptamer and demonstrated its inhibitory effect on Hsp70's ATPase activity. We have also shown that this inhibitory effect on Hsp70 is independent of its interaction with the Hsp40 co-chaperone. As Hsp70 is increasingly being recognized as a drug target in a number of age related diseases such as neurodegenerative, protein misfolding diseases and cancer, this aptamer is potentially useful in therapeutic applications. Moreover, this work also demonstrates the feasibility of using aptamers to target ATPase activity as a general therapeutic strategy.

  19. Aptamer-miRNA-212 Conjugate Sensitizes NSCLC Cells to TRAIL

    Directory of Open Access Journals (Sweden)

    Margherita Iaboni

    2016-01-01

    Full Text Available TNF-related apoptosis-inducing ligand (TRAIL is a promising antitumor agent for its remarkable ability to selectively induce apoptosis in cancer cells, without affecting the viability of healthy bystander cells. The TRAIL tumor suppressor pathway is deregulated in many human malignancies including lung cancer. In human non-small cell lung cancer (NSCLC cells, sensitization to TRAIL therapy can be restored by increasing the expression levels of the tumor suppressor microRNA-212 (miR-212 leading to inhibition of the anti-apoptotic protein PED/PEA-15 implicated in treatment resistance. In this study, we exploited a previously described RNA aptamer inhibitor of the tyrosine kinase receptor Axl (GL21.T expressed on lung cancer cells, as a means to deliver miR-212 into human NSCLC cells expressing Axl. We demonstrate efficient delivery of miR-212 following conjugation of the miR to GL21.T (GL21.T-miR212 chimera. We show that the chimera downregulates PED and restores TRAIL-mediate cytotoxicity in cancer cells. Importantly, treatment of Axl+ lung cancer cells with the chimera resulted in (i an increase in caspase activation and (ii a reduction of cell viability in combination with TRAIL therapy. In conclusion, we demonstrate that the GL21.T-miR212 chimera can be employed as an adjuvant to TRAIL therapy for the treatment of lung cancer.

  20. Aptamer-miRNA-212 Conjugate Sensitizes NSCLC Cells to TRAIL.

    Science.gov (United States)

    Iaboni, Margherita; Russo, Valentina; Fontanella, Raffaela; Roscigno, Giuseppina; Fiore, Danilo; Donnarumma, Elvira; Esposito, Carla Lucia; Quintavalle, Cristina; Giangrande, Paloma H; de Franciscis, Vittorio; Condorelli, Gerolama

    2016-03-08

    TNF-related apoptosis-inducing ligand (TRAIL) is a promising antitumor agent for its remarkable ability to selectively induce apoptosis in cancer cells, without affecting the viability of healthy bystander cells. The TRAIL tumor suppressor pathway is deregulated in many human malignancies including lung cancer. In human non-small cell lung cancer (NSCLC) cells, sensitization to TRAIL therapy can be restored by increasing the expression levels of the tumor suppressor microRNA-212 (miR-212) leading to inhibition of the anti-apoptotic protein PED/PEA-15 implicated in treatment resistance. In this study, we exploited a previously described RNA aptamer inhibitor of the tyrosine kinase receptor Axl (GL21.T) expressed on lung cancer cells, as a means to deliver miR-212 into human NSCLC cells expressing Axl. We demonstrate efficient delivery of miR-212 following conjugation of the miR to GL21.T (GL21.T-miR212 chimera). We show that the chimera downregulates PED and restores TRAIL-mediate cytotoxicity in cancer cells. Importantly, treatment of Axl+ lung cancer cells with the chimera resulted in (i) an increase in caspase activation and (ii) a reduction of cell viability in combination with TRAIL therapy. In conclusion, we demonstrate that the GL21.T-miR212 chimera can be employed as an adjuvant to TRAIL therapy for the treatment of lung cancer.

  1. Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras

    Science.gov (United States)

    Wheeler, Lee Adam; Trifonova, Radiana; Vrbanac, Vladimir; Basar, Emre; McKernan, Shannon; Xu, Zhan; Seung, Edward; Deruaz, Maud; Dudek, Tim; Einarsson, Jon Ivar; Yang, Linda; Allen, Todd M.; Luster, Andrew D.; Tager, Andrew M.; Dykxhoorn, Derek M.; Lieberman, Judy

    2011-01-01

    The continued spread of the HIV epidemic underscores the need to interrupt transmission. One attractive strategy is a topical vaginal microbicide. Sexual transmission of herpes simplex virus type 2 (HSV-2) in mice can be inhibited by intravaginal siRNA application. To overcome the challenges of knocking down gene expression in immune cells susceptible to HIV infection, we used chimeric RNAs composed of an aptamer fused to an siRNA for targeted gene knockdown in cells bearing an aptamer-binding receptor. Here, we showed that CD4 aptamer-siRNA chimeras (CD4-AsiCs) specifically suppress gene expression in CD4+ T cells and macrophages in vitro, in polarized cervicovaginal tissue explants, and in the female genital tract of humanized mice. CD4-AsiCs do not activate lymphocytes or stimulate innate immunity. CD4-AsiCs that knock down HIV genes and/or CCR5 inhibited HIV infection in vitro and in tissue explants. When applied intravaginally to humanized mice, CD4-AsiCs protected against HIV vaginal transmission. Thus, CD4-AsiCs could be used as the active ingredient of a microbicide to prevent HIV sexual transmission. PMID:21576818

  2. Cell-specific RNA aptamer against human CCR5 specifically targets HIV-1 susceptible and inhibits HIV-1 infectivity

    Science.gov (United States)

    Zhou, Jiehua; Satheesan, Sangeetha; Li, Haitang; Weinberg, Marc S.; Morris, Kevin V.; Burnett, John; Rossi, John

    2015-01-01

    SUMMARY The C-C chemokine receptor type 5 (CCR5) is a receptor expressed by T-cells and macrophages that serves as a co-receptor for macrophage-tropic HIV-1. Loss of CCR5 is associated with resistance to HIV-1. Here we combine the live cell-based SELEX with high throughput sequencing technology to generate CCR5 RNA aptamers capable of specifically targeting HIV-1 susceptible cells (as siRNA delivery agent) and inhibiting HIV-1 infectivity (as antiviral agent) via block of the CCR5 required for HIV-1 to enter cells. One of the best candidates, G-3, efficiently bound and was internalized into human CCR5 expressing cells. The G-3 specifically neutralized R5 virus infection in primary peripheral blood mononuclear cells, and in vivo generated human CD4+ T cells with a nanomolar IC50. G-3 was also capable of transferring functional siRNAs to CCR5 expressing cells. Collectively, the cell-specific, internalizing, CCR5-targeted aptamers and aptamer-siRNA conjugates offer promise for overcoming some of the current challenges of drug resistance in HIV-1 by providing cell-type- or tissue-specific delivery of various therapeutic moieties. PMID:25754473

  3. Dissecting the effect of RNA aptamer binding on the dynamics of plasminogen activator inhibitor 1 using hydrogen/deuterium exchange mass spectrometry.

    Science.gov (United States)

    Trelle, Morten B; Dupont, Daniel M; Madsen, Jeppe B; Andreasen, Peter A; Jørgensen, Thomas J D

    2014-01-17

    RNA aptamers, selected from large synthetic libraries, are attracting increasing interest as protein ligands, with potential uses as prototype pharmaceuticals, conformational probes, and reagents for specific quantification of protein levels in biological samples. Very little is known, however, about their effects on protein conformation and dynamics. We have employed hydrogen/deuterium exchange (HDX) mass spectrometry to study the effect of RNA aptamers on the structural flexibility of the serpin plasminogen activator inhibitor-1 (PAI-1). The aptamers have characteristic effects on the biochemical properties of PAI-1. In particular, they are potent inhibitors of the structural transition of PAI-1 from the active state to the inactive, so-called latent state. This transition is one of the largest conformational changes of a folded protein domain without covalent modification. Binding of the aptamers to PAI-1 is associated with substantial and widespread protection against deuterium uptake in PAI-1. The aptamers induce protection against exchange with the solvent both in the protein-aptamer interface as well as in other specific areas. Interestingly, the aptamers induce substantial protection against exchange in α-helices B, C and I. This observation substantiates the relevance of structural instability in this region for transition to the latent state and argues for involvement of flexibility in regions not commonly associated with regulation of latency transition in serpins.

  4. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre

    DEFF Research Database (Denmark)

    Lisby, M.; Mortensen, Uffe Hasbro; Rothstein, R.

    2003-01-01

    DNA double-strand break repair (DSBR) is an essential process for preserving genomic integrity in all organisms. To investigate this process at the cellular level, we engineered a system of fluorescently marked DNA double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae to visualize in ...

  5. Binding of the anticancer alkaloid sanguinarine to double stranded RNAs: insights into the structural and energetics aspects.

    Science.gov (United States)

    Chowdhury, Sebanti Roy; Islam, Md Maidul; Kumar, Gopinatha Suresh

    2010-07-01

    Elucidation of the molecular aspects of small molecule-RNA complexation is of prime importance for rational RNA targeted drug design strategies. Towards this, the interaction of the cytotoxic plant alkaloid sanguinarine to three double stranded ribonucleic acids, poly (A).poly(U), poly(I).poly(C) and poly(C).poly(G) was studied using various biophysical and thermodynamic techniques. Absorbance and fluorescence studies showed that the alkaloid bound cooperatively to these RNAs with binding affinities of the order 10(4) M(-1). Fluorescence quenching and hydrodynamic studies gave evidence for intercalation of sanguinarine to these RNA duplexes. Isothermal titration calorimetric studies revealed that the binding was characterized by negative enthalpy and positive entropy changes and the affinity constants derived were in agreement with the overall binding affinity values obtained from spectroscopic data. The binding of sanguinarine stabilized the melting of poly(A). poly(U) and poly(I).poly(C) and the binding data evaluated from the melting data were in agreement with that obtained from other techniques. The overall binding affinity of sanguinarine to these double stranded RNAs varied in the order, poly(A).poly(U) > poly(I).poly(C) > poly(C).poly(G). The temperature dependence of the enthalpy changes afforded negative values of heat capacity changes for the binding of sanguinarine to poly(A).poly(U) and poly(I).poly(C), suggesting substantial hydrophobic contribution in the binding process. Further, enthalpy-entropy compensation phenomena was also seen in poly(A).poly(U) and poly(I).poly(C) systems that correlated to the strong binding involving a multiplicity of weak noncovalent interactions compared to the weak binding with poly(C).poly(G). These results further advance our understanding on the binding of small molecules that are specific binders to double stranded RNA sequences.

  6. Study in regularities in the formation of double stranded DNA breaks in irradiated rat thymocytes

    International Nuclear Information System (INIS)

    Ivannik, B.P.; ProskuryakoV, S.Ya.; Ryabchenko, N.I.

    1979-01-01

    Using low-gradient viscosimetry of neutral detergent nuclear lysates a study was made of postradiation changes in the molecular weight of double-stranded DNA of thymocytes. It was established that 375 eV are needed for one double-stranded break to appear, and a dose of 1 rad is required for 0.275 double-stranded break to occur at the site of DNA with m.w. 10 12 dalton. The repair of double-stranded breaks is only observed when rats are exposed to a dose of 500 R. It is assumed that the absence of repair of double-stranded DNA breaks and the presence of secondary postradiation degradation of DNA are responsible for thymocyte death

  7. Euler buckling and nonlinear kinking of double-stranded DNA

    Science.gov (United States)

    Fields, Alexander; Axelrod, Kevin; Cohen, Adam

    2012-02-01

    Bare double-stranded DNA is a stiff biopolymer with a persistence length of roughly 53 nm under physiological conditions. Cells and viruses employ extensive protein machinery to overcome this stiffness and bend, twist, and loop DNA to accomplish tasks such as packaging, recombination, gene regulation, and repair. The mechanical properties of DNA are of fundamental importance to the mechanism and thermodynamics of these processes, but physiologically relevant curvature has been difficult to access experimentally. We designed and synthesized a DNA hairpin construct in which base-pairing interactions generated a compressive force on a short segment of duplex DNA, inducing Euler buckling followed by bending to thermally inaccessible radii of curvature. The efficiency of F"orster resonance energy transfer (FRET) between two fluorophores covalently linked to the hairpin indicated the degree of buckling. Bulk and single-molecule measurements yielded distinctly different force-compression curves for intact DNA and for strands with single nicks, base pair mismatches, and damage sites. These results suggest that changes in local mechanical properties may play a significant role in the recognition of these features by DNA-binding proteins.

  8. Double-Strand DNA Break Repair in Mycobacteria.

    Science.gov (United States)

    Glickman, Michael S

    2014-10-01

    Discontinuity of both strands of the chromosome is a lethal event in all living organisms because it compromises chromosome replication. As such, a diversity of DNA repair systems has evolved to repair double-strand DNA breaks (DSBs). In part, this diversity of DSB repair systems has evolved to repair breaks that arise in diverse physiologic circumstances or sequence contexts, including cellular states of nonreplication or breaks that arise between repeats. Mycobacteria elaborate a set of three genetically distinct DNA repair pathways: homologous recombination, nonhomologous end joining, and single-strand annealing. As such, mycobacterial DSB repair diverges substantially from the standard model of prokaryotic DSB repair and represents an attractive new model system. In addition, the presence in mycobacteria of a DSB repair system that can repair DSBs in nonreplicating cells (nonhomologous end joining) or when DSBs arise between repeats (single-strand annealing) has clear potential relevance to Mycobacterium tuberculosis pathogenesis, although the exact role of these systems in M. tuberculosis pathogenesis is still being elucidated. In this article we will review the genetics of mycobacterial DSB repair systems, focusing on recent insights.

  9. Do DNA Double-Strand Breaks Drive Aging?

    Science.gov (United States)

    White, Ryan R; Vijg, Jan

    2016-09-01

    DNA double-strand breaks (DSBs) are rare, but highly toxic, lesions requiring orchestrated and conserved machinery to prevent adverse consequences, such as cell death and cancer-causing genome structural mutations. DSBs trigger the DNA damage response (DDR) that directs a cell to repair the break, undergo apoptosis, or become senescent. There is increasing evidence that the various endpoints of DSB processing by different cells and tissues are part of the aging phenotype, with each stage of the DDR associated with specific aging pathologies. In this Perspective, we discuss the possibility that DSBs are major drivers of intrinsic aging, highlighting the dynamics of spontaneous DSBs in relation to aging, the distinct age-related pathologies induced by DSBs, and the segmental progeroid phenotypes in humans and mice with genetic defects in DSB repair. A model is presented as to how DSBs could drive some of the basic mechanisms underlying age-related functional decline and death. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Regulation of Gene Expression with Double-Stranded Phosphorothioate Oligonucleotides

    Science.gov (United States)

    Bielinska, Anna; Shivdasani, Ramesh A.; Zhang, Liquan; Nabel, Gary J.

    1990-11-01

    Alteration of gene transcription by inhibition of specific transcriptional regulatory proteins is necessary for determining how these factors participate in cellular differentiation. The functions of these proteins can be antagonized by several methods, each with specific limitations. Inhibition of sequence-specific DNA-binding proteins was achieved with double-stranded (ds) phosphorothioate oligonucleotides that contained octamer or kappaB consensus sequences. The phosphorothioate oligonucleotides specifically bound either octamer transcription factor or nuclear factor (NF)-kappaB. The modified oligonucleotides accumulated in cells more effectively than standard ds oligonucleotides and modulated gene expression in a specific manner. Octamer-dependent activation of a reporter plasmid or NF-kappaB-dependent activation of the human immunodeficiency virus (HIV) enhancer was inhibited when the appropriate phosphorothioate oligonucleotide was added to a transiently transfected B cell line. Addition of phosphorothioate oligonucleotides that contained the octamer consensus to Jurkat T leukemia cells inhibited interleukin-2 (IL-2) secretion to a degree similar to that observed with a mutated octamer site in the IL-2 enhancer. The ds phosphorothioate oligonucleotides probably compete for binding of specific transcription factors and may provide anti-viral, immunosuppressive, or other therapeutic effects.

  11. Signalling of double strand breaks and deprotected telomeres in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Simon eAmiard

    2013-10-01

    Full Text Available Failure to repair DNA double strand breaks (DSB can lead to chromosomal rearrangements and eventually to cancer or cell death. Radiation and environmental pollutants induce DSB and this is of particular relevance to plants due to their sessile life style. DSB also occur naturally in cells during DNA replication and programmed induction of DSB initiates the meiotic recombination essential for gametogenesis in most eukaryotes. The linear nature of most eukaryotic chromosomes means that each chromosome has two "broken" ends. Chromosome ends, or telomeres, are protected by nucleoprotein caps which avoid their recognition as DSB by the cellular DNA repair machinery. Deprotected telomeres are recognized as DSB and become substrates for recombination leading to chromosome fusions, the "bridge-breakage-fusion" cycle, genome rearrangements and cell death. The importance of repair of DSB and the severity of the consequences of their misrepair have led to the presence of multiple, robust mechanisms for their detection and repair. After a brief overview of DSB repair pathways to set the context, we present here an update of current understanding of the detection and signalling of DSB in the plant, Arabidopsis thaliana.

  12. Ku recruits XLF to DNA double-strand breaks.

    Science.gov (United States)

    Yano, Ken-ichi; Morotomi-Yano, Keiko; Wang, Shih-Ya; Uematsu, Naoya; Lee, Kyung-Jong; Asaithamby, Aroumougame; Weterings, Eric; Chen, David J

    2008-01-01

    XRCC4-like factor (XLF)--also known as Cernunnos--has recently been shown to be involved in non-homologous end-joining (NHEJ), which is the main pathway for the repair of DNA double-strand breaks (DSBs) in mammalian cells. XLF is likely to enhance NHEJ by stimulating XRCC4-ligase IV-mediated joining of DSBs. Here, we report mechanistic details of XLF recruitment to DSBs. Live cell imaging combined with laser micro-irradiation showed that XLF is an early responder to DSBs and that Ku is essential for XLF recruitment to DSBs. Biochemical analysis showed that Ku-XLF interaction occurs on DNA and that Ku stimulates XLF binding to DNA. Unexpectedly, XRCC4 is dispensable for XLF recruitment to DSBs, although photobleaching analysis showed that XRCC4 stabilizes the binding of XLF to DSBs. Our observations showed the direct involvement of XLF in the dynamic assembly of the NHEJ machinery and provide mechanistic insights into DSB recognition.

  13. Aptamer Bioinformatics

    Directory of Open Access Journals (Sweden)

    Andrew B. Kinghorn

    2017-11-01

    Full Text Available Aptamers are short nucleic acid sequences capable of specific, high-affinity molecular binding. They are isolated via SELEX (Systematic Evolution of Ligands by Exponential Enrichment, an evolutionary process that involves iterative rounds of selection and amplification before sequencing and aptamer characterization. As aptamers are genetic in nature, bioinformatic approaches have been used to improve both aptamers and their selection. This review will discuss the advancements made in several enclaves of aptamer bioinformatics, including simulation of aptamer selection, fragment-based aptamer design, patterning of libraries, identification of lead aptamers from high-throughput sequencing (HTS data and in silico aptamer optimization.

  14. Sendai Virus C Protein Plays a Role in Restricting PKR Activation by Limiting the Generation of Intracellular Double-Stranded RNA▿

    OpenAIRE

    Takeuchi, Kenji; Komatsu, Takayuki; Kitagawa, Yoshinori; Sada, Kiyonao; Gotoh, Bin

    2008-01-01

    Sendai virus (SeV) C protein is a multifunctional protein that plays important roles in regulating viral genome replication and transcription, antagonizing the host interferon system, suppressing virus-induced apoptosis, and facilitating virus assembly and budding. We here report a novel role of SeV C protein, the limitation of double-stranded RNA (dsRNA) generation for maintaining the rate of protein synthesis in infected cells. It was found that the intracellular protein synthesis rate was ...

  15. Enzymatic induction of DNA double-strand breaks in γ-irradiated Escherichia coli K-12

    International Nuclear Information System (INIS)

    Bonura, T.; Smith, K.C.; Kaplan, H.S.

    1975-01-01

    The polA1 mutation increases the sensitivity of E. coli K-12 to killing by γ-irradiation in air by a factor of 2.9 and increases the yield of DNA double-strand breaks by a factor of 2.5. These additional DNA double-strand breaks appear to be due to the action of nucleases in the polA1 strain rather than to the rejoining of radiation-induced double-strand breaks in the pol + strain. This conclusion is based upon the observation that γ-irradiation at 3 0 did not affect the yield of DNA double-strand breaks in the pol + strain, but decreased the yield in the polA1 strain by a factor of 2.2. Irradiation of the polA1 strain at 3 0 followed by incubation at 3 0 for 20 min before plating resulted in approximately a 1.5-fold increase in the D 0 . The yield of DNA double-strand breaks was reduced by a factor of 1.5. The pol + strain, however, did not show the protective effect of the low temperature incubation upon either survival or DNA double-strand breakage. We suggest that the increased yield of DNA double-strand breaks in the polA 1 strain may be the result of the unsuccessful excision repair of ionizing radiation-induced dna base damage

  16. Nucleolar Reorganization Upon Site-Specific Double-Strand Break Induction.

    Science.gov (United States)

    Franek, Michal; Kovaříková, Alena; Bártová, Eva; Kozubek, Stanislav

    2016-11-01

    DNA damage response (DDR) in ribosomal genes and mechanisms of DNA repair in embryonic stem cells (ESCs) are less explored nuclear events. DDR in ESCs should be unique due to their high proliferation rate, expression of pluripotency factors, and specific chromatin signature. Given short population doubling time and fast progress through G1 phase, ESCs require a sustained production of rRNA, which leads to the formation of large and prominent nucleoli. Although transcription of rRNA in the nucleolus is relatively well understood, little is known about DDR in this nuclear compartment. Here, we directed formation of double-strand breaks in rRNA genes with I- PpoI endonuclease, and we studied nucleolar morphology, DDR, and chromatin modifications. We observed a pronounced formation of I- PpoI-induced nucleolar caps, positive on BRCA1, NBS1, MDC1, γH2AX, and UBF1 proteins. We showed interaction of nucleolar protein TCOF1 with HDAC1 and TCOF1 with CARM1 after DNA injury. Moreover, H3R17me2a modification mediated by CARM1 was found in I- PpoI-induced nucleolar caps. Finally, we report that heterochromatin protein 1 is not involved in DNA repair of nucleolar caps.

  17. Analytical applications of aptamers

    Science.gov (United States)

    Tombelli, S.; Minunni, M.; Mascini, M.

    2007-05-01

    Aptamers are single stranded DNA or RNA ligands which can be selected for different targets starting from a library of molecules containing randomly created sequences. Aptamers have been selected to bind very different targets, from proteins to small organic dyes. Aptamers are proposed as alternatives to antibodies as biorecognition elements in analytical devices with ever increasing frequency. This in order to satisfy the demand for quick, cheap, simple and highly reproducible analytical devices, especially for protein detection in the medical field or for the detection of smaller molecules in environmental and food analysis. In our recent experience, DNA and RNA aptamers, specific for three different proteins (Tat, IgE and thrombin), have been exploited as bio-recognition elements to develop specific biosensors (aptasensors). These recognition elements have been coupled to piezoelectric quartz crystals and surface plasmon resonance (SPR) devices as transducers where the aptamers have been immobilized on the gold surface of the crystals electrodes or on SPR chips, respectively.

  18. Double-strand break repair-adox: Restoration of suppressed double-strand break repair during mitosis induces genomic instability.

    Science.gov (United States)

    Terasawa, Masahiro; Shinohara, Akira; Shinohara, Miki

    2014-12-01

    Double-strand breaks (DSBs) are one of the severest types of DNA damage. Unrepaired DSBs easily induce cell death and chromosome aberrations. To maintain genomic stability, cells have checkpoint and DSB repair systems to respond to DNA damage throughout most of the cell cycle. The failure of this process often results in apoptosis or genomic instability, such as aneuploidy, deletion, or translocation. Therefore, DSB repair is essential for maintenance of genomic stability. During mitosis, however, cells seem to suppress the DNA damage response and proceed to the next G1 phase, even if there are unrepaired DSBs. The biological significance of this suppression is not known. In this review, we summarize recent studies of mitotic DSB repair and discuss the mechanisms of suppression of DSB repair during mitosis. DSB repair, which maintains genomic integrity in other phases of the cell cycle, is rather toxic to cells during mitosis, often resulting in chromosome missegregation and aberration. Cells have multiple safeguards to prevent genomic instability during mitosis: inhibition of 53BP1 or BRCA1 localization to DSB sites, which is important to promote non-homologous end joining or homologous recombination, respectively, and also modulation of the non-homologous end joining core complex to inhibit DSB repair. We discuss how DSBs during mitosis are toxic and the multiple safeguard systems that suppress genomic instability. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  19. Double strand breaks in DNA in vivo and in vitro after 60Co-γ-irradiation

    International Nuclear Information System (INIS)

    Huelsewede, J.W.

    1985-01-01

    The questions of what the correlation is between double strand breaks in DNA in the cell and lethal radiation damage and by means of which possible mechanisms DNA double strand breaks could occur were studied. E. coli served as test system. In addition to this the molecular weight of the DNA from irradiated E. coli as a function of the radiation dose under various conditions was measured. This data was compared on the one hand to the survival of the cell and on the other hand to the formation of DNA double strand breaks in an aqueous buffer system, which in its ionic characteristics was similar to cell fluids. (orig./MG) [de

  20. Manipulation of double-stranded DNA melting by force

    Science.gov (United States)

    Singh, Amit Raj; Granek, Rony

    2017-09-01

    By integrating elasticity—as described by the Gaussian network model—with bond binding energies that distinguish between different base-pair identities and stacking configurations, we study the force induced melting of a double-stranded DNA (dsDNA). Our approach is a generalization of our previous study of thermal dsDNA denaturation [J. Chem. Phys. 145, 144101 (2016), 10.1063/1.4964285] to that induced by force at finite temperatures. It allows us to obtain semimicroscopic information about the opening of the chain, such as whether the dsDNA opens from one of the ends or from the interior, forming an internal bubble. We study different types of force manipulation: (i) "end unzipping," with force acting at a single end base pair perpendicular to the helix, (ii) "midunzipping," with force acting at a middle base pair perpendicular to the helix, and (iii) "end shearing," where the force acts at opposite ends along the helix. By monitoring the free-energy landscape and probability distribution of intermediate denaturation states, we show that different dominant intermediate states are stabilized depending on the type of force manipulation used. In particular, the bubble state of the sequence L60B36, which we have previously found to be a stable state during thermal denaturation, is absent for end unzipping and end shearing, whereas very similar bubbles are stabilized by midunzipping, or when the force location is near the middle of the chain. Ours results offer a simple tool for stabilizing bubbles and loops using force manipulations at different temperatures, and may implicate on the mechanism in which DNA enzymes or motors open regions of the chain.

  1. An RNA Aptamer Provides a Novel Approach for the Induction of Apoptosis by Targeting the HPV16 E7 Oncoprotein

    Science.gov (United States)

    Nicol, Clare; Cesur, Özlem; Forrest, Sophie; Belyaeva, Tamara A.; Bunka, David H. J.; Blair, G. Eric; Stonehouse, Nicola J.

    2013-01-01

    Background Human papillomavirus 16 (HPV16) is a high-risk DNA tumour virus, which is a major causative agent of cervical cancer. Cellular transformation is associated with deregulated expression of the E6 and E7 oncogenes. E7 has been shown to bind a number of cellular proteins, including the cell cycle control protein pRb. In this study, RNA aptamers (small, single-stranded oligonucleotides selected for high-affinity binding) to HPV16 E7 were employed as molecular tools to further investigate these protein-protein interactions. Methodology/Principal Findings This study is focused on one aptamer (termed A2). Transfection of this molecule into HPV16-transformed cells resulted in inhibition of cell proliferation (shown using real-time cell electronic sensing and MTT assays) due to the induction of apoptosis (as demonstrated by Annexin V/propidium iodide staining). GST-pull down and bead binding assays were used to demonstrate that the binding of A2 required N-terminal residues of E7 known to be involved in interaction with the cell cycle control protein, pRb. Using a similar approach, A2 was shown to disrupt the interaction between E7 and pRb in vitro. Furthermore, transfection of HPV16-transformed cells with A2 appeared to result in the loss of E7 and rise in pRb levels, as observed by immunoblotting. Conclusions/Significance This paper includes the first characterisation of the effects of an E7 RNA aptamer in a cell line derived from a cervical carcinoma. Transfection of cells with A2 was correlated with the loss of E7 and the induction of apoptosis. Aptamers specific for a number of cellular and viral proteins have been documented previously; one aptamer (Macugen) is approved for clinical use and several others are in clinical trials. In addition to its role as a molecular tool, A2 could have further applications in the future. PMID:23738000

  2. An RNA aptamer provides a novel approach for the induction of apoptosis by targeting the HPV16 E7 oncoprotein.

    Directory of Open Access Journals (Sweden)

    Clare Nicol

    Full Text Available BACKGROUND: Human papillomavirus 16 (HPV16 is a high-risk DNA tumour virus, which is a major causative agent of cervical cancer. Cellular transformation is associated with deregulated expression of the E6 and E7 oncogenes. E7 has been shown to bind a number of cellular proteins, including the cell cycle control protein pRb. In this study, RNA aptamers (small, single-stranded oligonucleotides selected for high-affinity binding to HPV16 E7 were employed as molecular tools to further investigate these protein-protein interactions. METHODOLOGY/PRINCIPAL FINDINGS: This study is focused on one aptamer (termed A2. Transfection of this molecule into HPV16-transformed cells resulted in inhibition of cell proliferation (shown using real-time cell electronic sensing and MTT assays due to the induction of apoptosis (as demonstrated by Annexin V/propidium iodide staining. GST-pull down and bead binding assays were used to demonstrate that the binding of A2 required N-terminal residues of E7 known to be involved in interaction with the cell cycle control protein, pRb. Using a similar approach, A2 was shown to disrupt the interaction between E7 and pRb in vitro. Furthermore, transfection of HPV16-transformed cells with A2 appeared to result in the loss of E7 and rise in pRb levels, as observed by immunoblotting. CONCLUSIONS/SIGNIFICANCE: This paper includes the first characterisation of the effects of an E7 RNA aptamer in a cell line derived from a cervical carcinoma. Transfection of cells with A2 was correlated with the loss of E7 and the induction of apoptosis. Aptamers specific for a number of cellular and viral proteins have been documented previously; one aptamer (Macugen is approved for clinical use and several others are in clinical trials. In addition to its role as a molecular tool, A2 could have further applications in the future.

  3. Nanomechanical microcantilever operated in vibration modes with use of RNA aptamer as receptor molecules for label-free detection of HCV helicase.

    Science.gov (United States)

    Hwang, Kyo Seon; Lee, Sang-Myung; Eom, Kilho; Lee, Jeong Hoon; Lee, Yoon-Sik; Park, Jung Ho; Yoon, Dae Sung; Kim, Tae Song

    2007-11-30

    We report the nanomechanical microcantilevers operated in vibration modes (oscillation) with use of RNA aptamers as receptor molecules for label-free detection of hepatitis C virus (HCV) helicase. The nanomechanical detection principle is that the ligand-receptor binding on the microcantilever surface induces the dynamic response change of microcantilevers. We implemented the label-free detection of HCV helicase in the low concentration as much as 100 pg/ml from measuring the dynamic response change of microcantilevers. Moreover, from the recent studies showing that the ligand-receptor binding generates the surface stress on the microcantilever, we estimate the surface stress, on the oscillating microcantilevers, induced by ligand-receptor binding, i.e. binding between HCV helicase and RNA aptamer. In this article, it is suggested that the oscillating microcantilevers with use of RNA aptamers as receptor molecules may enable one to implement the sensitive label-free detection of very small amount of small-scale proteins.

  4. Targeting EGFR/HER2/HER3 with a Three-in-One Aptamer-siRNA Chimera Confers Superior Activity against HER2+ Breast Cancer

    Directory of Open Access Journals (Sweden)

    Xiaolin Yu

    2018-03-01

    Full Text Available HER family members are interdependent and functionally compensatory. Simultaneously targeting EGFR/HER2/HER3 by antibody combinations has demonstrated superior treatment efficacy over targeting one HER receptor. However, antibody combinations have their limitations, with high immunogenicity and high cost. In this study, we have developed a three-in-one nucleic acid aptamer-small interfering RNA (siRNA chimera, which targets EGFR/HER2/HER3 in one molecule. This inhibitory molecule was constructed such that a single EGFR siRNA is positioned between the HER2 and HER3 aptamers to create a HER2 aptamer-EGFR siRNA-HER3 aptamer chimera (H2EH3. EGFR siRNA was delivered into HER2-expressing cells by HER2/HER3 aptamer-induced internalization. HER2/HER3 aptamers act as antagonist molecules for blocking HER2 and HER3 signaling pathways and also as tumor-targeting agents for siRNA delivery. H2EH3 enables down-modulation of the expression of all three receptors, thereby triggering cell apoptosis. In breast cancer xenograft models, H2EH3 is able to bind to breast tumors with high specificity and significantly inhibits tumor growth via either systemic or intratumoral administration. Owing to low immunogenicity, ease of production, and high thermostability, H2EH3 is a promising therapeutic to supplement current single HER inhibitors and may act as a treatment for HER2+ breast cancer with intrinsic or acquired resistance to current drugs.

  5. An RNA aptamer possessing a novel monovalent cation-mediated fold inhibits lysozyme catalysis by inhibiting the binding of long natural substrates.

    Science.gov (United States)

    Padlan, Camille S; Malashkevich, Vladimir N; Almo, Steve C; Levy, Matthew; Brenowitz, Michael; Girvin, Mark E

    2014-04-01

    RNA aptamers are being developed as inhibitors of macromolecular and cellular function, diagnostic tools, and potential therapeutics. Our understanding of the physical nature of this emerging class of nucleic acid-protein complexes is limited; few atomic resolution structures have been reported for aptamers bound to their protein target. Guided by chemical mapping, we systematically minimized an RNA aptamer (Lys1) selected against hen egg white lysozyme. The resultant 59-nucleotide compact aptamer (Lys1.2minE) retains nanomolar binding affinity and the ability to inhibit lysozyme's catalytic activity. Our 2.0-Å crystal structure of the aptamer-protein complex reveals a helical stem stabilizing two loops to form a protein binding platform that binds lysozyme distal to the catalytic cleft. This structure along with complementary solution analyses illuminate a novel protein-nucleic acid interface; (1) only 410 Å(2) of solvent accessible surface are buried by aptamer binding; (2) an unusually small fraction (∼18%) of the RNA-protein interaction is electrostatic, consistent with the limited protein phosphate backbone contacts observed in the structure; (3) a single Na(+) stabilizes the loops that constitute the protein-binding platform, and consistent with this observation, Lys1.2minE-lysozyme complex formation takes up rather than displaces cations at low ionic strength; (4) Lys1.2minE inhibits catalysis of large cell wall substrates but not catalysis of small model substrates; and (5) the helical stem of Lys1.2minE can be shortened to four base pairs (Lys1.2minF) without compromising binding affinity, yielding a 45-nucleotide aptamer whose structure may be an adaptable protein binding platform.

  6. MTE1 Functions with MPH1 in Double-Strand Break Repair.

    Science.gov (United States)

    Yimit, Askar; Kim, TaeHyung; Anand, Ranjith P; Meister, Sarah; Ou, Jiongwen; Haber, James E; Zhang, Zhaolei; Brown, Grant W

    2016-05-01

    Double-strand DNA breaks occur upon exposure of cells to ionizing radiation and certain chemical agents or indirectly through replication fork collapse at DNA damage sites. If left unrepaired, double-strand breaks can cause genome instability and cell death, and their repair can result in loss of heterozygosity. In response to DNA damage, proteins involved in double-strand break repair by homologous recombination relocalize into discrete nuclear foci. We identified 29 proteins that colocalize with recombination repair protein Rad52 in response to DNA damage. Of particular interest, Ygr042w/Mte1, a protein of unknown function, showed robust colocalization with Rad52. Mte1 foci fail to form when the DNA helicase gene MPH1 is absent. Mte1 and Mph1 form a complex and are recruited to double-strand breaks in vivo in a mutually dependent manner. MTE1 is important for resolution of Rad52 foci during double-strand break repair and for suppressing break-induced replication. Together our data indicate that Mte1 functions with Mph1 in double-strand break repair. Copyright © 2016 by the Genetics Society of America.

  7. Molecular simulations and Markov state modeling reveal the structural diversity and dynamics of a theophylline-binding RNA aptamer in its unbound state.

    Directory of Open Access Journals (Sweden)

    Becka M Warfield

    Full Text Available RNA aptamers are oligonucleotides that bind with high specificity and affinity to target ligands. In the absence of bound ligand, secondary structures of RNA aptamers are generally stable, but single-stranded and loop regions, including ligand binding sites, lack defined structures and exist as ensembles of conformations. For example, the well-characterized theophylline-binding aptamer forms a highly stable binding site when bound to theophylline, but the binding site is unstable and disordered when theophylline is absent. Experimental methods have not revealed at atomic resolution the conformations that the theophylline aptamer explores in its unbound state. Consequently, in the present study we applied 21 microseconds of molecular dynamics simulations to structurally characterize the ensemble of conformations that the aptamer adopts in the absence of theophylline. Moreover, we apply Markov state modeling to predict the kinetics of transitions between unbound conformational states. Our simulation results agree with experimental observations that the theophylline binding site is found in many distinct binding-incompetent states and show that these states lack a binding pocket that can accommodate theophylline. The binding-incompetent states interconvert with binding-competent states through structural rearrangement of the binding site on the nanosecond to microsecond timescale. Moreover, we have simulated the complete theophylline binding pathway. Our binding simulations supplement prior experimental observations of slow theophylline binding kinetics by showing that the binding site must undergo a large conformational rearrangement after the aptamer and theophylline form an initial complex, most notably, a major rearrangement of the C27 base from a buried to solvent-exposed orientation. Theophylline appears to bind by a combination of conformational selection and induced fit mechanisms. Finally, our modeling indicates that when Mg2+ ions are

  8. Highly Efficient Gene Suppression by Chemically Modified 27 Nucleotide Double-Stranded RNAs

    Science.gov (United States)

    Kubo, Takanori; Zhelev, Zhivko; Bakalova, Rumiana; Ohba, Hideki

    2008-02-01

    RNA interference (RNAi) technology, described by Fire and Mello in 1998, is a powerful tool for the suppression of gene expression in mammalian cells. RNAi technology has several advantages over other chemical and genetic drugs. However, several problems in RNAi technology, such as cellular delivery, nuclease stability, and side effects, should be solved before applying it in the clinic. In this study, we focused on the development of novel chemically modified 27 nucleotide (nt) double-stranded RNAs (dsRNAs) with improved biological properties. Our chemically modified 27 nt dsRNAs exhibited an enhanced RNAi activity and a markedly increased stability in cell culture medium (containing 10% serum) in comparison with widely used 21 nt siRNAs and recently reported nonmodified 27 nt dsRNAs. The chemically modified 27 nt dsRNAs also exhibited a strong high long-term gene silencing effect after the 7 d treatment of viable cells. The chemically modified 27 nt dsRNAs in specific positions could be processed to 21 nt siRNAs by a recombinant Dicer enzyme. We suggested that the chemically modified 27 nt dsRNAs could be used for therapeutic applications (as genetic drugs) and bioanalyses.

  9. Perturbation of discrete sites on a single protein domain with RNA aptamers: targeting of different sides of the TATA-binding protein (TBP).

    Science.gov (United States)

    Hohmura, Ken I; Shi, Hua; Hirayoshi, Kazunori

    2013-01-01

    Control of interactions among proteins is critical in the treatment of diseases, but the specificity required is not easily incorporated into small molecules. Macromolecules could be more suitable as antagonists in this situation, and RNA aptamers have become particularly promising. Here we describe a novel selection procedure for RNA aptamers against a protein that constitutes a single structural domain, the Drosophila TATA-binding protein (TBP). In addition to the conventional filter partitioning method with free TBP as target, we performed another experiment, in which the TATA-bound form of TBP was targeted. Aptamers generated by both selections were able to bind specifically to TBP, but the two groups showed characteristics which were clearly different in terms of their capability to compete with TATA-DNA, their effects on the TATA-bound form of TBP, and their effects on in vitro transcription. The method used to generate these two groups of aptamers can be used with other targets to direct aptamer specificity to discrete sites on the surface of a protein.

  10. Evolution of susceptibility to ingested double-stranded RNAs in Caenorhabditis nematodes.

    Directory of Open Access Journals (Sweden)

    Isabelle Nuez

    Full Text Available BACKGROUND: The nematode Caenorhabditis elegans is able to take up external double-stranded RNAs (dsRNAs and mount an RNA interference response, leading to the inactivation of specific gene expression. The uptake of ingested dsRNAs into intestinal cells has been shown to require the SID-2 transmembrane protein in C. elegans. By contrast, C. briggsae was shown to be naturally insensitive to ingested dsRNAs, yet could be rendered sensitive by transgenesis with the C. elegans sid-2 gene. Here we aimed to elucidate the evolution of the susceptibility to external RNAi in the Caenorhabditis genus. PRINCIPAL FINDINGS: We study the sensitivity of many new species of Caenorhabditis to ingested dsRNAs matching a conserved actin gene sequence from the nematode Oscheius tipulae. We find ample variation in the Caenorhabditis genus in the ability to mount an RNAi response. We map this sensitivity onto a phylogenetic tree, and show that sensitivity or insensitivity have evolved convergently several times. We uncover several evolutionary losses in sensitivity, which may have occurred through distinct mechanisms. We could render C. remanei and C. briggsae sensitive to ingested dsRNAs by transgenesis of the Cel-sid-2 gene. We thus provide tools for RNA interference studies in these species. We also show that transgenesis by injection is possible in many Caenorhabditis species. CONCLUSIONS: The ability of animals to take up dsRNAs or to respond to them by gene inactivation is under rapid evolution in the Caenorhabditis genus. This study provides a framework and tools to use RNA interference and transgenesis in various Caenorhabditis species for further comparative and evolutionary studies.

  11. Evolution of susceptibility to ingested double-stranded RNAs in Caenorhabditis nematodes.

    Science.gov (United States)

    Nuez, Isabelle; Félix, Marie-Anne

    2012-01-01

    The nematode Caenorhabditis elegans is able to take up external double-stranded RNAs (dsRNAs) and mount an RNA interference response, leading to the inactivation of specific gene expression. The uptake of ingested dsRNAs into intestinal cells has been shown to require the SID-2 transmembrane protein in C. elegans. By contrast, C. briggsae was shown to be naturally insensitive to ingested dsRNAs, yet could be rendered sensitive by transgenesis with the C. elegans sid-2 gene. Here we aimed to elucidate the evolution of the susceptibility to external RNAi in the Caenorhabditis genus. We study the sensitivity of many new species of Caenorhabditis to ingested dsRNAs matching a conserved actin gene sequence from the nematode Oscheius tipulae. We find ample variation in the Caenorhabditis genus in the ability to mount an RNAi response. We map this sensitivity onto a phylogenetic tree, and show that sensitivity or insensitivity have evolved convergently several times. We uncover several evolutionary losses in sensitivity, which may have occurred through distinct mechanisms. We could render C. remanei and C. briggsae sensitive to ingested dsRNAs by transgenesis of the Cel-sid-2 gene. We thus provide tools for RNA interference studies in these species. We also show that transgenesis by injection is possible in many Caenorhabditis species. The ability of animals to take up dsRNAs or to respond to them by gene inactivation is under rapid evolution in the Caenorhabditis genus. This study provides a framework and tools to use RNA interference and transgenesis in various Caenorhabditis species for further comparative and evolutionary studies.

  12. Non-homologous end-joining protein expression screen from radiosensitive cancer patients yields a novel DNA double strand break repair phenotype.

    Science.gov (United States)

    McKay, Michael J; Goh, Su Kak; McKay, Jeremy N; Chao, Michael; McKay, Timothy M

    2017-03-01

    Clinical radiosensitivity is a significant impediment to tumour control and cure, in that it restricts the total doses which can safely be delivered to the whole radiotherapy population, within the tissue tolerance of potentially radiosensitive (RS) individuals. Understanding its causes could lead to personalization of radiotherapy. We screened tissues from a unique bank of RS cancer patients for expression defects in major DNA double-strand break repair proteins, using Western blot analysis and subsequently reverse-transcriptase polymerase chain reaction and pulsed-field gel electrophoresis. We hypothesized that abnormalities in expression of these proteins may explain the radiosensitivity of some of our cancer patients. The cells from one patient showed a reproducibly consistent expression reduction in two complex-forming DNA double-strand break repair protein components (DNA Ligase IV and XRCC4). We also showed a corresponding reduction in both gene products at the mRNA level. Additionally, the mRNA inducibility by ionizing radiation was increased for one of the proteins in the patient's cells. We confirmed the likely functional significance of the non-homologous end-joining (NHEJ) expression abnormalities with a DNA double strand break (DNA DSB) repair assay. We have identified a novel biological phenotype linked to clinical radiosensitivity. This is important in that very few molecular defects are known in human radiotherapy subjects. Such knowledge may contribute to the understanding of radiation response mechanisms in cancer patients and to personalization of radiotherapy.

  13. Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites

    DEFF Research Database (Denmark)

    Dupont, Daniel Miotto; Thuesen, Cathrine K; Bøtkjær, Kenneth A

    2015-01-01

    around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12) binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro...

  14. Three methods to determine the yields of DNA double-strand breaks

    International Nuclear Information System (INIS)

    Erzgraeber, G.; Lapidus, I.L.

    1985-01-01

    A possibility of determining the yield of DNA double-strand breaks in cells of the Chinese hamster (V79-4) by finding the amount of DNA released as a result of breaks and by determining the relative sedimentation velocity of DNA-membrane complexes affected by ionizing radiations with different physical characteristics is discussed. Results of the analysis are compared with the data obtained by a traditional method of sedimentation in the neutral sucrose density gradient. Comparative characterization of the methods is discussed. The yields of DNA double-strand breaks determined by the suggested independent methods are in good agreement, which opens possibilities of studying induction and repair of double-strand breaks by means of simpler and more reliable methods

  15. Cell cycle-regulated centers of DNA double-strand break repair

    DEFF Research Database (Denmark)

    Lisby, Michael; Antúnez de Mayolo, Adriana; Mortensen, Uffe H

    2003-01-01

    In eukaryotes, homologous recombination is an important pathway for the repair of DNA double-strand breaks. We have studied this process in living cells in the yeast Saccharomyces cerevisiae using Rad52 as a cell biological marker. In response to DNA damage, Rad52 redistributes itself and forms...... foci specifically during S phase. We have shown previously that Rad52 foci are centers of DNA repair where multiple DNA double-strand breaks colocalize. Here we report a correlation between the timing of Rad52 focus formation and modification of the Rad52 protein. In addition, we show that the two ends...... of a double-strand break are held tightly together in the majority of cells. Interestingly, in a small but significant fraction of the S phase cells, the two ends of a break separate suggesting that mechanisms exist to reassociate and align these ends for proper DNA repair....

  16. Exploring TAR–RNA aptamer loop–loop interaction by X-ray crystallography, UV spectroscopy and surface plasmon resonance

    Science.gov (United States)

    Lebars, Isabelle; Legrand, Pierre; Aimé, Ahissan; Pinaud, Noël; Fribourg, Sébastien; Di Primo, Carmelo

    2008-01-01

    In HIV-1, trans-activation of transcription of the viral genome is regulated by an imperfect hairpin, the trans-activating responsive (TAR) RNA element, located at the 5′ untranslated end of all viral transcripts. TAR acts as a binding site for viral and cellular proteins. In an attempt to identify RNA ligands that would interfere with the virus life-cycle by interacting with TAR, an in vitro selection was previously carried out. RNA hairpins that formed kissing-loop dimers with TAR were selected [Ducongé F. and Toulmé JJ (1999) RNA, 5:1605–1614]. We describe here the crystal structure of TAR bound to a high-affinity RNA aptamer. The two hairpins form a kissing complex and interact through six Watson–Crick base pairs. The complex adopts an overall conformation with an inter-helix angle of 28.1°, thus contrasting with previously reported solution and modelling studies. Structural analysis reveals that inter-backbone hydrogen bonds between ribose 2′ hydroxyl and phosphate oxygens at the stem-loop junctions can be formed. Thermal denaturation and surface plasmon resonance experiments with chemically modified 2′-O-methyl incorporated into both hairpins at key positions, clearly demonstrate the involvement of this intermolecular network of hydrogen bonds in complex stability. PMID:18996893

  17. Repair and gamma radiation-induced single- and double-strand breaks in DNA of Escherichia coli

    International Nuclear Information System (INIS)

    Petrov, S.I.

    1981-01-01

    Studies in the kinetics of repair of γ-radiation-induced single- and double-strand breaks in DNA of E. coli cells showed that double-strand DNA breaks are rejoined by the following two ways. The first way is conditioned by repair of single-strand breaks and represents the repair of ''oblique'' double-strand breaks in DNA, whereas the second way is conditioned by functioning of the recombination mechanisms and, to all appearance, represents the repair of ''direct'' double-strand breaks in DNA

  18. Cell cycle-regulated centers of DNA double-strand break repair

    DEFF Research Database (Denmark)

    Lisby, Michael; Antúnez de Mayolo, Adriana; Mortensen, Uffe H

    2003-01-01

    In eukaryotes, homologous recombination is an important pathway for the repair of DNA double-strand breaks. We have studied this process in living cells in the yeast Saccharomyces cerevisiae using Rad52 as a cell biological marker. In response to DNA damage, Rad52 redistributes itself and forms...... of a double-strand break are held tightly together in the majority of cells. Interestingly, in a small but significant fraction of the S phase cells, the two ends of a break separate suggesting that mechanisms exist to reassociate and align these ends for proper DNA repair....

  19. Interaction of phenazinium dyes with double-stranded poly(A): spectroscopy and isothermal titration calorimetry studies.

    Science.gov (United States)

    Khan, Asma Yasmeen; Saha, Baishakhi; Kumar, Gopinatha Suresh

    2014-10-15

    A comprehensive study on the binding of phenazinium dyes viz. janus green B, indoine blue, safranine O and phenosafranine with double stranded poly(A) using various spectroscopic and calorimetric techniques is presented. A higher binding of janus green B and indoine blue over safranine O and phenosafranine to poly(A) was observed from all experiments. Intercalative mode of binding of the dyes was inferred from fluorescence polarization anisotropy, iodide quenching and viscosity experiments. Circular dichroism study revealed significant perturbation of the secondary structure of poly(A) on binding of these dyes. Results from isothermal titration calorimetry experiments suggested that the binding was predominantly entropy driven with a minor contribution of enthalpy to the standard molar Gibbs energy. The results presented here may open new opportunities in the application of these dyes as RNA targeted therapeutic agents. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Site-specific binding of viral plus single-stranded RNA to replicase-containing open virus-like particles of yeast.

    OpenAIRE

    Esteban, R; Fujimura, T; Wickner, R B

    1988-01-01

    X double-stranded RNA is a deletion mutant of L-A double-stranded RNA and is encapsidated in viral particles by the L-A-encoded major coat protein. X double-stranded RNA has all the cis sites necessary to be transcribed, encapsidated, and replicated. We have cloned X double-stranded RNA and sequenced it. The complete X double-stranded RNA sequence deduced indicates that the first 25 bases of the X plus-strand 5' end originated from the 5' end of the L-A plus strand and that most, if not all, ...

  1. Aptamer sensor for cocaine using minor groove binder based energy transfer.

    Science.gov (United States)

    Zhou, Jinwen; Ellis, Amanda V; Kobus, Hilton; Voelcker, Nicolas H

    2012-03-16

    We report on an optical aptamer sensor for cocaine detection. The cocaine sensitive fluorescein isothiocyanate (FITC)-labeled aptamer underwent a conformational change from a partial single-stranded DNA with a short hairpin to a double-stranded T-junction in the presence of the target. The DNA minor groove binder Hoechst 33342 selectively bound to the double-stranded T-junction, bringing the dye within the Förster radius of FITC, and therefore initiating minor groove binder based energy transfer (MBET), and reporting on the presence of cocaine. The sensor showed a detection limit of 0.2 μM. The sensor was also implemented on a carboxy-functionalized polydimethylsiloxane (PDMS) surface by covalently immobilizing DNA aptamers. The ability of surface-bound cocaine detection is crucial for the development of microfluidic sensors. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Torsional regulation of hRPA-induced unwinding of double-stranded DNA

    NARCIS (Netherlands)

    De Vlaminck, I.; Vidic, I.; Van Loenhout, M.T.J.; Kanaar, R.; Lebbink, J.H.G.; Dekker, C.

    2010-01-01

    All cellular single-stranded (ss) DNA is rapidly bound and stabilized by single stranded DNA-binding proteins (SSBs). Replication protein A, the main eukaryotic SSB, is able to unwind double-stranded (ds) DNA by binding and stabilizing transiently forming bubbles of ssDNA. Here, we study the

  3. REV7 counteracts DNA double-strand break resection and affects PARP inhibition

    NARCIS (Netherlands)

    Xu, Guotai; Chapman, J. Ross; Brandsma, Inger; Yuan, Jingsong; Mistrik, Martin; Bouwman, Peter; Bartkova, Jirina; Gogola, Ewa; Warmerdam, Daniël; Barazas, Marco; Jaspers, Janneke E.; Watanabe, Kenji; Pieterse, Mark; Kersbergen, Ariena; Sol, Wendy; Celie, Patrick H. N.; Schouten, Philip C.; van den Broek, Bram; Salman, Ahmed; Nieuwland, Marja; de Rink, Iris; de Ronde, Jorma; Jalink, Kees; Boulton, Simon J.; Chen, Junjie; van Gent, Dik C.; Bartek, Jiri; Jonkers, Jos; Borst, Piet; Rottenberg, Sven

    2015-01-01

    Error-free repair of DNA double-strand breaks (DSBs) is achieved by homologous recombination (HR), and BRCA1 is an important factor for this repair pathway(1). In the absence of BRCA1-mediated HR, the administration of PARP inhibitors induces synthetic lethality of tumour cells of patients with

  4. Chromatin mobility is increased at sites of DNA double-strand breaks

    NARCIS (Netherlands)

    Krawczyk, P. M.; Borovski, T.; Stap, J.; Cijsouw, T.; ten Cate, R.; Medema, J. P.; Kanaar, R.; Franken, N. A. P.; Aten, J. A.

    2012-01-01

    DNA double-strand breaks (DSBs) can efficiently kill cancer cells, but they can also produce unwanted chromosome rearrangements when DNA ends from different DSBs are erroneously joined. Movement of DSB-containing chromatin domains might facilitate these DSB interactions and promote the formation of

  5. On the linearity of the dose-effect relationship of DNA double strand breaks

    International Nuclear Information System (INIS)

    Chadwick, K.H.; Leenhouts, H.P.

    1994-01-01

    Most radiation biologists believe that DNA double-strand breaks are induced linearly with radiation dose for all types of radiation. Since 1985, with the advent of elution and gel electrophoresis techniques which permit the measurement of DNA double-strand breaks induced in mammalian cells at doses having radiobiological relevance, the true nature of the dose-effect relationship has been brought into some doubt. Many investigators measured curvilinear dose-effect relationships and a few found good correlations between the induction of the DNA double-strand breaks and cell survival. We approach the problem pragmatically by assuming that the induction of DNA double-strand breaks by 125 I Auger electron emitters incorporated into the DNA of the cells is a linear function of the number of 125 I decays, and by comparing the dose-effect relationship for sparsely ionizing radiation against this standard. The conclusion drawn that the curvilinear dose-effect relationships and the correlations with survival are real. (Author)

  6. Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers

    DEFF Research Database (Denmark)

    Schwertman, Petra; Bekker-Jensen, Simon; Mailand, Niels

    2016-01-01

    DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. The swift recognition and faithful repair of such damage is crucial for the maintenance of genomic stability, as well as for cell and organismal fitness. Signalling by ubiquitin, SUMO and other ubiquitin-like modifiers (UBLs...

  7. The Ku Heterodimer and the Metabolism of Single-Ended DNA Double-Strand Breaks

    NARCIS (Netherlands)

    A. Balestrini (Alessia); D. Ristic (Dejan); I. Dionne (Isabelle); X.Z. Liu (Xiao); C. Wyman (Claire); R.J. Wellinger (Raymund); J.H.J. Petrini (John)

    2013-01-01

    textabstractSingle-ended double-strand breaks (DSBs) are a common form of spontaneous DNA break, generated when the replisome encounters a discontinuity in the DNA template. Given their prevalence, understanding the mechanisms governing the fate(s) of single-ended DSBs is important. We describe the

  8. Zinc chromate induces chromosome instability and DNA double strand breaks in human lung cells

    International Nuclear Information System (INIS)

    Xie Hong; Holmes, Amie L.; Young, Jamie L.; Qin Qin; Joyce, Kellie; Pelsue, Stephen C.; Peng Cheng; Wise, Sandra S.; Jeevarajan, Antony S.; Wallace, William T.; Hammond, Dianne; Wise, John Pierce

    2009-01-01

    Hexavalent chromium Cr(VI) is a respiratory toxicant and carcinogen, with solubility playing an important role in its carcinogenic potential. Zinc chromate, a water insoluble or 'particulate' Cr(VI) compound, has been shown to be carcinogenic in epidemiology studies and to induce tumors in experimental animals, but its genotoxicity is poorly understood. Our study shows that zinc chromate induced concentration-dependent increases in cytotoxicity, chromosome damage and DNA double strand breaks in human lung cells. In response to zinc chromate-induced breaks, MRE11 expression was increased and ATM and ATR were phosphorylated, indicating that the DNA double strand break repair system was initiated in the cells. In addition, our data show that zinc chromate-induced double strand breaks were only observed in the G2/M phase population, with no significant amount of double strand breaks observed in G1 and S phase cells. These data will aid in understanding the mechanisms of zinc chromate toxicity and carcinogenesis

  9. Branch migration prevents DNA loss during double-strand break repair.

    Directory of Open Access Journals (Sweden)

    Julia S P Mawer

    2014-08-01

    Full Text Available The repair of DNA double-strand breaks must be accurate to avoid genomic rearrangements that can lead to cell death and disease. This can be accomplished by promoting homologous recombination between correctly aligned sister chromosomes. Here, using a unique system for generating a site-specific DNA double-strand break in one copy of two replicating Escherichia coli sister chromosomes, we analyse the intermediates of sister-sister double-strand break repair. Using two-dimensional agarose gel electrophoresis, we show that when double-strand breaks are formed in the absence of RuvAB, 4-way DNA (Holliday junctions are accumulated in a RecG-dependent manner, arguing against the long-standing view that the redundancy of RuvAB and RecG is in the resolution of Holliday junctions. Using pulsed-field gel electrophoresis, we explain the redundancy by showing that branch migration catalysed by RuvAB and RecG is required for stabilising the intermediates of repair as, when branch migration cannot take place, repair is aborted and DNA is lost at the break locus. We demonstrate that in the repair of correctly aligned sister chromosomes, an unstable early intermediate is stabilised by branch migration. This reliance on branch migration may have evolved to help promote recombination between correctly aligned sister chromosomes to prevent genomic rearrangements.

  10. A role for small RNAs in DNA double-strand break repair

    DEFF Research Database (Denmark)

    Wei, W.; Ba, Z.; Wu, Y.

    2012-01-01

    Eukaryotes have evolved complex mechanisms to repair DNA double-strand breaks (DSBs) through coordinated actions of protein sensors, transducers, and effectors. Here we show that ∼21-nucleotide small RNAs are produced from the sequences in the vicinity of DSB sites in Arabidopsis and in human cells...

  11. TALEN-Induced Double-Strand Break Repair of CTG Trinucleotide Repeats.

    Science.gov (United States)

    Mosbach, Valentine; Poggi, Lucie; Viterbo, David; Charpentier, Marine; Richard, Guy-Franck

    2018-02-20

    Trinucleotide repeat expansions involving CTG/CAG triplets are responsible for several neurodegenerative disorders, including myotonic dystrophy and Huntington's disease. Because expansions trigger the disease, contracting repeat length could be a possible approach to gene therapy for these disorders. Here, we show that a TALEN-induced double-strand break was very efficient at contracting expanded CTG repeats in yeast. We show that RAD51, POL32, and DNL4 are dispensable for double-strand break repair within CTG repeats, the only required genes being RAD50, SAE2, and RAD52. Resection was totally abolished in the absence of RAD50 on both sides of the break, whereas it was reduced in a sae2Δ mutant on the side of the break containing the longest repeat tract, suggesting that secondary structures at double-strand break ends must be removed by the Mre11-Rad50 complex and Sae2. Following the TALEN double-strand break, single-strand annealing occurred between both sides of the repeat tract, leading to repeat contraction. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Ago2 facilitates Rad51 recruitment and DNA double-strand break repair by homologous recombination

    DEFF Research Database (Denmark)

    Gao, Min; Wei, Wei; Li, Ming Hua

    2014-01-01

    DNA double-strand breaks (DSBs) are highly cytotoxic lesions and pose a major threat to genome stability if not properly repaired. We and others have previously shown that a class of DSB-induced small RNAs (diRNAs) is produced from sequences around DSB sites. DiRNAs are associated with Argonaute...

  13. SCAI promotes DNA double-strand break repair in distinct chromosomal contexts

    DEFF Research Database (Denmark)

    Hansen, Rebecca Kring; Mund, Andreas; Poulsen, Sara Lund

    2016-01-01

    DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions, whose accurate repair by non-homologous end-joining (NHEJ) or homologous recombination (HR) is crucial for genome integrity and is strongly influenced by the local chromatin environment. Here, we identify SCAI (suppressor of cancer...

  14. Effects of the environment on the electric conductivity of double-stranded DNA molecules

    NARCIS (Netherlands)

    Malyshev, A. V.; Diaz, E.; Dominguez-Adame, F.; Malyshev, V. A.

    2009-01-01

    We present a theoretical analysis of the effects of the environment on charge transport in double-stranded synthetic poly(G)-poly(C) DNA molecules attached to two ideal leads. Coupling of the DNA to the environment results in two effects: (i) localization of carrier functions due to static disorder

  15. TALEN-Induced Double-Strand Break Repair of CTG Trinucleotide Repeats

    Directory of Open Access Journals (Sweden)

    Valentine Mosbach

    2018-02-01

    Full Text Available Trinucleotide repeat expansions involving CTG/CAG triplets are responsible for several neurodegenerative disorders, including myotonic dystrophy and Huntington’s disease. Because expansions trigger the disease, contracting repeat length could be a possible approach to gene therapy for these disorders. Here, we show that a TALEN-induced double-strand break was very efficient at contracting expanded CTG repeats in yeast. We show that RAD51, POL32, and DNL4 are dispensable for double-strand break repair within CTG repeats, the only required genes being RAD50, SAE2, and RAD52. Resection was totally abolished in the absence of RAD50 on both sides of the break, whereas it was reduced in a sae2Δ mutant on the side of the break containing the longest repeat tract, suggesting that secondary structures at double-strand break ends must be removed by the Mre11-Rad50 complex and Sae2. Following the TALEN double-strand break, single-strand annealing occurred between both sides of the repeat tract, leading to repeat contraction.

  16. DNA double-strand break rejoining in human follicular lymphoma and glioblastoma tumor cells

    NARCIS (Netherlands)

    Macann, AMJ; Britten, RA; Poppema, S; Pearcey, R; Rosenberg, E; Allalunis-Turner, MJ; Murray, D

    2000-01-01

    Follicle center cell lymphoma is among the most radioresponsive of human cancers. To assess whether this radioresponsiveness might be a result of a compromised ability of the tumor cells to accomplish the biologically-effective repair of DNA double-strand breaks (DSBs), we have measured i) the

  17. Normal formation and repair of γ-radiation-induced single and double strand DNA breaks in Down syndrome fibroblasts

    International Nuclear Information System (INIS)

    Steiner, M.E.; Woods, W.G.

    1982-01-01

    Fibroblasts from patients with Down syndrome (Trisomy 21) were examined for repair capability of γ-radiation-induced single strand and double strand DNA breaks. Formation and repair of DNA breaks were determined by DNA alkaline and non-denaturing elution techniques. Down syndrome fibroblasts were found to repair single strand and double strand breaks as well as fibroblasts from normal controls. (orig.)

  18. What is DNA damage? Risk of double-strand break and its individual variation

    International Nuclear Information System (INIS)

    Hanaoka, Fumio

    2011-01-01

    The author discusses about the title subject in an aspect of possible spreading of Fukushima radioactive substances mainly in eastern north area of Japan where carcinogenic incidence may be increased as the ionizing radiation injures the gene (DNA). At first, explained is that cancer is a disease of genes with infinitive proliferation of cells, there are systems to prevent it by repairing the damaged DNA and by other mechanisms like exclusion of cells damaged too much or killing cancer cells with immunity, and individual difference of the repairing capability exists. DNA is always damaged even under ordinary living conditions by sunlight UV ray, cosmic radiation and chemicals externally and by active oxygen species and thermal water movement internally. Concomitantly, DNA damaged by many mechanisms like deletion, dimmer formation, chemical modification of bases, single and double strand breaks is always repaired by concerned enzymes. Double-strand damage by high-energy radiation like gamma ray is quite risky because its repair sometimes accompanies error as concerned enzymes are from more multiple genes. There are many syndromes derived from gene deficit of those repairing enzymes. The diseases concerned with repair of the double-strand damage teach that fetus and infant are more sensitive to radiation than adult as their young body cells are more actively synthesizing DNA, during which, if DNA is injured by radiation, risk of repairing error is higher as the double strand break more frequently occurs. It cannot be simply said that a certain radiation dose limit is generally permissible. There is an individual difference of radiation sensitivity and a possible method to find out an individual weak to radiation is the lymphocyte screening in vitro using anticancer bleomycin which breaks the double strand. (T.T.)

  19. Genetics of x-ray induced double strand break repair in saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Budd, M.E.

    1982-07-01

    The possible fates of x-ray-induced double-strand breaks in Saccharomyces cerevisiae were examined. One possible pathway which breaks can follow, the repair pathway, was studied by assaying strains with mutations in the RAD51, RAD54, and RAD57 loci for double-strand break repair. In order of increasing radiation sensitivity one finds: rad57-1(23 0 )> rad51-1(30 0 )> rad54-3(36 0 ). At 36 0 , rad54-3 cells cannot repair double-strand breaks, while 23 0 , they can. Strains with the rad57-1 mutation can rejoin broken chromosomes at both temperatures. However, the low survival at 36 0 shows that the assay is not distinguishing large DNA fragments which allow cell survival from those which cause cell death. A rad51-1 strain could also rejoin broken chromosomes, and was thus capable of incomplete repair. The data can be explained with the hypothesis that rad54-3 cells are blocked in an early step of repair, while rad51-1 and rad57-1 strains are blocked in a later step of repair. The fate of double-strand breaks when they are left unrepaired was investigated with the rad54-3 mutation. If breaks are prevented from entering the RAD54 repair pathway they become uncommitted lesions. These lesions are repaired slower than the original breaks. One possible fate for an uncommitted lesion is conversion into a fixed lesion, which is likely to be an unrepairable or misrepaired double-strand break. The presence of protein synthesis after irradiation increases the probability that a break will enter the repair pathway. Evidence shows that increased probability of repair results from enhanced synthesis of repair proteins shortly after radiation

  20. Genetics of x-ray induced double strand break repair in saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Budd, M.E.

    1982-07-01

    The possible fates of x-ray-induced double-strand breaks in Saccharomyces cerevisiae were examined. One possible pathway which breaks can follow, the repair pathway, was studied by assaying strains with mutations in the RAD51, RAD54, and RAD57 loci for double-strand break repair. In order of increasing radiation sensitivity one finds: rad57-1(23/sup 0/)> rad51-1(30/sup 0/)> rad54-3(36/sup 0/). At 36/sup 0/, rad54-3 cells cannot repair double-strand breaks, while 23/sup 0/, they can. Strains with the rad57-1 mutation can rejoin broken chromosomes at both temperatures. However, the low survival at 36/sup 0/ shows that the assay is not distinguishing large DNA fragments which allow cell survival from those which cause cell death. A rad51-1 strain could also rejoin broken chromosomes, and was thus capable of incomplete repair. The data can be explained with the hypothesis that rad54-3 cells are blocked in an early step of repair, while rad51-1 and rad57-1 strains are blocked in a later step of repair. The fate of double-strand breaks when they are left unrepaired was investigated with the rad54-3 mutation. If breaks are prevented from entering the RAD54 repair pathway they become uncommitted lesions. These lesions are repaired slower than the original breaks. One possible fate for an uncommitted lesion is conversion into a fixed lesion, which is likely to be an unrepairable or misrepaired double-strand break. The presence of protein synthesis after irradiation increases the probability that a break will enter the repair pathway. Evidence shows that increased probability of repair results from enhanced synthesis of repair proteins shortly after radiation. (ERB)

  1. Detection of double-stranded RNA viruses in fecal samples of dogs with gastroenteritis in Rio de Janeiro, Brazil Detecção de vírus com genoma de RNA fita dupla em fezes de cães com gastrenterite no Rio de Janeiro, Brasil

    Directory of Open Access Journals (Sweden)

    A.P. Costa

    2004-08-01

    Full Text Available Colheram-se 163 amostras fecais no período de 1995 a 2001 para investigar a ocorrência da infecção por parvovírus e rotavírus em cães com gastrenterite utilizando-se a técnica de eletroforese em gel de poliacrilamida. Em três amostras observou-se a presença do genoma bisegmentado similar ao perfil eletroforético dos picobirnavírus (PBV e em uma, três segmentos de RNA dupla fita, característico de picotrirnavírus. Das amostras positivas para PBV, duas foram obtidas de filhotes e uma foi positiva para parvovírus canino. Este é o primeiro relato da detecção de vírus com genoma bisegmentado em cães com diarréia no Estado do Rio de Janeiro.

  2. Tissue-type plasminogen activator-binding RNA aptamers inhibiting low-density lipoprotein receptor family-mediated internalisation.

    Science.gov (United States)

    Bjerregaard, Nils; Bøtkjær, Kenneth A; Helsen, Nicky; Andreasen, Peter A; Dupont, Daniel M

    2015-07-01

    Recombinant tissue-type plasminogen activator (tPA, trade name Alteplase), currently the only drug approved by the US Food and Drug Administration and the European Medicines Agency for the treatment of cerebral ischaemic stroke, has been implicated in a number of adverse effects reportedly mediated by interactions with the low-density lipoprotein (LDL) family receptors, including neuronal cell death and an increased risk of cerebral haemorrhage. The tissue-type plasminogen activator is the principal initiator of thrombolysis in human physiology, an effect that is mediated directly via localised activation of the plasmin zymogen plasminogen at the surface of fibrin clots in the vascular lumen. Here, we sought to identify a ligand to tPA capable of inhibiting the relevant LDL family receptors without interfering with the fibrinolytic activity of tPA. Systematic evolution of ligands by exponential enrichment (SELEX) was employed to isolate tPA-binding RNA aptamers, which were characterised in biochemical assays of tPA association to low density lipoprotein receptor-related protein-1 (LRP-1, an LDL receptor family member); tPA-mediated in vitro and ex vivo clot lysis; and tPA-mediated plasminogen activation in the absence and presence of a stimulating soluble fibrin fragment. Two aptamers, K18 and K32, had minimal effects on clot lysis, but were able to efficiently inhibit tPA-LRP-1 association and LDL receptor family-mediated endocytosis in human vascular endothelial cells and astrocytes. These observations suggest that coadministration alongside tPA may be a viable strategy to improve the safety of thrombolytic treatment of cerebral ischaemic stroke by restricting tPA activity to the vascular lumen.

  3. Targeted delivery of CRISPR/Cas9 to prostate cancer by modified gRNA using a flexible aptamer-cationic liposome.

    Science.gov (United States)

    Zhen, Shuai; Takahashi, Yoichiro; Narita, Shunichi; Yang, Yi-Chen; Li, Xu

    2017-02-07

    The potent ability of CRISPR/Cas9 system to inhibit the expression of targeted gene is being exploited as a new class of therapeutics for a variety of diseases. However, the efficient and safe delivery of CRISPR/Cas9 into specific cell populations is still the principal challenge in the clinical development of CRISPR/Cas9 therapeutics. In this study, a flexible aptamer-liposome-CRISPR/Cas9 chimera was designed to combine efficient delivery and increased flexibility. Our chimera incorporated an RNA aptamer that specifically binds prostate cancer cells expressing the prostate-specific membrane antigen as a ligand. Cationic liposomes were linked to aptamers by the post-insertion method and were used to deliver therapeutic CRISPR/Cas9 that target the survival gene, polo-like kinase 1, in tumor cells. We demonstrate that the aptamer-liposome-CRISPR/Cas9 chimeras had a significant cell-type binding specificity and a remarkable gene silencing effect in vitro. Furthermore, silencing promoted a conspicuous regression of prostate cancer in vivo. Importantly, the approach described here provides a universal means of cell type-specific CRISPR/Cas9 delivery, which is a critical goal for the widespread therapeutic applicability of CRISPR/Cas9 or other nucleic acid drugs.

  4. Structure of the replicative form of bacteriophage φX174 : VI. Studies on alkali-denatured double-stranded φX DNA

    NARCIS (Netherlands)

    Pouwels, P.H.; Knijnenburg, C.M.; Rotterdam, J. van; Cohen, J.A.; Jansz, H.S.

    1968-01-01

    Double-stranded φX DNA which accumulates after infection with bacteriophage φX174 in the presence of chloramphenicol consists mainly of twisted circular double-stranded DNA with no single-strand breaks (component I) and of circular double-stranded DNA, in which single-strand breaks are present

  5. Use of a Fluorescent Aptamer RNA as an Exonic Sequence to Analyze Self-Splicing Ability of a Group I Intron from Structured RNAs

    Directory of Open Access Journals (Sweden)

    Airi Furukawa

    2016-11-01

    Full Text Available Group I self-splicing intron constitutes an important class of functional RNA molecules that can promote chemical transformation. Although the fundamental mechanism of the auto-excision from its precursor RNA has been established, convenient assay systems for its splicing activity are still useful for a further understanding of its detailed mechanism and of its application. Because some host RNA sequences, to which group I introns inserted form stable three-dimensional (3D structures, the effects of the 3D structures of exonic elements on the splicing efficiency of group I introns are important but not a fully investigated issue. We developed an assay system for group I intron self-splicing by employing a fluorescent aptamer RNA (spinach RNA as a model exonic sequence inserted by the Tetrahymena group I intron. We investigated self-splicing of the intron from spinach RNA, serving as a model exonic sequence with a 3D structure.

  6. Effects of heavy ions on inactivation and DNA double strand breaks in Deinococcus radiodurans R1.

    Science.gov (United States)

    Zimmermann, H; Schafer, M; Schmitz, C; Bucker, H

    1994-10-01

    Inactivation and double strand break (dsb) induction after heavy ion irradiation were studied in stationary phase cells of the highly radiation resistant bacterium Deinococcus radiodurans R1. There is evidence that the radiation sensitivity of this bacterium is nearly independent on energy in the range of up to 15 MeV/u for lighter ions (Ar). The responses to dsb induction for charged particles show direct relationship between increasing radiation dose and residual intact DNA.

  7. Double strand DNA breaks response in Huntington´s disease

    Czech Academy of Sciences Publication Activity Database

    Šolc, Petr; Valášek, Jan; Rausová, Petra; Juhásová, Jana; Juhás, Štefan; Motlík, Jan

    2015-01-01

    Roč. 78, Suppl 2 (2015), s. 15-15 ISSN 1210-7859. [Conference on Animal Models for neurodegenerative Diseases /3./. 08.11.2015-10.11.2015, Liblice] R&D Projects: GA MŠk ED2.1.00/03.0124; GA MŠk(CZ) 7F14308 Institutional support: RVO:67985904 Keywords : Huntington´s disease * DNA damage * double strand DNA breaks Subject RIV: FH - Neurology

  8. Homing endonucleases catalyze double-stranded DNA breaks and somatic transgene excision in Aedes aegypti

    OpenAIRE

    Traver, Brenna E.; Anderson, Michelle A. E.; Adelman, Zach N.

    2009-01-01

    Aedes aegypti is a major vector of arthropod-borne viruses such as yellow fever virus and dengue viruses. Efforts to discern the function of genes involved in important behaviors such as vector competence and host seeking through reverse genetics would greatly benefit from the ability to generate targeted gene disruptions. Homing endonucleases are selfish elements which catalyze double-stranded DNA (dsDNA) breaks in a sequence-specific manner. In this report we demonstrate that the homing end...

  9. Multinuclear non-heme iron complexes for double-strand DNA cleavage

    NARCIS (Netherlands)

    Megens, Rik P.; van den Berg, Tieme A.; de Bruijn, A. Dowine; Feringa, Ben L.; Roelfes, Gerard

    2009-01-01

    The cytotoxicity of the antitumor drug BLM is believed to be related to the ability of the corresponding iron complex (Fe-BLM) to engage in oxidative double-strand DNA cleavage. The iron complex of the ligand N4Py (Fe-N4Py; N4Py - N,N-bis(2-pyridyl)-N-bis(2-pyridyl)methylamine has proven to be a

  10. Time-lapse crystallography snapshots of a double-strand break repair polymerase in action.

    Science.gov (United States)

    Jamsen, Joonas A; Beard, William A; Pedersen, Lars C; Shock, David D; Moon, Andrea F; Krahn, Juno M; Bebenek, Katarzyna; Kunkel, Thomas A; Wilson, Samuel H

    2017-08-15

    DNA polymerase (pol) μ is a DNA-dependent polymerase that incorporates nucleotides during gap-filling synthesis in the non-homologous end-joining pathway of double-strand break repair. Here we report time-lapse X-ray crystallography snapshots of catalytic events during gap-filling DNA synthesis by pol μ. Unique catalytic intermediates and active site conformational changes that underlie catalysis are uncovered, and a transient third (product) metal ion is observed in the product state. The product manganese coordinates phosphate oxygens of the inserted nucleotide and PP i . The product metal is not observed during DNA synthesis in the presence of magnesium. Kinetic analyses indicate that manganese increases the rate constant for deoxynucleoside 5'-triphosphate insertion compared to magnesium. The likely product stabilization role of the manganese product metal in pol μ is discussed. These observations provide insight on structural attributes of this X-family double-strand break repair polymerase that impact its biological function in genome maintenance.DNA polymerase (pol) μ functions in DNA double-strand break repair. Here the authors use time-lapse X-ray crystallography to capture the states of pol µ during the conversion from pre-catalytic to product complex and observe a third transiently bound metal ion in the product state.

  11. Differential requirement for SUB1 in chromosomal and plasmid double-strand DNA break repair.

    Directory of Open Access Journals (Sweden)

    Lijian Yu

    Full Text Available Non homologous end joining (NHEJ is an important process that repairs double strand DNA breaks (DSBs in eukaryotic cells. Cells defective in NHEJ are unable to join chromosomal breaks. Two different NHEJ assays are typically used to determine the efficiency of NHEJ. One requires NHEJ of linearized plasmid DNA transformed into the test organism; the other requires NHEJ of a single chromosomal break induced either by HO endonuclease or the I-SceI restriction enzyme. These two assays are generally considered equivalent and rely on the same set of NHEJ genes. PC4 is an abundant DNA binding protein that has been suggested to stimulate NHEJ. Here we tested the role of PC4's yeast homolog SUB1 in repair of DNA double strand breaks using different assays. We found SUB1 is required for NHEJ repair of DSBs in plasmid DNA, but not in chromosomal DNA. Our results suggest that these two assays, while similar are not equivalent and that repair of plasmid DNA requires additional factor(s that are not required for NHEJ repair of chromosomal double-strand DNA breaks. Possible roles for Sub1 proteins in NHEJ of plasmid DNA are discussed.

  12. Offset configurations for single- and double-strand DNA inside single-walled carbon nanotubes.

    Science.gov (United States)

    Alshehri, Mansoor H; Cox, Barry J; Hill, James M

    2014-01-01

    Nanotechnology is a rapidly expanding research area, and it is believed that the unique properties of molecules at the nano-scale will prove to be of substantial benefit to mankind, especially so in medicine and electronics. Here we use applied mathematical modelling exploiting the basic principles of mechanics and the 6-12 Lennard-Jones potential function together with the continuum approximation, which assumes that intermolecular interactions can be approximated by average atomic surface densities. We consider the equilibrium offset positions for both single-strand and double-strand DNA molecules inside a single-walled carbon nanotube, and we predict offset positions with reference to the cross-section of the carbon nanotube. For the double-strand DNA, the potential energy is determined for the general case for any helical phase angle ϕ, but we also consider a special case when ϕ = π, which leads to a substantial simplification in the analytical expression for the energy. As might be expected, our results confirm that the global minimum energy positions for a single-strand DNA molecule and a double-strand DNA molecule will lie off axis and they become closer to the tube wall as the radius of the tube increases.

  13. Inhibition of APOBEC3G activity impedes double-stranded DNA repair.

    Science.gov (United States)

    Prabhu, Ponnandy; Shandilya, Shivender M D; Britan-Rosich, Elena; Nagler, Adi; Schiffer, Celia A; Kotler, Moshe

    2016-01-01

    The cellular cytidine deaminase APOBEC3G (A3G) was first described as an anti-HIV-1 restriction factor, acting by directly deaminating reverse transcripts of the viral genome. HIV-1 Vif neutralizes the activity of A3G, primarily by mediating degradation of A3G to establish effective infection in host target cells. Lymphoma cells, which express high amounts of A3G, can restrict Vif-deficient HIV-1. Interestingly, these cells are more stable in the face of treatments that result in double-stranded DNA damage, such as ionizing radiation and chemotherapies. Previously, we showed that the Vif-derived peptide (Vif25-39) efficiently inhibits A3G deamination, and increases the sensitivity of lymphoma cells to ionizing radiation. In the current study, we show that additional peptides derived from Vif, A3G, and APOBEC3F, which contain the LYYF motif, inhibit deamination activity. Each residue in the Vif25-39 sequence moderately contributes to the inhibitory effect, whereas replacing a single residue in the LYYF motif completely abrogates inhibition of deamination. Treatment of A3G-expressing lymphoma cells exposed to ionizing radiation with the new inhibitory peptides reduces double-strand break repair after irradiation. Incubation of cultured irradiated lymphoma cells with peptides that inhibit double-strand break repair halts their propagation. These results suggest that A3G may be a potential therapeutic target that is amenable to peptide and peptidomimetic inhibition. © 2015 FEBS.

  14. Lyn tyrosine kinase promotes silencing of ATM-dependent checkpoint signaling during recovery from DNA double-strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Yasunori, E-mail: fukumoto@faculty.chiba-u.jp; Kuki, Kazumasa; Morii, Mariko; Miura, Takahito; Honda, Takuya; Ishibashi, Kenichi; Hasegawa, Hitomi; Kubota, Sho; Ide, Yudai; Yamaguchi, Noritaka; Nakayama, Yuji; Yamaguchi, Naoto, E-mail: nyama@faculty.chiba-u.jp

    2014-09-26

    Highlights: • Inhibition of Src family kinases decreased γ-H2AX signal. • Inhibition of Src family increased ATM-dependent phosphorylation of Chk2 and Kap1. • shRNA-mediated knockdown of Lyn increased phosphorylation of Kap1 by ATM. • Ectopic expression of Src family kinase suppressed ATM-mediated Kap1 phosphorylation. • Src is involved in upstream signaling for inactivation of ATM signaling. - Abstract: DNA damage activates the DNA damage checkpoint and the DNA repair machinery. After initial activation of DNA damage responses, cells recover to their original states through completion of DNA repair and termination of checkpoint signaling. Currently, little is known about the process by which cells recover from the DNA damage checkpoint, a process called checkpoint recovery. Here, we show that Src family kinases promote inactivation of ataxia telangiectasia mutated (ATM)-dependent checkpoint signaling during recovery from DNA double-strand breaks. Inhibition of Src activity increased ATM-dependent phosphorylation of Chk2 and Kap1. Src inhibition increased ATM signaling both in G2 phase and during asynchronous growth. shRNA knockdown of Lyn increased ATM signaling. Src-dependent nuclear tyrosine phosphorylation suppressed ATM-mediated Kap1 phosphorylation. These results suggest that Src family kinases are involved in upstream signaling that leads to inactivation of the ATM-dependent DNA damage checkpoint.

  15. Double-stranded endonuclease activity in Bacillus halodurans clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas2 protein.

    Science.gov (United States)

    Nam, Ki Hyun; Ding, Fran; Haitjema, Charles; Huang, Qingqiu; DeLisa, Matthew P; Ke, Ailong

    2012-10-19

    The CRISPR (clustered regularly interspaced short palindromic repeats) system is a prokaryotic RNA-based adaptive immune system against extrachromosomal genetic elements. Cas2 is a universally conserved core CRISPR-associated protein required for the acquisition of new spacers for CRISPR adaptation. It was previously characterized as an endoribonuclease with preference for single-stranded (ss)RNA. Here, we show using crystallography, mutagenesis, and isothermal titration calorimetry that the Bacillus halodurans Cas2 (Bha_Cas2) from the subtype I-C/Dvulg CRISPR instead possesses metal-dependent endonuclease activity against double-stranded (ds)DNA. This activity is consistent with its putative function in producing new spacers for insertion into the 5'-end of the CRISPR locus. Mutagenesis and isothermal titration calorimetry studies revealed that a single divalent metal ion (Mg(2+) or Mn(2+)), coordinated by a symmetric Asp pair in the Bha_Cas2 dimer, is involved in the catalysis. We envision that a pH-dependent conformational change switches Cas2 into a metal-binding competent conformation for catalysis. We further propose that the distinct substrate preferences among Cas2 proteins may be determined by the sequence and structure in the β1-α1 loop.

  16. Lyn tyrosine kinase promotes silencing of ATM-dependent checkpoint signaling during recovery from DNA double-strand breaks

    International Nuclear Information System (INIS)

    Fukumoto, Yasunori; Kuki, Kazumasa; Morii, Mariko; Miura, Takahito; Honda, Takuya; Ishibashi, Kenichi; Hasegawa, Hitomi; Kubota, Sho; Ide, Yudai; Yamaguchi, Noritaka; Nakayama, Yuji; Yamaguchi, Naoto

    2014-01-01

    Highlights: • Inhibition of Src family kinases decreased γ-H2AX signal. • Inhibition of Src family increased ATM-dependent phosphorylation of Chk2 and Kap1. • shRNA-mediated knockdown of Lyn increased phosphorylation of Kap1 by ATM. • Ectopic expression of Src family kinase suppressed ATM-mediated Kap1 phosphorylation. • Src is involved in upstream signaling for inactivation of ATM signaling. - Abstract: DNA damage activates the DNA damage checkpoint and the DNA repair machinery. After initial activation of DNA damage responses, cells recover to their original states through completion of DNA repair and termination of checkpoint signaling. Currently, little is known about the process by which cells recover from the DNA damage checkpoint, a process called checkpoint recovery. Here, we show that Src family kinases promote inactivation of ataxia telangiectasia mutated (ATM)-dependent checkpoint signaling during recovery from DNA double-strand breaks. Inhibition of Src activity increased ATM-dependent phosphorylation of Chk2 and Kap1. Src inhibition increased ATM signaling both in G2 phase and during asynchronous growth. shRNA knockdown of Lyn increased ATM signaling. Src-dependent nuclear tyrosine phosphorylation suppressed ATM-mediated Kap1 phosphorylation. These results suggest that Src family kinases are involved in upstream signaling that leads to inactivation of the ATM-dependent DNA damage checkpoint

  17. Activation of repair and checkpoints by double-strand breaks of DNA. Activational cascade of protein phosphorylation

    International Nuclear Information System (INIS)

    Koltovaya, N.A.

    2007-01-01

    Molecular mechanisms of double-strand breaks repair and checkpoints include phosphorylations of repair and checkpoint-proteins by protein kinases. Chemical modification of proteins has different consequences including activation, changing of affinity to proteins and localization

  18. Postreplicational formation and repair of DNA double-strand breaks in UV-irradiated Escherichia coli uvrB cells

    International Nuclear Information System (INIS)

    Wang, Tzuchien V.; Smith, K.C.

    1986-01-01

    The number of DNA double-strand breaks formed in UV-irradiated uvrB recF recB cells correlates with the number of unrepaired DNA daughter-strand gaps, and is dependent on DNA synthesis after UV-irradiation. These results are consistent with the model that the DNA double-strand breaks that are produced in UV-irradiated excision-deficient cells occur as the result of breaks in the parental DNA opposite unrepaired DNA daughter-strand gaps. By employing a temperature-sensitive recA200 mutation, we have devised an improved assay for studying the formation and repair of these DNA double-strand breaks. Possible mechanisms for the postreplication repair of DNA double-strand breaks are discussed. (Auth.)

  19. Deficiency of Double-Strand DNA Break Repair Does Not Impair Mycobacterium tuberculosis Virulence in Multiple Animal Models of Infection

    OpenAIRE

    Heaton, Brook E.; Barkan, Daniel; Bongiorno, Paola; Karakousis, Petros C.; Glickman, Michael S.

    2014-01-01

    Mycobacterium tuberculosis persistence within its human host requires mechanisms to resist the effector molecules of host immunity, which exert their bactericidal effects through damaging pathogen proteins, membranes, and DNA. Substantial evidence indicates that bacterial pathogens, including M. tuberculosis, require DNA repair systems to repair the DNA damage inflicted by the host during infection, but the role of double-strand DNA break (DSB) repair systems is unclear. Double-strand DNA bre...

  20. Genetic polymorphisms of DNA double-strand break repair pathway genes and glioma susceptibility

    International Nuclear Information System (INIS)

    Zhao, Peng; Zou, Peng; Zhao, Lin; Yan, Wei; Kang, Chunsheng; Jiang, Tao; You, Yongping

    2013-01-01

    Genetic variations in DNA double-strand break repair genes can influence the ability of a cell to repair damaged DNA and alter an individual’s susceptibility to cancer. We studied whether polymorphisms in DNA double-strand break repair genes are associated with an increased risk of glioma development. We genotyped 10 potentially functional single nucleotide polymorphisms (SNPs) in 7 DNA double-strand break repair pathway genes (XRCC3, BRCA2, RAG1, XRCC5, LIG4, XRCC4 and ATM) in a case–control study including 384 glioma patients and 384 cancer-free controls in a Chinese Han population. Genotypes were determined using the OpenArray platform. In the single-locus analysis there was a significant association between gliomas and the LIG4 rs1805388 (Ex2 +54C>T, Thr9Ile) TT genotype (adjusted OR, 3.27; 95% CI, 1.87-5.71), as well as the TC genotype (adjusted OR, 1.62; 95% CI, 1.20-2.18). We also found that the homozygous variant genotype (GG) of XRCC4 rs1805377 (IVS7-1A>G, splice-site) was associated with a significantly increased risk of gliomas (OR, 1.77; 95% CI, 1.12-2.80). Interestingly, we detected a significant additive and multiplicative interaction effect between the LIG4 rs1805388 and XRCC4 rs1805377 polymorphisms with an increasing risk of gliomas. When we stratified our analysis by smoking status, LIG4 rs1805388 was associated with an increased glioma risk among smokers. These results indicate for the first time that LIG4 rs1805388 and XRCC4 rs1805377, alone or in combination, are associated with a risk of gliomas

  1. Processing of 3'-Phosphoglycolate-Terminated DNA Double-StrandBreaks by Artemis Nuclease

    Energy Technology Data Exchange (ETDEWEB)

    Povrik, Lawrence F.; Zhou, Tong; Zhou, Ruizhe; Cowan, Morton J.; Yannone, Steven M.

    2005-10-01

    The Artemis nuclease is required for V(D)J recombination and for repair of an as yet undefined subset of radiation-induced DNA double-strand breaks. To assess the possibility that Artemis functions on oxidatively modified double-strand break termini, its activity toward model DNA substrates, bearing either 3{prime}-hydroxyl or 3{prime}-phosphoglycolate moieties, was examined. A 3{prime}-phosphoglycolate had little effect on Artemis-mediated trimming of long 3{prime} overhangs (>9 nucleotides), which were efficiently trimmed to 4-5 nucleotides. However, 3{prime}-phosphoglycolates on overhangs of 4-5 bases promoted selective Artemis-mediated trimming of a single 3{prime}-terminal nucleotide, while at least 2 nucleotides were trimmed from identical hydroxyl-terminated substrates. Artemis also efficiently removed a single nucleotide from a phosphoglycolate-terminated 3-base 3{prime} overhang, while leaving an analogous hydroxyl-terminated overhang largely intact. Such removal was dependent upon Ku, DNA-dependent protein kinase, and ATP. Together, these data suggest that Artemis-mediated cleavage of 3{prime} overhangs requires a minimum of 2 nucleotides, or a nucleotide plus a phosphoglycolate, 3{prime} to the cleavage site. Shorter 3{prime}-phosphoglycolate-terminated overhangs and blunt ends were also processed by Artemis, but much less efficiently. Consistent with the in vitro substrate specificity of Artemis, human cells lacking Artemis exhibited hypersensitivity to X-rays, bleomycin and neocarzinostatin, which all induce 3{prime}-phosphoglycolate-terminated double-strand breaks. Collectively, these results suggest that 3{prime}-phosphoglycolate termini and/or specific classes of DNA ends that arise from such blocked termini are relevant Artemis substrates in vivo.

  2. New insights on single-stranded versus double-stranded DNA library preparation for ancient DNA

    DEFF Research Database (Denmark)

    Wales, Nathan; Carøe, Christian; Sandoval-Velasco, Marcela

    2015-01-01

    An innovative single-stranded DNA (ssDNA) library preparation method has sparked great interest among ancient DNA (aDNA) researchers, especially after reports of endogenous DNA content increases >20-fold in some samples. To investigate the behavior of this method, we generated ssDNA...... and conventional double-stranded DNA (dsDNA) libraries from 23 ancient and historic plant and animal specimens. We found ssDNA library preparation substantially increased endogenous content when dsDNA libraries contained...

  3. RNF4 is required for DNA double-strand break repair in vivo

    DEFF Research Database (Denmark)

    Vyas, R; Kumar, R; Clermont, F

    2013-01-01

    Unrepaired DNA double-strand breaks (DSBs) cause genetic instability that leads to malignant transformation or cell death. Cells respond to DSBs with the ordered recruitment of signaling and repair proteins to the sites of DNA lesions. Coordinated protein SUMOylation and ubiquitylation have crucial...... in other key regulators of HR repair, Rnf4 deficiency leads to age-dependent impairment in spermatogenesis. These findings identify Rnf4 as a critical component of the DDR in vivo and support the possibility that Rnf4 controls protein localization at DNA damage sites by integrating SUMOylation...

  4. String-nets, single and double-stranded quantum loop gases for non-Abelian anyons

    OpenAIRE

    Velenich, Andrea; Chamon, Claudio; Wen, Xiao-Gang

    2009-01-01

    String-net condensation can give rise to non-Abelian anyons whereas loop condensation usually gives rise to Abelian anyons. It has been proposed that generalized quantum loop gases with non-orthogonal inner products can produce non-Abelian anyons. We detail an exact mapping between the string-net and the generalized loop models and explain how the non-orthogonal products arise. We also introduce a loop model of double-stranded nets where quantum loops with an orthogonal inner product and loca...

  5. Facile and Cost-Effective Detection of Saxitoxin Exploiting Aptamer Structural Switching

    Directory of Open Access Journals (Sweden)

    Karol Alfaro

    2015-01-01

    Full Text Available A simple method to detect saxitoxin (STX, one of the main components of the paralytic shellfish poison from red tide, has been developed. By using a next generation dye for double-stranded DNA we were able to differentiate fluorescence from STX-binding aptamers when exposed to different concentrations of STX, suggesting a change in aptamer folding upon target binding. The developed method is extremely rapid, only requiring small sample volumes, with quantitative results in the concentration range of 15 ng/mL to 3 μg/mL of STX, with a detection limit of 7.5 ng/mL.

  6. Induction of double-strand breaks in DNA of prokaryotes and eukaryotes and their repair. 1. Application of elastoviscosimetry for studying double-strand breaks in DNA of Escherichia coli induced by γ-irradiation

    International Nuclear Information System (INIS)

    Bresler, S.E.; Noskin, L.A.; Suslov, A.V.

    1980-01-01

    It is shown that the method of elastoviscosimetry gives a possibility to record the formation of DNA double-strand breaks in Escherichia coli cells induced by γ irradiation at doses close to D 37 . The dependence of changes of elastoviscosity parameter on the dose (tau 0 ) passes through the maximum. It is shown that the ascending section of this curve (at minimum γ irradiation doses) characterizes the relaxation process of the superspiralised chromosome in nucleotide of the E. coli. This relaxation is observed due to γ induced damages which are not double-strand breaks. By the maximum position one can judge on a dose yield of the first DNA double-strand break, the descending part of the dose curve describes the kinetics of accumulation of breaks with the dose increase. The analysis of the data obtained gives the possibility to come to the conclusion that when applying a usual technique of irradiation and lysis of cells not providing for special measures on inhibition of endo-and exonuclease activity in γ irradiated cells, the dose yield of double-strand breaks noticeably increases (by 4.2 times). In the case of an essential, though incomplete, inhibition of nuclease activities in γ irradiated cells the dose yield of breaks approximately corresponds to the dose curve of inactivation of these cells (D 37 12.5+-3.0 krad, the first double-strand break -at 14.5+-2.4 krad)

  7. Temperature-dependent conformations of exciton-coupled Cy3 dimers in double-stranded DNA

    Science.gov (United States)

    Kringle, Loni; Sawaya, Nicolas P. D.; Widom, Julia; Adams, Carson; Raymer, Michael G.; Aspuru-Guzik, Alán; Marcus, Andrew H.

    2018-02-01

    Understanding the properties of electronically interacting molecular chromophores, which involve internally coupled electronic-vibrational motions, is important to the spectroscopy of many biologically relevant systems. Here we apply linear absorption, circular dichroism, and two-dimensional fluorescence spectroscopy to study the polarized collective excitations of excitonically coupled cyanine dimers (Cy3)2 that are rigidly positioned within the opposing sugar-phosphate backbones of the double-stranded region of a double-stranded (ds)-single-stranded (ss) DNA fork construct. We show that the exciton-coupling strength of the (Cy3)2-DNA construct can be systematically varied with temperature below the ds-ss DNA denaturation transition. We interpret spectroscopic measurements in terms of the Holstein vibronic dimer model, from which we obtain information about the local conformation of the (Cy3)2 dimer, as well as the degree of static disorder experienced by the Cy3 monomer and the (Cy3)2 dimer probe locally within their respective DNA duplex environments. The properties of the (Cy3)2-DNA construct we determine suggest that it may be employed as a useful model system to test fundamental concepts of protein-DNA interactions and the role of electronic-vibrational coherence in electronic energy migration within exciton-coupled bio-molecular arrays.

  8. The effects of microgravity on ligase activity in the repair of DNA double-strand breaks.

    Science.gov (United States)

    Takahashi, A; Ohnishi, K; Takahashi, S; Masukawa, M; Sekikawa, K; Amano, T; Nakano, T; Nagaoka, S; Ohnishi, T

    2000-06-01

    In recent years, contradictory data have been reported about the effects of microgravity on radiation-induced biological responses in space experiments. The aim of the present study was to clarify whether enzymatic repair of DNA double-strand breaks is affected by microgravity using an in vitro enzymatic reaction system. The DNA repair activity of T4 DNA ligase (EC 6.5.1.1) was measured in vitro for a DNA substrate damaged by restriction enzyme digestion during a US Space Shuttle mission (Discovery; STS-91). After the flight, the amount of ligated DNA molecules was measured using an electrophoresis method. Ligated products (closed circular DNA, open circular DNA and multimeric ligated products) were produced by T4 DNA ligase treatment of linear DNA containing double-strand breaks, and they increased with increasing T4 DNA ligase concentration (0-3 units per microg of plasmid DNA). Almost no difference in T4 DNA ligase activity was detected between the space experiments and the control ground experiments. No significant effect of microgravity on ligation of damaged DNA was found during space flight. Therefore, other mechanisms must account for the synergism between radiation and microgravity, if it exists.

  9. Evidence for multiple repair pathways of double-strand DNA breaks in Chinese hamster cells

    International Nuclear Information System (INIS)

    Giaccia, A.J.; Weistein, R.; Stamato, T.D.; Roosa, R.

    1984-01-01

    XR-1 is a mutant of the Chinese hamster cell (CHO-K1) which is abnormally sensitive to killing by gamma rays in G/sub 1/ (D37 = 27 rads vs. 318 for parent) and early S phases of the cell cycle but has near normal resistance in late S and early G/sub 2/ (Somatic Cell Genetics, 9:165-173, 1983). Complementation studies between XR-1 and its parent indicate that this sensitivity to gamma rays is a recessive phenotype. Both the XR-1 and its parent cell are able to repair single strand DNA breaks. However, in comparison to its parental cell, the XR-1 cell is markedly deficient in the repair of double strand DNA breaks introduced by gamma irradiation during the sensitive G/sub 1/-early S period, while in the late S-G/sub 2/ resistant period the repair is similar in both cells. This correlation suggests that an unrepaired double strand DNA break is the lethal lesion and that at least two pathways for the repair of these lesions exist in mammalian cells

  10. Electrochemical molecular beacon biosensor for sequence-specific recognition of double-stranded DNA.

    Science.gov (United States)

    Miao, Xiangmin; Guo, Xiaoting; Xiao, Zhiyou; Ling, Liansheng

    2014-09-15

    Direct recognition of double-stranded DNA (dsDNA) was crucial to disease diagnosis and gene therapy, because DNA in its natural state is double stranded. Here, a novel sensor for the sequence-specific recognition of dsDNA was developed based on the structure change of ferrocene (Fc) redox probe modified molecular beacon (MB). For constructing such a sensor, gold nanoparticles (AuNPs) were initially electrochemical-deposited onto glass carbon electrode (GCE) surface to immobilize thiolated MB in their folded states with Au-S bond. Hybridization of MB with target dsDNA induced the formation of parallel triplex DNA and opened the stem-loop structure of it, which resulted in the redox probe (Fc) away from the electrode and triggered the decrease of current signals. Under optimal conditions, dsDNA detection could be realized in the range from 350 pM to 25 nM, with a detection limit of 275 pM. Moreover, the proposed method has good sequence-specificity for target dsDNA compared with single base pair mismatch and two base pairs mismatches. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Molecular Effects of Atmospheric Pressure Plasma Jet on the Double-Stranded DNA

    Directory of Open Access Journals (Sweden)

    Abasalt Hosseinzadeh Colagar

    2017-03-01

    Full Text Available Introduction The aim of this study was toinvestigate the sterilization potential of atmospheric pressure plasma jet (APPJ and interactions of this technology with double-stranded DNA using the polymerase chain reaction (PCR and single-strand conformation polymorphism (SSCP techniques. Materials and Methods The plasma jet was produced through a high voltage sinusoidal power supplyusing a mixture of argon and oxygen gases with theflow rate of 1 L/min. Escherichia coli cells and double-stranded DNA (dsDNA fragments were amplified by T7 universal primer through the PCR technique and treated with argon/oxygen APPJ at different exposure times. The data were analyzed by the agarose and polyacrylamide gel electrophoresis, SSCP and renewed PCR techniques. Results According to the results of the study, the APPJ could serve as an effective instrument for sterilization at > 30 sec discharge. The destruction of DNA was detectable by different techniques after 120 sec from APPJ discharge. Conclusion Our findings revealed that the active species of plasma can lead to cell death. These species may break or nick the dsDNA, exchange DNA nucleotides, and lead to transition and transversion mutations. These mutagenesis effects of APPJ might be the reason of microorganism cell death after the treatment in addition to other destructive effects of APPJ on macromolecules.

  12. New tools to study DNA double-strand break repair pathway choice.

    Directory of Open Access Journals (Sweden)

    Daniel Gomez-Cabello

    Full Text Available A broken DNA molecule is difficult to repair, highly mutagenic, and extremely cytotoxic. Such breaks can be repaired by homology-independent or homology-directed mechanisms. Little is known about the network that controls the repair pathway choice except that a licensing step for homology-mediated repair exists, called DNA-end resection. The choice between these two repair pathways is a key event for genomic stability maintenance, and an imbalance of the ratio is directly linked with human diseases, including cancer. Here we present novel reporters to study the balance between both repair options in human cells. In these systems, a double-strand break can be alternatively repaired by homology-independent or -dependent mechanisms, leading to the accumulation of distinct fluorescent proteins. These reporters thus allow the balance between both repair pathways to be analyzed in different experimental setups. We validated the reporters by analyzing the effect of protein downregulation of the DNA end resection and non-homologous end-joining pathways. Finally, we analyzed the role of the DNA damage response on double-strand break (DSB repair mechanism selection. Our reporters could be used in the future to understand the roles of specific factors, whole pathways, or drugs in DSB repair pathway choice, or for genome-wide screening. Moreover, our findings can be applied to increase gene-targeting efficiency, making it a beneficial tool for a broad audience in the biological sciences.

  13. New tools to study DNA double-strand break repair pathway choice.

    Science.gov (United States)

    Gomez-Cabello, Daniel; Jimeno, Sonia; Fernández-Ávila, María Jesús; Huertas, Pablo

    2013-01-01

    A broken DNA molecule is difficult to repair, highly mutagenic, and extremely cytotoxic. Such breaks can be repaired by homology-independent or homology-directed mechanisms. Little is known about the network that controls the repair pathway choice except that a licensing step for homology-mediated repair exists, called DNA-end resection. The choice between these two repair pathways is a key event for genomic stability maintenance, and an imbalance of the ratio is directly linked with human diseases, including cancer. Here we present novel reporters to study the balance between both repair options in human cells. In these systems, a double-strand break can be alternatively repaired by homology-independent or -dependent mechanisms, leading to the accumulation of distinct fluorescent proteins. These reporters thus allow the balance between both repair pathways to be analyzed in different experimental setups. We validated the reporters by analyzing the effect of protein downregulation of the DNA end resection and non-homologous end-joining pathways. Finally, we analyzed the role of the DNA damage response on double-strand break (DSB) repair mechanism selection. Our reporters could be used in the future to understand the roles of specific factors, whole pathways, or drugs in DSB repair pathway choice, or for genome-wide screening. Moreover, our findings can be applied to increase gene-targeting efficiency, making it a beneficial tool for a broad audience in the biological sciences.

  14. Calibration of pulsed field gel electrophoresis for measurement of DNA double-strand breaks

    International Nuclear Information System (INIS)

    Ager, D.D.; Dewey, W.C.

    1990-01-01

    Pulsed field gel electrophoresis (PFGE) assay was calibrated for the measurement of X-ray induced DNA double-strand breaks in Chinese hamster ovary (CHO) cells. Calibration was conducted by incorporating [ 125 I] deoxyuridine into DNA, which induces one double-strand break for every disintegration that occurs in frozen cells. Based on the percentage of DNA migrating into the gel, the number of breaks/dalton/Gy was estimated to be (9.3±1.0) x 10 -12 . This value is close to (10 to 12) x 10 -12 determined by neutral filter elution using similar cell lysis procedures at 24 o C and at pH8.0. The estimate is in good agreement with the value of (11.7±2) x 10 -12 breaks/dalton/Gy as measured in Ehrlich ascites tumour cells using the neutral sucrose gradient method (Bloecher 1988), and (6 to 9) x 10 -12 breaks/dalton/Gy as measured in mouse L and Chinese hamster V79 cells using neutral filter elution (Radford and Hodgson 1985). (author)

  15. Double-stranded DNA dissociates into single strands when dragged into a poor solvent.

    Science.gov (United States)

    Cui, Shuxun; Yu, Jin; Kühner, Ferdinand; Schulten, Klaus; Gaub, Hermann E

    2007-11-28

    DNA displays a richness of biologically relevant supramolecular structures, which depend on both sequence and ambient conditions. The effect of dragging double-stranded DNA (dsDNA) from water into poor solvent on the double-stranded structure is still unclear because of condensation. Here, we employed single molecule techniques based on atomic force microscopy and molecular dynamics (MD) simulations to investigate the change in structure and mechanics of DNA during the ambient change. We found that the two strands are split apart when the dsDNA is pulled at one strand from water into a poor solvent. The findings were corroborated by MD simulations where dsDNA was dragged from water into poor solvent, revealing details of the strand separation at the water/poor solvent interface. Because the structure of DNA is of high polarity, all poor solvents show a relatively low polarity. We speculate that the principle of spontaneous unwinding/splitting of dsDNA by providing a low-polarity (in other word, hydrophobic) micro-environment is exploited as one of the catalysis mechanisms of helicases.

  16. Fumarase is involved in DNA double-strand break resection through a functional interaction with Sae2

    DEFF Research Database (Denmark)

    Leshets, Michael; Ramamurthy, Dharanidharan; Lisby, Michael

    2018-01-01

    One of the most severe forms of DNA damage is the double-strand break (DSB). Failure to properly repair the damage can cause mutation, gross chromosomal rearrangements and lead to the development of cancer. In eukaryotes, homologous recombination (HR) and non-homologous end joining (NHEJ) are the......One of the most severe forms of DNA damage is the double-strand break (DSB). Failure to properly repair the damage can cause mutation, gross chromosomal rearrangements and lead to the development of cancer. In eukaryotes, homologous recombination (HR) and non-homologous end joining (NHEJ...

  17. Visualization of complex DNA double-strand breaks in a tumor treated with carbon ion radiotherapy.

    Science.gov (United States)

    Oike, Takahiro; Niimi, Atsuko; Okonogi, Noriyuki; Murata, Kazutoshi; Matsumura, Akihiko; Noda, Shin-Ei; Kobayashi, Daijiro; Iwanaga, Mototaro; Tsuchida, Keisuke; Kanai, Tatsuaki; Ohno, Tatsuya; Shibata, Atsushi; Nakano, Takashi

    2016-03-01

    Carbon ion radiotherapy shows great potential as a cure for X-ray-resistant tumors. Basic research suggests that the strong cell-killing effect induced by carbon ions is based on their ability to cause complex DNA double-strand breaks (DSBs). However, evidence supporting the formation of complex DSBs in actual patients is lacking. Here, we used advanced high-resolution microscopy with deconvolution to show that complex DSBs are formed in a human tumor clinically treated with carbon ion radiotherapy, but not in a tumor treated with X-ray radiotherapy. Furthermore, analysis using a physics model suggested that the complexity of radiotherapy-induced DSBs is related to linear energy transfer, which is much higher for carbon ion beams than for X-rays. Visualization of complex DSBs in clinical specimens will help us to understand the anti-tumor effects of carbon ion radiotherapy.

  18. Carbon ion induced DNA double-strand breaks in melanophore B{sub 16}

    Energy Technology Data Exchange (ETDEWEB)

    Wei Zengquan; Zhou Guangming; Wang Jufang; He Jing; Li Qiang; Li Wenjian; Xie Hongmei; Cai Xichen; Tao Huang; Dang Bingrong; Han Guangwu [Chinese Academy of Sciences, Lanzhou (China). Inst. of Modern Physics; Gao Qingxiang [Lanzhou Univ. (China)

    1997-09-01

    DNA double-strand breaks (DSBs) in melanophore B{sub 16} induced by plateau and extended Bragg peak of 75 MeV/u {sup 12}C{sup 6+} ions were studied by using a technique of inverse pulsed-field gel electrophoresis (PIGE). DNA fragment lengths were distributed in two ranges: the larger in 1.4 Mbp-3.2 Mbp and the smaller in less than 1.2 Mbp. It indicates that distribution of DNA fragments induced by heavy ion irradiation is not stochastic and there probably are sensitive sites to heavy ions in DNA molecules of B{sub 16}. Percentage of DNA released from plug (PR) increased and trended towards a quasi-plateau {proportional_to}85% as dose increased. Content of the larger fragments decreased and flattened with increasing dose while content of the smaller ones increased and trended towards saturation. (orig.)

  19. γ-H2AX as a biomarker for DNA double-strand breaks in ecotoxicology.

    Science.gov (United States)

    Gerić, Marko; Gajski, Goran; Garaj-Vrhovac, Vera

    2014-07-01

    The visualisation of DNA damage response proteins enables the indirect measurement of DNA damage. Soon after the occurrence of a DNA double-strand break (DSB), the formation of γ-H2AX histone variants is to be expected. This review is focused on the potential use of the γ-H2AX foci assay in assessing the genotoxicity of environmental contaminants including cytostatic pharmaceuticals, since standard methods may not be sensitive enough to detect the damaging effect of low environmental concentrations of such drugs. These compounds are constantly released into the environment, potentially representing a threat to water quality, aquatic organisms, and, ultimately, human health. Our review of the literature revealed that this method could be used in the biomonitoring and risk assessment of aquatic systems affected by wastewater from the production, usage, and disposal of cytostatic pharmaceuticals. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Cyclic perylene diimide: Selective ligand for tetraplex DNA binding over double stranded DNA.

    Science.gov (United States)

    Vasimalla, Suresh; Sato, Shinobu; Takenaka, Fuminori; Kurose, Yui; Takenaka, Shigeori

    2017-12-15

    Synthesized cyclic perylene diimide, cPDI, showed the binding constant of 6.3 × 10 6  M -1 with binding number of n = 2 with TA-core as a tetraplex DNA in 50 mM Tris-HCl buffer (pH = 7.4) containing 100 mM KCl using Schatchard analysis and showed a higher preference for tetraplex DNA than for double stranded DNA with over 10 3 times. CD spectra showed that TA-core induced its antiparallel conformation upon addition of cPDI in the absence or presence of K + or Na + ions. The cPDI inhibits the telomerase activity with IC 50 of 0.3 µM using TRAP assay which is potential anti-cancer drug with low side effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Homing endonucleases catalyze double-stranded DNA breaks and somatic transgene excision in Aedes aegypti.

    Science.gov (United States)

    Traver, B E; Anderson, M A E; Adelman, Z N

    2009-10-01

    Aedes aegypti is a major vector of arthropod-borne viruses such as yellow fever virus and dengue viruses. Efforts to discern the function of genes involved in important behaviours, such as vector competence and host seeking through reverse genetics, would greatly benefit from the ability to generate targeted gene disruptions. Homing endonucleases are selfish elements which catalyze double-stranded DNA (dsDNA) breaks in a sequence-specific manner. In this report we demonstrate that the homing endonucleases I-PpoI, I-SceI, I-CreI and I-AniI are all able to induce dsDNA breaks in adult female Ae. aegypti chromosomes as well as catalyze the somatic excision of a transgene. These experiments provide evidence that homing endonucleases can be used to manipulate the genome of this important disease vector.

  2. Biotinylation of Deoxyguanosine at the Abasic Site in Double-Stranded Oligodeoxynucleotides

    Directory of Open Access Journals (Sweden)

    Chun Wu

    2016-01-01

    Full Text Available Biotinylation of deoxyguanosine at an abasic site in double-stranded oligodeoxynucleotides was studied. The biotinylation of deoxyguanosine is achieved by copper-catalyzed click reaction after the conjugation of the oligodeoxynucleotide with 2-oxohex-5-ynal. The biotinylation enables visualization of the biotinylated oligodeoxynucleotides by chemiluminescence on a nylon membrane. In order to investigate the biotinylated site, the biotinylated oligodeoxynucleotides were amplified by the DNA polymerase chain reaction. Replacement of guanine opposing the abasic site with adenine generated by the activity of the terminal deoxynucleotidyl transferase of DNA polymerase was detected by DNA sequencing analysis and restriction endonuclease digestion. This study suggests that 2-oxohex-5-ynal may be useful for the detection of the unpaired deoxyguanosine endogenously generated at abasic sites in genomic DNA.

  3. Assembly and function of DNA double-strand break repair foci in mammalian cells

    DEFF Research Database (Denmark)

    Bekker-Jensen, Simon; Mailand, Niels

    2010-01-01

    DNA double-strand breaks (DSBs) are among the most cytotoxic types of DNA damage, which if left unrepaired can lead to mutations or gross chromosomal aberrations, and promote the onset of diseases associated with genomic instability such as cancer. One of the most discernible hallmarks...... of the cellular response to DSBs is the accumulation and local concentration of a plethora of DNA damage signaling and repair proteins in the vicinity of the lesion, initiated by ATM-mediated phosphorylation of H2AX (¿-H2AX) and culminating in the generation of distinct nuclear compartments, so-called Ionizing...... of such DNA repair foci still remains limited. In this review, we focus on recent discoveries on the mechanisms that govern the formation of IRIF, and discuss the implications of such findings in light of our understanding of the physiological importance of these structures....

  4. Translocation frequency of double-stranded DNA through a solid-state nanopore

    Science.gov (United States)

    Bell, Nicholas A. W.; Muthukumar, Murugappan; Keyser, Ulrich F.

    2016-01-01

    Solid-state nanopores are single-molecule sensors that measure changes in ionic current as charged polymers such as DNA pass through. Here, we present comprehensive experiments on the length, voltage, and salt dependence of the frequency of double-stranded DNA translocations through conical quartz nanopores with mean opening diameter 15 nm. We observe an entropic barrier-limited, length-dependent translocation frequency at 4M LiCl salt concentration and a drift-dominated, length-independent translocation frequency at 1M KCl salt concentration. These observations are described by a unifying convection-diffusion equation, which includes the contribution of an entropic barrier for polymer entry. PMID:26986356

  5. Visualization of DNA Double-Strand Break Repair at the Single-Molecule Level

    Energy Technology Data Exchange (ETDEWEB)

    Dynan, William S.; Li, Shuyi; Mernaugh, Raymond; Wragg, Stephanie; Takeda, Yoshihiko

    2003-03-27

    Exposure to low doses of ionizing radiation is universal. The signature injury from ionizing radiation exposure is induction of DNA double-strand breaks (DSBs). The first line of defense against DSBs is direct ligation of broken DNA ends via the nonhomologous end-joining pathway. Because even a relatively high environmental exposure induces only a few DSBs per cell, our current understanding of the response to this exposure is limited by the ability to measure DSB repair events reliably in situ at a single-molecule level. To address this need, we have taken advantage of biological amplification, measuring relocalization of proteins and detection of protein phosphorylation as a surrogate for detection of broken ends themselves. We describe the use of specific antibodies to investigate the kinetics and mechanism of repair of very small numbers of DSBs in human cells by the nonhomologous end-joining pathway.

  6. Twist-Bend Coupling and the Torsional Response of Double-Stranded DNA

    Science.gov (United States)

    Nomidis, Stefanos K.; Kriegel, Franziska; Vanderlinden, Willem; Lipfert, Jan; Carlon, Enrico

    2017-05-01

    Recent magnetic tweezers experiments have reported systematic deviations of the twist response of double-stranded DNA from the predictions of the twistable wormlike chain model. Here we show, by means of analytical results and computer simulations, that these discrepancies can be resolved if a coupling between twist and bend is introduced. We obtain an estimate of 40 ±10 nm for the twist-bend coupling constant. Our simulations are in good agreement with high-resolution, magnetic-tweezers torque data. Although the existence of twist-bend coupling was predicted long ago [J. Marko and E. Siggia, Macromolecules 27, 981 (1994), 10.1021/ma00082a015], its effects on the mechanical properties of DNA have been so far largely unexplored. We expect that this coupling plays an important role in several aspects of DNA statics and dynamics.

  7. [Bacterial infections as seen from the eukaryotic genome: DNA double strand breaks, inflammation and cancer].

    Science.gov (United States)

    Lemercier, Claudie

    2014-01-01

    An increasing number of studies report that infection by pathogenic bacteria alters the host genome, producing highly hazardous DNA double strand breaks for the eukaryotic cell. Even when DNA repair occurs, it often leaves "scars" on chromosomes that might generate genomic instability at the next cell division. Chronic intestinal inflammation promotes the expansion of genotoxic bacteria in the intestinal microbiote which in turn triggers tumor formation and colon carcinomas. Bacteria act at the level of the host DNA repair machinery. They also highjack the host cell cycle to allow themselves time for replication in an appropriate reservoir. However, except in the case of bacteria carrying the CDT nuclease, the molecular mechanisms responsible for DNA lesions are not well understood, even if reactive oxygen species released during infection make good candidates. © 2014 médecine/sciences – Inserm.

  8. String-nets, single- and double-stranded quantum loop gases for non-Abelian anyons

    Energy Technology Data Exchange (ETDEWEB)

    Velenich, Andrea; Chamon, Claudio [Physics Department, Boston University, 590 Commonwealth Avenue, Boston, MA 02215 (United States); Wen Xiaogang, E-mail: velenich@bu.ed [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02215 (United States)

    2010-04-30

    String-nets and quantum loop gases are two prominent microscopic lattice models to describe topological phases. String-net condensation can give rise to both Abelian and non-Abelian anyons, whereas loop condensation usually produces Abelian anyons. It has been proposed, however, that generalized quantum loop gases with non-orthogonal inner products could support non-Abelian anyons. We detail an exact mapping between the string-net and these generalized loop models and explain how the non-orthogonal products arise. We also introduce an equivalent loop model of double-stranded nets where quantum loops with an orthogonal inner product and local interactions supports non-Abelian Fibonacci anyons. Finally, we emphasize the origin of the sign problem in systems with non-Abelian excitations and its consequences on the complexity of their ground state wavefunctions. (fast track communication)

  9. Neddylation inhibits CtIP-mediated resection and regulates DNA double strand break repair pathway choice.

    Science.gov (United States)

    Jimeno, Sonia; Fernández-Ávila, María Jesús; Cruz-García, Andrés; Cepeda-García, Cristina; Gómez-Cabello, Daniel; Huertas, Pablo

    2015-01-01

    DNA double strand breaks are the most cytotoxic lesions that can occur on the DNA. They can be repaired by different mechanisms and optimal survival requires a tight control between them. Here we uncover protein deneddylation as a major controller of repair pathway choice. Neddylation inhibition changes the normal repair profile toward an increase on homologous recombination. Indeed, RNF111/UBE2M-mediated neddylation acts as an inhibitor of BRCA1 and CtIP-mediated DNA end resection, a key process in repair pathway choice. By controlling the length of ssDNA produced during DNA resection, protein neddylation not only affects the choice between NHEJ and homologous recombination but also controls the balance between different recombination subpathways. Thus, protein neddylation status has a great impact in the way cells respond to DNA breaks. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Compound Poisson Processes and Clustered Damage of Radiation Induced DNA Double Strand Breaks

    International Nuclear Information System (INIS)

    Gudowska-Nowak, E.; Ritter, S.; Taucher-Scholz, G.; Kraft, G.

    2000-01-01

    Recent experimental data have demonstrated that DNA damage induced by densely ionizing radiation in mammalian cells is distributed along the DNA molecule in the form of clusters. The principal constituent of DNA damage are double-strand breaks (DSB) which are formed when the breaks occur in both DNA strands and are directly opposite or separated by only a few base pairs. DSBs are believed to be most important lesions produced in chromosomes by radiation; interaction between DSBs can lead to cell killing, mutation or carcinogenesis. The paper discusses a model of clustered DSB formation viewed in terms of compound Poisson process along with the predictive essay of the formalism in application to experimental data. (author)

  11. Double strand break repair: two mechanisms in competition but tightly linked to cell cycle

    International Nuclear Information System (INIS)

    Delacote, F.

    2002-11-01

    DNA double strand breaks (DSB) are highly toxic damage although they can be induced to create genetic diversity. Two distinct pathways can repair DSB: Homologous Recombination (HR) and Non Homologous End Joining (NHEJ). If un- or mis-repaired, this damage can lead to cancer. Thus, it is essential to investigate how these two pathways are regulated for DSB repair. NHEJ inhibition leads to HR DSB repair stimulation. However, this channeling to HR is tightly linked to cell cycle since NHEJ and HR are active in G1/early S and late S/G2, respectively. Our results suggest that G1-unrepaired DSB go through S phase to be repaired by HR in G2. Those results allow a better understanding of DSB repair mechanisms regulation. (author)

  12. Carbon ion induced DNA double-strand breaks in melanophore B16

    International Nuclear Information System (INIS)

    Wei Zengquan; Zhou Guangming; Wang Jufang; He Jing; Li Qiang; Li Wenjian; Xie Hongmei; Cai Xichen; Tao Huang; Dang Bingrong; Han Guangwu

    1997-01-01

    DNA double-strand breaks (DSBs) in melanophore B 16 induced by plateau and extended Bragg peak of 75 MeV/u 12 C 6+ ions were studied by using a technique of inverse pulsed-field gel electrophoresis (PIGE). DNA fragment lengths were distributed in two ranges: the larger in 1.4 Mbp-3.2 Mbp and the smaller in less than 1.2 Mbp. It indicates that distribution of DNA fragments induced by heavy ion irradiation is not stochastic and there probably are sensitive sites to heavy ions in DNA molecules of B 16 . Percentage of DNA released from plug (PR) increased and trended towards a quasi-plateau ∝85% as dose increased. Content of the larger fragments decreased and flattened with increasing dose while content of the smaller ones increased and trended towards saturation. (orig.)

  13. APOBEC3 cytidine deaminases in double-strand DNA break repair and cancer promotion.

    Science.gov (United States)

    Nowarski, Roni; Kotler, Moshe

    2013-06-15

    High frequency of cytidine to thymidine conversions was identified in the genome of several types of cancer cells. In breast cancer cells, these mutations are clustered in long DNA regions associated with single-strand DNA (ssDNA), double-strand DNA breaks (DSB), and genomic rearrangements. The observed mutational pattern resembles the deamination signature of cytidine to uridine carried out by members of the APOBEC3 family of cellular deaminases. Consistently, APOBEC3B (A3B) was recently identified as the mutational source in breast cancer cells. A3G is another member of the cytidine deaminases family predominantly expressed in lymphoma cells, where it is involved in mutational DSB repair following ionizing radiation treatments. This activity provides us with a new paradigm for cancer cell survival and tumor promotion and a mechanistic link between ssDNA, DSBs, and clustered mutations. Cancer Res; 73(12); 3494-8. ©2013 AACR. ©2013 AACR.

  14. Studies on the interaction of the food colorant tartrazine with double stranded deoxyribonucleic acid.

    Science.gov (United States)

    Basu, Anirban; Suresh Kumar, Gopinatha

    2016-05-01

    Interaction of the food additive tartrazine with double-stranded DNA was studied by spectroscopic and calorimetric techniques. Absorbance studies revealed that tartrazine exhibited hypochromism in the presence of DNA without any bathochromic effects. Minor groove displacement assay of DAPI and Hoechst 33258 suggested that tartrazine binds in the minor groove of DNA. The complexation was predominantly entropy driven with a smaller but favorable enthalpic contribution to the standard molar Gibbs energy. The equilibrium constant was evaluated to be (3.68 ± .08) × 10(4) M(-1) at 298.15 K. The negative standard molar heat capacity value along with an enthalpy-entropy compensation phenomenon proposed the involvement of dominant hydrophobic forces in the binding process. Tartrazine enhanced the thermal stability of DNA by 7.53 K under saturation conditions.

  15. Numt-mediated double-strand break repair mitigates deletions during primate genome evolution.

    Directory of Open Access Journals (Sweden)

    Einat Hazkani-Covo

    2008-10-01

    Full Text Available Non-homologous end joining (NHEJ is the major mechanism of double-strand break repair (DSBR in mammalian cells. NHEJ has traditionally been inferred from experimental systems involving induced double strand breaks (DSBs. Whether or not the spectrum of repair events observed in experimental NHEJ reflects the repair of natural breaks by NHEJ during chromosomal evolution is an unresolved issue. In primate phylogeny, nuclear DNA sequences of mitochondrial origin, numts, are inserted into naturally occurring chromosomal breaks via NHEJ. Thus, numt integration sites harbor evidence for the mechanisms that act on the genome over evolutionary timescales. We have identified 35 and 55 lineage-specific numts in the human and chimpanzee genomes, respectively, using the rhesus monkey genome as an outgroup. One hundred and fifty two numt-chromosome fusion points were classified based on their repair patterns. Repair involving microhomology and repair leading to nucleotide additions were detected. These repair patterns are within the experimentally determined spectrum of classical NHEJ, suggesting that information from experimental systems is representative of broader genetic loci and end configurations. However, in incompatible DSBR events, small deletions always occur, whereas in 54% of numt integration events examined, no deletions were detected. Numts show a statistically significant reduction in deletion frequency, even in comparison to DSBR involving filler DNA. Therefore, numts show a unique mechanism of integration via NHEJ. Since the deletion frequency during numt insertion is low, native overhangs of chromosome breaks are preserved, allowing us to determine that 24% of the analyzed breaks are cohesive with overhangs of up to 11 bases. These data represent, to the best of our knowledge, the most comprehensive description of the structure of naturally occurring DSBs. We suggest a model in which the sealing of DSBs by numts, and probably by other filler

  16. Correlation between residual level of DNA double-strand breaks and the radiosensitivity of cancer cells

    International Nuclear Information System (INIS)

    Sun Jianxiang; Sun Weijian; Sui Jianli; Zhou Pingkun

    2008-01-01

    Objective: To understand the variation of the DNA double-strand break rejoining capacity among different cultured cancer cell lines and the primary cancer cells from brain cancer patients, and to explore the predictor of radiotherapy responses of cancers. Methods: DNA double-strand breaks (DSBs) were induced by 60 Co γ-irradiation. Pulsed-field gel electrophoresis was used to analyze the initial production and rejoining of DNA DSBs. Radiosensitivity was determined by in vitro assay of clonogenic-forming capacity. Results: A wide variation of radiosensitivity, e.g. the survival parameter of Do varied from 0.65 to 2.15 Gy, was displayed among the eight cell lines derived from different type of cancers. Although differential level of initial DNA DSBs induced by 20 Gy γ-rays was observed among various cell lines, it was not correlated with the radiosensitivity. The deficiency of DNA DSB rejoining in radiosensitive cell lines was shown either in the early rapid-rejoining phase (SX-10 cells) or in the late slow-rejoining phase (A2780 cells). A significant relationship was observed between the residual level of DNA DSBs measured at 2 h post-20 Gy irradiation and the cellular radiosensitivity (D 0 or SF 2 ). The kinetic curves of rejoining DNA DSBs in the primary human brain tumor cells indicated a variation on DSB rejoining capacity among different individual tumor. The residual level of DNA DSBs after 2 h of rejoining post 20 Gy irradiation in primary human brain tumor cells is compatible to the results obtained in vitro culture cancer cell lines. Conclusions: The residual level of DNA DSBs is correlated with radioresistance of cancer cells, and the residual DNA damage is a useful parameter in predicting the response of tumor tissue to radiotherapy. (authors)

  17. The Subcellular Localisation of the Human Papillomavirus (HPV) 16 E7 Protein in Cervical Cancer Cells and Its Perturbation by RNA Aptamers.

    Science.gov (United States)

    Cesur, Özlem; Nicol, Clare; Groves, Helen; Mankouri, Jamel; Blair, George Eric; Stonehouse, Nicola J

    2015-06-26

    Human papillomavirus (HPV) is the most common viral infection of the reproductive tract, affecting both men and women. High-risk oncogenic types are responsible for almost 90% of anogenital and oropharyngeal cancers including cervical cancer. Some of the HPV "early" genes, particularly E6 and E7, are known to act as oncogenes that promote tumour growth and malignant transformation. Most notably, HPV-16 E7 interacts with the tumour suppressor protein pRb, promoting its degradation, leading to cell cycle dysregulation in infected cells. We have previously shown that an RNA aptamer (termed A2) selectively binds to HPV16 E7 and is able to induce apoptosis in HPV16-transformed cervical carcinoma cell lines (SiHa) through reduction of E7 levels. In this study, we investigated the effects of the A2 aptamer on E7 localisation in order to define its effects on E7 activity. We demonstrate for the first time that E7 localised to the plasma membrane. In addition, we show that A2 enhanced E7 localisation in the ER and that the A2-mediated reduction of E7 was not associated with proteasomal degradation. These data suggest that A2 perturbs normal E7 trafficking through promoting E7 ER retention.

  18. The Subcellular Localisation of the Human Papillomavirus (HPV 16 E7 Protein in Cervical Cancer Cells and Its Perturbation by RNA Aptamers

    Directory of Open Access Journals (Sweden)

    Özlem Cesur

    2015-06-01

    Full Text Available Human papillomavirus (HPV is the most common viral infection of the reproductive tract, affecting both men and women. High-risk oncogenic types are responsible for almost 90% of anogenital and oropharyngeal cancers including cervical cancer. Some of the HPV “early” genes, particularly E6 and E7, are known to act as oncogenes that promote tumour growth and malignant transformation. Most notably, HPV-16 E7 interacts with the tumour suppressor protein pRb, promoting its degradation, leading to cell cycle dysregulation in infected cells. We have previously shown that an RNA aptamer (termed A2 selectively binds to HPV16 E7 and is able to induce apoptosis in HPV16-transformed cervical carcinoma cell lines (SiHa through reduction of E7 levels. In this study, we investigated the effects of the A2 aptamer on E7 localisation in order to define its effects on E7 activity. We demonstrate for the first time that E7 localised to the plasma membrane. In addition, we show that A2 enhanced E7 localisation in the ER and that the A2-mediated reduction of E7 was not associated with proteasomal degradation. These data suggest that A2 perturbs normal E7 trafficking through promoting E7 ER retention.

  19. Rupture of DNA aptamer: New insights from simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Rakesh Kumar; Nath, Shesh; Kumar, Sanjay [Department of Physics, Banaras Hindu University, Varanasi 221 005 (India)

    2015-10-28

    Base-pockets (non-complementary base-pairs) in a double-stranded DNA play a crucial role in biological processes. Because of thermal fluctuations, it can lower the stability of DNA, whereas, in case of DNA aptamer, small molecules, e.g., adenosinemonophosphate and adenosinetriphosphate, form additional hydrogen bonds with base-pockets termed as “binding-pockets,” which enhance the stability. Using the Langevin dynamics simulations of coarse grained model of DNA followed by atomistic simulations, we investigated the influence of base-pocket and binding-pocket on the stability of DNA aptamer. Striking differences have been reported here for the separation induced by temperature and force, which require further investigation by single molecule experiments.

  20. The DNA double-stranded break repair protein endo-exonuclease as a therapeutic target for cancer.

    Science.gov (United States)

    Chow, Terry Y-K; Alaoui-Jamali, Moulay A; Yeh, Chiaoli; Yuen, Leonard; Griller, David

    2004-08-01

    DNA repair mechanisms are crucial for the maintenance of genomic stability and are emerging as potential therapeutic targets for cancer. In this study, we report that the endo-exonuclease, a protein involved in the recombination repair process of the DNA double-stranded break pathway, is overexpressed in a variety of cancer cells and could represent an effective target for developing anticancer drugs. We identify a dicationic diarylfuran, pentamidine, which has been used clinically to treat opportunistic infections and is an inhibitor of the endo-exonuclease as determined by enzyme kinetic assay. In clonogenic and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays as well as in the in vivo Lewis lung carcinoma mouse tumor model, pentamidine is shown to possess the ability to selectively kill cancer cells. The LD50 of pentamidine on cancer cells maintained in vitro is correlated with the endo-exonuclease enzyme activity. Tumor cell that has been treated with pentamidine is reduced in the endo-exonuclease as compared with the untreated control. Furthermore, pentamidine synergistically potentiates the cytotoxic effect of DNA strand break and cross-link-inducing agents such as mitomycin C, etoposide, and cisplatin. In addition, we used the small interfering RNA for the mouse homologue of the endo-exonuclease to down-regulate the level of endo-exonuclease in the mouse myeloma cell line B16F10. Down-regulation of the endo-exonuclease sensitizes the cell to 5-fluorouracil. These studies suggested the endo-exonuclease enzyme as a novel potential therapeutic target for cancer.

  1. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography.

    Science.gov (United States)

    Thompson, Larry H

    2012-01-01

    The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Resistance to multiple viruses in transgenic tobacco expressing fused, tandem repeat, virus-derived double-stranded RNAs.

    Science.gov (United States)

    Chung, Bong Nam; Palukaitis, Peter

    2011-12-01

    Transgenic tobacco plants expressing fused, tandem, inverted-repeat, double-stranded RNAs derived either from the three viruses [potato virus Y (PVY), potato virus A (PVA), and potato leafroll virus (PLRV)] or the five viruses [PVY, PVA, PLRV as well as tobacco rattle virus (TRV), and potato mop-top virus (PMTV)] were generated in this study to examine whether resistance could be achieved against these three viruses or five viruses, respectively, in the same plant. The transgenic lines were engineered to produce 600- or 1000-bp inverted hairpin transcripts with an intron, in two orientations each, which were processed to silencing-inducing RNAs (siRNAs). Fewer lines were regenerated from the transformants with either 1000-bp inverted hairpin transcripts, or a sense-intron-antisense orientation versus antisense-intron-sense orientation. Resistances to PVA and two strains of PVY (-O and -N) were achieved in plants from most of lines examined, as well as resistance to co-infection by a mixture of PVY-O and PVA, applied to the plants by either rub inoculation or using aphids. This was regardless of the orientation of the inserted sequences for the 600-bp insert lines, but only for one orientation of the 1000-bp insert lines. The lines containing the 1000-bp inserts also showed resistance to infection by TRV inoculated by rub inoculation and PMTV inoculated by grafting. However, all the lines showed only low-to-moderate (15-43%) resistance to infection by PLRV transmitted by aphids. The resistances to the various viruses correlated with the levels of accumulation of siRNAs, indicating that the multiple resistances were achieved by RNA silencing.

  3. DNA hybrids suggesting a recombination process repairing radiation-induced DNA double-strand breaks in Ehrlich Ascites tumor cells

    International Nuclear Information System (INIS)

    Barthel, H.R.

    1984-01-01

    The results presented suggest the possibility of repair of DNA double-strand breaks by recombination, at least in the S and G 2 -phases of the cell cycle, in mammalian cells. Further experiments with synchronized cell cultures will have to show whether this process may also occur in the G 1 -phase of the cell cycle. (orig./AJ) [de

  4. The Molecular Basis of Double-Strand DNA Break Repair: The Critical Structure of the RAD52/RPA Complex

    National Research Council Canada - National Science Library

    Jackson, Dobra

    2001-01-01

    .... RAD52 has specific interactions with RAD51, RPA and DNA (1,2,3). The binding of RAD52 to ends of double-strand breaks has been found to be a key initiation step to DNA repair by homologous recombination...

  5. Gamma-ray induced double-strand breaks in DNA resulting from randomly-inflicted single-strand breaks: temporal local denaturation, a new radiation phenomenon?

    NARCIS (Netherlands)

    Schans, G.P. van der

    1978-01-01

    The induction of single- and double-strand breaks in DNA by γ-rays has been measured. The maximum number of nucleotide paris (a) between two independently induced single-strand breaks in opposite strands of the DNA which cannot prevent the occurrence of a double-strand break was found to amount to

  6. Modeling the yield of double-strand breaks due to formation of multiply damaged sites in irradiated plasmid DNA

    International Nuclear Information System (INIS)

    Xapsos, M.A.; Pogozelski, W.K.

    1996-01-01

    Although double-strand breaks have long been recognized as an important type of DNa lesion, it is well established that this broad class of damage does not correlate well with indicators of the effectiveness of radiation as the cellular level. Assays of double-strand breaks do not distinguish the degree of complexity or clustering of singly damaged sites produced in a single energy deposition event, which is currently hypothesized to be key to understanding cellular end points. As a step toward this understanding, double-strand breaks that are formed proportionally to dose in plasmid DNA are analyzed from the mechanistic aspect to evaluate the yield that arises from multiply damaged sites as hypothesized by Ward (Prog. Nucleic Acid Res. Mol. Biol. 35, 95-125, 1988) and Goodhead (Int. J. Radiat. Biol. 65, 7-17, 1994) as opposed to the yield that arises form single hydroxyl radicals as hypothesized by Siddiqi and Bothe (Radiat. Res. 112, 449-463, 1987). For low-LET radiation such as γ rays, the importance of multiply damaged sites is shown to increase with the solution's hydroxyl radical scavenging capacity. For moderately high-LET radiation such as 100 keV/μm helium ions, a much different behavior is observed. In this case, a large fraction of double-strand breaks are formed as a result of multiply damaged sties over a broad range of scavenging conditions. Results also indicate that the RBE for common cellular end points correlates more closely with the RBE for common cellular end points correlates more closely with the RBE for multiply damaged sites than with the RBE for total double-strand breaks over a range of LET up to at least 100 keV/μm. 22 refs., 3 figs., 2 tabs

  7. Poly(ADP-ribose polymerase (PARP-1 is not involved in DNA double-strand break recovery

    Directory of Open Access Journals (Sweden)

    Fernet Marie

    2003-07-01

    Full Text Available Abstract Background The cytotoxicity and the rejoining of DNA double-strand breaks induced by γ-rays, H2O2 and neocarzinostatin, were investigated in normal and PARP-1 knockout mouse 3T3 fibroblasts to determine the role of poly(ADP-ribose polymerase (PARP-1 in DNA double-strand break repair. Results PARP-1-/- were considerably more sensitive than PARP-1+/+ 3T3s to induced cell kill by γ-rays and H2O2. However, the two cell lines did not show any significant difference in the susceptibility to neocarzinostatin below 1.5 nM drug. Restoration of PARP-1 expression in PARP-1-/- 3T3s by retroviral transfection of the full PARP-1 cDNA did not induce any change in neocarzinostatin response. Moreover the incidence and the rejoining kinetics of neocarzinostatin-induced DNA double-strand breaks were identical in PARP-1+/+ and PARP-1-/- 3T3s. Poly(ADP-ribose synthesis following γ-rays and H2O2 was observed in PARP-1-proficient cells only. In contrast neocarzinostatin, even at supra-lethal concentration, was unable to initiate PARP-1 activation yet it induced H2AX histone phosphorylation in both PARP1+/+ and PARP-1-/- 3T3s as efficiently as γ-rays and H2O2. Conclusions The results show that PARP-1 is not a major determinant of DNA double-strand break recovery with either strand break rejoining or cell survival as an endpoint. Even though both PARP-1 and ATM activation are major determinants of the cell response to γ-rays and H2O2, data suggest that PARP-1-dependent poly(ADP-ribose synthesis and ATM-dependent H2AX phosphorylation, are not inter-related in the repair pathway of neocarzinostatin-induced DNA double-strand breaks.

  8. Short double-stranded RNAs with an overhanging 5' ppp-nucleotide, as found in arenavirus genomes, act as RIG-I decoys.

    Science.gov (United States)

    Marq, Jean-Baptiste; Hausmann, Stéphane; Veillard, Nicolas; Kolakofsky, Daniel; Garcin, Dominique

    2011-02-25

    Arenavirus RNA genomes are initiated by a "prime and realign" mechanism, such that the initiating GTP is found as a single unpaired (overhanging) nucleotide when the complementary genome ends anneal to form double-stranded (ds) RNA panhandle structures. dsRNAs modeled on these structures do not induce interferon (IFN), as opposed to blunt-ended (5' ppp)dsRNA. This study examines whether these viral structures can also act as decoys, by trapping RIG-I in inactive dsRNA complexes. We examined the ability of various dsRNAs to activate the RIG-I ATPase (presumably a measure of helicase translocation on dsRNA) relative to their ability to induce IFN. We found that there is no simple relationship between these two properties, as if RIG-I can translocate on short dsRNAs without inducing IFN. Moreover, we found that (5' ppp)dsRNAs with a single unpaired 5' ppp-nucleotide can in fact competitively inhibit the ability of blunt-ended (5' ppp)dsRNAs to induce IFN when co-transfected into cells and that this inhibition is strongly dependent on the presence of the 5' ppp. In contrast, (5' ppp)dsRNAs with a single unpaired 5' ppp-nucleotide does not inhibit poly(I-C)-induced IFN activation, which is independent of the presence of a 5' ppp group.

  9. Using Aptamers for Cancer Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    Yun Min Chang

    2013-01-01

    Full Text Available Aptamers are single-stranded synthetic DNA- or RNA-based oligonucleotides that fold into various shapes to bind to a specific target, which includes proteins, metals, and molecules. Aptamers have high affinity and high specificity that are comparable to that of antibodies. They are obtained using iterative method, called (Systematic Evolution of Ligands by Exponential Enrichment SELEX and cell-based SELEX (cell-SELEX. Aptamers can be paired with recent advances in nanotechnology, microarray, microfluidics, and other technologies for applications in clinical medicine. One particular area that aptamers can shed a light on is biomarker discovery. Biomarkers are important in diagnosis and treatment of cancer. In this paper, we will describe ways in which aptamers can be used to discover biomarkers for cancer diagnosis and therapeutics.

  10. Molecular characterization of a complex site-specific radiation-induced DNA double-strand break

    International Nuclear Information System (INIS)

    Datta, K.; Dizdaroglu, M.; Jaruga, P.; Neumann, R.D.; Winters, T.A.

    2003-01-01

    Radiation lethality is a function of radiation-induced DNA double-strand breaks (DSB). Current models propose the lethality of a DSB to be a function of its structural complexity. We present here for the first time a map of damage associated with a site-specific double-strand break produced by decay of 125 I in a plasmid bound by a 125 I-labeled triplex forming oligonucleotide ( 125 I-TFO). The E. coli DNA repair enzymes, endonuclease IV (endo IV), endonuclease III (endo III), and formamidopyrimidine-DNA glycosylase (Fpg), which recognize AP sites, and pyrimidine and purine base damage respectively, were used as probes in this study. 125 I-TFO bound plasmid was incubated with and without DMSO at -80 deg C for 1 month. No significant difference in DSB yield was observed under these conditions. A 32 base pair fragment from the upstream side of the decay site was isolated by restriction digestion and enzymatically probed to identify damage sites. Endo IV treatment of the 5'-end labeled upper strand indicated clustering of AP sites within 3 bases downstream and 7 bases upstream of the targeted base. Also, repeated experiments consistently detected an AP site 4 bases upstream of the 125 Itarget base. This was further supported by complementary results with the 3'-end labeled upper strand. Endo IV analysis of the lower strand also shows clustering of AP sites near the DSB end. Endo III and Fpg probing demonstrated that base damage is also clustered near the targeted break site. DSBs produced in the absence of DMSO displayed a different pattern of enzyme sensitive damage than those produced in the presence of DMSO. Identification of specific base damage types within the restriction fragment containing the DSB end was achieved with GC/MS. Base damage consisted of 8-hydroguanine, 8-hydroxyadenine, and 5-hydroxycytosine. These lesions were observed at relative yields of 8-hydroguanine and 5-hydroxycytosine to 8-hydroxyadenine of 7.4:1 and 4.7:1, respectively, in the absence

  11. HIV-1 subtype C primary isolates exhibit high sensitivity to an anti-gp120 RNA aptamer

    CSIR Research Space (South Africa)

    Mufhandu, Hazel T

    2012-09-01

    Full Text Available against clinical isolates in PBMC (6 iso- lates) and MDM (4 isolates) using a p24 antigen read-out. Three viruses were grown in the presence of increasing aptamer concentrations to select for resistance. The viruses were passaged every 7 days up to 12... BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium...

  12. DNA-Aptamers Binding Aminoglycoside Antibiotics

    Directory of Open Access Journals (Sweden)

    Nadia Nikolaus

    2014-02-01

    Full Text Available Aptamers are short, single stranded DNA or RNA oligonucleotides that are able to bind specifically and with high affinity to their non-nucleic acid target molecules. This binding reaction enables their application as biorecognition elements in biosensors and assays. As antibiotic residues pose a problem contributing to the emergence of antibiotic-resistant pathogens and thereby reducing the effectiveness of the drug to fight human infections, we selected aptamers targeted against the aminoglycoside antibiotic kanamycin A with the aim of constructing a robust and functional assay that can be used for water analysis. With this work we show that aptamers that were derived from a Capture-SELEX procedure targeting against kanamycin A also display binding to related aminoglycoside antibiotics. The binding patterns differ among all tested aptamers so that there are highly substance specific aptamers and more group specific aptamers binding to a different variety of aminoglycoside antibiotics. Also the region of the aminoglycoside antibiotics responsible for aptamer binding can be estimated. Affinities of the different aptamers for their target substance, kanamycin A, are measured with different approaches and are in the micromolar range. Finally, the proof of principle of an assay for detection of kanamycin A in a real water sample is given.

  13. Aptamers as Valuable Molecular Tools in Neurosciences.

    Science.gov (United States)

    Wolter, Olga; Mayer, Günter

    2017-03-08

    Aptamers are short nucleic acids that interact with a variety of targets with high affinity and specificity. They have been shown to inhibit biological functions of cognate target proteins, and they are identifiable by an in vitro selection process, also termed SELEX (Systematic Evolution of Ligands by EXponential enrichment). Being nucleic acids, aptamers can be synthesized chemically or enzymatically. The latter renders RNA aptamers compatible with the cell's own transcription machinery and, thus, expressable inside cells. The synthesis of aptamers by chemical approaches opens up the possibility of producing aptamers on a large scale and enables a straightforward access to introduce modifications in a site-specific manner (e.g., fluorophores or photo-labile groups). These characteristics make aptamers broadly applicable (e.g., as an analytical, diagnostic, or separation tool). In this TechSight , we provide a brief overview on aptamer technology and the potential of aptamers as valuable research tools in neurosciences. Copyright © 2017 the authors 0270-6474/17/372517-07$15.00/0.

  14. Thermodynamics for the Formation of Double-Stranded DNA-Single-Walled Carbon Nanotube Hybrids.

    Science.gov (United States)

    Shiraki, Tomohiro; Tsuzuki, Akiko; Toshimitsu, Fumiyuki; Nakashima, Naotoshi

    2016-03-24

    For the first time, the thermodynamics are described for the formation of double-stranded DNA (ds-DNA)-single-walled carbon nanotube (SWNT) hybrids. This treatment is applied to the exchange reaction of sodium cholate (SC) molecules on SWNTs and the ds-DNAs d(A)20 -d(T)20 and nuclear factor (NF)-κB decoy. UV/Vis/near-IR spectroscopy with temperature variations was used for analyzing the exchange reaction on the SWNTs with four different chiralities: (n,m)=(8,3), (6,5), (7,5), and (8,6). Single-stranded DNAs (ss-DNAs), including d(A)20 and d(T)20, are also used for comparison. The d(A)20-d(T)20 shows a drastic change in its thermodynamic parameters around the melting temperature (Tm ) of the DNA oligomer. No such Tm dependency was measured, owing to high Tm in the NF-κB decoy DNA and no Tm in the ss-DNA. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae

    DEFF Research Database (Denmark)

    Lettier, Gaëlle; Feng, Q.; Mayolo, A.A. de

    2006-01-01

    Homologous recombination (HR) is a source of genomic instability and the loss of heterozygosity in mitotic cells. Since these events pose a severe health risk, it is important to understand the molecular events that cause spontaneous HR. In eukaryotes, high levels of HR are a normal feature of me...... mutants, supporting the view that DNA nicks and single-stranded gaps, rather than DSBs, are major sources of spontaneous HR in mitotic yeast cells....... of meiosis and result from the induction of a large number of DNA double-strand breaks (DSBs). By analogy, it is generally believed that the rare spontaneous mitotic HR events are due to repair of DNA DSBs that accidentally occur during mitotic growth. Here we provide the first direct evidence that most...... spontaneous mitotic HR in Saccharomyces cerevisiae is initiated by DNA lesions other than DSBs. Specifically, we describe a class of rad52 mutants that are fully proficient in inter- and intra-chromosomal mitotic HR, yet at the same time fail to repair DNA DSBs. The conclusions are drawn from genetic analyses...

  16. Rheostatic Control of Cas9-Mediated DNA Double Strand Break (DSB) Generation and Genome Editing.

    Science.gov (United States)

    Rose, John C; Stephany, Jason J; Wei, Cindy T; Fowler, Douglas M; Maly, Dustin J

    2018-02-16

    We recently reported two novel tools for precisely controlling and quantifying Cas9 activity: a chemically inducible Cas9 variant (ciCas9) that can be rapidly activated by small molecules and a ddPCR assay for time-resolved measurement of DNA double strand breaks (DSB-ddPCR). Here, we further demonstrate the potential of ciCas9 to function as a tunable rheostat for Cas9 function. We show that a new highly potent and selective small molecule activator paired with a more tightly regulated ciCas9 variant expands the range of accessible Cas9 activity levels. We subsequently demonstrate that ciCas9 activity levels can be dose-dependently tuned with a small molecule activator, facilitating rheostatic time-course experiments. These studies provide the first insight into how Cas9-mediated DSB levels correlate with overall editing efficiency. Thus, we demonstrate that ciCas9 and our DSB-ddPCR assay permit the time-resolved study of Cas9 DSB generation and genome editing kinetics at a wide range of Cas9 activity levels.

  17. DNA double strand breaks and Hsp70 expression in proton irradiated living cells

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Anja [Institute for Experimental Physics II, University of Leipzig (Germany) and Faculty of Biology, Pharmacy and Psychology, University of Leipzig (Germany)]. E-mail: afiedler@uni-leipzig.de; Reinert, Tilo [Institute for Experimental Physics II, University of Leipzig (Germany); Tanner, Judith [Clinic and Polyclinic for Radiation Oncology, University of Halle-Wittenberg (Germany); Butz, Tilman [Institute for Experimental Physics II, University of Leipzig (Germany)

    2007-07-15

    DNA double strand breaks (DSBs) in living cells can be directly provoked by ionising radiation. DSBs can be visualized by immunostaining the phosphorylated histone {gamma}H2AX. Our concern was to test the feasibility of {gamma}H2AX staining for a direct visualization of single proton hits. If single protons produce detectable foci, DNA DSBs could be used as 'biological track detectors' for protons. Ionising radiation can also damage proteins indirectly by inducing free radicals. Heat shock proteins (Hsp) help to refold or even degrade the damaged proteins. The level of the most famous heat shock protein Hsp70 is increased by ionising radiation. We investigated the expression of {gamma}H2AX and Hsp70 after cross and line patterned irradiation with counted numbers of 2.25 MeV protons on primary human skin fibroblasts. The proton induced DSBs appear more delocalised than it was expected by the ion hit accuracy. Cooling the cells before the irradiation reduces the delocalisation of DNA DSBs, which is probably caused by the reduced diffusion of DNA damaging agents. Proton irradiation seems to provoke protein damages mainly in the cytoplasm indicated by cytoplasmic Hsp70 aggregates. On the contrary, in control heat shocked cells the Hsp70 was predominantly localized in the cell nucleus. However, the irradiated area could not be recognized, all cells on the Si{sub 3}N{sub 4} window showed a homogenous Hsp70 expression pattern.

  18. Interference in DNA replication can cause mitotic chromosomal breakage unassociated with double-strand breaks.

    Directory of Open Access Journals (Sweden)

    Mari Fujita

    Full Text Available Morphological analysis of mitotic chromosomes is used to detect mutagenic chemical compounds and to estimate the dose of ionizing radiation to be administered. It has long been believed that chromosomal breaks are always associated with double-strand breaks (DSBs. We here provide compelling evidence against this canonical theory. We employed a genetic approach using two cell lines, chicken DT40 and human Nalm-6. We measured the number of chromosomal breaks induced by three replication-blocking agents (aphidicolin, 5-fluorouracil, and hydroxyurea in DSB-repair-proficient wild-type cells and cells deficient in both homologous recombination and nonhomologous end-joining (the two major DSB-repair pathways. Exposure of cells to the three replication-blocking agents for at least two cell cycles resulted in comparable numbers of chromosomal breaks for RAD54(-/-/KU70(-/- DT40 clones and wild-type cells. Likewise, the numbers of chromosomal breaks induced in RAD54(-/-/LIG4(-/- Nalm-6 clones and wild-type cells were also comparable. These data indicate that the replication-blocking agents can cause chromosomal breaks unassociated with DSBs. In contrast with DSB-repair-deficient cells, chicken DT40 cells deficient in PIF1 or ATRIP, which molecules contribute to the completion of DNA replication, displayed higher numbers of mitotic chromosomal breaks induced by aphidicolin than did wild-type cells, suggesting that single-strand gaps left unreplicated may result in mitotic chromosomal breaks.

  19. Stable gene replacement in barley by targeted double-strand break induction.

    Science.gov (United States)

    Watanabe, Koichi; Breier, Ulrike; Hensel, Götz; Kumlehn, Jochen; Schubert, Ingo; Reiss, Bernd

    2016-03-01

    Gene targeting is becoming an important tool for precision genome engineering in plants. During gene replacement, a variant of gene targeting, transformed DNA integrates into the genome by homologous recombination (HR) to replace resident sequences. We have analysed gene targeting in barley (Hordeum vulgare) using a model system based on double-strand break (DSB) induction by the meganuclease I-SceI and a transgenic, artificial target locus. In the plants we obtained, the donor construct was inserted at the target locus by homology-directed DNA integration in at least two transformants obtained in a single experiment and was stably inherited as a single Mendelian trait. Both events were produced by one-sided integration. Our data suggest that gene replacement can be achieved in barley with a frequency suitable for routine application. The use of a codon-optimized nuclease and co-transfer of the nuclease gene together with the donor construct are probably the components important for efficient gene targeting. Such an approach, employing the recently developed synthetic nucleases/nickases that allow DSB induction at almost any sequence of a genome of interest, sets the stage for precision genome engineering as a routine tool even for important crops such as barley. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Methylproamine protects against ionizing radiation by preventing DNA double-strand breaks

    International Nuclear Information System (INIS)

    Sprung, Carl N.; Vasireddy, Raja S.; Karagiannis, Tom C.; Loveridge, Shanon J.; Martin, Roger F.; McKay, Michael J.

    2010-01-01

    Purpose: The majority of cancer patients will receive radiotherapy (RT), therefore, investigations into advances of this modality are important. Conventional RT dose intensities are limited by adverse responses in normal tissues and a primary goal is to ameliorate adverse normal tissue effects. The aim of these experiments is to further our understanding regarding the mechanism of radioprotection by the DNA minor groove binder, methylproamine, in a cellular context at the DNA level. Materials and methods: We used immunocytochemical methods to measure the accumulation of phosphorylated H2AX (γH2AX) foci following ionizing radiation (IR) in patient-derived lymphoblastoid cells exposed to methylproamine. Furthermore, we performed pulsed field gel electrophoresis DNA damage and repair assays to directly interrogate the action of methylproamine on DNA in irradiated cells. Results: We found that methylproamine-treated cells had fewer γH2AX foci after IR compared to untreated cells. Also, the presence of methylproamine decreased the amount of lower molecular weight DNA entering the gel as shown by the pulsed field gel electrophoresis assay. Conclusions: These results suggest that methylproamine acts by preventing the formation of DNA double-strand breaks (dsbs) and support the hypothesis that radioprotection by methylproamine is mediated, at least in part, by decreasing initial DNA damage.

  1. Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks.

    Science.gov (United States)

    Stephanou, Nicolas C; Gao, Feng; Bongiorno, Paola; Ehrt, Sabine; Schnappinger, Dirk; Shuman, Stewart; Glickman, Michael S

    2007-07-01

    Bacterial nonhomologous end joining (NHEJ) is a recently described DNA repair pathway best characterized in mycobacteria. Bacterial NHEJ proteins LigD and Ku have been analyzed biochemically, and their roles in linear plasmid repair in vivo have been verified genetically; yet the contributions of NHEJ to repair of chromosomal DNA damage are unknown. Here we use an extensive set of NHEJ- and homologous recombination (HR)-deficient Mycobacterium smegmatis strains to probe the importance of HR and NHEJ in repairing diverse types of chromosomal DNA damage. An M. smegmatis Delta recA Delta ku double mutant has no apparent growth defect in vitro. Loss of the NHEJ components Ku and LigD had no effect on sensitivity to UV radiation, methyl methanesulfonate, or quinolone antibiotics. NHEJ deficiency had no effect on sensitivity to ionizing radiation in logarithmic- or early-stationary-phase cells but was required for ionizing radiation resistance in late stationary phase in 7H9 but not LB medium. In addition, NHEJ components were required for repair of I-SceI mediated chromosomal double-strand breaks (DSBs), and in the absence of HR, the NHEJ pathway rapidly mutates the chromosomal break site. The molecular outcomes of NHEJ-mediated chromosomal DSB repair involve predominantly single-nucleotide insertions at the break site, similar to previous findings using plasmid substrates. These findings demonstrate that prokaryotic NHEJ is specifically required for DSB repair in late stationary phase and can mediate mutagenic repair of homing endonuclease-generated chromosomal DSBs.

  2. Radiation dose determines the method for quantification of DNA double strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Bulat, Tanja; Keta, Olitija; Korićanac, Lela; Žakula, Jelena; Petrović, Ivan; Ristić-Fira, Aleksandra [University of Belgrade, Vinča Institute of Nuclear Sciences, Belgrade (Serbia); Todorović, Danijela, E-mail: dtodorovic@medf.kg.ac.rs [University of Kragujevac, Faculty of Medical Sciences, Kragujevac (Serbia)

    2016-03-15

    Ionizing radiation induces DNA double strand breaks (DSBs) that trigger phosphorylation of the histone protein H2AX (γH2AX). Immunofluorescent staining visualizes formation of γH2AX foci, allowing their quantification. This method, as opposed to Western blot assay and Flow cytometry, provides more accurate analysis, by showing exact position and intensity of fluorescent signal in each single cell. In practice there are problems in quantification of γH2AX. This paper is based on two issues: the determination of which technique should be applied concerning the radiation dose, and how to analyze fluorescent microscopy images obtained by different microscopes. HTB140 melanoma cells were exposed to γ-rays, in the dose range from 1 to 16 Gy. Radiation effects on the DNA level were analyzed at different time intervals after irradiation by Western blot analysis and immunofluorescence microscopy. Immunochemically stained cells were visualized with two types of microscopes: AxioVision (Zeiss, Germany) microscope, comprising an ApoTome software, and AxioImagerA1 microscope (Zeiss, Germany). Obtained results show that the level of γH2AX is time and dose dependent. Immunofluorescence microscopy provided better detection of DSBs for lower irradiation doses, while Western blot analysis was more reliable for higher irradiation doses. AxioVision microscope containing ApoTome software was more suitable for the detection of γH2AX foci. (author)

  3. Radiation dose determines the method for quantification of DNA double strand breaks

    International Nuclear Information System (INIS)

    Bulat, Tanja; Keta, Olitija; Korićanac, Lela; Žakula, Jelena; Petrović, Ivan; Ristić-Fira, Aleksandra; Todorović, Danijela

    2016-01-01

    Ionizing radiation induces DNA double strand breaks (DSBs) that trigger phosphorylation of the histone protein H2AX (γH2AX). Immunofluorescent staining visualizes formation of γH2AX foci, allowing their quantification. This method, as opposed to Western blot assay and Flow cytometry, provides more accurate analysis, by showing exact position and intensity of fluorescent signal in each single cell. In practice there are problems in quantification of γH2AX. This paper is based on two issues: the determination of which technique should be applied concerning the radiation dose, and how to analyze fluorescent microscopy images obtained by different microscopes. HTB140 melanoma cells were exposed to γ-rays, in the dose range from 1 to 16 Gy. Radiation effects on the DNA level were analyzed at different time intervals after irradiation by Western blot analysis and immunofluorescence microscopy. Immunochemically stained cells were visualized with two types of microscopes: AxioVision (Zeiss, Germany) microscope, comprising an ApoTome software, and AxioImagerA1 microscope (Zeiss, Germany). Obtained results show that the level of γH2AX is time and dose dependent. Immunofluorescence microscopy provided better detection of DSBs for lower irradiation doses, while Western blot analysis was more reliable for higher irradiation doses. AxioVision microscope containing ApoTome software was more suitable for the detection of γH2AX foci. (author)

  4. Radiation dose determines the method for quantification of DNA double strand breaks.

    Science.gov (United States)

    Bulat, Tanja; Keta, Otilija; Korićanac, Lela; Žakula, Jelena; Petrović, Ivan; Ristić-Fira, Aleksandra; Todorović, Danijela

    2016-03-01

    Ionizing radiation induces DNA double strand breaks (DSBs) that trigger phosphorylation of the histone protein H2AX (γH2AX). Immunofluorescent staining visualizes formation of γH2AX foci, allowing their quantification. This method, as opposed to Western blot assay and Flow cytometry, provides more accurate analysis, by showing exact position and intensity of fluorescent signal in each single cell. In practice there are problems in quantification of γH2AX. This paper is based on two issues: the determination of which technique should be applied concerning the radiation dose, and how to analyze fluorescent microscopy images obtained by different microscopes. HTB140 melanoma cells were exposed to γ-rays, in the dose range from 1 to 16 Gy. Radiation effects on the DNA level were analyzed at different time intervals after irradiation by Western blot analysis and immunofluorescence microscopy. Immunochemically stained cells were visualized with two types of microscopes: AxioVision (Zeiss, Germany) microscope, comprising an ApoTome software, and AxioImagerA1 microscope (Zeiss, Germany). Obtained results show that the level of γH2AX is time and dose dependent. Immunofluorescence microscopy provided better detection of DSBs for lower irradiation doses, while Western blot analysis was more reliable for higher irradiation doses. AxioVision microscope containing ApoTome software was more suitable for the detection of γH2AX foci.

  5. Radiation dose determines the method for quantification of DNA double strand breaks

    Directory of Open Access Journals (Sweden)

    TANJA BULAT

    2016-03-01

    Full Text Available ABSTRACT Ionizing radiation induces DNA double strand breaks (DSBs that trigger phosphorylation of the histone protein H2AX (γH2AX. Immunofluorescent staining visualizes formation of γH2AX foci, allowing their quantification. This method, as opposed to Western blot assay and Flow cytometry, provides more accurate analysis, by showing exact position and intensity of fluorescent signal in each single cell. In practice there are problems in quantification of γH2AX. This paper is based on two issues: the determination of which technique should be applied concerning the radiation dose, and how to analyze fluorescent microscopy images obtained by different microscopes. HTB140 melanoma cells were exposed to γ-rays, in the dose range from 1 to 16 Gy. Radiation effects on the DNA level were analyzed at different time intervals after irradiation by Western blot analysis and immunofluorescence microscopy. Immunochemically stained cells were visualized with two types of microscopes: AxioVision (Zeiss, Germany microscope, comprising an ApoTome software, and AxioImagerA1 microscope (Zeiss, Germany. Obtained results show that the level of γH2AX is time and dose dependent. Immunofluorescence microscopy provided better detection of DSBs for lower irradiation doses, while Western blot analysis was more reliable for higher irradiation doses. AxioVision microscope containing ApoTome software was more suitable for the detection of γH2AX foci.

  6. CTCF facilitates DNA double-strand break repair by enhancing homologous recombination repair.

    Science.gov (United States)

    Hilmi, Khalid; Jangal, Maïka; Marques, Maud; Zhao, Tiejun; Saad, Amine; Zhang, Chenxi; Luo, Vincent M; Syme, Alasdair; Rejon, Carlis; Yu, Zhenbao; Krum, Asiev; Fabian, Marc R; Richard, Stéphane; Alaoui-Jamali, Moulay; Orthwein, Alexander; McCaffrey, Luke; Witcher, Michael

    2017-05-01

    The repair of DNA double-strand breaks (DSBs) is mediated via two major pathways, nonhomologous end joining (NHEJ) and homologous recombination (HR) repair. DSB repair is vital for cell survival, genome stability, and tumor suppression. In contrast to NHEJ, HR relies on extensive homology and templated DNA synthesis to restore the sequence surrounding the break site. We report a new role for the multifunctional protein CCCTC-binding factor (CTCF) in facilitating HR-mediated DSB repair. CTCF is recruited to DSB through its zinc finger domain independently of poly(ADP-ribose) polymers, known as PARylation, catalyzed by poly(ADP-ribose) polymerase 1 (PARP-1). CTCF ensures proper DSB repair kinetics in response to γ-irradiation, and the loss of CTCF compromises HR-mediated repair. Consistent with its role in HR, loss of CTCF results in hypersensitivity to DNA damage, inducing agents and inhibitors of PARP. Mechanistically, CTCF acts downstream of BRCA1 in the HR pathway and associates with BRCA2 in a PARylation-dependent manner, enhancing BRCA2 recruitment to DSB. In contrast, CTCF does not influence the recruitment of the NHEJ protein 53BP1 or LIGIV to DSB. Together, our findings establish for the first time that CTCF is an important regulator of the HR pathway.

  7. The Heterochromatic Barrier to DNA Double Strand Break Repair: How to Get the Entry Visa

    Directory of Open Access Journals (Sweden)

    Aaron A. Goodarzi

    2012-09-01

    Full Text Available Over recent decades, a deep understanding of pathways that repair DNA double strand breaks (DSB has been gained from biochemical, structural, biophysical and cellular studies. DNA non-homologous end-joining (NHEJ and homologous recombination (HR represent the two major DSB repair pathways, and both processes are now well understood. Recent work has demonstrated that the chromatin environment at a DSB significantly impacts upon DSB repair and that, moreover, dramatic modifications arise in the chromatin surrounding a DSB. Chromatin is broadly divided into open, transcriptionally active, euchromatin (EC and highly compacted, transcriptionally inert, heterochromatin (HC, although these represent extremes of a spectrum. The HC superstructure restricts both DSB repair and damage response signaling. Moreover, DSBs within HC (HC-DSBs are rapidly relocalized to the EC-HC interface. The damage response protein kinase, ataxia telangiectasia mutated (ATM, is required for HC-DSB repair but is dispensable for the relocalization of HC-DSBs. It has been proposed that ATM signaling enhances HC relaxation in the DSB vicinity and that this is a prerequisite for HC-DSB repair. Hence, ATM is essential for repair of HC-DSBs. Here, we discuss how HC impacts upon the response to DSBs and how ATM overcomes the barrier that HC poses to repair.

  8. Simulating Molecular Interactions of Carbon Nanoparticles with a Double-Stranded DNA Fragment

    Directory of Open Access Journals (Sweden)

    Zhuang Wang

    2015-01-01

    Full Text Available Molecular interactions between carbon nanoparticles (CNPs and a double-stranded deoxyribonucleic acid (dsDNA fragment were investigated using molecular dynamics (MD simulations. Six types of CNPs including fullerenes (C60 and C70, (8,0 single-walled carbon nanotube (SWNT, (8,0 double-walled carbon nanotube (DWNT, graphene quantum dot (GQD, and graphene oxide quantum dot (GOQD were studied. Analysis of the best geometry indicates that the dsDNA fragment can bind to CNPs through pi-stacking and T-shape. Moreover, C60, DWNT, and GOQD bind to the dsDNA molecules at the minor groove of the nucleotide, and C70, SWNT, and GQD bind to the dsDNA molecules at the hydrophobic ends. Estimated interaction energy implies that van der Waals force may mainly contribute to the mechanisms for the dsDNA-C60, dsDNA-C70, and dsDNA-SWNT interactions and electrostatic force may contribute considerably to the dsDNA-DWNT, dsDNA-GQD, and dsDNA-GOQD interactions. On the basis of the results from large-scale MD simulations, it was found that the presence of the dsDNA enhances the dispersion of C60, C70, and SWNT in water and has a slight impact on DWNT, GQD, and GOQD.

  9. A study of double stranded DNA adsorption on aluminum surface by means of electrochemical impedance spectroscopy.

    Science.gov (United States)

    Heli, H

    2014-04-01

    Immobilization of DNA on the solid surfaces is one of the goals in bio- and nano-technologies. Adsorption of double stranded DNA on the surface of aluminum was electrochemically studied by means of impedance spectroscopy. Nyquist diagram of aluminum in a tris (hydroxymethyl) ammoniummethane-HCl (Tris-HCl) buffer solution, pH 7.4 consisted of two overlapped capacitive semicircles. The high-frequency semicircle was related to the passivity of Cl(-)-containing aluminum species in the oxide layer, and low-frequency semicircle was attributed to metal dissolution. When DNA was added to the Tris-HCl buffer solution, Nyquist diagrams represented an inductive loop at low frequencies due to the adsorption of DNA on the pre-covered aluminum surface by hydroxy-contained species. The DNA adsorption on the aluminum surface was also confirmed by X-ray photoelectron spectroscopy. Open circuit potential variation with time also indicated the chemical adsorption of DNA on the aluminum surface. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Castration radiosensitizes prostate cancer tissue by impairing DNA double-strand break repair.

    Science.gov (United States)

    Tarish, Firas L; Schultz, Niklas; Tanoglidi, Anna; Hamberg, Hans; Letocha, Henry; Karaszi, Katalin; Hamdy, Freddie C; Granfors, Torvald; Helleday, Thomas

    2015-11-04

    Chemical castration improves responses to radiotherapy in prostate cancer, but the mechanism is unknown. We hypothesized that this radiosensitization is caused by castration-mediated down-regulation of nonhomologous end joining (NHEJ) repair of DNA double-strand breaks (DSBs). To test this, we enrolled 48 patients with localized prostate cancer in two arms of the study: either radiotherapy first or radiotherapy after neoadjuvant castration treatment. We biopsied patients at diagnosis and before and after castration and radiotherapy treatments to monitor androgen receptor, NHEJ, and DSB repair in verified cancer tissue. We show that patients receiving neoadjuvant castration treatment before radiotherapy had reduced amounts of the NHEJ protein Ku70, impaired radiotherapy-induced NHEJ activity, and higher amounts of unrepaired DSBs, measured by γ-H2AX foci in cancer tissues. This study demonstrates that chemical castration impairs NHEJ activity in prostate cancer tissue, explaining the improved response of patients with prostate cancer to radiotherapy after chemical castration. Copyright © 2015, American Association for the Advancement of Science.

  11. The Ku heterodimer and the metabolism of single-ended DNA double-strand breaks.

    Science.gov (United States)

    Balestrini, Alessia; Ristic, Dejan; Dionne, Isabelle; Liu, Xiao Z; Wyman, Claire; Wellinger, Raymund J; Petrini, John H J

    2013-06-27

    Single-ended double-strand breaks (DSBs) are a common form of spontaneous DNA break, generated when the replisome encounters a discontinuity in the DNA template. Given their prevalence, understanding the mechanisms governing the fate(s) of single-ended DSBs is important. We describe the influence of the Ku heterodimer and Mre11 nuclease activity on processing of single-ended DSBs. Separation-of-function alleles of yku70 were derived that phenocopy Ku deficiency with respect to single-ended DSBs but remain proficient for NHEJ. The Ku mutants fail to regulate Exo1 activity, and bypass the requirement for Mre11 nuclease activity in the repair of camptothecin-induced single-ended DSBs. Ku mutants exhibited reduced affinity for DNA ends, manifest as both reduced end engagement and enhanced probability of diffusing inward on linear DNA. This study reveals an interplay between Ku and Mre11 in the metabolism of single-ended DSBs that is distinct from repair pathway choice at double-ended DSBs. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  12. The Ku Heterodimer and the Metabolism of Single-Ended DNA Double-Strand Breaks

    Directory of Open Access Journals (Sweden)

    Alessia Balestrini

    2013-06-01

    Full Text Available Single-ended double-strand breaks (DSBs are a common form of spontaneous DNA break, generated when the replisome encounters a discontinuity in the DNA template. Given their prevalence, understanding the mechanisms governing the fate(s of single-ended DSBs is important. We describe the influence of the Ku heterodimer and Mre11 nuclease activity on processing of single-ended DSBs. Separation-of-function alleles of yku70 were derived that phenocopy Ku deficiency with respect to single-ended DSBs but remain proficient for NHEJ. The Ku mutants fail to regulate Exo1 activity, and bypass the requirement for Mre11 nuclease activity in the repair of camptothecin-induced single-ended DSBs. Ku mutants exhibited reduced affinity for DNA ends, manifest as both reduced end engagement and enhanced probability of diffusing inward on linear DNA. This study reveals an interplay between Ku and Mre11 in the metabolism of single-ended DSBs that is distinct from repair pathway choice at double-ended DSBs.

  13. Multiple-pathway analysis of double-strand break repair mutations in Drosophila.

    Directory of Open Access Journals (Sweden)

    Dena M Johnson-Schlitz

    2007-04-01

    Full Text Available The analysis of double-strand break (DSB repair is complicated by the existence of several pathways utilizing a large number of genes. Moreover, many of these genes have been shown to have multiple roles in DSB repair. To address this complexity we used a repair reporter construct designed to measure multiple repair outcomes simultaneously. This approach provides estimates of the relative usage of several DSB repair pathways in the premeiotic male germline of Drosophila. We applied this system to mutations at each of 11 repair loci plus various double mutants and altered dosage genotypes. Most of the mutants were found to suppress one of the pathways with a compensating increase in one or more of the others. Perhaps surprisingly, none of the single mutants suppressed more than one pathway, but they varied widely in how the suppression was compensated. We found several cases in which two or more loci were similar in which pathway was suppressed while differing in how this suppression was compensated. Taken as a whole, the data suggest that the choice of which repair pathway is used for a given DSB occurs by a two-stage "decision circuit" in which the DSB is first placed into one of two pools from which a specific pathway is then selected.

  14. Physical and biological parameters affecting DNA double strand break misrejoining in mammalian cells

    International Nuclear Information System (INIS)

    Kuehne, M.; Rothkamm, K.; Loebrich, M.

    2002-01-01

    In an attempt to investigate the effect of radiation quality, dose and specific repair pathways on correct and erroneous rejoining of DNA double strand breaks (DSBs), an assay was applied that allows the identification and quantification of incorrectly rejoined DSB ends produced by ionising radiation. While substantial misrejoining occurs in mammalian cells after high acute irradiation doses, decreasing misrejoining frequencies were observed in dose fractionation experiments with X rays. In line with this finding, continuous irradiation with gamma rays at low dose rate leads to non detectable misrejoining. This indicates that the probability for a DSB to be misrejoined decreases drastically when DSBs are separated in time and space. The same dose fractionation approach was applied to determine DSB misrejoining after a particle exposure. In contrast to the results with X rays, there was no significant decrease in DSB misrejoining with increasing fractionation. This suggests that DSB misrejoining after a irradiation is not significantly affected by a separation of particle tracks. To identify the enzymatic pathways that are involved in DSB misrejoining, cell lines deficient in non-homologous end-joining (NHEJ) were examined. After high X ray doses, DSB misrejoining is considerable reduced in NHEJ mutants. Low dose rate experiments show elevated DSB misrejoining in NHEJ mutants compared with wild-type cells. The authors propose that NHEJ serves as an efficient pathway for rejoining correct break ends in situations of separated breaks but generates genomic rearrangements if DSBs are close in time and space. (author)

  15. Quantification and genome-wide mapping of DNA double-strand breaks.

    Science.gov (United States)

    Grégoire, Marie-Chantal; Massonneau, Julien; Leduc, Frédéric; Arguin, Mélina; Brazeau, Marc-André; Boissonneault, Guylain

    2016-12-01

    DNA double-strand breaks (DSBs) represent a major threat to the genetic integrity of the cell. Knowing both their genome-wide distribution and number is important for a better assessment of genotoxicity at a molecular level. Available methods may have underestimated the extent of DSBs as they are based on markers specific to those undergoing active repair or may not be adapted for the large diversity of naturally occurring DNA ends. We have established conditions for an efficient first step of DNA nick and gap repair (NGR) allowing specific determination of DSBs by end labeling with terminal transferase. We used DNA extracted from HeLa cells harboring an I-SceI cassette to induce a targeted nick or DSB and demonstrated by immunocapture of 3'-OH that a prior step of NGR allows specific determination of loci-specific or genome wide DSBs. This method can be applied to the global determination of DSBs using radioactive end labeling and can find several applications aimed at understanding the distribution and kinetics of DSBs formation and repair. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Analysis of DNA double-strand break repair pathways in mice

    International Nuclear Information System (INIS)

    Brugmans, Linda; Kanaar, Roland; Essers, Jeroen

    2007-01-01

    During the last years significant new insights have been gained into the mechanism and biological relevance of DNA double-strand break (DSB) repair in relation to genome stability. DSBs are a highly toxic DNA lesion, because they can lead to chromosome fragmentation, loss and translocations, eventually resulting in cancer. DSBs can be induced by cellular processes such as V(D)J recombination or DNA replication. They can also be introduced by exogenous agents DNA damaging agents such as ionizing radiation or mitomycin C. During evolution several pathways have evolved for the repair of these DSBs. The most important DSB repair mechanisms in mammalian cells are nonhomologous end-joining and homologous recombination. By using an undamaged repair template, homologous recombination ensures accurate DSB repair, whereas the untemplated nonhomologous end-joining pathway does not. Although both pathways are active in mammals, the relative contribution of the two repair pathways to genome stability differs in the different cell types. Given the potential differences in repair fidelity, it is of interest to determine the relative contribution of homologous recombination and nonhomologous end-joining to DSB repair. In this review, we focus on the biological relevance of DSB repair in mammalian cells and the potential overlap between nonhomologous end-joining and homologous recombination in different tissues

  17. DNA double strand breaks and Hsp70 expression in proton irradiated living cells

    International Nuclear Information System (INIS)

    Fiedler, Anja; Reinert, Tilo; Tanner, Judith; Butz, Tilman

    2007-01-01

    DNA double strand breaks (DSBs) in living cells can be directly provoked by ionising radiation. DSBs can be visualized by immunostaining the phosphorylated histone γH2AX. Our concern was to test the feasibility of γH2AX staining for a direct visualization of single proton hits. If single protons produce detectable foci, DNA DSBs could be used as 'biological track detectors' for protons. Ionising radiation can also damage proteins indirectly by inducing free radicals. Heat shock proteins (Hsp) help to refold or even degrade the damaged proteins. The level of the most famous heat shock protein Hsp70 is increased by ionising radiation. We investigated the expression of γH2AX and Hsp70 after cross and line patterned irradiation with counted numbers of 2.25 MeV protons on primary human skin fibroblasts. The proton induced DSBs appear more delocalised than it was expected by the ion hit accuracy. Cooling the cells before the irradiation reduces the delocalisation of DNA DSBs, which is probably caused by the reduced diffusion of DNA damaging agents. Proton irradiation seems to provoke protein damages mainly in the cytoplasm indicated by cytoplasmic Hsp70 aggregates. On the contrary, in control heat shocked cells the Hsp70 was predominantly localized in the cell nucleus. However, the irradiated area could not be recognized, all cells on the Si 3 N 4 window showed a homogenous Hsp70 expression pattern

  18. Assaying Mutations Associated With Gene Conversion Repair of a Double-Strand Break.

    Science.gov (United States)

    Dwivedi, Gajendrahar; Haber, James E

    2018-01-01

    DNA double-strand break (DSB) is a cytotoxic lesion and needs to be repaired immediately. There are several metabolic pathways evolved to repair a DSB. Gene conversion is one of the least error-prone pathway for repair of a DNA DSB. Despite this there is nearly 1000-fold increase in mutation rate associated with gene conversion. Not only higher mutation rate is associated with gene conversion but also there is a very distinct mutation profile compared to spontaneous mutation events. Gene conversion is characterized by the presence of very high frameshift mutation events and other complex mutations that are not present during regular DNA replication. Another DNA DSB repair pathway widely studied is "break-induced replication" (BIR). BIR has been shown to be highly mutagenic in nature. BIR may lead to chromosomal rearrangement and has potential to cause cluster mutations with serious disease implications. In this chapter, the design of assay systems to study various mutation types and experimental procedures to measure specific mutation frequency associated with gene conversion are discussed. © 2018 Elsevier Inc. All rights reserved.

  19. Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks.

    Science.gov (United States)

    Uematsu, Naoya; Weterings, Eric; Yano, Ken-ichi; Morotomi-Yano, Keiko; Jakob, Burkhard; Taucher-Scholz, Gisela; Mari, Pierre-Olivier; van Gent, Dik C; Chen, Benjamin P C; Chen, David J

    2007-04-23

    The DNA-dependent protein kinase catalytic subunit (DNA-PK(CS)) plays an important role during the repair of DNA double-strand breaks (DSBs). It is recruited to DNA ends in the early stages of the nonhomologous end-joining (NHEJ) process, which mediates DSB repair. To study DNA-PK(CS) recruitment in vivo, we used a laser system to introduce DSBs in a specified region of the cell nucleus. We show that DNA-PK(CS) accumulates at DSB sites in a Ku80-dependent manner, and that neither the kinase activity nor the phosphorylation status of DNA-PK(CS) influences its initial accumulation. However, impairment of both of these functions results in deficient DSB repair and the maintained presence of DNA-PK(CS) at unrepaired DSBs. The use of photobleaching techniques allowed us to determine that the kinase activity and phosphorylation status of DNA-PK(CS) influence the stability of its binding to DNA ends. We suggest a model in which DNA-PK(CS) phosphorylation/autophosphorylation facilitates NHEJ by destabilizing the interaction of DNA-PK(CS) with the DNA ends.

  20. DNA Double Strand Break Repair and its Association with Inherited Predispositions to Breast Cancer

    Directory of Open Access Journals (Sweden)

    Scott Rodney J

    2004-02-01

    Full Text Available Abstract Mutations in BRCA1 account for the majority of familial aggregations of early onset breast and ovarian cancer (~70% and about 1/5 of all early onset breast cancer families; in contrast, mutations in BRCA2 account for a smaller proportion of breast/ovarian cancer families and a similar proportion of early onset breast cancer families. BRCA2 has also been shown to be associated with a much more pleiotropic disease spectrum compared to BRCA1. Since the identification of both BRCA1 and BRCA2 investigations into the functions of these genes have revealed that both are associated with the maintenance of genomic integrity via their apparent roles in cellular response to DNA damage, especially their involvement in the process of double strand DNA break repair. This review will focus on the specific roles of both genes and how functional differences may account for the diverse clinical findings observed between families that harbour BRCA1 or BRCA2 mutations.

  1. Inhibition of APOBEC3G Activity Impedes Double-Strand DNA Repair

    Science.gov (United States)

    Prabhu, Ponnandy; Shandilya, Shivender; Britan-Rosich, Elena; Nagler, Adi; Schiffer, Celia A.; Kotler, Moshe

    2015-01-01

    The cellular cytidine deaminase APOBEC3G (A3G) was first described as an anti-HIV-1 restriction factor by directly deaminating reverse transcripts of the viral genome. HIV-1 Vif neutralizes the activity of A3G, primarily by mediating degradation of A3G to establish effective infection in host target cells. Lymphoma cells, which express high amounts of A3G, can restrict Vif-deficient HIV-1. Interestingly, these cells are more stable in the face of treatments that result in dsDNA damage, such as ionizing irradiation (IR) and chemotherapies. Previously, we showed that the Vif-derived peptide (Vif25-39) efficiently inhibits A3G deamination, and increases sensitivity of lymphoma cells to IR. In the current study, we show that additional peptides derived from Vif, A3G and A3F, which contain the LYYF motif, inhibit deamination activity. Each residue in the Vif25-39 sequence moderately contributes to the inhibitory effect, while, replacing a single amino acid in the LYYF motif completely abrogate inhibition of deamination. Treatment of A3G-expressing lymphoma cells exposed to ionizing radiation with the new inhibitory peptides reduces double-strand break (DSB) repair after radiation. Incubation of cultured irradiated lymphoma cells with peptides that inhibit DSB repair halts their propagation. These results suggest that A3G may be a potential therapeutic target amenable to peptide and peptidomimetic inhibition. PMID:26460502

  2. X-ray induced DNA double-strand breakage and rejoining in a radiosensitive human renal carcinoma cell line estimated by CHEF electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Wei, K. (Univ. Clinic for Radiotherapy and Radiobiology, Vienna Univ. (Austria) Inst. of Radiation Medicine, Beijing, BJ (China)); Wandl, E. (Univ. Clinic for Radiotherapy and Radiobiology, Vienna Univ. (Austria)); Kaercher, K.H. (Univ. Clinic for Radiotherapy and Radiobiology, Vienna Univ. (Austria))

    1993-12-01

    Cell intrinsic radiosensitivity is of great importance in radiation therapy, but its molecular basis is still uncertain. Since DNA double strand breakage is considered to be the most important lesion related to cell death induced by ionizing radiation, the relationship between DNA double-strand breakage, repair and cell survival was investigated in three cell lines: Chinese hamster cell (CHO-K1), human fibroblast and human renal carcinoma (Tu 25). The D[sub 0] values after X-irradiation were 1.73, 1.23, and 0.89 Gy, respectively, showing that Tu 25 was the most sensitive among them. DNA double-strand breaks were measured by CHEF electrophoresis, the initial yield of double-strand break per dose in the three cell lines was almost the same, and no correlation to cell survival was found. However, the rejoining capacity for DNA double-strand break differed. After a dose of 20 Gy, the repair rate was markedly lower in Tu 25, with a half repair time of 40 min, as compared with the other two cell lines with half repair times of 15 min. The results strongly supported the correlation between the repair capacity for DNA double-strand break and cell survival. It was concluded that DNA repair capacity is one of the determinants of cell radiosensitivity. Estimation of DNA double-strand break rejoining by CHEF was suggested as a predictive assay for radiosensitivity of human tumor cells. (orig.)

  3. Oral delivery of double-stranded RNAs and siRNAs induces RNAi effects in the potato/tomato psyllid, Bactericerca cockerelli.

    Directory of Open Access Journals (Sweden)

    Hada Wuriyanghan

    Full Text Available The potato/tomato psyllid, Bactericerca cockerelli (B. cockerelli, and the Asian citrus psyllid, Diaphorina citri (D. citri, are very important plant pests, but they are also vectors of phloem-limited bacteria that are associated with two devastating plant diseases. B. cockerelli is the vector of Candidatus Liberibacter psyllaurous (solanacearum, which is associated with zebra chip disease of potatoes, and D. citri is the vector of Ca. Liberibacter asiaticus, which is associated with the Huanglongbing (citrus greening disease that currently threatens the entire Florida citrus industry. Here we used EST sequence information from D. citri to identify potential targets for RNA interference in B. cockerelli. We targeted ubiquitously expressed and gut-abundant mRNAs via injection and oral acquisition of double-stranded RNAs and siRNAs and were able to induce mortality in recipient psyllids. We also showed knockdown of target mRNAs, and that oral acquisition resulted primarily in mRNA knockdown in the psyllid gut. Concurrent with gene knockdown was the accumulation of target specific ∼ 21 nucleotide siRNAs for an abundant mRNA for BC-Actin. These results showed that RNAi can be a powerful tool for gene function studies in psyllids, and give support for continued efforts for investigating RNAi approaches as possible tools for psyllid and plant disease control.

  4. Silencing the buzz: a new approach to population suppression of mosquitoes by feeding larvae double-stranded RNAs.

    Science.gov (United States)

    Whyard, Steve; Erdelyan, Cassidy N G; Partridge, Alison L; Singh, Aditi D; Beebe, Nigel W; Capina, Rupert

    2015-02-12

    Mosquito-borne diseases threaten over half the world's human population, making the need for environmentally-safe mosquito population control tools critical. The sterile insect technique (SIT) is a biological control method that can reduce pest insect populations by releasing a large number of sterile males to compete with wild males for female mates to reduce the number of progeny produced. Typically, males are sterilized using radiation, but such methods can reduce their mating competitiveness. The method is also most effective if only males are produced, but this requires the development of effective sex-sorting methods. Recent efforts to use transgenic methods to produce sterile male mosquitoes have increased interest in using SIT to control some of our most serious disease vectors, but the release of genetically modified mosquitoes will undoubtedly encounter considerable delays as regulatory agencies deal with safety issues and public concerns. Testis genes in the dengue vector Aedes aegypti were identified using a suppression subtractive hybridization technique. Mosquito larvae were fed double-stranded RNAs (dsRNAs) that targeted both the testis genes and a female sex determination gene (doublesex) to induce RNA interference (RNAi) -mediated sterility and inhibition of female development. Fertility and mating competiveness of the treated males were assessed in small-scale mating competition experiments. Feeding mosquito larvae dsRNAs targeting testis genes produced adult males with greatly reduced fertility; several dsRNAs produced males that were highly effective in competing for mates. RNAi-mediated knockdown of the female-specific isoform of doublesex was also effective in producing a highly male-biased population of mosquitoes, thereby overcoming the need to sex-sort insects before release. The sequence-specific gene-silencing mechanism of this RNAi technology renders it adaptable for species-specific application across numerous insect species. We

  5. Positive regulation of DNA double strand break repair activity during differentiation of long life span cells: the example of adipogenesis.

    Directory of Open Access Journals (Sweden)

    Aline Meulle

    Full Text Available Little information is available on the ability of terminally differentiated cells to efficiently repair DNA double strand breaks (DSBs, and one might reasonably speculate that efficient DNA repair of these threatening DNA lesions, is needed in cells of long life span with no or limited regeneration from precursor. Few tissues are available besides neurons that allow the study of DNA DSBs repair activity in very long-lived cells. Adipocytes represent a suitable model since it is generally admitted that there is a very slow turnover of adipocytes in adult. Using both Pulse Field Gel Electrophoresis (PFGE and the disappearance of the phosphorylated form of the histone variant H2AX, we demonstrated that the ability to repair DSBs is increased during adipocyte differentiation using the murine pre-adipocyte cell line, 3T3F442A. In mammalian cells, DSBs are mainly repaired by the non-homologous end-joining pathway (NHEJ that relies on the DNA dependent protein kinase (DNA-PK activity. During the first 24 h following the commitment into adipogenesis, we show an increase in the expression and activity of the catalytic sub-unit of the DNA-PK complex, DNA-PKcs. The increased in DNA DSBs repair activity observed in adipocytes was due to the increase in DNA-PK activity as shown by the use of DNA-PK inhibitor or sub-clones of 3T3F442A deficient in DNA-PKcs using long term RNA interference. Interestingly, the up-regulation of DNA-PK does not regulate the differentiation program itself. Finally, similar positive regulation of DNA-PKcs expression and activity was observed during differentiation of primary culture of pre-adipocytes isolated from human sub-cutaneous adipose tissue. Our results show that DNA DSBs repair activity is up regulated during the early commitment into adipogenesis due to an up-regulation of DNA-PK expression and activity. In opposition to the general view that DNA DSBs repair is decreased during differentiation, our results demonstrate

  6. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis

    Science.gov (United States)

    Jette, Nicholas; Lees-Miller, Susan P.

    2015-01-01

    The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemistry, structure and function of DNA-PK, its roles in DNA double strand break repair and its newly described roles in mitosis and other cellular processes. PMID:25550082

  7. Construction of double-stranded metallosupramolecular polymers with a controlled helicity by combination of salt bridges and metal coordination.

    Science.gov (United States)

    Ikeda, Masato; Tanaka, Yoshie; Hasegawa, Takashi; Furusho, Yoshio; Yashima, Eiji

    2006-05-31

    We describe the construction of the first double-stranded metallosupramolecular helical polymers. We designed and synthesized a supramolecular duplex comprised of complementary m-terphenyl-based strands bearing a chiral amidine or achiral carboxylic acid together with two pyridine groups at the four ends. Supramolecular polymerization of the duplex with cis-PtPh2(DMSO)2 in 1,1,2,2-tetrachloroethane produced the double-stranded metallosupramolecular polymer with a controlled helicity of which the two complementary metallostrands are intertwined through the amidinium-carboxylate salt bridges. The structures and hydrodynamic dimensions of the metallosupramolecular polymers were characterized by 1H NMR, diffusion-ordered NMR, dynamic light scattering, absorption, and CD measurements. The polymeric structure was also visualized by atomic force microscopy.

  8. The ubiquitin-selective segregase VCP/p97 orchestrates the response to DNA double-strand breaks

    DEFF Research Database (Denmark)

    Meerang, Mayura; Ritz, Danilo; Paliwal, Shreya

    2011-01-01

    Unrepaired DNA double-strand breaks (DSBs) cause genetic instability that leads to malignant transformation or cell death. Cells respond to DSBs with the ordered recruitment of signalling and repair proteins to the site of lesion. Protein modification with ubiquitin is crucial for the signalling ...... factor in ubiquitin-governed DNA-damage response, highlighting its importance in guarding genome stability.......Unrepaired DNA double-strand breaks (DSBs) cause genetic instability that leads to malignant transformation or cell death. Cells respond to DSBs with the ordered recruitment of signalling and repair proteins to the site of lesion. Protein modification with ubiquitin is crucial for the signalling...... proper association of 53BP1, BRCA1 and RAD51, three factors critical for DNA repair and genome surveillance mechanisms. Impairment of p97 activity decreases the level of DSB repair and cell survival after exposure to ionizing radiation. These findings identify the p97-UFD1-NPL4 complex as an essential...

  9. Evaluation of the neutral comet assay for detection of alpha-particle induced DNA-double-strand-breaks

    International Nuclear Information System (INIS)

    Hofbauer, Daniela

    2010-01-01

    Aim of this study was to differentiate DNA-double-strand-breaks from DNA-single-strand-breaks on a single cell level, using the comet assay after α- and γ-irradiation. Americium-241 was used as a alpha-irradiation-source, Caesium-137 was used for γ-irradiation. Because of technical problems with both the neutral and alkaline comet assay after irradiation of gastric cancer cells and human lymphocytes, no definite differentiation of DNA-damage was possible.

  10. Viral Double-Stranded RNAs (dsRNAs) from Plants: Alternative Nucleic Acid Substrates for High-Throughput Sequencing.

    Science.gov (United States)

    Marais, Armelle; Faure, Chantal; Bergey, Bernard; Candresse, Thierry

    2018-01-01

    High-throughput sequencing (or next-generation sequencing-NGS) is an emerging technology that allows the detection of plant viruses without any prior knowledge. Various sequencing techniques and various templates can be used as substrate for NGS. This chapter describes an optimized protocol for the extraction of double-stranded RNAs (dsRNAs) from a wide range of plants and for their random amplification prior to NGS sequencing.

  11. The opportunistic pathogen Pseudomonas aeruginosa activates the DNA double-strand break signaling and repair pathway in infected cells

    International Nuclear Information System (INIS)

    Elsen, S.; Collin-Faure, V.; Gidrol, X.; Lemercier, C.

    2013-01-01

    Highly hazardous DNA double-strand breaks can be induced in eukaryotic cells by a number of agents including pathogenic bacterial strains. We have investigated the genotoxic potential of Pseudomonas aeruginosa, an opportunistic pathogen causing devastating nosocomial infections in cystic fibrosis or immunocompromised patients. Our data revealed that infection of immune or epithelial cells by P. aeruginosa triggered DNA strand breaks and phosphorylation of histone H2AX (γH2AX), a marker of DNA double-strand breaks. Moreover, it induced formation of discrete nuclear repair foci similar to gamma-irradiation-induced foci, and containing γH2AX and 53BP1, an adaptor protein mediating the DNA-damage response pathway. Gene deletion, mutagenesis, and complementation in P. aeruginosa identified ExoS bacterial toxin as the major factor involved in γH2AX induction. Chemical inhibition of several kinases known to phosphorylate H2AX demonstrated that Ataxia Telangiectasia Mutated (ATM) was the principal kinase in P. aeruginosa-induced H2AX phosphorylation. Finally, infection led to ATM kinase activation by an auto-phosphorylation mechanism. Together, these data show for the first time that infection by P. aeruginosa activates the DNA double-strand break repair machinery of the host cells. This novel information sheds new light on the consequences of P. aeruginosa infection in mammalian cells. As pathogenic Escherichia coli or carcinogenic Helicobacter pylori can alter genome integrity through DNA double-strand breaks, leading to chromosomal instability and eventually cancer, our findings highlight possible new routes for further investigations of P. aeruginosa in cancer biology and they identify ATM as a potential target molecule for drug design. (authors)

  12. Radiation-induced DNA double strand breaks in Ehrlich ascites tumour cells and their possible effects on cell survival

    International Nuclear Information System (INIS)

    Bloecher, D.

    1981-01-01

    A method to prepare high-molecular, pure DNA with the aid of enzymes, detergents, and heat treatment is presented. A sedimentation technique with neutral density gradients has been introduced which permits mass separation and molecular mass analysis of high-molecular DNA (msub(r) 10 ). Using this method, the induction of DNA double strand breaks (DSB) in the dose range between 10 Gy [de

  13. Do Exogenous DNA Double-Strand Breaks Change Incomplete Synapsis and Chiasma Localization in the Grasshopper Stethophyma grossum?

    OpenAIRE

    Calvente, Adela; Santos, Juan Luis; Rufas, Julio S.

    2016-01-01

    Meiotic recombination occurs as a programmed event that initiates by the formation of DNA double-strand breaks (DSBs) that give rise to the formation of crossovers that are observed as chiasmata. Chiasmata are essential for the accurate chromosome segregation and the generation of new combinations of parental alleles. Some treatments that provoke exogenous DSBs also lead to alterations in the recombination pattern of some species in which full homologous synapsis is achieved at pachytene. We ...

  14. Hydroxylation of deoxyguanosine at 5' site of GG and GGG sequences in double-stranded DNA induced by carbamoyl radicals.

    Science.gov (United States)

    Midorikawa, Kaoru; Hirakawa, Kazutaka; Kawanishi, Shosuke

    2002-06-01

    Free radicals generated by chemicals can cause sequence-specific DNA damage and play important roles in mutagenesis and carcinogenesis. Carbamoyl group (CONH2) and its derived groups (CONR2) occur as natural products and synthetic chemical compounds. We have investigated the DNA damage by carbamoyl radicals .(CONH2), one of carbon-centered radicals. Electron spin resonance (ESR) spectroscopic study has demonstrated that carbamoyl radicals were generated from formamide by treatment with H2O2 plus Cu(II), and from azodicarbonamide by treatment with Cu(II). We have investigated sequence specificity of DNA damage induced by carbamoyl radicals using 32P-labeled DNA fragments obtained from the human c-Ha-ras-1 and p53 genes. Treatment of double-stranded DNA with carbamoyl radicals induced an alteration of guanine residues, and subsequent treatment with piperidine or Fpg protein led to chain cleavages at 5'-G of GG and GGG sequences. Carbamoyl radicals enhanced Cu(II)/H2O2-mediated formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in double-stranded DNA more efficiently than that in single-stranded DNA. These results shows that carbamoyl radicals specifically induced hydroxylation of deoxyguanosine at 5' site of GG and GGG sequences in double-stranded DNA.

  15. Oxidative DNA double strand breaks and autophagy in the antitumor effect of sterically hindered platinum(II) complexes in NSCLCs.

    Science.gov (United States)

    Chen, Feihong; Wang, Xinyi; Jin, Xiufeng; Zhao, Jian; Gou, Shaohua

    2017-05-09

    A series of novel platinum(II) complexes with (1R,2R)-N1,N2-diisobutyl-1,2-diaminocyclohexane as a carrier ligand, while N1,N2-diisobutyl moiety serving as steric hindrance were designed, synthesized and characterized. The in vitro biological assays demonstrated that complex 3 had increased cytotoxicity against lung cancer cells, especially non-small-cell lung cancer (NSCLC) compared to its mono-substituted complex 3a, indicating that the sterically hindered alkyl moieties have significant influences on its antitumor property. However, the mechanism still remains unclear. The further studies revealed that complex 3 could induce ROS overproduction, severe DNA double strands breaks and inhibit the activation of DNA damage repair proteins within nucleus, leading to cell-cycle arrest and cell death. Moreover, complex 3 could induce autophagy via the accumulation of autophagic vacuoles and alterations of autophagic protein expression. Interestingly, the ROS scavengers, N-acetyl-cysteine (NAC) could reverse complex 3-induced DNA double strands breaks and autophagic responses more significantly compared to complex 3a. The results demonstrated that the ROS generation plays an important role in the DNA double strands breaks and autophagic responses in the antitumor effect of complex 3 with N1,N2-diisobutyl moiety. Our study offered a novel therapeutic strategy and put new insights into the anticancer research of the complexes with N1,N2-diisobutyl moiety served as steric hindrance.

  16. A link between double-strand break-related repair and V(D)J recombination: the scid mutation

    International Nuclear Information System (INIS)

    Hendrickson, E.A.; Qin, X.Q.; Bump, E.A.; Schatz, D.G.; Oettinger, M.; Weaver, D.T.

    1991-01-01

    We show here that mammalian site-specific recombination and DNA-repair pathways share a common factor. The effects of DNA-damaging agents on cell lines derived from mice homozygous for the scid (severe combined immune deficiency) mutation were studied. Surprisingly, all scid cell lines exhibited a profound hypersensitivity to DNA-damaging agents that caused double-strand breaks (x-irradiation and bleomycin) but not to other chemicals that caused single-strand breaks or cross-links. Neutral filter elution assays demonstrated that the x-irradiation hypersensitivity could be correlated with a deficiency in repairing double-strand breaks. These data suggest that the scid gene product is involved in two pathways: DNA repair of random double-strand breaks and the site-specific and lymphoid-restricted variable-(diversity)-joining [V(D)J] DNA rearrangement process. We propose that the scid gene product performs a similar function in both pathways and may be a ubiquitous protein

  17. Restriction endonucleases from invasive Neisseria gonorrhoeae cause double-strand breaks and distort mitosis in epithelial cells during infection.

    Science.gov (United States)

    Weyler, Linda; Engelbrecht, Mattias; Mata Forsberg, Manuel; Brehwens, Karl; Vare, Daniel; Vielfort, Katarina; Wojcik, Andrzej; Aro, Helena

    2014-01-01

    The host epithelium is both a barrier against, and the target for microbial infections. Maintaining regulated cell growth ensures an intact protective layer towards microbial-induced cellular damage. Neisseria gonorrhoeae infections disrupt host cell cycle regulation machinery and the infection causes DNA double strand breaks that delay progression through the G2/M phase. We show that intracellular gonococci upregulate and release restriction endonucleases that enter the nucleus and damage human chromosomal DNA. Bacterial lysates containing restriction endonucleases were able to fragment genomic DNA as detected by PFGE. Lysates were also microinjected into the cytoplasm of cells in interphase and after 20 h, DNA double strand breaks were identified by 53BP1 staining. In addition, by using live-cell microscopy and NHS-ester stained live gonococci we visualized the subcellular location of the bacteria upon mitosis. Infected cells show dysregulation of the spindle assembly checkpoint proteins MAD1 and MAD2, impaired and prolonged M-phase, nuclear swelling, micronuclei formation and chromosomal instability. These data highlight basic molecular functions of how gonococcal infections affect host cell cycle regulation, cause DNA double strand breaks and predispose cellular malignancies.

  18. Lack of dependence on p53 for DNA double strand break repair of episomal vectors in human lymphoblasts

    Science.gov (United States)

    Kohli, M.; Jorgensen, T. J.

    1999-01-01

    The p53 tumor suppressor gene has been shown to be involved in a variety of repair processes, and recent findings have suggested that p53 may be involved in DNA double strand break repair in irradiated cells. The role of p53 in DNA double strand break repair, however, has not been fully investigated. In this study, we have constructed a novel Epstein-Barr virus (EBV)-based shuttle vector, designated as pZEBNA, to explore the influence of p53 on DNA strand break repair in human lymphoblasts, since EBV-based vectors do not inactivate the p53 pathway. We have compared plasmid survival of irradiated, restriction enzyme linearized, and calf intestinal alkaline phosphatase (CIP)-treated pZEBNA with a Simian virus 40 (SV40)-based shuttle vector, pZ189, in TK6 (wild-type p53) and WTK1 (mutant p53) lymphoblasts and determined that p53 does not modulate DNA double strand break repair in these cell lines. Copyright 1999 Academic Press.

  19. Probing Enhanced Double-Strand Break Formation at Abasic Sites within Clustered Lesions in Nucleosome Core Particles.

    Science.gov (United States)

    Banerjee, Samya; Chakraborty, Supratim; Jacinto, Marco Paolo; Paul, Michael D; Balster, Morgan V; Greenberg, Marc M

    2017-01-10

    DNA is rapidly cleaved under mild alkaline conditions at apyrimidinic/apurinic sites, but the half-life is several weeks in phosphate buffer (pH 7.5). However, abasic sites are ∼100-fold more reactive within nucleosome core particles (NCPs). Histone proteins catalyze the strand scission, and at superhelical location 1.5, the histone H4 tail is largely responsible for the accelerated cleavage. The rate constant for strand scission at an abasic site is enhanced further in a nucleosome core particle when it is part of a bistranded lesion containing a proximal strand break. Cleavage of this form results in a highly deleterious double-strand break. This acceleration is dependent upon the position of the abasic lesion in the NCP and its structure. The enhancement in cleavage rate at an apurinic/apyrimidinic site rapidly drops off as the distance between the strand break and abasic site increases and is negligible once the two forms of damage are separated by 7 bp. However, the enhancement of the rate of double-strand break formation increases when the size of the gap is increased from one to two nucleotides. In contrast, the cleavage rate enhancement at 2-deoxyribonolactone within bistranded lesions is more modest, and it is similar in free DNA and nucleosome core particles. We postulate that the enhanced rate of double-strand break formation at bistranded lesions containing apurinic/apyrimidinic sites within nucleosome core particles is a general phenomenon and is due to increased DNA flexibility.

  20. 3′-Terminated Overhangs Regulate DNA Double-Strand Break Processing in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Edyta Đermić

    2017-09-01

    Full Text Available Double-strand breaks (DSBs are lethal DNA lesions, which are repaired by homologous recombination in Escherichia coli. To study DSB processing in vivo, we induced DSBs into the E. coli chromosome by γ-irradiation and measured chromosomal degradation. We show that the DNA degradation is regulated by RecA protein concentration and its rate of association with single-stranded DNA (ssDNA. RecA decreased DNA degradation in wild-type, recB, and recD strains, indicating that it is a general phenomenon in E. coli. On the other hand, DNA degradation was greatly reduced and unaffected by RecA in the recB1080 mutant (which produces long overhangs and in a strain devoid of four exonucleases that degrade a 3′ tail (ssExos. 3′–5′ ssExos deficiency is epistatic to RecA deficiency concerning DNA degradation, suggesting that bound RecA is shielding the 3′ tail from degradation by 3′–5′ ssExos. Since 3′ tail preservation is common to all these situations, we infer that RecA polymerization constitutes a subset of mechanisms for preserving the integrity of 3′ tails emanating from DSBs, along with 3′ tail’s massive length, or prevention of their degradation by inactivation of 3′–5′ ssExos. Thus, we conclude that 3′ overhangs are crucial in controlling the extent of DSB processing in E. coli. This study suggests a regulatory mechanism for DSB processing in E. coli, wherein 3′ tails impose a negative feedback loop on DSB processing reactions, specifically on helicase reloading onto dsDNA ends.

  1. Estimated yield of double-strand breaks from internal exposure to tritium

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing [Health Canada, Radiation Protection Bureau, Ottawa, ON (Canada)

    2012-08-15

    Internal exposure to tritium may result in DNA lesions. Of those, DNA double-strand breaks (DSBs) are believed to be important. However, experimental and computational data of DSBs induction by tritium are very limited. In this study, microdosimetric characteristics of uniformly distributed tritium were determined in dimensions of critical significance in DNA DSBs. Those characteristics were used to identify other particles comparable to tritium in terms of microscopic energy deposition. The yield of DSBs could be strongly dependent on biological systems and cellular environments. After reviewing theoretically predicted and experimentally determined DSB yields available in the literature for low-energy electrons and high-energy protons of comparable microdosimetric characteristics to tritium in the dimensions relevant to DSBs, it is estimated that the average DSB yields of 2.7 x 10{sup -11}, 0.93 x 10{sup -11}, 2.4 x 10{sup -11} and 1.6 x 10{sup -11} DSBs Gy{sup -1} Da{sup -1} could be reasonable estimates for tritium in plasmid DNAs, yeast cells, Chinese hamster V79 cells and human fibroblasts, respectively. If a biological system is not specified, the DSB yield from tritium exposure can be estimated as (2.3 ± 0.7) x 10{sup -11} DSBs Gy{sup -1} Da{sup -1}, which is a simple average over experimentally determined yields of DSBs for low-energy electrons in various biological systems without considerations of variations caused by different techniques used and obvious differences among different biological systems where the DSB yield was measured. (orig.)

  2. Towards quantitative viromics for both double-stranded and single-stranded DNA viruses

    Directory of Open Access Journals (Sweden)

    Simon Roux

    2016-12-01

    Full Text Available Background Viruses strongly influence microbial population dynamics and ecosystem functions. However, our ability to quantitatively evaluate those viral impacts is limited to the few cultivated viruses and double-stranded DNA (dsDNA viral genomes captured in quantitative viral metagenomes (viromes. This leaves the ecology of non-dsDNA viruses nearly unknown, including single-stranded DNA (ssDNA viruses that have been frequently observed in viromes, but not quantified due to amplification biases in sequencing library preparations (Multiple Displacement Amplification, Linker Amplification or Tagmentation. Methods Here we designed mock viral communities including both ssDNA and dsDNA viruses to evaluate the capability of a sequencing library preparation approach including an Adaptase step prior to Linker Amplification for quantitative amplification of both dsDNA and ssDNA templates. We then surveyed aquatic samples to provide first estimates of the abundance of ssDNA viruses. Results Mock community experiments confirmed the biased nature of existing library preparation methods for ssDNA templates (either largely enriched or selected against and showed that the protocol using Adaptase plus Linker Amplification yielded viromes that were ±1.8-fold quantitative for ssDNA and dsDNA viruses. Application of this protocol to community virus DNA from three freshwater and three marine samples revealed that ssDNA viruses as a whole represent only a minor fraction (<5% of DNA virus communities, though individual ssDNA genomes, both eukaryote-infecting Circular Rep-Encoding Single-Stranded DNA (CRESS-DNA viruses and bacteriophages from the Microviridae family, can be among the most abundant viral genomes in a sample. Discussion Together these findings provide empirical data for a new virome library preparation protocol, and a first estimate of ssDNA virus abundance in aquatic systems.

  3. Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways.

    Science.gov (United States)

    Gupta, Richa; Barkan, Daniel; Redelman-Sidi, Gil; Shuman, Stewart; Glickman, Michael S

    2011-01-01

    Bacterial pathogens rely on their DNA repair pathways to resist genomic damage inflicted by the host. DNA double-strand breaks (DSBs) are especially threatening to bacterial viability. DSB repair by homologous recombination (HR) requires nucleases that resect DSB ends and a strand exchange protein that facilitates homology search. RecBCD and RecA perform these functions in Escherichia coli and constitute the major pathway of error-free DSB repair. Mycobacteria, including the human pathogen M. tuberculosis, elaborate an additional error-prone pathway of DSB repair via non-homologous end-joining (NHEJ) catalysed by Ku and DNA ligase D (LigD). Little is known about the relative contributions of HR and NHEJ to mycobacterial chromosome repair, the factors that dictate pathway choice, or the existence of additional DSB repair pathways. Here we demonstrate that Mycobacterium smegmatis has three DSB repair pathway options: HR, NHEJ and a novel mechanism of single-strand annealing (SSA). Inactivation of NHEJ or SSA is compensated by elevated HR. We find that mycobacterial RecBCD does not participate in HR or confer resistance to ionizing radiation (IR), but is required for the RecA-independent SSA pathway. In contrast, the mycobacterial helicase-nuclease AdnAB participates in the RecA-dependent HR pathway, and is a major determinant of resistance to IR and oxidative DNA damage. These findings reveal distinctive features of mycobacterial DSB repair, most notably the dedication of the RecBCD and AdnAB helicase-nuclease machines to distinct repair pathways. © 2010 Blackwell Publishing Ltd.

  4. Pathways for double-strand break repair in genetically unstable Z-DNA-forming sequences.

    Science.gov (United States)

    Kha, Diem T; Wang, Guliang; Natrajan, Nithya; Harrison, Lynn; Vasquez, Karen M

    2010-05-14

    DNA can adopt many structures that differ from the canonical B-form, and several of these non-canonical DNA structures have been implicated in genetic instability associated with human disease. Earlier, we found that Z-DNA causes DNA double-strand breaks (DSBs) in mammalian cells that can result in large-scale deletions and rearrangements. In contrast, the same Z-DNA-forming CG repeat in Escherichia coli resulted in only small contractions or expansions within the repeat. This difference in the Z-DNA-induced mutation spectrum between mammals and bacteria might be due to different mechanisms for DSB repair; in mammalian cells, non-homologous end-joining (NHEJ) is a major DSB repair pathway, while E. coli do not contain this system and typically use homologous recombination (HR) to process DSBs. To test the extent to which the different DSB repair pathways influenced the Z-DNA-induced mutagenesis, we engineered bacterial E.coli strains to express an inducible NHEJ system, to mimic the situation in mammalian cells. Mycobacterium tuberculosis NHEJ proteins Ku and ligase D (LigD) were expressed in E.coli cells in the presence or absence of HR, and the Z-DNA-induced mutations were characterized. We found that the presence of the NHEJ mechanism markedly shifted the mutation spectrum from small deletions/insertions to large-scale deletions (from 2% to 24%). Our results demonstrate that NHEJ plays a role in the generation of Z-DNA-induced large-scale deletions, suggesting that this pathway is associated with DNA structure-induced destabilization of genomes from prokaryotes to eukaryotes. (c) 2010 Elsevier Ltd. All rights reserved.

  5. DNA polymerase θ (POLQ), double-strand break repair, and cancer.

    Science.gov (United States)

    Wood, Richard D; Doublié, Sylvie

    2016-08-01

    DNA polymerase theta (pol θ) is encoded in the genomes of many eukaryotes, though not in fungi. Pol θ is encoded by the POLQ gene in mammalian cells. The C-terminal third of the protein is a family A DNA polymerase with additional insertion elements relative to prokaryotic homologs. The N-terminal third is a helicase-like domain with DNA-dependent ATPase activity. Pol θ is important in the repair of genomic double-strand breaks (DSBs) from many sources. These include breaks formed by ionizing radiation and topoisomerase inhibitors, breaks arising at stalled DNA replication forks, breaks introduced during diversification steps of the mammalian immune system, and DSB induced by CRISPR-Cas9. Pol θ participates in a route of DSB repair termed "alternative end-joining" (altEJ). AltEJ is independent of the DNA binding Ku protein complex and requires DNA end resection. Pol θ is able to mediate joining of two resected 3' ends harboring DNA sequence microhomology. "Signatures" of Pol θ action during altEJ are the frequent utilization of longer microhomologies, and the insertion of additional sequences at joining sites. The mechanism of end-joining employs the ability of Pol θ to tightly grasp a 3' terminus through unique contacts in the active site, allowing extension from minimally paired primers. Pol θ is involved in controlling the frequency of chromosome translocations and preserves genome integrity by limiting large deletions. It may also play a backup role in DNA base excision repair. POLQ is a member of a cluster of similarly upregulated genes that are strongly correlated with poor clinical outcome for breast cancer, ovarian cancer and other cancer types. Inhibition of pol θ is a compelling approach for combination therapy of radiosensitization. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The helicase DinG responds to stress due to DNA double strand breaks.

    Directory of Open Access Journals (Sweden)

    Stephan A Frye

    Full Text Available Neisseria meningitidis (Nm is a Gram-negative nasopharyngeal commensal that can cause septicaemia and meningitis. The neisserial DNA damage-inducible protein DinG is a helicase related to the mammalian helicases XPD and FANCJ. These helicases belong to superfamily 2, are ATP dependent and exert 5' → 3' directionality. To better understand the role of DinG in neisserial genome maintenance, the Nm DinG (DinGNm enzymatic activities were assessed in vitro and phenotypical characterization of a dinG null mutant (NmΔdinG was performed. Like its homologues, DinGNm possesses 5' → 3' directionality and prefers DNA substrates containing a 5'-overhang. ATPase activity of DinGNm is strictly DNA-dependent and DNA unwinding activity requires nucleoside triphosphate and divalent metal cations. DinGNm directly binds SSBNm with a Kd of 313 nM. Genotoxic stress analysis demonstrated that NmΔdinG was more sensitive to double-strand DNA breaks (DSB induced by mitomycin C (MMC than the Nm wildtype, defining the role of neisserial DinG in DSB repair. Notably, when NmΔdinG cells grown under MMC stress assessed by quantitative mass spectrometry, 134 proteins were shown to be differentially abundant (DA compared to unstressed NmΔdinG cells. Among the DNA replication, repair and recombination proteins affected, polymerase III subunits and recombinational repair proteins RuvA, RuvB, RecB and RecD were significantly down regulated while TopA and SSB were upregulated under stress condition. Most of the other DA proteins detected are involved in metabolic functions. The present study shows that the helicase DinG is probably involved in regulating metabolic pathways as well as in genome maintenance.

  7. Fine resolution mapping of double-strand break sites for human ribosomal DNA units

    Directory of Open Access Journals (Sweden)

    Bernard J. Pope

    2016-12-01

    Full Text Available DNA breakage arises during a variety of biological processes, including transcription, replication and genome rearrangements. In the context of disease, extensive fragmentation of DNA has been described in cancer cells and during early stages of neurodegeneration (Stephens et al., 2011 Stephens et al. (2011 [5]; Blondet et al., 2001 Blondet et al. (2001 [1]. Stults et al. (2009 Stults et al. (2009 [6] reported that human rDNA gene clusters are hotspots for recombination and that rDNA restructuring is among the most common chromosomal alterations in adult solid tumours. As such, analysis of rDNA regions is likely to have significant prognostic and predictive value, clinically. Tchurikov et al. (2015a, 2016 Tchurikov et al. (2015a, 2016 [7,9] have made major advances in this direction, reporting that sites of human genome double-strand breaks (DSBs occur frequently at sites in rDNA that are tightly linked with active transcription - the authors used a RAFT (rapid amplification of forum termini protocol that selects for blunt-ended sites. They reported the relative frequency of these rDNA DSBs within defined co-ordinate ‘windows’ of varying size and made these data (as well as the relevant ‘raw’ sequencing information available to the public (Tchurikov et al., 2015b. Assay designs targeting rDNA DSB hotspots will benefit greatly from the publication of break sites at greater resolution. Here, we re-analyse public RAFT data and make available rDNA DSB co-ordinates to the single-nucleotide level.

  8. Detection of cystic fibrosis delta F508 mutation by anti-double-stranded DNA antibody.

    Science.gov (United States)

    Hopfer, S M; Makowski, G S; Davis, E L; Aslanzadeh, J

    1995-01-01

    This study evaluated an enzyme immunoassay (EIA) as a screening tool for detection of the most common mutation (delta F508) in cystic fibrosis (CF). Guthrie card bloodspots were extracted to remove whole blood polymerase chain reaction (PCR) inhibitors. The washed filter paper was directly amplified under standard (98 bp amplicons) or modified PCR conditions (491 bp amplicons) for the delta F508 mutation. Monoclonal anti-double stranded deoxyribonucleic acid antibody was used to detect competent hybrid formation between PCR products and normal (N) and mutant (M) cDNA (deoxyribonucleic acid) probes coated to microtiter plate wells. Under standard conditions, mean relative color production (N/M) via an enzyme-linked horseradish peroxidase secondary antibody was 8.8, 0.6 and 0.04 for individuals normal, heterozygous and homozygous for the CF delta F508 mutation, respectively (n = 27). Comparison of EIA results to those obtained by tris-borate-EDTA/8 percent polyacrylamide gel electrophoresis (TBE-PAGE) yielded excellent correlation (100 percent) for all three genotypes (n = 27). In comparison to TBE-PAGE, the EIA was 5 to 10 fold more sensitive when serially diluted PCR samples were evaluated. Larger PCR products (491 bp amplicons) for the CF delta F508 mutation obtained under modified conditions were not resolved by TBE-PAGE. The EIA, however, demonstrated equal sensitivity to the 98 bp and 491 bp amplicons. Performance time for TBE-PAGE analysis was substantially shorter (25 percent) than the EIA (3.5 to 4 h and 4.5 to 5 h, respectively) when small batches of samples (n = 5) were analyzed. The TBE-PAGE was not, however, convenient for screening large numbers of PCR-amplified samples (n > 15).

  9. Smoking cessation reverses DNA double-strand breaks in human mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Mari Ishida

    Full Text Available OBJECTIVE: Cigarette smoking is a major risk factor for atherosclerotic cardiovascular disease, which is responsible for a significant proportion of smoking-related deaths. However, the precise mechanism whereby smoking induces this pathology has not been fully delineated. Based on observation of DNA double-strand breaks (DSBs, the most harmful type of DNA damage, in atherosclerotic lesions, we hypothesized that there is a direct association between smoking and DSBs. The goal of this study was to investigate whether smoking induces DSBs and smoking cessation reverses DSBs in vivo through examination of peripheral mononuclear cells (MNCs. APPROACH AND RESULTS: Immunoreactivity of oxidative modification of DNA and DSBs were increased in human atherosclerotic lesions but not in the adjacent normal area. DSBs in human MNCs isolated from the blood of volunteers can be detected as cytologically visible "foci" using an antibody against the phosphorylated form of the histone H2AX (γ-H2AX. Young healthy active smokers (n = 15 showed increased γ-H2AX foci number when compared with non-smokers (n = 12 (foci number/cell: median, 0.37/cell; interquartile range [IQR], 0.31-0.58 vs. 4.36/cell; IQR, 3.09-7.39, p<0.0001. Smoking cessation for 1 month reduced the γ-H2AX foci number (median, 4.44/cell; IQR, 4.36-5.24 to 0.28/cell; IQR, 0.12-0.53, p<0.05. A positive correlation was noted between γ-H2AX foci number and exhaled carbon monoxide levels (r = 0.75, p<0.01. CONCLUSIONS: Smoking induces DSBs in human MNCs in vivo, and importantly, smoking cessation for 1 month resulted in a decrease in DSBs to a level comparable to that seen in non-smokers. These data reinforce the notion that the cigarette smoking induces DSBs and highlight the importance of smoking cessation.

  10. Estimated yield of double-strand breaks from internal exposure to tritium.

    Science.gov (United States)

    Chen, Jing

    2012-08-01

    Internal exposure to tritium may result in DNA lesions. Of those, DNA double-strand breaks (DSBs) are believed to be important. However, experimental and computational data of DSBs induction by tritium are very limited. In this study, microdosimetric characteristics of uniformly distributed tritium were determined in dimensions of critical significance in DNA DSBs. Those characteristics were used to identify other particles comparable to tritium in terms of microscopic energy deposition. The yield of DSBs could be strongly dependent on biological systems and cellular environments. After reviewing theoretically predicted and experimentally determined DSB yields available in the literature for low-energy electrons and high-energy protons of comparable microdosimetric characteristics to tritium in the dimensions relevant to DSBs, it is estimated that the average DSB yields of 2.7 × 10(-11), 0.93 × 10(-11), 2.4 × 10(-11) and 1.6 × 10(-11) DSBs Gy(-1) Da(-1) could be reasonable estimates for tritium in plasmid DNAs, yeast cells, Chinese hamster V79 cells and human fibroblasts, respectively. If a biological system is not specified, the DSB yield from tritium exposure can be estimated as (2.3 ± 0.7) × 10(-11) DSBs Gy(-1) Da(-1), which is a simple average over experimentally determined yields of DSBs for low-energy electrons in various biological systems without considerations of variations caused by different techniques used and obvious differences among different biological systems where the DSB yield was measured.

  11. Role of Double-Strand Break End-Tethering during Gene Conversion in Saccharomyces cerevisiae

    Science.gov (United States)

    Haber, James E.

    2016-01-01

    Correct repair of DNA double-strand breaks (DSBs) is critical for maintaining genome stability. Whereas gene conversion (GC)-mediated repair is mostly error-free, repair by break-induced replication (BIR) is associated with non-reciprocal translocations and loss of heterozygosity. We have previously shown that a Recombination Execution Checkpoint (REC) mediates this competition by preventing the BIR pathway from acting on DSBs that can be repaired by GC. Here, we asked if the REC can also determine whether the ends that are engaged in a GC-compatible configuration belong to the same break, since repair involving ends from different breaks will produce potentially deleterious translocations. We report that the kinetics of repair are markedly delayed when the two DSB ends that participate in GC belong to different DSBs (termed Trans) compared to the case when both DSB ends come from the same break (Cis). However, repair in Trans still occurs by GC rather than BIR, and the overall efficiency of repair is comparable. Hence, the REC is not sensitive to the “origin” of the DSB ends. When the homologous ends for GC are in Trans, the delay in repair appears to reflect their tethering to sequences on the other side of the DSB that themselves recombine with other genomic locations with which they share sequence homology. These data support previous observations that the two ends of a DSB are usually tethered to each other and that this tethering facilitates both ends encountering the same donor sequence. We also found that the presence of homeologous/repetitive sequences in the vicinity of a DSB can distract the DSB end from finding its bona fide homologous donor, and that inhibition of GC by such homeologous sequences is markedly increased upon deleting Sgs1 but not Msh6. PMID:27074148

  12. DNA Double Strand Break Response and Limited Repair Capacity in Mouse Elongated Spermatids

    Directory of Open Access Journals (Sweden)

    Emad A. Ahmed

    2015-12-01

    Full Text Available Spermatids are extremely sensitive to genotoxic exposures since during spermiogenesis only error-prone non homologous end joining (NHEJ repair pathways are available. Hence, genomic damage may accumulate in sperm and be transmitted to the zygote. Indirect, delayed DNA fragmentation and lesions associated with apoptotic-like processes have been observed during spermatid elongation, 27 days after irradiation. The proliferating spermatogonia and early meiotic prophase cells have been suggested to retain a memory of a radiation insult leading later to this delayed fragmentation. Here, we used meiotic spread preparations to localize phosphorylate histone H2 variant (γ-H2AX foci marking DNA double strand breaks (DSBs in elongated spermatids. This technique enabled us to determine the background level of DSB foci in elongated spermatids of RAD54/RAD54B double knockout (dko mice, severe combined immunodeficiency SCID mice, and poly adenosine diphosphate (ADP-ribose polymerase 1 (PARP1 inhibitor (DPQ-treated mice to compare them with the appropriate wild type controls. The repair kinetics data and the protein expression patterns observed indicate that the conventional NHEJ repair pathway is not available for elongated spermatids to repair the programmed and the IR-induced DSBs, reflecting the limited repair capacity of these cells. However, although elongated spermatids express the proteins of the alternative NHEJ, PARP1-inhibition had no effect on the repair kinetics after IR, suggesting that DNA damage may be passed onto sperm. Finally, our genetic mutant analysis suggests that an incomplete or defective meiotic recombinational repair of Spo11-induced DSBs may lead to a carry-over of the DSB damage or induce a delayed nuclear fragmentation during the sensitive programmed chromatin remodeling occurring in elongated spermatids.

  13. Elevated Subclinical Double-Stranded DNA Antibodies and Future Proliferative Lupus Nephritis

    Science.gov (United States)

    Lee, Jessica J.; Prince, Lisa K.; Baker, Thomas P.; Papadopoulos, Patricia; Edison, Jess; Abbott, Kevin C.

    2013-01-01

    Summary Background and objectives Elevated anti–double-stranded DNA (dsDNA) antibody and C-reactive protein are associated with proliferative lupus nephritis (PLN). Progression of quantitative anti-dsDNA antibody in patients with PLN has not been compared with that in patients with systemic lupus erythematosus (SLE) without LN before diagnosis. The temporal relationship between anti-dsDNA antibody and C-reactive protein elevation has also not been evaluated. Design, setting, participants, & measurements This case-control Department of Defense Serum Repository (established in 1985) study compared longitudinal prediagnostic quantitative anti-dsDNA antibody and C-reactive protein levels in 23 patients with biopsy-proven PLN (Walter Reed Army Medical Center, 1993–2009) with levels in 21 controls with SLE but without LN matched for patient age, sex, race, and age of serum sample. The oldest (median, 2601 days; 25%, 1245 days, 75%, 3075 days), the second to last (368; 212, 635 days), and the last (180; 135, 477 days) serum sample before diagnosis were analyzed. Results More patients with PLN had an elevated anti-dsDNA antibody level than did the matched controls at any point (78% versus 5%; P4 years (33% versus 0%; P=0.04) before diagnosis. A rate of increase >1 IU/ml per year (70% versus 0%; P<0.001) was most specific for PLN. The anti-dsDNA antibody levels increased before C-reactive protein did in most patients with an antecedent elevation (92% versus 8%; P<0.001). Conclusions Elevated anti-dsDNA antibody usually precedes both clinical and subclinical evidence of proliferative LN, which suggests direct pathogenicity. Absolute anti-dsDNA antibody level and rate of increase could better establish risk of future PLN in patients with SLE. PMID:23833315

  14. Role of Double-Strand Break End-Tethering during Gene Conversion in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Suvi Jain

    2016-04-01

    Full Text Available Correct repair of DNA double-strand breaks (DSBs is critical for maintaining genome stability. Whereas gene conversion (GC-mediated repair is mostly error-free, repair by break-induced replication (BIR is associated with non-reciprocal translocations and loss of heterozygosity. We have previously shown that a Recombination Execution Checkpoint (REC mediates this competition by preventing the BIR pathway from acting on DSBs that can be repaired by GC. Here, we asked if the REC can also determine whether the ends that are engaged in a GC-compatible configuration belong to the same break, since repair involving ends from different breaks will produce potentially deleterious translocations. We report that the kinetics of repair are markedly delayed when the two DSB ends that participate in GC belong to different DSBs (termed Trans compared to the case when both DSB ends come from the same break (Cis. However, repair in Trans still occurs by GC rather than BIR, and the overall efficiency of repair is comparable. Hence, the REC is not sensitive to the "origin" of the DSB ends. When the homologous ends for GC are in Trans, the delay in repair appears to reflect their tethering to sequences on the other side of the DSB that themselves recombine with other genomic locations with which they share sequence homology. These data support previous observations that the two ends of a DSB are usually tethered to each other and that this tethering facilitates both ends encountering the same donor sequence. We also found that the presence of homeologous/repetitive sequences in the vicinity of a DSB can distract the DSB end from finding its bona fide homologous donor, and that inhibition of GC by such homeologous sequences is markedly increased upon deleting Sgs1 but not Msh6.

  15. UCLA1, a synthetic derivative of a gp120 RNA aptamer, inhibits entry of human immunodeficiency virus type 1 subtype C

    CSIR Research Space (South Africa)

    Mufhandu, Hazel T

    2012-05-01

    Full Text Available aptamers and showed that they neutralized the infectivity of HIV-1. In this study, we assessed the activity of a shortened synthetic derivative of the B40 aptamer, called UCLA1, against a large panel of HIV-1 subtype C viruses. UCLA1 tightly bound to a...

  16. RNA Interference - Towards RNA becoming a Medicine -42 ...

    Indian Academy of Sciences (India)

    ph~nomenon in C.elegans. They were attempting'to use antisens'c'RNA as an approach to Inhibit gene expression. They found that sense and antisense RNA forming a double. stranded RNA was a better silencing trigger than antisense RNA. After the discovery ofRNAi in C.elegans, identification of the RNAi pathway was ...

  17. CRISPR-CAS9 D10A nickase target-specific fluorescent labeling of double strand DNA for whole genome mapping and structural variation analysis.

    Science.gov (United States)

    McCaffrey, Jennifer; Sibert, Justin; Zhang, Bin; Zhang, Yonggang; Hu, Wenhui; Riethman, Harold; Xiao, Ming

    2016-01-29

    We have developed a new, sequence-specific DNA labeling strategy that will dramatically improve DNA mapping in complex and structurally variant genomic regions, as well as facilitate high-throughput automated whole-genome mapping. The method uses the Cas9 D10A protein, which contains a nuclease disabling mutation in one of the two nuclease domains of Cas9, to create a guide RNA-directed DNA nick in the context of an in vitro-assembled CRISPR-CAS9-DNA complex. Fluorescent nucleotides are then incorporated adjacent to the nicking site with a DNA polymerase to label the guide RNA-determined target sequences. This labeling strategy is very powerful in targeting repetitive sequences as well as in barcoding genomic regions and structural variants not amenable to current labeling methods that rely on uneven distributions of restriction site motifs in the DNA. Importantly, it renders the labeled double-stranded DNA available in long intact stretches for high-throughput analysis in nanochannel arrays as well as for lower throughput targeted analysis of labeled DNA regions using alternative methods for stretching and imaging the labeled long DNA molecules. Thus, this method will dramatically improve both automated high-throughput genome-wide mapping as well as targeted analyses of complex regions containing repetitive and structurally variant DNA. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Transgenic Cotton Plants Expressing Double-stranded RNAs Target HMG-CoA Reductase (HMGR) Gene Inhibits the Growth, Development and Survival of Cotton Bollworms.

    Science.gov (United States)

    Tian, Geng; Cheng, Linlin; Qi, Xuewei; Ge, Zonghe; Niu, Changying; Zhang, Xianlong; Jin, Shuangxia

    2015-01-01

    RNA interference (RNAi) has been developed as a powerful technique in the research of functional genomics as well as plant pest control. In this report, double-stranded RNAs (dsRNA) targeting 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene, which catalyze a rate-limiting enzymatic reaction in the mevalonate pathway of juvenile hormone (JH) synthesis in cotton bollworm, was expressed in cotton plants via Agrobacterium tumefaciens-mediated transformation. PCR and Sothern analysis revealed the integration of HMGR gene into cotton genome. RT-PCR and qRT-PCR confirmed the high transcription level of dsHMGR in transgenic cotton lines. The HMGR expression both in transcription and translation level was significantly downregulated in cotton bollworms (helicoverpa armigera) larvae after feeding on the leaves of HMGR transgenic plants. The transcription level of HMGR gene in larvae reared on transgenic cotton leaves was as much as 80.68% lower than that of wild type. In addition, the relative expression level of vitellogenin (Vg, crucial source of nourishment for offspring embryo development) gene was also reduced by 76.86% when the insect larvae were fed with transgenic leaves. The result of insect bioassays showed that the transgenic plant harboring dsHMGR not only inhibited net weight gain but also delayed the growth of cotton bollworm larvae. Taken together, transgenic cotton plant expressing dsRNAs successfully downregulated HMGR gene and impaired the development and survival of target insect, which provided more option for plant pest control.

  19. Global Inhibition with Specific Activation: How p53 and MYC Redistribute the Transcriptome in the DNA Double-Strand Break Response.

    Science.gov (United States)

    Porter, Joshua R; Fisher, Brian E; Baranello, Laura; Liu, Julia C; Kambach, Diane M; Nie, Zuqin; Koh, Woo Seuk; Luo, Ji; Stommel, Jayne M; Levens, David; Batchelor, Eric

    2017-09-21

    In response to stresses, cells often halt normal cellular processes, yet stress-specific pathways must bypass such inhibition to generate effective responses. We investigated how cells redistribute global transcriptional activity in response to DNA damage. We show that an oscillatory increase of p53 levels in response to double-strand breaks drives a counter-oscillatory decrease of MYC levels. Using RNA sequencing (RNA-seq) of newly synthesized transcripts, we found that p53-mediated reduction of MYC suppressed general transcription, with the most highly expressed transcripts reduced to a greater extent. In contrast, upregulation of p53 targets was relatively unaffected by MYC suppression. Reducing MYC during the DNA damage response was important for cell-fate regulation, as counteracting MYC repression reduced cell-cycle arrest and elevated apoptosis. Our study shows that global inhibition with specific activation of transcriptional pathways is important for the proper response to DNA damage; this mechanism may be a general principle used in many stress responses. Published by Elsevier Inc.

  20. Parp1-XRCC1 and the repair of DNA double strand breaks in mouse round spermatids.

    Science.gov (United States)

    Ahmed, Emad A; de Boer, Peter; Philippens, Marielle E P; Kal, Henk B; de Rooij, Dirk G

    2010-01-05

    The repair of DNA double strand breaks (DSBs) in male germ cells is slower and differently regulated compared to that in somatic cells. Round spermatids show DSB repair and are radioresistant to apoptosis induction. Mutation induction studies using ionizing irradiation, indicated a high frequency of chromosome aberrations (CA) in the next generation. Since they are in a G1 comparable stage of the cell cycle, haploid spermatids are expected to repair DSBs by the non-homologous end-joining pathway (NHEJ). However, immunohistochemical evidence indicates that not all components of the classical NHEJ pathway are available since the presence of DNA-PKcs cannot be shown. Here, we demonstrate that round spermatids, as well as most other types of male germ cells express both Parp1 and XRCC1. Therefore, we have determined whether the alternative Parp1/XRCC1 dependent NHEJ pathway is active in these nuclei and also have tested for classical NHEJ activity by a genetic method. To evaluate DSB repair in SCID mice, deficient for DNA-PKcs, and to study the involvement of the Parp1/XRCC1 dependent NHEJ pathway in round spermatids, the loss of gamma-H2AX foci after irradiation has been determined in nucleus spreads of round spermatids of SCID mice and in nucleus spreads and histological sections of Parp1-inhibited mice and their respective controls. Results show that around half of the breaks in randomly selected round spermatids are repaired between 1 and 8h after irradiation. The repair of 16% of the induced DSBs requires DNA-PKcs and 21% Parp1. Foci numbers in the Parp1-inhibited testes tend to be higher in spermatids of all epithelial stages reaching significance in stages I-III which indicates an active Parp1/XRCC1 pathway in round spermatids and a decreased repair capacity in later round spermatid stages. In Parp1-inhibited SCID mice only 14.5% of the breaks were repaired 8h after irradiation indicating additivity of the two NHEJ pathways in round spermatids.

  1. MO-AB-BRA-04: Radiation Measurements with a DNA Double-Strand-Break Dosimeter

    International Nuclear Information System (INIS)

    Obeidat, M; Cline, K; Stathakis, S; Papanikolaou, N; Rasmussen, K; Gutierrez, A; Ha, CS; Lee, SE; Shim, EY; Kirby, N

    2016-01-01

    Purpose: Many types of dosimeters are used to measure radiation, but none of them directly measures the biological effect of this dose. The purpose here is to create a dosimeter that can measure the probability of double-strand breaks (DSB) for DNA, which is directly related to the biological effect of radiation. Methods: The dosimeter has DNA strands, which are labeled on one end with biotin and on the other with fluorescein. The biotin attaches these strands to magnetic beads. We suspended the DNA dosimeter in phosphate-buffered saline (PBS) as it matches the internal environment of the body. We placed small volumes (50µL) of the DNA dosimeter into tubes and irradiated these samples in a water-equivalent plastic phantom with several doses (three samples per dose). After irradiating the samples, a magnet was placed against the tubes. The fluorescein attached to broken DNA strands was extracted (called the supernatant) and placed into a different tube. The fluorescein on the unbroken strands remained attached to the beads in the tube and was re-suspended with 50µL of PBS. A fluorescence reader was used to measure the fluorescence for both the re-suspended beads and supernatant. To prove that we are measuring DSB, we tested dosimeter response with two different lengths of attached DNA strands (1 and 4 kilo-base pair). Results: The probability of DSB at the dose levels of 5, 10, 25, and 50 Gy were 0.05, 0.08, 0.12, and 0.19, respectively, while the coefficients of variation were 0.14, 0.07, 0.02, and 0.01, respectively. The 4 kilo-base-pair dosimeter produced 5.3 times the response of the 1 kilo-base-pair dosimeter. Conclusion: The DNA dosimeter yields a measurable response to dose that scales with the DNA strand length. The goal now is to refine the dosimeter fabrication to reproducibly create a low coefficient of variation for the lower doses. This work was supported in part by Yarmouk University (Irbid, Jordan) and CPRIT (RP140105)

  2. Role of DNA-PK in cellular responses to DNA double-strand breaks

    International Nuclear Information System (INIS)

    Chen, D.J.

    2003-01-01

    DNA double-strand breaks (DSBs) are probably the most dangerous of the many different types of DNA damage that occur within the cell. DSBs are generated by exogenous agents such as ionizing radiation (IR) or by endogenously generated reactive oxygen species and occur as intermediates during meiotic and V(D)J recombination. The repair of DSBs is of paramount importance to the cell as misrepair of DSBs can lead to cell death or promote tumorigenesis. In eukaryotes there exists two distinct mechanisms for DNA DSB repair: homologous recombination (HR) and non-homologous end joining (NHEJ). In mammalian cells, however, it is clear that nonhomologous repair of DSBs is highly active and plays a major role in conferring radiation resistance to the cell. The NHEJ machinery minimally consists of the DNA-dependent Protein Kinase (DNA-PK) and a complex of XRCC4 and DNA Ligase IV. The DNA-PK complex is composed of a 470 kDa catalytic subunit (DNA-PKcs), and the heterodimeric Ku70 and Ku80 DNA end-binding complex. DNA-PKcs is a PI-3 kinase with homology to ATM and ATR in its C-terminal kinase domain. The DNA-PK complex protects and tethers the ends, and directs assembly and, perhaps, the activation of other NHEJ proteins. We have previously demonstrated that the kinase activity of DNA-PK is essential for DNA DSB repair and V(D)J recombination. It is, therefore, of immense interest to determine the in vivo targets of DNA-PKcs and the mechanisms by which phosphorylation of these targets modulates NHEJ. Recent studies have resulted in the identification of a number of protein targets that are phosphorylated by and/or interact with DNA-PKcs. Our laboratory has recently identified autophosphorylation site(s) on DNA-PKcs. We find that phosphorylation at these sites in vivo is an early and essential response to DSBs and demonstrate, for the first time, the localization of DNA-PKcs to the sites of DNA damage in vivo. Furthermore, mutation of these phosphorylation sites in mammalian

  3. Parp1-XRCC1 and the repair of DNA double strand breaks in mouse round spermatids

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Emad A. [Department of Endocrinology and Metabolism, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Boer, Peter de [Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen (Netherlands); Philippens, Marielle E.P.; Kal, Henk B. [Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Rooij, Dirk G. de, E-mail: d.g.derooij@uu.nl [Department of Endocrinology and Metabolism, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam (Netherlands)

    2010-01-05

    The repair of DNA double strand breaks (DSBs) in male germ cells is slower and differently regulated compared to that in somatic cells. Round spermatids show DSB repair and are radioresistant to apoptosis induction. Mutation induction studies using ionizing irradiation, indicated a high frequency of chromosome aberrations (CA) in the next generation. Since they are in a G1 comparable stage of the cell cycle, haploid spermatids are expected to repair DSBs by the non-homologous end-joining pathway (NHEJ). However, immunohistochemical evidence indicates that not all components of the classical NHEJ pathway are available since the presence of DNA-PKcs cannot be shown. Here, we demonstrate that round spermatids, as well as most other types of male germ cells express both Parp1 and XRCC1. Therefore, we have determined whether the alternative Parp1/XRCC1 dependent NHEJ pathway is active in these nuclei and also have tested for classical NHEJ activity by a genetic method. To evaluate DSB repair in SCID mice, deficient for DNA-PKcs, and to study the involvement of the Parp1/XRCC1 dependent NHEJ pathway in round spermatids, the loss of {gamma}-H2AX foci after irradiation has been determined in nucleus spreads of round spermatids of SCID mice and in nucleus spreads and histological sections of Parp1-inhibited mice and their respective controls. Results show that around half of the breaks in randomly selected round spermatids are repaired between 1 and 8 h after irradiation. The repair of 16% of the induced DSBs requires DNA-PKcs and 21% Parp1. Foci numbers in the Parp1-inhibited testes tend to be higher in spermatids of all epithelial stages reaching significance in stages I-III which indicates an active Parp1/XRCC1 pathway in round spermatids and a decreased repair capacity in later round spermatid stages. In Parp1-inhibited SCID mice only 14.5% of the breaks were repaired 8 h after irradiation indicating additivity of the two NHEJ pathways in round spermatids.

  4. MO-AB-BRA-04: Radiation Measurements with a DNA Double-Strand-Break Dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Obeidat, M; Cline, K; Stathakis, S; Papanikolaou, N; Rasmussen, K; Gutierrez, A; Ha, CS; Lee, SE; Shim, EY; Kirby, N [University of Texas HSC SA, San Antonio, TX (United States)

    2016-06-15

    Purpose: Many types of dosimeters are used to measure radiation, but none of them directly measures the biological effect of this dose. The purpose here is to create a dosimeter that can measure the probability of double-strand breaks (DSB) for DNA, which is directly related to the biological effect of radiation. Methods: The dosimeter has DNA strands, which are labeled on one end with biotin and on the other with fluorescein. The biotin attaches these strands to magnetic beads. We suspended the DNA dosimeter in phosphate-buffered saline (PBS) as it matches the internal environment of the body. We placed small volumes (50µL) of the DNA dosimeter into tubes and irradiated these samples in a water-equivalent plastic phantom with several doses (three samples per dose). After irradiating the samples, a magnet was placed against the tubes. The fluorescein attached to broken DNA strands was extracted (called the supernatant) and placed into a different tube. The fluorescein on the unbroken strands remained attached to the beads in the tube and was re-suspended with 50µL of PBS. A fluorescence reader was used to measure the fluorescence for both the re-suspended beads and supernatant. To prove that we are measuring DSB, we tested dosimeter response with two different lengths of attached DNA strands (1 and 4 kilo-base pair). Results: The probability of DSB at the dose levels of 5, 10, 25, and 50 Gy were 0.05, 0.08, 0.12, and 0.19, respectively, while the coefficients of variation were 0.14, 0.07, 0.02, and 0.01, respectively. The 4 kilo-base-pair dosimeter produced 5.3 times the response of the 1 kilo-base-pair dosimeter. Conclusion: The DNA dosimeter yields a measurable response to dose that scales with the DNA strand length. The goal now is to refine the dosimeter fabrication to reproducibly create a low coefficient of variation for the lower doses. This work was supported in part by Yarmouk University (Irbid, Jordan) and CPRIT (RP140105)

  5. DNA double strand break (DSB) induction and cell survival in iodine-enhanced computed tomography (CT)

    Science.gov (United States)

    Streitmatter, Seth W.; Stewart, Robert D.; Jenkins, Peter A.; Jevremovic, Tatjana

    2017-08-01

    A multi-scale Monte Carlo model is proposed to assess the dosimetric and biological impact of iodine-based contrast agents commonly used in computed tomography. As presented, the model integrates the general purpose MCNP6 code system for larger-scale radiation transport and dose assessment with the Monte Carlo damage simulation to determine the sub-cellular characteristics and spatial distribution of initial DNA damage. The repair-misrepair-fixation model is then used to relate DNA double strand break (DSB) induction to reproductive cell death. Comparisons of measured and modeled changes in reproductive cell survival for ultrasoft characteristic k-shell x-rays (0.25-4.55 keV) up to orthovoltage (200-500 kVp) x-rays indicate that the relative biological effectiveness (RBE) for DSB induction is within a few percent of the RBE for cell survival. Because of the very short range of secondary electrons produced by low energy x-ray interactions with contrast agents, the concentration and subcellular distribution of iodine within and near cellular targets have a significant impact on the estimated absorbed dose and number of DSB produced in the cell nucleus. For some plausible models of the cell-level distribution of contrast agent, the model predicts an increase in RBE-weighted dose (RWD) for the endpoint of DSB induction of 1.22-1.40 for a 5-10 mg ml-1 iodine concentration in blood compared to an RWD increase of 1.07  ±  0.19 from a recent clinical trial. The modeled RWD of 2.58  ±  0.03 is also in good agreement with the measured RWD of 2.3  ±  0.5 for an iodine concentration of 50 mg ml-1 relative to no iodine. The good agreement between modeled and measured DSB and cell survival estimates provides some confidence that the presented model can be used to accurately assess biological dose for other concentrations of the same or different contrast agents.

  6. 125I-induced DNA double strand breaks: use in calibration of the neutral filter elution technique and comparison with X-ray induced breaks

    International Nuclear Information System (INIS)

    Radford, I.R.; Hodgson, G.S.

    1985-01-01

    The neutral filter elution assay, for measurement of DNA double strand breakage, has been calibrated using mouse L cells and Chinese hamster V79 cells labelled with [ 125 I]dUrd and then held at liquid nitrogen temperature to accumulate decays. The basis of the calibration is the observation that each 125 I decay, occurring in DNA, produces a DNA double strand break. Linear relationships between 125 I decays per cell and lethal lesions per cell (minus natural logarithm survival) and the level of elution, were found. Using the calibration data, it was calculated that the yield of DNA double strand breaks after X-irradiation of both cell types was from 6 to 9 x 10 -12 DNA double strand breaks per Gy per dalton of DNA, for doses greater than 6 Gy. Neutral filter elution and survival data for X-irradiated and 125 I-labelled cells suggested that the relationships between lethal lesions and DNA double strand breakage were significantly different for both cell types. An attempt was made to study the repair kinetics for 125 I-induced DNA double strand breaks, but was frustrated by the rapid DNA degradation which occurs in cells that have been killed by the freezing-thawing process. (author)

  7. Recent Advances in Aptamers Targeting Immune System.

    Science.gov (United States)

    Hu, Piao-Ping

    2017-02-01

    The immune system plays important role in protecting the organism by recognizing non-self molecules from pathogen such as bacteria, parasitic worms, and viruses. When the balance of the host defense system is disturbed, immunodeficiency, autoimmunity, and inflammation occur. Nucleic acid aptamers are short single-stranded DNA (ssDNA) or RNA ligands that interact with complementary molecules with high specificity and affinity. Aptamers that target the molecules involved in immune system to modulate their function have great potential to be explored as new diagnostic and therapeutic agents for immune disorders. This review summarizes recent advances in the development of aptamers targeting immune system. The selection of aptamers with superior chemical and biological characteristics will facilitate their application in the diagnosis and treatment of immune disorders.

  8. Aptamer structures: a preview into regulatory pathways?

    Science.gov (United States)

    Piganeau, Nicolas; Schroeder, Renée

    2003-02-01

    The crystal structure of a streptomycin binding RNA aptamer displays a novel bipartite fold able to clamp the antibiotic. In view of the recent findings that metabolites directly control mRNA translation, we might expect that similar structures exist in natural RNAs.

  9. scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair

    International Nuclear Information System (INIS)

    Biedermann, K.A.; Sun, J.R.; Giaccia, A.J.; Tosto, L.M.; Brown, J.M.

    1991-01-01

    C.B-17 severe combined immunodeficient (scid) mice carry the scid mutation and are severely deficient in both T cell- and B cell-mediated immunity, apparently as a result of defective V(D)J joining of the immunoglobulin and T-cell receptor gene elements. In the present studies, we have defined the tissue, cellular, and molecular basis of another characteristic of these mice: their hypersensitivity to ionizing radiation. Bone marrow stem cells, intestinal crypt cells, and epithelial skin cells from scid mice are 2- to 3-fold more sensitive when irradiated in situ than are congenic BALB/c or C.B-17 controls. Two independently isolated embryo fibroblastic scid mouse cell lines display similar hypersensitivities to gamma-rays. In addition, these cell lines are sensitive to cell killing by bleomycin, which also produces DNA strand breaks, but not by the DNA crosslinking agent mitomycin C or UV irradiation. Measurement of the rejoining of gamma-ray-induced DNA double-strand breaks by pulsed-field gel electrophoresis indicates that these animals are defective in this repair system. This suggests that the gamma-ray sensitivity of the scid mouse fibroblasts could be the result of reduced repair of DNA double-strand breaks. Therefore, a common factor may participate in both the repair of DNA double-strand breaks as well as V(D)J rejoining during lymphocyte development. This murine autosomal recessive mutation should prove extremely useful in fundamental studies of radiation-induced DNA damage and repair

  10. Formation and rejoining of deoxyribonucleic acid double-strand breaks induced in isolated cell nuclei by antineoplastic intercalating agents.

    Science.gov (United States)

    Pommier, Y; Schwartz, R E; Kohn, K W; Zwelling, L A

    1984-07-03

    The biochemical characteristics of the formation and disappearance of intercalator-induced DNA double-strand breaks (DSB) were studied in nuclei from mouse leukemia L1210 cells by using filter elution methodology [Bradley, M. O., & Kohn, K.W. (1979) Nucleic Acids Res. 7, 793-804]. The three intercalators used were 4'-(9-acridinylamino)-methanesulfon-m-anisidide (m-AMSA), 5-iminodaunorubicin (5-ID), and ellipticine. These compounds differ in that they produced predominantly DNA single-strand breaks (SSB) (m-AMSA) or predominantly DNA double-strand breaks (ellipticine) or a mixture of both SSB and DSB (5-ID) in whole cells. In isolated nuclei, each intercalator produced DSB at a frequency comparable to that which is produced in whole cells. Moreover, these DNA breaks reversed within 30 min after drug removal. It thus appeared that neither ATP nor other nucleotides were necessary for intercalator-dependent DNA nicking-closing reactions. The formation of the intercalator-induced DSB was reduced at ice temperature. Break formation was also reduced in the absence of magnesium, at a pH above 6.4 and at NaCl concentrations above 200 mM. In the presence of ATP and ATP analogues, the intercalator-induced cleavage was enhanced. These results suggest that the intercalator-induced DSB are enzymatically mediated and that the enzymes involved in these reactions can catalyze DNA double-strand cleavage and rejoining in the absence of ATP, although the occupancy of an ATP binding site might convert the enzyme to a form more reactive to intercalators. Three inhibitors of DNA topoisomerase II--novobiocin, nalidixic acid, and norfloxacin--reduced the formation of DNA strand breaks.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. A single-strand specific lesion drives MMS-induced hyper-mutability at a double-strand break in yeast.

    Science.gov (United States)

    Yang, Yong; Gordenin, Dmitry A; Resnick, Michael A

    2010-08-05

    Localized hyper-mutability (LHM) can be important in evolution, immunity, and genetic diseases. We previously reported that single-strand DNA (ssDNA) can be an important source of damage-induced LHM in yeast. Here, we establish that the generation of LHM by methyl methanesulfonate (MMS) during repair of a chromosomal double-strand break (DSB) can result in over 0.2 mutations/kb, which is approximately 20,000-fold higher than the MMS-induced mutation density without a DSB. The MMS-induced mutations associated with DSB repair were primarily due to substitutions via translesion DNA synthesis at damaged cytosines, even though there are nearly 10 times more MMS-induced lesions at other bases. Based on this mutation bias, the promutagenic lesion dominating LHM is likely 3-methylcytosine, which is single-strand specific. Thus, the dramatic increase in mutagenesis at a DSB is concluded to result primarily from the generation of non-repairable lesions in ssDNA associated with DSB repair along with efficient induction of highly mutagenic ssDNA-specific lesions. These findings with MMS-induced LHM have broad biological implications for unrepaired damage generated in ssDNA and possibly ssRNA. Published by Elsevier B.V.

  12. Crystal Structure of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated Csn2 Protein Revealed Ca[superscript 2+]-dependent Double-stranded DNA Binding Activity

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ki Hyun; Kurinov, Igor; Ke, Ailong (Cornell); (NWU)

    2012-05-22

    Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) are widespread in bacteria and archaea. They form a line of RNA-based immunity to eradicate invading bacteriophages and malicious plasmids. A key molecular event during this process is the acquisition of new spacers into the CRISPR loci to guide the selective degradation of the matching foreign genetic elements. Csn2 is a Nmeni subtype-specific cas gene required for new spacer acquisition. Here we characterize the Enterococcus faecalis Csn2 protein as a double-stranded (ds-) DNA-binding protein and report its 2.7 {angstrom} tetrameric ring structure. The inner circle of the Csn2 tetrameric ring is {approx}26 {angstrom} wide and populated with conserved lysine residues poised for nonspecific interactions with ds-DNA. Each Csn2 protomer contains an {alpha}/{beta} domain and an {alpha}-helical domain; significant hinge motion was observed between these two domains. Ca{sup 2+} was located at strategic positions in the oligomerization interface. We further showed that removal of Ca{sup 2+} ions altered the oligomerization state of Csn2, which in turn severely decreased its affinity for ds-DNA. In summary, our results provided the first insight into the function of the Csn2 protein in CRISPR adaptation by revealing that it is a ds-DNA-binding protein functioning at the quaternary structure level and regulated by Ca{sup 2+} ions.

  13. Crystal structure of clustered regularly interspaced short palindromic repeats (CRISPR)-associated Csn2 protein revealed Ca2+-dependent double-stranded DNA binding activity.

    Science.gov (United States)

    Nam, Ki Hyun; Kurinov, Igor; Ke, Ailong

    2011-09-02

    Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) are widespread in bacteria and archaea. They form a line of RNA-based immunity to eradicate invading bacteriophages and malicious plasmids. A key molecular event during this process is the acquisition of new spacers into the CRISPR loci to guide the selective degradation of the matching foreign genetic elements. Csn2 is a Nmeni subtype-specific cas gene required for new spacer acquisition. Here we characterize the Enterococcus faecalis Csn2 protein as a double-stranded (ds-) DNA-binding protein and report its 2.7 Å tetrameric ring structure. The inner circle of the Csn2 tetrameric ring is ∼26 Å wide and populated with conserved lysine residues poised for nonspecific interactions with ds-DNA. Each Csn2 protomer contains an α/β domain and an α-helical domain; significant hinge motion was observed between these two domains. Ca(2+) was located at strategic positions in the oligomerization interface. We further showed that removal of Ca(2+) ions altered the oligomerization state of Csn2, which in turn severely decreased its affinity for ds-DNA. In summary, our results provided the first insight into the function of the Csn2 protein in CRISPR adaptation by revealing that it is a ds-DNA-binding protein functioning at the quaternary structure level and regulated by Ca(2+) ions.

  14. Clustering of double strand break-containing chromosome domains is not inhibited by inactivation of major repair proteins

    International Nuclear Information System (INIS)

    Krawczyk, P. M.; Stap, C.; Van Oven, C.; Hoebe, R.; Aten, J. A.

    2006-01-01

    For efficient repair of DNA double strand breaks (DSBs) cells rely on a process that involves the Mre11/Rad50/Nbs1 complex, which may help to protect non-repaired DNA ends from separating until they can be rejoined by DNA repair proteins. It has been observed that as a secondary effect, this process can lead to unintended clustering of multiple, initially separate, DSB-containing chromosome domains. This work demonstrates that neither inactivation of the major repair proteins XRCC3 and the DNA-dependent protein kinase (DNA-PK) nor inhibition of DNA-PK by vanillin influences the aggregation of DSB-containing chromosome domains. (authors)

  15. Detection and Repair of Ionizing Radiation-Induced DNA Double Strand Breaks: New Developments in Nonhomologous End Joining

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chen [Departments of Biochemistry and Molecular Biology and Oncology, and Southern Alberta Cancer Research Institute, University of Calgary, Calgary (Canada); Lees-Miller, Susan P., E-mail: leesmill@ucalgary.ca [Departments of Biochemistry and Molecular Biology and Oncology, and Southern Alberta Cancer Research Institute, University of Calgary, Calgary (Canada)

    2013-07-01

    DNA damage can occur as a result of endogenous metabolic reactions and replication stress or from exogenous sources such as radiation therapy and chemotherapy. DNA double strand breaks are the most cytotoxic form of DNA damage, and defects in their repair can result in genome instability, a hallmark of cancer. The major pathway for the repair of ionizing radiation-induced DSBs in human cells is nonhomologous end joining. Here we review recent advances on the mechanism of nonhomologous end joining, as well as new findings on its component proteins and regulation.

  16. Characterization of the nanostructure of complexes formed by single- or double-stranded oligonucleotides with a cationic surfactant.

    Science.gov (United States)

    Liu, Xiaoyang; Abbott, Nicholas L

    2010-12-02

    We report the use of dynamic light scattering (DLS), small-angle neutron scattering (SANS), and small-angle X-ray scattering (SAXS) to characterize the nanostructure of complexes formed by either single- or double-stranded oligonucleotides with a cationic surfactant (cetyltrimethylammonium bromide, CTAB) in aqueous solution (1 mM Li(2)SO(4)). For single-stranded oligonucleotides 5'-A(20)-3' and 5'-CCCCATTCTAGCAGCCCGGG-3', both the appearance of two Bragg peaks (at 0.14 and 0.28 Å(-1)) in SAXS spectra with a spacing of 1:2 and form factor fits to SANS spectra are consistent with the presence of multilamellar vesicles (with, on average, 6-9 layers with a periodicity of 45-48 Å). Some samples showed evidence of an additional Bragg peak (at 0.20 Å(-1)) associated with periodic packing (with a periodicity of 31 Å) of the oligonucleotides within the lamellae of the nanostructure. The nucleotide composition of the single-stranded oligonucleotides was also found to impact the number and size of the complexes formed with CTAB. In contrast to 5'-A(20)-3' and 5'-CCCCATTCTAGCAGCCCGGG-3', 5'-T(20)-3' did not change the state of aggregation of CTAB (globular micelles) over a wide range of oligonucleotide:CTAB charge ratios. These results support the proposition that hydrophobic interactions, as well as electrostatics, play a central role in the formation of complexes between cationic amphiphiles and single-stranded oligonucleotides and thus give rise to nanostructures that depend on nucleotide composition. In contrast to the single-stranded oligonucleotides, for double-stranded oligonucleotides mixed with CTAB, three Bragg peaks (0.13, 0.23, and 0.25 Å(-1)) in SAXS spectra with a spacing ratio of 1:√3:√4 and characteristic changes in SANS spectra indicate formation of a hexagonal nanostructure. Also, the composition of the double-stranded oligonucleotides did not measurably impact the nanostructure of complexes formed with CTAB, suggesting that electrostatic

  17. IER5 is involved in DNA Double-Strand Breaks Repair in Association with PAPR1 in Hela Cells

    OpenAIRE

    Yu, Xin-Ping; Wu, Yu-Mei; Liu, Yang; Tian, Ming; Wang, Jian-Dong; Ding, Ku-Ke; Ma, Teng; Zhou, Ping-Kun

    2017-01-01

    The immediate early response gene 5 (IER5) is a radiation response gene induced in a dose-independent manner, and has been suggested to be a molecular biomarker for biodosimetry purposes upon radiation exposure. Here, we investigated the function of IER5 in DNA damage response and repair. We found that interference on IER5 expression significantly decreased the efficiency of repair of DNA double-strand breaks induced by ionizing radiations in Hela cells. We found that IER5 participates in the...

  18. Human RECQ5 helicase promotes repair of DNA double-strand breaks by synthesis-dependent strand annealing

    Czech Academy of Sciences Publication Activity Database

    Paliwal, S.; Kanagaraj, R.; Sturzenegger, A.; Burdová, Kamila; Janščák, Pavel

    2014-01-01

    Roč. 42, č. 4 (2014), s. 2380-2390 ISSN 0305-1048 R&D Projects: GA ČR GA204/09/0565; GA ČR GAP305/10/0281 Grant - others:Swiss National Science Foundation(CH) 31003A-129747; Swiss National Science Foundation(CH) 31003A_146206 Institutional support: RVO:68378050 Keywords : Human RECQ5 helicase * DNA double-strand breaks * mitotic homologous recombination Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.112, year: 2014

  19. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis

    OpenAIRE

    Jette, Nicholas; Lees-Miller, Susan P.

    2014-01-01

    The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemi...

  20. The Mismatch-Binding Factor MutSβ Can Mediate ATR Activation in Response to DNA Double-Strand Breaks

    Czech Academy of Sciences Publication Activity Database

    Burdová, Kamila; Mihaljevic, B.; Sturzenegger, A.; Chappidi, N.; Janščák, Pavel

    2015-01-01

    Roč. 59, č. 4 (2015), s. 603-614 ISSN 1097-2765 R&D Projects: GA ČR GAP305/10/0281; GA ČR(CZ) GA14-05743S Grant - others:Oncosuisse(CH) KLS-02344-02-2009; Swiss National Science Foundation(CH) 31003A_146206; Novartis Foundation for Medical and Biological Research(CH) 11A16 Institutional support: RVO:68378050 Keywords : Ataxia telangiectasia-mutated and Rad3-related (ATR) protein kinase * DNA -damage response * DNA Double- Strand Breaks Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 13.958, year: 2015

  1. Aptamers: A Feasible Technology in Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    M. M. Soldevilla

    2016-01-01

    Full Text Available Aptamers are single-chained RNA or DNA oligonucleotides (ODNs with three-dimensional folding structures which allow them to bind to their targets with high specificity. Aptamers normally show affinities comparable to or higher than that of antibodies. They are chemically synthesized and therefore less expensive to manufacture and produce. A variety of aptamers described to date have been shown to be reliable in modulating immune responses against cancer by either blocking or activating immune receptors. Some of them have been conjugated to other molecules to target the immune system and reduce off-target side effects. Despite the success of first-line treatments against cancer, the elevated number of relapsing cases and the tremendous side effects shown by the commonly used agents hinder conventional treatments against cancer. The advantages provided by aptamers could enhance the therapeutic index of a given strategy and therefore enhance the antitumor effect. Here we recapitulate the provided benefits of aptamers with immunomodulatory activity described to date in cancer therapy and the benefits that aptamer-based immunotherapy could provide either alone or combined with first-line treatments in cancer therapy.

  2. TrmBL2 from Pyrococcus furiosus Interacts Both with Double-Stranded and Single-Stranded DNA.

    Directory of Open Access Journals (Sweden)

    Sebastian Wierer

    Full Text Available In many hyperthermophilic archaea the DNA binding protein TrmBL2 or one of its homologues is abundantly expressed. TrmBL2 is thought to play a significant role in modulating the chromatin architecture in combination with the archaeal histone proteins and Alba. However, its precise physiological role is poorly understood. It has been previously shown that upon binding TrmBL2 covers double-stranded DNA, which leads to the formation of a thick and fibrous filament. Here we investigated the filament formation process as well as the stabilization of DNA by TrmBL2 from Pyroccocus furiosus in detail. We used magnetic tweezers that allow to monitor changes of the DNA mechanical properties upon TrmBL2 binding on the single-molecule level. Extended filaments formed in a cooperative manner and were considerably stiffer than bare double-stranded DNA. Unlike Alba, TrmBL2 did not form DNA cross-bridges. The protein was found to bind double- and single-stranded DNA with similar affinities. In mechanical disruption experiments of DNA hairpins this led to stabilization of both, the double- (before disruption and the single-stranded (after disruption DNA forms. Combined, these findings suggest that the biological function of TrmBL2 is not limited to modulating genome architecture and acting as a global repressor but that the protein acts additionally as a stabilizer of DNA secondary structure.

  3. Homothallic switching of yeast mating type cassettes is initiated by a double-stranded cut in the MAT locus.

    Science.gov (United States)

    Strathern, J N; Klar, A J; Hicks, J B; Abraham, J A; Ivy, J M; Nasmyth, K A; McGill, C

    1982-11-01

    A double-stranded DNA cut has been observed in the mating type (MAT) locus of the yeast Saccharomyces cerevisiae in cultures undergoing homothallic cassette switching. Cutting is observed in exponentially growing cells of genotype HO HML alpha MAT alpha HMR alpha or HO HMLa MATa HMRa, which switch continuously, but not in a/alpha HO/HO diploid strains, in which homothallic switching is known to be shut off. Stationary phase cultures do not exhibit the cut. Although this site-specific cut occurs in a sequence (Z1) common to the silent HML and HMR cassettes and to MAT, only the Z1 sequence at the MAT locus is cut. The cut at MAT occurs in the absence of the HML and HMR donor cassettes, suggesting that cutting initiates the switching process. An assay for switching on hybrid plasmids containing mata- cassettes has been devised, and deletion mapping has shown that the cut site is required for efficient switching. Thus a double-stranded cut at the MAT locus appears to initiate cassette transposition-substitution and defines MAT as the recipient in this process.

  4. Quantifying DNA double-strand breaks induced by site-specific endonucleases in living cells by ligation-mediated purification.

    Science.gov (United States)

    Chailleux, Catherine; Aymard, François; Caron, Pierre; Daburon, Virginie; Courilleau, Céline; Canitrot, Yvan; Legube, Gaëlle; Trouche, Didier

    2014-03-01

    Recent advances in our understanding of the management and repair of DNA double-strand breaks (DSBs) rely on the study of targeted DSBs that have been induced in living cells by the controlled activity of site-specific endonucleases, usually recombinant restriction enzymes. Here we describe a protocol for quantifying these endonuclease-induced DSBs; this quantification is essential to an interpretation of how DSBs are managed and repaired. A biotinylated double-stranded oligonucleotide is ligated to enzyme-cleaved genomic DNA, allowing the purification of the cleaved DNA on streptavidin beads. The extent of cleavage is then quantified either by quantitative PCR (qPCR) at a given site or at multiple sites by genome-wide techniques (e.g., microarrays or high-throughput sequencing). This technique, named ligation-mediated purification, can be performed in 2 d. It is more accurate and sensitive than existing alternative methods, and it is compatible with genome-wide analysis. It allows the amount of endonuclease-mediated breaks to be precisely compared between two conditions or across the genome, thereby giving insight into the influence of a given factor or of various chromatin contexts on local repair parameters.

  5. Contribution of DNA double-strand break repair gene XRCC3 genotypes to oral cancer susceptibility in Taiwan.

    Science.gov (United States)

    Tsai, Chia-Wen; Chang, Wen-Shin; Liu, Juhn-Cherng; Tsai, Ming-Hsui; Lin, Cheng-Chieh; Bau, Da-Tian

    2014-06-01

    The DNA repair gene X-ray repair cross complementing protein 3 (XRCC3) is thought to play a major role in double-strand break repair and in maintaining genomic stability. Very possibly, defective double-strand break repair of cells can lead to carcinogenesis. Therefore, a case-control study was performed to reveal the contribution of XRCC3 genotypes to individual oral cancer susceptibility. In this hospital-based research, the association of XRCC3 rs1799794, rs45603942, rs861530, rs3212057, rs1799796, rs861539, rs28903081 genotypes with oral cancer risk in a Taiwanese population was investigated. In total, 788 patients with oral cancer and 956 age- and gender-matched healthy controls were genotyped. The results showed that there was significant differential distribution among oral cancer and controls in the genotypic (p=0.001428) and allelic (p=0.0013) frequencies of XRCC3 rs861539. As for the other polymorphisms, there was no difference between case and control groups. In gene-lifestyle interaction analysis, we have provided the first evidence showing that there is an obvious joint effect of XRCC3 rs861539 genotype with individual areca chewing habits on oral cancer risk. In conclusion, the T allele of XRCC3 rs861539, which has an interaction with areca chewing habit in oral carcinogenesis, may be an early marker for oral cancer in Taiwanese. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Human CtIP mediates cell cycle control of DNA end resection and double strand break repair.

    Science.gov (United States)

    Huertas, Pablo; Jackson, Stephen P

    2009-04-03

    In G(0) and G(1), DNA double strand breaks are repaired by nonhomologous end joining, whereas in S and G(2), they are also repaired by homologous recombination. The human CtIP protein controls double strand break (DSB) resection, an event that occurs effectively only in S/G(2) and that promotes homologous recombination but not non-homologous end joining. Here, we mutate a highly conserved cyclin-dependent kinase (CDK) target motif in CtIP and reveal that mutating Thr-847 to Ala impairs resection, whereas mutating it to Glu to mimic constitutive phosphorylation does not. Moreover, we show that unlike cells expressing wild-type CtIP, cells expressing the Thr-to-Glu mutant resect DSBs even after CDK inhibition. Finally, we establish that Thr-847 mutations to either Ala or Glu affect DSB repair efficiency, cause hypersensitivity toward DSB-generating agents, and affect the frequency and nature of radiation-induced chromosomal rearrangements. These results suggest that CDK-mediated control of resection in human cells operates by mechanisms similar to those recently established in yeast.

  7. Induction of DNA double-strand breaks in hepatoma cell SMMC-7721 by accelerated carbon ion 12C6+

    International Nuclear Information System (INIS)

    Lei Suwen; Su Xu; Wang Jufang; Zhao Jing; Li Wenjian

    2004-01-01

    DNA lesions, especially DNA double-strand breaks (dsbs), are looked upon as the dominant molecular effect of radiation action. Dsbs mark the beginning of a cascade of cellular processes that either results in complete repair of the DNA damage or lead to deleterious stages such as mutation, transformation or even cell death. Changing the radiation quality can influence the radiosensitivity of cells in culture. Accelerated particles provide an excellent means of varying the ionization density of the test radiation. With ion beams, the molecular mechanisms underlying the biological consequences of high linear energy transfer (LET) irradiation can be studied and describing radiation action with biophysical models can be tested. In this paper, radiation-induced DNA double-strand breaks (dsbs) were measured in hepatoma SMMC-7721 cells by means of an experimental approach involving pulsed-field gel electrophoresis and densitometric scanning of ethidium bromide stained gels. With this set-up, the induction of dsbs was investigated in SMMC-7721 cells after irradiation with accelerated carbon ions with specific LET 70 keV/μm. The fraction of DNA retained was taken as quantitative measure to calculate absolute yields of induced DNA dsbs. Experimental data shows that the induction of DNA dsbs increasing with the dose of irradiation. Data are compared with published results on dsbs induction in mammalian cells by radiations of comparable LET

  8. Single nucleotide-level mapping of DNA double-strand breaks in human HEK293T cells

    Directory of Open Access Journals (Sweden)

    Bernard J. Pope

    2017-03-01

    Full Text Available Constitutional biological processes involve the generation of DNA double-strand breaks (DSBs. The production of such breaks and their subsequent resolution are also highly relevant to neurodegenerative diseases and cancer, in which extensive DNA fragmentation has been described Stephens et al. (2011, Blondet et al. (2001. Tchurikov et al. Tchurikov et al. (2011, 2013 have reported previously that frequent sites of DSBs occur in chromosomal domains involved in the co-ordinated expression of genes. This group report that hot spots of DSBs in human HEK293T cells often coincide with H3K4me3 marks, associated with active transcription Kravatsky et al. (2015 and that frequent sites of DNA double-strand breakage are likely to be relevant to cancer genomics Tchurikov et al. (2013, 2016 . Recently, they applied a RAFT (rapid amplification of forum termini protocol that selects for blunt-ended DSB sites and mapped these to the human genome within defined co-ordinate ‘windows’. In this paper, we re-analyse public RAFT data to derive sites of DSBs at the single-nucleotide level across the built genome for human HEK293T cells (https://figshare.com/s/35220b2b79eaaaf64ed8. This refined mapping, combined with accessory ENCODE data tracks and ribosomal DNA-related sequence annotations, will likely be of value for the design of clinically relevant targeted assays such as those for cancer susceptibility, diagnosis, treatment-matching and prognostication.

  9. Viral counterdefense on RNA silencing : analysis of RNA silencing suppressors from arthropod-borne negative strand RNA plant viruses

    NARCIS (Netherlands)

    Schnettler, E.

    2010-01-01

    This thesis describes that RNA silencing suppressor (RSS) proteins encoded by negative-stranded RNA plant viruses are able to interfere with different RNA silencing pathways in a variety of organisms by interacting with double stranded (ds)RNA molecules. These RSS proteins are able to counteract the

  10. Formation of double-strand breaks in DNA of γ-irradiated bacteria depending on the function of fast repair processes of DNA single-strand breaks

    International Nuclear Information System (INIS)

    Petrov, S.I.; Gaziev, A.I.

    1980-01-01

    The formation of double-strand breaks in DNA of γ-irradiated ( 60 Co)Ex coli bacteria depending on the function of fast repair processes of DNA single-strand breaks, is investigated. The profiles of sedimentation of DNA Ex coli cells, irradiated at 0-2 deg C in the salt medium and in EDTA-borate buffer, are presented. It is shown that when irradiating cells in EDTA-borate buffer, the output of single- and double strand breaks in DNA is much higher than in the case of their irradiation in the minimum salt medium. The dependence of output of single-strand and double-strand breaks depending on the radiatier doze of E coli cells in the salt medium and EDTA-borate buffer, is studied. The supposition is made on the presence of a regulative interaction between the accumulation of DNA single-breaks and their repair with the formation of double-strand breaks. The functionating of fast and superfast repair processes considerably affects the formation of double-strand breaks in DNA of a bacterium cell. A considerable amount of double-breaks registered immediately after irradiation forms due to a close position of single-strand breaks on the opposite DNA strands

  11. Elucidaton of DNA methylation changes in response to ionizng radiation induced double strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Herrlitz, Maren Linda

    2014-07-04

    would be an effect of overexpression or be indicative of a possible function in these nuclear subcompartments is yet to be elucidated. Additionally, by using flow cytometry analysis, exposure to IR and concomitant overexpression of TET2CD-GFP strongly induced 5hmC formation, therefore suggesting a function of TET2 in response to irradiation. Recruitment analysis showed that the TET2 catalytic domain was recruited to UV laser-induced but not X-rays- or heavy ion-induced damage sites. Endogenous TET2, which was analyzed in high TET2 expressing human fibroblasts, was recruited to damage sites after irradiation with heavy ions or X-rays. As 5hmC is the direct product of the catalytic activity of TET enzymes, local 5hmC formation and abundance at damage sites was investigated. It was observed that 5hmC accumulated at heavy ion- as well as X-ray-induced DNA double strand breaks (DSBs). In addition, investigating 5hmC foci over time after irradiation with X-rays revealed that 5hmC formation and kinetics is similar to that of γH2AX foci, whereby every 5hmC focus co-localized with γH2AX. However, this did not hold true for all γH2AX foci, whose total number was always higher than that of 5hmC. Furthermore, 5hmC (and γH2AX) foci formation was almost unaffected by the inhibition of DNA-PKcs' enzymatic activity. Conversely, 5hmC and γH2AX foci persistence was significantly delayed after DNA-PKcs inhibition. Results obtained in this thesis show that DNA methylation changes (5hmC formation) take place within the time frame of one replication cycle after exposure to IR and that these changes can be observed at sites of DSBs. 5hmC at DSBs might be formed by the oxidative function of TET2, which was shown to be recruited to DSBs. However, involvement of the other TET enzymes in 5hmC production cannot be excluded. Therefore, these results suggest a role of 5hmC in the response to IR induced DSBs, whereby the here presented data suggest that the fast, radiation induced

  12. Application of aptamers in diagnostics, drug-delivery and imaging

    Indian Academy of Sciences (India)

    nanoparticles, liposomes, drugs and antibodies. Finally, we discuss about the conjugation strategies applicable forRNA and DNA aptamers for imaging. Their stability and self-assembly after heating makes them superior overprotein-based binding ...

  13. Investigation on accordance of DNA double-strand break of blood between in vivo and in vitro irradiation using single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Liu Qiang; Jiang Enhai; Li Jin; Tang Weisheng; Wang Zhiquan; Zhao Yongcheng; Fan Feiyue

    2006-01-01

    Objective: To observe the consistency of DNA double-strand break between in vivo and in vitro irradiation, as a prophase study in radiation biodosimetry using single cell gel electrophoresis (SCGE). Methods: Detect DNA double-strand break after whole-body and in vitro radiation in mice lymphocytes using neutral single cell gel electrophoresis. The comet images were processed by CASP software and all the data were analysed by SPSS12.0. Results: There is no difference between in vivo and in vitro irradiation group in HDNA%, TDNA%, CL, TL, TM and OTM. Conclusion: The result of neutral single cell gel electrophoresis shortly after in vitro irradiation can precisely reflect the DNA double-strand break of lymphocytes in whole-body irradiation. (authors)

  14. Effects of 3-Deoxyadenosine (Cordycepin) on the repair of X-ray-induced DNA single- and double-strand breaks in chinese hamster V79 cells

    International Nuclear Information System (INIS)

    Hiraoka, Wakako; Kuwabara, Mikinori; Sato, Fumiaki

    1990-01-01

    The ability of cordycepin to inhibit the repair of DNA strand breaks was examined with X-irradiated Chinese hamster V79 cells in log-phase culture. A filter elution technique revealed that 70 μM cordycepin did not inhibit the repair of single-strand breaks but inhibited the repair of double-strand breaks. These findings confirmed the fact that the increase in the lethality of cordycepin in X-irradiated cultured mammalian cells was attributable to unrepaired DNA double-strand breaks. (author)

  15. Screening of specific nucleic acid aptamers binding tumor markers in the serum of the lung cancer patients and identification of their activities.

    Science.gov (United States)

    Li, Kun; Xiu, Chen-Lin; Gao, Li-Ming; Liang, Hua-Gang; Xu, Shu-Feng; Shi, Ming; Li, Jian; Liu, Zhi-Wei

    2017-07-01

    Lung cancer is by far the leading cause of cancer death in the world. Despite the improvements in diagnostic methods, the status of early detection was not achieved. So, a new diagnostic method is needed. The aim of this study is to obtain the highly specific nucleic acid aptamers with strong affinity to tumor markers in the serum of the lung cancer patients for targeting the serum. Aptamers specifically binding to tumor markers in the serum of the lung cancer patients were screened from the random single-stranded DNA library with agarose beads as supports and the serum as a target by target-substituting subtractive SELEX technique and real-time quantitative polymerase chain reaction technique. Subsequently, the secondary single-stranded DNA library obtained by 10 rounds of screening was amplified to double-stranded DNA, followed by high-throughput genome sequence analysis to screen aptamers with specific affinity to tumor markers in the serum of the lung cancer patients. Finally, six aptamers obtained by 10 rounds of screening were identified with high specific affinity to tumor markers in the serum of the lung cancer patients. Compared with other five aptamers, the aptamer 43 was identified both with the highest specificity to bind target molecule and without any obvious affinity to non-specific proteins. The screened aptamers have relatively high specificity to combine tumor markers in the serum of the lung cancer patients, which provides breakthrough points for early diagnosis and treatment of lung cancer.

  16. Synthetic double-stranded RNAs are adjuvants for the induction of T helper 1 and humoral immune responses to human papillomavirus in rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Christiane Stahl-Hennig

    2009-04-01

    Full Text Available Toll-like receptor (TLR ligands are being considered as adjuvants for the induction of antigen-specific immune responses, as in the design of vaccines. Polyriboinosinic-polyribocytoidylic acid (poly I:C, a synthetic double-stranded RNA (dsRNA, is recognized by TLR3 and other intracellular receptors. Poly ICLC is a poly I:C analogue, which has been stabilized against the serum nucleases that are present in the plasma of primates. Poly I:C(12U, another analogue, is less toxic but also less stable in vivo than poly I:C, and TLR3 is essential for its recognition. To study the effects of these compounds on the induction of protein-specific immune responses in an animal model relevant to humans, rhesus macaques were immunized subcutaneously (s.c. with keyhole limpet hemocyanin (KLH or human papillomavirus (HPV16 capsomeres with or without dsRNA or a control adjuvant, the TLR9 ligand CpG-C. All dsRNA compounds served as adjuvants for KLH-specific cellular immune responses, with the highest proliferative responses being observed with 2 mg/animal poly ICLC (p = 0.002 or 6 mg/animal poly I:C(12U (p = 0.001 when compared with immunization with KLH alone. Notably, poly ICLC -- but not CpG-C given at the same dose -- also helped to induce HPV16-specific Th1 immune responses while both adjuvants supported the induction of strong anti-HPV16 L1 antibody responses as determined by ELISA and neutralization assay. In contrast, control animals injected with HPV16 capsomeres alone did not develop substantial HPV16-specific immune responses. Injection of dsRNA led to increased numbers of cells producing the T cell-activating chemokines CXCL9 and CXCL10 as detected by in situ hybridization in draining lymph nodes 18 hours after injections, and to increased serum levels of CXCL10 (p = 0.01. This was paralleled by the reduced production of the homeostatic T cell-attracting chemokine CCL21. Thus, synthetic dsRNAs induce an innate chemokine response and act as adjuvants

  17. Combined Triplex/Duplex Invasion of Double-Stranded DNA by "Tail-Clamp" Peptide Nucleic Acid

    DEFF Research Database (Denmark)

    Bentin, Thomas; Larsen, H. J.; Nielsen, Peter E.

    2003-01-01

    "Tail-clamp" PNAs composed of a short (hexamer) homopyrimidine triplex forming domain and a (decamer) mixed sequence duplex forming extension have been designed. Tail-clamp PNAs display significantly increased binding to single-stranded DNA compared with PNAs lacking a duplex-forming extension...... as determined by T-m measurements. Binding to double-stranded (ds) DNA occurred by combined triplex and duplex invasion as analyzed by permanganate probing. Furthermore, C-50 measurements revealed that tail-clamp PNAs consistently bound the dsDNA target more efficiently, and kinetics experiments revealed...... to five residues was feasible, but four bases were not sufficient to yield detectable dsDNA binding. The results validate the tail-clamp PNA concept and expand the applications of the P-loop technology....

  18. The Caenorhabditis elegans WRN helicase promotes double-strand DNA break repair by mediating end resection and checkpoint activation.

    Science.gov (United States)

    Ryu, Jin-Sun; Koo, Hyeon-Sook

    2017-07-01

    The protein associated with Werner syndrome (WRN), is involved in DNA repair, checkpoint activation, and telomere maintenance. To better understand the involvement of WRN in double-strand DNA break (DSB) repair, we analyzed the combinatorial role of WRN-1, the Caenorhabditis elegans WRN helicase, in conjunction with EXO-1 and DNA-2 nucleases. We found that WRN-1 cooperates with DNA-2 to resect DSB ends in a pathway acting in parallel to EXO-1. The wrn-1 mutants show an aberrant accumulation of replication protein A (RPA) and RAD-51, and the same pattern of accumulation is also observed in checkpoint-defective strains. We conclude that WRN-1 plays a conserved role in the resection of DSB ends and mediates checkpoint signaling, thereby influencing levels of RPA and RAD-51. © 2017 Federation of European Biochemical Societies.

  19. Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells

    Science.gov (United States)

    Yogo, A.; Sato, K.; Nishikino, M.; Mori, M.; Teshima, T.; Numasaki, H.; Murakami, M.; Demizu, Y.; Akagi, S.; Nagayama, S.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Oishi, Y.; Sugiyama, H.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Tanoue, M.; Sasao, H.; Wakai, D.; Bolton, P. R.; Daido, H.

    2009-05-01

    We report the demonstrated irradiation effect of laser-accelerated protons on human cancer cells. In vitro (living) A549 cells are irradiated with quasimonoenergetic proton bunches of 0.8-2.4 MeV with a single bunch duration of 15 ns. Irradiation with the proton dose of 20 Gy results in a distinct formation of γ-H2AX foci as an indicator of DNA double-strand breaks generated in the cancer cells. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. Unique high-current and short-bunch features make laser-driven proton bunches an excitation source for time-resolved determination of radical yields.

  20. A method for filling in the cohesive ends of double-stranded DNA using Pfu DNA polymerase.

    Science.gov (United States)

    Yang, Shaohui; Li, Xin; Ding, Dongfeng; Hou, Jianhua; Jin, Zhaoxia; Yu, Xinchun; Bo, Tao; Li, Weidong; Li, Minggang

    2005-12-01

    The present paper reports a highly efficient method of making blunt ends from cohesive ends of double-stranded DNA. Klenow fragment and Pfu DNA polymerases were used to fill in the cohesive ends. Since the transformation efficiency can directly reflect the filling-in efficiency, similar ligation and transformation conditions were used, and the filling-in efficiency was compared with the corresponding transformation efficiency. The results indicate that the filling-in efficiency of Pfu DNA polymerase was 1.96 times that of Klenow fragment and its efficiency was markedly higher than that of Klenow fragment (P<0.01). The optimization experiments on reaction conditions indicate, when the pH is 8.5 and the temperature is 74 degrees C, that the filling-in efficiency was highest upon using a buffer containing 3 mM MgSO4 and 300 microM dNTP.

  1. DNA double strand breaks as the critical type of damage with regard to inactivation of cells through ionizing radiation

    International Nuclear Information System (INIS)

    Frankenberg, D.

    1985-01-01

    This report presents the results of an investigation into the effects of ionizing radiation on eukaryotic cells, aimed at revealing the molecular mechanisms leading to cell inactivation as a result of ionizing radiation. The quantitative determination of radiation-induced double strand breaks (DSB) is done via sedimentation of the DNA released from the cells in a neutral saccharose gradient in a preparative ultracentrifuge. The 'experimental mass spectrum' of DNA molecules thus obtained, the mean number of DSB per cell is calculated using a special computer program which simulates the stochastic induction of DSB in the DNA of non-irradiated cells and links the 'simulated' mass spectrum with the 'experimental' one on the basis of the least square fit. The experimental and theoretical studies with the eukaryote yeast on the whole allow insight into the relation between energy absorption and the inactivation of irradiated cells. (orig./MG) [de

  2. Simple Elastic Network Models for Exhaustive Analysis of Long Double-Stranded DNA Dynamics with Sequence Geometry Dependence.

    Directory of Open Access Journals (Sweden)

    Shuhei Isami

    Full Text Available Simple elastic network models of DNA were developed to reveal the structure-dynamics relationships for several nucleotide sequences. First, we propose a simple all-atom elastic network model of DNA that can explain the profiles of temperature factors for several crystal structures of DNA. Second, we propose a coarse-grained elastic network model of DNA, where each nucleotide is described only by one node. This model could effectively reproduce the detailed dynamics obtained with the all-atom elastic network model according to the sequence-dependent geometry. Through normal-mode analysis for the coarse-grained elastic network model, we exhaustively analyzed the dynamic features of a large number of long DNA sequences, approximately ∼150 bp in length. These analyses revealed positive correlations between the nucleosome-forming abilities and the inter-strand fluctuation strength of double-stranded DNA for several DNA sequences.

  3. FAST TRACK COMMUNICATION: String-nets, single- and double-stranded quantum loop gases for non-Abelian anyons

    Science.gov (United States)

    Velenich, Andrea; Chamon, Claudio; Wen, Xiao-Gang

    2010-04-01

    String-nets and quantum loop gases are two prominent microscopic lattice models to describe topological phases. String-net condensation can give rise to both Abelian and non-Abelian anyons, whereas loop condensation usually produces Abelian anyons. It has been proposed, however, that generalized quantum loop gases with non-orthogonal inner products could support non-Abelian anyons. We detail an exact mapping between the string-net and these generalized loop models and explain how the non-orthogonal products arise. We also introduce an equivalent loop model of double-stranded nets where quantum loops with an orthogonal inner product and local interactions supports non-Abelian Fibonacci anyons. Finally, we emphasize the origin of the sign problem in systems with non-Abelian excitations and its consequences on the complexity of their ground state wavefunctions.

  4. Single and double strand breaks induced by 3H incorporated in DNA of cultured human kidney cells

    International Nuclear Information System (INIS)

    Tisljar-Lentulis, G.; Henneberg, P.; Mielke, T.; Feinendegen, L.E.

    1978-01-01

    In the course of the investigations of the biological effects of radionuclides incorporated in DNA single (SSB) and double strand breaks (DSB) caused tritium-decay were measured and compared with respective data resulting from 125 I. Tritium bound to thymidine and iododeoxyuridine seems to be more effective than tritium bound to other DNA-precursors. On the basis of decay, methyl- 3 H thymidine appears to be more effective with regard to the production of strand breaks than 3 H in position 6 of the pyrimidine ring. Based on the numbers of strand-breaks per rad, position 6 is more effective in accordance with data obtained by F. Krasin et al. The ratio of SSBs to DSBs per tritium decay appears to be approximately 8 in mammlian cells. Not only SSBs but also DSBs induced by 3 H in mammalian cells are reapairable. (orig./AJ) [de

  5. Application of pulsed field gel electrophoresis to determine γ-ray-induced double-strand breaks in yeast chromosomal molecules

    International Nuclear Information System (INIS)

    Friedl, A.A.; Hahn, K.; Eckardt-Schupp, F.; Kellerer, A.M.; Beisker, W.

    1993-01-01

    The frequency of DNA double-strand breaks (dsb) was determined in yeast cells exposed to γ-rays under anoxic conditions. Genomic DNA of treated cells was separated by pulsed field gel electrophoresis, and two different approaches for the evaluation of the gels were employed: (1) The DNA mass distribution profile obtained by electrophoresis was compared to computed profiles, and the number of DSB per unit length was then derived in terms of a fitting procedure; (2) hybridization of selected chromosomes was performed, and a comparison of the hybridization signals in treated and untreated samples was then used to derive the frequency of dsb. The two assays gave similar results for the frequency of dsb ((1.07 ± 0.06) x 10 -9 Gy -1 bp -1 and (0.93 ± 0.09) x 10 -9 Gy -1 bp -1 , respectively). The dsb frequency was found to be linearly dependent on dose. (author)